|  | //===- DataLayout.cpp - Data size & alignment routines ---------------------==// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines layout properties related to datatype size/offset/alignment | 
|  | // information. | 
|  | // | 
|  | // This structure should be created once, filled in if the defaults are not | 
|  | // correct and then passed around by const&.  None of the members functions | 
|  | // require modification to the object. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <cstdlib> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Support for StructLayout | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | StructLayout::StructLayout(StructType *ST, const DataLayout &DL) { | 
|  | assert(!ST->isOpaque() && "Cannot get layout of opaque structs"); | 
|  | StructAlignment = 0; | 
|  | StructSize = 0; | 
|  | IsPadded = false; | 
|  | NumElements = ST->getNumElements(); | 
|  |  | 
|  | // Loop over each of the elements, placing them in memory. | 
|  | for (unsigned i = 0, e = NumElements; i != e; ++i) { | 
|  | Type *Ty = ST->getElementType(i); | 
|  | unsigned TyAlign = ST->isPacked() ? 1 : DL.getABITypeAlignment(Ty); | 
|  |  | 
|  | // Add padding if necessary to align the data element properly. | 
|  | if ((StructSize & (TyAlign-1)) != 0) { | 
|  | IsPadded = true; | 
|  | StructSize = alignTo(StructSize, TyAlign); | 
|  | } | 
|  |  | 
|  | // Keep track of maximum alignment constraint. | 
|  | StructAlignment = std::max(TyAlign, StructAlignment); | 
|  |  | 
|  | MemberOffsets[i] = StructSize; | 
|  | StructSize += DL.getTypeAllocSize(Ty); // Consume space for this data item | 
|  | } | 
|  |  | 
|  | // Empty structures have alignment of 1 byte. | 
|  | if (StructAlignment == 0) StructAlignment = 1; | 
|  |  | 
|  | // Add padding to the end of the struct so that it could be put in an array | 
|  | // and all array elements would be aligned correctly. | 
|  | if ((StructSize & (StructAlignment-1)) != 0) { | 
|  | IsPadded = true; | 
|  | StructSize = alignTo(StructSize, StructAlignment); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getElementContainingOffset - Given a valid offset into the structure, | 
|  | /// return the structure index that contains it. | 
|  | unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { | 
|  | const uint64_t *SI = | 
|  | std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset); | 
|  | assert(SI != &MemberOffsets[0] && "Offset not in structure type!"); | 
|  | --SI; | 
|  | assert(*SI <= Offset && "upper_bound didn't work"); | 
|  | assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) && | 
|  | (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) && | 
|  | "Upper bound didn't work!"); | 
|  |  | 
|  | // Multiple fields can have the same offset if any of them are zero sized. | 
|  | // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop | 
|  | // at the i32 element, because it is the last element at that offset.  This is | 
|  | // the right one to return, because anything after it will have a higher | 
|  | // offset, implying that this element is non-empty. | 
|  | return SI-&MemberOffsets[0]; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // LayoutAlignElem, LayoutAlign support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | LayoutAlignElem | 
|  | LayoutAlignElem::get(AlignTypeEnum align_type, unsigned abi_align, | 
|  | unsigned pref_align, uint32_t bit_width) { | 
|  | assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); | 
|  | LayoutAlignElem retval; | 
|  | retval.AlignType = align_type; | 
|  | retval.ABIAlign = abi_align; | 
|  | retval.PrefAlign = pref_align; | 
|  | retval.TypeBitWidth = bit_width; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | bool | 
|  | LayoutAlignElem::operator==(const LayoutAlignElem &rhs) const { | 
|  | return (AlignType == rhs.AlignType | 
|  | && ABIAlign == rhs.ABIAlign | 
|  | && PrefAlign == rhs.PrefAlign | 
