|  | //===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the pass that finds instructions that can be | 
|  | // re-written as LEA instructions in order to reduce pipeline delays. | 
|  | // It replaces LEAs with ADD/INC/DEC when that is better for size/speed. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86.h" | 
|  | #include "X86InstrInfo.h" | 
|  | #include "X86Subtarget.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/TargetSchedule.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define FIXUPLEA_DESC "X86 LEA Fixup" | 
|  | #define FIXUPLEA_NAME "x86-fixup-LEAs" | 
|  |  | 
|  | #define DEBUG_TYPE FIXUPLEA_NAME | 
|  |  | 
|  | STATISTIC(NumLEAs, "Number of LEA instructions created"); | 
|  |  | 
|  | namespace { | 
|  | class FixupLEAPass : public MachineFunctionPass { | 
|  | enum RegUsageState { RU_NotUsed, RU_Write, RU_Read }; | 
|  |  | 
|  | /// Given a machine register, look for the instruction | 
|  | /// which writes it in the current basic block. If found, | 
|  | /// try to replace it with an equivalent LEA instruction. | 
|  | /// If replacement succeeds, then also process the newly created | 
|  | /// instruction. | 
|  | void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I, | 
|  | MachineBasicBlock &MBB); | 
|  |  | 
|  | /// Given a memory access or LEA instruction | 
|  | /// whose address mode uses a base and/or index register, look for | 
|  | /// an opportunity to replace the instruction which sets the base or index | 
|  | /// register with an equivalent LEA instruction. | 
|  | void processInstruction(MachineBasicBlock::iterator &I, | 
|  | MachineBasicBlock &MBB); | 
|  |  | 
|  | /// Given a LEA instruction which is unprofitable | 
|  | /// on SlowLEA targets try to replace it with an equivalent ADD instruction. | 
|  | void processInstructionForSlowLEA(MachineBasicBlock::iterator &I, | 
|  | MachineBasicBlock &MBB); | 
|  |  | 
|  | /// Given a LEA instruction which is unprofitable | 
|  | /// on SNB+ try to replace it with other instructions. | 
|  | /// According to Intel's Optimization Reference Manual: | 
|  | /// " For LEA instructions with three source operands and some specific | 
|  | ///   situations, instruction latency has increased to 3 cycles, and must | 
|  | ///   dispatch via port 1: | 
|  | /// - LEA that has all three source operands: base, index, and offset | 
|  | /// - LEA that uses base and index registers where the base is EBP, RBP, | 
|  | ///   or R13 | 
|  | /// - LEA that uses RIP relative addressing mode | 
|  | /// - LEA that uses 16-bit addressing mode " | 
|  | /// This function currently handles the first 2 cases only. | 
|  | void processInstrForSlow3OpLEA(MachineBasicBlock::iterator &I, | 
|  | MachineBasicBlock &MBB, bool OptIncDec); | 
|  |  | 
|  | /// Look for LEAs that are really two address LEAs that we might be able to | 
|  | /// turn into regular ADD instructions. | 
|  | bool optTwoAddrLEA(MachineBasicBlock::iterator &I, | 
|  | MachineBasicBlock &MBB, bool OptIncDec, | 
|  | bool UseLEAForSP) const; | 
|  |  | 
|  | /// Determine if an instruction references a machine register | 
|  | /// and, if so, whether it reads or writes the register. | 
|  | RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I); | 
|  |  | 
|  | /// Step backwards through a basic block, looking | 
|  | /// for an instruction which writes a register within | 
|  | /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles. | 
|  | MachineBasicBlock::iterator searchBackwards(MachineOperand &p, | 
|  | MachineBasicBlock::iterator &I, | 
|  | MachineBasicBlock &MBB); | 
|  |  | 
|  | /// if an instruction can be converted to an | 
