|  | //===- ScheduleDAG.cpp - Implement the ScheduleDAG class ------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file Implements the ScheduleDAG class, which is a base class used by | 
|  | /// scheduling implementation classes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/ScheduleDAG.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/ScheduleHazardRecognizer.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <iterator> | 
|  | #include <limits> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "pre-RA-sched" | 
|  |  | 
|  | STATISTIC(NumNewPredsAdded, "Number of times a  single predecessor was added"); | 
|  | STATISTIC(NumTopoInits, | 
|  | "Number of times the topological order has been recomputed"); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static cl::opt<bool> StressSchedOpt( | 
|  | "stress-sched", cl::Hidden, cl::init(false), | 
|  | cl::desc("Stress test instruction scheduling")); | 
|  | #endif | 
|  |  | 
|  | void SchedulingPriorityQueue::anchor() {} | 
|  |  | 
|  | ScheduleDAG::ScheduleDAG(MachineFunction &mf) | 
|  | : TM(mf.getTarget()), TII(mf.getSubtarget().getInstrInfo()), | 
|  | TRI(mf.getSubtarget().getRegisterInfo()), MF(mf), | 
|  | MRI(mf.getRegInfo()) { | 
|  | #ifndef NDEBUG | 
|  | StressSched = StressSchedOpt; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | ScheduleDAG::~ScheduleDAG() = default; | 
|  |  | 
|  | void ScheduleDAG::clearDAG() { | 
|  | SUnits.clear(); | 
|  | EntrySU = SUnit(); | 
|  | ExitSU = SUnit(); | 
|  | } | 
|  |  | 
|  | const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const { | 
|  | if (!Node || !Node->isMachineOpcode()) return nullptr; | 
|  | return &TII->get(Node->getMachineOpcode()); | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void SDep::dump(const TargetRegisterInfo *TRI) const { | 
|  | switch (getKind()) { | 
|  | case Data:   dbgs() << "Data"; break; | 
|  | case Anti:   dbgs() << "Anti"; break; | 
|  | case Output: dbgs() << "Out "; break; | 
|  | case Order:  dbgs() << "Ord "; break; | 
|  | } | 
|  |  | 
|  | switch (getKind()) { | 
|  | case Data: | 
|  | dbgs() << " Latency=" << getLatency(); | 
|  | if (TRI && isAssignedRegDep()) | 
|  | dbgs() << " Reg=" << printReg(getReg(), TRI); | 
|  | break; | 
|  | case Anti: | 
|  | case Output: | 
|  | dbgs() << " Latency=" << getLatency(); | 
|  | break; | 
|  | case Order: | 
|  | dbgs() << " Latency=" << getLatency(); | 
|  | switch(Contents.OrdKind) { | 
|  | case Barrier:      dbgs() << " Barrier"; break; | 
|  | case MayAliasMem: | 
|  | case MustAliasMem: dbgs() << " Memory"; break; | 
|  | case Artificial:   dbgs() << " Artificial"; break; | 
|  | case Weak:         dbgs() << " Weak"; break; | 
|  | case Cluster:      dbgs() << " Cluster"; break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SUnit::addPred(const SDep &D, bool Required) { | 
|  | // If this node already has this dependence, don't add a redundant one. | 
|  | for (SDep &PredDep : Preds) { | 
|  | // Zero-latency weak edges may be added purely for heuristic ordering. Don't | 
|  | // add them if another kind of edge already exists. | 
|  | if (!Required && PredDep.getSUnit() == D.getSUnit()) | 
|  | return false; | 
|  | if (PredDep.overlaps(D)) { | 
|  | // Extend the latency if needed. Equivalent to | 
|  | // removePred(PredDep) + addPred(D). | 