|  | && TypeBitWidth == rhs.TypeBitWidth); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // PointerAlignElem, PointerAlign support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | PointerAlignElem | 
|  | PointerAlignElem::get(uint32_t AddressSpace, unsigned ABIAlign, | 
|  | unsigned PrefAlign, uint32_t TypeByteWidth, | 
|  | uint32_t IndexWidth) { | 
|  | assert(ABIAlign <= PrefAlign && "Preferred alignment worse than ABI!"); | 
|  | PointerAlignElem retval; | 
|  | retval.AddressSpace = AddressSpace; | 
|  | retval.ABIAlign = ABIAlign; | 
|  | retval.PrefAlign = PrefAlign; | 
|  | retval.TypeByteWidth = TypeByteWidth; | 
|  | retval.IndexWidth = IndexWidth; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | bool | 
|  | PointerAlignElem::operator==(const PointerAlignElem &rhs) const { | 
|  | return (ABIAlign == rhs.ABIAlign | 
|  | && AddressSpace == rhs.AddressSpace | 
|  | && PrefAlign == rhs.PrefAlign | 
|  | && TypeByteWidth == rhs.TypeByteWidth | 
|  | && IndexWidth == rhs.IndexWidth); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                       DataLayout Class Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | const char *DataLayout::getManglingComponent(const Triple &T) { | 
|  | if (T.isOSBinFormatMachO()) | 
|  | return "-m:o"; | 
|  | if (T.isOSWindows() && T.isOSBinFormatCOFF()) | 
|  | return T.getArch() == Triple::x86 ? "-m:x" : "-m:w"; | 
|  | return "-m:e"; | 
|  | } | 
|  |  | 
|  | static const LayoutAlignElem DefaultAlignments[] = { | 
|  | { INTEGER_ALIGN, 1, 1, 1 },    // i1 | 
|  | { INTEGER_ALIGN, 8, 1, 1 },    // i8 | 
|  | { INTEGER_ALIGN, 16, 2, 2 },   // i16 | 
|  | { INTEGER_ALIGN, 32, 4, 4 },   // i32 | 
|  | { INTEGER_ALIGN, 64, 4, 8 },   // i64 | 
|  | { FLOAT_ALIGN, 16, 2, 2 },     // half | 
|  | { FLOAT_ALIGN, 32, 4, 4 },     // float | 
|  | { FLOAT_ALIGN, 64, 8, 8 },     // double | 
|  | { FLOAT_ALIGN, 128, 16, 16 },  // ppcf128, quad, ... | 
|  | { VECTOR_ALIGN, 64, 8, 8 },    // v2i32, v1i64, ... | 
|  | { VECTOR_ALIGN, 128, 16, 16 }, // v16i8, v8i16, v4i32, ... | 
|  | { AGGREGATE_ALIGN, 0, 0, 8 }   // struct | 
|  | }; | 
|  |  | 
|  | void DataLayout::reset(StringRef Desc) { | 
|  | clear(); | 
|  |  | 
|  | LayoutMap = nullptr; | 
|  | BigEndian = false; | 
|  | AllocaAddrSpace = 0; | 
|  | StackNaturalAlign = 0; | 
|  | ProgramAddrSpace = 0; | 
|  | ManglingMode = MM_None; | 
|  | NonIntegralAddressSpaces.clear(); | 
|  |  | 
|  | // Default alignments | 
|  | for (const LayoutAlignElem &E : DefaultAlignments) { | 
|  | setAlignment((AlignTypeEnum)E.AlignType, E.ABIAlign, E.PrefAlign, | 
|  | E.TypeBitWidth); | 
|  | } | 
|  | setPointerAlignment(0, 8, 8, 8, 8); | 
|  |  | 
|  | parseSpecifier(Desc); | 
|  | } | 
|  |  | 
|  | /// Checked version of split, to ensure mandatory subparts. | 
|  | static std::pair<StringRef, StringRef> split(StringRef Str, char Separator) { | 
|  | assert(!Str.empty() && "parse error, string can't be empty here"); | 
|  | std::pair<StringRef, StringRef> Split = Str.split(Separator); | 
|  | if (Split.second.empty() && Split.first != Str) | 
|  | report_fatal_error("Trailing separator in datalayout string"); | 
|  | if (!Split.second.empty() && Split.first.empty()) | 
|  | report_fatal_error("Expected token before separator in datalayout string"); | 
|  | return Split; | 
|  | } | 
|  |  | 
|  | /// Get an unsigned integer, including error checks. | 
|  | static unsigned getInt(StringRef R) { | 
|  | unsigned Result; | 
|  | bool error = R.getAsInteger(10, Result); (void)error; | 
|  | if (error) | 
|  | report_fatal_error("not a number, or does not fit in an unsigned int"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Convert bits into bytes. Assert if not a byte width multiple. | 
|  | static unsigned inBytes(unsigned Bits) { | 
|  | if (Bits % 8) | 
|  | report_fatal_error("number of bits must be a byte width multiple"); | 
|  | return Bits / 8; | 
|  | } | 
|  |  | 
|  | static unsigned getAddrSpace(StringRef R) { | 
|  | unsigned AddrSpace = getInt(R); | 
