|  | //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the function verifier interface, that can be used for some | 
|  | // sanity checking of input to the system. | 
|  | // | 
|  | // Note that this does not provide full `Java style' security and verifications, | 
|  | // instead it just tries to ensure that code is well-formed. | 
|  | // | 
|  | //  * Both of a binary operator's parameters are of the same type | 
|  | //  * Verify that the indices of mem access instructions match other operands | 
|  | //  * Verify that arithmetic and other things are only performed on first-class | 
|  | //    types.  Verify that shifts & logicals only happen on integrals f.e. | 
|  | //  * All of the constants in a switch statement are of the correct type | 
|  | //  * The code is in valid SSA form | 
|  | //  * It should be illegal to put a label into any other type (like a structure) | 
|  | //    or to return one. [except constant arrays!] | 
|  | //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad | 
|  | //  * PHI nodes must have an entry for each predecessor, with no extras. | 
|  | //  * PHI nodes must be the first thing in a basic block, all grouped together | 
|  | //  * PHI nodes must have at least one entry | 
|  | //  * All basic blocks should only end with terminator insts, not contain them | 
|  | //  * The entry node to a function must not have predecessors | 
|  | //  * All Instructions must be embedded into a basic block | 
|  | //  * Functions cannot take a void-typed parameter | 
|  | //  * Verify that a function's argument list agrees with it's declared type. | 
|  | //  * It is illegal to specify a name for a void value. | 
|  | //  * It is illegal to have a internal global value with no initializer | 
|  | //  * It is illegal to have a ret instruction that returns a value that does not | 
|  | //    agree with the function return value type. | 
|  | //  * Function call argument types match the function prototype | 
|  | //  * A landing pad is defined by a landingpad instruction, and can be jumped to | 
|  | //    only by the unwind edge of an invoke instruction. | 
|  | //  * A landingpad instruction must be the first non-PHI instruction in the | 
|  | //    block. | 
|  | //  * Landingpad instructions must be in a function with a personality function. | 
|  | //  * All other things that are tested by asserts spread about the code... | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/IR/Verifier.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/ConstantRange.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugInfo.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/IR/InstVisitor.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/Statepoint.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cstdarg> | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true)); | 
|  |  | 
|  | namespace { | 
|  | struct VerifierSupport { | 
|  | raw_ostream &OS; | 
|  | const Module *M; | 
|  |  | 
|  | /// \brief Track the brokenness of the module while recursively visiting. | 
|  | bool Broken; | 
|  |  | 
|  | explicit VerifierSupport(raw_ostream &OS) | 
|  | : OS(OS), M(nullptr), Broken(false) {} | 
|  |  | 
|  | private: | 
|  | template <class NodeTy> void Write(const ilist_iterator<NodeTy> &I) { | 
|  | Write(&*I); | 
|  | } | 
|  |  | 
|  | void Write(const Module *M) { | 
|  | if (!M) | 
|  | return; | 
|  | OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; | 
|  | } | 
|  |  | 
|  | void Write(const Value *V) { | 
|  | if (!V) | 
|  | return; | 
|  | if (isa<Instruction>(V)) { | 
|  | OS << *V << '\n'; | 
|  | } else { | 
|  | V->printAsOperand(OS, true, M); | 
|  | OS << '\n'; | 
|  | } | 
|  | } | 
|  | void Write(ImmutableCallSite CS) { | 
|  | Write(CS.getInstruction()); | 
|  | } | 
|  |  | 
|  | void Write(const Metadata *MD) { | 
|  | if (!MD) | 
|  | return; | 
|  | MD->print(OS, M); | 
|  | OS << '\n'; | 
|  | } | 
|  |  | 
|  | template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { | 
|  | Write(MD.get()); | 
|  | } | 
|  |  | 
|  | void Write(const NamedMDNode *NMD) { | 
|  | if (!NMD) | 
|  | return; | 
|  | NMD->print(OS); | 
|  | OS << '\n'; | 
|  | } | 
|  |  | 
|  | void Write(Type *T) { | 
|  | if (!T) | 
|  | return; | 
|  | OS << ' ' << *T; | 
|  | } | 
|  |  | 
|  | void Write(const Comdat *C) { | 
|  | if (!C) | 
|  | return; | 
|  | OS << *C; | 
|  | } | 
|  |  | 
|  | template <typename T1, typename... Ts> | 
|  | void WriteTs(const T1 &V1, const Ts &... Vs) { | 
|  | Write(V1); | 
|  | WriteTs(Vs...); | 
|  | } | 
|  |  | 
|  | template <typename... Ts> void WriteTs() {} | 
|  |  | 
|  | public: | 
|  | /// \brief A check failed, so printout out the condition and the message. | 
|  | /// | 
|  | /// This provides a nice place to put a breakpoint if you want to see why | 
|  | /// something is not correct. | 
|  | void CheckFailed(const Twine &Message) { | 
|  | OS << Message << '\n'; | 
|  | Broken = true; | 
|  | } | 
|  |  | 
|  | /// \brief A check failed (with values to print). | 
|  | /// | 
|  | /// This calls the Message-only version so that the above is easier to set a | 
|  | /// breakpoint on. | 
|  | template <typename T1, typename... Ts> | 
|  | void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { | 
|  | CheckFailed(Message); | 
|  | WriteTs(V1, Vs...); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class Verifier : public InstVisitor<Verifier>, VerifierSupport { | 
|  | friend class InstVisitor<Verifier>; | 
|  |  | 
|  | LLVMContext *Context; | 
|  | DominatorTree DT; | 
|  |  | 
|  | /// \brief When verifying a basic block, keep track of all of the | 
|  | /// instructions we have seen so far. | 
|  | /// | 
|  | /// This allows us to do efficient dominance checks for the case when an | 
|  | /// instruction has an operand that is an instruction in the same block. | 
|  | SmallPtrSet<Instruction *, 16> InstsInThisBlock; | 
|  |  | 
|  | /// \brief Keep track of the metadata nodes that have been checked already. | 
|  | SmallPtrSet<const Metadata *, 32> MDNodes; | 
|  |  | 
|  | /// \brief Track unresolved string-based type references. | 
|  | SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs; | 
|  |  | 
|  | /// \brief The result type for a landingpad. | 
|  | Type *LandingPadResultTy; | 
|  |  | 
|  | /// \brief Whether we've seen a call to @llvm.localescape in this function | 
|  | /// already. | 
|  | bool SawFrameEscape; | 
|  |  | 
|  | /// Stores the count of how many objects were passed to llvm.localescape for a | 
|  | /// given function and the largest index passed to llvm.localrecover. | 
|  | DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; | 
|  |  | 
|  | /// Cache of constants visited in search of ConstantExprs. | 
|  | SmallPtrSet<const Constant *, 32> ConstantExprVisited; | 
|  |  | 
|  | void checkAtomicMemAccessSize(const Module *M, Type *Ty, | 
|  | const Instruction *I); | 
|  | public: | 
|  | explicit Verifier(raw_ostream &OS) | 
|  | : VerifierSupport(OS), Context(nullptr), LandingPadResultTy(nullptr), | 
|  | SawFrameEscape(false) {} | 
|  |  | 
|  | bool verify(const Function &F) { | 
|  | M = F.getParent(); | 
|  | Context = &M->getContext(); | 
|  |  | 
|  | // First ensure the function is well-enough formed to compute dominance | 
|  | // information. | 
|  | if (F.empty()) { | 
|  | OS << "Function '" << F.getName() | 
|  | << "' does not contain an entry block!\n"; | 
|  | return false; | 
|  | } | 
|  | for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) { | 
|  | if (I->empty() || !I->back().isTerminator()) { | 
|  | OS << "Basic Block in function '" << F.getName() | 
|  | << "' does not have terminator!\n"; | 
|  | I->printAsOperand(OS, true); | 
|  | OS << "\n"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now directly compute a dominance tree. We don't rely on the pass | 
|  | // manager to provide this as it isolates us from a potentially | 
|  | // out-of-date dominator tree and makes it significantly more complex to | 
|  | // run this code outside of a pass manager. | 
|  | // FIXME: It's really gross that we have to cast away constness here. | 
|  | DT.recalculate(const_cast<Function &>(F)); | 
|  |  | 
|  | Broken = false; | 
|  | // FIXME: We strip const here because the inst visitor strips const. | 
|  | visit(const_cast<Function &>(F)); | 
|  | InstsInThisBlock.clear(); | 
|  | LandingPadResultTy = nullptr; | 
|  | SawFrameEscape = false; | 
|  |  | 
|  | return !Broken; | 
|  | } | 
|  |  | 
|  | bool verify(const Module &M) { | 
|  | this->M = &M; | 
|  | Context = &M.getContext(); | 
|  | Broken = false; | 
|  |  | 
|  | // Scan through, checking all of the external function's linkage now... | 
|  | for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { | 
|  | visitGlobalValue(*I); | 
|  |  | 
|  | // Check to make sure function prototypes are okay. | 
|  | if (I->isDeclaration()) | 
|  | visitFunction(*I); | 
|  | } | 
|  |  | 
|  | // Now that we've visited every function, verify that we never asked to | 
|  | // recover a frame index that wasn't escaped. | 
|  | verifyFrameRecoverIndices(); | 
|  |  | 
|  | for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); | 
|  | I != E; ++I) | 
|  | visitGlobalVariable(*I); | 
|  |  | 
|  | for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); | 
|  | I != E; ++I) | 
|  | visitGlobalAlias(*I); | 
|  |  | 
|  | for (Module::const_named_metadata_iterator I = M.named_metadata_begin(), | 
|  | E = M.named_metadata_end(); | 
|  | I != E; ++I) | 
|  | visitNamedMDNode(*I); | 
|  |  | 
|  | for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) | 
|  | visitComdat(SMEC.getValue()); | 
|  |  | 
|  | visitModuleFlags(M); | 
|  | visitModuleIdents(M); | 
|  |  | 
|  | // Verify type referneces last. | 
|  | verifyTypeRefs(); | 
|  |  | 
|  | return !Broken; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // Verification methods... | 
|  | void visitGlobalValue(const GlobalValue &GV); | 
|  | void visitGlobalVariable(const GlobalVariable &GV); | 
|  | void visitGlobalAlias(const GlobalAlias &GA); | 
|  | void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); | 
|  | void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, | 
|  | const GlobalAlias &A, const Constant &C); | 
|  | void visitNamedMDNode(const NamedMDNode &NMD); | 
|  | void visitMDNode(const MDNode &MD); | 
|  | void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); | 
|  | void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); | 
|  | void visitComdat(const Comdat &C); | 
|  | void visitModuleIdents(const Module &M); | 
|  | void visitModuleFlags(const Module &M); | 
|  | void visitModuleFlag(const MDNode *Op, | 
|  | DenseMap<const MDString *, const MDNode *> &SeenIDs, | 
|  | SmallVectorImpl<const MDNode *> &Requirements); | 
|  | void visitFunction(const Function &F); | 
|  | void visitBasicBlock(BasicBlock &BB); | 
|  | void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty); | 
|  | void visitDereferenceableMetadata(Instruction& I, MDNode* MD); | 
|  |  | 
|  | template <class Ty> bool isValidMetadataArray(const MDTuple &N); | 
|  | #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); | 
|  | #include "llvm/IR/Metadata.def" | 
|  | void visitDIScope(const DIScope &N); | 
|  | void visitDIVariable(const DIVariable &N); | 
|  | void visitDILexicalBlockBase(const DILexicalBlockBase &N); | 
|  | void visitDITemplateParameter(const DITemplateParameter &N); | 
|  |  | 
|  | void visitTemplateParams(const MDNode &N, const Metadata &RawParams); | 
|  |  | 
|  | /// \brief Check for a valid string-based type reference. | 
|  | /// | 
|  | /// Checks if \c MD is a string-based type reference.  If it is, keeps track | 
|  | /// of it (and its user, \c N) for error messages later. | 
|  | bool isValidUUID(const MDNode &N, const Metadata *MD); | 
|  |  | 
|  | /// \brief Check for a valid type reference. | 
|  | /// | 
|  | /// Checks for subclasses of \a DIType, or \a isValidUUID(). | 
|  | bool isTypeRef(const MDNode &N, const Metadata *MD); | 
|  |  | 
|  | /// \brief Check for a valid scope reference. | 
|  | /// | 
|  | /// Checks for subclasses of \a DIScope, or \a isValidUUID(). | 
|  | bool isScopeRef(const MDNode &N, const Metadata *MD); | 
|  |  | 
|  | /// \brief Check for a valid debug info reference. | 
|  | /// | 
|  | /// Checks for subclasses of \a DINode, or \a isValidUUID(). | 
|  | bool isDIRef(const MDNode &N, const Metadata *MD); | 
|  |  | 
|  | // InstVisitor overrides... | 
|  | using InstVisitor<Verifier>::visit; | 
|  | void visit(Instruction &I); | 
|  |  | 
|  | void visitTruncInst(TruncInst &I); | 
|  | void visitZExtInst(ZExtInst &I); | 
|  | void visitSExtInst(SExtInst &I); | 
|  | void visitFPTruncInst(FPTruncInst &I); | 
|  | void visitFPExtInst(FPExtInst &I); | 
|  | void visitFPToUIInst(FPToUIInst &I); | 
|  | void visitFPToSIInst(FPToSIInst &I); | 
|  | void visitUIToFPInst(UIToFPInst &I); | 
|  | void visitSIToFPInst(SIToFPInst &I); | 
|  | void visitIntToPtrInst(IntToPtrInst &I); | 
|  | void visitPtrToIntInst(PtrToIntInst &I); | 
|  | void visitBitCastInst(BitCastInst &I); | 
|  | void visitAddrSpaceCastInst(AddrSpaceCastInst &I); | 
|  | void visitPHINode(PHINode &PN); | 
|  | void visitBinaryOperator(BinaryOperator &B); | 
|  | void visitICmpInst(ICmpInst &IC); | 
|  | void visitFCmpInst(FCmpInst &FC); | 
|  | void visitExtractElementInst(ExtractElementInst &EI); | 
|  | void visitInsertElementInst(InsertElementInst &EI); | 
|  | void visitShuffleVectorInst(ShuffleVectorInst &EI); | 
|  | void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } | 
|  | void visitCallInst(CallInst &CI); | 
|  | void visitInvokeInst(InvokeInst &II); | 
|  | void visitGetElementPtrInst(GetElementPtrInst &GEP); | 
|  | void visitLoadInst(LoadInst &LI); | 
|  | void visitStoreInst(StoreInst &SI); | 
|  | void verifyDominatesUse(Instruction &I, unsigned i); | 
|  | void visitInstruction(Instruction &I); | 
|  | void visitTerminatorInst(TerminatorInst &I); | 
|  | void visitBranchInst(BranchInst &BI); | 
|  | void visitReturnInst(ReturnInst &RI); | 
|  | void visitSwitchInst(SwitchInst &SI); | 
|  | void visitIndirectBrInst(IndirectBrInst &BI); | 
|  | void visitSelectInst(SelectInst &SI); | 
|  | void visitUserOp1(Instruction &I); | 
|  | void visitUserOp2(Instruction &I) { visitUserOp1(I); } | 
|  | void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS); | 
|  | template <class DbgIntrinsicTy> | 
|  | void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII); | 
|  | void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); | 
|  | void visitAtomicRMWInst(AtomicRMWInst &RMWI); | 
|  | void visitFenceInst(FenceInst &FI); | 
|  | void visitAllocaInst(AllocaInst &AI); | 
|  | void visitExtractValueInst(ExtractValueInst &EVI); | 
|  | void visitInsertValueInst(InsertValueInst &IVI); | 
|  | void visitEHPadPredecessors(Instruction &I); | 
|  | void visitLandingPadInst(LandingPadInst &LPI); | 
|  | void visitCatchPadInst(CatchPadInst &CPI); | 
|  | void visitCatchReturnInst(CatchReturnInst &CatchReturn); | 
|  | void visitCleanupPadInst(CleanupPadInst &CPI); | 
|  | void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); | 
|  | void visitCleanupReturnInst(CleanupReturnInst &CRI); | 
|  |  | 
|  | void VerifyCallSite(CallSite CS); | 
|  | void verifyMustTailCall(CallInst &CI); | 
|  | bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, | 
|  | unsigned ArgNo, std::string &Suffix); | 
|  | bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, | 
|  | SmallVectorImpl<Type *> &ArgTys); | 
|  | bool VerifyIntrinsicIsVarArg(bool isVarArg, | 
|  | ArrayRef<Intrinsic::IITDescriptor> &Infos); | 
|  | bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params); | 
|  | void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction, | 
|  | const Value *V); | 
|  | void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, | 
|  | bool isReturnValue, const Value *V); | 
|  | void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, | 
|  | const Value *V); | 
|  | void VerifyFunctionMetadata( | 
|  | const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs); | 
|  |  | 
|  | void visitConstantExprsRecursively(const Constant *EntryC); | 
|  | void visitConstantExpr(const ConstantExpr *CE); | 
|  | void VerifyStatepoint(ImmutableCallSite CS); | 
|  | void verifyFrameRecoverIndices(); | 
|  |  | 
|  | // Module-level debug info verification... | 
|  | void verifyTypeRefs(); | 
|  | template <class MapTy> | 
|  | void verifyBitPieceExpression(const DbgInfoIntrinsic &I, | 
|  | const MapTy &TypeRefs); | 
|  | void visitUnresolvedTypeRef(const MDString *S, const MDNode *N); | 
|  | }; | 
|  | } // End anonymous namespace | 
|  |  | 
|  | // Assert - We know that cond should be true, if not print an error message. | 
|  | #define Assert(C, ...) \ | 
|  | do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0) | 
|  |  | 
|  | void Verifier::visit(Instruction &I) { | 
|  | for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) | 
|  | Assert(I.getOperand(i) != nullptr, "Operand is null", &I); | 
|  | InstVisitor<Verifier>::visit(I); | 
|  | } | 
|  |  | 
|  |  | 
|  | void Verifier::visitGlobalValue(const GlobalValue &GV) { | 
|  | Assert(!GV.isDeclaration() || GV.hasExternalLinkage() || | 
|  | GV.hasExternalWeakLinkage(), | 
|  | "Global is external, but doesn't have external or weak linkage!", &GV); | 
|  |  | 
|  | Assert(GV.getAlignment() <= Value::MaximumAlignment, | 
|  | "huge alignment values are unsupported", &GV); | 
|  | Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), | 
|  | "Only global variables can have appending linkage!", &GV); | 
|  |  | 
|  | if (GV.hasAppendingLinkage()) { | 
|  | const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); | 
|  | Assert(GVar && GVar->getValueType()->isArrayTy(), | 
|  | "Only global arrays can have appending linkage!", GVar); | 
|  | } | 
|  |  | 
|  | if (GV.isDeclarationForLinker()) | 
|  | Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); | 
|  | } | 
|  |  | 
|  | void Verifier::visitGlobalVariable(const GlobalVariable &GV) { | 
|  | if (GV.hasInitializer()) { | 
|  | Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(), | 
|  | "Global variable initializer type does not match global " | 
|  | "variable type!", | 
|  | &GV); | 
|  |  | 
|  | // If the global has common linkage, it must have a zero initializer and | 
|  | // cannot be constant. | 
|  | if (GV.hasCommonLinkage()) { | 
|  | Assert(GV.getInitializer()->isNullValue(), | 
|  | "'common' global must have a zero initializer!", &GV); | 
|  | Assert(!GV.isConstant(), "'common' global may not be marked constant!", | 
|  | &GV); | 
|  | Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); | 
|  | } | 
|  | } else { | 
|  | Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(), | 
|  | "invalid linkage type for global declaration", &GV); | 
|  | } | 
|  |  | 
|  | if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || | 
|  | GV.getName() == "llvm.global_dtors")) { | 
|  | Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), | 
|  | "invalid linkage for intrinsic global variable", &GV); | 
|  | // Don't worry about emitting an error for it not being an array, | 
|  | // visitGlobalValue will complain on appending non-array. | 
|  | if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { | 
|  | StructType *STy = dyn_cast<StructType>(ATy->getElementType()); | 
|  | PointerType *FuncPtrTy = | 
|  | FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo(); | 
|  | // FIXME: Reject the 2-field form in LLVM 4.0. | 
|  | Assert(STy && | 
|  | (STy->getNumElements() == 2 || STy->getNumElements() == 3) && | 
|  | STy->getTypeAtIndex(0u)->isIntegerTy(32) && | 
|  | STy->getTypeAtIndex(1) == FuncPtrTy, | 
|  | "wrong type for intrinsic global variable", &GV); | 
|  | if (STy->getNumElements() == 3) { | 
|  | Type *ETy = STy->getTypeAtIndex(2); | 
|  | Assert(ETy->isPointerTy() && | 
|  | cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), | 
|  | "wrong type for intrinsic global variable", &GV); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (GV.hasName() && (GV.getName() == "llvm.used" || | 
