|  | //===-- X86DisassemblerDecoder.cpp - Disassembler decoder -----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file is part of the X86 Disassembler. | 
|  | // It contains the implementation of the instruction decoder. | 
|  | // Documentation for the disassembler can be found in X86Disassembler.h. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include <cstdarg> /* for va_*()       */ | 
|  | #include <cstdio>  /* for vsnprintf()  */ | 
|  | #include <cstdlib> /* for exit()       */ | 
|  | #include <cstring> /* for memset()     */ | 
|  |  | 
|  | #include "X86DisassemblerDecoder.h" | 
|  |  | 
|  | using namespace llvm::X86Disassembler; | 
|  |  | 
|  | /// Specifies whether a ModR/M byte is needed and (if so) which | 
|  | /// instruction each possible value of the ModR/M byte corresponds to.  Once | 
|  | /// this information is known, we have narrowed down to a single instruction. | 
|  | struct ModRMDecision { | 
|  | uint8_t modrm_type; | 
|  | uint16_t instructionIDs; | 
|  | }; | 
|  |  | 
|  | /// Specifies which set of ModR/M->instruction tables to look at | 
|  | /// given a particular opcode. | 
|  | struct OpcodeDecision { | 
|  | ModRMDecision modRMDecisions[256]; | 
|  | }; | 
|  |  | 
|  | /// Specifies which opcode->instruction tables to look at given | 
|  | /// a particular context (set of attributes).  Since there are many possible | 
|  | /// contexts, the decoder first uses CONTEXTS_SYM to determine which context | 
|  | /// applies given a specific set of attributes.  Hence there are only IC_max | 
|  | /// entries in this table, rather than 2^(ATTR_max). | 
|  | struct ContextDecision { | 
|  | OpcodeDecision opcodeDecisions[IC_max]; | 
|  | }; | 
|  |  | 
|  | #include "X86GenDisassemblerTables.inc" | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | #define debug(s) do { Debug(__FILE__, __LINE__, s); } while (0) | 
|  | #else | 
|  | #define debug(s) do { } while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * contextForAttrs - Client for the instruction context table.  Takes a set of | 
|  | *   attributes and returns the appropriate decode context. | 
|  | * | 
|  | * @param attrMask  - Attributes, from the enumeration attributeBits. | 
|  | * @return          - The InstructionContext to use when looking up an | 
|  | *                    an instruction with these attributes. | 
|  | */ | 
|  | static InstructionContext contextForAttrs(uint16_t attrMask) { | 
|  | return static_cast<InstructionContext>(CONTEXTS_SYM[attrMask]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * modRMRequired - Reads the appropriate instruction table to determine whether | 
|  | *   the ModR/M byte is required to decode a particular instruction. | 
|  | * | 
|  | * @param type        - The opcode type (i.e., how many bytes it has). | 
|  | * @param insnContext - The context for the instruction, as returned by | 
|  | *                      contextForAttrs. | 
|  | * @param opcode      - The last byte of the instruction's opcode, not counting | 
|  | *                      ModR/M extensions and escapes. | 
|  | * @return            - true if the ModR/M byte is required, false otherwise. | 
|  | */ | 
|  | static int modRMRequired(OpcodeType type, | 
|  | InstructionContext insnContext, | 
|  | uint16_t opcode) { | 
|  | const struct ContextDecision* decision = nullptr; | 
|  |  | 
|  | switch (type) { | 
|  | case ONEBYTE: | 
|  | decision = &ONEBYTE_SYM; | 
|  | break; | 
|  | case TWOBYTE: | 
|  | decision = &TWOBYTE_SYM; | 
|  | break; | 
|  | case THREEBYTE_38: | 
|  | decision = &THREEBYTE38_SYM; | 
|  | break; | 
|  | case THREEBYTE_3A: | 
|  | decision = &THREEBYTE3A_SYM; | 
|  | break; | 
|  | case XOP8_MAP: | 
|  | decision = &XOP8_MAP_SYM; | 
|  | break; | 
|  | case XOP9_MAP: | 
