|  | //===-- FunctionLoweringInfo.cpp ------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements routines for translating functions from LLVM IR into | 
|  | // Machine IR. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/WinEHFuncInfo.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugInfo.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetFrameLowering.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "function-lowering-info" | 
|  |  | 
|  | /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by | 
|  | /// PHI nodes or outside of the basic block that defines it, or used by a | 
|  | /// switch or atomic instruction, which may expand to multiple basic blocks. | 
|  | static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { | 
|  | if (I->use_empty()) return false; | 
|  | if (isa<PHINode>(I)) return true; | 
|  | const BasicBlock *BB = I->getParent(); | 
|  | for (const User *U : I->users()) | 
|  | if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static ISD::NodeType getPreferredExtendForValue(const Value *V) { | 
|  | // For the users of the source value being used for compare instruction, if | 
|  | // the number of signed predicate is greater than unsigned predicate, we | 
|  | // prefer to use SIGN_EXTEND. | 
|  | // | 
|  | // With this optimization, we would be able to reduce some redundant sign or | 
|  | // zero extension instruction, and eventually more machine CSE opportunities | 
|  | // can be exposed. | 
|  | ISD::NodeType ExtendKind = ISD::ANY_EXTEND; | 
|  | unsigned NumOfSigned = 0, NumOfUnsigned = 0; | 
|  | for (const User *U : V->users()) { | 
|  | if (const auto *CI = dyn_cast<CmpInst>(U)) { | 
|  | NumOfSigned += CI->isSigned(); | 
|  | NumOfUnsigned += CI->isUnsigned(); | 
|  | } | 
|  | } | 
|  | if (NumOfSigned > NumOfUnsigned) | 
|  | ExtendKind = ISD::SIGN_EXTEND; | 
|  |  | 
|  | return ExtendKind; | 
|  | } | 
|  |  | 
|  | void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, | 
|  | SelectionDAG *DAG) { | 
|  | Fn = &fn; | 
|  | MF = &mf; | 
|  | TLI = MF->getSubtarget().getTargetLowering(); | 
|  | RegInfo = &MF->getRegInfo(); | 
|  | MachineModuleInfo &MMI = MF->getMMI(); | 
|  | const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); | 
|  | unsigned StackAlign = TFI->getStackAlignment(); | 
|  |  | 
|  | // Check whether the function can return without sret-demotion. | 
|  | SmallVector<ISD::OutputArg, 4> Outs; | 
|  | GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, | 
|  | mf.getDataLayout()); | 
|  | CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, | 
|  | Fn->isVarArg(), Outs, Fn->getContext()); | 
|  |  | 
|  | // If this personality uses funclets, we need to do a bit more work. | 
|  | DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects; | 
|  | EHPersonality Personality = classifyEHPersonality( | 
|  | Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr); | 
|  | if (isFuncletEHPersonality(Personality)) { | 
|  | // Calculate state numbers if we haven't already. | 
|  | WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); | 
|  | if (Personality == EHPersonality::MSVC_CXX) | 
|  | calculateWinCXXEHStateNumbers(&fn, EHInfo); | 
|  | else if (isAsynchronousEHPersonality(Personality)) | 
|  | calculateSEHStateNumbers(&fn, EHInfo); | 
|  | else if (Personality == EHPersonality::CoreCLR) | 
|  | calculateClrEHStateNumbers(&fn, EHInfo); | 
|  |  | 
|  | // Map all BB references in the WinEH data to MBBs. | 
|  | for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { | 
|  | for (WinEHHandlerType &H : TBME.HandlerArray) { | 
|  | if (const AllocaInst *AI = H.CatchObj.Alloca) | 
|  | CatchObjects.insert({AI, {}}).first->second.push_back( | 
|  | &H.CatchObj.FrameIndex); | 
|  | else | 
|  | H.CatchObj.FrameIndex = INT_MAX; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Initialize the mapping of values to registers.  This is only set up for | 
|  | // instruction values that are used outside of the block that defines | 
|  | // them. | 
|  | for (const BasicBlock &BB : *Fn) { | 
|  | for (const Instruction &I : BB) { | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { | 
|  | Type *Ty = AI->getAllocatedType(); | 
|  | unsigned Align = | 
