|  | //===-- MipsConstantIslandPass.cpp - Emit Pc Relative loads----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // | 
|  | // This pass is used to make Pc relative loads of constants. | 
|  | // For now, only Mips16 will use this. | 
|  | // | 
|  | // Loading constants inline is expensive on Mips16 and it's in general better | 
|  | // to place the constant nearby in code space and then it can be loaded with a | 
|  | // simple 16 bit load instruction. | 
|  | // | 
|  | // The constants can be not just numbers but addresses of functions and labels. | 
|  | // This can be particularly helpful in static relocation mode for embedded | 
|  | // non-linux targets. | 
|  | // | 
|  | // | 
|  |  | 
|  | #include "Mips.h" | 
|  | #include "MCTargetDesc/MipsBaseInfo.h" | 
|  | #include "Mips16InstrInfo.h" | 
|  | #include "MipsMachineFunction.h" | 
|  | #include "MipsTargetMachine.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/Format.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include <algorithm> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "mips-constant-islands" | 
|  |  | 
|  | STATISTIC(NumCPEs,       "Number of constpool entries"); | 
|  | STATISTIC(NumSplit,      "Number of uncond branches inserted"); | 
|  | STATISTIC(NumCBrFixed,   "Number of cond branches fixed"); | 
|  | STATISTIC(NumUBrFixed,   "Number of uncond branches fixed"); | 
|  |  | 
|  | // FIXME: This option should be removed once it has received sufficient testing. | 
|  | static cl::opt<bool> | 
|  | AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true), | 
|  | cl::desc("Align constant islands in code")); | 
|  |  | 
|  |  | 
|  | // Rather than do make check tests with huge amounts of code, we force | 
|  | // the test to use this amount. | 
|  | // | 
|  | static cl::opt<int> ConstantIslandsSmallOffset( | 
|  | "mips-constant-islands-small-offset", | 
|  | cl::init(0), | 
|  | cl::desc("Make small offsets be this amount for testing purposes"), | 
|  | cl::Hidden); | 
|  |  | 
|  | // | 
|  | // For testing purposes we tell it to not use relaxed load forms so that it | 
|  | // will split blocks. | 
|  | // | 
|  | static cl::opt<bool> NoLoadRelaxation( | 
|  | "mips-constant-islands-no-load-relaxation", | 
|  | cl::init(false), | 
|  | cl::desc("Don't relax loads to long loads - for testing purposes"), | 
|  | cl::Hidden); | 
|  |  | 
|  | static unsigned int branchTargetOperand(MachineInstr *MI) { | 
|  | switch (MI->getOpcode()) { | 
|  | case Mips::Bimm16: | 
|  | case Mips::BimmX16: | 
|  | case Mips::Bteqz16: | 
|  | case Mips::BteqzX16: | 
|  | case Mips::Btnez16: | 
|  | case Mips::BtnezX16: | 
|  | case Mips::JalB16: | 
|  | return 0; | 
|  | case Mips::BeqzRxImm16: | 
|  | case Mips::BeqzRxImmX16: | 
|  | case Mips::BnezRxImm16: | 
|  | case Mips::BnezRxImmX16: | 
|  | return 1; | 
|  | } | 
|  | llvm_unreachable("Unknown branch type"); | 
|  | } | 
|  |  | 
|  | static bool isUnconditionalBranch(unsigned int Opcode) { | 
|  | switch (Opcode) { | 
|  | default: return false; | 
|  | case Mips::Bimm16: | 
|  | case Mips::BimmX16: | 
|  | case Mips::JalB16: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned int longformBranchOpcode(unsigned int Opcode) { | 
|  | switch (Opcode) { | 
|  | case Mips::Bimm16: | 
|  | case Mips::BimmX16: | 
|  | return Mips::BimmX16; | 
|  | case Mips::Bteqz16: | 
|  | case Mips::BteqzX16: | 
|  | return Mips::BteqzX16; | 
|  | case Mips::Btnez16: | 
|  | case Mips::BtnezX16: | 
|  | return Mips::BtnezX16; | 
|  | case Mips::JalB16: | 
|  | return Mips::JalB16; | 
|  | case Mips::BeqzRxImm16: | 
|  | case Mips::BeqzRxImmX16: | 
|  | return Mips::BeqzRxImmX16; | 
|  | case Mips::BnezRxImm16: | 
|  | case Mips::BnezRxImmX16: | 
|  | return Mips::BnezRxImmX16; | 
|  | } | 
|  | llvm_unreachable("Unknown branch type"); | 
|  | } | 
|  |  | 
|  | // | 
|  | // FIXME: need to go through this whole constant islands port and check the math | 
|  | // for branch ranges and clean this up and make some functions to calculate things | 
|  | // that are done many times identically. | 
|  | // Need to refactor some of the code to call this routine. | 
|  | // | 
|  | static unsigned int branchMaxOffsets(unsigned int Opcode) { | 
|  | unsigned Bits, Scale; | 
|  | switch (Opcode) { | 
|  | case Mips::Bimm16: | 
|  | Bits = 11; | 
|  | Scale = 2; | 
|  | break; | 
|  | case Mips::BimmX16: | 
|  | Bits = 16; | 
|  | Scale = 2; | 
|  | break; | 
|  | case Mips::BeqzRxImm16: | 
|  | Bits = 8; | 
|  | Scale = 2; | 
|  | break; | 
|  | case Mips::BeqzRxImmX16: | 
|  | Bits = 16; | 
|  | Scale = 2; | 
|  | break; | 
|  | case Mips::BnezRxImm16: | 
|  | Bits = 8; | 
|  | Scale = 2; | 
|  | break; | 
|  | case Mips::BnezRxImmX16: | 
|  | Bits = 16; | 
|  | Scale = 2; | 
|  | break; | 
|  | case Mips::Bteqz16: | 
|  | Bits = 8; | 
|  | Scale = 2; | 
|  | break; | 
|  | case Mips::BteqzX16: | 
|  | Bits = 16; | 
|  | Scale = 2; | 
|  | break; | 
|  | case Mips::Btnez16: | 
|  | Bits = 8; | 
|  | Scale = 2; | 
|  | break; | 
|  | case Mips::BtnezX16: | 
|  | Bits = 16; | 
|  | Scale = 2; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unknown branch type"); | 
|  | } | 
|  | unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; | 
|  | return MaxOffs; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  |  | 
|  | typedef MachineBasicBlock::iterator Iter; | 
|  | typedef MachineBasicBlock::reverse_iterator ReverseIter; | 
|  |  | 
|  | /// MipsConstantIslands - Due to limited PC-relative displacements, Mips | 
|  | /// requires constant pool entries to be scattered among the instructions | 
|  | /// inside a function.  To do this, it completely ignores the normal LLVM | 
|  | /// constant pool; instead, it places constants wherever it feels like with | 
|  | /// special instructions. | 
|  | /// | 
|  | /// The terminology used in this pass includes: | 
|  | ///   Islands - Clumps of constants placed in the function. | 
|  | ///   Water   - Potential places where an island could be formed. | 
|  | ///   CPE     - A constant pool entry that has been placed somewhere, which | 
|  | ///             tracks a list of users. | 
|  |  | 
|  | class MipsConstantIslands : public MachineFunctionPass { | 
|  |  | 
|  | /// BasicBlockInfo - Information about the offset and size of a single | 
|  | /// basic block. | 
|  | struct BasicBlockInfo { | 
|  | /// Offset - Distance from the beginning of the function to the beginning | 
|  | /// of this basic block. | 
|  | /// | 
|  | /// Offsets are computed assuming worst case padding before an aligned | 
|  | /// block. This means that subtracting basic block offsets always gives a | 
|  | /// conservative estimate of the real distance which may be smaller. | 
|  | /// | 
|  | /// Because worst case padding is used, the computed offset of an aligned | 
|  | /// block may not actually be aligned. | 
|  | unsigned Offset; | 
|  |  | 
|  | /// Size - Size of the basic block in bytes.  If the block contains | 
|  | /// inline assembly, this is a worst case estimate. | 
|  | /// | 
|  | /// The size does not include any alignment padding whether from the | 
|  | /// beginning of the block, or from an aligned jump table at the end. | 
|  | unsigned Size; | 
|  |  | 
|  | // FIXME: ignore LogAlign for this patch | 
|  | // | 
|  | unsigned postOffset(unsigned LogAlign = 0) const { | 
|  | unsigned PO = Offset + Size; | 
|  | return PO; | 
|  | } | 
|  |  | 
|  | BasicBlockInfo() : Offset(0), Size(0) {} | 
|  |  | 
|  | }; | 
|  |  | 
|  | std::vector<BasicBlockInfo> BBInfo; | 
|  |  | 
|  | /// WaterList - A sorted list of basic blocks where islands could be placed | 
|  | /// (i.e. blocks that don't fall through to the following block, due | 
|  | /// to a return, unreachable, or unconditional branch). | 
|  | std::vector<MachineBasicBlock*> WaterList; | 
|  |  | 
|  | /// NewWaterList - The subset of WaterList that was created since the | 
|  | /// previous iteration by inserting unconditional branches. | 
|  | SmallSet<MachineBasicBlock*, 4> NewWaterList; | 
|  |  | 
|  | typedef std::vector<MachineBasicBlock*>::iterator water_iterator; | 
|  |  | 
|  | /// CPUser - One user of a constant pool, keeping the machine instruction | 
|  | /// pointer, the constant pool being referenced, and the max displacement | 
|  | /// allowed from the instruction to the CP.  The HighWaterMark records the | 
|  | /// highest basic block where a new CPEntry can be placed.  To ensure this | 