|  | decision = &XOP9_MAP_SYM; | 
|  | break; | 
|  | case XOPA_MAP: | 
|  | decision = &XOPA_MAP_SYM; | 
|  | break; | 
|  | case THREEDNOW_MAP: | 
|  | decision = &THREEDNOW_MAP_SYM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return decision->opcodeDecisions[insnContext].modRMDecisions[opcode]. | 
|  | modrm_type != MODRM_ONEENTRY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * decode - Reads the appropriate instruction table to obtain the unique ID of | 
|  | *   an instruction. | 
|  | * | 
|  | * @param type        - See modRMRequired(). | 
|  | * @param insnContext - See modRMRequired(). | 
|  | * @param opcode      - See modRMRequired(). | 
|  | * @param modRM       - The ModR/M byte if required, or any value if not. | 
|  | * @return            - The UID of the instruction, or 0 on failure. | 
|  | */ | 
|  | static InstrUID decode(OpcodeType type, | 
|  | InstructionContext insnContext, | 
|  | uint8_t opcode, | 
|  | uint8_t modRM) { | 
|  | const struct ModRMDecision* dec = nullptr; | 
|  |  | 
|  | switch (type) { | 
|  | case ONEBYTE: | 
|  | dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case TWOBYTE: | 
|  | dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case THREEBYTE_38: | 
|  | dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case THREEBYTE_3A: | 
|  | dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case XOP8_MAP: | 
|  | dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case XOP9_MAP: | 
|  | dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case XOPA_MAP: | 
|  | dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case THREEDNOW_MAP: | 
|  | dec = &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (dec->modrm_type) { | 
|  | default: | 
|  | debug("Corrupt table!  Unknown modrm_type"); | 
|  | return 0; | 
|  | case MODRM_ONEENTRY: | 
|  | return modRMTable[dec->instructionIDs]; | 
|  | case MODRM_SPLITRM: | 
|  | if (modFromModRM(modRM) == 0x3) | 
|  | return modRMTable[dec->instructionIDs+1]; | 
|  | return modRMTable[dec->instructionIDs]; | 
|  | case MODRM_SPLITREG: | 
|  | if (modFromModRM(modRM) == 0x3) | 
|  | return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8]; | 
|  | return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)]; | 
|  | case MODRM_SPLITMISC: | 
|  | if (modFromModRM(modRM) == 0x3) | 
|  | return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8]; | 
|  | return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)]; | 
|  | case MODRM_FULL: | 
|  | return modRMTable[dec->instructionIDs+modRM]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * specifierForUID - Given a UID, returns the name and operand specification for | 
|  | *   that instruction. | 
|  | * | 
|  | * @param uid - The unique ID for the instruction.  This should be returned by | 
|  | *              decode(); specifierForUID will not check bounds. | 
|  | * @return    - A pointer to the specification for that instruction. | 
|  | */ | 
|  | static const struct InstructionSpecifier *specifierForUID(InstrUID uid) { | 
|  | return &INSTRUCTIONS_SYM[uid]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * consumeByte - Uses the reader function provided by the user to consume one | 
|  | *   byte from the instruction's memory and advance the cursor. | 
|  | * | 
|  | * @param insn  - The instruction with the reader function to use.  The cursor | 
|  | *                for this instruction is advanced. | 
|  | * @param byte  - A pointer to a pre-allocated memory buffer to be populated | 
|  | *                with the data read. | 
|  | * @return      - 0 if the read was successful; nonzero otherwise. | 
|  | */ | 
|  | static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) { | 
|  | int ret = insn->reader(insn->readerArg, byte, insn->readerCursor); | 
|  |  | 