|  | std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty), | 
|  | AI->getAlignment()); | 
|  |  | 
|  | // Static allocas can be folded into the initial stack frame | 
|  | // adjustment. For targets that don't realign the stack, don't | 
|  | // do this if there is an extra alignment requirement. | 
|  | if (AI->isStaticAlloca() && | 
|  | (TFI->isStackRealignable() || (Align <= StackAlign))) { | 
|  | const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); | 
|  | uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty); | 
|  |  | 
|  | TySize *= CUI->getZExtValue();   // Get total allocated size. | 
|  | if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. | 
|  | int FrameIndex = INT_MAX; | 
|  | auto Iter = CatchObjects.find(AI); | 
|  | if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) { | 
|  | FrameIndex = MF->getFrameInfo().CreateFixedObject( | 
|  | TySize, 0, /*Immutable=*/false, /*isAliased=*/true); | 
|  | MF->getFrameInfo().setObjectAlignment(FrameIndex, Align); | 
|  | } else { | 
|  | FrameIndex = | 
|  | MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI); | 
|  | } | 
|  |  | 
|  | StaticAllocaMap[AI] = FrameIndex; | 
|  | // Update the catch handler information. | 
|  | if (Iter != CatchObjects.end()) { | 
|  | for (int *CatchObjPtr : Iter->second) | 
|  | *CatchObjPtr = FrameIndex; | 
|  | } | 
|  | } else { | 
|  | // FIXME: Overaligned static allocas should be grouped into | 
|  | // a single dynamic allocation instead of using a separate | 
|  | // stack allocation for each one. | 
|  | if (Align <= StackAlign) | 
|  | Align = 0; | 
|  | // Inform the Frame Information that we have variable-sized objects. | 
|  | MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Look for inline asm that clobbers the SP register. | 
|  | if (isa<CallInst>(I) || isa<InvokeInst>(I)) { | 
|  | ImmutableCallSite CS(&I); | 
|  | if (isa<InlineAsm>(CS.getCalledValue())) { | 
|  | unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); | 
|  | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); | 
|  | std::vector<TargetLowering::AsmOperandInfo> Ops = | 
|  | TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS); | 
|  | for (TargetLowering::AsmOperandInfo &Op : Ops) { | 
|  | if (Op.Type == InlineAsm::isClobber) { | 
|  | // Clobbers don't have SDValue operands, hence SDValue(). | 
|  | TLI->ComputeConstraintToUse(Op, SDValue(), DAG); | 
|  | std::pair<unsigned, const TargetRegisterClass *> PhysReg = | 
|  | TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, | 
|  | Op.ConstraintVT); | 
|  | if (PhysReg.first == SP) | 
|  | MF->getFrameInfo().setHasOpaqueSPAdjustment(true); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Look for calls to the @llvm.va_start intrinsic. We can omit some | 
|  | // prologue boilerplate for variadic functions that don't examine their | 
|  | // arguments. | 
|  | if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { | 
|  | if (II->getIntrinsicID() == Intrinsic::vastart) | 
|  | MF->getFrameInfo().setHasVAStart(true); | 
|  | } | 
|  |  | 
|  | // If we have a musttail call in a variadic function, we need to ensure we | 
|  | // forward implicit register parameters. | 
|  | if (const auto *CI = dyn_cast<CallInst>(&I)) { | 
|  | if (CI->isMustTailCall() && Fn->isVarArg()) | 
|  | MF->getFrameInfo().setHasMustTailInVarArgFunc(true); | 
|  | } | 
|  |  | 
|  | // Mark values used outside their block as exported, by allocating | 
|  | // a virtual register for them. | 
|  | if (isUsedOutsideOfDefiningBlock(&I)) | 
|  | if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I))) | 
|  | InitializeRegForValue(&I); | 
|  |  | 
|  | // Collect llvm.dbg.declare information. This is done now instead of | 
|  | // during the initial isel pass through the IR so that it is done | 
|  | // in a predictable order. | 
|  | if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I)) { | 
|  | assert(DI->getVariable() && "Missing variable"); | 
|  | assert(DI->getDebugLoc() && "Missing location"); | 
|  | if (MMI.hasDebugInfo()) { | 
|  | // Don't handle byval struct arguments or VLAs, for example. | 
|  | // Non-byval arguments are handled here (they refer to the stack | 