|  | /// pass terminates, the CP entries are initially placed at the end of the | 
|  | /// function and then move monotonically to lower addresses.  The | 
|  | /// exception to this rule is when the current CP entry for a particular | 
|  | /// CPUser is out of range, but there is another CP entry for the same | 
|  | /// constant value in range.  We want to use the existing in-range CP | 
|  | /// entry, but if it later moves out of range, the search for new water | 
|  | /// should resume where it left off.  The HighWaterMark is used to record | 
|  | /// that point. | 
|  | struct CPUser { | 
|  | MachineInstr *MI; | 
|  | MachineInstr *CPEMI; | 
|  | MachineBasicBlock *HighWaterMark; | 
|  | private: | 
|  | unsigned MaxDisp; | 
|  | unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions | 
|  | // with different displacements | 
|  | unsigned LongFormOpcode; | 
|  | public: | 
|  | bool NegOk; | 
|  | CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, | 
|  | bool neg, | 
|  | unsigned longformmaxdisp, unsigned longformopcode) | 
|  | : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), | 
|  | LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode), | 
|  | NegOk(neg){ | 
|  | HighWaterMark = CPEMI->getParent(); | 
|  | } | 
|  | /// getMaxDisp - Returns the maximum displacement supported by MI. | 
|  | unsigned getMaxDisp() const { | 
|  | unsigned xMaxDisp = ConstantIslandsSmallOffset? | 
|  | ConstantIslandsSmallOffset: MaxDisp; | 
|  | return xMaxDisp; | 
|  | } | 
|  | void setMaxDisp(unsigned val) { | 
|  | MaxDisp = val; | 
|  | } | 
|  | unsigned getLongFormMaxDisp() const { | 
|  | return LongFormMaxDisp; | 
|  | } | 
|  | unsigned getLongFormOpcode() const { | 
|  | return LongFormOpcode; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// CPUsers - Keep track of all of the machine instructions that use various | 
|  | /// constant pools and their max displacement. | 
|  | std::vector<CPUser> CPUsers; | 
|  |  | 
|  | /// CPEntry - One per constant pool entry, keeping the machine instruction | 
|  | /// pointer, the constpool index, and the number of CPUser's which | 
|  | /// reference this entry. | 
|  | struct CPEntry { | 
|  | MachineInstr *CPEMI; | 
|  | unsigned CPI; | 
|  | unsigned RefCount; | 
|  | CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) | 
|  | : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} | 
|  | }; | 
|  |  | 
|  | /// CPEntries - Keep track of all of the constant pool entry machine | 
|  | /// instructions. For each original constpool index (i.e. those that | 
|  | /// existed upon entry to this pass), it keeps a vector of entries. | 
|  | /// Original elements are cloned as we go along; the clones are | 
|  | /// put in the vector of the original element, but have distinct CPIs. | 
|  | std::vector<std::vector<CPEntry> > CPEntries; | 
|  |  | 
|  | /// ImmBranch - One per immediate branch, keeping the machine instruction | 
|  | /// pointer, conditional or unconditional, the max displacement, | 
|  | /// and (if isCond is true) the corresponding unconditional branch | 
|  | /// opcode. | 
|  | struct ImmBranch { | 
|  | MachineInstr *MI; | 
|  | unsigned MaxDisp : 31; | 
|  | bool isCond : 1; | 
|  | int UncondBr; | 
|  | ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) | 
|  | : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} | 
|  | }; | 
|  |  | 
|  | /// ImmBranches - Keep track of all the immediate branch instructions. | 
|  | /// | 
|  | std::vector<ImmBranch> ImmBranches; | 
|  |  | 
|  | /// HasFarJump - True if any far jump instruction has been emitted during | 
|  | /// the branch fix up pass. | 
|  | bool HasFarJump; | 
|  |  | 
|  | const TargetMachine &TM; | 
|  | bool IsPIC; | 
|  | const MipsSubtarget *STI; | 
|  | const Mips16InstrInfo *TII; | 
|  | MipsFunctionInfo *MFI; | 
|  | MachineFunction *MF; | 
|  | MachineConstantPool *MCP; | 
|  |  | 
|  | unsigned PICLabelUId; | 
|  | bool PrescannedForConstants; | 
|  |  | 
|  | void initPICLabelUId(unsigned UId) { | 
|  | PICLabelUId = UId; | 
|  | } | 
|  |  | 
|  |  | 
|  | unsigned createPICLabelUId() { | 
|  | return PICLabelUId++; | 
|  | } | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  | MipsConstantIslands(TargetMachine &tm) | 
|  | : MachineFunctionPass(ID), TM(tm), | 
|  | IsPIC(TM.getRelocationModel() == Reloc::PIC_), STI(nullptr), | 
|  | MF(nullptr), MCP(nullptr), PrescannedForConstants(false) {} | 
|  |  | 
|  | const char *getPassName() const override { | 
|  | return "Mips Constant Islands"; | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &F) override; | 
|  |  | 
|  | void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs); | 
|  | CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); | 
|  | unsigned getCPELogAlign(const MachineInstr *CPEMI); | 
|  | void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); | 
|  | unsigned getOffsetOf(MachineInstr *MI) const; | 
|  | unsigned getUserOffset(CPUser&) const; | 
|  | void dumpBBs(); | 
|  |  | 
|  | bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, | 
|  | unsigned Disp, bool NegativeOK); | 
|  | bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, | 
|  | const CPUser &U); | 
|  |  | 
|  | void computeBlockSize(MachineBasicBlock *MBB); | 
|  | MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); | 
|  | void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); | 
|  | void adjustBBOffsetsAfter(MachineBasicBlock *BB); | 
|  | bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); | 
|  | int findInRangeCPEntry(CPUser& U, unsigned UserOffset); | 
|  | int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset); | 
|  | bool findAvailableWater(CPUser&U, unsigned UserOffset, | 
|  | water_iterator &WaterIter); | 
|  | void createNewWater(unsigned CPUserIndex, unsigned UserOffset, | 
|  | MachineBasicBlock *&NewMBB); | 
|  | bool handleConstantPoolUser(unsigned CPUserIndex); | 
|  | void removeDeadCPEMI(MachineInstr *CPEMI); | 
|  | bool removeUnusedCPEntries(); | 
|  | bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, | 
|  | MachineInstr *CPEMI, unsigned Disp, bool NegOk, | 
|  | bool DoDump = false); | 
|  | bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, | 
|  | CPUser &U, unsigned &Growth); | 
|  | bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); | 
|  | bool fixupImmediateBr(ImmBranch &Br); | 
|  | bool fixupConditionalBr(ImmBranch &Br); | 
|  | bool fixupUnconditionalBr(ImmBranch &Br); | 
|  |  | 
|  | void prescanForConstants(); | 
|  |  | 
|  | private: | 
|  |  | 
|  | }; | 
|  |  | 
|  | char MipsConstantIslands::ID = 0; | 
|  | } // end of anonymous namespace | 
|  |  | 
|  | bool MipsConstantIslands::isOffsetInRange | 
|  | (unsigned UserOffset, unsigned TrialOffset, | 
|  | const CPUser &U) { | 
|  | return isOffsetInRange(UserOffset, TrialOffset, | 
|  | U.getMaxDisp(), U.NegOk); | 
|  | } | 
|  | /// print block size and offset information - debugging | 
|  | void MipsConstantIslands::dumpBBs() { | 
|  | DEBUG({ | 
|  | for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { | 
|  | const BasicBlockInfo &BBI = BBInfo[J]; | 
|  | dbgs() << format("%08x BB#%u\t", BBI.Offset, J) | 
|  | << format(" size=%#x\n", BBInfo[J].Size); | 
|  | } | 
|  | }); | 
|  | } | 
|  | /// createMipsLongBranchPass - Returns a pass that converts branches to long | 
|  | /// branches. | 
|  | FunctionPass *llvm::createMipsConstantIslandPass(MipsTargetMachine &tm) { | 
|  | return new MipsConstantIslands(tm); | 
|  | } | 
|  |  | 
|  | bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) { | 
|  | // The intention is for this to be a mips16 only pass for now | 
|  | // FIXME: | 
|  | MF = &mf; | 
|  | MCP = mf.getConstantPool(); | 
|  | STI = &static_cast<const MipsSubtarget &>(mf.getSubtarget()); | 
|  | DEBUG(dbgs() << "constant island machine function " << "\n"); | 
|  | if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) { | 
|  | return false; | 
|  | } | 
|  | TII = (const Mips16InstrInfo *)STI->getInstrInfo(); | 
|  | MFI = MF->getInfo<MipsFunctionInfo>(); | 
|  | DEBUG(dbgs() << "constant island processing " << "\n"); | 
|  | // | 
|  | // will need to make predermination if there is any constants we need to | 
|  | // put in constant islands. TBD. | 
|  | // | 
|  | if (!PrescannedForConstants) prescanForConstants(); | 
|  |  | 
|  | HasFarJump = false; | 
|  | // This pass invalidates liveness information when it splits basic blocks. | 
|  | MF->getRegInfo().invalidateLiveness(); | 
|  |  | 