|  | /// equivalent LEA, insert the new instruction into the basic block | 
|  | /// and return a pointer to it. Otherwise, return zero. | 
|  | MachineInstr *postRAConvertToLEA(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator &MBBI) const; | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | StringRef getPassName() const override { return FIXUPLEA_DESC; } | 
|  |  | 
|  | FixupLEAPass() : MachineFunctionPass(ID) { } | 
|  |  | 
|  | /// Loop over all of the basic blocks, | 
|  | /// replacing instructions by equivalent LEA instructions | 
|  | /// if needed and when possible. | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | // This pass runs after regalloc and doesn't support VReg operands. | 
|  | MachineFunctionProperties getRequiredProperties() const override { | 
|  | return MachineFunctionProperties().set( | 
|  | MachineFunctionProperties::Property::NoVRegs); | 
|  | } | 
|  |  | 
|  | private: | 
|  | TargetSchedModel TSM; | 
|  | const X86InstrInfo *TII; | 
|  | const X86RegisterInfo *TRI; | 
|  | }; | 
|  | } | 
|  |  | 
|  | char FixupLEAPass::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS(FixupLEAPass, FIXUPLEA_NAME, FIXUPLEA_DESC, false, false) | 
|  |  | 
|  | MachineInstr * | 
|  | FixupLEAPass::postRAConvertToLEA(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator &MBBI) const { | 
|  | MachineInstr &MI = *MBBI; | 
|  | switch (MI.getOpcode()) { | 
|  | case X86::MOV32rr: | 
|  | case X86::MOV64rr: { | 
|  | const MachineOperand &Src = MI.getOperand(1); | 
|  | const MachineOperand &Dest = MI.getOperand(0); | 
|  | MachineInstr *NewMI = | 
|  | BuildMI(MBB, MBBI, MI.getDebugLoc(), | 
|  | TII->get(MI.getOpcode() == X86::MOV32rr ? X86::LEA32r | 
|  | : X86::LEA64r)) | 
|  | .add(Dest) | 
|  | .add(Src) | 
|  | .addImm(1) | 
|  | .addReg(0) | 
|  | .addImm(0) | 
|  | .addReg(0); | 
|  | return NewMI; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MI.isConvertibleTo3Addr()) | 
|  | return nullptr; | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | // Only convert instructions that we've verified are safe. | 
|  | return nullptr; | 
|  | case X86::ADD64ri32: | 
|  | case X86::ADD64ri8: | 
|  | case X86::ADD64ri32_DB: | 
|  | case X86::ADD64ri8_DB: | 
|  | case X86::ADD32ri: | 
|  | case X86::ADD32ri8: | 
|  | case X86::ADD32ri_DB: | 
|  | case X86::ADD32ri8_DB: | 
|  | if (!MI.getOperand(2).isImm()) { | 
|  | // convertToThreeAddress will call getImm() | 
|  | // which requires isImm() to be true | 
|  | return nullptr; | 
|  | } | 
|  | break; | 
|  | case X86::SHL64ri: | 
|  | case X86::SHL32ri: | 
|  | case X86::INC64r: | 
|  | case X86::INC32r: | 
|  | case X86::DEC64r: | 
|  | case X86::DEC32r: | 
|  | case X86::ADD64rr: | 
|  | case X86::ADD64rr_DB: | 
|  | case X86::ADD32rr: | 
|  | case X86::ADD32rr_DB: | 
|  | // These instructions are all fine to convert. | 
|  | break; | 
|  | } | 
|  | MachineFunction::iterator MFI = MBB.getIterator(); | 
|  | return TII->convertToThreeAddress(MFI, MI, nullptr); | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); } | 
|  |  | 
|  | static bool isLEA(unsigned Opcode) { | 
|  | return Opcode == X86::LEA32r || Opcode == X86::LEA64r || | 
|  | Opcode == X86::LEA64_32r; | 
|  | } | 
|  |  | 
|  | bool FixupLEAPass::runOnMachineFunction(MachineFunction &MF) { | 
|  | if (skipFunction(MF.getFunction())) | 
|  | return false; | 
|  |  | 
|  | const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); | 
|  | bool IsSlowLEA = ST.slowLEA(); | 
|  | bool IsSlow3OpsLEA = ST.slow3OpsLEA(); | 
|  | bool LEAUsesAG = ST.LEAusesAG(); | 
|  |  | 
|  | bool OptIncDec = !ST.slowIncDec() || MF.getFunction().hasOptSize(); | 