|  | if (!isUInt<24>(AddrSpace)) | 
|  | report_fatal_error("Invalid address space, must be a 24-bit integer"); | 
|  | return AddrSpace; | 
|  | } | 
|  |  | 
|  | void DataLayout::parseSpecifier(StringRef Desc) { | 
|  | StringRepresentation = Desc; | 
|  | while (!Desc.empty()) { | 
|  | // Split at '-'. | 
|  | std::pair<StringRef, StringRef> Split = split(Desc, '-'); | 
|  | Desc = Split.second; | 
|  |  | 
|  | // Split at ':'. | 
|  | Split = split(Split.first, ':'); | 
|  |  | 
|  | // Aliases used below. | 
|  | StringRef &Tok  = Split.first;  // Current token. | 
|  | StringRef &Rest = Split.second; // The rest of the string. | 
|  |  | 
|  | if (Tok == "ni") { | 
|  | do { | 
|  | Split = split(Rest, ':'); | 
|  | Rest = Split.second; | 
|  | unsigned AS = getInt(Split.first); | 
|  | if (AS == 0) | 
|  | report_fatal_error("Address space 0 can never be non-integral"); | 
|  | NonIntegralAddressSpaces.push_back(AS); | 
|  | } while (!Rest.empty()); | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | char Specifier = Tok.front(); | 
|  | Tok = Tok.substr(1); | 
|  |  | 
|  | switch (Specifier) { | 
|  | case 's': | 
|  | // Ignored for backward compatibility. | 
|  | // FIXME: remove this on LLVM 4.0. | 
|  | break; | 
|  | case 'E': | 
|  | BigEndian = true; | 
|  | break; | 
|  | case 'e': | 
|  | BigEndian = false; | 
|  | break; | 
|  | case 'p': { | 
|  | // Address space. | 
|  | unsigned AddrSpace = Tok.empty() ? 0 : getInt(Tok); | 
|  | if (!isUInt<24>(AddrSpace)) | 
|  | report_fatal_error("Invalid address space, must be a 24bit integer"); | 
|  |  | 
|  | // Size. | 
|  | if (Rest.empty()) | 
|  | report_fatal_error( | 
|  | "Missing size specification for pointer in datalayout string"); | 
|  | Split = split(Rest, ':'); | 
|  | unsigned PointerMemSize = inBytes(getInt(Tok)); | 
|  | if (!PointerMemSize) | 
|  | report_fatal_error("Invalid pointer size of 0 bytes"); | 
|  |  | 
|  | // ABI alignment. | 
|  | if (Rest.empty()) | 
|  | report_fatal_error( | 
|  | "Missing alignment specification for pointer in datalayout string"); | 
|  | Split = split(Rest, ':'); | 
|  | unsigned PointerABIAlign = inBytes(getInt(Tok)); | 
|  | if (!isPowerOf2_64(PointerABIAlign)) | 
|  | report_fatal_error( | 
|  | "Pointer ABI alignment must be a power of 2"); | 
|  |  | 
|  | // Size of index used in GEP for address calculation. | 
|  | // The parameter is optional. By default it is equal to size of pointer. | 
|  | unsigned IndexSize = PointerMemSize; | 
|  |  | 
|  | // Preferred alignment. | 
|  | unsigned PointerPrefAlign = PointerABIAlign; | 
|  | if (!Rest.empty()) { | 
|  | Split = split(Rest, ':'); | 
|  | PointerPrefAlign = inBytes(getInt(Tok)); | 
|  | if (!isPowerOf2_64(PointerPrefAlign)) | 
|  | report_fatal_error( | 
|  | "Pointer preferred alignment must be a power of 2"); | 
|  |  | 
|  | // Now read the index. It is the second optional parameter here. | 
|  | if (!Rest.empty()) { | 
|  | Split = split(Rest, ':'); | 
|  | IndexSize = inBytes(getInt(Tok)); | 
|  | if (!IndexSize) | 
|  | report_fatal_error("Invalid index size of 0 bytes"); | 
|  | } | 
|  | } | 
|  | setPointerAlignment(AddrSpace, PointerABIAlign, PointerPrefAlign, | 
|  | PointerMemSize, IndexSize); | 
|  | break; | 
|  | } | 
|  | case 'i': | 
|  | case 'v': | 
|  | case 'f': | 
|  | case 'a': { | 
|  | AlignTypeEnum AlignType; | 
|  | switch (Specifier) { | 
|  | default: llvm_unreachable("Unexpected specifier!"); | 
|  | case 'i': AlignType = INTEGER_ALIGN; break; | 
|  | case 'v': AlignType = VECTOR_ALIGN; break; | 
|  | case 'f': AlignType = FLOAT_ALIGN; break; | 
|  | case 'a': AlignType = AGGREGATE_ALIGN; break; | 
|  | } | 
|  |  | 
|  | // Bit size. | 
|  | unsigned Size = Tok.empty() ? 0 : getInt(Tok); | 
|  |  | 
|  | if (AlignType == AGGREGATE_ALIGN && Size != 0) | 
|  | report_fatal_error( | 
|  | "Sized aggregate specification in datalayout string"); | 
|  |  | 
|  | // ABI alignment. | 
|  | if (Rest.empty()) | 