|  | // temporary alloca at this point). | 
|  | const Value *Address = DI->getAddress(); | 
|  | if (Address) { | 
|  | if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) | 
|  | Address = BCI->getOperand(0); | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { | 
|  | DenseMap<const AllocaInst *, int>::iterator SI = | 
|  | StaticAllocaMap.find(AI); | 
|  | if (SI != StaticAllocaMap.end()) { // Check for VLAs. | 
|  | int FI = SI->second; | 
|  | MF->setVariableDbgInfo(DI->getVariable(), DI->getExpression(), | 
|  | FI, DI->getDebugLoc()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Decide the preferred extend type for a value. | 
|  | PreferredExtendType[&I] = getPreferredExtendForValue(&I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This | 
|  | // also creates the initial PHI MachineInstrs, though none of the input | 
|  | // operands are populated. | 
|  | for (const BasicBlock &BB : *Fn) { | 
|  | // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks | 
|  | // are really data, and no instructions can live here. | 
|  | if (BB.isEHPad()) { | 
|  | const Instruction *PadInst = BB.getFirstNonPHI(); | 
|  | // If this is a non-landingpad EH pad, mark this function as using | 
|  | // funclets. | 
|  | // FIXME: SEH catchpads do not create funclets, so we could avoid setting | 
|  | // this in such cases in order to improve frame layout. | 
|  | if (!isa<LandingPadInst>(PadInst)) { | 
|  | MF->setHasEHFunclets(true); | 
|  | MF->getFrameInfo().setHasOpaqueSPAdjustment(true); | 
|  | } | 
|  | if (isa<CatchSwitchInst>(PadInst)) { | 
|  | assert(&*BB.begin() == PadInst && | 
|  | "WinEHPrepare failed to remove PHIs from imaginary BBs"); | 
|  | continue; | 
|  | } | 
|  | if (isa<FuncletPadInst>(PadInst)) | 
|  | assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs"); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB); | 
|  | MBBMap[&BB] = MBB; | 
|  | MF->push_back(MBB); | 
|  |  | 
|  | // Transfer the address-taken flag. This is necessary because there could | 
|  | // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only | 
|  | // the first one should be marked. | 
|  | if (BB.hasAddressTaken()) | 
|  | MBB->setHasAddressTaken(); | 
|  |  | 
|  | // Mark landing pad blocks. | 
|  | if (BB.isEHPad()) | 
|  | MBB->setIsEHPad(); | 
|  |  | 
|  | // Create Machine PHI nodes for LLVM PHI nodes, lowering them as | 
|  | // appropriate. | 
|  | for (BasicBlock::const_iterator I = BB.begin(); | 
|  | const PHINode *PN = dyn_cast<PHINode>(I); ++I) { | 
|  | if (PN->use_empty()) continue; | 
|  |  | 
|  | // Skip empty types | 
|  | if (PN->getType()->isEmptyTy()) | 
|  | continue; | 
|  |  | 
|  | DebugLoc DL = PN->getDebugLoc(); | 
|  | unsigned PHIReg = ValueMap[PN]; | 
|  | assert(PHIReg && "PHI node does not have an assigned virtual register!"); | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(*TLI, MF->getDataLayout(), PN->getType(), ValueVTs); | 
|  | for (EVT VT : ValueVTs) { | 
|  | unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); | 
|  | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); | 
|  | for (unsigned i = 0; i != NumRegisters; ++i) | 
|  | BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); | 
|  | PHIReg += NumRegisters; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!isFuncletEHPersonality(Personality)) | 
|  | return; | 
|  |  | 
|  | WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); | 
|  |  | 
|  | // Map all BB references in the WinEH data to MBBs. | 
|  | for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { | 
|  | for (WinEHHandlerType &H : TBME.HandlerArray) { | 
|  | if (H.Handler) | 
|  | H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()]; | 
|  | } | 
|  | } | 
|  | for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap) | 
|  | if (UME.Cleanup) | 
|  | UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()]; | 
|  | for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) { | 
|  | const BasicBlock *BB = UME.Handler.get<const BasicBlock *>(); | 
|  | UME.Handler = MBBMap[BB]; | 
|  | } | 
|  | for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) { | 
|  | const BasicBlock *BB = CME.Handler.get<const BasicBlock *>(); | 
