|  | //===-- AtomicExpandPass.cpp - Expand atomic instructions -------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains a pass (at IR level) to replace atomic instructions with | 
|  | // either (intrinsic-based) load-linked/store-conditional loops or AtomicCmpXchg. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "atomic-expand" | 
|  |  | 
|  | namespace { | 
|  | class AtomicExpand: public FunctionPass { | 
|  | const TargetMachine *TM; | 
|  | const TargetLowering *TLI; | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | explicit AtomicExpand(const TargetMachine *TM = nullptr) | 
|  | : FunctionPass(ID), TM(TM), TLI(nullptr) { | 
|  | initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override; | 
|  |  | 
|  | private: | 
|  | bool bracketInstWithFences(Instruction *I, AtomicOrdering Order, | 
|  | bool IsStore, bool IsLoad); | 
|  | bool expandAtomicLoad(LoadInst *LI); | 
|  | bool expandAtomicLoadToLL(LoadInst *LI); | 
|  | bool expandAtomicLoadToCmpXchg(LoadInst *LI); | 
|  | bool expandAtomicStore(StoreInst *SI); | 
|  | bool tryExpandAtomicRMW(AtomicRMWInst *AI); | 
|  | bool expandAtomicRMWToLLSC(AtomicRMWInst *AI); | 
|  | bool expandAtomicRMWToCmpXchg(AtomicRMWInst *AI); | 
|  | bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); | 
|  | bool isIdempotentRMW(AtomicRMWInst *AI); | 
|  | bool simplifyIdempotentRMW(AtomicRMWInst *AI); | 
|  | }; | 
|  | } | 
|  |  | 
|  | char AtomicExpand::ID = 0; | 
|  | char &llvm::AtomicExpandID = AtomicExpand::ID; | 
|  | INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand", | 
|  | "Expand Atomic calls in terms of either load-linked & store-conditional or cmpxchg", | 
|  | false, false) | 
|  |  | 
|  | FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) { | 
|  | return new AtomicExpand(TM); | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::runOnFunction(Function &F) { | 
|  | if (!TM || !TM->getSubtargetImpl(F)->enableAtomicExpand()) | 
|  | return false; | 
|  | TLI = TM->getSubtargetImpl(F)->getTargetLowering(); | 
|  |  | 
|  | SmallVector<Instruction *, 1> AtomicInsts; | 
|  |  | 
|  | // Changing control-flow while iterating through it is a bad idea, so gather a | 
|  | // list of all atomic instructions before we start. | 
|  | for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) { | 
|  | if (I->isAtomic()) | 
|  | AtomicInsts.push_back(&*I); | 
|  | } | 
|  |  | 
|  | bool MadeChange = false; | 
|  | for (auto I : AtomicInsts) { | 
|  | auto LI = dyn_cast<LoadInst>(I); | 
|  | auto SI = dyn_cast<StoreInst>(I); | 
|  | auto RMWI = dyn_cast<AtomicRMWInst>(I); | 
|  | auto CASI = dyn_cast<AtomicCmpXchgInst>(I); | 
|  | assert((LI || SI || RMWI || CASI || isa<FenceInst>(I)) && | 
|  | "Unknown atomic instruction"); | 
|  |  | 
|  | auto FenceOrdering = Monotonic; | 
|  | bool IsStore, IsLoad; | 
|  | if (TLI->getInsertFencesForAtomic()) { | 
|  | if (LI && isAtLeastAcquire(LI->getOrdering())) { | 
|  | FenceOrdering = LI->getOrdering(); | 
|  | LI->setOrdering(Monotonic); | 
|  | IsStore = false; | 
|  | IsLoad = true; | 
|  | } else if (SI && isAtLeastRelease(SI->getOrdering())) { | 
|  | FenceOrdering = SI->getOrdering(); | 
|  | SI->setOrdering(Monotonic); | 
|  | IsStore = true; | 
|  | IsLoad = false; | 
|  | } else if (RMWI && (isAtLeastRelease(RMWI->getOrdering()) || | 
|  | isAtLeastAcquire(RMWI->getOrdering()))) { | 
|  | FenceOrdering = RMWI->getOrdering(); | 
|  | RMWI->setOrdering(Monotonic); | 
|  | IsStore = IsLoad = true; | 
|  | } else if (CASI && !TLI->hasLoadLinkedStoreConditional() && | 
|  | (isAtLeastRelease(CASI->getSuccessOrdering()) || | 