|  | // Renumber all of the machine basic blocks in the function, guaranteeing that | 
|  | // the numbers agree with the position of the block in the function. | 
|  | MF->RenumberBlocks(); | 
|  |  | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Perform the initial placement of the constant pool entries.  To start with, | 
|  | // we put them all at the end of the function. | 
|  | std::vector<MachineInstr*> CPEMIs; | 
|  | if (!MCP->isEmpty()) | 
|  | doInitialPlacement(CPEMIs); | 
|  |  | 
|  | /// The next UID to take is the first unused one. | 
|  | initPICLabelUId(CPEMIs.size()); | 
|  |  | 
|  | // Do the initial scan of the function, building up information about the | 
|  | // sizes of each block, the location of all the water, and finding all of the | 
|  | // constant pool users. | 
|  | initializeFunctionInfo(CPEMIs); | 
|  | CPEMIs.clear(); | 
|  | DEBUG(dumpBBs()); | 
|  |  | 
|  | /// Remove dead constant pool entries. | 
|  | MadeChange |= removeUnusedCPEntries(); | 
|  |  | 
|  | // Iteratively place constant pool entries and fix up branches until there | 
|  | // is no change. | 
|  | unsigned NoCPIters = 0, NoBRIters = 0; | 
|  | (void)NoBRIters; | 
|  | while (true) { | 
|  | DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); | 
|  | bool CPChange = false; | 
|  | for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) | 
|  | CPChange |= handleConstantPoolUser(i); | 
|  | if (CPChange && ++NoCPIters > 30) | 
|  | report_fatal_error("Constant Island pass failed to converge!"); | 
|  | DEBUG(dumpBBs()); | 
|  |  | 
|  | // Clear NewWaterList now.  If we split a block for branches, it should | 
|  | // appear as "new water" for the next iteration of constant pool placement. | 
|  | NewWaterList.clear(); | 
|  |  | 
|  | DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); | 
|  | bool BRChange = false; | 
|  | for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) | 
|  | BRChange |= fixupImmediateBr(ImmBranches[i]); | 
|  | if (BRChange && ++NoBRIters > 30) | 
|  | report_fatal_error("Branch Fix Up pass failed to converge!"); | 
|  | DEBUG(dumpBBs()); | 
|  | if (!CPChange && !BRChange) | 
|  | break; | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << '\n'; dumpBBs()); | 
|  |  | 
|  | BBInfo.clear(); | 
|  | WaterList.clear(); | 
|  | CPUsers.clear(); | 
|  | CPEntries.clear(); | 
|  | ImmBranches.clear(); | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// doInitialPlacement - Perform the initial placement of the constant pool | 
|  | /// entries.  To start with, we put them all at the end of the function. | 
|  | void | 
|  | MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) { | 
|  | // Create the basic block to hold the CPE's. | 
|  | MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); | 
|  | MF->push_back(BB); | 
|  |  | 
|  |  | 
|  | // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). | 
|  | unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); | 
|  |  | 
|  | // Mark the basic block as required by the const-pool. | 
|  | // If AlignConstantIslands isn't set, use 4-byte alignment for everything. | 
|  | BB->setAlignment(AlignConstantIslands ? MaxAlign : 2); | 
|  |  | 
|  | // The function needs to be as aligned as the basic blocks. The linker may | 
|  | // move functions around based on their alignment. | 
|  | MF->ensureAlignment(BB->getAlignment()); | 
|  |  | 
|  | // Order the entries in BB by descending alignment.  That ensures correct | 
|  | // alignment of all entries as long as BB is sufficiently aligned.  Keep | 
|  | // track of the insertion point for each alignment.  We are going to bucket | 
|  | // sort the entries as they are created. | 
|  | SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); | 
|  |  | 
|  | // Add all of the constants from the constant pool to the end block, use an | 
|  | // identity mapping of CPI's to CPE's. | 
|  | const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); | 
|  |  | 
|  | const DataLayout &TD = MF->getDataLayout(); | 
|  | for (unsigned i = 0, e = CPs.size(); i != e; ++i) { | 
|  | unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); | 
|  | assert(Size >= 4 && "Too small constant pool entry"); | 
|  | unsigned Align = CPs[i].getAlignment(); | 
|  | assert(isPowerOf2_32(Align) && "Invalid alignment"); | 
|  | // Verify that all constant pool entries are a multiple of their alignment. | 
|  | // If not, we would have to pad them out so that instructions stay aligned. | 
|  | assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); | 
|  |  | 
|  | // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. | 
|  | unsigned LogAlign = Log2_32(Align); | 
|  | MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; | 
|  |  | 
|  | MachineInstr *CPEMI = | 
|  | BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY)) | 
|  | .addImm(i).addConstantPoolIndex(i).addImm(Size); | 
|  |  | 
|  | CPEMIs.push_back(CPEMI); | 
|  |  | 
|  | // Ensure that future entries with higher alignment get inserted before | 
|  | // CPEMI. This is bucket sort with iterators. | 
|  | for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) | 
|  | if (InsPoint[a] == InsAt) | 
|  | InsPoint[a] = CPEMI; | 
|  | // Add a new CPEntry, but no corresponding CPUser yet. | 
|  | CPEntries.emplace_back(1, CPEntry(CPEMI, i)); | 
|  | ++NumCPEs; | 
|  | DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " | 
|  | << Size << ", align = " << Align <<'\n'); | 
|  | } | 
|  | DEBUG(BB->dump()); | 
|  | } | 
|  |  | 
|  | /// BBHasFallthrough - Return true if the specified basic block can fallthrough | 
|  | /// into the block immediately after it. | 
|  | static bool BBHasFallthrough(MachineBasicBlock *MBB) { | 
|  | // Get the next machine basic block in the function. | 
|  | MachineFunction::iterator MBBI = MBB->getIterator(); | 
|  | // Can't fall off end of function. | 
|  | if (std::next(MBBI) == MBB->getParent()->end()) | 
|  | return false; | 
|  |  | 
|  | MachineBasicBlock *NextBB = &*std::next(MBBI); | 
|  | for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), | 
|  | E = MBB->succ_end(); I != E; ++I) | 
|  | if (*I == NextBB) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, | 
|  | /// look up the corresponding CPEntry. | 
|  | MipsConstantIslands::CPEntry | 
|  | *MipsConstantIslands::findConstPoolEntry(unsigned CPI, | 
|  | const MachineInstr *CPEMI) { | 
|  | std::vector<CPEntry> &CPEs = CPEntries[CPI]; | 
|  | // Number of entries per constpool index should be small, just do a | 
|  | // linear search. | 
|  | for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { | 
|  | if (CPEs[i].CPEMI == CPEMI) | 
|  | return &CPEs[i]; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// getCPELogAlign - Returns the required alignment of the constant pool entry | 
|  | /// represented by CPEMI.  Alignment is measured in log2(bytes) units. | 
|  | unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { | 
|  | assert(CPEMI && CPEMI->getOpcode() == Mips::CONSTPOOL_ENTRY); | 
|  |  | 
|  | // Everything is 4-byte aligned unless AlignConstantIslands is set. | 
|  | if (!AlignConstantIslands) | 
|  | return 2; | 
|  |  | 
|  | unsigned CPI = CPEMI->getOperand(1).getIndex(); | 
|  | assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); | 
|  | unsigned Align = MCP->getConstants()[CPI].getAlignment(); | 
|  | assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); | 
|  | return Log2_32(Align); | 
|  | } | 
|  |  | 
|  | /// initializeFunctionInfo - Do the initial scan of the function, building up | 
|  | /// information about the sizes of each block, the location of all the water, | 
|  | /// and finding all of the constant pool users. | 
|  | void MipsConstantIslands:: | 
|  | initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { | 
|  | BBInfo.clear(); | 
|  | BBInfo.resize(MF->getNumBlockIDs()); | 
|  |  | 
|  | // First thing, compute the size of all basic blocks, and see if the function | 
|  | // has any inline assembly in it. If so, we have to be conservative about | 
|  | // alignment assumptions, as we don't know for sure the size of any | 
|  | // instructions in the inline assembly. | 
|  | for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) | 
|  | computeBlockSize(&*I); | 
|  |  | 
|  |  | 
|  | // Compute block offsets. | 
|  | adjustBBOffsetsAfter(&MF->front()); | 
|  |  | 
|  | // Now go back through the instructions and build up our data structures. | 
|  | for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); | 
|  | MBBI != E; ++MBBI) { | 