|  | report_fatal_error( | 
|  | "Missing alignment specification in datalayout string"); | 
|  | Split = split(Rest, ':'); | 
|  | unsigned ABIAlign = inBytes(getInt(Tok)); | 
|  | if (AlignType != AGGREGATE_ALIGN && !ABIAlign) | 
|  | report_fatal_error( | 
|  | "ABI alignment specification must be >0 for non-aggregate types"); | 
|  |  | 
|  | // Preferred alignment. | 
|  | unsigned PrefAlign = ABIAlign; | 
|  | if (!Rest.empty()) { | 
|  | Split = split(Rest, ':'); | 
|  | PrefAlign = inBytes(getInt(Tok)); | 
|  | } | 
|  |  | 
|  | setAlignment(AlignType, ABIAlign, PrefAlign, Size); | 
|  |  | 
|  | break; | 
|  | } | 
|  | case 'n':  // Native integer types. | 
|  | while (true) { | 
|  | unsigned Width = getInt(Tok); | 
|  | if (Width == 0) | 
|  | report_fatal_error( | 
|  | "Zero width native integer type in datalayout string"); | 
|  | LegalIntWidths.push_back(Width); | 
|  | if (Rest.empty()) | 
|  | break; | 
|  | Split = split(Rest, ':'); | 
|  | } | 
|  | break; | 
|  | case 'S': { // Stack natural alignment. | 
|  | StackNaturalAlign = inBytes(getInt(Tok)); | 
|  | break; | 
|  | } | 
|  | case 'P': { // Function address space. | 
|  | ProgramAddrSpace = getAddrSpace(Tok); | 
|  | break; | 
|  | } | 
|  | case 'A': { // Default stack/alloca address space. | 
|  | AllocaAddrSpace = getAddrSpace(Tok); | 
|  | break; | 
|  | } | 
|  | case 'm': | 
|  | if (!Tok.empty()) | 
|  | report_fatal_error("Unexpected trailing characters after mangling specifier in datalayout string"); | 
|  | if (Rest.empty()) | 
|  | report_fatal_error("Expected mangling specifier in datalayout string"); | 
|  | if (Rest.size() > 1) | 
|  | report_fatal_error("Unknown mangling specifier in datalayout string"); | 
|  | switch(Rest[0]) { | 
|  | default: | 
|  | report_fatal_error("Unknown mangling in datalayout string"); | 
|  | case 'e': | 
|  | ManglingMode = MM_ELF; | 
|  | break; | 
|  | case 'o': | 
|  | ManglingMode = MM_MachO; | 
|  | break; | 
|  | case 'm': | 
|  | ManglingMode = MM_Mips; | 
|  | break; | 
|  | case 'w': | 
|  | ManglingMode = MM_WinCOFF; | 
|  | break; | 
|  | case 'x': | 
|  | ManglingMode = MM_WinCOFFX86; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | report_fatal_error("Unknown specifier in datalayout string"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DataLayout::DataLayout(const Module *M) { | 
|  | init(M); | 
|  | } | 
|  |  | 
|  | void DataLayout::init(const Module *M) { *this = M->getDataLayout(); } | 
|  |  | 
|  | bool DataLayout::operator==(const DataLayout &Other) const { | 
|  | bool Ret = BigEndian == Other.BigEndian && | 
|  | AllocaAddrSpace == Other.AllocaAddrSpace && | 
|  | StackNaturalAlign == Other.StackNaturalAlign && | 
|  | ProgramAddrSpace == Other.ProgramAddrSpace && | 
|  | ManglingMode == Other.ManglingMode && | 
|  | LegalIntWidths == Other.LegalIntWidths && | 
|  | Alignments == Other.Alignments && Pointers == Other.Pointers; | 
|  | // Note: getStringRepresentation() might differs, it is not canonicalized | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | DataLayout::AlignmentsTy::iterator | 
|  | DataLayout::findAlignmentLowerBound(AlignTypeEnum AlignType, | 
|  | uint32_t BitWidth) { | 
|  | auto Pair = std::make_pair((unsigned)AlignType, BitWidth); | 
|  | return std::lower_bound(Alignments.begin(), Alignments.end(), Pair, | 
|  | [](const LayoutAlignElem &LHS, | 
|  | const std::pair<unsigned, uint32_t> &RHS) { | 
|  | return std::tie(LHS.AlignType, LHS.TypeBitWidth) < | 
|  | std::tie(RHS.first, RHS.second); | 
|  | }); | 
|  | } | 
|  |  | 
|  | void | 
|  | DataLayout::setAlignment(AlignTypeEnum align_type, unsigned abi_align, | 
|  | unsigned pref_align, uint32_t bit_width) { | 
|  | if (!isUInt<24>(bit_width)) | 
|  | report_fatal_error("Invalid bit width, must be a 24bit integer"); | 
|  | if (!isUInt<16>(abi_align)) | 
|  | report_fatal_error("Invalid ABI alignment, must be a 16bit integer"); | 
|  | if (!isUInt<16>(pref_align)) | 