|  | CME.Handler = MBBMap[BB]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// clear - Clear out all the function-specific state. This returns this | 
|  | /// FunctionLoweringInfo to an empty state, ready to be used for a | 
|  | /// different function. | 
|  | void FunctionLoweringInfo::clear() { | 
|  | MBBMap.clear(); | 
|  | ValueMap.clear(); | 
|  | StaticAllocaMap.clear(); | 
|  | LiveOutRegInfo.clear(); | 
|  | VisitedBBs.clear(); | 
|  | ArgDbgValues.clear(); | 
|  | ByValArgFrameIndexMap.clear(); | 
|  | RegFixups.clear(); | 
|  | StatepointStackSlots.clear(); | 
|  | StatepointSpillMaps.clear(); | 
|  | PreferredExtendType.clear(); | 
|  | } | 
|  |  | 
|  | /// CreateReg - Allocate a single virtual register for the given type. | 
|  | unsigned FunctionLoweringInfo::CreateReg(MVT VT) { | 
|  | return RegInfo->createVirtualRegister( | 
|  | MF->getSubtarget().getTargetLowering()->getRegClassFor(VT)); | 
|  | } | 
|  |  | 
|  | /// CreateRegs - Allocate the appropriate number of virtual registers of | 
|  | /// the correctly promoted or expanded types.  Assign these registers | 
|  | /// consecutive vreg numbers and return the first assigned number. | 
|  | /// | 
|  | /// In the case that the given value has struct or array type, this function | 
|  | /// will assign registers for each member or element. | 
|  | /// | 
|  | unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { | 
|  | const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); | 
|  |  | 
|  | unsigned FirstReg = 0; | 
|  | for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | EVT ValueVT = ValueVTs[Value]; | 
|  | MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); | 
|  |  | 
|  | unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | unsigned R = CreateReg(RegisterVT); | 
|  | if (!FirstReg) FirstReg = R; | 
|  | } | 
|  | } | 
|  | return FirstReg; | 
|  | } | 
|  |  | 
|  | /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the | 
|  | /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If | 
|  | /// the register's LiveOutInfo is for a smaller bit width, it is extended to | 
|  | /// the larger bit width by zero extension. The bit width must be no smaller | 
|  | /// than the LiveOutInfo's existing bit width. | 
|  | const FunctionLoweringInfo::LiveOutInfo * | 
|  | FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { | 
|  | if (!LiveOutRegInfo.inBounds(Reg)) | 
|  | return nullptr; | 
|  |  | 
|  | LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; | 
|  | if (!LOI->IsValid) | 
|  | return nullptr; | 
|  |  | 
|  | if (BitWidth > LOI->KnownZero.getBitWidth()) { | 
|  | LOI->NumSignBits = 1; | 
|  | LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); | 
|  | LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); | 
|  | } | 
|  |  | 
|  | return LOI; | 
|  | } | 
|  |  | 
|  | /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination | 
|  | /// register based on the LiveOutInfo of its operands. | 
|  | void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { | 
|  | Type *Ty = PN->getType(); | 
|  | if (!Ty->isIntegerTy() || Ty->isVectorTy()) | 
|  | return; | 
|  |  | 
|  | SmallVector<EVT, 1> ValueVTs; | 
|  | ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); | 
|  | assert(ValueVTs.size() == 1 && | 
|  | "PHIs with non-vector integer types should have a single VT."); | 
|  | EVT IntVT = ValueVTs[0]; | 
|  |  | 
|  | if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) | 
|  | return; | 
|  | IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); | 
|  | unsigned BitWidth = IntVT.getSizeInBits(); | 
|  |  | 
|  | unsigned DestReg = ValueMap[PN]; | 
|  | if (!TargetRegisterInfo::isVirtualRegister(DestReg)) | 
|  | return; | 
|  | LiveOutRegInfo.grow(DestReg); | 
|  | LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; | 
|  |  | 
|  | Value *V = PN->getIncomingValue(0); | 
|  | if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { | 
|  | DestLOI.NumSignBits = 1; | 
|  | APInt Zero(BitWidth, 0); | 
|  | DestLOI.KnownZero = Zero; | 
|  | DestLOI.KnownOne = Zero; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | APInt Val = CI->getValue().zextOrTrunc(BitWidth); | 
|  | DestLOI.NumSignBits = Val.getNumSignBits(); | 