|  | MachineBasicBlock &MBB = *MBBI; | 
|  |  | 
|  | // If this block doesn't fall through into the next MBB, then this is | 
|  | // 'water' that a constant pool island could be placed. | 
|  | if (!BBHasFallthrough(&MBB)) | 
|  | WaterList.push_back(&MBB); | 
|  | for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); | 
|  | I != E; ++I) { | 
|  | if (I->isDebugValue()) | 
|  | continue; | 
|  |  | 
|  | int Opc = I->getOpcode(); | 
|  | if (I->isBranch()) { | 
|  | bool isCond = false; | 
|  | unsigned Bits = 0; | 
|  | unsigned Scale = 1; | 
|  | int UOpc = Opc; | 
|  | switch (Opc) { | 
|  | default: | 
|  | continue;  // Ignore other branches for now | 
|  | case Mips::Bimm16: | 
|  | Bits = 11; | 
|  | Scale = 2; | 
|  | isCond = false; | 
|  | break; | 
|  | case Mips::BimmX16: | 
|  | Bits = 16; | 
|  | Scale = 2; | 
|  | isCond = false; | 
|  | break; | 
|  | case Mips::BeqzRxImm16: | 
|  | UOpc=Mips::Bimm16; | 
|  | Bits = 8; | 
|  | Scale = 2; | 
|  | isCond = true; | 
|  | break; | 
|  | case Mips::BeqzRxImmX16: | 
|  | UOpc=Mips::Bimm16; | 
|  | Bits = 16; | 
|  | Scale = 2; | 
|  | isCond = true; | 
|  | break; | 
|  | case Mips::BnezRxImm16: | 
|  | UOpc=Mips::Bimm16; | 
|  | Bits = 8; | 
|  | Scale = 2; | 
|  | isCond = true; | 
|  | break; | 
|  | case Mips::BnezRxImmX16: | 
|  | UOpc=Mips::Bimm16; | 
|  | Bits = 16; | 
|  | Scale = 2; | 
|  | isCond = true; | 
|  | break; | 
|  | case Mips::Bteqz16: | 
|  | UOpc=Mips::Bimm16; | 
|  | Bits = 8; | 
|  | Scale = 2; | 
|  | isCond = true; | 
|  | break; | 
|  | case Mips::BteqzX16: | 
|  | UOpc=Mips::Bimm16; | 
|  | Bits = 16; | 
|  | Scale = 2; | 
|  | isCond = true; | 
|  | break; | 
|  | case Mips::Btnez16: | 
|  | UOpc=Mips::Bimm16; | 
|  | Bits = 8; | 
|  | Scale = 2; | 
|  | isCond = true; | 
|  | break; | 
|  | case Mips::BtnezX16: | 
|  | UOpc=Mips::Bimm16; | 
|  | Bits = 16; | 
|  | Scale = 2; | 
|  | isCond = true; | 
|  | break; | 
|  | } | 
|  | // Record this immediate branch. | 
|  | unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; | 
|  | ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); | 
|  | } | 
|  |  | 
|  | if (Opc == Mips::CONSTPOOL_ENTRY) | 
|  | continue; | 
|  |  | 
|  |  | 
|  | // Scan the instructions for constant pool operands. | 
|  | for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) | 
|  | if (I->getOperand(op).isCPI()) { | 
|  |  | 
|  | // We found one.  The addressing mode tells us the max displacement | 
|  | // from the PC that this instruction permits. | 
|  |  | 
|  | // Basic size info comes from the TSFlags field. | 
|  | unsigned Bits = 0; | 
|  | unsigned Scale = 1; | 
|  | bool NegOk = false; | 
|  | unsigned LongFormBits = 0; | 
|  | unsigned LongFormScale = 0; | 
|  | unsigned LongFormOpcode = 0; | 
|  | switch (Opc) { | 
|  | default: | 
|  | llvm_unreachable("Unknown addressing mode for CP reference!"); | 
|  | case Mips::LwRxPcTcp16: | 
|  | Bits = 8; | 
|  | Scale = 4; | 
|  | LongFormOpcode = Mips::LwRxPcTcpX16; | 
|  | LongFormBits = 14; | 
|  | LongFormScale = 1; | 
|  | break; | 
|  | case Mips::LwRxPcTcpX16: | 
|  | Bits = 14; | 
|  | Scale = 1; | 
|  | NegOk = true; | 
|  | break; | 
|  | } | 
|  | // Remember that this is a user of a CP entry. | 
|  | unsigned CPI = I->getOperand(op).getIndex(); | 
|  | MachineInstr *CPEMI = CPEMIs[CPI]; | 
|  | unsigned MaxOffs = ((1 << Bits)-1) * Scale; | 
|  | unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale; | 
|  | CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, | 
|  | LongFormMaxOffs, LongFormOpcode)); | 
|  |  | 
|  | // Increment corresponding CPEntry reference count. | 
|  | CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); | 
|  | assert(CPE && "Cannot find a corresponding CPEntry!"); | 
|  | CPE->RefCount++; | 
|  |  | 
|  | // Instructions can only use one CP entry, don't bother scanning the | 
|  | // rest of the operands. | 
|  | break; | 
|  |  | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /// computeBlockSize - Compute the size and some alignment information for MBB. | 
|  | /// This function updates BBInfo directly. | 
|  | void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { | 
|  | BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; | 
|  | BBI.Size = 0; | 
|  |  | 
|  | for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; | 
|  | ++I) | 
|  | BBI.Size += TII->GetInstSizeInBytes(I); | 
|  |  | 
|  | } | 
|  |  | 
|  | /// getOffsetOf - Return the current offset of the specified machine instruction | 
|  | /// from the start of the function.  This offset changes as stuff is moved | 
|  | /// around inside the function. | 
|  | unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const { | 
|  | MachineBasicBlock *MBB = MI->getParent(); | 
|  |  | 
|  | // The offset is composed of two things: the sum of the sizes of all MBB's | 
|  | // before this instruction's block, and the offset from the start of the block | 
|  | // it is in. | 
|  | unsigned Offset = BBInfo[MBB->getNumber()].Offset; | 
|  |  | 
|  | // Sum instructions before MI in MBB. | 
|  | for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { | 
|  | assert(I != MBB->end() && "Didn't find MI in its own basic block?"); | 
|  | Offset += TII->GetInstSizeInBytes(I); | 
|  | } | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB | 
|  | /// ID. | 
|  | static bool CompareMBBNumbers(const MachineBasicBlock *LHS, | 
|  | const MachineBasicBlock *RHS) { | 
|  | return LHS->getNumber() < RHS->getNumber(); | 
|  | } | 
|  |  | 
|  | /// updateForInsertedWaterBlock - When a block is newly inserted into the | 
|  | /// machine function, it upsets all of the block numbers.  Renumber the blocks | 
|  | /// and update the arrays that parallel this numbering. | 
|  | void MipsConstantIslands::updateForInsertedWaterBlock | 
|  | (MachineBasicBlock *NewBB) { | 
|  | // Renumber the MBB's to keep them consecutive. | 
|  | NewBB->getParent()->RenumberBlocks(NewBB); | 
|  |  | 
|  | // Insert an entry into BBInfo to align it properly with the (newly | 
|  | // renumbered) block numbers. | 
|  | BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); | 
|  |  | 
|  | // Next, update WaterList.  Specifically, we need to add NewMBB as having | 
|  | // available water after it. | 
|  | water_iterator IP = | 
|  | std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, | 
|  | CompareMBBNumbers); | 
|  | WaterList.insert(IP, NewBB); | 
|  | } | 
|  |  | 
|  | unsigned MipsConstantIslands::getUserOffset(CPUser &U) const { | 
|  | return getOffsetOf(U.MI); | 
|  | } | 
|  |  | 
|  | /// Split the basic block containing MI into two blocks, which are joined by | 
|  | /// an unconditional branch.  Update data structures and renumber blocks to | 
|  | /// account for this change and returns the newly created block. | 
|  | MachineBasicBlock *MipsConstantIslands::splitBlockBeforeInstr | 
|  | (MachineInstr *MI) { | 
|  | MachineBasicBlock *OrigBB = MI->getParent(); | 
|  |  | 
|  | // Create a new MBB for the code after the OrigBB. | 
|  | MachineBasicBlock *NewBB = | 
|  | MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); | 
|  | MachineFunction::iterator MBBI = ++OrigBB->getIterator(); | 
|  | MF->insert(MBBI, NewBB); | 
|  |  | 
|  | // Splice the instructions starting with MI over to NewBB. | 
|  | NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); | 
|  |  | 
|  | // Add an unconditional branch from OrigBB to NewBB. | 
|  | // Note the new unconditional branch is not being recorded. | 
|  | // There doesn't seem to be meaningful DebugInfo available; this doesn't | 
|  | // correspond to anything in the source. | 
|  | BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB); | 
|  | ++NumSplit; | 
|  |  | 
|  | // Update the CFG.  All succs of OrigBB are now succs of NewBB. | 
|  | NewBB->transferSuccessors(OrigBB); | 
|  |  | 
|  | // OrigBB branches to NewBB. | 
|  | OrigBB->addSuccessor(NewBB); | 
|  |  | 
|  | // Update internal data structures to account for the newly inserted MBB. | 
|  | // This is almost the same as updateForInsertedWaterBlock, except that | 
|  | // the Water goes after OrigBB, not NewBB. | 
|  | MF->RenumberBlocks(NewBB); | 
|  |  | 
|  | // Insert an entry into BBInfo to align it properly with the (newly | 
|  | // renumbered) block numbers. | 
|  | BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); | 
|  |  | 
|  | // Next, update WaterList.  Specifically, we need to add OrigMBB as having | 