|  | isAtLeastAcquire(CASI->getSuccessOrdering()))) { | 
|  | // If a compare and swap is lowered to LL/SC, we can do smarter fence | 
|  | // insertion, with a stronger one on the success path than on the | 
|  | // failure path. As a result, fence insertion is directly done by | 
|  | // expandAtomicCmpXchg in that case. | 
|  | FenceOrdering = CASI->getSuccessOrdering(); | 
|  | CASI->setSuccessOrdering(Monotonic); | 
|  | CASI->setFailureOrdering(Monotonic); | 
|  | IsStore = IsLoad = true; | 
|  | } | 
|  |  | 
|  | if (FenceOrdering != Monotonic) { | 
|  | MadeChange |= bracketInstWithFences(I, FenceOrdering, IsStore, IsLoad); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LI && TLI->shouldExpandAtomicLoadInIR(LI)) { | 
|  | MadeChange |= expandAtomicLoad(LI); | 
|  | } else if (SI && TLI->shouldExpandAtomicStoreInIR(SI)) { | 
|  | MadeChange |= expandAtomicStore(SI); | 
|  | } else if (RMWI) { | 
|  | // There are two different ways of expanding RMW instructions: | 
|  | // - into a load if it is idempotent | 
|  | // - into a Cmpxchg/LL-SC loop otherwise | 
|  | // we try them in that order. | 
|  |  | 
|  | if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { | 
|  | MadeChange = true; | 
|  | } else { | 
|  | MadeChange |= tryExpandAtomicRMW(RMWI); | 
|  | } | 
|  | } else if (CASI && TLI->hasLoadLinkedStoreConditional()) { | 
|  | MadeChange |= expandAtomicCmpXchg(CASI); | 
|  | } | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order, | 
|  | bool IsStore, bool IsLoad) { | 
|  | IRBuilder<> Builder(I); | 
|  |  | 
|  | auto LeadingFence = TLI->emitLeadingFence(Builder, Order, IsStore, IsLoad); | 
|  |  | 
|  | auto TrailingFence = TLI->emitTrailingFence(Builder, Order, IsStore, IsLoad); | 
|  | // The trailing fence is emitted before the instruction instead of after | 
|  | // because there is no easy way of setting Builder insertion point after | 
|  | // an instruction. So we must erase it from the BB, and insert it back | 
|  | // in the right place. | 
|  | // We have a guard here because not every atomic operation generates a | 
|  | // trailing fence. | 
|  | if (TrailingFence) { | 
|  | TrailingFence->removeFromParent(); | 
|  | TrailingFence->insertAfter(I); | 
|  | } | 
|  |  | 
|  | return (LeadingFence || TrailingFence); | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::expandAtomicLoad(LoadInst *LI) { | 
|  | if (TLI->hasLoadLinkedStoreConditional()) | 
|  | return expandAtomicLoadToLL(LI); | 
|  | else | 
|  | return expandAtomicLoadToCmpXchg(LI); | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { | 
|  | IRBuilder<> Builder(LI); | 
|  |  | 
|  | // On some architectures, load-linked instructions are atomic for larger | 
|  | // sizes than normal loads. For example, the only 64-bit load guaranteed | 
|  | // to be single-copy atomic by ARM is an ldrexd (A3.5.3). | 
|  | Value *Val = | 
|  | TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); | 
|  |  | 
|  | LI->replaceAllUsesWith(Val); | 
|  | LI->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { | 
|  | IRBuilder<> Builder(LI); | 
|  | AtomicOrdering Order = LI->getOrdering(); | 
|  | Value *Addr = LI->getPointerOperand(); | 
|  | Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); | 
|  | Constant *DummyVal = Constant::getNullValue(Ty); | 
|  |  | 
|  | Value *Pair = Builder.CreateAtomicCmpXchg( | 
|  | Addr, DummyVal, DummyVal, Order, | 
|  | AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); | 
|  | Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); | 
|  |  | 
|  | LI->replaceAllUsesWith(Loaded); | 