|  | if (!ret) | 
|  | ++(insn->readerCursor); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * lookAtByte - Like consumeByte, but does not advance the cursor. | 
|  | * | 
|  | * @param insn  - See consumeByte(). | 
|  | * @param byte  - See consumeByte(). | 
|  | * @return      - See consumeByte(). | 
|  | */ | 
|  | static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) { | 
|  | return insn->reader(insn->readerArg, byte, insn->readerCursor); | 
|  | } | 
|  |  | 
|  | static void unconsumeByte(struct InternalInstruction* insn) { | 
|  | insn->readerCursor--; | 
|  | } | 
|  |  | 
|  | #define CONSUME_FUNC(name, type)                                  \ | 
|  | static int name(struct InternalInstruction* insn, type* ptr) {  \ | 
|  | type combined = 0;                                            \ | 
|  | unsigned offset;                                              \ | 
|  | for (offset = 0; offset < sizeof(type); ++offset) {           \ | 
|  | uint8_t byte;                                               \ | 
|  | int ret = insn->reader(insn->readerArg,                     \ | 
|  | &byte,                               \ | 
|  | insn->readerCursor + offset);        \ | 
|  | if (ret)                                                    \ | 
|  | return ret;                                               \ | 
|  | combined = combined | ((uint64_t)byte << (offset * 8));     \ | 
|  | }                                                             \ | 
|  | *ptr = combined;                                              \ | 
|  | insn->readerCursor += sizeof(type);                           \ | 
|  | return 0;                                                     \ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * consume* - Use the reader function provided by the user to consume data | 
|  | *   values of various sizes from the instruction's memory and advance the | 
|  | *   cursor appropriately.  These readers perform endian conversion. | 
|  | * | 
|  | * @param insn    - See consumeByte(). | 
|  | * @param ptr     - A pointer to a pre-allocated memory of appropriate size to | 
|  | *                  be populated with the data read. | 
|  | * @return        - See consumeByte(). | 
|  | */ | 
|  | CONSUME_FUNC(consumeInt8, int8_t) | 
|  | CONSUME_FUNC(consumeInt16, int16_t) | 
|  | CONSUME_FUNC(consumeInt32, int32_t) | 
|  | CONSUME_FUNC(consumeUInt16, uint16_t) | 
|  | CONSUME_FUNC(consumeUInt32, uint32_t) | 
|  | CONSUME_FUNC(consumeUInt64, uint64_t) | 
|  |  | 
|  | /* | 
|  | * dbgprintf - Uses the logging function provided by the user to log a single | 
|  | *   message, typically without a carriage-return. | 
|  | * | 
|  | * @param insn    - The instruction containing the logging function. | 
|  | * @param format  - See printf(). | 
|  | * @param ...     - See printf(). | 
|  | */ | 
|  | static void dbgprintf(struct InternalInstruction* insn, | 
|  | const char* format, | 
|  | ...) { | 
|  | char buffer[256]; | 
|  | va_list ap; | 
|  |  | 
|  | if (!insn->dlog) | 
|  | return; | 
|  |  | 
|  | va_start(ap, format); | 
|  | (void)vsnprintf(buffer, sizeof(buffer), format, ap); | 
|  | va_end(ap); | 
|  |  | 
|  | insn->dlog(insn->dlogArg, buffer); | 
|  | } | 
|  |  | 
|  | static bool isREX(struct InternalInstruction *insn, uint8_t prefix) { | 
|  | if (insn->mode == MODE_64BIT) | 
|  | return prefix >= 0x40 && prefix <= 0x4f; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * setPrefixPresent - Marks that a particular prefix is present as mandatory | 
|  | * | 
|  | * @param insn      - The instruction to be marked as having the prefix. | 
|  | * @param prefix    - The prefix that is present. | 
|  | */ | 
|  | static void setPrefixPresent(struct InternalInstruction *insn, uint8_t prefix) { | 