|  | GV.getName() == "llvm.compiler.used")) { | 
|  | Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), | 
|  | "invalid linkage for intrinsic global variable", &GV); | 
|  | Type *GVType = GV.getValueType(); | 
|  | if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { | 
|  | PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); | 
|  | Assert(PTy, "wrong type for intrinsic global variable", &GV); | 
|  | if (GV.hasInitializer()) { | 
|  | const Constant *Init = GV.getInitializer(); | 
|  | const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); | 
|  | Assert(InitArray, "wrong initalizer for intrinsic global variable", | 
|  | Init); | 
|  | for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) { | 
|  | Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases(); | 
|  | Assert(isa<GlobalVariable>(V) || isa<Function>(V) || | 
|  | isa<GlobalAlias>(V), | 
|  | "invalid llvm.used member", V); | 
|  | Assert(V->hasName(), "members of llvm.used must be named", V); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Assert(!GV.hasDLLImportStorageClass() || | 
|  | (GV.isDeclaration() && GV.hasExternalLinkage()) || | 
|  | GV.hasAvailableExternallyLinkage(), | 
|  | "Global is marked as dllimport, but not external", &GV); | 
|  |  | 
|  | if (!GV.hasInitializer()) { | 
|  | visitGlobalValue(GV); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Walk any aggregate initializers looking for bitcasts between address spaces | 
|  | visitConstantExprsRecursively(GV.getInitializer()); | 
|  |  | 
|  | visitGlobalValue(GV); | 
|  | } | 
|  |  | 
|  | void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { | 
|  | SmallPtrSet<const GlobalAlias*, 4> Visited; | 
|  | Visited.insert(&GA); | 
|  | visitAliaseeSubExpr(Visited, GA, C); | 
|  | } | 
|  |  | 
|  | void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, | 
|  | const GlobalAlias &GA, const Constant &C) { | 
|  | if (const auto *GV = dyn_cast<GlobalValue>(&C)) { | 
|  | Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", | 
|  | &GA); | 
|  |  | 
|  | if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { | 
|  | Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); | 
|  |  | 
|  | Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias", | 
|  | &GA); | 
|  | } else { | 
|  | // Only continue verifying subexpressions of GlobalAliases. | 
|  | // Do not recurse into global initializers. | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const auto *CE = dyn_cast<ConstantExpr>(&C)) | 
|  | visitConstantExprsRecursively(CE); | 
|  |  | 
|  | for (const Use &U : C.operands()) { | 
|  | Value *V = &*U; | 
|  | if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) | 
|  | visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); | 
|  | else if (const auto *C2 = dyn_cast<Constant>(V)) | 
|  | visitAliaseeSubExpr(Visited, GA, *C2); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Verifier::visitGlobalAlias(const GlobalAlias &GA) { | 
|  | Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), | 
|  | "Alias should have private, internal, linkonce, weak, linkonce_odr, " | 
|  | "weak_odr, or external linkage!", | 
|  | &GA); | 
|  | const Constant *Aliasee = GA.getAliasee(); | 
|  | Assert(Aliasee, "Aliasee cannot be NULL!", &GA); | 
|  | Assert(GA.getType() == Aliasee->getType(), | 
|  | "Alias and aliasee types should match!", &GA); | 
|  |  | 
|  | Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), | 
|  | "Aliasee should be either GlobalValue or ConstantExpr", &GA); | 
|  |  | 
|  | visitAliaseeSubExpr(GA, *Aliasee); | 
|  |  | 
|  | visitGlobalValue(GA); | 
|  | } | 
|  |  | 
|  | void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { | 
|  | for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) { | 
|  | MDNode *MD = NMD.getOperand(i); | 
|  |  | 
|  | if (NMD.getName() == "llvm.dbg.cu") { | 
|  | Assert(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); | 
|  | } | 
|  |  | 
|  | if (!MD) | 
|  | continue; | 
|  |  | 
|  | visitMDNode(*MD); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Verifier::visitMDNode(const MDNode &MD) { | 
|  | // Only visit each node once.  Metadata can be mutually recursive, so this | 
|  | // avoids infinite recursion here, as well as being an optimization. | 
|  | if (!MDNodes.insert(&MD).second) | 
|  | return; | 
|  |  | 
|  | switch (MD.getMetadataID()) { | 
|  | default: | 
|  | llvm_unreachable("Invalid MDNode subclass"); | 
|  | case Metadata::MDTupleKind: | 
|  | break; | 
|  | #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \ | 
|  | case Metadata::CLASS##Kind:                                                  \ | 
|  | visit##CLASS(cast<CLASS>(MD));                                             \ | 
|  | break; | 
|  | #include "llvm/IR/Metadata.def" | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) { | 
|  | Metadata *Op = MD.getOperand(i); | 
|  | if (!Op) | 
|  | continue; | 
|  | Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", | 
|  | &MD, Op); | 
|  | if (auto *N = dyn_cast<MDNode>(Op)) { | 
|  | visitMDNode(*N); | 
|  | continue; | 
|  | } | 
|  | if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { | 
|  | visitValueAsMetadata(*V, nullptr); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check these last, so we diagnose problems in operands first. | 
|  | Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); | 
|  | Assert(MD.isResolved(), "All nodes should be resolved!", &MD); | 
|  | } | 
|  |  | 
|  | void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { | 
|  | Assert(MD.getValue(), "Expected valid value", &MD); | 
|  | Assert(!MD.getValue()->getType()->isMetadataTy(), | 
|  | "Unexpected metadata round-trip through values", &MD, MD.getValue()); | 
|  |  | 
|  | auto *L = dyn_cast<LocalAsMetadata>(&MD); | 
|  | if (!L) | 
|  | return; | 
|  |  | 
|  | Assert(F, "function-local metadata used outside a function", L); | 
|  |  | 
|  | // If this was an instruction, bb, or argument, verify that it is in the | 
|  | // function that we expect. | 
|  | Function *ActualF = nullptr; | 
|  | if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { | 
|  | Assert(I->getParent(), "function-local metadata not in basic block", L, I); | 
|  | ActualF = I->getParent()->getParent(); | 
|  | } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) | 
|  | ActualF = BB->getParent(); | 
|  | else if (Argument *A = dyn_cast<Argument>(L->getValue())) | 
|  | ActualF = A->getParent(); | 
|  | assert(ActualF && "Unimplemented function local metadata case!"); | 
|  |  | 
|  | Assert(ActualF == F, "function-local metadata used in wrong function", L); | 
|  | } | 
|  |  | 
|  | void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { | 
|  | Metadata *MD = MDV.getMetadata(); | 
|  | if (auto *N = dyn_cast<MDNode>(MD)) { | 
|  | visitMDNode(*N); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Only visit each node once.  Metadata can be mutually recursive, so this | 
|  | // avoids infinite recursion here, as well as being an optimization. | 
|  | if (!MDNodes.insert(MD).second) | 
|  | return; | 
|  |  | 
|  | if (auto *V = dyn_cast<ValueAsMetadata>(MD)) | 
|  | visitValueAsMetadata(*V, F); | 
|  | } | 
|  |  | 
|  | bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) { | 
|  | auto *S = dyn_cast<MDString>(MD); | 
|  | if (!S) | 
|  | return false; | 
|  | if (S->getString().empty()) | 
|  | return false; | 
|  |  | 
|  | // Keep track of names of types referenced via UUID so we can check that they | 
|  | // actually exist. | 
|  | UnresolvedTypeRefs.insert(std::make_pair(S, &N)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Check if a value can be a reference to a type. | 
|  | bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) { | 
|  | return !MD || isValidUUID(N, MD) || isa<DIType>(MD); | 
|  | } | 
|  |  | 
|  | /// \brief Check if a value can be a ScopeRef. | 
|  | bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) { | 
|  | return !MD || isValidUUID(N, MD) || isa<DIScope>(MD); | 
|  | } | 
|  |  | 
|  | /// \brief Check if a value can be a debug info ref. | 
|  | bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) { | 
|  | return !MD || isValidUUID(N, MD) || isa<DINode>(MD); | 
|  | } | 
|  |  | 
|  | template <class Ty> | 
|  | bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) { | 
|  | for (Metadata *MD : N.operands()) { | 
|  | if (MD) { | 
|  | if (!isa<Ty>(MD)) | 
|  | return false; | 
|  | } else { | 
|  | if (!AllowNull) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Ty> | 
|  | bool isValidMetadataArray(const MDTuple &N) { | 
|  | return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false); | 
|  | } | 
|  |  | 
|  | template <class Ty> | 
|  | bool isValidMetadataNullArray(const MDTuple &N) { | 
|  | return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDILocation(const DILocation &N) { | 
|  | Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), | 
|  | "location requires a valid scope", &N, N.getRawScope()); | 
|  | if (auto *IA = N.getRawInlinedAt()) | 
|  | Assert(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); | 
|  | } | 
|  |  | 
|  | void Verifier::visitGenericDINode(const GenericDINode &N) { | 
|  | Assert(N.getTag(), "invalid tag", &N); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDIScope(const DIScope &N) { | 
|  | if (auto *F = N.getRawFile()) | 
|  | Assert(isa<DIFile>(F), "invalid file", &N, F); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDISubrange(const DISubrange &N) { | 
|  | Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); | 
|  | Assert(N.getCount() >= -1, "invalid subrange count", &N); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDIEnumerator(const DIEnumerator &N) { | 
|  | Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDIBasicType(const DIBasicType &N) { | 
|  | Assert(N.getTag() == dwarf::DW_TAG_base_type || | 
|  | N.getTag() == dwarf::DW_TAG_unspecified_type, | 
|  | "invalid tag", &N); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDIDerivedType(const DIDerivedType &N) { | 
|  | // Common scope checks. | 
|  | visitDIScope(N); | 
|  |  | 
|  | Assert(N.getTag() == dwarf::DW_TAG_typedef || | 
|  | N.getTag() == dwarf::DW_TAG_pointer_type || | 
|  | N.getTag() == dwarf::DW_TAG_ptr_to_member_type || | 
|  | N.getTag() == dwarf::DW_TAG_reference_type || | 
|  | N.getTag() == dwarf::DW_TAG_rvalue_reference_type || | 
|  | N.getTag() == dwarf::DW_TAG_const_type || | 
|  | N.getTag() == dwarf::DW_TAG_volatile_type || | 
|  | N.getTag() == dwarf::DW_TAG_restrict_type || | 
|  | N.getTag() == dwarf::DW_TAG_member || | 
|  | N.getTag() == dwarf::DW_TAG_inheritance || | 
|  | N.getTag() == dwarf::DW_TAG_friend, | 
|  | "invalid tag", &N); | 
|  | if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { | 
|  | Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N, | 
|  | N.getExtraData()); | 
|  | } | 
|  |  | 
|  | Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope()); | 
|  | Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N, | 
|  | N.getBaseType()); | 
|  | } | 
|  |  | 
|  | static bool hasConflictingReferenceFlags(unsigned Flags) { | 
|  | return (Flags & DINode::FlagLValueReference) && | 
|  | (Flags & DINode::FlagRValueReference); | 
|  | } | 
|  |  | 
|  | void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { | 
|  | auto *Params = dyn_cast<MDTuple>(&RawParams); | 
|  | Assert(Params, "invalid template params", &N, &RawParams); | 
|  | for (Metadata *Op : Params->operands()) { | 
|  | Assert(Op && isa<DITemplateParameter>(Op), "invalid template parameter", &N, | 
|  | Params, Op); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Verifier::visitDICompositeType(const DICompositeType &N) { | 
|  | // Common scope checks. | 
|  | visitDIScope(N); | 
|  |  | 
|  | Assert(N.getTag() == dwarf::DW_TAG_array_type || | 
|  | N.getTag() == dwarf::DW_TAG_structure_type || | 
|  | N.getTag() == dwarf::DW_TAG_union_type || | 
|  | N.getTag() == dwarf::DW_TAG_enumeration_type || | 
|  | N.getTag() == dwarf::DW_TAG_class_type, | 
|  | "invalid tag", &N); | 
|  |  | 
|  | Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope()); | 
|  | Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N, | 
|  | N.getBaseType()); | 
|  |  | 
|  | Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), | 
|  | "invalid composite elements", &N, N.getRawElements()); | 
|  | Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N, | 
|  | N.getRawVTableHolder()); | 
|  | Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags", | 
|  | &N); | 
|  | if (auto *Params = N.getRawTemplateParams()) | 
|  | visitTemplateParams(N, *Params); | 
|  |  | 
|  | if (N.getTag() == dwarf::DW_TAG_class_type || | 
|  | N.getTag() == dwarf::DW_TAG_union_type) { | 
|  | Assert(N.getFile() && !N.getFile()->getFilename().empty(), | 
|  | "class/union requires a filename", &N, N.getFile()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Verifier::visitDISubroutineType(const DISubroutineType &N) { | 
|  | Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); | 
|  | if (auto *Types = N.getRawTypeArray()) { | 
|  | Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types); | 
|  | for (Metadata *Ty : N.getTypeArray()->operands()) { | 
|  | Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty); | 
|  | } | 
|  | } | 
|  | Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags", | 
|  | &N); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDIFile(const DIFile &N) { | 
|  | Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDICompileUnit(const DICompileUnit &N) { | 
|  | Assert(N.isDistinct(), "compile units must be distinct", &N); | 
|  | Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); | 
|  |  | 
|  | // Don't bother verifying the compilation directory or producer string | 
|  | // as those could be empty. | 
|  | Assert(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, | 
|  | N.getRawFile()); | 
|  | Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N, | 
|  | N.getFile()); | 
|  |  | 
|  | if (auto *Array = N.getRawEnumTypes()) { | 
|  | Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array); | 
|  | for (Metadata *Op : N.getEnumTypes()->operands()) { | 
|  | auto *Enum = dyn_cast_or_null<DICompositeType>(Op); | 
|  | Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, | 
|  | "invalid enum type", &N, N.getEnumTypes(), Op); | 
|  | } | 
|  | } | 
|  | if (auto *Array = N.getRawRetainedTypes()) { | 
|  | Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array); | 
|  | for (Metadata *Op : N.getRetainedTypes()->operands()) { | 
|  | Assert(Op && isa<DIType>(Op), "invalid retained type", &N, Op); | 
|  | } | 
|  | } | 
|  | if (auto *Array = N.getRawSubprograms()) { | 
|  | Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array); | 
|  | for (Metadata *Op : N.getSubprograms()->operands()) { | 
|  | Assert(Op && isa<DISubprogram>(Op), "invalid subprogram ref", &N, Op); | 
|  | } | 
|  | } | 
|  | if (auto *Array = N.getRawGlobalVariables()) { | 
|  | Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array); | 
|  | for (Metadata *Op : N.getGlobalVariables()->operands()) { | 
|  | Assert(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", &N, | 
|  | Op); | 
|  | } | 
|  | } | 
|  | if (auto *Array = N.getRawImportedEntities()) { | 
|  | Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); | 
|  | for (Metadata *Op : N.getImportedEntities()->operands()) { | 
|  | Assert(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", &N, | 
|  | Op); | 
|  | } | 
|  | } | 
|  | if (auto *Array = N.getRawMacros()) { | 
|  | Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array); | 
|  | for (Metadata *Op : N.getMacros()->operands()) { | 
|  | Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Verifier::visitDISubprogram(const DISubprogram &N) { | 
|  | Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); | 
|  | Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope()); | 
|  | if (auto *T = N.getRawType()) | 
|  | Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); | 
|  | Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N, | 
|  | N.getRawContainingType()); | 
|  | if (auto *Params = N.getRawTemplateParams()) | 
|  | visitTemplateParams(N, *Params); | 
|  | if (auto *S = N.getRawDeclaration()) { | 
|  | Assert(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), | 
|  | "invalid subprogram declaration", &N, S); | 
|  | } | 
|  | if (auto *RawVars = N.getRawVariables()) { | 
|  | auto *Vars = dyn_cast<MDTuple>(RawVars); | 
|  | Assert(Vars, "invalid variable list", &N, RawVars); | 
|  | for (Metadata *Op : Vars->operands()) { | 
|  | Assert(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, Vars, | 
|  | Op); | 
|  | } | 
|  | } | 
|  | Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags", | 
|  | &N); | 
|  |  | 
|  | if (N.isDefinition()) | 
|  | Assert(N.isDistinct(), "subprogram definitions must be distinct", &N); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { | 
|  | Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); | 
|  | Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), | 
|  | "invalid local scope", &N, N.getRawScope()); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { | 
|  | visitDILexicalBlockBase(N); | 
|  |  | 
|  | Assert(N.getLine() || !N.getColumn(), | 
|  | "cannot have column info without line info", &N); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { | 
|  | visitDILexicalBlockBase(N); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDINamespace(const DINamespace &N) { | 
|  | Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); | 
|  | if (auto *S = N.getRawScope()) | 
|  | Assert(isa<DIScope>(S), "invalid scope ref", &N, S); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDIMacro(const DIMacro &N) { | 
|  | Assert(N.getMacinfoType() == dwarf::DW_MACINFO_define || | 
|  | N.getMacinfoType() == dwarf::DW_MACINFO_undef, | 
|  | "invalid macinfo type", &N); | 
|  | Assert(!N.getName().empty(), "anonymous macro", &N); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDIMacroFile(const DIMacroFile &N) { | 
|  | Assert(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, | 
|  | "invalid macinfo type", &N); | 
|  | if (auto *F = N.getRawFile()) | 
|  | Assert(isa<DIFile>(F), "invalid file", &N, F); | 
|  |  | 
|  | if (auto *Array = N.getRawElements()) { | 
|  | Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array); | 
|  | for (Metadata *Op : N.getElements()->operands()) { | 
|  | Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Verifier::visitDIModule(const DIModule &N) { | 
|  | Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); | 
|  | Assert(!N.getName().empty(), "anonymous module", &N); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { | 
|  | Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType()); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { | 
|  | visitDITemplateParameter(N); | 
|  |  | 
|  | Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", | 
|  | &N); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDITemplateValueParameter( | 
|  | const DITemplateValueParameter &N) { | 
|  | visitDITemplateParameter(N); | 
|  |  | 
|  | Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter || | 
|  | N.getTag() == dwarf::DW_TAG_GNU_template_template_param || | 
|  | N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, | 
|  | "invalid tag", &N); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDIVariable(const DIVariable &N) { | 
|  | if (auto *S = N.getRawScope()) | 
|  | Assert(isa<DIScope>(S), "invalid scope", &N, S); | 
|  | Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType()); | 
|  | if (auto *F = N.getRawFile()) | 
|  | Assert(isa<DIFile>(F), "invalid file", &N, F); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { | 
|  | // Checks common to all variables. | 
|  | visitDIVariable(N); | 
|  |  | 
|  | Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); | 
|  | Assert(!N.getName().empty(), "missing global variable name", &N); | 
|  | if (auto *V = N.getRawVariable()) { | 
|  | Assert(isa<ConstantAsMetadata>(V) && | 
|  | !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()), | 