|  | LI->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::expandAtomicStore(StoreInst *SI) { | 
|  | // This function is only called on atomic stores that are too large to be | 
|  | // atomic if implemented as a native store. So we replace them by an | 
|  | // atomic swap, that can be implemented for example as a ldrex/strex on ARM | 
|  | // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. | 
|  | // It is the responsibility of the target to only signal expansion via | 
|  | // shouldExpandAtomicRMW in cases where this is required and possible. | 
|  | IRBuilder<> Builder(SI); | 
|  | AtomicRMWInst *AI = | 
|  | Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), | 
|  | SI->getValueOperand(), SI->getOrdering()); | 
|  | SI->eraseFromParent(); | 
|  |  | 
|  | // Now we have an appropriate swap instruction, lower it as usual. | 
|  | return tryExpandAtomicRMW(AI); | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { | 
|  | switch (TLI->shouldExpandAtomicRMWInIR(AI)) { | 
|  | case TargetLoweringBase::AtomicRMWExpansionKind::None: | 
|  | return false; | 
|  | case TargetLoweringBase::AtomicRMWExpansionKind::LLSC: { | 
|  | assert(TLI->hasLoadLinkedStoreConditional() && | 
|  | "TargetLowering requested we expand AtomicRMW instruction into " | 
|  | "load-linked/store-conditional combos, but such instructions aren't " | 
|  | "supported"); | 
|  |  | 
|  | return expandAtomicRMWToLLSC(AI); | 
|  | } | 
|  | case TargetLoweringBase::AtomicRMWExpansionKind::CmpXChg: { | 
|  | return expandAtomicRMWToCmpXchg(AI); | 
|  | } | 
|  | } | 
|  | llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); | 
|  | } | 
|  |  | 
|  | /// Emit IR to implement the given atomicrmw operation on values in registers, | 
|  | /// returning the new value. | 
|  | static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, | 
|  | Value *Loaded, Value *Inc) { | 
|  | Value *NewVal; | 
|  | switch (Op) { | 
|  | case AtomicRMWInst::Xchg: | 
|  | return Inc; | 
|  | case AtomicRMWInst::Add: | 
|  | return Builder.CreateAdd(Loaded, Inc, "new"); | 
|  | case AtomicRMWInst::Sub: | 
|  | return Builder.CreateSub(Loaded, Inc, "new"); | 
|  | case AtomicRMWInst::And: | 
|  | return Builder.CreateAnd(Loaded, Inc, "new"); | 
|  | case AtomicRMWInst::Nand: | 
|  | return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); | 
|  | case AtomicRMWInst::Or: | 
|  | return Builder.CreateOr(Loaded, Inc, "new"); | 
|  | case AtomicRMWInst::Xor: | 
|  | return Builder.CreateXor(Loaded, Inc, "new"); | 
|  | case AtomicRMWInst::Max: | 
|  | NewVal = Builder.CreateICmpSGT(Loaded, Inc); | 
|  | return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); | 
|  | case AtomicRMWInst::Min: | 
|  | NewVal = Builder.CreateICmpSLE(Loaded, Inc); | 
|  | return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); | 
|  | case AtomicRMWInst::UMax: | 
|  | NewVal = Builder.CreateICmpUGT(Loaded, Inc); | 
|  | return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); | 
|  | case AtomicRMWInst::UMin: | 
|  | NewVal = Builder.CreateICmpULE(Loaded, Inc); | 
|  | return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); | 
|  | default: | 
|  | llvm_unreachable("Unknown atomic op"); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::expandAtomicRMWToLLSC(AtomicRMWInst *AI) { | 
|  | AtomicOrdering MemOpOrder = AI->getOrdering(); | 
|  | Value *Addr = AI->getPointerOperand(); | 
|  | BasicBlock *BB = AI->getParent(); | 
|  | Function *F = BB->getParent(); | 
|  | LLVMContext &Ctx = F->getContext(); | 
|  |  | 
|  | // Given: atomicrmw some_op iN* %addr, iN %incr ordering | 
|  | // | 
|  | // The standard expansion we produce is: | 