|  | // available water after it (but not if it's already there, which happens | 
|  | // when splitting before a conditional branch that is followed by an | 
|  | // unconditional branch - in that case we want to insert NewBB). | 
|  | water_iterator IP = | 
|  | std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, | 
|  | CompareMBBNumbers); | 
|  | MachineBasicBlock* WaterBB = *IP; | 
|  | if (WaterBB == OrigBB) | 
|  | WaterList.insert(std::next(IP), NewBB); | 
|  | else | 
|  | WaterList.insert(IP, OrigBB); | 
|  | NewWaterList.insert(OrigBB); | 
|  |  | 
|  | // Figure out how large the OrigBB is.  As the first half of the original | 
|  | // block, it cannot contain a tablejump.  The size includes | 
|  | // the new jump we added.  (It should be possible to do this without | 
|  | // recounting everything, but it's very confusing, and this is rarely | 
|  | // executed.) | 
|  | computeBlockSize(OrigBB); | 
|  |  | 
|  | // Figure out how large the NewMBB is.  As the second half of the original | 
|  | // block, it may contain a tablejump. | 
|  | computeBlockSize(NewBB); | 
|  |  | 
|  | // All BBOffsets following these blocks must be modified. | 
|  | adjustBBOffsetsAfter(OrigBB); | 
|  |  | 
|  | return NewBB; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool | 
|  | /// reference) is within MaxDisp of TrialOffset (a proposed location of a | 
|  | /// constant pool entry). | 
|  | bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset, | 
|  | unsigned TrialOffset, unsigned MaxDisp, | 
|  | bool NegativeOK) { | 
|  | if (UserOffset <= TrialOffset) { | 
|  | // User before the Trial. | 
|  | if (TrialOffset - UserOffset <= MaxDisp) | 
|  | return true; | 
|  | } else if (NegativeOK) { | 
|  | if (UserOffset - TrialOffset <= MaxDisp) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isWaterInRange - Returns true if a CPE placed after the specified | 
|  | /// Water (a basic block) will be in range for the specific MI. | 
|  | /// | 
|  | /// Compute how much the function will grow by inserting a CPE after Water. | 
|  | bool MipsConstantIslands::isWaterInRange(unsigned UserOffset, | 
|  | MachineBasicBlock* Water, CPUser &U, | 
|  | unsigned &Growth) { | 
|  | unsigned CPELogAlign = getCPELogAlign(U.CPEMI); | 
|  | unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); | 
|  | unsigned NextBlockOffset, NextBlockAlignment; | 
|  | MachineFunction::const_iterator NextBlock = ++Water->getIterator(); | 
|  | if (NextBlock == MF->end()) { | 
|  | NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); | 
|  | NextBlockAlignment = 0; | 
|  | } else { | 
|  | NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; | 
|  | NextBlockAlignment = NextBlock->getAlignment(); | 
|  | } | 
|  | unsigned Size = U.CPEMI->getOperand(2).getImm(); | 
|  | unsigned CPEEnd = CPEOffset + Size; | 
|  |  | 
|  | // The CPE may be able to hide in the alignment padding before the next | 
|  | // block. It may also cause more padding to be required if it is more aligned | 
|  | // that the next block. | 
|  | if (CPEEnd > NextBlockOffset) { | 
|  | Growth = CPEEnd - NextBlockOffset; | 
|  | // Compute the padding that would go at the end of the CPE to align the next | 
|  | // block. | 
|  | Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment); | 
|  |  | 
|  | // If the CPE is to be inserted before the instruction, that will raise | 
|  | // the offset of the instruction. Also account for unknown alignment padding | 
|  | // in blocks between CPE and the user. | 
|  | if (CPEOffset < UserOffset) | 
|  | UserOffset += Growth; | 
|  | } else | 
|  | // CPE fits in existing padding. | 
|  | Growth = 0; | 
|  |  | 
|  | return isOffsetInRange(UserOffset, CPEOffset, U); | 
|  | } | 
|  |  | 
|  | /// isCPEntryInRange - Returns true if the distance between specific MI and | 
|  | /// specific ConstPool entry instruction can fit in MI's displacement field. | 
|  | bool MipsConstantIslands::isCPEntryInRange | 
|  | (MachineInstr *MI, unsigned UserOffset, | 
|  | MachineInstr *CPEMI, unsigned MaxDisp, | 
|  | bool NegOk, bool DoDump) { | 
|  | unsigned CPEOffset  = getOffsetOf(CPEMI); | 
|  |  | 
|  | if (DoDump) { | 
|  | DEBUG({ | 
|  | unsigned Block = MI->getParent()->getNumber(); | 
|  | const BasicBlockInfo &BBI = BBInfo[Block]; | 
|  | dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() | 
|  | << " max delta=" << MaxDisp | 
|  | << format(" insn address=%#x", UserOffset) | 
|  | << " in BB#" << Block << ": " | 
|  | << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI | 
|  | << format("CPE address=%#x offset=%+d: ", CPEOffset, | 
|  | int(CPEOffset-UserOffset)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | /// BBIsJumpedOver - Return true of the specified basic block's only predecessor | 
|  | /// unconditionally branches to its only successor. | 
|  | static bool BBIsJumpedOver(MachineBasicBlock *MBB) { | 
|  | if (MBB->pred_size() != 1 || MBB->succ_size() != 1) | 
|  | return false; | 
|  | MachineBasicBlock *Succ = *MBB->succ_begin(); | 
|  | MachineBasicBlock *Pred = *MBB->pred_begin(); | 
|  | MachineInstr *PredMI = &Pred->back(); | 
|  | if (PredMI->getOpcode() == Mips::Bimm16) | 
|  | return PredMI->getOperand(0).getMBB() == Succ; | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { | 
|  | unsigned BBNum = BB->getNumber(); | 
|  | for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { | 
|  | // Get the offset and known bits at the end of the layout predecessor. | 
|  | // Include the alignment of the current block. | 
|  | unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size; | 
|  | BBInfo[i].Offset = Offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// decrementCPEReferenceCount - find the constant pool entry with index CPI | 
|  | /// and instruction CPEMI, and decrement its refcount.  If the refcount | 
|  | /// becomes 0 remove the entry and instruction.  Returns true if we removed | 
|  | /// the entry, false if we didn't. | 
|  |  | 
|  | bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI, | 
|  | MachineInstr *CPEMI) { | 
|  | // Find the old entry. Eliminate it if it is no longer used. | 
|  | CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); | 
|  | assert(CPE && "Unexpected!"); | 
|  | if (--CPE->RefCount == 0) { | 
|  | removeDeadCPEMI(CPEMI); | 
|  | CPE->CPEMI = nullptr; | 
|  | --NumCPEs; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// LookForCPEntryInRange - see if the currently referenced CPE is in range; | 
|  | /// if not, see if an in-range clone of the CPE is in range, and if so, | 
|  | /// change the data structures so the user references the clone.  Returns: | 
|  | /// 0 = no existing entry found | 
|  | /// 1 = entry found, and there were no code insertions or deletions | 
|  | /// 2 = entry found, and there were code insertions or deletions | 
|  | int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) | 
|  | { | 
|  | MachineInstr *UserMI = U.MI; | 
|  | MachineInstr *CPEMI  = U.CPEMI; | 
|  |  | 
|  | // Check to see if the CPE is already in-range. | 
|  | if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, | 
|  | true)) { | 
|  | DEBUG(dbgs() << "In range\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // No.  Look for previously created clones of the CPE that are in range. | 
|  | unsigned CPI = CPEMI->getOperand(1).getIndex(); | 
|  | std::vector<CPEntry> &CPEs = CPEntries[CPI]; | 
|  | for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { | 
|  | // We already tried this one | 
|  | if (CPEs[i].CPEMI == CPEMI) | 
|  | continue; | 
|  | // Removing CPEs can leave empty entries, skip | 
|  | if (CPEs[i].CPEMI == nullptr) | 
|  | continue; | 
|  | if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), | 
|  | U.NegOk)) { | 
|  | DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" | 
|  | << CPEs[i].CPI << "\n"); | 
|  | // Point the CPUser node to the replacement | 
|  | U.CPEMI = CPEs[i].CPEMI; | 
|  | // Change the CPI in the instruction operand to refer to the clone. | 
|  | for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) | 
|  | if (UserMI->getOperand(j).isCPI()) { | 
|  | UserMI->getOperand(j).setIndex(CPEs[i].CPI); | 
|  | break; | 
|  | } | 
|  | // Adjust the refcount of the clone... | 
|  | CPEs[i].RefCount++; | 
|  | // ...and the original.  If we didn't remove the old entry, none of the | 
|  | // addresses changed, so we don't need another pass. | 
|  | return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// LookForCPEntryInRange - see if the currently referenced CPE is in range; | 