|  | bool UseLEAForSP = ST.useLeaForSP(); | 
|  |  | 
|  | TSM.init(&ST); | 
|  | TII = ST.getInstrInfo(); | 
|  | TRI = ST.getRegisterInfo(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Start X86FixupLEAs\n";); | 
|  | for (MachineBasicBlock &MBB : MF) { | 
|  | // First pass. Try to remove or optimize existing LEAs. | 
|  | for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) { | 
|  | if (!isLEA(I->getOpcode())) | 
|  | continue; | 
|  |  | 
|  | if (optTwoAddrLEA(I, MBB, OptIncDec, UseLEAForSP)) | 
|  | continue; | 
|  |  | 
|  | if (IsSlowLEA) | 
|  | processInstructionForSlowLEA(I, MBB); | 
|  | else if (IsSlow3OpsLEA) | 
|  | processInstrForSlow3OpLEA(I, MBB, OptIncDec); | 
|  | } | 
|  |  | 
|  | // Second pass for creating LEAs. This may reverse some of the | 
|  | // transformations above. | 
|  | if (LEAUsesAG) { | 
|  | for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) | 
|  | processInstruction(I, MBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "End X86FixupLEAs\n";); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | FixupLEAPass::RegUsageState | 
|  | FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) { | 
|  | RegUsageState RegUsage = RU_NotUsed; | 
|  | MachineInstr &MI = *I; | 
|  |  | 
|  | for (unsigned i = 0; i < MI.getNumOperands(); ++i) { | 
|  | MachineOperand &opnd = MI.getOperand(i); | 
|  | if (opnd.isReg() && opnd.getReg() == p.getReg()) { | 
|  | if (opnd.isDef()) | 
|  | return RU_Write; | 
|  | RegUsage = RU_Read; | 
|  | } | 
|  | } | 
|  | return RegUsage; | 
|  | } | 
|  |  | 
|  | /// getPreviousInstr - Given a reference to an instruction in a basic | 
|  | /// block, return a reference to the previous instruction in the block, | 
|  | /// wrapping around to the last instruction of the block if the block | 
|  | /// branches to itself. | 
|  | static inline bool getPreviousInstr(MachineBasicBlock::iterator &I, | 
|  | MachineBasicBlock &MBB) { | 
|  | if (I == MBB.begin()) { | 
|  | if (MBB.isPredecessor(&MBB)) { | 
|  | I = --MBB.end(); | 
|  | return true; | 
|  | } else | 
|  | return false; | 
|  | } | 
|  | --I; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator | 
|  | FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I, | 
|  | MachineBasicBlock &MBB) { | 
|  | int InstrDistance = 1; | 
|  | MachineBasicBlock::iterator CurInst; | 
|  | static const int INSTR_DISTANCE_THRESHOLD = 5; | 
|  |  | 
|  | CurInst = I; | 
|  | bool Found; | 
|  | Found = getPreviousInstr(CurInst, MBB); | 
|  | while (Found && I != CurInst) { | 
|  | if (CurInst->isCall() || CurInst->isInlineAsm()) | 
|  | break; | 
|  | if (InstrDistance > INSTR_DISTANCE_THRESHOLD) | 
|  | break; // too far back to make a difference | 
|  | if (usesRegister(p, CurInst) == RU_Write) { | 
|  | return CurInst; | 
|  | } | 
|  | InstrDistance += TSM.computeInstrLatency(&*CurInst); | 
|  | Found = getPreviousInstr(CurInst, MBB); | 
|  | } | 
|  | return MachineBasicBlock::iterator(); | 
|  | } | 
|  |  | 
|  | static inline bool isInefficientLEAReg(unsigned Reg) { | 
|  | return Reg == X86::EBP || Reg == X86::RBP || | 
|  | Reg == X86::R13D || Reg == X86::R13; | 
|  | } | 
|  |  | 
|  | /// Returns true if this LEA uses base an index registers, and the base register | 
|  | /// is known to be inefficient for the subtarget. | 
|  | // TODO: use a variant scheduling class to model the latency profile | 
|  | // of LEA instructions, and implement this logic as a scheduling predicate. | 
|  | static inline bool hasInefficientLEABaseReg(const MachineOperand &Base, | 
|  | const MachineOperand &Index) { | 