|  | report_fatal_error("Invalid preferred alignment, must be a 16bit integer"); | 
|  | if (abi_align != 0 && !isPowerOf2_64(abi_align)) | 
|  | report_fatal_error("Invalid ABI alignment, must be a power of 2"); | 
|  | if (pref_align != 0 && !isPowerOf2_64(pref_align)) | 
|  | report_fatal_error("Invalid preferred alignment, must be a power of 2"); | 
|  |  | 
|  | if (pref_align < abi_align) | 
|  | report_fatal_error( | 
|  | "Preferred alignment cannot be less than the ABI alignment"); | 
|  |  | 
|  | AlignmentsTy::iterator I = findAlignmentLowerBound(align_type, bit_width); | 
|  | if (I != Alignments.end() && | 
|  | I->AlignType == (unsigned)align_type && I->TypeBitWidth == bit_width) { | 
|  | // Update the abi, preferred alignments. | 
|  | I->ABIAlign = abi_align; | 
|  | I->PrefAlign = pref_align; | 
|  | } else { | 
|  | // Insert before I to keep the vector sorted. | 
|  | Alignments.insert(I, LayoutAlignElem::get(align_type, abi_align, | 
|  | pref_align, bit_width)); | 
|  | } | 
|  | } | 
|  |  | 
|  | DataLayout::PointersTy::iterator | 
|  | DataLayout::findPointerLowerBound(uint32_t AddressSpace) { | 
|  | return std::lower_bound(Pointers.begin(), Pointers.end(), AddressSpace, | 
|  | [](const PointerAlignElem &A, uint32_t AddressSpace) { | 
|  | return A.AddressSpace < AddressSpace; | 
|  | }); | 
|  | } | 
|  |  | 
|  | void DataLayout::setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign, | 
|  | unsigned PrefAlign, uint32_t TypeByteWidth, | 
|  | uint32_t IndexWidth) { | 
|  | if (PrefAlign < ABIAlign) | 
|  | report_fatal_error( | 
|  | "Preferred alignment cannot be less than the ABI alignment"); | 
|  |  | 
|  | PointersTy::iterator I = findPointerLowerBound(AddrSpace); | 
|  | if (I == Pointers.end() || I->AddressSpace != AddrSpace) { | 
|  | Pointers.insert(I, PointerAlignElem::get(AddrSpace, ABIAlign, PrefAlign, | 
|  | TypeByteWidth, IndexWidth)); | 
|  | } else { | 
|  | I->ABIAlign = ABIAlign; | 
|  | I->PrefAlign = PrefAlign; | 
|  | I->TypeByteWidth = TypeByteWidth; | 
|  | I->IndexWidth = IndexWidth; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or | 
|  | /// preferred if ABIInfo = false) the layout wants for the specified datatype. | 
|  | unsigned DataLayout::getAlignmentInfo(AlignTypeEnum AlignType, | 
|  | uint32_t BitWidth, bool ABIInfo, | 
|  | Type *Ty) const { | 
|  | AlignmentsTy::const_iterator I = findAlignmentLowerBound(AlignType, BitWidth); | 
|  | // See if we found an exact match. Of if we are looking for an integer type, | 
|  | // but don't have an exact match take the next largest integer. This is where | 
|  | // the lower_bound will point to when it fails an exact match. | 
|  | if (I != Alignments.end() && I->AlignType == (unsigned)AlignType && | 
|  | (I->TypeBitWidth == BitWidth || AlignType == INTEGER_ALIGN)) | 
|  | return ABIInfo ? I->ABIAlign : I->PrefAlign; | 
|  |  | 
|  | if (AlignType == INTEGER_ALIGN) { | 
|  | // If we didn't have a larger value try the largest value we have. | 
|  | if (I != Alignments.begin()) { | 
|  | --I; // Go to the previous entry and see if its an integer. | 
|  | if (I->AlignType == INTEGER_ALIGN) | 
|  | return ABIInfo ? I->ABIAlign : I->PrefAlign; | 
|  | } | 
|  | } else if (AlignType == VECTOR_ALIGN) { | 
|  | // By default, use natural alignment for vector types. This is consistent | 
|  | // with what clang and llvm-gcc do. | 
|  | unsigned Align = getTypeAllocSize(cast<VectorType>(Ty)->getElementType()); | 
|  | Align *= cast<VectorType>(Ty)->getNumElements(); | 
|  | Align = PowerOf2Ceil(Align); | 
|  | return Align; | 
|  | } | 
|  |  | 
|  | // If we still couldn't find a reasonable default alignment, fall back | 
|  | // to a simple heuristic that the alignment is the first power of two | 
|  | // greater-or-equal to the store size of the type.  This is a reasonable | 
|  | // approximation of reality, and if the user wanted something less | 
|  | // less conservative, they should have specified it explicitly in the data | 