|  | /// This version checks if the longer form of the instruction can be used to | 
|  | /// to satisfy things. | 
|  | /// if not, see if an in-range clone of the CPE is in range, and if so, | 
|  | /// change the data structures so the user references the clone.  Returns: | 
|  | /// 0 = no existing entry found | 
|  | /// 1 = entry found, and there were no code insertions or deletions | 
|  | /// 2 = entry found, and there were code insertions or deletions | 
|  | int MipsConstantIslands::findLongFormInRangeCPEntry | 
|  | (CPUser& U, unsigned UserOffset) | 
|  | { | 
|  | MachineInstr *UserMI = U.MI; | 
|  | MachineInstr *CPEMI  = U.CPEMI; | 
|  |  | 
|  | // Check to see if the CPE is already in-range. | 
|  | if (isCPEntryInRange(UserMI, UserOffset, CPEMI, | 
|  | U.getLongFormMaxDisp(), U.NegOk, | 
|  | true)) { | 
|  | DEBUG(dbgs() << "In range\n"); | 
|  | UserMI->setDesc(TII->get(U.getLongFormOpcode())); | 
|  | U.setMaxDisp(U.getLongFormMaxDisp()); | 
|  | return 2;  // instruction is longer length now | 
|  | } | 
|  |  | 
|  | // No.  Look for previously created clones of the CPE that are in range. | 
|  | unsigned CPI = CPEMI->getOperand(1).getIndex(); | 
|  | std::vector<CPEntry> &CPEs = CPEntries[CPI]; | 
|  | for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { | 
|  | // We already tried this one | 
|  | if (CPEs[i].CPEMI == CPEMI) | 
|  | continue; | 
|  | // Removing CPEs can leave empty entries, skip | 
|  | if (CPEs[i].CPEMI == nullptr) | 
|  | continue; | 
|  | if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, | 
|  | U.getLongFormMaxDisp(), U.NegOk)) { | 
|  | DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" | 
|  | << CPEs[i].CPI << "\n"); | 
|  | // Point the CPUser node to the replacement | 
|  | U.CPEMI = CPEs[i].CPEMI; | 
|  | // Change the CPI in the instruction operand to refer to the clone. | 
|  | for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) | 
|  | if (UserMI->getOperand(j).isCPI()) { | 
|  | UserMI->getOperand(j).setIndex(CPEs[i].CPI); | 
|  | break; | 
|  | } | 
|  | // Adjust the refcount of the clone... | 
|  | CPEs[i].RefCount++; | 
|  | // ...and the original.  If we didn't remove the old entry, none of the | 
|  | // addresses changed, so we don't need another pass. | 
|  | return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in | 
|  | /// the specific unconditional branch instruction. | 
|  | static inline unsigned getUnconditionalBrDisp(int Opc) { | 
|  | switch (Opc) { | 
|  | case Mips::Bimm16: | 
|  | return ((1<<10)-1)*2; | 
|  | case Mips::BimmX16: | 
|  | return ((1<<16)-1)*2; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return ((1<<16)-1)*2; | 
|  | } | 
|  |  | 
|  | /// findAvailableWater - Look for an existing entry in the WaterList in which | 
|  | /// we can place the CPE referenced from U so it's within range of U's MI. | 
|  | /// Returns true if found, false if not.  If it returns true, WaterIter | 
|  | /// is set to the WaterList entry. | 
|  | /// To ensure that this pass | 
|  | /// terminates, the CPE location for a particular CPUser is only allowed to | 
|  | /// move to a lower address, so search backward from the end of the list and | 
|  | /// prefer the first water that is in range. | 
|  | bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, | 
|  | water_iterator &WaterIter) { | 
|  | if (WaterList.empty()) | 
|  | return false; | 
|  |  | 
|  | unsigned BestGrowth = ~0u; | 
|  | for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; | 
|  | --IP) { | 
|  | MachineBasicBlock* WaterBB = *IP; | 
|  | // Check if water is in range and is either at a lower address than the | 
|  | // current "high water mark" or a new water block that was created since | 
|  | // the previous iteration by inserting an unconditional branch.  In the | 
|  | // latter case, we want to allow resetting the high water mark back to | 
|  | // this new water since we haven't seen it before.  Inserting branches | 
|  | // should be relatively uncommon and when it does happen, we want to be | 
|  | // sure to take advantage of it for all the CPEs near that block, so that | 
|  | // we don't insert more branches than necessary. | 
|  | unsigned Growth; | 
|  | if (isWaterInRange(UserOffset, WaterBB, U, Growth) && | 
|  | (WaterBB->getNumber() < U.HighWaterMark->getNumber() || | 
|  | NewWaterList.count(WaterBB)) && Growth < BestGrowth) { | 
|  | // This is the least amount of required padding seen so far. | 
|  | BestGrowth = Growth; | 
|  | WaterIter = IP; | 
|  | DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber() | 
|  | << " Growth=" << Growth << '\n'); | 
|  |  | 
|  | // Keep looking unless it is perfect. | 
|  | if (BestGrowth == 0) | 
|  | return true; | 
|  | } | 
|  | if (IP == B) | 
|  | break; | 
|  | } | 
|  | return BestGrowth != ~0u; | 
|  | } | 
|  |  | 
|  | /// createNewWater - No existing WaterList entry will work for | 
|  | /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the | 
|  | /// block is used if in range, and the conditional branch munged so control | 
|  | /// flow is correct.  Otherwise the block is split to create a hole with an | 
|  | /// unconditional branch around it.  In either case NewMBB is set to a | 
|  | /// block following which the new island can be inserted (the WaterList | 
|  | /// is not adjusted). | 
|  | void MipsConstantIslands::createNewWater(unsigned CPUserIndex, | 
|  | unsigned UserOffset, | 
|  | MachineBasicBlock *&NewMBB) { | 
|  | CPUser &U = CPUsers[CPUserIndex]; | 
|  | MachineInstr *UserMI = U.MI; | 
|  | MachineInstr *CPEMI  = U.CPEMI; | 
|  | unsigned CPELogAlign = getCPELogAlign(CPEMI); | 
|  | MachineBasicBlock *UserMBB = UserMI->getParent(); | 
|  | const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; | 
|  |  | 
|  | // If the block does not end in an unconditional branch already, and if the | 
|  | // end of the block is within range, make new water there. | 
|  | if (BBHasFallthrough(UserMBB)) { | 
|  | // Size of branch to insert. | 
|  | unsigned Delta = 2; | 
|  | // Compute the offset where the CPE will begin. | 
|  | unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; | 
|  |  | 
|  | if (isOffsetInRange(UserOffset, CPEOffset, U)) { | 
|  | DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber() | 
|  | << format(", expected CPE offset %#x\n", CPEOffset)); | 
|  | NewMBB = &*++UserMBB->getIterator(); | 
|  | // Add an unconditional branch from UserMBB to fallthrough block.  Record | 
|  | // it for branch lengthening; this new branch will not get out of range, | 
|  | // but if the preceding conditional branch is out of range, the targets | 
|  | // will be exchanged, and the altered branch may be out of range, so the | 
|  | // machinery has to know about it. | 
|  | int UncondBr = Mips::Bimm16; | 
|  | BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); | 
|  | unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); | 
|  | ImmBranches.push_back(ImmBranch(&UserMBB->back(), | 
|  | MaxDisp, false, UncondBr)); | 
|  | BBInfo[UserMBB->getNumber()].Size += Delta; | 
|  | adjustBBOffsetsAfter(UserMBB); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // What a big block.  Find a place within the block to split it. | 
|  |  | 
|  | // Try to split the block so it's fully aligned.  Compute the latest split | 
|  | // point where we can add a 4-byte branch instruction, and then align to | 
|  | // LogAlign which is the largest possible alignment in the function. | 
|  | unsigned LogAlign = MF->getAlignment(); | 
|  | assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); | 
|  | unsigned BaseInsertOffset = UserOffset + U.getMaxDisp(); | 
|  | DEBUG(dbgs() << format("Split in middle of big block before %#x", | 
|  | BaseInsertOffset)); | 
|  |  | 
|  | // The 4 in the following is for the unconditional branch we'll be inserting | 
|  | // Alignment of the island is handled | 
|  | // inside isOffsetInRange. | 
|  | BaseInsertOffset -= 4; | 
|  |  | 
|  | DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) | 
|  | << " la=" << LogAlign << '\n'); | 
|  |  | 
|  | // This could point off the end of the block if we've already got constant | 
|  | // pool entries following this block; only the last one is in the water list. | 
|  | // Back past any possible branches (allow for a conditional and a maximally | 
|  | // long unconditional). | 
|  | if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { | 
|  | BaseInsertOffset = UserBBI.postOffset() - 8; | 