|  | "invalid global varaible ref", &N, V); | 
|  | } | 
|  | if (auto *Member = N.getRawStaticDataMemberDeclaration()) { | 
|  | Assert(isa<DIDerivedType>(Member), "invalid static data member declaration", | 
|  | &N, Member); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Verifier::visitDILocalVariable(const DILocalVariable &N) { | 
|  | // Checks common to all variables. | 
|  | visitDIVariable(N); | 
|  |  | 
|  | Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); | 
|  | Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), | 
|  | "local variable requires a valid scope", &N, N.getRawScope()); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDIExpression(const DIExpression &N) { | 
|  | Assert(N.isValid(), "invalid expression", &N); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { | 
|  | Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); | 
|  | if (auto *T = N.getRawType()) | 
|  | Assert(isTypeRef(N, T), "invalid type ref", &N, T); | 
|  | if (auto *F = N.getRawFile()) | 
|  | Assert(isa<DIFile>(F), "invalid file", &N, F); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { | 
|  | Assert(N.getTag() == dwarf::DW_TAG_imported_module || | 
|  | N.getTag() == dwarf::DW_TAG_imported_declaration, | 
|  | "invalid tag", &N); | 
|  | if (auto *S = N.getRawScope()) | 
|  | Assert(isa<DIScope>(S), "invalid scope for imported entity", &N, S); | 
|  | Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N, | 
|  | N.getEntity()); | 
|  | } | 
|  |  | 
|  | void Verifier::visitComdat(const Comdat &C) { | 
|  | // The Module is invalid if the GlobalValue has private linkage.  Entities | 
|  | // with private linkage don't have entries in the symbol table. | 
|  | if (const GlobalValue *GV = M->getNamedValue(C.getName())) | 
|  | Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage", | 
|  | GV); | 
|  | } | 
|  |  | 
|  | void Verifier::visitModuleIdents(const Module &M) { | 
|  | const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); | 
|  | if (!Idents) | 
|  | return; | 
|  |  | 
|  | // llvm.ident takes a list of metadata entry. Each entry has only one string. | 
|  | // Scan each llvm.ident entry and make sure that this requirement is met. | 
|  | for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) { | 
|  | const MDNode *N = Idents->getOperand(i); | 
|  | Assert(N->getNumOperands() == 1, | 
|  | "incorrect number of operands in llvm.ident metadata", N); | 
|  | Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), | 
|  | ("invalid value for llvm.ident metadata entry operand" | 
|  | "(the operand should be a string)"), | 
|  | N->getOperand(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Verifier::visitModuleFlags(const Module &M) { | 
|  | const NamedMDNode *Flags = M.getModuleFlagsMetadata(); | 
|  | if (!Flags) return; | 
|  |  | 
|  | // Scan each flag, and track the flags and requirements. | 
|  | DenseMap<const MDString*, const MDNode*> SeenIDs; | 
|  | SmallVector<const MDNode*, 16> Requirements; | 
|  | for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) { | 
|  | visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements); | 
|  | } | 
|  |  | 
|  | // Validate that the requirements in the module are valid. | 
|  | for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { | 
|  | const MDNode *Requirement = Requirements[I]; | 
|  | const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); | 
|  | const Metadata *ReqValue = Requirement->getOperand(1); | 
|  |  | 
|  | const MDNode *Op = SeenIDs.lookup(Flag); | 
|  | if (!Op) { | 
|  | CheckFailed("invalid requirement on flag, flag is not present in module", | 
|  | Flag); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Op->getOperand(2) != ReqValue) { | 
|  | CheckFailed(("invalid requirement on flag, " | 
|  | "flag does not have the required value"), | 
|  | Flag); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | Verifier::visitModuleFlag(const MDNode *Op, | 
|  | DenseMap<const MDString *, const MDNode *> &SeenIDs, | 
|  | SmallVectorImpl<const MDNode *> &Requirements) { | 
|  | // Each module flag should have three arguments, the merge behavior (a | 
|  | // constant int), the flag ID (an MDString), and the value. | 
|  | Assert(Op->getNumOperands() == 3, | 
|  | "incorrect number of operands in module flag", Op); | 
|  | Module::ModFlagBehavior MFB; | 
|  | if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { | 
|  | Assert( | 
|  | mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), | 
|  | "invalid behavior operand in module flag (expected constant integer)", | 
|  | Op->getOperand(0)); | 
|  | Assert(false, | 
|  | "invalid behavior operand in module flag (unexpected constant)", | 
|  | Op->getOperand(0)); | 
|  | } | 
|  | MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); | 
|  | Assert(ID, "invalid ID operand in module flag (expected metadata string)", | 
|  | Op->getOperand(1)); | 
|  |  | 
|  | // Sanity check the values for behaviors with additional requirements. | 
|  | switch (MFB) { | 
|  | case Module::Error: | 
|  | case Module::Warning: | 
|  | case Module::Override: | 
|  | // These behavior types accept any value. | 
|  | break; | 
|  |  | 
|  | case Module::Require: { | 
|  | // The value should itself be an MDNode with two operands, a flag ID (an | 
|  | // MDString), and a value. | 
|  | MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); | 
|  | Assert(Value && Value->getNumOperands() == 2, | 
|  | "invalid value for 'require' module flag (expected metadata pair)", | 
|  | Op->getOperand(2)); | 
|  | Assert(isa<MDString>(Value->getOperand(0)), | 
|  | ("invalid value for 'require' module flag " | 
|  | "(first value operand should be a string)"), | 
|  | Value->getOperand(0)); | 
|  |  | 
|  | // Append it to the list of requirements, to check once all module flags are | 
|  | // scanned. | 
|  | Requirements.push_back(Value); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Module::Append: | 
|  | case Module::AppendUnique: { | 
|  | // These behavior types require the operand be an MDNode. | 
|  | Assert(isa<MDNode>(Op->getOperand(2)), | 
|  | "invalid value for 'append'-type module flag " | 
|  | "(expected a metadata node)", | 
|  | Op->getOperand(2)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Unless this is a "requires" flag, check the ID is unique. | 
|  | if (MFB != Module::Require) { | 
|  | bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; | 
|  | Assert(Inserted, | 
|  | "module flag identifiers must be unique (or of 'require' type)", ID); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, | 
|  | bool isFunction, const Value *V) { | 
|  | unsigned Slot = ~0U; | 
|  | for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I) | 
|  | if (Attrs.getSlotIndex(I) == Idx) { | 
|  | Slot = I; | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(Slot != ~0U && "Attribute set inconsistency!"); | 
|  |  | 
|  | for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot); | 
|  | I != E; ++I) { | 
|  | if (I->isStringAttribute()) | 
|  | continue; | 
|  |  | 
|  | if (I->getKindAsEnum() == Attribute::NoReturn || | 
|  | I->getKindAsEnum() == Attribute::NoUnwind || | 
|  | I->getKindAsEnum() == Attribute::NoInline || | 
|  | I->getKindAsEnum() == Attribute::AlwaysInline || | 
|  | I->getKindAsEnum() == Attribute::OptimizeForSize || | 
|  | I->getKindAsEnum() == Attribute::StackProtect || | 
|  | I->getKindAsEnum() == Attribute::StackProtectReq || | 
|  | I->getKindAsEnum() == Attribute::StackProtectStrong || | 
|  | I->getKindAsEnum() == Attribute::SafeStack || | 
|  | I->getKindAsEnum() == Attribute::NoRedZone || | 
|  | I->getKindAsEnum() == Attribute::NoImplicitFloat || | 
|  | I->getKindAsEnum() == Attribute::Naked || | 
|  | I->getKindAsEnum() == Attribute::InlineHint || | 
|  | I->getKindAsEnum() == Attribute::StackAlignment || | 
|  | I->getKindAsEnum() == Attribute::UWTable || | 
|  | I->getKindAsEnum() == Attribute::NonLazyBind || | 
|  | I->getKindAsEnum() == Attribute::ReturnsTwice || | 
|  | I->getKindAsEnum() == Attribute::SanitizeAddress || | 
|  | I->getKindAsEnum() == Attribute::SanitizeThread || | 
|  | I->getKindAsEnum() == Attribute::SanitizeMemory || | 
|  | I->getKindAsEnum() == Attribute::MinSize || | 
|  | I->getKindAsEnum() == Attribute::NoDuplicate || | 
|  | I->getKindAsEnum() == Attribute::Builtin || | 
|  | I->getKindAsEnum() == Attribute::NoBuiltin || | 
|  | I->getKindAsEnum() == Attribute::Cold || | 
|  | I->getKindAsEnum() == Attribute::OptimizeNone || | 
|  | I->getKindAsEnum() == Attribute::JumpTable || | 
|  | I->getKindAsEnum() == Attribute::Convergent || | 
|  | I->getKindAsEnum() == Attribute::ArgMemOnly || | 
|  | I->getKindAsEnum() == Attribute::NoRecurse || | 
|  | I->getKindAsEnum() == Attribute::InaccessibleMemOnly || | 
|  | I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly) { | 
|  | if (!isFunction) { | 
|  | CheckFailed("Attribute '" + I->getAsString() + | 
|  | "' only applies to functions!", V); | 
|  | return; | 
|  | } | 
|  | } else if (I->getKindAsEnum() == Attribute::ReadOnly || | 
|  | I->getKindAsEnum() == Attribute::ReadNone) { | 
|  | if (Idx == 0) { | 
|  | CheckFailed("Attribute '" + I->getAsString() + | 
|  | "' does not apply to function returns"); | 
|  | return; | 
|  | } | 
|  | } else if (isFunction) { | 
|  | CheckFailed("Attribute '" + I->getAsString() + | 
|  | "' does not apply to functions!", V); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // VerifyParameterAttrs - Check the given attributes for an argument or return | 
|  | // value of the specified type.  The value V is printed in error messages. | 
|  | void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, | 
|  | bool isReturnValue, const Value *V) { | 
|  | if (!Attrs.hasAttributes(Idx)) | 
|  | return; | 
|  |  | 
|  | VerifyAttributeTypes(Attrs, Idx, false, V); | 
|  |  | 
|  | if (isReturnValue) | 
|  | Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) && | 
|  | !Attrs.hasAttribute(Idx, Attribute::Nest) && | 
|  | !Attrs.hasAttribute(Idx, Attribute::StructRet) && | 
|  | !Attrs.hasAttribute(Idx, Attribute::NoCapture) && | 
|  | !Attrs.hasAttribute(Idx, Attribute::Returned) && | 
|  | !Attrs.hasAttribute(Idx, Attribute::InAlloca), | 
|  | "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and " | 
|  | "'returned' do not apply to return values!", | 
|  | V); | 
|  |  | 
|  | // Check for mutually incompatible attributes.  Only inreg is compatible with | 
|  | // sret. | 
|  | unsigned AttrCount = 0; | 
|  | AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal); | 
|  | AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca); | 
|  | AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) || | 
|  | Attrs.hasAttribute(Idx, Attribute::InReg); | 
|  | AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest); | 
|  | Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " | 
|  | "and 'sret' are incompatible!", | 
|  | V); | 
|  |  | 
|  | Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) && | 
|  | Attrs.hasAttribute(Idx, Attribute::ReadOnly)), | 
|  | "Attributes " | 
|  | "'inalloca and readonly' are incompatible!", | 
|  | V); | 
|  |  | 
|  | Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) && | 
|  | Attrs.hasAttribute(Idx, Attribute::Returned)), | 
|  | "Attributes " | 
|  | "'sret and returned' are incompatible!", | 
|  | V); | 
|  |  | 
|  | Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) && | 
|  | Attrs.hasAttribute(Idx, Attribute::SExt)), | 
|  | "Attributes " | 
|  | "'zeroext and signext' are incompatible!", | 
|  | V); | 
|  |  | 
|  | Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) && | 
|  | Attrs.hasAttribute(Idx, Attribute::ReadOnly)), | 
|  | "Attributes " | 
|  | "'readnone and readonly' are incompatible!", | 
|  | V); | 
|  |  | 
|  | Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) && | 
|  | Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), | 
|  | "Attributes " | 
|  | "'noinline and alwaysinline' are incompatible!", | 
|  | V); | 
|  |  | 
|  | Assert(!AttrBuilder(Attrs, Idx) | 
|  | .overlaps(AttributeFuncs::typeIncompatible(Ty)), | 
|  | "Wrong types for attribute: " + | 
|  | AttributeSet::get(*Context, Idx, | 
|  | AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx), | 
|  | V); | 
|  |  | 
|  | if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { | 
|  | SmallPtrSet<Type*, 4> Visited; | 
|  | if (!PTy->getElementType()->isSized(&Visited)) { | 
|  | Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) && | 
|  | !Attrs.hasAttribute(Idx, Attribute::InAlloca), | 
|  | "Attributes 'byval' and 'inalloca' do not support unsized types!", | 
|  | V); | 
|  | } | 
|  | } else { | 
|  | Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal), | 
|  | "Attribute 'byval' only applies to parameters with pointer type!", | 
|  | V); | 
|  | } | 
|  | } | 
|  |  | 
|  | // VerifyFunctionAttrs - Check parameter attributes against a function type. | 
|  | // The value V is printed in error messages. | 
|  | void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, | 
|  | const Value *V) { | 
|  | if (Attrs.isEmpty()) | 
|  | return; | 
|  |  | 
|  | bool SawNest = false; | 
|  | bool SawReturned = false; | 
|  | bool SawSRet = false; | 
|  |  | 
|  | for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { | 
|  | unsigned Idx = Attrs.getSlotIndex(i); | 
|  |  | 
|  | Type *Ty; | 
|  | if (Idx == 0) | 
|  | Ty = FT->getReturnType(); | 
|  | else if (Idx-1 < FT->getNumParams()) | 
|  | Ty = FT->getParamType(Idx-1); | 
|  | else | 
|  | break;  // VarArgs attributes, verified elsewhere. | 
|  |  | 
|  | VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V); | 
|  |  | 
|  | if (Idx == 0) | 
|  | continue; | 
|  |  | 
|  | if (Attrs.hasAttribute(Idx, Attribute::Nest)) { | 
|  | Assert(!SawNest, "More than one parameter has attribute nest!", V); | 
|  | SawNest = true; | 
|  | } | 
|  |  | 
|  | if (Attrs.hasAttribute(Idx, Attribute::Returned)) { | 
|  | Assert(!SawReturned, "More than one parameter has attribute returned!", | 
|  | V); | 
|  | Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), | 
|  | "Incompatible " | 
|  | "argument and return types for 'returned' attribute", | 
|  | V); | 
|  | SawReturned = true; | 
|  | } | 
|  |  | 
|  | if (Attrs.hasAttribute(Idx, Attribute::StructRet)) { | 
|  | Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); | 
|  | Assert(Idx == 1 || Idx == 2, | 
|  | "Attribute 'sret' is not on first or second parameter!", V); | 
|  | SawSRet = true; | 
|  | } | 
|  |  | 
|  | if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) { | 
|  | Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!", | 
|  | V); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Attrs.hasAttributes(AttributeSet::FunctionIndex)) | 
|  | return; | 
|  |  | 
|  | VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V); | 
|  |  | 
|  | Assert( | 
|  | !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && | 
|  | Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)), | 
|  | "Attributes 'readnone and readonly' are incompatible!", V); | 
|  |  | 
|  | Assert( | 
|  | !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && | 
|  | Attrs.hasAttribute(AttributeSet::FunctionIndex, | 
|  | Attribute::InaccessibleMemOrArgMemOnly)), | 
|  | "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V); | 
|  |  | 
|  | Assert( | 
|  | !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && | 
|  | Attrs.hasAttribute(AttributeSet::FunctionIndex, | 
|  | Attribute::InaccessibleMemOnly)), | 
|  | "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); | 
|  |  | 
|  | Assert( | 
|  | !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) && | 
|  | Attrs.hasAttribute(AttributeSet::FunctionIndex, | 
|  | Attribute::AlwaysInline)), | 
|  | "Attributes 'noinline and alwaysinline' are incompatible!", V); | 
|  |  | 
|  | if (Attrs.hasAttribute(AttributeSet::FunctionIndex, | 
|  | Attribute::OptimizeNone)) { | 
|  | Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline), | 
|  | "Attribute 'optnone' requires 'noinline'!", V); | 
|  |  | 
|  | Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, | 
|  | Attribute::OptimizeForSize), | 
|  | "Attributes 'optsize and optnone' are incompatible!", V); | 
|  |  | 
|  | Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize), | 
|  | "Attributes 'minsize and optnone' are incompatible!", V); | 
|  | } | 
|  |  | 
|  | if (Attrs.hasAttribute(AttributeSet::FunctionIndex, | 
|  | Attribute::JumpTable)) { | 
|  | const GlobalValue *GV = cast<GlobalValue>(V); | 
|  | Assert(GV->hasUnnamedAddr(), | 
|  | "Attribute 'jumptable' requires 'unnamed_addr'", V); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Verifier::VerifyFunctionMetadata( | 
|  | const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs) { | 
|  | if (MDs.empty()) | 
|  | return; | 
|  |  | 
|  | for (unsigned i = 0; i < MDs.size(); i++) { | 
|  | if (MDs[i].first == LLVMContext::MD_prof) { | 
|  | MDNode *MD = MDs[i].second; | 
|  | Assert(MD->getNumOperands() == 2, | 
|  | "!prof annotations should have exactly 2 operands", MD); | 
|  |  | 
|  | // Check first operand. | 
|  | Assert(MD->getOperand(0) != nullptr, "first operand should not be null", | 
|  | MD); | 
|  | Assert(isa<MDString>(MD->getOperand(0)), | 
|  | "expected string with name of the !prof annotation", MD); | 
|  | MDString *MDS = cast<MDString>(MD->getOperand(0)); | 
|  | StringRef ProfName = MDS->getString(); | 
|  | Assert(ProfName.equals("function_entry_count"), | 
|  | "first operand should be 'function_entry_count'", MD); | 
|  |  | 
|  | // Check second operand. | 
|  | Assert(MD->getOperand(1) != nullptr, "second operand should not be null", | 
|  | MD); | 
|  | Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), | 
|  | "expected integer argument to function_entry_count", MD); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { | 
|  | if (!ConstantExprVisited.insert(EntryC).second) | 
|  | return; | 
|  |  | 
|  | SmallVector<const Constant *, 16> Stack; | 
|  | Stack.push_back(EntryC); | 
|  |  | 
|  | while (!Stack.empty()) { | 
|  | const Constant *C = Stack.pop_back_val(); | 
|  |  | 
|  | // Check this constant expression. | 
|  | if (const auto *CE = dyn_cast<ConstantExpr>(C)) | 
|  | visitConstantExpr(CE); | 
|  |  | 
|  | // Visit all sub-expressions. | 
|  | for (const Use &U : C->operands()) { | 
|  | const auto *OpC = dyn_cast<Constant>(U); | 
|  | if (!OpC) | 
|  | continue; | 
|  | if (isa<GlobalValue>(OpC)) | 
|  | continue; // Global values get visited separately. | 
|  | if (!ConstantExprVisited.insert(OpC).second) | 
|  | continue; | 
|  | Stack.push_back(OpC); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Verifier::visitConstantExpr(const ConstantExpr *CE) { | 
|  | if (CE->getOpcode() != Instruction::BitCast) | 
|  | return; | 
|  |  | 
|  | Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), | 
|  | CE->getType()), | 
|  | "Invalid bitcast", CE); | 
|  | } | 
|  |  | 
|  | bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) { | 
|  | if (Attrs.getNumSlots() == 0) | 
|  | return true; | 
|  |  | 
|  | unsigned LastSlot = Attrs.getNumSlots() - 1; | 
|  | unsigned LastIndex = Attrs.getSlotIndex(LastSlot); | 
|  | if (LastIndex <= Params | 
|  | || (LastIndex == AttributeSet::FunctionIndex | 
|  | && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Verify that statepoint intrinsic is well formed. | 
|  | void Verifier::VerifyStatepoint(ImmutableCallSite CS) { | 
|  | assert(CS.getCalledFunction() && | 
|  | CS.getCalledFunction()->getIntrinsicID() == | 
|  | Intrinsic::experimental_gc_statepoint); | 
|  |  | 
|  | const Instruction &CI = *CS.getInstruction(); | 
|  |  | 
|  | Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() && | 
|  | !CS.onlyAccessesArgMemory(), | 
|  | "gc.statepoint must read and write all memory to preserve " | 
|  | "reordering restrictions required by safepoint semantics", | 
|  | &CI); | 
|  |  | 
|  | const Value *IDV = CS.getArgument(0); | 
|  | Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer", | 
|  | &CI); | 
|  |  | 
|  | const Value *NumPatchBytesV = CS.getArgument(1); | 