|  | // layout. | 
|  | unsigned Align = getTypeStoreSize(Ty); | 
|  | Align = PowerOf2Ceil(Align); | 
|  | return Align; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class StructLayoutMap { | 
|  | using LayoutInfoTy = DenseMap<StructType*, StructLayout*>; | 
|  | LayoutInfoTy LayoutInfo; | 
|  |  | 
|  | public: | 
|  | ~StructLayoutMap() { | 
|  | // Remove any layouts. | 
|  | for (const auto &I : LayoutInfo) { | 
|  | StructLayout *Value = I.second; | 
|  | Value->~StructLayout(); | 
|  | free(Value); | 
|  | } | 
|  | } | 
|  |  | 
|  | StructLayout *&operator[](StructType *STy) { | 
|  | return LayoutInfo[STy]; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | void DataLayout::clear() { | 
|  | LegalIntWidths.clear(); | 
|  | Alignments.clear(); | 
|  | Pointers.clear(); | 
|  | delete static_cast<StructLayoutMap *>(LayoutMap); | 
|  | LayoutMap = nullptr; | 
|  | } | 
|  |  | 
|  | DataLayout::~DataLayout() { | 
|  | clear(); | 
|  | } | 
|  |  | 
|  | const StructLayout *DataLayout::getStructLayout(StructType *Ty) const { | 
|  | if (!LayoutMap) | 
|  | LayoutMap = new StructLayoutMap(); | 
|  |  | 
|  | StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap); | 
|  | StructLayout *&SL = (*STM)[Ty]; | 
|  | if (SL) return SL; | 
|  |  | 
|  | // Otherwise, create the struct layout.  Because it is variable length, we | 
|  | // malloc it, then use placement new. | 
|  | int NumElts = Ty->getNumElements(); | 
|  | StructLayout *L = (StructLayout *) | 
|  | safe_malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t)); | 
|  |  | 
|  | // Set SL before calling StructLayout's ctor.  The ctor could cause other | 
|  | // entries to be added to TheMap, invalidating our reference. | 
|  | SL = L; | 
|  |  | 
|  | new (L) StructLayout(Ty, *this); | 
|  |  | 
|  | return L; | 
|  | } | 
|  |  | 
|  | unsigned DataLayout::getPointerABIAlignment(unsigned AS) const { | 
|  | PointersTy::const_iterator I = findPointerLowerBound(AS); | 
|  | if (I == Pointers.end() || I->AddressSpace != AS) { | 
|  | I = findPointerLowerBound(0); | 
|  | assert(I->AddressSpace == 0); | 
|  | } | 
|  | return I->ABIAlign; | 
|  | } | 
|  |  | 
|  | unsigned DataLayout::getPointerPrefAlignment(unsigned AS) const { | 
|  | PointersTy::const_iterator I = findPointerLowerBound(AS); | 
|  | if (I == Pointers.end() || I->AddressSpace != AS) { | 
|  | I = findPointerLowerBound(0); | 
|  | assert(I->AddressSpace == 0); | 
|  | } | 
|  | return I->PrefAlign; | 
|  | } | 
|  |  | 
|  | unsigned DataLayout::getPointerSize(unsigned AS) const { | 
|  | PointersTy::const_iterator I = findPointerLowerBound(AS); | 
|  | if (I == Pointers.end() || I->AddressSpace != AS) { | 
|  | I = findPointerLowerBound(0); | 
|  | assert(I->AddressSpace == 0); | 
|  | } | 
|  | return I->TypeByteWidth; | 
|  | } | 
|  |  | 
|  | unsigned DataLayout::getMaxPointerSize() const { | 
|  | unsigned MaxPointerSize = 0; | 
|  | for (auto &P : Pointers) | 
|  | MaxPointerSize = std::max(MaxPointerSize, P.TypeByteWidth); | 
|  |  | 
|  | return MaxPointerSize; | 
|  | } | 
|  |  | 
|  | unsigned DataLayout::getPointerTypeSizeInBits(Type *Ty) const { | 
|  | assert(Ty->isPtrOrPtrVectorTy() && | 
|  | "This should only be called with a pointer or pointer vector type"); | 
|  | Ty = Ty->getScalarType(); | 
|  | return getPointerSizeInBits(cast<PointerType>(Ty)->getAddressSpace()); | 
|  | } | 
|  |  | 
|  | unsigned DataLayout::getIndexSize(unsigned AS) const { | 
|  | PointersTy::const_iterator I = findPointerLowerBound(AS); | 
|  | if (I == Pointers.end() || I->AddressSpace != AS) { | 
|  | I = findPointerLowerBound(0); | 
|  | assert(I->AddressSpace == 0); | 
|  | } | 
|  | return I->IndexWidth; | 
|  | } | 
|  |  | 
|  | unsigned DataLayout::getIndexTypeSizeInBits(Type *Ty) const { | 
|  | assert(Ty->isPtrOrPtrVectorTy() && | 
|  | "This should only be called with a pointer or pointer vector type"); | 
|  | Ty = Ty->getScalarType(); | 