|  | if (PredDep.getLatency() < D.getLatency()) { | 
|  | SUnit *PredSU = PredDep.getSUnit(); | 
|  | // Find the corresponding successor in N. | 
|  | SDep ForwardD = PredDep; | 
|  | ForwardD.setSUnit(this); | 
|  | for (SDep &SuccDep : PredSU->Succs) { | 
|  | if (SuccDep == ForwardD) { | 
|  | SuccDep.setLatency(D.getLatency()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | PredDep.setLatency(D.getLatency()); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  | // Now add a corresponding succ to N. | 
|  | SDep P = D; | 
|  | P.setSUnit(this); | 
|  | SUnit *N = D.getSUnit(); | 
|  | // Update the bookkeeping. | 
|  | if (D.getKind() == SDep::Data) { | 
|  | assert(NumPreds < std::numeric_limits<unsigned>::max() && | 
|  | "NumPreds will overflow!"); | 
|  | assert(N->NumSuccs < std::numeric_limits<unsigned>::max() && | 
|  | "NumSuccs will overflow!"); | 
|  | ++NumPreds; | 
|  | ++N->NumSuccs; | 
|  | } | 
|  | if (!N->isScheduled) { | 
|  | if (D.isWeak()) { | 
|  | ++WeakPredsLeft; | 
|  | } | 
|  | else { | 
|  | assert(NumPredsLeft < std::numeric_limits<unsigned>::max() && | 
|  | "NumPredsLeft will overflow!"); | 
|  | ++NumPredsLeft; | 
|  | } | 
|  | } | 
|  | if (!isScheduled) { | 
|  | if (D.isWeak()) { | 
|  | ++N->WeakSuccsLeft; | 
|  | } | 
|  | else { | 
|  | assert(N->NumSuccsLeft < std::numeric_limits<unsigned>::max() && | 
|  | "NumSuccsLeft will overflow!"); | 
|  | ++N->NumSuccsLeft; | 
|  | } | 
|  | } | 
|  | Preds.push_back(D); | 
|  | N->Succs.push_back(P); | 
|  | if (P.getLatency() != 0) { | 
|  | this->setDepthDirty(); | 
|  | N->setHeightDirty(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SUnit::removePred(const SDep &D) { | 
|  | // Find the matching predecessor. | 
|  | SmallVectorImpl<SDep>::iterator I = llvm::find(Preds, D); | 
|  | if (I == Preds.end()) | 
|  | return; | 
|  | // Find the corresponding successor in N. | 
|  | SDep P = D; | 
|  | P.setSUnit(this); | 
|  | SUnit *N = D.getSUnit(); | 
|  | SmallVectorImpl<SDep>::iterator Succ = llvm::find(N->Succs, P); | 
|  | assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!"); | 
|  | N->Succs.erase(Succ); | 
|  | Preds.erase(I); | 
|  | // Update the bookkeeping. | 
|  | if (P.getKind() == SDep::Data) { | 
|  | assert(NumPreds > 0 && "NumPreds will underflow!"); | 
|  | assert(N->NumSuccs > 0 && "NumSuccs will underflow!"); | 
|  | --NumPreds; | 
|  | --N->NumSuccs; | 
|  | } | 
|  | if (!N->isScheduled) { | 
|  | if (D.isWeak()) | 
|  | --WeakPredsLeft; | 
|  | else { | 
|  | assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!"); | 
|  | --NumPredsLeft; | 
|  | } | 
|  | } | 
|  | if (!isScheduled) { | 
|  | if (D.isWeak()) | 
|  | --N->WeakSuccsLeft; | 
|  | else { | 
|  | assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!"); | 
|  | --N->NumSuccsLeft; | 
|  | } | 
|  | } | 
|  | if (P.getLatency() != 0) { | 
|  | this->setDepthDirty(); | 
|  | N->setHeightDirty(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SUnit::setDepthDirty() { | 
|  | if (!isDepthCurrent) return; | 
|  | SmallVector<SUnit*, 8> WorkList; | 
|  | WorkList.push_back(this); | 
|  | do { | 
|  | SUnit *SU = WorkList.pop_back_val(); | 
|  | SU->isDepthCurrent = false; | 
|  | for (SDep &SuccDep : SU->Succs) { | 
|  | SUnit *SuccSU = SuccDep.getSUnit(); | 