|  | DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); | 
|  | } | 
|  | unsigned EndInsertOffset = BaseInsertOffset + 4 + | 
|  | CPEMI->getOperand(2).getImm(); | 
|  | MachineBasicBlock::iterator MI = UserMI; | 
|  | ++MI; | 
|  | unsigned CPUIndex = CPUserIndex+1; | 
|  | unsigned NumCPUsers = CPUsers.size(); | 
|  | //MachineInstr *LastIT = 0; | 
|  | for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); | 
|  | Offset < BaseInsertOffset; | 
|  | Offset += TII->GetInstSizeInBytes(MI), MI = std::next(MI)) { | 
|  | assert(MI != UserMBB->end() && "Fell off end of block"); | 
|  | if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { | 
|  | CPUser &U = CPUsers[CPUIndex]; | 
|  | if (!isOffsetInRange(Offset, EndInsertOffset, U)) { | 
|  | // Shift intertion point by one unit of alignment so it is within reach. | 
|  | BaseInsertOffset -= 1u << LogAlign; | 
|  | EndInsertOffset  -= 1u << LogAlign; | 
|  | } | 
|  | // This is overly conservative, as we don't account for CPEMIs being | 
|  | // reused within the block, but it doesn't matter much.  Also assume CPEs | 
|  | // are added in order with alignment padding.  We may eventually be able | 
|  | // to pack the aligned CPEs better. | 
|  | EndInsertOffset += U.CPEMI->getOperand(2).getImm(); | 
|  | CPUIndex++; | 
|  | } | 
|  | } | 
|  |  | 
|  | --MI; | 
|  | NewMBB = splitBlockBeforeInstr(MI); | 
|  | } | 
|  |  | 
|  | /// handleConstantPoolUser - Analyze the specified user, checking to see if it | 
|  | /// is out-of-range.  If so, pick up the constant pool value and move it some | 
|  | /// place in-range.  Return true if we changed any addresses (thus must run | 
|  | /// another pass of branch lengthening), false otherwise. | 
|  | bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { | 
|  | CPUser &U = CPUsers[CPUserIndex]; | 
|  | MachineInstr *UserMI = U.MI; | 
|  | MachineInstr *CPEMI  = U.CPEMI; | 
|  | unsigned CPI = CPEMI->getOperand(1).getIndex(); | 
|  | unsigned Size = CPEMI->getOperand(2).getImm(); | 
|  | // Compute this only once, it's expensive. | 
|  | unsigned UserOffset = getUserOffset(U); | 
|  |  | 
|  | // See if the current entry is within range, or there is a clone of it | 
|  | // in range. | 
|  | int result = findInRangeCPEntry(U, UserOffset); | 
|  | if (result==1) return false; | 
|  | else if (result==2) return true; | 
|  |  | 
|  |  | 
|  | // Look for water where we can place this CPE. | 
|  | MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); | 
|  | MachineBasicBlock *NewMBB; | 
|  | water_iterator IP; | 
|  | if (findAvailableWater(U, UserOffset, IP)) { | 
|  | DEBUG(dbgs() << "Found water in range\n"); | 
|  | MachineBasicBlock *WaterBB = *IP; | 
|  |  | 
|  | // If the original WaterList entry was "new water" on this iteration, | 
|  | // propagate that to the new island.  This is just keeping NewWaterList | 
|  | // updated to match the WaterList, which will be updated below. | 
|  | if (NewWaterList.erase(WaterBB)) | 
|  | NewWaterList.insert(NewIsland); | 
|  |  | 
|  | // The new CPE goes before the following block (NewMBB). | 
|  | NewMBB = &*++WaterBB->getIterator(); | 
|  | } else { | 
|  | // No water found. | 
|  | // we first see if a longer form of the instrucion could have reached | 
|  | // the constant. in that case we won't bother to split | 
|  | if (!NoLoadRelaxation) { | 
|  | result = findLongFormInRangeCPEntry(U, UserOffset); | 
|  | if (result != 0) return true; | 
|  | } | 
|  | DEBUG(dbgs() << "No water found\n"); | 
|  | createNewWater(CPUserIndex, UserOffset, NewMBB); | 
|  |  | 
|  | // splitBlockBeforeInstr adds to WaterList, which is important when it is | 
|  | // called while handling branches so that the water will be seen on the | 
|  | // next iteration for constant pools, but in this context, we don't want | 
|  | // it.  Check for this so it will be removed from the WaterList. | 
|  | // Also remove any entry from NewWaterList. | 
|  | MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); | 
|  | IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); | 
|  | if (IP != WaterList.end()) | 
|  | NewWaterList.erase(WaterBB); | 
|  |  | 
|  | // We are adding new water.  Update NewWaterList. | 
|  | NewWaterList.insert(NewIsland); | 
|  | } | 
|  |  | 
|  | // Remove the original WaterList entry; we want subsequent insertions in | 
|  | // this vicinity to go after the one we're about to insert.  This | 
|  | // considerably reduces the number of times we have to move the same CPE | 
|  | // more than once and is also important to ensure the algorithm terminates. | 
|  | if (IP != WaterList.end()) | 
|  | WaterList.erase(IP); | 
|  |  | 
|  | // Okay, we know we can put an island before NewMBB now, do it! | 
|  | MF->insert(NewMBB->getIterator(), NewIsland); | 
|  |  | 
|  | // Update internal data structures to account for the newly inserted MBB. | 
|  | updateForInsertedWaterBlock(NewIsland); | 
|  |  | 
|  | // Decrement the old entry, and remove it if refcount becomes 0. | 
|  | decrementCPEReferenceCount(CPI, CPEMI); | 
|  |  | 
|  | // No existing clone of this CPE is within range. | 
|  | // We will be generating a new clone.  Get a UID for it. | 
|  | unsigned ID = createPICLabelUId(); | 
|  |  | 
|  | // Now that we have an island to add the CPE to, clone the original CPE and | 
|  | // add it to the island. | 
|  | U.HighWaterMark = NewIsland; | 
|  | U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY)) | 
|  | .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); | 
|  | CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); | 
|  | ++NumCPEs; | 
|  |  | 
|  | // Mark the basic block as aligned as required by the const-pool entry. | 
|  | NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); | 
|  |  | 
|  | // Increase the size of the island block to account for the new entry. | 
|  | BBInfo[NewIsland->getNumber()].Size += Size; | 
|  | adjustBBOffsetsAfter(&*--NewIsland->getIterator()); | 
|  |  | 
|  | // Finally, change the CPI in the instruction operand to be ID. | 
|  | for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) | 
|  | if (UserMI->getOperand(i).isCPI()) { | 
|  | UserMI->getOperand(i).setIndex(ID); | 
|  | break; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI | 
|  | << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update | 
|  | /// sizes and offsets of impacted basic blocks. | 
|  | void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { | 
|  | MachineBasicBlock *CPEBB = CPEMI->getParent(); | 
|  | unsigned Size = CPEMI->getOperand(2).getImm(); | 
|  | CPEMI->eraseFromParent(); | 
|  | BBInfo[CPEBB->getNumber()].Size -= Size; | 
|  | // All succeeding offsets have the current size value added in, fix this. | 
|  | if (CPEBB->empty()) { | 
|  | BBInfo[CPEBB->getNumber()].Size = 0; | 
|  |  | 
|  | // This block no longer needs to be aligned. | 
|  | CPEBB->setAlignment(0); | 
|  | } else | 
|  | // Entries are sorted by descending alignment, so realign from the front. | 
|  | CPEBB->setAlignment(getCPELogAlign(CPEBB->begin())); | 
|  |  | 
|  | adjustBBOffsetsAfter(CPEBB); | 
|  | // An island has only one predecessor BB and one successor BB. Check if | 
|  | // this BB's predecessor jumps directly to this BB's successor. This | 
|  | // shouldn't happen currently. | 
|  | assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); | 
|  | // FIXME: remove the empty blocks after all the work is done? | 
|  | } | 
|  |  | 
|  | /// removeUnusedCPEntries - Remove constant pool entries whose refcounts | 
|  | /// are zero. | 
|  | bool MipsConstantIslands::removeUnusedCPEntries() { | 
|  | unsigned MadeChange = false; | 
|  | for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { | 
|  | std::vector<CPEntry> &CPEs = CPEntries[i]; | 
|  | for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { | 
|  | if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { | 
|  | removeDeadCPEMI(CPEs[j].CPEMI); | 
|  | CPEs[j].CPEMI = nullptr; | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// isBBInRange - Returns true if the distance between specific MI and | 
|  | /// specific BB can fit in MI's displacement field. | 
|  | bool MipsConstantIslands::isBBInRange | 
|  | (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) { | 
|  |  | 
|  | unsigned PCAdj = 4; | 
|  |  | 
|  | unsigned BrOffset   = getOffsetOf(MI) + PCAdj; | 
|  | unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; | 
|  |  | 
|  | DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber() | 