|  | //     [...] | 
|  | //     fence? | 
|  | // atomicrmw.start: | 
|  | //     %loaded = @load.linked(%addr) | 
|  | //     %new = some_op iN %loaded, %incr | 
|  | //     %stored = @store_conditional(%new, %addr) | 
|  | //     %try_again = icmp i32 ne %stored, 0 | 
|  | //     br i1 %try_again, label %loop, label %atomicrmw.end | 
|  | // atomicrmw.end: | 
|  | //     fence? | 
|  | //     [...] | 
|  | BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end"); | 
|  | BasicBlock *LoopBB =  BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); | 
|  |  | 
|  | // This grabs the DebugLoc from AI. | 
|  | IRBuilder<> Builder(AI); | 
|  |  | 
|  | // The split call above "helpfully" added a branch at the end of BB (to the | 
|  | // wrong place), but we might want a fence too. It's easiest to just remove | 
|  | // the branch entirely. | 
|  | std::prev(BB->end())->eraseFromParent(); | 
|  | Builder.SetInsertPoint(BB); | 
|  | Builder.CreateBr(LoopBB); | 
|  |  | 
|  | // Start the main loop block now that we've taken care of the preliminaries. | 
|  | Builder.SetInsertPoint(LoopBB); | 
|  | Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); | 
|  |  | 
|  | Value *NewVal = | 
|  | performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); | 
|  |  | 
|  | Value *StoreSuccess = | 
|  | TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); | 
|  | Value *TryAgain = Builder.CreateICmpNE( | 
|  | StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); | 
|  | Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); | 
|  |  | 
|  | Builder.SetInsertPoint(ExitBB, ExitBB->begin()); | 
|  |  | 
|  | AI->replaceAllUsesWith(Loaded); | 
|  | AI->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI) { | 
|  | AtomicOrdering MemOpOrder = | 
|  | AI->getOrdering() == Unordered ? Monotonic : AI->getOrdering(); | 
|  | Value *Addr = AI->getPointerOperand(); | 
|  | BasicBlock *BB = AI->getParent(); | 
|  | Function *F = BB->getParent(); | 
|  | LLVMContext &Ctx = F->getContext(); | 
|  |  | 
|  | // Given: atomicrmw some_op iN* %addr, iN %incr ordering | 
|  | // | 
|  | // The standard expansion we produce is: | 
|  | //     [...] | 
|  | //     %init_loaded = load atomic iN* %addr | 
|  | //     br label %loop | 
|  | // loop: | 
|  | //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] | 
|  | //     %new = some_op iN %loaded, %incr | 
|  | //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new | 
|  | //     %new_loaded = extractvalue { iN, i1 } %pair, 0 | 
|  | //     %success = extractvalue { iN, i1 } %pair, 1 | 
|  | //     br i1 %success, label %atomicrmw.end, label %loop | 
|  | // atomicrmw.end: | 
|  | //     [...] | 
|  | BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end"); | 
|  | BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); | 
|  |  | 
|  | // This grabs the DebugLoc from AI. | 
|  | IRBuilder<> Builder(AI); | 
|  |  | 
|  | // The split call above "helpfully" added a branch at the end of BB (to the | 
|  | // wrong place), but we want a load. It's easiest to just remove | 
|  | // the branch entirely. | 
|  | std::prev(BB->end())->eraseFromParent(); | 
|  | Builder.SetInsertPoint(BB); | 
|  | LoadInst *InitLoaded = Builder.CreateLoad(Addr); | 
|  | // Atomics require at least natural alignment. | 
|  | InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits()); | 
|  | Builder.CreateBr(LoopBB); | 
|  |  | 
|  | // Start the main loop block now that we've taken care of the preliminaries. | 
|  | Builder.SetInsertPoint(LoopBB); | 
|  | PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded"); | 