|  | uint8_t nextByte; | 
|  | switch (prefix) { | 
|  | case 0xf0: | 
|  | insn->hasLockPrefix = true; | 
|  | break; | 
|  | case 0xf2: | 
|  | case 0xf3: | 
|  | if (lookAtByte(insn, &nextByte)) | 
|  | break; | 
|  | // TODO: | 
|  | //  1. There could be several 0x66 | 
|  | //  2. if (nextByte == 0x66) and nextNextByte != 0x0f then | 
|  | //      it's not mandatory prefix | 
|  | //  3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need | 
|  | //     0x0f exactly after it to be mandatory prefix | 
|  | if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66) | 
|  | // The last of 0xf2 /0xf3 is mandatory prefix | 
|  | insn->mandatoryPrefix = prefix; | 
|  | insn->repeatPrefix = prefix; | 
|  | break; | 
|  | case 0x66: | 
|  | if (lookAtByte(insn, &nextByte)) | 
|  | break; | 
|  | // 0x66 can't overwrite existing mandatory prefix and should be ignored | 
|  | if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte))) | 
|  | insn->mandatoryPrefix = prefix; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the | 
|  | *   instruction as having them.  Also sets the instruction's default operand, | 
|  | *   address, and other relevant data sizes to report operands correctly. | 
|  | * | 
|  | * @param insn  - The instruction whose prefixes are to be read. | 
|  | * @return      - 0 if the instruction could be read until the end of the prefix | 
|  | *                bytes, and no prefixes conflicted; nonzero otherwise. | 
|  | */ | 
|  | static int readPrefixes(struct InternalInstruction* insn) { | 
|  | bool isPrefix = true; | 
|  | uint8_t byte = 0; | 
|  | uint8_t nextByte; | 
|  |  | 
|  | dbgprintf(insn, "readPrefixes()"); | 
|  |  | 
|  | while (isPrefix) { | 
|  | /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */ | 
|  | if (consumeByte(insn, &byte)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then | 
|  | * break and let it be disassembled as a normal "instruction". | 
|  | */ | 
|  | if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK | 
|  | break; | 
|  |  | 
|  | if ((byte == 0xf2 || byte == 0xf3) && !lookAtByte(insn, &nextByte)) { | 
|  | /* | 
|  | * If the byte is 0xf2 or 0xf3, and any of the following conditions are | 
|  | * met: | 
|  | * - it is followed by a LOCK (0xf0) prefix | 
|  | * - it is followed by an xchg instruction | 
|  | * then it should be disassembled as a xacquire/xrelease not repne/rep. | 
|  | */ | 
|  | if (((nextByte == 0xf0) || | 
|  | ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) { | 
|  | insn->xAcquireRelease = true; | 
|  | if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Also if the byte is 0xf3, and the following condition is met: | 
|  | * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or | 
|  | *                       "mov mem, imm" (opcode 0xc6/0xc7) instructions. | 
|  | * then it should be disassembled as an xrelease not rep. | 
|  | */ | 
|  | if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 || | 
|  | nextByte == 0xc6 || nextByte == 0xc7)) { | 
|  | insn->xAcquireRelease = true; | 
|  | if (nextByte != 0x90) // PAUSE instruction support | 
|  | break; | 
|  | } | 
|  | if (isREX(insn, nextByte)) { | 
|  | uint8_t nnextByte; | 
|  | // Go to REX prefix after the current one | 
|  | if (consumeByte(insn, &nnextByte)) | 
|  | return -1; | 
|  | // We should be able to read next byte after REX prefix | 
|  | if (lookAtByte(insn, &nnextByte)) | 
|  | return -1; | 
|  | unconsumeByte(insn); | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (byte) { | 
|  | case 0xf0:  /* LOCK */ | 
|  | case 0xf2:  /* REPNE/REPNZ */ | 
|  | case 0xf3:  /* REP or REPE/REPZ */ | 
|  | setPrefixPresent(insn, byte); | 
|  | break; | 
|  | case 0x2e:  /* CS segment override -OR- Branch not taken */ | 
|  | case 0x36:  /* SS segment override -OR- Branch taken */ | 