|  | return getIndexSizeInBits(cast<PointerType>(Ty)->getAddressSpace()); | 
|  | } | 
|  |  | 
|  | /*! | 
|  | \param abi_or_pref Flag that determines which alignment is returned. true | 
|  | returns the ABI alignment, false returns the preferred alignment. | 
|  | \param Ty The underlying type for which alignment is determined. | 
|  |  | 
|  | Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref | 
|  | == false) for the requested type \a Ty. | 
|  | */ | 
|  | unsigned DataLayout::getAlignment(Type *Ty, bool abi_or_pref) const { | 
|  | AlignTypeEnum AlignType; | 
|  |  | 
|  | assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); | 
|  | switch (Ty->getTypeID()) { | 
|  | // Early escape for the non-numeric types. | 
|  | case Type::LabelTyID: | 
|  | return (abi_or_pref | 
|  | ? getPointerABIAlignment(0) | 
|  | : getPointerPrefAlignment(0)); | 
|  | case Type::PointerTyID: { | 
|  | unsigned AS = cast<PointerType>(Ty)->getAddressSpace(); | 
|  | return (abi_or_pref | 
|  | ? getPointerABIAlignment(AS) | 
|  | : getPointerPrefAlignment(AS)); | 
|  | } | 
|  | case Type::ArrayTyID: | 
|  | return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref); | 
|  |  | 
|  | case Type::StructTyID: { | 
|  | // Packed structure types always have an ABI alignment of one. | 
|  | if (cast<StructType>(Ty)->isPacked() && abi_or_pref) | 
|  | return 1; | 
|  |  | 
|  | // Get the layout annotation... which is lazily created on demand. | 
|  | const StructLayout *Layout = getStructLayout(cast<StructType>(Ty)); | 
|  | unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty); | 
|  | return std::max(Align, Layout->getAlignment()); | 
|  | } | 
|  | case Type::IntegerTyID: | 
|  | AlignType = INTEGER_ALIGN; | 
|  | break; | 
|  | case Type::HalfTyID: | 
|  | case Type::FloatTyID: | 
|  | case Type::DoubleTyID: | 
|  | // PPC_FP128TyID and FP128TyID have different data contents, but the | 
|  | // same size and alignment, so they look the same here. | 
|  | case Type::PPC_FP128TyID: | 
|  | case Type::FP128TyID: | 
|  | case Type::X86_FP80TyID: | 
|  | AlignType = FLOAT_ALIGN; | 
|  | break; | 
|  | case Type::X86_MMXTyID: | 
|  | case Type::VectorTyID: | 
|  | AlignType = VECTOR_ALIGN; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Bad type for getAlignment!!!"); | 
|  | } | 
|  |  | 
|  | return getAlignmentInfo(AlignType, getTypeSizeInBits(Ty), abi_or_pref, Ty); | 
|  | } | 
|  |  | 
|  | unsigned DataLayout::getABITypeAlignment(Type *Ty) const { | 
|  | return getAlignment(Ty, true); | 
|  | } | 
|  |  | 
|  | /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for | 
|  | /// an integer type of the specified bitwidth. | 
|  | unsigned DataLayout::getABIIntegerTypeAlignment(unsigned BitWidth) const { | 
|  | return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, nullptr); | 
|  | } | 
|  |  | 
|  | unsigned DataLayout::getPrefTypeAlignment(Type *Ty) const { | 
|  | return getAlignment(Ty, false); | 
|  | } | 
|  |  | 
|  | unsigned DataLayout::getPreferredTypeAlignmentShift(Type *Ty) const { | 
|  | unsigned Align = getPrefTypeAlignment(Ty); | 
|  | assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); | 
|  | return Log2_32(Align); | 
|  | } | 
|  |  | 
|  | IntegerType *DataLayout::getIntPtrType(LLVMContext &C, | 
|  | unsigned AddressSpace) const { | 
|  | return IntegerType::get(C, getIndexSizeInBits(AddressSpace)); | 
|  | } | 
|  |  | 
|  | Type *DataLayout::getIntPtrType(Type *Ty) const { | 
|  | assert(Ty->isPtrOrPtrVectorTy() && | 
|  | "Expected a pointer or pointer vector type."); | 
|  | unsigned NumBits = getIndexTypeSizeInBits(Ty); | 
|  | IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits); | 
|  | if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) | 
|  | return VectorType::get(IntTy, VecTy->getNumElements()); | 
|  | return IntTy; | 
|  | } | 
|  |  | 
|  | Type *DataLayout::getSmallestLegalIntType(LLVMContext &C, unsigned Width) const { | 
|  | for (unsigned LegalIntWidth : LegalIntWidths) | 