|  | Assert(isa<ConstantInt>(NumPatchBytesV), | 
|  | "gc.statepoint number of patchable bytes must be a constant integer", | 
|  | &CI); | 
|  | const int64_t NumPatchBytes = | 
|  | cast<ConstantInt>(NumPatchBytesV)->getSExtValue(); | 
|  | assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); | 
|  | Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be " | 
|  | "positive", | 
|  | &CI); | 
|  |  | 
|  | const Value *Target = CS.getArgument(2); | 
|  | auto *PT = dyn_cast<PointerType>(Target->getType()); | 
|  | Assert(PT && PT->getElementType()->isFunctionTy(), | 
|  | "gc.statepoint callee must be of function pointer type", &CI, Target); | 
|  | FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); | 
|  |  | 
|  | const Value *NumCallArgsV = CS.getArgument(3); | 
|  | Assert(isa<ConstantInt>(NumCallArgsV), | 
|  | "gc.statepoint number of arguments to underlying call " | 
|  | "must be constant integer", | 
|  | &CI); | 
|  | const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue(); | 
|  | Assert(NumCallArgs >= 0, | 
|  | "gc.statepoint number of arguments to underlying call " | 
|  | "must be positive", | 
|  | &CI); | 
|  | const int NumParams = (int)TargetFuncType->getNumParams(); | 
|  | if (TargetFuncType->isVarArg()) { | 
|  | Assert(NumCallArgs >= NumParams, | 
|  | "gc.statepoint mismatch in number of vararg call args", &CI); | 
|  |  | 
|  | // TODO: Remove this limitation | 
|  | Assert(TargetFuncType->getReturnType()->isVoidTy(), | 
|  | "gc.statepoint doesn't support wrapping non-void " | 
|  | "vararg functions yet", | 
|  | &CI); | 
|  | } else | 
|  | Assert(NumCallArgs == NumParams, | 
|  | "gc.statepoint mismatch in number of call args", &CI); | 
|  |  | 
|  | const Value *FlagsV = CS.getArgument(4); | 
|  | Assert(isa<ConstantInt>(FlagsV), | 
|  | "gc.statepoint flags must be constant integer", &CI); | 
|  | const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue(); | 
|  | Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, | 
|  | "unknown flag used in gc.statepoint flags argument", &CI); | 
|  |  | 
|  | // Verify that the types of the call parameter arguments match | 
|  | // the type of the wrapped callee. | 
|  | for (int i = 0; i < NumParams; i++) { | 
|  | Type *ParamType = TargetFuncType->getParamType(i); | 
|  | Type *ArgType = CS.getArgument(5 + i)->getType(); | 
|  | Assert(ArgType == ParamType, | 
|  | "gc.statepoint call argument does not match wrapped " | 
|  | "function type", | 
|  | &CI); | 
|  | } | 
|  |  | 
|  | const int EndCallArgsInx = 4 + NumCallArgs; | 
|  |  | 
|  | const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1); | 
|  | Assert(isa<ConstantInt>(NumTransitionArgsV), | 
|  | "gc.statepoint number of transition arguments " | 
|  | "must be constant integer", | 
|  | &CI); | 
|  | const int NumTransitionArgs = | 
|  | cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); | 
|  | Assert(NumTransitionArgs >= 0, | 
|  | "gc.statepoint number of transition arguments must be positive", &CI); | 
|  | const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; | 
|  |  | 
|  | const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1); | 
|  | Assert(isa<ConstantInt>(NumDeoptArgsV), | 
|  | "gc.statepoint number of deoptimization arguments " | 
|  | "must be constant integer", | 
|  | &CI); | 
|  | const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); | 
|  | Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments " | 
|  | "must be positive", | 
|  | &CI); | 
|  |  | 
|  | const int ExpectedNumArgs = | 
|  | 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; | 
|  | Assert(ExpectedNumArgs <= (int)CS.arg_size(), | 
|  | "gc.statepoint too few arguments according to length fields", &CI); | 
|  |  | 
|  | // Check that the only uses of this gc.statepoint are gc.result or | 
|  | // gc.relocate calls which are tied to this statepoint and thus part | 
|  | // of the same statepoint sequence | 
|  | for (const User *U : CI.users()) { | 
|  | const CallInst *Call = dyn_cast<const CallInst>(U); | 
|  | Assert(Call, "illegal use of statepoint token", &CI, U); | 
|  | if (!Call) continue; | 
|  | Assert(isa<GCRelocateInst>(Call) || isGCResult(Call), | 
|  | "gc.result or gc.relocate are the only value uses" | 
|  | "of a gc.statepoint", | 
|  | &CI, U); | 
|  | if (isGCResult(Call)) { | 
|  | Assert(Call->getArgOperand(0) == &CI, | 
|  | "gc.result connected to wrong gc.statepoint", &CI, Call); | 
|  | } else if (isa<GCRelocateInst>(Call)) { | 
|  | Assert(Call->getArgOperand(0) == &CI, | 
|  | "gc.relocate connected to wrong gc.statepoint", &CI, Call); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Note: It is legal for a single derived pointer to be listed multiple | 
|  | // times.  It's non-optimal, but it is legal.  It can also happen after | 
|  | // insertion if we strip a bitcast away. | 
|  | // Note: It is really tempting to check that each base is relocated and | 
|  | // that a derived pointer is never reused as a base pointer.  This turns | 
|  | // out to be problematic since optimizations run after safepoint insertion | 
|  | // can recognize equality properties that the insertion logic doesn't know | 
|  | // about.  See example statepoint.ll in the verifier subdirectory | 
|  | } | 
|  |  | 
|  | void Verifier::verifyFrameRecoverIndices() { | 
|  | for (auto &Counts : FrameEscapeInfo) { | 
|  | Function *F = Counts.first; | 
|  | unsigned EscapedObjectCount = Counts.second.first; | 
|  | unsigned MaxRecoveredIndex = Counts.second.second; | 
|  | Assert(MaxRecoveredIndex <= EscapedObjectCount, | 
|  | "all indices passed to llvm.localrecover must be less than the " | 
|  | "number of arguments passed ot llvm.localescape in the parent " | 
|  | "function", | 
|  | F); | 
|  | } | 
|  | } | 
|  |  | 
|  | // visitFunction - Verify that a function is ok. | 
|  | // | 
|  | void Verifier::visitFunction(const Function &F) { | 
|  | // Check function arguments. | 
|  | FunctionType *FT = F.getFunctionType(); | 
|  | unsigned NumArgs = F.arg_size(); | 
|  |  | 
|  | Assert(Context == &F.getContext(), | 
|  | "Function context does not match Module context!", &F); | 
|  |  | 
|  | Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); | 
|  | Assert(FT->getNumParams() == NumArgs, | 
|  | "# formal arguments must match # of arguments for function type!", &F, | 
|  | FT); | 
|  | Assert(F.getReturnType()->isFirstClassType() || | 
|  | F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), | 
|  | "Functions cannot return aggregate values!", &F); | 
|  |  | 
|  | Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), | 
|  | "Invalid struct return type!", &F); | 
|  |  | 
|  | AttributeSet Attrs = F.getAttributes(); | 
|  |  | 
|  | Assert(VerifyAttributeCount(Attrs, FT->getNumParams()), | 
|  | "Attribute after last parameter!", &F); | 
|  |  | 
|  | // Check function attributes. | 
|  | VerifyFunctionAttrs(FT, Attrs, &F); | 
|  |  | 
|  | // On function declarations/definitions, we do not support the builtin | 
|  | // attribute. We do not check this in VerifyFunctionAttrs since that is | 
|  | // checking for Attributes that can/can not ever be on functions. | 
|  | Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin), | 
|  | "Attribute 'builtin' can only be applied to a callsite.", &F); | 
|  |  | 
|  | // Check that this function meets the restrictions on this calling convention. | 
|  | // Sometimes varargs is used for perfectly forwarding thunks, so some of these | 
|  | // restrictions can be lifted. | 
|  | switch (F.getCallingConv()) { | 
|  | default: | 
|  | case CallingConv::C: | 
|  | break; | 
|  | case CallingConv::Fast: | 
|  | case CallingConv::Cold: | 
|  | case CallingConv::Intel_OCL_BI: | 
|  | case CallingConv::PTX_Kernel: | 
|  | case CallingConv::PTX_Device: | 
|  | Assert(!F.isVarArg(), "Calling convention does not support varargs or " | 
|  | "perfect forwarding!", | 
|  | &F); | 
|  | break; | 
|  | } | 
|  |  | 
|  | bool isLLVMdotName = F.getName().size() >= 5 && | 
|  | F.getName().substr(0, 5) == "llvm."; | 
|  |  | 
|  | // Check that the argument values match the function type for this function... | 
|  | unsigned i = 0; | 
|  | for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; | 
|  | ++I, ++i) { | 
|  | Assert(I->getType() == FT->getParamType(i), | 
|  | "Argument value does not match function argument type!", I, | 
|  | FT->getParamType(i)); | 
|  | Assert(I->getType()->isFirstClassType(), | 
|  | "Function arguments must have first-class types!", I); | 
|  | if (!isLLVMdotName) { | 
|  | Assert(!I->getType()->isMetadataTy(), | 
|  | "Function takes metadata but isn't an intrinsic", I, &F); | 
|  | Assert(!I->getType()->isTokenTy(), | 
|  | "Function takes token but isn't an intrinsic", I, &F); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!isLLVMdotName) | 
|  | Assert(!F.getReturnType()->isTokenTy(), | 
|  | "Functions returns a token but isn't an intrinsic", &F); | 
|  |  | 
|  | // Get the function metadata attachments. | 
|  | SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; | 
|  | F.getAllMetadata(MDs); | 
|  | assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); | 
|  | VerifyFunctionMetadata(MDs); | 
|  |  | 
|  | // Check validity of the personality function | 
|  | if (F.hasPersonalityFn()) { | 
|  | auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); | 
|  | if (Per) | 
|  | Assert(Per->getParent() == F.getParent(), | 
|  | "Referencing personality function in another module!", | 
|  | &F, F.getParent(), Per, Per->getParent()); | 
|  | } | 
|  |  | 
|  | if (F.isMaterializable()) { | 
|  | // Function has a body somewhere we can't see. | 
|  | Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, | 
|  | MDs.empty() ? nullptr : MDs.front().second); | 
|  | } else if (F.isDeclaration()) { | 
|  | Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(), | 
|  | "invalid linkage type for function declaration", &F); | 
|  | Assert(MDs.empty(), "function without a body cannot have metadata", &F, | 
|  | MDs.empty() ? nullptr : MDs.front().second); | 
|  | Assert(!F.hasPersonalityFn(), | 
|  | "Function declaration shouldn't have a personality routine", &F); | 
|  | } else { | 
|  | // Verify that this function (which has a body) is not named "llvm.*".  It | 
|  | // is not legal to define intrinsics. | 
|  | Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); | 
|  |  | 
|  | // Check the entry node | 
|  | const BasicBlock *Entry = &F.getEntryBlock(); | 
|  | Assert(pred_empty(Entry), | 
|  | "Entry block to function must not have predecessors!", Entry); | 
|  |  | 
|  | // The address of the entry block cannot be taken, unless it is dead. | 
|  | if (Entry->hasAddressTaken()) { | 
|  | Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), | 
|  | "blockaddress may not be used with the entry block!", Entry); | 
|  | } | 
|  |  | 
|  | // Visit metadata attachments. | 
|  | for (const auto &I : MDs) { | 
|  | // Verify that the attachment is legal. | 
|  | switch (I.first) { | 
|  | default: | 
|  | break; | 
|  | case LLVMContext::MD_dbg: | 
|  | Assert(isa<DISubprogram>(I.second), | 
|  | "function !dbg attachment must be a subprogram", &F, I.second); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Verify the metadata itself. | 
|  | visitMDNode(*I.second); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this function is actually an intrinsic, verify that it is only used in | 
|  | // direct call/invokes, never having its "address taken". | 
|  | // Only do this if the module is materialized, otherwise we don't have all the | 
|  | // uses. | 
|  | if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { | 
|  | const User *U; | 
|  | if (F.hasAddressTaken(&U)) | 
|  | Assert(0, "Invalid user of intrinsic instruction!", U); | 
|  | } | 
|  |  | 
|  | Assert(!F.hasDLLImportStorageClass() || | 
|  | (F.isDeclaration() && F.hasExternalLinkage()) || | 
|  | F.hasAvailableExternallyLinkage(), | 
|  | "Function is marked as dllimport, but not external.", &F); | 
|  |  | 
|  | auto *N = F.getSubprogram(); | 
|  | if (!N) | 
|  | return; | 
|  |  | 
|  | // Check that all !dbg attachments lead to back to N (or, at least, another | 
|  | // subprogram that describes the same function). | 
|  | // | 
|  | // FIXME: Check this incrementally while visiting !dbg attachments. | 
|  | // FIXME: Only check when N is the canonical subprogram for F. | 
|  | SmallPtrSet<const MDNode *, 32> Seen; | 
|  | for (auto &BB : F) | 
|  | for (auto &I : BB) { | 
|  | // Be careful about using DILocation here since we might be dealing with | 
|  | // broken code (this is the Verifier after all). | 
|  | DILocation *DL = | 
|  | dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode()); | 
|  | if (!DL) | 
|  | continue; | 
|  | if (!Seen.insert(DL).second) | 
|  | continue; | 
|  |  | 
|  | DILocalScope *Scope = DL->getInlinedAtScope(); | 
|  | if (Scope && !Seen.insert(Scope).second) | 
|  | continue; | 
|  |  | 
|  | DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; | 
|  |  | 
|  | // Scope and SP could be the same MDNode and we don't want to skip | 
|  | // validation in that case | 
|  | if (SP && ((Scope != SP) && !Seen.insert(SP).second)) | 
|  | continue; | 
|  |  | 
|  | // FIXME: Once N is canonical, check "SP == &N". | 
|  | Assert(SP->describes(&F), | 
|  | "!dbg attachment points at wrong subprogram for function", N, &F, | 
|  | &I, DL, Scope, SP); | 
|  | } | 
|  | } | 
|  |  | 
|  | // verifyBasicBlock - Verify that a basic block is well formed... | 
|  | // | 
|  | void Verifier::visitBasicBlock(BasicBlock &BB) { | 
|  | InstsInThisBlock.clear(); | 
|  |  | 
|  | // Ensure that basic blocks have terminators! | 
|  | Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); | 
|  |  | 
|  | // Check constraints that this basic block imposes on all of the PHI nodes in | 
|  | // it. | 
|  | if (isa<PHINode>(BB.front())) { | 
|  | SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); | 
|  | SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; | 
|  | std::sort(Preds.begin(), Preds.end()); | 
|  | PHINode *PN; | 
|  | for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) { | 
|  | // Ensure that PHI nodes have at least one entry! | 
|  | Assert(PN->getNumIncomingValues() != 0, | 
|  | "PHI nodes must have at least one entry.  If the block is dead, " | 
|  | "the PHI should be removed!", | 
|  | PN); | 
|  | Assert(PN->getNumIncomingValues() == Preds.size(), | 
|  | "PHINode should have one entry for each predecessor of its " | 
|  | "parent basic block!", | 
|  | PN); | 
|  |  | 
|  | // Get and sort all incoming values in the PHI node... | 
|  | Values.clear(); | 
|  | Values.reserve(PN->getNumIncomingValues()); | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | Values.push_back(std::make_pair(PN->getIncomingBlock(i), | 
|  | PN->getIncomingValue(i))); | 
|  | std::sort(Values.begin(), Values.end()); | 
|  |  | 
|  | for (unsigned i = 0, e = Values.size(); i != e; ++i) { | 
|  | // Check to make sure that if there is more than one entry for a | 
|  | // particular basic block in this PHI node, that the incoming values are | 
|  | // all identical. | 
|  | // | 
|  | Assert(i == 0 || Values[i].first != Values[i - 1].first || | 
|  | Values[i].second == Values[i - 1].second, | 
|  | "PHI node has multiple entries for the same basic block with " | 
|  | "different incoming values!", | 
|  | PN, Values[i].first, Values[i].second, Values[i - 1].second); | 
|  |  | 
|  | // Check to make sure that the predecessors and PHI node entries are | 
|  | // matched up. | 
|  | Assert(Values[i].first == Preds[i], | 
|  | "PHI node entries do not match predecessors!", PN, | 
|  | Values[i].first, Preds[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that all instructions have their parent pointers set up correctly. | 
|  | for (auto &I : BB) | 
|  | { | 
|  | Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Verifier::visitTerminatorInst(TerminatorInst &I) { | 
|  | // Ensure that terminators only exist at the end of the basic block. | 
|  | Assert(&I == I.getParent()->getTerminator(), | 
|  | "Terminator found in the middle of a basic block!", I.getParent()); | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitBranchInst(BranchInst &BI) { | 
|  | if (BI.isConditional()) { | 
|  | Assert(BI.getCondition()->getType()->isIntegerTy(1), | 
|  | "Branch condition is not 'i1' type!", &BI, BI.getCondition()); | 
|  | } | 
|  | visitTerminatorInst(BI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitReturnInst(ReturnInst &RI) { | 
|  | Function *F = RI.getParent()->getParent(); | 
|  | unsigned N = RI.getNumOperands(); | 
|  | if (F->getReturnType()->isVoidTy()) | 
|  | Assert(N == 0, | 
|  | "Found return instr that returns non-void in Function of void " | 
|  | "return type!", | 
|  | &RI, F->getReturnType()); | 
|  | else | 
|  | Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), | 
|  | "Function return type does not match operand " | 
|  | "type of return inst!", | 
|  | &RI, F->getReturnType()); | 
|  |  | 
|  | // Check to make sure that the return value has necessary properties for | 
|  | // terminators... | 
|  | visitTerminatorInst(RI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitSwitchInst(SwitchInst &SI) { | 
|  | // Check to make sure that all of the constants in the switch instruction | 
|  | // have the same type as the switched-on value. | 
|  | Type *SwitchTy = SI.getCondition()->getType(); | 
|  | SmallPtrSet<ConstantInt*, 32> Constants; | 
|  | for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) { | 
|  | Assert(i.getCaseValue()->getType() == SwitchTy, | 
|  | "Switch constants must all be same type as switch value!", &SI); | 
|  | Assert(Constants.insert(i.getCaseValue()).second, | 
|  | "Duplicate integer as switch case", &SI, i.getCaseValue()); | 
|  | } | 
|  |  | 
|  | visitTerminatorInst(SI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { | 
|  | Assert(BI.getAddress()->getType()->isPointerTy(), | 
|  | "Indirectbr operand must have pointer type!", &BI); | 
|  | for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) | 
|  | Assert(BI.getDestination(i)->getType()->isLabelTy(), | 
|  | "Indirectbr destinations must all have pointer type!", &BI); | 
|  |  | 
|  | visitTerminatorInst(BI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitSelectInst(SelectInst &SI) { | 
|  | Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), | 
|  | SI.getOperand(2)), | 
|  | "Invalid operands for select instruction!", &SI); | 
|  |  | 
|  | Assert(SI.getTrueValue()->getType() == SI.getType(), | 
|  | "Select values must have same type as select instruction!", &SI); | 
|  | visitInstruction(SI); | 
|  | } | 
|  |  | 
|  | /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of | 
|  | /// a pass, if any exist, it's an error. | 
|  | /// | 
|  | void Verifier::visitUserOp1(Instruction &I) { | 
|  | Assert(0, "User-defined operators should not live outside of a pass!", &I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitTruncInst(TruncInst &I) { | 
|  | // Get the source and destination types | 
|  | Type *SrcTy = I.getOperand(0)->getType(); | 
|  | Type *DestTy = I.getType(); | 
|  |  | 
|  | // Get the size of the types in bits, we'll need this later | 
|  | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); | 
|  | unsigned DestBitSize = DestTy->getScalarSizeInBits(); | 
|  |  | 
|  | Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); | 
|  | Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); | 
|  | Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), | 
|  | "trunc source and destination must both be a vector or neither", &I); | 
|  | Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitZExtInst(ZExtInst &I) { | 
|  | // Get the source and destination types | 
|  | Type *SrcTy = I.getOperand(0)->getType(); | 
|  | Type *DestTy = I.getType(); | 
|  |  | 
|  | // Get the size of the types in bits, we'll need this later | 
|  | Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); | 
|  | Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); | 