|  | case 0x3e:  /* DS segment override */ | 
|  | case 0x26:  /* ES segment override */ | 
|  | case 0x64:  /* FS segment override */ | 
|  | case 0x65:  /* GS segment override */ | 
|  | switch (byte) { | 
|  | case 0x2e: | 
|  | insn->segmentOverride = SEG_OVERRIDE_CS; | 
|  | break; | 
|  | case 0x36: | 
|  | insn->segmentOverride = SEG_OVERRIDE_SS; | 
|  | break; | 
|  | case 0x3e: | 
|  | insn->segmentOverride = SEG_OVERRIDE_DS; | 
|  | break; | 
|  | case 0x26: | 
|  | insn->segmentOverride = SEG_OVERRIDE_ES; | 
|  | break; | 
|  | case 0x64: | 
|  | insn->segmentOverride = SEG_OVERRIDE_FS; | 
|  | break; | 
|  | case 0x65: | 
|  | insn->segmentOverride = SEG_OVERRIDE_GS; | 
|  | break; | 
|  | default: | 
|  | debug("Unhandled override"); | 
|  | return -1; | 
|  | } | 
|  | setPrefixPresent(insn, byte); | 
|  | break; | 
|  | case 0x66:  /* Operand-size override */ | 
|  | insn->hasOpSize = true; | 
|  | setPrefixPresent(insn, byte); | 
|  | break; | 
|  | case 0x67:  /* Address-size override */ | 
|  | insn->hasAdSize = true; | 
|  | setPrefixPresent(insn, byte); | 
|  | break; | 
|  | default:    /* Not a prefix byte */ | 
|  | isPrefix = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (isPrefix) | 
|  | dbgprintf(insn, "Found prefix 0x%hhx", byte); | 
|  | } | 
|  |  | 
|  | insn->vectorExtensionType = TYPE_NO_VEX_XOP; | 
|  |  | 
|  | if (byte == 0x62) { | 
|  | uint8_t byte1, byte2; | 
|  |  | 
|  | if (consumeByte(insn, &byte1)) { | 
|  | dbgprintf(insn, "Couldn't read second byte of EVEX prefix"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (lookAtByte(insn, &byte2)) { | 
|  | dbgprintf(insn, "Couldn't read third byte of EVEX prefix"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) && | 
|  | ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) { | 
|  | insn->vectorExtensionType = TYPE_EVEX; | 
|  | } else { | 
|  | unconsumeByte(insn); /* unconsume byte1 */ | 
|  | unconsumeByte(insn); /* unconsume byte  */ | 
|  | } | 
|  |  | 
|  | if (insn->vectorExtensionType == TYPE_EVEX) { | 
|  | insn->vectorExtensionPrefix[0] = byte; | 
|  | insn->vectorExtensionPrefix[1] = byte1; | 
|  | if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) { | 
|  | dbgprintf(insn, "Couldn't read third byte of EVEX prefix"); | 
|  | return -1; | 
|  | } | 
|  | if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) { | 
|  | dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* We simulate the REX prefix for simplicity's sake */ | 
|  | if (insn->mode == MODE_64BIT) { | 
|  | insn->rexPrefix = 0x40 | 
|  | | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) | 
|  | | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) | 
|  | | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) | 
|  | | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0); | 
|  | } | 
|  |  | 
|  | dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx", | 
|  | insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], | 
|  | insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]); | 
|  | } | 
|  | } else if (byte == 0xc4) { | 
|  | uint8_t byte1; | 
|  |  | 
|  | if (lookAtByte(insn, &byte1)) { | 
|  | dbgprintf(insn, "Couldn't read second byte of VEX"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) | 
|  | insn->vectorExtensionType = TYPE_VEX_3B; | 
|  | else | 
|  | unconsumeByte(insn); | 
|  |  | 
|  | if (insn->vectorExtensionType == TYPE_VEX_3B) { | 
|  | insn->vectorExtensionPrefix[0] = byte; | 
|  | consumeByte(insn, &insn->vectorExtensionPrefix[1]); | 
|  | consumeByte(insn, &insn->vectorExtensionPrefix[2]); | 
|  |  | 
|  | /* We simulate the REX prefix for simplicity's sake */ | 
|  |  | 
|  | if (insn->mode == MODE_64BIT) | 
|  | insn->rexPrefix = 0x40 | 
|  | | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) | 