|  | return Base.isReg() && isInefficientLEAReg(Base.getReg()) && Index.isReg() && | 
|  | Index.getReg() != X86::NoRegister; | 
|  | } | 
|  |  | 
|  | static inline bool hasLEAOffset(const MachineOperand &Offset) { | 
|  | return (Offset.isImm() && Offset.getImm() != 0) || Offset.isGlobal(); | 
|  | } | 
|  |  | 
|  | static inline unsigned getADDrrFromLEA(unsigned LEAOpcode) { | 
|  | switch (LEAOpcode) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected LEA instruction"); | 
|  | case X86::LEA32r: | 
|  | case X86::LEA64_32r: | 
|  | return X86::ADD32rr; | 
|  | case X86::LEA64r: | 
|  | return X86::ADD64rr; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline unsigned getADDriFromLEA(unsigned LEAOpcode, | 
|  | const MachineOperand &Offset) { | 
|  | bool IsInt8 = Offset.isImm() && isInt<8>(Offset.getImm()); | 
|  | switch (LEAOpcode) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected LEA instruction"); | 
|  | case X86::LEA32r: | 
|  | case X86::LEA64_32r: | 
|  | return IsInt8 ? X86::ADD32ri8 : X86::ADD32ri; | 
|  | case X86::LEA64r: | 
|  | return IsInt8 ? X86::ADD64ri8 : X86::ADD64ri32; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline unsigned getINCDECFromLEA(unsigned LEAOpcode, bool IsINC) { | 
|  | switch (LEAOpcode) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected LEA instruction"); | 
|  | case X86::LEA32r: | 
|  | case X86::LEA64_32r: | 
|  | return IsINC ? X86::INC32r : X86::DEC32r; | 
|  | case X86::LEA64r: | 
|  | return IsINC ? X86::INC64r : X86::DEC64r; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool FixupLEAPass::optTwoAddrLEA(MachineBasicBlock::iterator &I, | 
|  | MachineBasicBlock &MBB, bool OptIncDec, | 
|  | bool UseLEAForSP) const { | 
|  | MachineInstr &MI = *I; | 
|  |  | 
|  | const MachineOperand &Base =    MI.getOperand(1 + X86::AddrBaseReg); | 
|  | const MachineOperand &Scale =   MI.getOperand(1 + X86::AddrScaleAmt); | 
|  | const MachineOperand &Index =   MI.getOperand(1 + X86::AddrIndexReg); | 
|  | const MachineOperand &Disp =    MI.getOperand(1 + X86::AddrDisp); | 
|  | const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg); | 
|  |  | 
|  | if (Segment.getReg() != 0 || !Disp.isImm() || Scale.getImm() > 1 || | 
|  | !TII->isSafeToClobberEFLAGS(MBB, I)) | 
|  | return false; | 
|  |  | 
|  | Register DestReg = MI.getOperand(0).getReg(); | 
|  | Register BaseReg = Base.getReg(); | 
|  | Register IndexReg = Index.getReg(); | 
|  |  | 
|  | // Don't change stack adjustment LEAs. | 
|  | if (UseLEAForSP && (DestReg == X86::ESP || DestReg == X86::RSP)) | 
|  | return false; | 
|  |  | 
|  | // LEA64_32 has 64-bit operands but 32-bit result. | 
|  | if (MI.getOpcode() == X86::LEA64_32r) { | 
|  | if (BaseReg != 0) | 
|  | BaseReg = TRI->getSubReg(BaseReg, X86::sub_32bit); | 
|  | if (IndexReg != 0) | 
|  | IndexReg = TRI->getSubReg(IndexReg, X86::sub_32bit); | 
|  | } | 
|  |  | 
|  | MachineInstr *NewMI = nullptr; | 
|  |  | 
|  | // Look for lea(%reg1, %reg2), %reg1 or lea(%reg2, %reg1), %reg1 | 
|  | // which can be turned into add %reg2, %reg1 | 
|  | if (BaseReg != 0 && IndexReg != 0 && Disp.getImm() == 0 && | 
|  | (DestReg == BaseReg || DestReg == IndexReg)) { | 
|  | unsigned NewOpcode = getADDrrFromLEA(MI.getOpcode()); | 
|  | if (DestReg != BaseReg) | 
|  | std::swap(BaseReg, IndexReg); | 
|  |  | 
|  | if (MI.getOpcode() == X86::LEA64_32r) { | 
|  | // TODO: Do we need the super register implicit use? | 
|  | NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg) | 
|  | .addReg(BaseReg).addReg(IndexReg) | 
|  | .addReg(Base.getReg(), RegState::Implicit) | 
|  | .addReg(Index.getReg(), RegState::Implicit); | 
|  | } else { | 