|  | DestLOI.KnownZero = ~Val; | 
|  | DestLOI.KnownOne = Val; | 
|  | } else { | 
|  | assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" | 
|  | "CopyToReg node was created."); | 
|  | unsigned SrcReg = ValueMap[V]; | 
|  | if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { | 
|  | DestLOI.IsValid = false; | 
|  | return; | 
|  | } | 
|  | const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); | 
|  | if (!SrcLOI) { | 
|  | DestLOI.IsValid = false; | 
|  | return; | 
|  | } | 
|  | DestLOI = *SrcLOI; | 
|  | } | 
|  |  | 
|  | assert(DestLOI.KnownZero.getBitWidth() == BitWidth && | 
|  | DestLOI.KnownOne.getBitWidth() == BitWidth && | 
|  | "Masks should have the same bit width as the type."); | 
|  |  | 
|  | for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | Value *V = PN->getIncomingValue(i); | 
|  | if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { | 
|  | DestLOI.NumSignBits = 1; | 
|  | APInt Zero(BitWidth, 0); | 
|  | DestLOI.KnownZero = Zero; | 
|  | DestLOI.KnownOne = Zero; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | APInt Val = CI->getValue().zextOrTrunc(BitWidth); | 
|  | DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); | 
|  | DestLOI.KnownZero &= ~Val; | 
|  | DestLOI.KnownOne &= Val; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(ValueMap.count(V) && "V should have been placed in ValueMap when " | 
|  | "its CopyToReg node was created."); | 
|  | unsigned SrcReg = ValueMap[V]; | 
|  | if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { | 
|  | DestLOI.IsValid = false; | 
|  | return; | 
|  | } | 
|  | const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); | 
|  | if (!SrcLOI) { | 
|  | DestLOI.IsValid = false; | 
|  | return; | 
|  | } | 
|  | DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); | 
|  | DestLOI.KnownZero &= SrcLOI->KnownZero; | 
|  | DestLOI.KnownOne &= SrcLOI->KnownOne; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// setArgumentFrameIndex - Record frame index for the byval | 
|  | /// argument. This overrides previous frame index entry for this argument, | 
|  | /// if any. | 
|  | void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, | 
|  | int FI) { | 
|  | ByValArgFrameIndexMap[A] = FI; | 
|  | } | 
|  |  | 
|  | /// getArgumentFrameIndex - Get frame index for the byval argument. | 
|  | /// If the argument does not have any assigned frame index then 0 is | 
|  | /// returned. | 
|  | int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { | 
|  | DenseMap<const Argument *, int>::iterator I = | 
|  | ByValArgFrameIndexMap.find(A); | 
|  | if (I != ByValArgFrameIndexMap.end()) | 
|  | return I->second; | 
|  | DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg( | 
|  | const Value *CPI, const TargetRegisterClass *RC) { | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | auto I = CatchPadExceptionPointers.insert({CPI, 0}); | 
|  | unsigned &VReg = I.first->second; | 
|  | if (I.second) | 
|  | VReg = MRI.createVirtualRegister(RC); | 
|  | assert(VReg && "null vreg in exception pointer table!"); | 
|  | return VReg; | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | FunctionLoweringInfo::getOrCreateSwiftErrorVReg(const MachineBasicBlock *MBB, | 
|  | const Value *Val) { | 
|  | auto Key = std::make_pair(MBB, Val); | 
|  | auto It = SwiftErrorVRegDefMap.find(Key); | 
|  | // If this is the first use of this swifterror value in this basic block, | 
|  | // create a new virtual register. | 
|  | // After we processed all basic blocks we will satisfy this "upwards exposed | 
|  | // use" by inserting a copy or phi at the beginning of this block. | 
|  | if (It == SwiftErrorVRegDefMap.end()) { | 
|  | auto &DL = MF->getDataLayout(); | 
|  | const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL)); | 
|  | auto VReg = MF->getRegInfo().createVirtualRegister(RC); | 
|  | SwiftErrorVRegDefMap[Key] = VReg; | 
|  | SwiftErrorVRegUpwardsUse[Key] = VReg; | 
|  | return VReg; | 
|  | } else return It->second; | 
|  | } | 
|  |  | 
|  | void FunctionLoweringInfo::setCurrentSwiftErrorVReg( | 
|  | const MachineBasicBlock *MBB, const Value *Val, unsigned VReg) { | 
|  | SwiftErrorVRegDefMap[std::make_pair(MBB, Val)] = VReg; | 
|  | } |