|  | if (SuccSU->isDepthCurrent) | 
|  | WorkList.push_back(SuccSU); | 
|  | } | 
|  | } while (!WorkList.empty()); | 
|  | } | 
|  |  | 
|  | void SUnit::setHeightDirty() { | 
|  | if (!isHeightCurrent) return; | 
|  | SmallVector<SUnit*, 8> WorkList; | 
|  | WorkList.push_back(this); | 
|  | do { | 
|  | SUnit *SU = WorkList.pop_back_val(); | 
|  | SU->isHeightCurrent = false; | 
|  | for (SDep &PredDep : SU->Preds) { | 
|  | SUnit *PredSU = PredDep.getSUnit(); | 
|  | if (PredSU->isHeightCurrent) | 
|  | WorkList.push_back(PredSU); | 
|  | } | 
|  | } while (!WorkList.empty()); | 
|  | } | 
|  |  | 
|  | void SUnit::setDepthToAtLeast(unsigned NewDepth) { | 
|  | if (NewDepth <= getDepth()) | 
|  | return; | 
|  | setDepthDirty(); | 
|  | Depth = NewDepth; | 
|  | isDepthCurrent = true; | 
|  | } | 
|  |  | 
|  | void SUnit::setHeightToAtLeast(unsigned NewHeight) { | 
|  | if (NewHeight <= getHeight()) | 
|  | return; | 
|  | setHeightDirty(); | 
|  | Height = NewHeight; | 
|  | isHeightCurrent = true; | 
|  | } | 
|  |  | 
|  | /// Calculates the maximal path from the node to the exit. | 
|  | void SUnit::ComputeDepth() { | 
|  | SmallVector<SUnit*, 8> WorkList; | 
|  | WorkList.push_back(this); | 
|  | do { | 
|  | SUnit *Cur = WorkList.back(); | 
|  |  | 
|  | bool Done = true; | 
|  | unsigned MaxPredDepth = 0; | 
|  | for (const SDep &PredDep : Cur->Preds) { | 
|  | SUnit *PredSU = PredDep.getSUnit(); | 
|  | if (PredSU->isDepthCurrent) | 
|  | MaxPredDepth = std::max(MaxPredDepth, | 
|  | PredSU->Depth + PredDep.getLatency()); | 
|  | else { | 
|  | Done = false; | 
|  | WorkList.push_back(PredSU); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Done) { | 
|  | WorkList.pop_back(); | 
|  | if (MaxPredDepth != Cur->Depth) { | 
|  | Cur->setDepthDirty(); | 
|  | Cur->Depth = MaxPredDepth; | 
|  | } | 
|  | Cur->isDepthCurrent = true; | 
|  | } | 
|  | } while (!WorkList.empty()); | 
|  | } | 
|  |  | 
|  | /// Calculates the maximal path from the node to the entry. | 
|  | void SUnit::ComputeHeight() { | 
|  | SmallVector<SUnit*, 8> WorkList; | 
|  | WorkList.push_back(this); | 
|  | do { | 
|  | SUnit *Cur = WorkList.back(); | 
|  |  | 
|  | bool Done = true; | 
|  | unsigned MaxSuccHeight = 0; | 
|  | for (const SDep &SuccDep : Cur->Succs) { | 
|  | SUnit *SuccSU = SuccDep.getSUnit(); | 
|  | if (SuccSU->isHeightCurrent) | 
|  | MaxSuccHeight = std::max(MaxSuccHeight, | 
|  | SuccSU->Height + SuccDep.getLatency()); | 
|  | else { | 
|  | Done = false; | 
|  | WorkList.push_back(SuccSU); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Done) { | 
|  | WorkList.pop_back(); | 
|  | if (MaxSuccHeight != Cur->Height) { | 
|  | Cur->setHeightDirty(); | 
|  | Cur->Height = MaxSuccHeight; | 
|  | } | 
|  | Cur->isHeightCurrent = true; | 
|  | } | 
|  | } while (!WorkList.empty()); | 
|  | } | 
|  |  | 
|  | void SUnit::biasCriticalPath() { | 
|  | if (NumPreds < 2) | 
|  | return; | 
|  |  | 
|  | SUnit::pred_iterator BestI = Preds.begin(); | 
|  | unsigned MaxDepth = BestI->getSUnit()->getDepth(); | 
|  | for (SUnit::pred_iterator I = std::next(BestI), E = Preds.end(); I != E; | 
|  | ++I) { | 
|  | if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth) | 
|  | BestI = I; | 
|  | } | 
|  | if (BestI != Preds.begin()) | 