|  | NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg) | 
|  | .addReg(BaseReg).addReg(IndexReg); | 
|  | } | 
|  | } else if (DestReg == BaseReg && IndexReg == 0) { | 
|  | // This is an LEA with only a base register and a displacement, | 
|  | // We can use ADDri or INC/DEC. | 
|  |  | 
|  | // Does this LEA have one these forms: | 
|  | // lea  %reg, 1(%reg) | 
|  | // lea  %reg, -1(%reg) | 
|  | if (OptIncDec && (Disp.getImm() == 1 || Disp.getImm() == -1)) { | 
|  | bool IsINC = Disp.getImm() == 1; | 
|  | unsigned NewOpcode = getINCDECFromLEA(MI.getOpcode(), IsINC); | 
|  |  | 
|  | if (MI.getOpcode() == X86::LEA64_32r) { | 
|  | // TODO: Do we need the super register implicit use? | 
|  | NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg) | 
|  | .addReg(BaseReg).addReg(Base.getReg(), RegState::Implicit); | 
|  | } else { | 
|  | NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg) | 
|  | .addReg(BaseReg); | 
|  | } | 
|  | } else { | 
|  | unsigned NewOpcode = getADDriFromLEA(MI.getOpcode(), Disp); | 
|  | if (MI.getOpcode() == X86::LEA64_32r) { | 
|  | // TODO: Do we need the super register implicit use? | 
|  | NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg) | 
|  | .addReg(BaseReg).addImm(Disp.getImm()) | 
|  | .addReg(Base.getReg(), RegState::Implicit); | 
|  | } else { | 
|  | NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg) | 
|  | .addReg(BaseReg).addImm(Disp.getImm()); | 
|  | } | 
|  | } | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | MBB.erase(I); | 
|  | I = NewMI; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I, | 
|  | MachineBasicBlock &MBB) { | 
|  | // Process a load, store, or LEA instruction. | 
|  | MachineInstr &MI = *I; | 
|  | const MCInstrDesc &Desc = MI.getDesc(); | 
|  | int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags); | 
|  | if (AddrOffset >= 0) { | 
|  | AddrOffset += X86II::getOperandBias(Desc); | 
|  | MachineOperand &p = MI.getOperand(AddrOffset + X86::AddrBaseReg); | 
|  | if (p.isReg() && p.getReg() != X86::ESP) { | 
|  | seekLEAFixup(p, I, MBB); | 
|  | } | 
|  | MachineOperand &q = MI.getOperand(AddrOffset + X86::AddrIndexReg); | 
|  | if (q.isReg() && q.getReg() != X86::ESP) { | 
|  | seekLEAFixup(q, I, MBB); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void FixupLEAPass::seekLEAFixup(MachineOperand &p, | 
|  | MachineBasicBlock::iterator &I, | 
|  | MachineBasicBlock &MBB) { | 
|  | MachineBasicBlock::iterator MBI = searchBackwards(p, I, MBB); | 
|  | if (MBI != MachineBasicBlock::iterator()) { | 
|  | MachineInstr *NewMI = postRAConvertToLEA(MBB, MBI); | 
|  | if (NewMI) { | 
|  | ++NumLEAs; | 
|  | LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump();); | 
|  | // now to replace with an equivalent LEA... | 
|  | LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump();); | 
|  | MBB.erase(MBI); | 
|  | MachineBasicBlock::iterator J = | 
|  | static_cast<MachineBasicBlock::iterator>(NewMI); | 
|  | processInstruction(J, MBB); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void FixupLEAPass::processInstructionForSlowLEA(MachineBasicBlock::iterator &I, | 
|  | MachineBasicBlock &MBB) { | 
|  | MachineInstr &MI = *I; | 
|  | const unsigned Opcode = MI.getOpcode(); | 
|  |  | 
|  | const MachineOperand &Dst =     MI.getOperand(0); | 
|  | const MachineOperand &Base =    MI.getOperand(1 + X86::AddrBaseReg); | 
|  | const MachineOperand &Scale =   MI.getOperand(1 + X86::AddrScaleAmt); | 
|  | const MachineOperand &Index =   MI.getOperand(1 + X86::AddrIndexReg); | 
|  | const MachineOperand &Offset =  MI.getOperand(1 + X86::AddrDisp); | 
|  | const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg); | 