|  | Loaded->addIncoming(InitLoaded, BB); | 
|  |  | 
|  | Value *NewVal = | 
|  | performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); | 
|  |  | 
|  | Value *Pair = Builder.CreateAtomicCmpXchg( | 
|  | Addr, Loaded, NewVal, MemOpOrder, | 
|  | AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); | 
|  | Value *NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); | 
|  | Loaded->addIncoming(NewLoaded, LoopBB); | 
|  |  | 
|  | Value *Success = Builder.CreateExtractValue(Pair, 1, "success"); | 
|  | Builder.CreateCondBr(Success, ExitBB, LoopBB); | 
|  |  | 
|  | Builder.SetInsertPoint(ExitBB, ExitBB->begin()); | 
|  |  | 
|  | AI->replaceAllUsesWith(NewLoaded); | 
|  | AI->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { | 
|  | AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); | 
|  | AtomicOrdering FailureOrder = CI->getFailureOrdering(); | 
|  | Value *Addr = CI->getPointerOperand(); | 
|  | BasicBlock *BB = CI->getParent(); | 
|  | Function *F = BB->getParent(); | 
|  | LLVMContext &Ctx = F->getContext(); | 
|  | // If getInsertFencesForAtomic() returns true, then the target does not want | 
|  | // to deal with memory orders, and emitLeading/TrailingFence should take care | 
|  | // of everything. Otherwise, emitLeading/TrailingFence are no-op and we | 
|  | // should preserve the ordering. | 
|  | AtomicOrdering MemOpOrder = | 
|  | TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder; | 
|  |  | 
|  | // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord | 
|  | // | 
|  | // The full expansion we produce is: | 
|  | //     [...] | 
|  | //     fence? | 
|  | // cmpxchg.start: | 
|  | //     %loaded = @load.linked(%addr) | 
|  | //     %should_store = icmp eq %loaded, %desired | 
|  | //     br i1 %should_store, label %cmpxchg.trystore, | 
|  | //                          label %cmpxchg.failure | 
|  | // cmpxchg.trystore: | 
|  | //     %stored = @store_conditional(%new, %addr) | 
|  | //     %success = icmp eq i32 %stored, 0 | 
|  | //     br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure | 
|  | // cmpxchg.success: | 
|  | //     fence? | 
|  | //     br label %cmpxchg.end | 
|  | // cmpxchg.failure: | 
|  | //     fence? | 
|  | //     br label %cmpxchg.end | 
|  | // cmpxchg.end: | 
|  | //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] | 
|  | //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 | 
|  | //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 | 
|  | //     [...] | 
|  | BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end"); | 
|  | auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); | 
|  | auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, FailureBB); | 
|  | auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB); | 
|  | auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB); | 
|  |  | 
|  | // This grabs the DebugLoc from CI | 
|  | IRBuilder<> Builder(CI); | 
|  |  | 
|  | // The split call above "helpfully" added a branch at the end of BB (to the | 
|  | // wrong place), but we might want a fence too. It's easiest to just remove | 
|  | // the branch entirely. | 
|  | std::prev(BB->end())->eraseFromParent(); | 
|  | Builder.SetInsertPoint(BB); | 
|  | TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true, | 
|  | /*IsLoad=*/true); | 
|  | Builder.CreateBr(LoopBB); | 
|  |  | 
|  | // Start the main loop block now that we've taken care of the preliminaries. | 
|  | Builder.SetInsertPoint(LoopBB); | 
|  | Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); | 
|  | Value *ShouldStore = | 
|  | Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store"); | 