|  | std::swap(*Preds.begin(), *BestI); | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void SUnit::dumpAttributes() const { | 
|  | dbgs() << "  # preds left       : " << NumPredsLeft << "\n"; | 
|  | dbgs() << "  # succs left       : " << NumSuccsLeft << "\n"; | 
|  | if (WeakPredsLeft) | 
|  | dbgs() << "  # weak preds left  : " << WeakPredsLeft << "\n"; | 
|  | if (WeakSuccsLeft) | 
|  | dbgs() << "  # weak succs left  : " << WeakSuccsLeft << "\n"; | 
|  | dbgs() << "  # rdefs left       : " << NumRegDefsLeft << "\n"; | 
|  | dbgs() << "  Latency            : " << Latency << "\n"; | 
|  | dbgs() << "  Depth              : " << getDepth() << "\n"; | 
|  | dbgs() << "  Height             : " << getHeight() << "\n"; | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeName(const SUnit &SU) const { | 
|  | if (&SU == &EntrySU) | 
|  | dbgs() << "EntrySU"; | 
|  | else if (&SU == &ExitSU) | 
|  | dbgs() << "ExitSU"; | 
|  | else | 
|  | dbgs() << "SU(" << SU.NodeNum << ")"; | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeAll(const SUnit &SU) const { | 
|  | dumpNode(SU); | 
|  | SU.dumpAttributes(); | 
|  | if (SU.Preds.size() > 0) { | 
|  | dbgs() << "  Predecessors:\n"; | 
|  | for (const SDep &Dep : SU.Preds) { | 
|  | dbgs() << "    "; | 
|  | dumpNodeName(*Dep.getSUnit()); | 
|  | dbgs() << ": "; | 
|  | Dep.dump(TRI); | 
|  | dbgs() << '\n'; | 
|  | } | 
|  | } | 
|  | if (SU.Succs.size() > 0) { | 
|  | dbgs() << "  Successors:\n"; | 
|  | for (const SDep &Dep : SU.Succs) { | 
|  | dbgs() << "    "; | 
|  | dumpNodeName(*Dep.getSUnit()); | 
|  | dbgs() << ": "; | 
|  | Dep.dump(TRI); | 
|  | dbgs() << '\n'; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) { | 
|  | bool AnyNotSched = false; | 
|  | unsigned DeadNodes = 0; | 
|  | for (const SUnit &SUnit : SUnits) { | 
|  | if (!SUnit.isScheduled) { | 
|  | if (SUnit.NumPreds == 0 && SUnit.NumSuccs == 0) { | 
|  | ++DeadNodes; | 
|  | continue; | 
|  | } | 
|  | if (!AnyNotSched) | 
|  | dbgs() << "*** Scheduling failed! ***\n"; | 
|  | dumpNode(SUnit); | 
|  | dbgs() << "has not been scheduled!\n"; | 
|  | AnyNotSched = true; | 
|  | } | 
|  | if (SUnit.isScheduled && | 
|  | (isBottomUp ? SUnit.getHeight() : SUnit.getDepth()) > | 
|  | unsigned(std::numeric_limits<int>::max())) { | 
|  | if (!AnyNotSched) | 
|  | dbgs() << "*** Scheduling failed! ***\n"; | 
|  | dumpNode(SUnit); | 
|  | dbgs() << "has an unexpected " | 
|  | << (isBottomUp ? "Height" : "Depth") << " value!\n"; | 
|  | AnyNotSched = true; | 
|  | } | 
|  | if (isBottomUp) { | 
|  | if (SUnit.NumSuccsLeft != 0) { | 
|  | if (!AnyNotSched) | 
|  | dbgs() << "*** Scheduling failed! ***\n"; | 
|  | dumpNode(SUnit); | 
|  | dbgs() << "has successors left!\n"; | 
|  | AnyNotSched = true; | 
|  | } | 
|  | } else { | 
|  | if (SUnit.NumPredsLeft != 0) { | 
|  | if (!AnyNotSched) | 
|  | dbgs() << "*** Scheduling failed! ***\n"; | 
|  | dumpNode(SUnit); | 
|  | dbgs() << "has predecessors left!\n"; | 
|  | AnyNotSched = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | assert(!AnyNotSched); | 
|  | return SUnits.size() - DeadNodes; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() { | 
|  | // The idea of the algorithm is taken from | 
|  | // "Online algorithms for managing the topological order of | 
|  | // a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly | 