|  | if (Width <= LegalIntWidth) | 
|  | return Type::getIntNTy(C, LegalIntWidth); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | unsigned DataLayout::getLargestLegalIntTypeSizeInBits() const { | 
|  | auto Max = std::max_element(LegalIntWidths.begin(), LegalIntWidths.end()); | 
|  | return Max != LegalIntWidths.end() ? *Max : 0; | 
|  | } | 
|  |  | 
|  | Type *DataLayout::getIndexType(Type *Ty) const { | 
|  | assert(Ty->isPtrOrPtrVectorTy() && | 
|  | "Expected a pointer or pointer vector type."); | 
|  | unsigned NumBits = getIndexTypeSizeInBits(Ty); | 
|  | IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits); | 
|  | if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) | 
|  | return VectorType::get(IntTy, VecTy->getNumElements()); | 
|  | return IntTy; | 
|  | } | 
|  |  | 
|  | int64_t DataLayout::getIndexedOffsetInType(Type *ElemTy, | 
|  | ArrayRef<Value *> Indices) const { | 
|  | int64_t Result = 0; | 
|  |  | 
|  | generic_gep_type_iterator<Value* const*> | 
|  | GTI = gep_type_begin(ElemTy, Indices), | 
|  | GTE = gep_type_end(ElemTy, Indices); | 
|  | for (; GTI != GTE; ++GTI) { | 
|  | Value *Idx = GTI.getOperand(); | 
|  | if (StructType *STy = GTI.getStructTypeOrNull()) { | 
|  | assert(Idx->getType()->isIntegerTy(32) && "Illegal struct idx"); | 
|  | unsigned FieldNo = cast<ConstantInt>(Idx)->getZExtValue(); | 
|  |  | 
|  | // Get structure layout information... | 
|  | const StructLayout *Layout = getStructLayout(STy); | 
|  |  | 
|  | // Add in the offset, as calculated by the structure layout info... | 
|  | Result += Layout->getElementOffset(FieldNo); | 
|  | } else { | 
|  | // Get the array index and the size of each array element. | 
|  | if (int64_t arrayIdx = cast<ConstantInt>(Idx)->getSExtValue()) | 
|  | Result += arrayIdx * getTypeAllocSize(GTI.getIndexedType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// getPreferredAlignment - Return the preferred alignment of the specified | 
|  | /// global.  This includes an explicitly requested alignment (if the global | 
|  | /// has one). | 
|  | unsigned DataLayout::getPreferredAlignment(const GlobalVariable *GV) const { | 
|  | unsigned GVAlignment = GV->getAlignment(); | 
|  | // If a section is specified, always precisely honor explicit alignment, | 
|  | // so we don't insert padding into a section we don't control. | 
|  | if (GVAlignment && GV->hasSection()) | 
|  | return GVAlignment; | 
|  |  | 
|  | // If no explicit alignment is specified, compute the alignment based on | 
|  | // the IR type. If an alignment is specified, increase it to match the ABI | 
|  | // alignment of the IR type. | 
|  | // | 
|  | // FIXME: Not sure it makes sense to use the alignment of the type if | 
|  | // there's already an explicit alignment specification. | 
|  | Type *ElemType = GV->getValueType(); | 
|  | unsigned Alignment = getPrefTypeAlignment(ElemType); | 
|  | if (GVAlignment >= Alignment) { | 
|  | Alignment = GVAlignment; | 
|  | } else if (GVAlignment != 0) { | 
|  | Alignment = std::max(GVAlignment, getABITypeAlignment(ElemType)); | 
|  | } | 
|  |  | 
|  | // If no explicit alignment is specified, and the global is large, increase | 
|  | // the alignment to 16. | 
|  | // FIXME: Why 16, specifically? | 
|  | if (GV->hasInitializer() && GVAlignment == 0) { | 
|  | if (Alignment < 16) { | 
|  | // If the global is not external, see if it is large.  If so, give it a | 
|  | // larger alignment. | 
|  | if (getTypeSizeInBits(ElemType) > 128) | 
|  | Alignment = 16;    // 16-byte alignment. | 
|  | } | 
|  | } | 
|  | return Alignment; | 
|  | } | 
|  |  | 
|  | /// getPreferredAlignmentLog - Return the preferred alignment of the | 
|  | /// specified global, returned in log form.  This includes an explicitly | 
|  | /// requested alignment (if the global has one). | 
|  | unsigned DataLayout::getPreferredAlignmentLog(const GlobalVariable *GV) const { | 
|  | return Log2_32(getPreferredAlignment(GV)); | 
|  | } |