|  |  | 
|  | if (Segment.getReg() != 0 || !Offset.isImm() || | 
|  | !TII->isSafeToClobberEFLAGS(MBB, I)) | 
|  | return; | 
|  | const Register DstR = Dst.getReg(); | 
|  | const Register SrcR1 = Base.getReg(); | 
|  | const Register SrcR2 = Index.getReg(); | 
|  | if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR)) | 
|  | return; | 
|  | if (Scale.getImm() > 1) | 
|  | return; | 
|  | LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump();); | 
|  | LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";); | 
|  | MachineInstr *NewMI = nullptr; | 
|  | // Make ADD instruction for two registers writing to LEA's destination | 
|  | if (SrcR1 != 0 && SrcR2 != 0) { | 
|  | const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(Opcode)); | 
|  | const MachineOperand &Src = SrcR1 == DstR ? Index : Base; | 
|  | NewMI = | 
|  | BuildMI(MBB, I, MI.getDebugLoc(), ADDrr, DstR).addReg(DstR).add(Src); | 
|  | LLVM_DEBUG(NewMI->dump();); | 
|  | } | 
|  | // Make ADD instruction for immediate | 
|  | if (Offset.getImm() != 0) { | 
|  | const MCInstrDesc &ADDri = | 
|  | TII->get(getADDriFromLEA(Opcode, Offset)); | 
|  | const MachineOperand &SrcR = SrcR1 == DstR ? Base : Index; | 
|  | NewMI = BuildMI(MBB, I, MI.getDebugLoc(), ADDri, DstR) | 
|  | .add(SrcR) | 
|  | .addImm(Offset.getImm()); | 
|  | LLVM_DEBUG(NewMI->dump();); | 
|  | } | 
|  | if (NewMI) { | 
|  | MBB.erase(I); | 
|  | I = NewMI; | 
|  | } | 
|  | } | 
|  |  | 
|  | void FixupLEAPass::processInstrForSlow3OpLEA(MachineBasicBlock::iterator &I, | 
|  | MachineBasicBlock &MBB, | 
|  | bool OptIncDec) { | 
|  | MachineInstr &MI = *I; | 
|  | const unsigned LEAOpcode = MI.getOpcode(); | 
|  |  | 
|  | const MachineOperand &Dest =    MI.getOperand(0); | 
|  | const MachineOperand &Base =    MI.getOperand(1 + X86::AddrBaseReg); | 
|  | const MachineOperand &Scale =   MI.getOperand(1 + X86::AddrScaleAmt); | 
|  | const MachineOperand &Index =   MI.getOperand(1 + X86::AddrIndexReg); | 
|  | const MachineOperand &Offset =  MI.getOperand(1 + X86::AddrDisp); | 
|  | const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg); | 
|  |  | 
|  | if (!(TII->isThreeOperandsLEA(MI) || hasInefficientLEABaseReg(Base, Index)) || | 
|  | !TII->isSafeToClobberEFLAGS(MBB, MI) || | 
|  | Segment.getReg() != X86::NoRegister) | 
|  | return; | 
|  |  | 
|  | Register DestReg = Dest.getReg(); | 
|  | Register BaseReg = Base.getReg(); | 
|  | Register IndexReg = Index.getReg(); | 
|  |  | 
|  | if (MI.getOpcode() == X86::LEA64_32r) { | 
|  | if (BaseReg != 0) | 
|  | BaseReg = TRI->getSubReg(BaseReg, X86::sub_32bit); | 
|  | if (IndexReg != 0) | 
|  | IndexReg = TRI->getSubReg(IndexReg, X86::sub_32bit); | 
|  | } | 
|  |  | 
|  | bool IsScale1 = Scale.getImm() == 1; | 
|  | bool IsInefficientBase = isInefficientLEAReg(BaseReg); | 
|  | bool IsInefficientIndex = isInefficientLEAReg(IndexReg); | 
|  |  | 
|  | // Skip these cases since it takes more than 2 instructions | 
|  | // to replace the LEA instruction. | 
|  | if (IsInefficientBase && DestReg == BaseReg && !IsScale1) | 
|  | return; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MI.dump();); | 
|  | LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";); | 
|  |  | 
|  | MachineInstr *NewMI = nullptr; | 
|  |  | 
|  | // First try to replace LEA with one or two (for the 3-op LEA case) | 
|  | // add instructions: | 
|  | // 1.lea (%base,%index,1), %base => add %index,%base | 
|  | // 2.lea (%base,%index,1), %index => add %base,%index | 
|  | if (IsScale1 && (DestReg == BaseReg || DestReg == IndexReg)) { | 
|  | unsigned NewOpc = getADDrrFromLEA(MI.getOpcode()); | 