|  | // This is the MNR algorithm, which was first introduced by | 
|  | // A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in | 
|  | // "Maintaining a topological order under edge insertions". | 
|  | // | 
|  | // Short description of the algorithm: | 
|  | // | 
|  | // Topological ordering, ord, of a DAG maps each node to a topological | 
|  | // index so that for all edges X->Y it is the case that ord(X) < ord(Y). | 
|  | // | 
|  | // This means that if there is a path from the node X to the node Z, | 
|  | // then ord(X) < ord(Z). | 
|  | // | 
|  | // This property can be used to check for reachability of nodes: | 
|  | // if Z is reachable from X, then an insertion of the edge Z->X would | 
|  | // create a cycle. | 
|  | // | 
|  | // The algorithm first computes a topological ordering for the DAG by | 
|  | // initializing the Index2Node and Node2Index arrays and then tries to keep | 
|  | // the ordering up-to-date after edge insertions by reordering the DAG. | 
|  | // | 
|  | // On insertion of the edge X->Y, the algorithm first marks by calling DFS | 
|  | // the nodes reachable from Y, and then shifts them using Shift to lie | 
|  | // immediately after X in Index2Node. | 
|  |  | 
|  | // Cancel pending updates, mark as valid. | 
|  | Dirty = false; | 
|  | Updates.clear(); | 
|  |  | 
|  | unsigned DAGSize = SUnits.size(); | 
|  | std::vector<SUnit*> WorkList; | 
|  | WorkList.reserve(DAGSize); | 
|  |  | 
|  | Index2Node.resize(DAGSize); | 
|  | Node2Index.resize(DAGSize); | 
|  |  | 
|  | // Initialize the data structures. | 
|  | if (ExitSU) | 
|  | WorkList.push_back(ExitSU); | 
|  | for (SUnit &SU : SUnits) { | 
|  | int NodeNum = SU.NodeNum; | 
|  | unsigned Degree = SU.Succs.size(); | 
|  | // Temporarily use the Node2Index array as scratch space for degree counts. | 
|  | Node2Index[NodeNum] = Degree; | 
|  |  | 
|  | // Is it a node without dependencies? | 
|  | if (Degree == 0) { | 
|  | assert(SU.Succs.empty() && "SUnit should have no successors"); | 
|  | // Collect leaf nodes. | 
|  | WorkList.push_back(&SU); | 
|  | } | 
|  | } | 
|  |  | 
|  | int Id = DAGSize; | 
|  | while (!WorkList.empty()) { | 
|  | SUnit *SU = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  | if (SU->NodeNum < DAGSize) | 
|  | Allocate(SU->NodeNum, --Id); | 
|  | for (const SDep &PredDep : SU->Preds) { | 
|  | SUnit *SU = PredDep.getSUnit(); | 
|  | if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum]) | 
|  | // If all dependencies of the node are processed already, | 
|  | // then the node can be computed now. | 
|  | WorkList.push_back(SU); | 
|  | } | 
|  | } | 
|  |  | 
|  | Visited.resize(DAGSize); | 
|  | NumTopoInits++; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Check correctness of the ordering | 
|  | for (SUnit &SU : SUnits)  { | 
|  | for (const SDep &PD : SU.Preds) { | 
|  | assert(Node2Index[SU.NodeNum] > Node2Index[PD.getSUnit()->NodeNum] && | 
|  | "Wrong topological sorting"); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void ScheduleDAGTopologicalSort::FixOrder() { | 
|  | // Recompute from scratch after new nodes have been added. | 
|  | if (Dirty) { | 
|  | InitDAGTopologicalSorting(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise apply updates one-by-one. | 
|  | for (auto &U : Updates) | 
|  | AddPred(U.first, U.second); | 