|  | Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), | 
|  | "zext source and destination must both be a vector or neither", &I); | 
|  | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); | 
|  | unsigned DestBitSize = DestTy->getScalarSizeInBits(); | 
|  |  | 
|  | Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitSExtInst(SExtInst &I) { | 
|  | // Get the source and destination types | 
|  | Type *SrcTy = I.getOperand(0)->getType(); | 
|  | Type *DestTy = I.getType(); | 
|  |  | 
|  | // Get the size of the types in bits, we'll need this later | 
|  | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); | 
|  | unsigned DestBitSize = DestTy->getScalarSizeInBits(); | 
|  |  | 
|  | Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); | 
|  | Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); | 
|  | Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), | 
|  | "sext source and destination must both be a vector or neither", &I); | 
|  | Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitFPTruncInst(FPTruncInst &I) { | 
|  | // Get the source and destination types | 
|  | Type *SrcTy = I.getOperand(0)->getType(); | 
|  | Type *DestTy = I.getType(); | 
|  | // Get the size of the types in bits, we'll need this later | 
|  | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); | 
|  | unsigned DestBitSize = DestTy->getScalarSizeInBits(); | 
|  |  | 
|  | Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); | 
|  | Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); | 
|  | Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), | 
|  | "fptrunc source and destination must both be a vector or neither", &I); | 
|  | Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitFPExtInst(FPExtInst &I) { | 
|  | // Get the source and destination types | 
|  | Type *SrcTy = I.getOperand(0)->getType(); | 
|  | Type *DestTy = I.getType(); | 
|  |  | 
|  | // Get the size of the types in bits, we'll need this later | 
|  | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); | 
|  | unsigned DestBitSize = DestTy->getScalarSizeInBits(); | 
|  |  | 
|  | Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); | 
|  | Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); | 
|  | Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), | 
|  | "fpext source and destination must both be a vector or neither", &I); | 
|  | Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitUIToFPInst(UIToFPInst &I) { | 
|  | // Get the source and destination types | 
|  | Type *SrcTy = I.getOperand(0)->getType(); | 
|  | Type *DestTy = I.getType(); | 
|  |  | 
|  | bool SrcVec = SrcTy->isVectorTy(); | 
|  | bool DstVec = DestTy->isVectorTy(); | 
|  |  | 
|  | Assert(SrcVec == DstVec, | 
|  | "UIToFP source and dest must both be vector or scalar", &I); | 
|  | Assert(SrcTy->isIntOrIntVectorTy(), | 
|  | "UIToFP source must be integer or integer vector", &I); | 
|  | Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", | 
|  | &I); | 
|  |  | 
|  | if (SrcVec && DstVec) | 
|  | Assert(cast<VectorType>(SrcTy)->getNumElements() == | 
|  | cast<VectorType>(DestTy)->getNumElements(), | 
|  | "UIToFP source and dest vector length mismatch", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitSIToFPInst(SIToFPInst &I) { | 
|  | // Get the source and destination types | 
|  | Type *SrcTy = I.getOperand(0)->getType(); | 
|  | Type *DestTy = I.getType(); | 
|  |  | 
|  | bool SrcVec = SrcTy->isVectorTy(); | 
|  | bool DstVec = DestTy->isVectorTy(); | 
|  |  | 
|  | Assert(SrcVec == DstVec, | 
|  | "SIToFP source and dest must both be vector or scalar", &I); | 
|  | Assert(SrcTy->isIntOrIntVectorTy(), | 
|  | "SIToFP source must be integer or integer vector", &I); | 
|  | Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", | 
|  | &I); | 
|  |  | 
|  | if (SrcVec && DstVec) | 
|  | Assert(cast<VectorType>(SrcTy)->getNumElements() == | 
|  | cast<VectorType>(DestTy)->getNumElements(), | 
|  | "SIToFP source and dest vector length mismatch", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitFPToUIInst(FPToUIInst &I) { | 
|  | // Get the source and destination types | 
|  | Type *SrcTy = I.getOperand(0)->getType(); | 
|  | Type *DestTy = I.getType(); | 
|  |  | 
|  | bool SrcVec = SrcTy->isVectorTy(); | 
|  | bool DstVec = DestTy->isVectorTy(); | 
|  |  | 
|  | Assert(SrcVec == DstVec, | 
|  | "FPToUI source and dest must both be vector or scalar", &I); | 
|  | Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", | 
|  | &I); | 
|  | Assert(DestTy->isIntOrIntVectorTy(), | 
|  | "FPToUI result must be integer or integer vector", &I); | 
|  |  | 
|  | if (SrcVec && DstVec) | 
|  | Assert(cast<VectorType>(SrcTy)->getNumElements() == | 
|  | cast<VectorType>(DestTy)->getNumElements(), | 
|  | "FPToUI source and dest vector length mismatch", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitFPToSIInst(FPToSIInst &I) { | 
|  | // Get the source and destination types | 
|  | Type *SrcTy = I.getOperand(0)->getType(); | 
|  | Type *DestTy = I.getType(); | 
|  |  | 
|  | bool SrcVec = SrcTy->isVectorTy(); | 
|  | bool DstVec = DestTy->isVectorTy(); | 
|  |  | 
|  | Assert(SrcVec == DstVec, | 
|  | "FPToSI source and dest must both be vector or scalar", &I); | 
|  | Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", | 
|  | &I); | 
|  | Assert(DestTy->isIntOrIntVectorTy(), | 
|  | "FPToSI result must be integer or integer vector", &I); | 
|  |  | 
|  | if (SrcVec && DstVec) | 
|  | Assert(cast<VectorType>(SrcTy)->getNumElements() == | 
|  | cast<VectorType>(DestTy)->getNumElements(), | 
|  | "FPToSI source and dest vector length mismatch", &I); | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitPtrToIntInst(PtrToIntInst &I) { | 
|  | // Get the source and destination types | 
|  | Type *SrcTy = I.getOperand(0)->getType(); | 
|  | Type *DestTy = I.getType(); | 
|  |  | 
|  | Assert(SrcTy->getScalarType()->isPointerTy(), | 
|  | "PtrToInt source must be pointer", &I); | 
|  | Assert(DestTy->getScalarType()->isIntegerTy(), | 
|  | "PtrToInt result must be integral", &I); | 
|  | Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", | 
|  | &I); | 
|  |  | 
|  | if (SrcTy->isVectorTy()) { | 
|  | VectorType *VSrc = dyn_cast<VectorType>(SrcTy); | 
|  | VectorType *VDest = dyn_cast<VectorType>(DestTy); | 
|  | Assert(VSrc->getNumElements() == VDest->getNumElements(), | 
|  | "PtrToInt Vector width mismatch", &I); | 
|  | } | 
|  |  | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitIntToPtrInst(IntToPtrInst &I) { | 
|  | // Get the source and destination types | 
|  | Type *SrcTy = I.getOperand(0)->getType(); | 
|  | Type *DestTy = I.getType(); | 
|  |  | 
|  | Assert(SrcTy->getScalarType()->isIntegerTy(), | 
|  | "IntToPtr source must be an integral", &I); | 
|  | Assert(DestTy->getScalarType()->isPointerTy(), | 
|  | "IntToPtr result must be a pointer", &I); | 
|  | Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", | 
|  | &I); | 
|  | if (SrcTy->isVectorTy()) { | 
|  | VectorType *VSrc = dyn_cast<VectorType>(SrcTy); | 
|  | VectorType *VDest = dyn_cast<VectorType>(DestTy); | 
|  | Assert(VSrc->getNumElements() == VDest->getNumElements(), | 
|  | "IntToPtr Vector width mismatch", &I); | 
|  | } | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitBitCastInst(BitCastInst &I) { | 
|  | Assert( | 
|  | CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), | 
|  | "Invalid bitcast", &I); | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { | 
|  | Type *SrcTy = I.getOperand(0)->getType(); | 
|  | Type *DestTy = I.getType(); | 
|  |  | 
|  | Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", | 
|  | &I); | 
|  | Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", | 
|  | &I); | 
|  | Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), | 
|  | "AddrSpaceCast must be between different address spaces", &I); | 
|  | if (SrcTy->isVectorTy()) | 
|  | Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), | 
|  | "AddrSpaceCast vector pointer number of elements mismatch", &I); | 
|  | visitInstruction(I); | 
|  | } | 
|  |  | 
|  | /// visitPHINode - Ensure that a PHI node is well formed. | 
|  | /// | 
|  | void Verifier::visitPHINode(PHINode &PN) { | 
|  | // Ensure that the PHI nodes are all grouped together at the top of the block. | 
|  | // This can be tested by checking whether the instruction before this is | 
|  | // either nonexistent (because this is begin()) or is a PHI node.  If not, | 
|  | // then there is some other instruction before a PHI. | 
|  | Assert(&PN == &PN.getParent()->front() || | 
|  | isa<PHINode>(--BasicBlock::iterator(&PN)), | 
|  | "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); | 
|  |  | 
|  | // Check that a PHI doesn't yield a Token. | 
|  | Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); | 
|  |  | 
|  | // Check that all of the values of the PHI node have the same type as the | 
|  | // result, and that the incoming blocks are really basic blocks. | 
|  | for (Value *IncValue : PN.incoming_values()) { | 
|  | Assert(PN.getType() == IncValue->getType(), | 
|  | "PHI node operands are not the same type as the result!", &PN); | 
|  | } | 
|  |  | 
|  | // All other PHI node constraints are checked in the visitBasicBlock method. | 
|  |  | 
|  | visitInstruction(PN); | 
|  | } | 
|  |  | 
|  | void Verifier::VerifyCallSite(CallSite CS) { | 
|  | Instruction *I = CS.getInstruction(); | 
|  |  | 
|  | Assert(CS.getCalledValue()->getType()->isPointerTy(), | 
|  | "Called function must be a pointer!", I); | 
|  | PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType()); | 
|  |  | 
|  | Assert(FPTy->getElementType()->isFunctionTy(), | 
|  | "Called function is not pointer to function type!", I); | 
|  |  | 
|  | Assert(FPTy->getElementType() == CS.getFunctionType(), | 
|  | "Called function is not the same type as the call!", I); | 
|  |  | 
|  | FunctionType *FTy = CS.getFunctionType(); | 
|  |  | 
|  | // Verify that the correct number of arguments are being passed | 
|  | if (FTy->isVarArg()) | 
|  | Assert(CS.arg_size() >= FTy->getNumParams(), | 
|  | "Called function requires more parameters than were provided!", I); | 
|  | else | 
|  | Assert(CS.arg_size() == FTy->getNumParams(), | 
|  | "Incorrect number of arguments passed to called function!", I); | 
|  |  | 
|  | // Verify that all arguments to the call match the function type. | 
|  | for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) | 
|  | Assert(CS.getArgument(i)->getType() == FTy->getParamType(i), | 
|  | "Call parameter type does not match function signature!", | 
|  | CS.getArgument(i), FTy->getParamType(i), I); | 
|  |  | 
|  | AttributeSet Attrs = CS.getAttributes(); | 
|  |  | 
|  | Assert(VerifyAttributeCount(Attrs, CS.arg_size()), | 
|  | "Attribute after last parameter!", I); | 
|  |  | 
|  | // Verify call attributes. | 
|  | VerifyFunctionAttrs(FTy, Attrs, I); | 
|  |  | 
|  | // Conservatively check the inalloca argument. | 
|  | // We have a bug if we can find that there is an underlying alloca without | 
|  | // inalloca. | 
|  | if (CS.hasInAllocaArgument()) { | 
|  | Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1); | 
|  | if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) | 
|  | Assert(AI->isUsedWithInAlloca(), | 
|  | "inalloca argument for call has mismatched alloca", AI, I); | 
|  | } | 
|  |  | 
|  | if (FTy->isVarArg()) { | 
|  | // FIXME? is 'nest' even legal here? | 
|  | bool SawNest = false; | 
|  | bool SawReturned = false; | 
|  |  | 
|  | for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) { | 
|  | if (Attrs.hasAttribute(Idx, Attribute::Nest)) | 
|  | SawNest = true; | 
|  | if (Attrs.hasAttribute(Idx, Attribute::Returned)) | 
|  | SawReturned = true; | 
|  | } | 
|  |  | 
|  | // Check attributes on the varargs part. | 
|  | for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) { | 
|  | Type *Ty = CS.getArgument(Idx-1)->getType(); | 
|  | VerifyParameterAttrs(Attrs, Idx, Ty, false, I); | 
|  |  | 
|  | if (Attrs.hasAttribute(Idx, Attribute::Nest)) { | 
|  | Assert(!SawNest, "More than one parameter has attribute nest!", I); | 
|  | SawNest = true; | 
|  | } | 
|  |  | 
|  | if (Attrs.hasAttribute(Idx, Attribute::Returned)) { | 
|  | Assert(!SawReturned, "More than one parameter has attribute returned!", | 
|  | I); | 
|  | Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), | 
|  | "Incompatible argument and return types for 'returned' " | 
|  | "attribute", | 
|  | I); | 
|  | SawReturned = true; | 
|  | } | 
|  |  | 
|  | Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet), | 
|  | "Attribute 'sret' cannot be used for vararg call arguments!", I); | 
|  |  | 
|  | if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) | 
|  | Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Verify that there's no metadata unless it's a direct call to an intrinsic. | 
|  | if (CS.getCalledFunction() == nullptr || | 
|  | !CS.getCalledFunction()->getName().startswith("llvm.")) { | 
|  | for (Type *ParamTy : FTy->params()) { | 
|  | Assert(!ParamTy->isMetadataTy(), | 
|  | "Function has metadata parameter but isn't an intrinsic", I); | 
|  | Assert(!ParamTy->isTokenTy(), | 
|  | "Function has token parameter but isn't an intrinsic", I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Verify that indirect calls don't return tokens. | 
|  | if (CS.getCalledFunction() == nullptr) | 
|  | Assert(!FTy->getReturnType()->isTokenTy(), | 
|  | "Return type cannot be token for indirect call!"); | 
|  |  | 
|  | if (Function *F = CS.getCalledFunction()) | 
|  | if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) | 
|  | visitIntrinsicCallSite(ID, CS); | 
|  |  | 
|  | // Verify that a callsite has at most one "deopt" and one "funclet" operand | 
|  | // bundle. | 
|  | bool FoundDeoptBundle = false, FoundFuncletBundle = false; | 
|  | for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) { | 
|  | OperandBundleUse BU = CS.getOperandBundleAt(i); | 
|  | uint32_t Tag = BU.getTagID(); | 
|  | if (Tag == LLVMContext::OB_deopt) { | 
|  | Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I); | 
|  | FoundDeoptBundle = true; | 
|  | } | 
|  | if (Tag == LLVMContext::OB_funclet) { | 
|  | Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I); | 
|  | FoundFuncletBundle = true; | 
|  | Assert(BU.Inputs.size() == 1, | 
|  | "Expected exactly one funclet bundle operand", I); | 
|  | Assert(isa<FuncletPadInst>(BU.Inputs.front()), | 
|  | "Funclet bundle operands should correspond to a FuncletPadInst", | 
|  | I); | 
|  | } | 
|  | } | 
|  |  | 
|  | visitInstruction(*I); | 
|  | } | 
|  |  | 
|  | /// Two types are "congruent" if they are identical, or if they are both pointer | 
|  | /// types with different pointee types and the same address space. | 
|  | static bool isTypeCongruent(Type *L, Type *R) { | 
|  | if (L == R) | 
|  | return true; | 
|  | PointerType *PL = dyn_cast<PointerType>(L); | 
|  | PointerType *PR = dyn_cast<PointerType>(R); | 
|  | if (!PL || !PR) | 
|  | return false; | 
|  | return PL->getAddressSpace() == PR->getAddressSpace(); | 
|  | } | 
|  |  | 
|  | static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) { | 
|  | static const Attribute::AttrKind ABIAttrs[] = { | 
|  | Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, | 
|  | Attribute::InReg, Attribute::Returned}; | 
|  | AttrBuilder Copy; | 
|  | for (auto AK : ABIAttrs) { | 
|  | if (Attrs.hasAttribute(I + 1, AK)) | 
|  | Copy.addAttribute(AK); | 
|  | } | 
|  | if (Attrs.hasAttribute(I + 1, Attribute::Alignment)) | 
|  | Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1)); | 
|  | return Copy; | 
|  | } | 
|  |  | 
|  | void Verifier::verifyMustTailCall(CallInst &CI) { | 
|  | Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); | 
|  |  | 
|  | // - The caller and callee prototypes must match.  Pointer types of | 
|  | //   parameters or return types may differ in pointee type, but not | 
|  | //   address space. | 
|  | Function *F = CI.getParent()->getParent(); | 
|  | FunctionType *CallerTy = F->getFunctionType(); | 
|  | FunctionType *CalleeTy = CI.getFunctionType(); | 
|  | Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), | 
|  | "cannot guarantee tail call due to mismatched parameter counts", &CI); | 
|  | Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), | 
|  | "cannot guarantee tail call due to mismatched varargs", &CI); | 
|  | Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), | 
|  | "cannot guarantee tail call due to mismatched return types", &CI); | 
|  | for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { | 
|  | Assert( | 
|  | isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), | 
|  | "cannot guarantee tail call due to mismatched parameter types", &CI); | 
|  | } | 
|  |  | 
|  | // - The calling conventions of the caller and callee must match. | 
|  | Assert(F->getCallingConv() == CI.getCallingConv(), | 
|  | "cannot guarantee tail call due to mismatched calling conv", &CI); | 
|  |  | 
|  | // - All ABI-impacting function attributes, such as sret, byval, inreg, | 
|  | //   returned, and inalloca, must match. | 
|  | AttributeSet CallerAttrs = F->getAttributes(); | 
|  | AttributeSet CalleeAttrs = CI.getAttributes(); | 
|  | for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { | 
|  | AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); | 
|  | AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); | 
|  | Assert(CallerABIAttrs == CalleeABIAttrs, | 
|  | "cannot guarantee tail call due to mismatched ABI impacting " | 
|  | "function attributes", | 
|  | &CI, CI.getOperand(I)); | 
|  | } | 
|  |  | 
|  | // - The call must immediately precede a :ref:`ret <i_ret>` instruction, | 
|  | //   or a pointer bitcast followed by a ret instruction. | 
|  | // - The ret instruction must return the (possibly bitcasted) value | 
|  | //   produced by the call or void. | 
|  | Value *RetVal = &CI; | 
|  | Instruction *Next = CI.getNextNode(); | 
|  |  | 
|  | // Handle the optional bitcast. | 
|  | if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { | 
|  | Assert(BI->getOperand(0) == RetVal, | 
|  | "bitcast following musttail call must use the call", BI); | 
|  | RetVal = BI; | 
|  | Next = BI->getNextNode(); | 
|  | } | 
|  |  | 
|  | // Check the return. | 
|  | ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); | 
|  | Assert(Ret, "musttail call must be precede a ret with an optional bitcast", | 
|  | &CI); | 
|  | Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, | 
|  | "musttail call result must be returned", Ret); | 
|  | } | 
|  |  | 
|  | void Verifier::visitCallInst(CallInst &CI) { | 
|  | VerifyCallSite(&CI); | 
|  |  | 
|  | if (CI.isMustTailCall()) | 
|  | verifyMustTailCall(CI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitInvokeInst(InvokeInst &II) { | 
|  | VerifyCallSite(&II); | 
|  |  | 
|  | // Verify that the first non-PHI instruction of the unwind destination is an | 
|  | // exception handling instruction. | 
|  | Assert( | 
|  | II.getUnwindDest()->isEHPad(), | 
|  | "The unwind destination does not have an exception handling instruction!", | 
|  | &II); | 
|  |  | 
|  | visitTerminatorInst(II); | 
|  | } | 
|  |  | 
|  | /// visitBinaryOperator - Check that both arguments to the binary operator are | 
|  | /// of the same type! | 
|  | /// | 
|  | void Verifier::visitBinaryOperator(BinaryOperator &B) { | 
|  | Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), | 
|  | "Both operands to a binary operator are not of the same type!", &B); | 
|  |  | 
|  | switch (B.getOpcode()) { | 
|  | // Check that integer arithmetic operators are only used with | 
|  | // integral operands. | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SRem: | 
|  | case Instruction::URem: | 
|  | Assert(B.getType()->isIntOrIntVectorTy(), | 
|  | "Integer arithmetic operators only work with integral types!", &B); | 
|  | Assert(B.getType() == B.getOperand(0)->getType(), | 
|  | "Integer arithmetic operators must have same type " | 
|  | "for operands and result!", | 
|  | &B); | 
|  | break; | 
|  | // Check that floating-point arithmetic operators are only used with | 
|  | // floating-point operands. | 
