|  | //===-- ARMTargetTransformInfo.cpp - ARM specific TTI pass ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// \file | 
|  | /// This file implements a TargetTransformInfo analysis pass specific to the | 
|  | /// ARM target machine. It uses the target's detailed information to provide | 
|  | /// more precise answers to certain TTI queries, while letting the target | 
|  | /// independent and default TTI implementations handle the rest. | 
|  | /// | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "ARM.h" | 
|  | #include "ARMTargetMachine.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Target/CostTable.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "armtti" | 
|  |  | 
|  | // Declare the pass initialization routine locally as target-specific passes | 
|  | // don't have a target-wide initialization entry point, and so we rely on the | 
|  | // pass constructor initialization. | 
|  | namespace llvm { | 
|  | void initializeARMTTIPass(PassRegistry &); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class ARMTTI final : public ImmutablePass, public TargetTransformInfo { | 
|  | const ARMBaseTargetMachine *TM; | 
|  | const ARMSubtarget *ST; | 
|  | const ARMTargetLowering *TLI; | 
|  |  | 
|  | /// Estimate the overhead of scalarizing an instruction. Insert and Extract | 
|  | /// are set if the result needs to be inserted and/or extracted from vectors. | 
|  | unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; | 
|  |  | 
|  | public: | 
|  | ARMTTI() : ImmutablePass(ID), TM(nullptr), ST(nullptr), TLI(nullptr) { | 
|  | llvm_unreachable("This pass cannot be directly constructed"); | 
|  | } | 
|  |  | 
|  | ARMTTI(const ARMBaseTargetMachine *TM) | 
|  | : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()), | 
|  | TLI(TM->getTargetLowering()) { | 
|  | initializeARMTTIPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void initializePass() override { | 
|  | pushTTIStack(this); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | TargetTransformInfo::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | /// Pass identification. | 
|  | static char ID; | 
|  |  | 
|  | /// Provide necessary pointer adjustments for the two base classes. | 
|  | void *getAdjustedAnalysisPointer(const void *ID) override { | 
|  | if (ID == &TargetTransformInfo::ID) | 
|  | return (TargetTransformInfo*)this; | 
|  | return this; | 
|  | } | 
|  |  | 
|  | /// \name Scalar TTI Implementations | 
|  | /// @{ | 
|  | using TargetTransformInfo::getIntImmCost; | 
|  | unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override; | 
|  |  | 
|  | /// @} | 
|  |  | 
|  |  | 
|  | /// \name Vector TTI Implementations | 
|  | /// @{ | 
|  |  | 
|  | unsigned getNumberOfRegisters(bool Vector) const override { | 
|  | if (Vector) { | 
|  | if (ST->hasNEON()) | 
|  | return 16; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ST->isThumb1Only()) | 
|  | return 8; | 
|  | return 13; | 
|  | } | 
|  |  | 
|  | unsigned getRegisterBitWidth(bool Vector) const override { | 
|  | if (Vector) { | 
|  | if (ST->hasNEON()) | 
|  | return 128; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 32; | 
|  | } | 
|  |  | 
|  | unsigned getMaximumUnrollFactor() const override { | 
|  | // These are out of order CPUs: | 
|  | if (ST->isCortexA15() || ST->isSwift()) | 
|  | return 2; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, | 
|  | int Index, Type *SubTp) const override; | 
|  |  | 
|  | unsigned getCastInstrCost(unsigned Opcode, Type *Dst, | 
|  | Type *Src) const override; | 
|  |  | 
|  | unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, | 
|  | Type *CondTy) const override; | 
|  |  | 
|  | unsigned getVectorInstrCost(unsigned Opcode, Type *Val, | 
|  | unsigned Index) const override; | 
|  |  | 
|  | unsigned getAddressComputationCost(Type *Val, | 
|  | bool IsComplex) const override; | 
|  |  | 
|  | unsigned | 
|  | getArithmeticInstrCost(unsigned Opcode, Type *Ty, | 
|  | OperandValueKind Op1Info = OK_AnyValue, | 
|  | OperandValueKind Op2Info = OK_AnyValue) const override; | 
|  |  | 
|  | unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, | 
|  | unsigned AddressSpace) const override; | 
|  | /// @} | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | INITIALIZE_AG_PASS(ARMTTI, TargetTransformInfo, "armtti", | 
|  | "ARM Target Transform Info", true, true, false) | 
|  | char ARMTTI::ID = 0; | 
|  |  | 
|  | ImmutablePass * | 
|  | llvm::createARMTargetTransformInfoPass(const ARMBaseTargetMachine *TM) { | 
|  | return new ARMTTI(TM); | 
|  | } | 
|  |  | 
|  |  | 
|  | unsigned ARMTTI::getIntImmCost(const APInt &Imm, Type *Ty) const { | 
|  | assert(Ty->isIntegerTy()); | 
|  |  | 
|  | unsigned Bits = Ty->getPrimitiveSizeInBits(); | 
|  | if (Bits == 0 || Bits > 32) | 
|  | return 4; | 
|  |  | 
|  | int32_t SImmVal = Imm.getSExtValue(); | 
|  | uint32_t ZImmVal = Imm.getZExtValue(); | 
|  | if (!ST->isThumb()) { | 
|  | if ((SImmVal >= 0 && SImmVal < 65536) || | 
|  | (ARM_AM::getSOImmVal(ZImmVal) != -1) || | 
|  | (ARM_AM::getSOImmVal(~ZImmVal) != -1)) | 
|  | return 1; | 
|  | return ST->hasV6T2Ops() ? 2 : 3; | 
|  | } | 
|  | if (ST->isThumb2()) { | 
|  | if ((SImmVal >= 0 && SImmVal < 65536) || | 
|  | (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || | 
|  | (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) | 
|  | return 1; | 
|  | return ST->hasV6T2Ops() ? 2 : 3; | 
|  | } | 
|  | // Thumb1. | 
|  | if (SImmVal >= 0 && SImmVal < 256) | 
|  | return 1; | 
|  | if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) | 
|  | return 2; | 
|  | // Load from constantpool. | 
|  | return 3; | 
|  | } | 
|  |  | 
|  | unsigned ARMTTI::getCastInstrCost(unsigned Opcode, Type *Dst, | 
|  | Type *Src) const { | 
|  | int ISD = TLI->InstructionOpcodeToISD(Opcode); | 
|  | assert(ISD && "Invalid opcode"); | 
|  |  | 
|  | // Single to/from double precision conversions. | 
|  | static const CostTblEntry<MVT::SimpleValueType> NEONFltDblTbl[] = { | 
|  | // Vector fptrunc/fpext conversions. | 
|  | { ISD::FP_ROUND,   MVT::v2f64, 2 }, | 
|  | { ISD::FP_EXTEND,  MVT::v2f32, 2 }, | 
|  | { ISD::FP_EXTEND,  MVT::v4f32, 4 } | 
|  | }; | 
|  |  | 
|  | if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND || | 
|  | ISD == ISD::FP_EXTEND)) { | 
|  | std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src); | 
|  | int Idx = CostTableLookup(NEONFltDblTbl, ISD, LT.second); | 
|  | if (Idx != -1) | 
|  | return LT.first * NEONFltDblTbl[Idx].Cost; | 
|  | } | 
|  |  | 
|  | EVT SrcTy = TLI->getValueType(Src); | 
|  | EVT DstTy = TLI->getValueType(Dst); | 
|  |  | 
|  | if (!SrcTy.isSimple() || !DstTy.isSimple()) | 
|  | return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); | 
|  |  | 
|  | // Some arithmetic, load and store operations have specific instructions | 
|  | // to cast up/down their types automatically at no extra cost. | 
|  | // TODO: Get these tables to know at least what the related operations are. | 
|  | static const TypeConversionCostTblEntry<MVT::SimpleValueType> | 
|  | NEONVectorConversionTbl[] = { | 
|  | { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, | 
|  | { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, | 
|  | { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 }, | 
|  | { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 }, | 
|  |  | 
|  | // The number of vmovl instructions for the extension. | 
|  | { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, | 
|  | { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, | 
|  | { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, | 
|  | { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, | 
|  | { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, | 
|  |  | 
|  | // Operations that we legalize using splitting. | 
|  | { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 }, | 
|  | { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 }, | 
|  |  | 
|  | // Vector float <-> i32 conversions. | 
|  | { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 }, | 
|  |  | 
|  | { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 }, | 
|  |  | 
|  | { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 }, | 
|  | { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 }, | 
|  | { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 }, | 
|  | { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 }, | 
|  | { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 }, | 
|  |  | 
|  | // Vector double <-> i32 conversions. | 
|  | { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 }, | 
|  |  | 
|  | { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 }, | 
|  |  | 
|  | { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 }, | 
|  | { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 }, | 
|  | { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 }, | 
|  | { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 } | 
|  | }; | 
|  |  | 
|  | if (SrcTy.isVector() && ST->hasNEON()) { | 
|  | int Idx = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, | 
|  | DstTy.getSimpleVT(), SrcTy.getSimpleVT()); | 
|  | if (Idx != -1) | 
|  | return NEONVectorConversionTbl[Idx].Cost; | 
|  | } | 
|  |  | 
|  | // Scalar float to integer conversions. | 
|  | static const TypeConversionCostTblEntry<MVT::SimpleValueType> | 
|  | NEONFloatConversionTbl[] = { | 
|  | { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 } | 
|  | }; | 
|  | if (SrcTy.isFloatingPoint() && ST->hasNEON()) { | 
|  | int Idx = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, | 
|  | DstTy.getSimpleVT(), SrcTy.getSimpleVT()); | 
|  | if (Idx != -1) | 
|  | return NEONFloatConversionTbl[Idx].Cost; | 
|  | } | 
|  |  | 
|  | // Scalar integer to float conversions. | 
|  | static const TypeConversionCostTblEntry<MVT::SimpleValueType> | 
|  | NEONIntegerConversionTbl[] = { | 
|  | { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 } | 
|  | }; | 
|  |  | 
|  | if (SrcTy.isInteger() && ST->hasNEON()) { | 
|  | int Idx = ConvertCostTableLookup(NEONIntegerConversionTbl, ISD, | 
|  | DstTy.getSimpleVT(), SrcTy.getSimpleVT()); | 
|  | if (Idx != -1) | 
|  | return NEONIntegerConversionTbl[Idx].Cost; | 
|  | } | 
|  |  | 
|  | // Scalar integer conversion costs. | 
|  | static const TypeConversionCostTblEntry<MVT::SimpleValueType> | 
|  | ARMIntegerConversionTbl[] = { | 
|  | // i16 -> i64 requires two dependent operations. | 
|  | { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, | 
|  |  | 
|  | // Truncates on i64 are assumed to be free. | 
|  | { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 }, | 
|  | { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 }, | 
|  | { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 }, | 
|  | { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 } | 
|  | }; | 
|  |  | 
|  | if (SrcTy.isInteger()) { | 
|  | int Idx = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, | 
|  | DstTy.getSimpleVT(), SrcTy.getSimpleVT()); | 
|  | if (Idx != -1) | 
|  | return ARMIntegerConversionTbl[Idx].Cost; | 
|  | } | 
|  |  | 
|  | return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); | 
|  | } | 
|  |  | 
|  | unsigned ARMTTI::getVectorInstrCost(unsigned Opcode, Type *ValTy, | 
|  | unsigned Index) const { | 
|  | // Penalize inserting into an D-subregister. We end up with a three times | 
|  | // lower estimated throughput on swift. | 
|  | if (ST->isSwift() && | 
|  | Opcode == Instruction::InsertElement && | 
|  | ValTy->isVectorTy() && | 
|  | ValTy->getScalarSizeInBits() <= 32) | 
|  | return 3; | 
|  |  | 
|  | return TargetTransformInfo::getVectorInstrCost(Opcode, ValTy, Index); | 
|  | } | 
|  |  | 
|  | unsigned ARMTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, | 
|  | Type *CondTy) const { | 
|  |  | 
|  | int ISD = TLI->InstructionOpcodeToISD(Opcode); | 
|  | // On NEON a a vector select gets lowered to vbsl. | 
|  | if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) { | 
|  | // Lowering of some vector selects is currently far from perfect. | 
|  | static const TypeConversionCostTblEntry<MVT::SimpleValueType> | 
|  | NEONVectorSelectTbl[] = { | 
|  | { ISD::SELECT, MVT::v16i1, MVT::v16i16, 2*16 + 1 + 3*1 + 4*1 }, | 
|  | { ISD::SELECT, MVT::v8i1, MVT::v8i32, 4*8 + 1*3 + 1*4 + 1*2 }, | 
|  | { ISD::SELECT, MVT::v16i1, MVT::v16i32, 4*16 + 1*6 + 1*8 + 1*4 }, | 
|  | { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, | 
|  | { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, | 
|  | { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } | 
|  | }; | 
|  |  | 
|  | EVT SelCondTy = TLI->getValueType(CondTy); | 
|  | EVT SelValTy = TLI->getValueType(ValTy); | 
|  | if (SelCondTy.isSimple() && SelValTy.isSimple()) { | 
|  | int Idx = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, | 
|  | SelCondTy.getSimpleVT(), | 
|  | SelValTy.getSimpleVT()); | 
|  | if (Idx != -1) | 
|  | return NEONVectorSelectTbl[Idx].Cost; | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy); | 
|  | return LT.first; | 
|  | } | 
|  |  | 
|  | return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy); | 
|  | } | 
|  |  | 
|  | unsigned ARMTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const { | 
|  | // Address computations in vectorized code with non-consecutive addresses will | 
|  | // likely result in more instructions compared to scalar code where the | 
|  | // computation can more often be merged into the index mode. The resulting | 
|  | // extra micro-ops can significantly decrease throughput. | 
|  | unsigned NumVectorInstToHideOverhead = 10; | 
|  |  | 
|  | if (Ty->isVectorTy() && IsComplex) | 
|  | return NumVectorInstToHideOverhead; | 
|  |  | 
|  | // In many cases the address computation is not merged into the instruction | 
|  | // addressing mode. | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | unsigned ARMTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, | 
|  | Type *SubTp) const { | 
|  | // We only handle costs of reverse shuffles for now. | 
|  | if (Kind != SK_Reverse) | 
|  | return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp); | 
|  |  | 
|  | static const CostTblEntry<MVT::SimpleValueType> NEONShuffleTbl[] = { | 
|  | // Reverse shuffle cost one instruction if we are shuffling within a double | 
|  | // word (vrev) or two if we shuffle a quad word (vrev, vext). | 
|  | { ISD::VECTOR_SHUFFLE, MVT::v2i32, 1 }, | 
|  | { ISD::VECTOR_SHUFFLE, MVT::v2f32, 1 }, | 
|  | { ISD::VECTOR_SHUFFLE, MVT::v2i64, 1 }, | 
|  | { ISD::VECTOR_SHUFFLE, MVT::v2f64, 1 }, | 
|  |  | 
|  | { ISD::VECTOR_SHUFFLE, MVT::v4i32, 2 }, | 
|  | { ISD::VECTOR_SHUFFLE, MVT::v4f32, 2 }, | 
|  | { ISD::VECTOR_SHUFFLE, MVT::v8i16, 2 }, | 
|  | { ISD::VECTOR_SHUFFLE, MVT::v16i8, 2 } | 
|  | }; | 
|  |  | 
|  | std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp); | 
|  |  | 
|  | int Idx = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second); | 
|  | if (Idx == -1) | 
|  | return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp); | 
|  |  | 
|  | return LT.first * NEONShuffleTbl[Idx].Cost; | 
|  | } | 
|  |  | 
|  | unsigned ARMTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty, | 
|  | OperandValueKind Op1Info, | 
|  | OperandValueKind Op2Info) const { | 
|  |  | 
|  | int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); | 
|  | std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty); | 
|  |  | 
|  | const unsigned FunctionCallDivCost = 20; | 
|  | const unsigned ReciprocalDivCost = 10; | 
|  | static const CostTblEntry<MVT::SimpleValueType> CostTbl[] = { | 
|  | // Division. | 
|  | // These costs are somewhat random. Choose a cost of 20 to indicate that | 
|  | // vectorizing devision (added function call) is going to be very expensive. | 
|  | // Double registers types. | 
|  | { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, | 
|  | { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, | 
|  | { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, | 
|  | { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, | 
|  | { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, | 
|  | { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, | 
|  | { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost}, | 
|  | { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost}, | 
|  | { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, | 
|  | { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost}, | 
|  | { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost}, | 
|  | { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost}, | 
|  | // Quad register types. | 
|  | { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, | 
|  | { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, | 
|  | { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, | 
|  | { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, | 
|  | { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, | 
|  | { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, | 
|  | { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, | 
|  | { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, | 
|  | { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, | 
|  | { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, | 
|  | { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, | 
|  | { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, | 
|  | // Multiplication. | 
|  | }; | 
|  |  | 
|  | int Idx = -1; | 
|  |  | 
|  | if (ST->hasNEON()) | 
|  | Idx = CostTableLookup(CostTbl, ISDOpcode, LT.second); | 
|  |  | 
|  | if (Idx != -1) | 
|  | return LT.first * CostTbl[Idx].Cost; | 
|  |  | 
|  | unsigned Cost = | 
|  | TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info); | 
|  |  | 
|  | // This is somewhat of a hack. The problem that we are facing is that SROA | 
|  | // creates a sequence of shift, and, or instructions to construct values. | 
|  | // These sequences are recognized by the ISel and have zero-cost. Not so for | 
|  | // the vectorized code. Because we have support for v2i64 but not i64 those | 
|  | // sequences look particularly beneficial to vectorize. | 
|  | // To work around this we increase the cost of v2i64 operations to make them | 
|  | // seem less beneficial. | 
|  | if (LT.second == MVT::v2i64 && | 
|  | Op2Info == TargetTransformInfo::OK_UniformConstantValue) | 
|  | Cost += 4; | 
|  |  | 
|  | return Cost; | 
|  | } | 
|  |  | 
|  | unsigned ARMTTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, | 
|  | unsigned AddressSpace) const { | 
|  | std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src); | 
|  |  | 
|  | if (Src->isVectorTy() && Alignment != 16 && | 
|  | Src->getVectorElementType()->isDoubleTy()) { | 
|  | // Unaligned loads/stores are extremely inefficient. | 
|  | // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. | 
|  | return LT.first * 4; | 
|  | } | 
|  | return LT.first; | 
|  | } |