|  | Updates.clear(); | 
|  | } | 
|  |  | 
|  | void ScheduleDAGTopologicalSort::AddPredQueued(SUnit *Y, SUnit *X) { | 
|  | // Recomputing the order from scratch is likely more efficient than applying | 
|  | // updates one-by-one for too many updates. The current cut-off is arbitrarily | 
|  | // chosen. | 
|  | Dirty = Dirty || Updates.size() > 10; | 
|  |  | 
|  | if (Dirty) | 
|  | return; | 
|  |  | 
|  | Updates.emplace_back(Y, X); | 
|  | } | 
|  |  | 
|  | void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) { | 
|  | int UpperBound, LowerBound; | 
|  | LowerBound = Node2Index[Y->NodeNum]; | 
|  | UpperBound = Node2Index[X->NodeNum]; | 
|  | bool HasLoop = false; | 
|  | // Is Ord(X) < Ord(Y) ? | 
|  | if (LowerBound < UpperBound) { | 
|  | // Update the topological order. | 
|  | Visited.reset(); | 
|  | DFS(Y, UpperBound, HasLoop); | 
|  | assert(!HasLoop && "Inserted edge creates a loop!"); | 
|  | // Recompute topological indexes. | 
|  | Shift(Visited, LowerBound, UpperBound); | 
|  | } | 
|  |  | 
|  | NumNewPredsAdded++; | 
|  | } | 
|  |  | 
|  | void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) { | 
|  | // InitDAGTopologicalSorting(); | 
|  | } | 
|  |  | 
|  | void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, | 
|  | bool &HasLoop) { | 
|  | std::vector<const SUnit*> WorkList; | 
|  | WorkList.reserve(SUnits.size()); | 
|  |  | 
|  | WorkList.push_back(SU); | 
|  | do { | 
|  | SU = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  | Visited.set(SU->NodeNum); | 
|  | for (const SDep &SuccDep | 
|  | : make_range(SU->Succs.rbegin(), SU->Succs.rend())) { | 
|  | unsigned s = SuccDep.getSUnit()->NodeNum; | 
|  | // Edges to non-SUnits are allowed but ignored (e.g. ExitSU). | 
|  | if (s >= Node2Index.size()) | 
|  | continue; | 
|  | if (Node2Index[s] == UpperBound) { | 
|  | HasLoop = true; | 
|  | return; | 
|  | } | 
|  | // Visit successors if not already and in affected region. | 
|  | if (!Visited.test(s) && Node2Index[s] < UpperBound) { | 
|  | WorkList.push_back(SuccDep.getSUnit()); | 
|  | } | 
|  | } | 
|  | } while (!WorkList.empty()); | 
|  | } | 
|  |  | 
|  | std::vector<int> ScheduleDAGTopologicalSort::GetSubGraph(const SUnit &StartSU, | 
|  | const SUnit &TargetSU, | 
|  | bool &Success) { | 
|  | std::vector<const SUnit*> WorkList; | 
|  | int LowerBound = Node2Index[StartSU.NodeNum]; | 
|  | int UpperBound = Node2Index[TargetSU.NodeNum]; | 
|  | bool Found = false; | 
|  | BitVector VisitedBack; | 
|  | std::vector<int> Nodes; | 
|  |  | 
|  | if (LowerBound > UpperBound) { | 
|  | Success = false; | 
|  | return Nodes; | 
|  | } | 
|  |  | 
|  | WorkList.reserve(SUnits.size()); | 
|  | Visited.reset(); | 
|  |  | 
|  | // Starting from StartSU, visit all successors up | 
|  | // to UpperBound. | 
|  | WorkList.push_back(&StartSU); | 
|  | do { | 
|  | const SUnit *SU = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  | for (int I = SU->Succs.size()-1; I >= 0; --I) { | 
|  | const SUnit *Succ = SU->Succs[I].getSUnit(); | 
|  | unsigned s = Succ->NodeNum; | 
|  | // Edges to non-SUnits are allowed but ignored (e.g. ExitSU). | 
|  | if (Succ->isBoundaryNode()) | 
|  | continue; | 
|  | if (Node2Index[s] == UpperBound) { | 
|  | Found = true; | 
|  | continue; | 
|  | } | 
|  | // Visit successors if not already and in affected region. | 