|  | case Instruction::FAdd: | 
|  | case Instruction::FSub: | 
|  | case Instruction::FMul: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::FRem: | 
|  | Assert(B.getType()->isFPOrFPVectorTy(), | 
|  | "Floating-point arithmetic operators only work with " | 
|  | "floating-point types!", | 
|  | &B); | 
|  | Assert(B.getType() == B.getOperand(0)->getType(), | 
|  | "Floating-point arithmetic operators must have same type " | 
|  | "for operands and result!", | 
|  | &B); | 
|  | break; | 
|  | // Check that logical operators are only used with integral operands. | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | Assert(B.getType()->isIntOrIntVectorTy(), | 
|  | "Logical operators only work with integral types!", &B); | 
|  | Assert(B.getType() == B.getOperand(0)->getType(), | 
|  | "Logical operators must have same type for operands and result!", | 
|  | &B); | 
|  | break; | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | Assert(B.getType()->isIntOrIntVectorTy(), | 
|  | "Shifts only work with integral types!", &B); | 
|  | Assert(B.getType() == B.getOperand(0)->getType(), | 
|  | "Shift return type must be same as operands!", &B); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unknown BinaryOperator opcode!"); | 
|  | } | 
|  |  | 
|  | visitInstruction(B); | 
|  | } | 
|  |  | 
|  | void Verifier::visitICmpInst(ICmpInst &IC) { | 
|  | // Check that the operands are the same type | 
|  | Type *Op0Ty = IC.getOperand(0)->getType(); | 
|  | Type *Op1Ty = IC.getOperand(1)->getType(); | 
|  | Assert(Op0Ty == Op1Ty, | 
|  | "Both operands to ICmp instruction are not of the same type!", &IC); | 
|  | // Check that the operands are the right type | 
|  | Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(), | 
|  | "Invalid operand types for ICmp instruction", &IC); | 
|  | // Check that the predicate is valid. | 
|  | Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE && | 
|  | IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE, | 
|  | "Invalid predicate in ICmp instruction!", &IC); | 
|  |  | 
|  | visitInstruction(IC); | 
|  | } | 
|  |  | 
|  | void Verifier::visitFCmpInst(FCmpInst &FC) { | 
|  | // Check that the operands are the same type | 
|  | Type *Op0Ty = FC.getOperand(0)->getType(); | 
|  | Type *Op1Ty = FC.getOperand(1)->getType(); | 
|  | Assert(Op0Ty == Op1Ty, | 
|  | "Both operands to FCmp instruction are not of the same type!", &FC); | 
|  | // Check that the operands are the right type | 
|  | Assert(Op0Ty->isFPOrFPVectorTy(), | 
|  | "Invalid operand types for FCmp instruction", &FC); | 
|  | // Check that the predicate is valid. | 
|  | Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE && | 
|  | FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE, | 
|  | "Invalid predicate in FCmp instruction!", &FC); | 
|  |  | 
|  | visitInstruction(FC); | 
|  | } | 
|  |  | 
|  | void Verifier::visitExtractElementInst(ExtractElementInst &EI) { | 
|  | Assert( | 
|  | ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), | 
|  | "Invalid extractelement operands!", &EI); | 
|  | visitInstruction(EI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitInsertElementInst(InsertElementInst &IE) { | 
|  | Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), | 
|  | IE.getOperand(2)), | 
|  | "Invalid insertelement operands!", &IE); | 
|  | visitInstruction(IE); | 
|  | } | 
|  |  | 
|  | void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { | 
|  | Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), | 
|  | SV.getOperand(2)), | 
|  | "Invalid shufflevector operands!", &SV); | 
|  | visitInstruction(SV); | 
|  | } | 
|  |  | 
|  | void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { | 
|  | Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); | 
|  |  | 
|  | Assert(isa<PointerType>(TargetTy), | 
|  | "GEP base pointer is not a vector or a vector of pointers", &GEP); | 
|  | Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); | 
|  | SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); | 
|  | Type *ElTy = | 
|  | GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); | 
|  | Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); | 
|  |  | 
|  | Assert(GEP.getType()->getScalarType()->isPointerTy() && | 
|  | GEP.getResultElementType() == ElTy, | 
|  | "GEP is not of right type for indices!", &GEP, ElTy); | 
|  |  | 
|  | if (GEP.getType()->isVectorTy()) { | 
|  | // Additional checks for vector GEPs. | 
|  | unsigned GEPWidth = GEP.getType()->getVectorNumElements(); | 
|  | if (GEP.getPointerOperandType()->isVectorTy()) | 
|  | Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), | 
|  | "Vector GEP result width doesn't match operand's", &GEP); | 
|  | for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { | 
|  | Type *IndexTy = Idxs[i]->getType(); | 
|  | if (IndexTy->isVectorTy()) { | 
|  | unsigned IndexWidth = IndexTy->getVectorNumElements(); | 
|  | Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); | 
|  | } | 
|  | Assert(IndexTy->getScalarType()->isIntegerTy(), | 
|  | "All GEP indices should be of integer type"); | 
|  | } | 
|  | } | 
|  | visitInstruction(GEP); | 
|  | } | 
|  |  | 
|  | static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { | 
|  | return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); | 
|  | } | 
|  |  | 
|  | void Verifier::visitRangeMetadata(Instruction& I, | 
|  | MDNode* Range, Type* Ty) { | 
|  | assert(Range && | 
|  | Range == I.getMetadata(LLVMContext::MD_range) && | 
|  | "precondition violation"); | 
|  |  | 
|  | unsigned NumOperands = Range->getNumOperands(); | 
|  | Assert(NumOperands % 2 == 0, "Unfinished range!", Range); | 
|  | unsigned NumRanges = NumOperands / 2; | 
|  | Assert(NumRanges >= 1, "It should have at least one range!", Range); | 
|  |  | 
|  | ConstantRange LastRange(1); // Dummy initial value | 
|  | for (unsigned i = 0; i < NumRanges; ++i) { | 
|  | ConstantInt *Low = | 
|  | mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); | 
|  | Assert(Low, "The lower limit must be an integer!", Low); | 
|  | ConstantInt *High = | 
|  | mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); | 
|  | Assert(High, "The upper limit must be an integer!", High); | 
|  | Assert(High->getType() == Low->getType() && High->getType() == Ty, | 
|  | "Range types must match instruction type!", &I); | 
|  |  | 
|  | APInt HighV = High->getValue(); | 
|  | APInt LowV = Low->getValue(); | 
|  | ConstantRange CurRange(LowV, HighV); | 
|  | Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), | 
|  | "Range must not be empty!", Range); | 
|  | if (i != 0) { | 
|  | Assert(CurRange.intersectWith(LastRange).isEmptySet(), | 
|  | "Intervals are overlapping", Range); | 
|  | Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", | 
|  | Range); | 
|  | Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", | 
|  | Range); | 
|  | } | 
|  | LastRange = ConstantRange(LowV, HighV); | 
|  | } | 
|  | if (NumRanges > 2) { | 
|  | APInt FirstLow = | 
|  | mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); | 
|  | APInt FirstHigh = | 
|  | mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); | 
|  | ConstantRange FirstRange(FirstLow, FirstHigh); | 
|  | Assert(FirstRange.intersectWith(LastRange).isEmptySet(), | 
|  | "Intervals are overlapping", Range); | 
|  | Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", | 
|  | Range); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Verifier::checkAtomicMemAccessSize(const Module *M, Type *Ty, | 
|  | const Instruction *I) { | 
|  | unsigned Size = M->getDataLayout().getTypeSizeInBits(Ty); | 
|  | Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); | 
|  | Assert(!(Size & (Size - 1)), | 
|  | "atomic memory access' operand must have a power-of-two size", Ty, I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitLoadInst(LoadInst &LI) { | 
|  | PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); | 
|  | Assert(PTy, "Load operand must be a pointer.", &LI); | 
|  | Type *ElTy = LI.getType(); | 
|  | Assert(LI.getAlignment() <= Value::MaximumAlignment, | 
|  | "huge alignment values are unsupported", &LI); | 
|  | if (LI.isAtomic()) { | 
|  | Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease, | 
|  | "Load cannot have Release ordering", &LI); | 
|  | Assert(LI.getAlignment() != 0, | 
|  | "Atomic load must specify explicit alignment", &LI); | 
|  | Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() || | 
|  | ElTy->isFloatingPointTy(), | 
|  | "atomic load operand must have integer, pointer, or floating point " | 
|  | "type!", | 
|  | ElTy, &LI); | 
|  | checkAtomicMemAccessSize(M, ElTy, &LI); | 
|  | } else { | 
|  | Assert(LI.getSynchScope() == CrossThread, | 
|  | "Non-atomic load cannot have SynchronizationScope specified", &LI); | 
|  | } | 
|  |  | 
|  | visitInstruction(LI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitStoreInst(StoreInst &SI) { | 
|  | PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); | 
|  | Assert(PTy, "Store operand must be a pointer.", &SI); | 
|  | Type *ElTy = PTy->getElementType(); | 
|  | Assert(ElTy == SI.getOperand(0)->getType(), | 
|  | "Stored value type does not match pointer operand type!", &SI, ElTy); | 
|  | Assert(SI.getAlignment() <= Value::MaximumAlignment, | 
|  | "huge alignment values are unsupported", &SI); | 
|  | if (SI.isAtomic()) { | 
|  | Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease, | 
|  | "Store cannot have Acquire ordering", &SI); | 
|  | Assert(SI.getAlignment() != 0, | 
|  | "Atomic store must specify explicit alignment", &SI); | 
|  | Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() || | 
|  | ElTy->isFloatingPointTy(), | 
|  | "atomic store operand must have integer, pointer, or floating point " | 
|  | "type!", | 
|  | ElTy, &SI); | 
|  | checkAtomicMemAccessSize(M, ElTy, &SI); | 
|  | } else { | 
|  | Assert(SI.getSynchScope() == CrossThread, | 
|  | "Non-atomic store cannot have SynchronizationScope specified", &SI); | 
|  | } | 
|  | visitInstruction(SI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitAllocaInst(AllocaInst &AI) { | 
|  | SmallPtrSet<Type*, 4> Visited; | 
|  | PointerType *PTy = AI.getType(); | 
|  | Assert(PTy->getAddressSpace() == 0, | 
|  | "Allocation instruction pointer not in the generic address space!", | 
|  | &AI); | 
|  | Assert(AI.getAllocatedType()->isSized(&Visited), | 
|  | "Cannot allocate unsized type", &AI); | 
|  | Assert(AI.getArraySize()->getType()->isIntegerTy(), | 
|  | "Alloca array size must have integer type", &AI); | 
|  | Assert(AI.getAlignment() <= Value::MaximumAlignment, | 
|  | "huge alignment values are unsupported", &AI); | 
|  |  | 
|  | visitInstruction(AI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { | 
|  |  | 
|  | // FIXME: more conditions??? | 
|  | Assert(CXI.getSuccessOrdering() != NotAtomic, | 
|  | "cmpxchg instructions must be atomic.", &CXI); | 
|  | Assert(CXI.getFailureOrdering() != NotAtomic, | 
|  | "cmpxchg instructions must be atomic.", &CXI); | 
|  | Assert(CXI.getSuccessOrdering() != Unordered, | 
|  | "cmpxchg instructions cannot be unordered.", &CXI); | 
|  | Assert(CXI.getFailureOrdering() != Unordered, | 
|  | "cmpxchg instructions cannot be unordered.", &CXI); | 
|  | Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(), | 
|  | "cmpxchg instructions be at least as constrained on success as fail", | 
|  | &CXI); | 
|  | Assert(CXI.getFailureOrdering() != Release && | 
|  | CXI.getFailureOrdering() != AcquireRelease, | 
|  | "cmpxchg failure ordering cannot include release semantics", &CXI); | 
|  |  | 
|  | PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); | 
|  | Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); | 
|  | Type *ElTy = PTy->getElementType(); | 
|  | Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI, | 
|  | ElTy); | 
|  | checkAtomicMemAccessSize(M, ElTy, &CXI); | 
|  | Assert(ElTy == CXI.getOperand(1)->getType(), | 
|  | "Expected value type does not match pointer operand type!", &CXI, | 
|  | ElTy); | 
|  | Assert(ElTy == CXI.getOperand(2)->getType(), | 
|  | "Stored value type does not match pointer operand type!", &CXI, ElTy); | 
|  | visitInstruction(CXI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { | 
|  | Assert(RMWI.getOrdering() != NotAtomic, | 
|  | "atomicrmw instructions must be atomic.", &RMWI); | 
|  | Assert(RMWI.getOrdering() != Unordered, | 
|  | "atomicrmw instructions cannot be unordered.", &RMWI); | 
|  | PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); | 
|  | Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); | 
|  | Type *ElTy = PTy->getElementType(); | 
|  | Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!", | 
|  | &RMWI, ElTy); | 
|  | checkAtomicMemAccessSize(M, ElTy, &RMWI); | 
|  | Assert(ElTy == RMWI.getOperand(1)->getType(), | 
|  | "Argument value type does not match pointer operand type!", &RMWI, | 
|  | ElTy); | 
|  | Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() && | 
|  | RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP, | 
|  | "Invalid binary operation!", &RMWI); | 
|  | visitInstruction(RMWI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitFenceInst(FenceInst &FI) { | 
|  | const AtomicOrdering Ordering = FI.getOrdering(); | 
|  | Assert(Ordering == Acquire || Ordering == Release || | 
|  | Ordering == AcquireRelease || Ordering == SequentiallyConsistent, | 
|  | "fence instructions may only have " | 
|  | "acquire, release, acq_rel, or seq_cst ordering.", | 
|  | &FI); | 
|  | visitInstruction(FI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { | 
|  | Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), | 
|  | EVI.getIndices()) == EVI.getType(), | 
|  | "Invalid ExtractValueInst operands!", &EVI); | 
|  |  | 
|  | visitInstruction(EVI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitInsertValueInst(InsertValueInst &IVI) { | 
|  | Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), | 
|  | IVI.getIndices()) == | 
|  | IVI.getOperand(1)->getType(), | 
|  | "Invalid InsertValueInst operands!", &IVI); | 
|  |  | 
|  | visitInstruction(IVI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitEHPadPredecessors(Instruction &I) { | 
|  | assert(I.isEHPad()); | 
|  |  | 
|  | BasicBlock *BB = I.getParent(); | 
|  | Function *F = BB->getParent(); | 
|  |  | 
|  | Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); | 
|  |  | 
|  | if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { | 
|  | // The landingpad instruction defines its parent as a landing pad block. The | 
|  | // landing pad block may be branched to only by the unwind edge of an | 
|  | // invoke. | 
|  | for (BasicBlock *PredBB : predecessors(BB)) { | 
|  | const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); | 
|  | Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, | 
|  | "Block containing LandingPadInst must be jumped to " | 
|  | "only by the unwind edge of an invoke.", | 
|  | LPI); | 
|  | } | 
|  | return; | 
|  | } | 
|  | if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { | 
|  | if (!pred_empty(BB)) | 
|  | Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), | 
|  | "Block containg CatchPadInst must be jumped to " | 
|  | "only by its catchswitch.", | 
|  | CPI); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (BasicBlock *PredBB : predecessors(BB)) { | 
|  | TerminatorInst *TI = PredBB->getTerminator(); | 
|  | if (auto *II = dyn_cast<InvokeInst>(TI)) { | 
|  | Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, | 
|  | "EH pad must be jumped to via an unwind edge", &I, II); | 
|  | } else if (!isa<CleanupReturnInst>(TI) && !isa<CatchSwitchInst>(TI)) { | 
|  | Assert(false, "EH pad must be jumped to via an unwind edge", &I, TI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Verifier::visitLandingPadInst(LandingPadInst &LPI) { | 
|  | // The landingpad instruction is ill-formed if it doesn't have any clauses and | 
|  | // isn't a cleanup. | 
|  | Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), | 
|  | "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); | 
|  |  | 
|  | visitEHPadPredecessors(LPI); | 
|  |  | 
|  | if (!LandingPadResultTy) | 
|  | LandingPadResultTy = LPI.getType(); | 
|  | else | 
|  | Assert(LandingPadResultTy == LPI.getType(), | 
|  | "The landingpad instruction should have a consistent result type " | 
|  | "inside a function.", | 
|  | &LPI); | 
|  |  | 
|  | Function *F = LPI.getParent()->getParent(); | 
|  | Assert(F->hasPersonalityFn(), | 
|  | "LandingPadInst needs to be in a function with a personality.", &LPI); | 
|  |  | 
|  | // The landingpad instruction must be the first non-PHI instruction in the | 
|  | // block. | 
|  | Assert(LPI.getParent()->getLandingPadInst() == &LPI, | 
|  | "LandingPadInst not the first non-PHI instruction in the block.", | 
|  | &LPI); | 
|  |  | 
|  | for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { | 
|  | Constant *Clause = LPI.getClause(i); | 
|  | if (LPI.isCatch(i)) { | 
|  | Assert(isa<PointerType>(Clause->getType()), | 
|  | "Catch operand does not have pointer type!", &LPI); | 
|  | } else { | 
|  | Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); | 
|  | Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), | 
|  | "Filter operand is not an array of constants!", &LPI); | 
|  | } | 
|  | } | 
|  |  | 
|  | visitInstruction(LPI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitCatchPadInst(CatchPadInst &CPI) { | 
|  | visitEHPadPredecessors(CPI); | 
|  |  | 
|  | BasicBlock *BB = CPI.getParent(); | 
|  |  | 
|  | Function *F = BB->getParent(); | 
|  | Assert(F->hasPersonalityFn(), | 
|  | "CatchPadInst needs to be in a function with a personality.", &CPI); | 
|  |  | 
|  | Assert(isa<CatchSwitchInst>(CPI.getParentPad()), | 
|  | "CatchPadInst needs to be directly nested in a CatchSwitchInst.", | 
|  | CPI.getParentPad()); | 
|  |  | 
|  | // The catchpad instruction must be the first non-PHI instruction in the | 
|  | // block. | 
|  | Assert(BB->getFirstNonPHI() == &CPI, | 
|  | "CatchPadInst not the first non-PHI instruction in the block.", &CPI); | 
|  |  | 
|  | visitInstruction(CPI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { | 
|  | Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), | 
|  | "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, | 
|  | CatchReturn.getOperand(0)); | 
|  |  | 
|  | visitTerminatorInst(CatchReturn); | 
|  | } | 
|  |  | 
|  | void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { | 
|  | visitEHPadPredecessors(CPI); | 
|  |  | 
|  | BasicBlock *BB = CPI.getParent(); | 
|  |  | 
|  | Function *F = BB->getParent(); | 
|  | Assert(F->hasPersonalityFn(), | 
|  | "CleanupPadInst needs to be in a function with a personality.", &CPI); | 
|  |  | 
|  | // The cleanuppad instruction must be the first non-PHI instruction in the | 
|  | // block. | 
|  | Assert(BB->getFirstNonPHI() == &CPI, | 
|  | "CleanupPadInst not the first non-PHI instruction in the block.", | 
|  | &CPI); | 
|  |  | 
|  | auto *ParentPad = CPI.getParentPad(); | 
|  | Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), | 
|  | "CleanupPadInst has an invalid parent.", &CPI); | 
|  |  | 
|  | User *FirstUser = nullptr; | 
|  | BasicBlock *FirstUnwindDest = nullptr; | 
|  | for (User *U : CPI.users()) { | 
|  | BasicBlock *UnwindDest; | 
|  | if (CleanupReturnInst *CRI = dyn_cast<CleanupReturnInst>(U)) { | 
|  | UnwindDest = CRI->getUnwindDest(); | 
|  | } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { | 
|  | continue; | 
|  | } else if (CallSite(U)) { | 
|  | continue; | 
|  | } else { | 
|  | Assert(false, "bogus cleanuppad use", &CPI); | 
|  | } | 
|  |  | 
|  | if (!FirstUser) { | 
|  | FirstUser = U; | 
|  | FirstUnwindDest = UnwindDest; | 
|  | } else { | 
|  | Assert( | 
|  | UnwindDest == FirstUnwindDest, | 
|  | "cleanupret instructions from the same cleanuppad must have the same " | 
|  | "unwind destination", | 
|  | FirstUser, U); | 
|  | } | 
|  | } | 
|  |  | 
|  | visitInstruction(CPI); | 
|  | } | 
|  |  | 
|  | void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { | 
|  | visitEHPadPredecessors(CatchSwitch); | 
|  |  | 
|  | BasicBlock *BB = CatchSwitch.getParent(); | 
|  |  | 