|  | if (DestReg != BaseReg) | 
|  | std::swap(BaseReg, IndexReg); | 
|  |  | 
|  | if (MI.getOpcode() == X86::LEA64_32r) { | 
|  | // TODO: Do we need the super register implicit use? | 
|  | NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg) | 
|  | .addReg(BaseReg) | 
|  | .addReg(IndexReg) | 
|  | .addReg(Base.getReg(), RegState::Implicit) | 
|  | .addReg(Index.getReg(), RegState::Implicit); | 
|  | } else { | 
|  | NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg) | 
|  | .addReg(BaseReg) | 
|  | .addReg(IndexReg); | 
|  | } | 
|  | } else if (!IsInefficientBase || (!IsInefficientIndex && IsScale1)) { | 
|  | // If the base is inefficient try switching the index and base operands, | 
|  | // otherwise just break the 3-Ops LEA inst into 2-Ops LEA + ADD instruction: | 
|  | // lea offset(%base,%index,scale),%dst => | 
|  | // lea (%base,%index,scale); add offset,%dst | 
|  | NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(LEAOpcode)) | 
|  | .add(Dest) | 
|  | .add(IsInefficientBase ? Index : Base) | 
|  | .add(Scale) | 
|  | .add(IsInefficientBase ? Base : Index) | 
|  | .addImm(0) | 
|  | .add(Segment); | 
|  | LLVM_DEBUG(NewMI->dump();); | 
|  | } | 
|  |  | 
|  | // If either replacement succeeded above, add the offset if needed, then | 
|  | // replace the instruction. | 
|  | if (NewMI) { | 
|  | // Create ADD instruction for the Offset in case of 3-Ops LEA. | 
|  | if (hasLEAOffset(Offset)) { | 
|  | if (OptIncDec && Offset.isImm() && | 
|  | (Offset.getImm() == 1 || Offset.getImm() == -1)) { | 
|  | unsigned NewOpc = | 
|  | getINCDECFromLEA(MI.getOpcode(), Offset.getImm() == 1); | 
|  | NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg) | 
|  | .addReg(DestReg); | 
|  | LLVM_DEBUG(NewMI->dump();); | 
|  | } else { | 
|  | unsigned NewOpc = getADDriFromLEA(MI.getOpcode(), Offset); | 
|  | NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg) | 
|  | .addReg(DestReg) | 
|  | .add(Offset); | 
|  | LLVM_DEBUG(NewMI->dump();); | 
|  | } | 
|  | } | 
|  |  | 
|  | MBB.erase(I); | 
|  | I = NewMI; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle the rest of the cases with inefficient base register: | 
|  | assert(DestReg != BaseReg && "DestReg == BaseReg should be handled already!"); | 
|  | assert(IsInefficientBase && "efficient base should be handled already!"); | 
|  |  | 
|  | // FIXME: Handle LEA64_32r. | 
|  | if (LEAOpcode == X86::LEA64_32r) | 
|  | return; | 
|  |  | 
|  | // lea (%base,%index,1), %dst => mov %base,%dst; add %index,%dst | 
|  | if (IsScale1 && !hasLEAOffset(Offset)) { | 
|  | bool BIK = Base.isKill() && BaseReg != IndexReg; | 
|  | TII->copyPhysReg(MBB, MI, MI.getDebugLoc(), DestReg, BaseReg, BIK); | 
|  | LLVM_DEBUG(MI.getPrevNode()->dump();); | 
|  |  | 
|  | unsigned NewOpc = getADDrrFromLEA(MI.getOpcode()); | 
|  | NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), DestReg) | 
|  | .addReg(DestReg) | 
|  | .add(Index); | 
|  | LLVM_DEBUG(NewMI->dump();); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // lea offset(%base,%index,scale), %dst => | 
|  | // lea offset( ,%index,scale), %dst; add %base,%dst | 
|  | NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(LEAOpcode)) | 
|  | .add(Dest) | 
|  | .addReg(0) | 
|  | .add(Scale) | 
|  | .add(Index) | 
|  | .add(Offset) | 
|  | .add(Segment); | 
|  | LLVM_DEBUG(NewMI->dump();); | 
|  |  | 
|  | unsigned NewOpc = getADDrrFromLEA(MI.getOpcode()); | 
|  | NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), DestReg) | 
|  | .addReg(DestReg) | 
|  | .add(Base); | 
|  | LLVM_DEBUG(NewMI->dump();); | 
|  |  | 
|  | MBB.erase(I); | 
|  | I = NewMI; | 
|  | } |