|  | if (!Visited.test(s) && Node2Index[s] < UpperBound) { | 
|  | Visited.set(s); | 
|  | WorkList.push_back(Succ); | 
|  | } | 
|  | } | 
|  | } while (!WorkList.empty()); | 
|  |  | 
|  | if (!Found) { | 
|  | Success = false; | 
|  | return Nodes; | 
|  | } | 
|  |  | 
|  | WorkList.clear(); | 
|  | VisitedBack.resize(SUnits.size()); | 
|  | Found = false; | 
|  |  | 
|  | // Starting from TargetSU, visit all predecessors up | 
|  | // to LowerBound. SUs that are visited by the two | 
|  | // passes are added to Nodes. | 
|  | WorkList.push_back(&TargetSU); | 
|  | do { | 
|  | const SUnit *SU = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  | for (int I = SU->Preds.size()-1; I >= 0; --I) { | 
|  | const SUnit *Pred = SU->Preds[I].getSUnit(); | 
|  | unsigned s = Pred->NodeNum; | 
|  | // Edges to non-SUnits are allowed but ignored (e.g. EntrySU). | 
|  | if (Pred->isBoundaryNode()) | 
|  | continue; | 
|  | if (Node2Index[s] == LowerBound) { | 
|  | Found = true; | 
|  | continue; | 
|  | } | 
|  | if (!VisitedBack.test(s) && Visited.test(s)) { | 
|  | VisitedBack.set(s); | 
|  | WorkList.push_back(Pred); | 
|  | Nodes.push_back(s); | 
|  | } | 
|  | } | 
|  | } while (!WorkList.empty()); | 
|  |  | 
|  | assert(Found && "Error in SUnit Graph!"); | 
|  | Success = true; | 
|  | return Nodes; | 
|  | } | 
|  |  | 
|  | void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound, | 
|  | int UpperBound) { | 
|  | std::vector<int> L; | 
|  | int shift = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = LowerBound; i <= UpperBound; ++i) { | 
|  | // w is node at topological index i. | 
|  | int w = Index2Node[i]; | 
|  | if (Visited.test(w)) { | 
|  | // Unmark. | 
|  | Visited.reset(w); | 
|  | L.push_back(w); | 
|  | shift = shift + 1; | 
|  | } else { | 
|  | Allocate(w, i - shift); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned LI : L) { | 
|  | Allocate(LI, i - shift); | 
|  | i = i + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) { | 
|  | FixOrder(); | 
|  | // Is SU reachable from TargetSU via successor edges? | 
|  | if (IsReachable(SU, TargetSU)) | 
|  | return true; | 
|  | for (const SDep &PredDep : TargetSU->Preds) | 
|  | if (PredDep.isAssignedRegDep() && | 
|  | IsReachable(SU, PredDep.getSUnit())) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, | 
|  | const SUnit *TargetSU) { | 
|  | FixOrder(); | 
|  | // If insertion of the edge SU->TargetSU would create a cycle | 
|  | // then there is a path from TargetSU to SU. | 
|  | int UpperBound, LowerBound; | 
|  | LowerBound = Node2Index[TargetSU->NodeNum]; | 
|  | UpperBound = Node2Index[SU->NodeNum]; | 
|  | bool HasLoop = false; | 
|  | // Is Ord(TargetSU) < Ord(SU) ? | 
|  | if (LowerBound < UpperBound) { | 
|  | Visited.reset(); | 
|  | // There may be a path from TargetSU to SU. Check for it. | 
|  | DFS(TargetSU, UpperBound, HasLoop); | 
|  | } | 
|  | return HasLoop; | 
|  | } | 
|  |  | 
|  | void ScheduleDAGTopologicalSort::Allocate(int n, int index) { | 
|  | Node2Index[n] = index; | 
|  | Index2Node[index] = n; | 
|  | } | 
|  |  | 
|  | ScheduleDAGTopologicalSort:: | 
|  | ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu) | 
|  | : SUnits(sunits), ExitSU(exitsu) {} | 
|  |  | 
|  | ScheduleHazardRecognizer::~ScheduleHazardRecognizer() = default; |