|  | Function *F = BB->getParent(); | 
|  | Assert(F->hasPersonalityFn(), | 
|  | "CatchSwitchInst needs to be in a function with a personality.", | 
|  | &CatchSwitch); | 
|  |  | 
|  | // The catchswitch instruction must be the first non-PHI instruction in the | 
|  | // block. | 
|  | Assert(BB->getFirstNonPHI() == &CatchSwitch, | 
|  | "CatchSwitchInst not the first non-PHI instruction in the block.", | 
|  | &CatchSwitch); | 
|  |  | 
|  | if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { | 
|  | Instruction *I = UnwindDest->getFirstNonPHI(); | 
|  | Assert(I->isEHPad() && !isa<LandingPadInst>(I), | 
|  | "CatchSwitchInst must unwind to an EH block which is not a " | 
|  | "landingpad.", | 
|  | &CatchSwitch); | 
|  | } | 
|  |  | 
|  | auto *ParentPad = CatchSwitch.getParentPad(); | 
|  | Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), | 
|  | "CatchSwitchInst has an invalid parent.", ParentPad); | 
|  |  | 
|  | Assert(CatchSwitch.getNumHandlers() != 0, | 
|  | "CatchSwitchInst cannot have empty handler list", &CatchSwitch); | 
|  |  | 
|  | for (BasicBlock *Handler : CatchSwitch.handlers()) { | 
|  | Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), | 
|  | "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); | 
|  | } | 
|  |  | 
|  | visitTerminatorInst(CatchSwitch); | 
|  | } | 
|  |  | 
|  | void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { | 
|  | Assert(isa<CleanupPadInst>(CRI.getOperand(0)), | 
|  | "CleanupReturnInst needs to be provided a CleanupPad", &CRI, | 
|  | CRI.getOperand(0)); | 
|  |  | 
|  | if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { | 
|  | Instruction *I = UnwindDest->getFirstNonPHI(); | 
|  | Assert(I->isEHPad() && !isa<LandingPadInst>(I), | 
|  | "CleanupReturnInst must unwind to an EH block which is not a " | 
|  | "landingpad.", | 
|  | &CRI); | 
|  | } | 
|  |  | 
|  | visitTerminatorInst(CRI); | 
|  | } | 
|  |  | 
|  | void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { | 
|  | Instruction *Op = cast<Instruction>(I.getOperand(i)); | 
|  | // If the we have an invalid invoke, don't try to compute the dominance. | 
|  | // We already reject it in the invoke specific checks and the dominance | 
|  | // computation doesn't handle multiple edges. | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { | 
|  | if (II->getNormalDest() == II->getUnwindDest()) | 
|  | return; | 
|  | } | 
|  |  | 
|  | const Use &U = I.getOperandUse(i); | 
|  | Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U), | 
|  | "Instruction does not dominate all uses!", Op, &I); | 
|  | } | 
|  |  | 
|  | void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { | 
|  | Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " | 
|  | "apply only to pointer types", &I); | 
|  | Assert(isa<LoadInst>(I), | 
|  | "dereferenceable, dereferenceable_or_null apply only to load" | 
|  | " instructions, use attributes for calls or invokes", &I); | 
|  | Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " | 
|  | "take one operand!", &I); | 
|  | ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); | 
|  | Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " | 
|  | "dereferenceable_or_null metadata value must be an i64!", &I); | 
|  | } | 
|  |  | 
|  | /// verifyInstruction - Verify that an instruction is well formed. | 
|  | /// | 
|  | void Verifier::visitInstruction(Instruction &I) { | 
|  | BasicBlock *BB = I.getParent(); | 
|  | Assert(BB, "Instruction not embedded in basic block!", &I); | 
|  |  | 
|  | if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential | 
|  | for (User *U : I.users()) { | 
|  | Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), | 
|  | "Only PHI nodes may reference their own value!", &I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that void typed values don't have names | 
|  | Assert(!I.getType()->isVoidTy() || !I.hasName(), | 
|  | "Instruction has a name, but provides a void value!", &I); | 
|  |  | 
|  | // Check that the return value of the instruction is either void or a legal | 
|  | // value type. | 
|  | Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), | 
|  | "Instruction returns a non-scalar type!", &I); | 
|  |  | 
|  | // Check that the instruction doesn't produce metadata. Calls are already | 
|  | // checked against the callee type. | 
|  | Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), | 
|  | "Invalid use of metadata!", &I); | 
|  |  | 
|  | // Check that all uses of the instruction, if they are instructions | 
|  | // themselves, actually have parent basic blocks.  If the use is not an | 
|  | // instruction, it is an error! | 
|  | for (Use &U : I.uses()) { | 
|  | if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) | 
|  | Assert(Used->getParent() != nullptr, | 
|  | "Instruction referencing" | 
|  | " instruction not embedded in a basic block!", | 
|  | &I, Used); | 
|  | else { | 
|  | CheckFailed("Use of instruction is not an instruction!", U); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { | 
|  | Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); | 
|  |  | 
|  | // Check to make sure that only first-class-values are operands to | 
|  | // instructions. | 
|  | if (!I.getOperand(i)->getType()->isFirstClassType()) { | 
|  | Assert(0, "Instruction operands must be first-class values!", &I); | 
|  | } | 
|  |  | 
|  | if (Function *F = dyn_cast<Function>(I.getOperand(i))) { | 
|  | // Check to make sure that the "address of" an intrinsic function is never | 
|  | // taken. | 
|  | Assert( | 
|  | !F->isIntrinsic() || | 
|  | i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0), | 
|  | "Cannot take the address of an intrinsic!", &I); | 
|  | Assert( | 
|  | !F->isIntrinsic() || isa<CallInst>(I) || | 
|  | F->getIntrinsicID() == Intrinsic::donothing || | 
|  | F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || | 
|  | F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || | 
|  | F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint, | 
|  | "Cannot invoke an intrinsinc other than" | 
|  | " donothing or patchpoint", | 
|  | &I); | 
|  | Assert(F->getParent() == M, "Referencing function in another module!", | 
|  | &I, M, F, F->getParent()); | 
|  | } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { | 
|  | Assert(OpBB->getParent() == BB->getParent(), | 
|  | "Referring to a basic block in another function!", &I); | 
|  | } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { | 
|  | Assert(OpArg->getParent() == BB->getParent(), | 
|  | "Referring to an argument in another function!", &I); | 
|  | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { | 
|  | Assert(GV->getParent() == M, "Referencing global in another module!", &I, M, GV, GV->getParent()); | 
|  | } else if (isa<Instruction>(I.getOperand(i))) { | 
|  | verifyDominatesUse(I, i); | 
|  | } else if (isa<InlineAsm>(I.getOperand(i))) { | 
|  | Assert((i + 1 == e && isa<CallInst>(I)) || | 
|  | (i + 3 == e && isa<InvokeInst>(I)), | 
|  | "Cannot take the address of an inline asm!", &I); | 
|  | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { | 
|  | if (CE->getType()->isPtrOrPtrVectorTy()) { | 
|  | // If we have a ConstantExpr pointer, we need to see if it came from an | 
|  | // illegal bitcast (inttoptr <constant int> ) | 
|  | visitConstantExprsRecursively(CE); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { | 
|  | Assert(I.getType()->isFPOrFPVectorTy(), | 
|  | "fpmath requires a floating point result!", &I); | 
|  | Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); | 
|  | if (ConstantFP *CFP0 = | 
|  | mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { | 
|  | APFloat Accuracy = CFP0->getValueAPF(); | 
|  | Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), | 
|  | "fpmath accuracy not a positive number!", &I); | 
|  | } else { | 
|  | Assert(false, "invalid fpmath accuracy!", &I); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { | 
|  | Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), | 
|  | "Ranges are only for loads, calls and invokes!", &I); | 
|  | visitRangeMetadata(I, Range, I.getType()); | 
|  | } | 
|  |  | 
|  | if (I.getMetadata(LLVMContext::MD_nonnull)) { | 
|  | Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", | 
|  | &I); | 
|  | Assert(isa<LoadInst>(I), | 
|  | "nonnull applies only to load instructions, use attributes" | 
|  | " for calls or invokes", | 
|  | &I); | 
|  | } | 
|  |  | 
|  | if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) | 
|  | visitDereferenceableMetadata(I, MD); | 
|  |  | 
|  | if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) | 
|  | visitDereferenceableMetadata(I, MD); | 
|  |  | 
|  | if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { | 
|  | Assert(I.getType()->isPointerTy(), "align applies only to pointer types", | 
|  | &I); | 
|  | Assert(isa<LoadInst>(I), "align applies only to load instructions, " | 
|  | "use attributes for calls or invokes", &I); | 
|  | Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); | 
|  | ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); | 
|  | Assert(CI && CI->getType()->isIntegerTy(64), | 
|  | "align metadata value must be an i64!", &I); | 
|  | uint64_t Align = CI->getZExtValue(); | 
|  | Assert(isPowerOf2_64(Align), | 
|  | "align metadata value must be a power of 2!", &I); | 
|  | Assert(Align <= Value::MaximumAlignment, | 
|  | "alignment is larger that implementation defined limit", &I); | 
|  | } | 
|  |  | 
|  | if (MDNode *N = I.getDebugLoc().getAsMDNode()) { | 
|  | Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); | 
|  | visitMDNode(*N); | 
|  | } | 
|  |  | 
|  | InstsInThisBlock.insert(&I); | 
|  | } | 
|  |  | 
|  | /// VerifyIntrinsicType - Verify that the specified type (which comes from an | 
|  | /// intrinsic argument or return value) matches the type constraints specified | 
|  | /// by the .td file (e.g. an "any integer" argument really is an integer). | 
|  | /// | 
|  | /// This return true on error but does not print a message. | 
|  | bool Verifier::VerifyIntrinsicType(Type *Ty, | 
|  | ArrayRef<Intrinsic::IITDescriptor> &Infos, | 
|  | SmallVectorImpl<Type*> &ArgTys) { | 
|  | using namespace Intrinsic; | 
|  |  | 
|  | // If we ran out of descriptors, there are too many arguments. | 
|  | if (Infos.empty()) return true; | 
|  | IITDescriptor D = Infos.front(); | 
|  | Infos = Infos.slice(1); | 
|  |  | 
|  | switch (D.Kind) { | 
|  | case IITDescriptor::Void: return !Ty->isVoidTy(); | 
|  | case IITDescriptor::VarArg: return true; | 
|  | case IITDescriptor::MMX:  return !Ty->isX86_MMXTy(); | 
|  | case IITDescriptor::Token: return !Ty->isTokenTy(); | 
|  | case IITDescriptor::Metadata: return !Ty->isMetadataTy(); | 
|  | case IITDescriptor::Half: return !Ty->isHalfTy(); | 
|  | case IITDescriptor::Float: return !Ty->isFloatTy(); | 
|  | case IITDescriptor::Double: return !Ty->isDoubleTy(); | 
|  | case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); | 
|  | case IITDescriptor::Vector: { | 
|  | VectorType *VT = dyn_cast<VectorType>(Ty); | 
|  | return !VT || VT->getNumElements() != D.Vector_Width || | 
|  | VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys); | 
|  | } | 
|  | case IITDescriptor::Pointer: { | 
|  | PointerType *PT = dyn_cast<PointerType>(Ty); | 
|  | return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || | 
|  | VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys); | 
|  | } | 
|  |  | 
|  | case IITDescriptor::Struct: { | 
|  | StructType *ST = dyn_cast<StructType>(Ty); | 
|  | if (!ST || ST->getNumElements() != D.Struct_NumElements) | 
|  | return true; | 
|  |  | 
|  | for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) | 
|  | if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case IITDescriptor::Argument: | 
|  | // Two cases here - If this is the second occurrence of an argument, verify | 
|  | // that the later instance matches the previous instance. | 
|  | if (D.getArgumentNumber() < ArgTys.size()) | 
|  | return Ty != ArgTys[D.getArgumentNumber()]; | 
|  |  | 
|  | // Otherwise, if this is the first instance of an argument, record it and | 
|  | // verify the "Any" kind. | 
|  | assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); | 
|  | ArgTys.push_back(Ty); | 
|  |  | 
|  | switch (D.getArgumentKind()) { | 
|  | case IITDescriptor::AK_Any:        return false; // Success | 
|  | case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); | 
|  | case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy(); | 
|  | case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty); | 
|  | case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); | 
|  | } | 
|  | llvm_unreachable("all argument kinds not covered"); | 
|  |  | 
|  | case IITDescriptor::ExtendArgument: { | 
|  | // This may only be used when referring to a previous vector argument. | 
|  | if (D.getArgumentNumber() >= ArgTys.size()) | 
|  | return true; | 
|  |  | 
|  | Type *NewTy = ArgTys[D.getArgumentNumber()]; | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) | 
|  | NewTy = VectorType::getExtendedElementVectorType(VTy); | 
|  | else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) | 
|  | NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | return Ty != NewTy; | 
|  | } | 
|  | case IITDescriptor::TruncArgument: { | 
|  | // This may only be used when referring to a previous vector argument. | 
|  | if (D.getArgumentNumber() >= ArgTys.size()) | 
|  | return true; | 
|  |  | 
|  | Type *NewTy = ArgTys[D.getArgumentNumber()]; | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) | 
|  | NewTy = VectorType::getTruncatedElementVectorType(VTy); | 
|  | else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) | 
|  | NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | return Ty != NewTy; | 
|  | } | 
|  | case IITDescriptor::HalfVecArgument: | 
|  | // This may only be used when referring to a previous vector argument. | 
|  | return D.getArgumentNumber() >= ArgTys.size() || | 
|  | !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || | 
|  | VectorType::getHalfElementsVectorType( | 
|  | cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; | 
|  | case IITDescriptor::SameVecWidthArgument: { | 
|  | if (D.getArgumentNumber() >= ArgTys.size()) | 
|  | return true; | 
|  | VectorType * ReferenceType = | 
|  | dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); | 
|  | VectorType *ThisArgType = dyn_cast<VectorType>(Ty); | 
|  | if (!ThisArgType || !ReferenceType || | 
|  | (ReferenceType->getVectorNumElements() != | 
|  | ThisArgType->getVectorNumElements())) | 
|  | return true; | 
|  | return VerifyIntrinsicType(ThisArgType->getVectorElementType(), | 
|  | Infos, ArgTys); | 
|  | } | 
|  | case IITDescriptor::PtrToArgument: { | 
|  | if (D.getArgumentNumber() >= ArgTys.size()) | 
|  | return true; | 
|  | Type * ReferenceType = ArgTys[D.getArgumentNumber()]; | 
|  | PointerType *ThisArgType = dyn_cast<PointerType>(Ty); | 
|  | return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); | 
|  | } | 
|  | case IITDescriptor::VecOfPtrsToElt: { | 
|  | if (D.getArgumentNumber() >= ArgTys.size()) | 
|  | return true; | 
|  | VectorType * ReferenceType = | 
|  | dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); | 
|  | VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); | 
|  | if (!ThisArgVecTy || !ReferenceType || | 
|  | (ReferenceType->getVectorNumElements() != | 
|  | ThisArgVecTy->getVectorNumElements())) | 
|  | return true; | 
|  | PointerType *ThisArgEltTy = | 
|  | dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); | 
|  | if (!ThisArgEltTy) | 
|  | return true; | 
|  | return ThisArgEltTy->getElementType() != | 
|  | ReferenceType->getVectorElementType(); | 
|  | } | 
|  | } | 
|  | llvm_unreachable("unhandled"); | 
|  | } | 
|  |  | 
|  | /// \brief Verify if the intrinsic has variable arguments. | 
|  | /// This method is intended to be called after all the fixed arguments have been | 
|  | /// verified first. | 
|  | /// | 
|  | /// This method returns true on error and does not print an error message. | 
|  | bool | 
|  | Verifier::VerifyIntrinsicIsVarArg(bool isVarArg, | 
|  | ArrayRef<Intrinsic::IITDescriptor> &Infos) { | 
|  | using namespace Intrinsic; | 
|  |  | 
|  | // If there are no descriptors left, then it can't be a vararg. | 
|  | if (Infos.empty()) | 
|  | return isVarArg; | 
|  |  | 
|  | // There should be only one descriptor remaining at this point. | 
|  | if (Infos.size() != 1) | 
|  | return true; | 
|  |  | 
|  | // Check and verify the descriptor. | 
|  | IITDescriptor D = Infos.front(); | 
|  | Infos = Infos.slice(1); | 
|  | if (D.Kind == IITDescriptor::VarArg) | 
|  | return !isVarArg; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Allow intrinsics to be verified in different ways. | 
|  | void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) { | 
|  | Function *IF = CS.getCalledFunction(); | 
|  | Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", | 
|  | IF); | 
|  |  | 
|  | // Verify that the intrinsic prototype lines up with what the .td files | 
|  | // describe. | 
|  | FunctionType *IFTy = IF->getFunctionType(); | 
|  | bool IsVarArg = IFTy->isVarArg(); | 
|  |  | 
|  | SmallVector<Intrinsic::IITDescriptor, 8> Table; | 
|  | getIntrinsicInfoTableEntries(ID, Table); | 
|  | ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; | 
|  |  | 
|  | SmallVector<Type *, 4> ArgTys; | 
|  | Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys), | 
|  | "Intrinsic has incorrect return type!", IF); | 
|  | for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i) | 
|  | Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys), | 
|  | "Intrinsic has incorrect argument type!", IF); | 
|  |  | 
|  | // Verify if the intrinsic call matches the vararg property. | 
|  | if (IsVarArg) | 
|  | Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef), | 
|  | "Intrinsic was not defined with variable arguments!", IF); | 
|  | else | 
|  | Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef), | 
|  | "Callsite was not defined with variable arguments!", IF); | 
|  |  | 
|  | // All descriptors should be absorbed by now. | 
|  | Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); | 
|  |  | 
|  | // Now that we have the intrinsic ID and the actual argument types (and we | 
|  | // know they are legal for the intrinsic!) get the intrinsic name through the | 
|  | // usual means.  This allows us to verify the mangling of argument types into | 
|  | // the name. | 
|  | const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); | 
|  | Assert(ExpectedName == IF->getName(), | 
|  | "Intrinsic name not mangled correctly for type arguments! " | 
|  | "Should be: " + | 
|  | ExpectedName, | 
|  | IF); | 
|  |  | 
|  | // If the intrinsic takes MDNode arguments, verify that they are either global | 
|  | // or are local to *this* function. | 
|  | for (Value *V : CS.args()) | 
|  | if (auto *MD = dyn_cast<MetadataAsValue>(V)) | 
|  | visitMetadataAsValue(*MD, CS.getCaller()); | 
|  |  | 
|  | switch (ID) { | 
|  | default: | 
|  | break; | 
|  | case Intrinsic::ctlz:  // llvm.ctlz | 
|  | case Intrinsic::cttz:  // llvm.cttz | 
|  | Assert(isa<ConstantInt>(CS.getArgOperand(1)), | 
|  | "is_zero_undef argument of bit counting intrinsics must be a " | 
|  | "constant int", | 
|  | CS); | 
|  | break; | 
|  | case Intrinsic::dbg_declare: // llvm.dbg.declare | 
|  | Assert(isa<MetadataAsValue>(CS.getArgOperand(0)), | 
|  | "invalid llvm.dbg.declare intrinsic call 1", CS); | 
|  | visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction())); | 
|  | break; | 
|  | case Intrinsic::dbg_value: // llvm.dbg.value | 
|  | visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction())); | 
|  | break; | 
|  | case Intrinsic::memcpy: | 
|  | case Intrinsic::memmove: | 
|  | case Intrinsic::memset: { | 
|  | ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3)); | 
|  | Assert(AlignCI, | 
|  | "alignment argument of memory intrinsics must be a constant int", | 
|  | CS); | 
|  | const APInt &AlignVal = AlignCI->getValue(); | 
|  | Assert(AlignCI->isZero() || AlignVal.isPowerOf2(), | 
|  | "alignment argument of memory intrinsics must be a power of 2", CS); | 
|  | Assert(isa<ConstantInt>(CS.getArgOperand(4)), | 
|  | "isvolatile argument of memory intrinsics must be a constant int", | 
|  | CS); | 
|  | break; | 
|  | } | 
|  | case Intrinsic::gcroot: | 
|  | case Intrinsic::gcwrite: | 
|  | case Intrinsic::gcread: | 
|  | if (ID == Intrinsic::gcroot) { | 
|  | AllocaInst *AI = | 
|  | dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts()); | 
|  | Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS); | 
|  | Assert(isa<Constant>(CS.getArgOperand(1)), | 
|  | "llvm.gcroot parameter #2 must be a constant.", CS); | 
|  | if (!AI->getAllocatedType()->isPointerTy()) { | 
|  | Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)), | 
|  | "llvm.gcroot parameter #1 must either be a pointer alloca, " | 
|  | "or argument #2 must be a non-null constant.", | 
|  | CS); | 
|  | } | 
|  | } | 
|  |  | 
|  | Assert(CS.getParent()->getParent()->hasGC(), | 
|  | "Enclosing function does not use GC.", CS); | 
|  | break; | 
|  | case Intrinsic::init_trampoline: | 
|  | Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()), | 
|  | "llvm.init_trampoline parameter #2 must resolve to a function.", | 
|  | CS); | 
|  | break; | 
|  | case Intrinsic::prefetch: | 
|  | Assert(isa<ConstantInt>(CS.getArgOperand(1)) && | 
|  | isa<ConstantInt>(CS.getArgOperand(2)) && | 
|  | cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 && | 
|  | cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4, | 
|  | "invalid arguments to llvm.prefetch", CS); | 
|  | break; | 
|  | case Intrinsic::stackprotector: | 
|  | Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()), | 
|  | "llvm.stackprotector parameter #2 must resolve to an alloca.", CS); | 
|  | break; | 
|  | case Intrinsic::lifetime_start: | 
|  | case Intrinsic::lifetime_end: | 
|  | case Intrinsic::invariant_start: | 
|  | Assert(isa<ConstantInt>(CS.getArgOperand(0)), | 
|  | "size argument of memory use markers must be a constant integer", | 
|  | CS); | 
|  | break; | 
|  | case Intrinsic::invariant_end: | 
|  | Assert(isa<ConstantInt>(CS.getArgOperand(1)), | 
|  | "llvm.invariant.end parameter #2 must be a constant integer", CS); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::localescape: { | 
|  | BasicBlock *BB = CS.getParent(); | 
|  | Assert(BB == &BB->getParent()->front(), | 
|  | "llvm.localescape used outside of entry block", CS); | 
|  | Assert(!SawFrameEscape, | 
|  | "multiple calls to llvm.localescape in one function", CS); | 
|  | for (Value *Arg : CS.args()) { | 
|  | if (isa<ConstantPointerNull>(Arg)) | 
|  | continue; // Null values are allowed as placeholders. | 
|  | auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); | 
|  | Assert(AI && AI->isStaticAlloca(), | 
|  | "llvm.localescape only accepts static allocas", CS); | 
|  | } | 
|  | FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands(); | 
|  | SawFrameEscape = true; | 
|  | break; | 
|  | } | 
|  | case Intrinsic::localrecover: { | 
|  | Value *FnArg = CS.getArgOperand(0)->stripPointerCasts(); | 
|  | Function *Fn = dyn_cast<Function>(FnArg); | 
|  | Assert(Fn && !Fn->isDeclaration(), | 
|  | "llvm.localrecover first " | 
|  | "argument must be function defined in this module", | 
|  | CS); | 
|  | auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2)); | 
|  | Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int", | 
|  | CS); | 
|  | auto &Entry = FrameEscapeInfo[Fn]; | 
|  | Entry.second = unsigned( | 
|  | std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::experimental_gc_statepoint: | 
|  | Assert(!CS.isInlineAsm(), | 
|  | "gc.statepoint support for inline assembly unimplemented", CS); | 
|  | Assert(CS.getParent()->getParent()->hasGC(), | 
|  | "Enclosing function does not use GC.", CS); | 
|  |  | 
|  | VerifyStatepoint(CS); | 
|  | break; | 
|  | case Intrinsic::experimental_gc_result: { | 
|  | Assert(CS.getParent()->getParent()->hasGC(), | 
|  | "Enclosing function does not use GC.", CS); | 
|  | // Are we tied to a statepoint properly? | 
|  | CallSite StatepointCS(CS.getArgOperand(0)); | 
|  | const Function *StatepointFn = | 
|  | StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr; | 
|  | Assert(StatepointFn && StatepointFn->isDeclaration() && | 
|  | StatepointFn->getIntrinsicID() == | 
|  | Intrinsic::experimental_gc_statepoint, | 
|  | "gc.result operand #1 must be from a statepoint", CS, | 
|  | CS.getArgOperand(0)); | 
|  |  | 
|  | // Assert that result type matches wrapped callee. | 
|  | const Value *Target = StatepointCS.getArgument(2); | 
|  | auto *PT = cast<PointerType>(Target->getType()); | 
|  | auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); | 
|  | Assert(CS.getType() == TargetFuncType->getReturnType(), | 
|  | "gc.result result type does not match wrapped callee", CS); | 
|  | break; | 
|  | } | 
|  | case Intrinsic::experimental_gc_relocate: { | 
|  | Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS); | 
|  |  | 
|  | // Check that this relocate is correctly tied to the statepoint | 
|  |  | 
|  | // This is case for relocate on the unwinding path of an invoke statepoint | 
|  | if (LandingPadInst *LandingPad = | 
|  | dyn_cast<LandingPadInst>(CS.getArgOperand(0))) { | 
|  |  | 
|  | const BasicBlock *InvokeBB = | 
|  | LandingPad->getParent()->getUniquePredecessor(); | 
|  |  | 
|  | // Landingpad relocates should have only one predecessor with invoke | 
|  | // statepoint terminator | 
|  | Assert(InvokeBB, "safepoints should have unique landingpads", | 
|  | LandingPad->getParent()); | 
|  | Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", | 
|  | InvokeBB); | 
|  | Assert(isStatepoint(InvokeBB->getTerminator()), | 
|  | "gc relocate should be linked to a statepoint", InvokeBB); | 
|  | } | 
|  | else { | 
|  | // In all other cases relocate should be tied to the statepoint directly. | 
|  | // This covers relocates on a normal return path of invoke statepoint and | 
|  | // relocates of a call statepoint | 
|  | auto Token = CS.getArgOperand(0); | 
|  | Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), | 
|  | "gc relocate is incorrectly tied to the statepoint", CS, Token); | 
|  | } | 
|  |  | 
|  | // Verify rest of the relocate arguments | 
|  |  | 
|  | ImmutableCallSite StatepointCS( | 
|  | cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint()); | 
|  |  | 
|  | // Both the base and derived must be piped through the safepoint | 
|  | Value* Base = CS.getArgOperand(1); | 
|  | Assert(isa<ConstantInt>(Base), | 
|  | "gc.relocate operand #2 must be integer offset", CS); | 
|  |  | 
|  | Value* Derived = CS.getArgOperand(2); | 
|  | Assert(isa<ConstantInt>(Derived), | 
|  | "gc.relocate operand #3 must be integer offset", CS); | 
|  |  | 
|  | const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); | 
|  | const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); | 
|  | // Check the bounds | 
|  | Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(), | 
|  | "gc.relocate: statepoint base index out of bounds", CS); | 
|  | Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(), | 
|  | "gc.relocate: statepoint derived index out of bounds", CS); | 
|  |  | 
|  | // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' | 
|  | // section of the statepoint's argument | 
|  | Assert(StatepointCS.arg_size() > 0, | 
|  | "gc.statepoint: insufficient arguments"); | 
|  | Assert(isa<ConstantInt>(StatepointCS.getArgument(3)), | 
|  | "gc.statement: number of call arguments must be constant integer"); | 
|  | const unsigned NumCallArgs = | 
|  | cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue(); | 
|  | Assert(StatepointCS.arg_size() > NumCallArgs + 5, | 
|  | "gc.statepoint: mismatch in number of call arguments"); | 
|  | Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)), | 
|  | "gc.statepoint: number of transition arguments must be " | 
|  | "a constant integer"); | 
|  | const int NumTransitionArgs = | 
|  | cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)) | 
|  | ->getZExtValue(); | 
|  | const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; | 
|  | Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)), | 
|  | "gc.statepoint: number of deoptimization arguments must be " | 
|  | "a constant integer"); | 
|  | const int NumDeoptArgs = | 
|  | cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))->getZExtValue(); | 
|  | const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; | 
|  | const int GCParamArgsEnd = StatepointCS.arg_size(); | 
|  | Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, | 
|  | "gc.relocate: statepoint base index doesn't fall within the " | 
|  | "'gc parameters' section of the statepoint call", | 
|  | CS); | 
|  | Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, | 
|  | "gc.relocate: statepoint derived index doesn't fall within the " | 
|  | "'gc parameters' section of the statepoint call", | 
|  | CS); | 
|  |  | 
|  | // Relocated value must be a pointer type, but gc_relocate does not need to return the | 
|  | // same pointer type as the relocated pointer. It can be casted to the correct type later | 
|  | // if it's desired. However, they must have the same address space. | 
|  | GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction()); | 
|  | Assert(Relocate.getDerivedPtr()->getType()->isPointerTy(), | 
|  | "gc.relocate: relocated value must be a gc pointer", CS); | 
|  |  | 
|  | // gc_relocate return type must be a pointer type, and is verified earlier in | 
|  | // VerifyIntrinsicType(). | 
|  | Assert(cast<PointerType>(CS.getType())->getAddressSpace() == | 
|  | cast<PointerType>(Relocate.getDerivedPtr()->getType())->getAddressSpace(), | 
|  | "gc.relocate: relocating a pointer shouldn't change its address space", CS); | 
|  | break; | 
|  | } | 
|  | case Intrinsic::eh_exceptioncode: | 
|  | case Intrinsic::eh_exceptionpointer: { | 
|  | Assert(isa<CatchPadInst>(CS.getArgOperand(0)), | 
|  | "eh.exceptionpointer argument must be a catchpad", CS); | 
|  | break; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// \brief Carefully grab the subprogram from a local scope. | 
|  | /// | 
|  | /// This carefully grabs the subprogram from a local scope, avoiding the | 
|  | /// built-in assertions that would typically fire. | 
|  | static DISubprogram *getSubprogram(Metadata *LocalScope) { | 
|  | if (!LocalScope) | 
|  | return nullptr; | 
|  |  | 
|  | if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) | 
|  | return SP; | 
|  |  | 
|  | if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) | 
|  | return getSubprogram(LB->getRawScope()); | 
|  |  | 
|  | // Just return null; broken scope chains are checked elsewhere. | 
|  | assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | template <class DbgIntrinsicTy> | 
|  | void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) { | 
|  | auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); | 
|  | Assert(isa<ValueAsMetadata>(MD) || | 
|  | (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), | 
|  | "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); | 
|  | Assert(isa<DILocalVariable>(DII.getRawVariable()), | 
|  | "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, | 
|  | DII.getRawVariable()); | 
|  | Assert(isa<DIExpression>(DII.getRawExpression()), | 
|  | "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, | 
|  | DII.getRawExpression()); | 
|  |  | 
|  | // Ignore broken !dbg attachments; they're checked elsewhere. | 
|  | if (MDNode *N = DII.getDebugLoc().getAsMDNode()) | 
|  | if (!isa<DILocation>(N)) | 
|  | return; | 
|  |  | 
|  | BasicBlock *BB = DII.getParent(); | 
|  | Function *F = BB ? BB->getParent() : nullptr; | 
|  |  | 
|  | // The scopes for variables and !dbg attachments must agree. | 
|  | DILocalVariable *Var = DII.getVariable(); | 
|  | DILocation *Loc = DII.getDebugLoc(); | 
|  | Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", | 
|  | &DII, BB, F); | 
|  |  | 
|  | DISubprogram *VarSP = getSubprogram(Var->getRawScope()); | 
|  | DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); | 
|  | if (!VarSP || !LocSP) | 
|  | return; // Broken scope chains are checked elsewhere. | 
|  |  | 
|  | Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + | 
|  | " variable and !dbg attachment", | 
|  | &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, | 
|  | Loc->getScope()->getSubprogram()); | 
|  | } | 
|  |  | 
|  | template <class MapTy> | 
|  | static uint64_t getVariableSize(const DILocalVariable &V, const MapTy &Map) { | 
|  | // Be careful of broken types (checked elsewhere). | 
|  | const Metadata *RawType = V.getRawType(); | 
|  | while (RawType) { | 
|  | // Try to get the size directly. | 
|  | if (auto *T = dyn_cast<DIType>(RawType)) | 
|  | if (uint64_t Size = T->getSizeInBits()) | 
|  | return Size; | 
|  |  | 
|  | if (auto *DT = dyn_cast<DIDerivedType>(RawType)) { | 
|  | // Look at the base type. | 
|  | RawType = DT->getRawBaseType(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (auto *S = dyn_cast<MDString>(RawType)) { | 
|  | // Don't error on missing types (checked elsewhere). | 
|  | RawType = Map.lookup(S); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Missing type or size. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Fail gracefully. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | template <class MapTy> | 
|  | void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I, | 
|  | const MapTy &TypeRefs) { | 
|  | DILocalVariable *V; | 
|  | DIExpression *E; | 
|  | if (auto *DVI = dyn_cast<DbgValueInst>(&I)) { | 
|  | V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable()); | 
|  | E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression()); | 
|  | } else { | 
|  | auto *DDI = cast<DbgDeclareInst>(&I); | 
|  | V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable()); | 
|  | E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression()); | 
|  | } | 
|  |  | 
|  | // We don't know whether this intrinsic verified correctly. | 
|  | if (!V || !E || !E->isValid()) | 
|  | return; | 
|  |  | 
|  | // Nothing to do if this isn't a bit piece expression. | 
|  | if (!E->isBitPiece()) | 
|  | return; | 
|  |  | 
|  | // The frontend helps out GDB by emitting the members of local anonymous | 
|  | // unions as artificial local variables with shared storage. When SROA splits | 
|  | // the storage for artificial local variables that are smaller than the entire | 
|  | // union, the overhang piece will be outside of the allotted space for the | 
|  | // variable and this check fails. | 
|  | // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. | 
|  | if (V->isArtificial()) | 
|  | return; | 
|  |  | 
|  | // If there's no size, the type is broken, but that should be checked | 
|  | // elsewhere. | 
|  | uint64_t VarSize = getVariableSize(*V, TypeRefs); | 
|  | if (!VarSize) | 
|  | return; | 
|  |  | 
|  | unsigned PieceSize = E->getBitPieceSize(); | 
|  | unsigned PieceOffset = E->getBitPieceOffset(); | 
|  | Assert(PieceSize + PieceOffset <= VarSize, | 
|  | "piece is larger than or outside of variable", &I, V, E); | 
|  | Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E); | 
|  | } | 
|  |  | 
|  | void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) { | 
|  | // This is in its own function so we get an error for each bad type ref (not | 
|  | // just the first). | 
|  | Assert(false, "unresolved type ref", S, N); | 
|  | } | 
|  |  | 
|  | void Verifier::verifyTypeRefs() { | 
|  | auto *CUs = M->getNamedMetadata("llvm.dbg.cu"); | 
|  | if (!CUs) | 
|  | return; | 
|  |  | 
|  | // Visit all the compile units again to map the type references. | 
|  | SmallDenseMap<const MDString *, const DIType *, 32> TypeRefs; | 
|  | for (auto *CU : CUs->operands()) | 
|  | if (auto Ts = cast<DICompileUnit>(CU)->getRetainedTypes()) | 
|  | for (DIType *Op : Ts) | 
|  | if (auto *T = dyn_cast_or_null<DICompositeType>(Op)) | 
|  | if (auto *S = T->getRawIdentifier()) { | 
|  | UnresolvedTypeRefs.erase(S); | 
|  | TypeRefs.insert(std::make_pair(S, T)); | 
|  | } | 
|  |  | 
|  | // Verify debug info intrinsic bit piece expressions.  This needs a second | 
|  | // pass through the intructions, since we haven't built TypeRefs yet when | 
|  | // verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate | 
|  | // later/now would queue up some that could be later deleted. | 
|  | for (const Function &F : *M) | 
|  | for (const BasicBlock &BB : F) | 
|  | for (const Instruction &I : BB) | 
|  | if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) | 
|  | verifyBitPieceExpression(*DII, TypeRefs); | 
|  |  | 
|  | // Return early if all typerefs were resolved. | 
|  | if (UnresolvedTypeRefs.empty()) | 
|  | return; | 
|  |  | 
|  | // Sort the unresolved references by name so the output is deterministic. | 
|  | typedef std::pair<const MDString *, const MDNode *> TypeRef; | 
|  | SmallVector<TypeRef, 32> Unresolved(UnresolvedTypeRefs.begin(), | 
|  | UnresolvedTypeRefs.end()); | 
|  | std::sort(Unresolved.begin(), Unresolved.end(), | 
|  | [](const TypeRef &LHS, const TypeRef &RHS) { | 
|  | return LHS.first->getString() < RHS.first->getString(); | 
|  | }); | 
|  |  | 
|  | // Visit the unresolved refs (printing out the errors). | 
|  | for (const TypeRef &TR : Unresolved) | 
|  | visitUnresolvedTypeRef(TR.first, TR.second); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Implement the public interfaces to this file... | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { | 
|  | Function &F = const_cast<Function &>(f); | 
|  | assert(!F.isDeclaration() && "Cannot verify external functions"); | 
|  |  | 
|  | raw_null_ostream NullStr; | 
|  | Verifier V(OS ? *OS : NullStr); | 
|  |  | 
|  | // Note that this function's return value is inverted from what you would | 
|  | // expect of a function called "verify". | 
|  | return !V.verify(F); | 
|  | } | 
|  |  | 
|  | bool llvm::verifyModule(const Module &M, raw_ostream *OS) { | 
|  | raw_null_ostream NullStr; | 
|  | Verifier V(OS ? *OS : NullStr); | 
|  |  | 
|  | bool Broken = false; | 
|  | for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) | 
|  | if (!I->isDeclaration() && !I->isMaterializable()) | 
|  | Broken |= !V.verify(*I); | 
|  |  | 
|  | // Note that this function's return value is inverted from what you would | 
|  | // expect of a function called "verify". | 
|  | return !V.verify(M) || Broken; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct VerifierLegacyPass : public FunctionPass { | 
|  | static char ID; | 
|  |  | 
|  | Verifier V; | 
|  | bool FatalErrors; | 
|  |  | 
|  | VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) { | 
|  | initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  | explicit VerifierLegacyPass(bool FatalErrors) | 
|  | : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) { | 
|  | initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override { | 
|  | if (!V.verify(F) && FatalErrors) | 
|  | report_fatal_error("Broken function found, compilation aborted!"); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool doFinalization(Module &M) override { | 
|  | if (!V.verify(M) && FatalErrors) | 
|  | report_fatal_error("Broken module found, compilation aborted!"); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesAll(); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | char VerifierLegacyPass::ID = 0; | 
|  | INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) | 
|  |  | 
|  | FunctionPass *llvm::createVerifierPass(bool FatalErrors) { | 
|  | return new VerifierLegacyPass(FatalErrors); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses VerifierPass::run(Module &M) { | 
|  | if (verifyModule(M, &dbgs()) && FatalErrors) | 
|  | report_fatal_error("Broken module found, compilation aborted!"); | 
|  |  | 
|  | return PreservedAnalyses::all(); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses VerifierPass::run(Function &F) { | 
|  | if (verifyFunction(F, &dbgs()) && FatalErrors) | 
|  | report_fatal_error("Broken function found, compilation aborted!"); | 
|  |  | 
|  | return PreservedAnalyses::all(); | 
|  | } |