|  |  | 
|  | // If the cmpxchg doesn't actually need any ordering when it fails, we can | 
|  | // jump straight past that fence instruction (if it exists). | 
|  | Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB); | 
|  |  | 
|  | Builder.SetInsertPoint(TryStoreBB); | 
|  | Value *StoreSuccess = TLI->emitStoreConditional( | 
|  | Builder, CI->getNewValOperand(), Addr, MemOpOrder); | 
|  | StoreSuccess = Builder.CreateICmpEQ( | 
|  | StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); | 
|  | Builder.CreateCondBr(StoreSuccess, SuccessBB, | 
|  | CI->isWeak() ? FailureBB : LoopBB); | 
|  |  | 
|  | // Make sure later instructions don't get reordered with a fence if necessary. | 
|  | Builder.SetInsertPoint(SuccessBB); | 
|  | TLI->emitTrailingFence(Builder, SuccessOrder, /*IsStore=*/true, | 
|  | /*IsLoad=*/true); | 
|  | Builder.CreateBr(ExitBB); | 
|  |  | 
|  | Builder.SetInsertPoint(FailureBB); | 
|  | TLI->emitTrailingFence(Builder, FailureOrder, /*IsStore=*/true, | 
|  | /*IsLoad=*/true); | 
|  | Builder.CreateBr(ExitBB); | 
|  |  | 
|  | // Finally, we have control-flow based knowledge of whether the cmpxchg | 
|  | // succeeded or not. We expose this to later passes by converting any | 
|  | // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI. | 
|  |  | 
|  | // Setup the builder so we can create any PHIs we need. | 
|  | Builder.SetInsertPoint(ExitBB, ExitBB->begin()); | 
|  | PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); | 
|  | Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); | 
|  | Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); | 
|  |  | 
|  | // Look for any users of the cmpxchg that are just comparing the loaded value | 
|  | // against the desired one, and replace them with the CFG-derived version. | 
|  | SmallVector<ExtractValueInst *, 2> PrunedInsts; | 
|  | for (auto User : CI->users()) { | 
|  | ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); | 
|  | if (!EV) | 
|  | continue; | 
|  |  | 
|  | assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && | 
|  | "weird extraction from { iN, i1 }"); | 
|  |  | 
|  | if (EV->getIndices()[0] == 0) | 
|  | EV->replaceAllUsesWith(Loaded); | 
|  | else | 
|  | EV->replaceAllUsesWith(Success); | 
|  |  | 
|  | PrunedInsts.push_back(EV); | 
|  | } | 
|  |  | 
|  | // We can remove the instructions now we're no longer iterating through them. | 
|  | for (auto EV : PrunedInsts) | 
|  | EV->eraseFromParent(); | 
|  |  | 
|  | if (!CI->use_empty()) { | 
|  | // Some use of the full struct return that we don't understand has happened, | 
|  | // so we've got to reconstruct it properly. | 
|  | Value *Res; | 
|  | Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); | 
|  | Res = Builder.CreateInsertValue(Res, Success, 1); | 
|  |  | 
|  | CI->replaceAllUsesWith(Res); | 
|  | } | 
|  |  | 
|  | CI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { | 
|  | auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); | 
|  | if(!C) | 
|  | return false; | 
|  |  | 
|  | AtomicRMWInst::BinOp Op = RMWI->getOperation(); | 
|  | switch(Op) { | 
|  | case AtomicRMWInst::Add: | 
|  | case AtomicRMWInst::Sub: | 
|  | case AtomicRMWInst::Or: | 
|  | case AtomicRMWInst::Xor: | 
|  | return C->isZero(); | 
|  | case AtomicRMWInst::And: | 
|  | return C->isMinusOne(); | 
|  | // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { | 
|  | if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { | 
|  | if (TLI->shouldExpandAtomicLoadInIR(ResultingLoad)) | 
|  | expandAtomicLoad(ResultingLoad); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } |