|  | //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "ARMTargetTransformInfo.h" | 
|  | #include "ARMSubtarget.h" | 
|  | #include "MCTargetDesc/ARMAddressingModes.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/CodeGen/CostTable.h" | 
|  | #include "llvm/CodeGen/ISDOpcodes.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/MC/SubtargetFeature.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/MachineValueType.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "armtti" | 
|  |  | 
|  | bool ARMTTIImpl::areInlineCompatible(const Function *Caller, | 
|  | const Function *Callee) const { | 
|  | const TargetMachine &TM = getTLI()->getTargetMachine(); | 
|  | const FeatureBitset &CallerBits = | 
|  | TM.getSubtargetImpl(*Caller)->getFeatureBits(); | 
|  | const FeatureBitset &CalleeBits = | 
|  | TM.getSubtargetImpl(*Callee)->getFeatureBits(); | 
|  |  | 
|  | // To inline a callee, all features not in the whitelist must match exactly. | 
|  | bool MatchExact = (CallerBits & ~InlineFeatureWhitelist) == | 
|  | (CalleeBits & ~InlineFeatureWhitelist); | 
|  | // For features in the whitelist, the callee's features must be a subset of | 
|  | // the callers'. | 
|  | bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeatureWhitelist) == | 
|  | (CalleeBits & InlineFeatureWhitelist); | 
|  | return MatchExact && MatchSubset; | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { | 
|  | assert(Ty->isIntegerTy()); | 
|  |  | 
|  | unsigned Bits = Ty->getPrimitiveSizeInBits(); | 
|  | if (Bits == 0 || Imm.getActiveBits() >= 64) | 
|  | return 4; | 
|  |  | 
|  | int64_t SImmVal = Imm.getSExtValue(); | 
|  | uint64_t ZImmVal = Imm.getZExtValue(); | 
|  | if (!ST->isThumb()) { | 
|  | if ((SImmVal >= 0 && SImmVal < 65536) || | 
|  | (ARM_AM::getSOImmVal(ZImmVal) != -1) || | 
|  | (ARM_AM::getSOImmVal(~ZImmVal) != -1)) | 
|  | return 1; | 
|  | return ST->hasV6T2Ops() ? 2 : 3; | 
|  | } | 
|  | if (ST->isThumb2()) { | 
|  | if ((SImmVal >= 0 && SImmVal < 65536) || | 
|  | (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || | 
|  | (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) | 
|  | return 1; | 
|  | return ST->hasV6T2Ops() ? 2 : 3; | 
|  | } | 
|  | // Thumb1, any i8 imm cost 1. | 
|  | if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256)) | 
|  | return 1; | 
|  | if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) | 
|  | return 2; | 
|  | // Load from constantpool. | 
|  | return 3; | 
|  | } | 
|  |  | 
|  | // Constants smaller than 256 fit in the immediate field of | 
|  | // Thumb1 instructions so we return a zero cost and 1 otherwise. | 
|  | int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, | 
|  | const APInt &Imm, Type *Ty) { | 
|  | if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, | 
|  | Type *Ty) { | 
|  | // Division by a constant can be turned into multiplication, but only if we | 
|  | // know it's constant. So it's not so much that the immediate is cheap (it's | 
|  | // not), but that the alternative is worse. | 
|  | // FIXME: this is probably unneeded with GlobalISel. | 
|  | if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || | 
|  | Opcode == Instruction::SRem || Opcode == Instruction::URem) && | 
|  | Idx == 1) | 
|  | return 0; | 
|  |  | 
|  | if (Opcode == Instruction::And) | 
|  | // Conversion to BIC is free, and means we can use ~Imm instead. | 
|  | return std::min(getIntImmCost(Imm, Ty), getIntImmCost(~Imm, Ty)); | 
|  |  | 
|  | if (Opcode == Instruction::Add) | 
|  | // Conversion to SUB is free, and means we can use -Imm instead. | 
|  | return std::min(getIntImmCost(Imm, Ty), getIntImmCost(-Imm, Ty)); | 
|  |  | 
|  | if (Opcode == Instruction::ICmp && Imm.isNegative() && | 
|  | Ty->getIntegerBitWidth() == 32) { | 
|  | int64_t NegImm = -Imm.getSExtValue(); | 
|  | if (ST->isThumb2() && NegImm < 1<<12) | 
|  | // icmp X, #-C -> cmn X, #C | 
|  | return 0; | 
|  | if (ST->isThumb() && NegImm < 1<<8) | 
|  | // icmp X, #-C -> adds X, #C | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // xor a, -1 can always be folded to MVN | 
|  | if (Opcode == Instruction::Xor && Imm.isAllOnesValue()) | 
|  | return 0; | 
|  |  | 
|  | return getIntImmCost(Imm, Ty); | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, | 
|  | const Instruction *I) { | 
|  | int ISD = TLI->InstructionOpcodeToISD(Opcode); | 
|  | assert(ISD && "Invalid opcode"); | 
|  |  | 
|  | // Single to/from double precision conversions. | 
|  | static const CostTblEntry NEONFltDblTbl[] = { | 
|  | // Vector fptrunc/fpext conversions. | 
|  | { ISD::FP_ROUND,   MVT::v2f64, 2 }, | 
|  | { ISD::FP_EXTEND,  MVT::v2f32, 2 }, | 
|  | { ISD::FP_EXTEND,  MVT::v4f32, 4 } | 
|  | }; | 
|  |  | 
|  | if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND || | 
|  | ISD == ISD::FP_EXTEND)) { | 
|  | std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); | 
|  | if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) | 
|  | return LT.first * Entry->Cost; | 
|  | } | 
|  |  | 
|  | EVT SrcTy = TLI->getValueType(DL, Src); | 
|  | EVT DstTy = TLI->getValueType(DL, Dst); | 
|  |  | 
|  | if (!SrcTy.isSimple() || !DstTy.isSimple()) | 
|  | return BaseT::getCastInstrCost(Opcode, Dst, Src); | 
|  |  | 
|  | // Some arithmetic, load and store operations have specific instructions | 
|  | // to cast up/down their types automatically at no extra cost. | 
|  | // TODO: Get these tables to know at least what the related operations are. | 
|  | static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { | 
|  | { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, | 
|  | { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, | 
|  | { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 }, | 
|  | { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 }, | 
|  |  | 
|  | // The number of vmovl instructions for the extension. | 
|  | { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, | 
|  | { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, | 
|  | { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, | 
|  | { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, | 
|  | { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, | 
|  | { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, | 
|  |  | 
|  | // Operations that we legalize using splitting. | 
|  | { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 }, | 
|  | { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 }, | 
|  |  | 
|  | // Vector float <-> i32 conversions. | 
|  | { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 }, | 
|  |  | 
|  | { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 }, | 
|  |  | 
|  | { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 }, | 
|  | { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 }, | 
|  | { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 }, | 
|  | { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 }, | 
|  | { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 }, | 
|  |  | 
|  | // Vector double <-> i32 conversions. | 
|  | { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 }, | 
|  |  | 
|  | { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 }, | 
|  | { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 }, | 
|  |  | 
|  | { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 }, | 
|  | { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 }, | 
|  | { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 }, | 
|  | { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 } | 
|  | }; | 
|  |  | 
|  | if (SrcTy.isVector() && ST->hasNEON()) { | 
|  | if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, | 
|  | DstTy.getSimpleVT(), | 
|  | SrcTy.getSimpleVT())) | 
|  | return Entry->Cost; | 
|  | } | 
|  |  | 
|  | // Scalar float to integer conversions. | 
|  | static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { | 
|  | { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 }, | 
|  | { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 }, | 
|  | { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 } | 
|  | }; | 
|  | if (SrcTy.isFloatingPoint() && ST->hasNEON()) { | 
|  | if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, | 
|  | DstTy.getSimpleVT(), | 
|  | SrcTy.getSimpleVT())) | 
|  | return Entry->Cost; | 
|  | } | 
|  |  | 
|  | // Scalar integer to float conversions. | 
|  | static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { | 
|  | { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 }, | 
|  | { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 }, | 
|  | { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 } | 
|  | }; | 
|  |  | 
|  | if (SrcTy.isInteger() && ST->hasNEON()) { | 
|  | if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, | 
|  | ISD, DstTy.getSimpleVT(), | 
|  | SrcTy.getSimpleVT())) | 
|  | return Entry->Cost; | 
|  | } | 
|  |  | 
|  | // Scalar integer conversion costs. | 
|  | static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { | 
|  | // i16 -> i64 requires two dependent operations. | 
|  | { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, | 
|  |  | 
|  | // Truncates on i64 are assumed to be free. | 
|  | { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 }, | 
|  | { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 }, | 
|  | { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 }, | 
|  | { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 } | 
|  | }; | 
|  |  | 
|  | if (SrcTy.isInteger()) { | 
|  | if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, | 
|  | DstTy.getSimpleVT(), | 
|  | SrcTy.getSimpleVT())) | 
|  | return Entry->Cost; | 
|  | } | 
|  |  | 
|  | return BaseT::getCastInstrCost(Opcode, Dst, Src); | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, | 
|  | unsigned Index) { | 
|  | // Penalize inserting into an D-subregister. We end up with a three times | 
|  | // lower estimated throughput on swift. | 
|  | if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && | 
|  | ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) | 
|  | return 3; | 
|  |  | 
|  | if ((Opcode == Instruction::InsertElement || | 
|  | Opcode == Instruction::ExtractElement)) { | 
|  | // Cross-class copies are expensive on many microarchitectures, | 
|  | // so assume they are expensive by default. | 
|  | if (ValTy->getVectorElementType()->isIntegerTy()) | 
|  | return 3; | 
|  |  | 
|  | // Even if it's not a cross class copy, this likely leads to mixing | 
|  | // of NEON and VFP code and should be therefore penalized. | 
|  | if (ValTy->isVectorTy() && | 
|  | ValTy->getScalarSizeInBits() <= 32) | 
|  | return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U); | 
|  | } | 
|  |  | 
|  | return BaseT::getVectorInstrCost(Opcode, ValTy, Index); | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, | 
|  | const Instruction *I) { | 
|  | int ISD = TLI->InstructionOpcodeToISD(Opcode); | 
|  | // On NEON a vector select gets lowered to vbsl. | 
|  | if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) { | 
|  | // Lowering of some vector selects is currently far from perfect. | 
|  | static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { | 
|  | { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, | 
|  | { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, | 
|  | { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } | 
|  | }; | 
|  |  | 
|  | EVT SelCondTy = TLI->getValueType(DL, CondTy); | 
|  | EVT SelValTy = TLI->getValueType(DL, ValTy); | 
|  | if (SelCondTy.isSimple() && SelValTy.isSimple()) { | 
|  | if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, | 
|  | SelCondTy.getSimpleVT(), | 
|  | SelValTy.getSimpleVT())) | 
|  | return Entry->Cost; | 
|  | } | 
|  |  | 
|  | std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); | 
|  | return LT.first; | 
|  | } | 
|  |  | 
|  | return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I); | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, | 
|  | const SCEV *Ptr) { | 
|  | // Address computations in vectorized code with non-consecutive addresses will | 
|  | // likely result in more instructions compared to scalar code where the | 
|  | // computation can more often be merged into the index mode. The resulting | 
|  | // extra micro-ops can significantly decrease throughput. | 
|  | unsigned NumVectorInstToHideOverhead = 10; | 
|  | int MaxMergeDistance = 64; | 
|  |  | 
|  | if (Ty->isVectorTy() && SE && | 
|  | !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) | 
|  | return NumVectorInstToHideOverhead; | 
|  |  | 
|  | // In many cases the address computation is not merged into the instruction | 
|  | // addressing mode. | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, | 
|  | Type *SubTp) { | 
|  | if (Kind == TTI::SK_Broadcast) { | 
|  | static const CostTblEntry NEONDupTbl[] = { | 
|  | // VDUP handles these cases. | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v8i8,  1}, | 
|  |  | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}}; | 
|  |  | 
|  | std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); | 
|  |  | 
|  | if (const auto *Entry = CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, | 
|  | LT.second)) | 
|  | return LT.first * Entry->Cost; | 
|  |  | 
|  | return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); | 
|  | } | 
|  | if (Kind == TTI::SK_Reverse) { | 
|  | static const CostTblEntry NEONShuffleTbl[] = { | 
|  | // Reverse shuffle cost one instruction if we are shuffling within a | 
|  | // double word (vrev) or two if we shuffle a quad word (vrev, vext). | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v8i8,  1}, | 
|  |  | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; | 
|  |  | 
|  | std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); | 
|  |  | 
|  | if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, | 
|  | LT.second)) | 
|  | return LT.first * Entry->Cost; | 
|  |  | 
|  | return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); | 
|  | } | 
|  | if (Kind == TTI::SK_Select) { | 
|  | static const CostTblEntry NEONSelShuffleTbl[] = { | 
|  | // Select shuffle cost table for ARM. Cost is the number of instructions | 
|  | // required to create the shuffled vector. | 
|  |  | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, | 
|  |  | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, | 
|  |  | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, | 
|  |  | 
|  | {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; | 
|  |  | 
|  | std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); | 
|  | if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl, | 
|  | ISD::VECTOR_SHUFFLE, LT.second)) | 
|  | return LT.first * Entry->Cost; | 
|  | return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); | 
|  | } | 
|  | return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getArithmeticInstrCost( | 
|  | unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, | 
|  | TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, | 
|  | TTI::OperandValueProperties Opd2PropInfo, | 
|  | ArrayRef<const Value *> Args) { | 
|  | int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); | 
|  | std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); | 
|  |  | 
|  | const unsigned FunctionCallDivCost = 20; | 
|  | const unsigned ReciprocalDivCost = 10; | 
|  | static const CostTblEntry CostTbl[] = { | 
|  | // Division. | 
|  | // These costs are somewhat random. Choose a cost of 20 to indicate that | 
|  | // vectorizing devision (added function call) is going to be very expensive. | 
|  | // Double registers types. | 
|  | { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, | 
|  | { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, | 
|  | { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, | 
|  | { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, | 
|  | { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, | 
|  | { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, | 
|  | { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost}, | 
|  | { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost}, | 
|  | { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, | 
|  | { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost}, | 
|  | { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost}, | 
|  | { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost}, | 
|  | // Quad register types. | 
|  | { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, | 
|  | { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, | 
|  | { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, | 
|  | { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, | 
|  | { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, | 
|  | { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, | 
|  | { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, | 
|  | { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, | 
|  | { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, | 
|  | { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, | 
|  | { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, | 
|  | { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, | 
|  | { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, | 
|  | // Multiplication. | 
|  | }; | 
|  |  | 
|  | if (ST->hasNEON()) | 
|  | if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) | 
|  | return LT.first * Entry->Cost; | 
|  |  | 
|  | int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, | 
|  | Opd1PropInfo, Opd2PropInfo); | 
|  |  | 
|  | // This is somewhat of a hack. The problem that we are facing is that SROA | 
|  | // creates a sequence of shift, and, or instructions to construct values. | 
|  | // These sequences are recognized by the ISel and have zero-cost. Not so for | 
|  | // the vectorized code. Because we have support for v2i64 but not i64 those | 
|  | // sequences look particularly beneficial to vectorize. | 
|  | // To work around this we increase the cost of v2i64 operations to make them | 
|  | // seem less beneficial. | 
|  | if (LT.second == MVT::v2i64 && | 
|  | Op2Info == TargetTransformInfo::OK_UniformConstantValue) | 
|  | Cost += 4; | 
|  |  | 
|  | return Cost; | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, | 
|  | unsigned AddressSpace, const Instruction *I) { | 
|  | std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); | 
|  |  | 
|  | if (Src->isVectorTy() && Alignment != 16 && | 
|  | Src->getVectorElementType()->isDoubleTy()) { | 
|  | // Unaligned loads/stores are extremely inefficient. | 
|  | // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. | 
|  | return LT.first * 4; | 
|  | } | 
|  | return LT.first; | 
|  | } | 
|  |  | 
|  | int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, | 
|  | unsigned Factor, | 
|  | ArrayRef<unsigned> Indices, | 
|  | unsigned Alignment, | 
|  | unsigned AddressSpace, | 
|  | bool UseMaskForCond, | 
|  | bool UseMaskForGaps) { | 
|  | assert(Factor >= 2 && "Invalid interleave factor"); | 
|  | assert(isa<VectorType>(VecTy) && "Expect a vector type"); | 
|  |  | 
|  | // vldN/vstN doesn't support vector types of i64/f64 element. | 
|  | bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; | 
|  |  | 
|  | if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits && | 
|  | !UseMaskForCond && !UseMaskForGaps) { | 
|  | unsigned NumElts = VecTy->getVectorNumElements(); | 
|  | auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor); | 
|  |  | 
|  | // vldN/vstN only support legal vector types of size 64 or 128 in bits. | 
|  | // Accesses having vector types that are a multiple of 128 bits can be | 
|  | // matched to more than one vldN/vstN instruction. | 
|  | if (NumElts % Factor == 0 && | 
|  | TLI->isLegalInterleavedAccessType(SubVecTy, DL)) | 
|  | return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL); | 
|  | } | 
|  |  | 
|  | return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, | 
|  | Alignment, AddressSpace, | 
|  | UseMaskForCond, UseMaskForGaps); | 
|  | } | 
|  |  | 
|  | void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, | 
|  | TTI::UnrollingPreferences &UP) { | 
|  | // Only currently enable these preferences for M-Class cores. | 
|  | if (!ST->isMClass()) | 
|  | return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP); | 
|  |  | 
|  | // Disable loop unrolling for Oz and Os. | 
|  | UP.OptSizeThreshold = 0; | 
|  | UP.PartialOptSizeThreshold = 0; | 
|  | if (L->getHeader()->getParent()->optForSize()) | 
|  | return; | 
|  |  | 
|  | // Only enable on Thumb-2 targets. | 
|  | if (!ST->isThumb2()) | 
|  | return; | 
|  |  | 
|  | SmallVector<BasicBlock*, 4> ExitingBlocks; | 
|  | L->getExitingBlocks(ExitingBlocks); | 
|  | LLVM_DEBUG(dbgs() << "Loop has:\n" | 
|  | << "Blocks: " << L->getNumBlocks() << "\n" | 
|  | << "Exit blocks: " << ExitingBlocks.size() << "\n"); | 
|  |  | 
|  | // Only allow another exit other than the latch. This acts as an early exit | 
|  | // as it mirrors the profitability calculation of the runtime unroller. | 
|  | if (ExitingBlocks.size() > 2) | 
|  | return; | 
|  |  | 
|  | // Limit the CFG of the loop body for targets with a branch predictor. | 
|  | // Allowing 4 blocks permits if-then-else diamonds in the body. | 
|  | if (ST->hasBranchPredictor() && L->getNumBlocks() > 4) | 
|  | return; | 
|  |  | 
|  | // Scan the loop: don't unroll loops with calls as this could prevent | 
|  | // inlining. | 
|  | unsigned Cost = 0; | 
|  | for (auto *BB : L->getBlocks()) { | 
|  | for (auto &I : *BB) { | 
|  | if (isa<CallInst>(I) || isa<InvokeInst>(I)) { | 
|  | ImmutableCallSite CS(&I); | 
|  | if (const Function *F = CS.getCalledFunction()) { | 
|  | if (!isLoweredToCall(F)) | 
|  | continue; | 
|  | } | 
|  | return; | 
|  | } | 
|  | SmallVector<const Value*, 4> Operands(I.value_op_begin(), | 
|  | I.value_op_end()); | 
|  | Cost += getUserCost(&I, Operands); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n"); | 
|  |  | 
|  | UP.Partial = true; | 
|  | UP.Runtime = true; | 
|  | UP.UnrollRemainder = true; | 
|  | UP.DefaultUnrollRuntimeCount = 4; | 
|  | UP.UnrollAndJam = true; | 
|  | UP.UnrollAndJamInnerLoopThreshold = 60; | 
|  |  | 
|  | // Force unrolling small loops can be very useful because of the branch | 
|  | // taken cost of the backedge. | 
|  | if (Cost < 12) | 
|  | UP.Force = true; | 
|  | } |