|  | << " from BB#" << MI->getParent()->getNumber() | 
|  | << " max delta=" << MaxDisp | 
|  | << " from " << getOffsetOf(MI) << " to " << DestOffset | 
|  | << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); | 
|  |  | 
|  | if (BrOffset <= DestOffset) { | 
|  | // Branch before the Dest. | 
|  | if (DestOffset-BrOffset <= MaxDisp) | 
|  | return true; | 
|  | } else { | 
|  | if (BrOffset-DestOffset <= MaxDisp) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// fixupImmediateBr - Fix up an immediate branch whose destination is too far | 
|  | /// away to fit in its displacement field. | 
|  | bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) { | 
|  | MachineInstr *MI = Br.MI; | 
|  | unsigned TargetOperand = branchTargetOperand(MI); | 
|  | MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB(); | 
|  |  | 
|  | // Check to see if the DestBB is already in-range. | 
|  | if (isBBInRange(MI, DestBB, Br.MaxDisp)) | 
|  | return false; | 
|  |  | 
|  | if (!Br.isCond) | 
|  | return fixupUnconditionalBr(Br); | 
|  | return fixupConditionalBr(Br); | 
|  | } | 
|  |  | 
|  | /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is | 
|  | /// too far away to fit in its displacement field. If the LR register has been | 
|  | /// spilled in the epilogue, then we can use BL to implement a far jump. | 
|  | /// Otherwise, add an intermediate branch instruction to a branch. | 
|  | bool | 
|  | MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { | 
|  | MachineInstr *MI = Br.MI; | 
|  | MachineBasicBlock *MBB = MI->getParent(); | 
|  | MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); | 
|  | // Use BL to implement far jump. | 
|  | unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2; | 
|  | if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) { | 
|  | Br.MaxDisp = BimmX16MaxDisp; | 
|  | MI->setDesc(TII->get(Mips::BimmX16)); | 
|  | } | 
|  | else { | 
|  | // need to give the math a more careful look here | 
|  | // this is really a segment address and not | 
|  | // a PC relative address. FIXME. But I think that | 
|  | // just reducing the bits by 1 as I've done is correct. | 
|  | // The basic block we are branching too much be longword aligned. | 
|  | // we know that RA is saved because we always save it right now. | 
|  | // this requirement will be relaxed later but we also have an alternate | 
|  | // way to implement this that I will implement that does not need jal. | 
|  | // We should have a way to back out this alignment restriction if we "can" later. | 
|  | // but it is not harmful. | 
|  | // | 
|  | DestBB->setAlignment(2); | 
|  | Br.MaxDisp = ((1<<24)-1) * 2; | 
|  | MI->setDesc(TII->get(Mips::JalB16)); | 
|  | } | 
|  | BBInfo[MBB->getNumber()].Size += 2; | 
|  | adjustBBOffsetsAfter(MBB); | 
|  | HasFarJump = true; | 
|  | ++NumUBrFixed; | 
|  |  | 
|  | DEBUG(dbgs() << "  Changed B to long jump " << *MI); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// fixupConditionalBr - Fix up a conditional branch whose destination is too | 
|  | /// far away to fit in its displacement field. It is converted to an inverse | 
|  | /// conditional branch + an unconditional branch to the destination. | 
|  | bool | 
|  | MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) { | 
|  | MachineInstr *MI = Br.MI; | 
|  | unsigned TargetOperand = branchTargetOperand(MI); | 
|  | MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB(); | 
|  | unsigned Opcode = MI->getOpcode(); | 
|  | unsigned LongFormOpcode = longformBranchOpcode(Opcode); | 
|  | unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode); | 
|  |  | 
|  | // Check to see if the DestBB is already in-range. | 
|  | if (isBBInRange(MI, DestBB, LongFormMaxOff)) { | 
|  | Br.MaxDisp = LongFormMaxOff; | 
|  | MI->setDesc(TII->get(LongFormOpcode)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Add an unconditional branch to the destination and invert the branch | 
|  | // condition to jump over it: | 
|  | // bteqz L1 | 
|  | // => | 
|  | // bnez L2 | 
|  | // b   L1 | 
|  | // L2: | 
|  |  | 
|  | // If the branch is at the end of its MBB and that has a fall-through block, | 
|  | // direct the updated conditional branch to the fall-through block. Otherwise, | 
|  | // split the MBB before the next instruction. | 
|  | MachineBasicBlock *MBB = MI->getParent(); | 
|  | MachineInstr *BMI = &MBB->back(); | 
|  | bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); | 
|  | unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode); | 
|  |  | 
|  | ++NumCBrFixed; | 
|  | if (BMI != MI) { | 
|  | if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && | 
|  | isUnconditionalBranch(BMI->getOpcode())) { | 
|  | // Last MI in the BB is an unconditional branch. Can we simply invert the | 
|  | // condition and swap destinations: | 
|  | // beqz L1 | 
|  | // b   L2 | 
|  | // => | 
|  | // bnez L2 | 
|  | // b   L1 | 
|  | unsigned BMITargetOperand = branchTargetOperand(BMI); | 
|  | MachineBasicBlock *NewDest = | 
|  | BMI->getOperand(BMITargetOperand).getMBB(); | 
|  | if (isBBInRange(MI, NewDest, Br.MaxDisp)) { | 
|  | DEBUG(dbgs() << "  Invert Bcc condition and swap its destination with " | 
|  | << *BMI); | 
|  | MI->setDesc(TII->get(OppositeBranchOpcode)); | 
|  | BMI->getOperand(BMITargetOperand).setMBB(DestBB); | 
|  | MI->getOperand(TargetOperand).setMBB(NewDest); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | if (NeedSplit) { | 
|  | splitBlockBeforeInstr(MI); | 
|  | // No need for the branch to the next block. We're adding an unconditional | 
|  | // branch to the destination. | 
|  | int delta = TII->GetInstSizeInBytes(&MBB->back()); | 
|  | BBInfo[MBB->getNumber()].Size -= delta; | 
|  | MBB->back().eraseFromParent(); | 
|  | // BBInfo[SplitBB].Offset is wrong temporarily, fixed below | 
|  | } | 
|  | MachineBasicBlock *NextBB = &*++MBB->getIterator(); | 
|  |  | 
|  | DEBUG(dbgs() << "  Insert B to BB#" << DestBB->getNumber() | 
|  | << " also invert condition and change dest. to BB#" | 
|  | << NextBB->getNumber() << "\n"); | 
|  |  | 
|  | // Insert a new conditional branch and a new unconditional branch. | 
|  | // Also update the ImmBranch as well as adding a new entry for the new branch. | 
|  | if (MI->getNumExplicitOperands() == 2) { | 
|  | BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode)) | 
|  | .addReg(MI->getOperand(0).getReg()) | 
|  | .addMBB(NextBB); | 
|  | } else { | 
|  | BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode)) | 
|  | .addMBB(NextBB); | 
|  | } | 
|  | Br.MI = &MBB->back(); | 
|  | BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); | 
|  | BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); | 
|  | BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); | 
|  | unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); | 
|  | ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); | 
|  |  | 
|  | // Remove the old conditional branch.  It may or may not still be in MBB. | 
|  | BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI); | 
|  | MI->eraseFromParent(); | 
|  | adjustBBOffsetsAfter(MBB); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | void MipsConstantIslands::prescanForConstants() { | 
|  | unsigned J = 0; | 
|  | (void)J; | 
|  | for (MachineFunction::iterator B = | 
|  | MF->begin(), E = MF->end(); B != E; ++B) { | 
|  | for (MachineBasicBlock::instr_iterator I = | 
|  | B->instr_begin(), EB = B->instr_end(); I != EB; ++I) { | 
|  | switch(I->getDesc().getOpcode()) { | 
|  | case Mips::LwConstant32: { | 
|  | PrescannedForConstants = true; | 
|  | DEBUG(dbgs() << "constant island constant " << *I << "\n"); | 
|  | J = I->getNumOperands(); | 
|  | DEBUG(dbgs() << "num operands " << J  << "\n"); | 
|  | MachineOperand& Literal = I->getOperand(1); | 
|  | if (Literal.isImm()) { | 
|  | int64_t V = Literal.getImm(); | 
|  | DEBUG(dbgs() << "literal " << V  << "\n"); | 
|  | Type *Int32Ty = | 
|  | Type::getInt32Ty(MF->getFunction()->getContext()); | 
|  | const Constant *C = ConstantInt::get(Int32Ty, V); | 
|  | unsigned index = MCP->getConstantPoolIndex(C, 4); | 
|  | I->getOperand(2).ChangeToImmediate(index); | 
|  | DEBUG(dbgs() << "constant island constant " << *I << "\n"); | 
|  | I->setDesc(TII->get(Mips::LwRxPcTcp16)); | 
|  | I->RemoveOperand(1); | 
|  | I->RemoveOperand(1); | 
|  | I->addOperand(MachineOperand::CreateCPI(index, 0)); | 
|  | I->addOperand(MachineOperand::CreateImm(4)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  |