|  | | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) | 
|  | | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) | 
|  | | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0); | 
|  |  | 
|  | dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", | 
|  | insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], | 
|  | insn->vectorExtensionPrefix[2]); | 
|  | } | 
|  | } else if (byte == 0xc5) { | 
|  | uint8_t byte1; | 
|  |  | 
|  | if (lookAtByte(insn, &byte1)) { | 
|  | dbgprintf(insn, "Couldn't read second byte of VEX"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) | 
|  | insn->vectorExtensionType = TYPE_VEX_2B; | 
|  | else | 
|  | unconsumeByte(insn); | 
|  |  | 
|  | if (insn->vectorExtensionType == TYPE_VEX_2B) { | 
|  | insn->vectorExtensionPrefix[0] = byte; | 
|  | consumeByte(insn, &insn->vectorExtensionPrefix[1]); | 
|  |  | 
|  | if (insn->mode == MODE_64BIT) | 
|  | insn->rexPrefix = 0x40 | 
|  | | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2); | 
|  |  | 
|  | switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { | 
|  | default: | 
|  | break; | 
|  | case VEX_PREFIX_66: | 
|  | insn->hasOpSize = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx", | 
|  | insn->vectorExtensionPrefix[0], | 
|  | insn->vectorExtensionPrefix[1]); | 
|  | } | 
|  | } else if (byte == 0x8f) { | 
|  | uint8_t byte1; | 
|  |  | 
|  | if (lookAtByte(insn, &byte1)) { | 
|  | dbgprintf(insn, "Couldn't read second byte of XOP"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if ((byte1 & 0x38) != 0x0) /* 0 in these 3 bits is a POP instruction. */ | 
|  | insn->vectorExtensionType = TYPE_XOP; | 
|  | else | 
|  | unconsumeByte(insn); | 
|  |  | 
|  | if (insn->vectorExtensionType == TYPE_XOP) { | 
|  | insn->vectorExtensionPrefix[0] = byte; | 
|  | consumeByte(insn, &insn->vectorExtensionPrefix[1]); | 
|  | consumeByte(insn, &insn->vectorExtensionPrefix[2]); | 
|  |  | 
|  | /* We simulate the REX prefix for simplicity's sake */ | 
|  |  | 
|  | if (insn->mode == MODE_64BIT) | 
|  | insn->rexPrefix = 0x40 | 
|  | | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) | 
|  | | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) | 
|  | | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) | 
|  | | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0); | 
|  |  | 
|  | switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { | 
|  | default: | 
|  | break; | 
|  | case VEX_PREFIX_66: | 
|  | insn->hasOpSize = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx", | 
|  | insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], | 
|  | insn->vectorExtensionPrefix[2]); | 
|  | } | 
|  | } else if (isREX(insn, byte)) { | 
|  | if (lookAtByte(insn, &nextByte)) | 
|  | return -1; | 
|  | insn->rexPrefix = byte; | 
|  | dbgprintf(insn, "Found REX prefix 0x%hhx", byte); | 
|  | } else | 
|  | unconsumeByte(insn); | 
|  |  | 
|  | if (insn->mode == MODE_16BIT) { | 
|  | insn->registerSize = (insn->hasOpSize ? 4 : 2); | 
|  | insn->addressSize = (insn->hasAdSize ? 4 : 2); | 
|  | insn->displacementSize = (insn->hasAdSize ? 4 : 2); | 
|  | insn->immediateSize = (insn->hasOpSize ? 4 : 2); | 
|  | } else if (insn->mode == MODE_32BIT) { | 
|  | insn->registerSize = (insn->hasOpSize ? 2 : 4); | 
|  | insn->addressSize = (insn->hasAdSize ? 2 : 4); | 
|  | insn->displacementSize = (insn->hasAdSize ? 2 : 4); | 
|  | insn->immediateSize = (insn->hasOpSize ? 2 : 4); | 
|  | } else if (insn->mode == MODE_64BIT) { | 
|  | if (insn->rexPrefix && wFromREX(insn->rexPrefix)) { | 
|  | insn->registerSize       = 8; | 
|  | insn->addressSize = (insn->hasAdSize ? 4 : 8); | 
|  | insn->displacementSize   = 4; | 
|  | insn->immediateSize      = 4; | 
|  | } else { | 
|  | insn->registerSize = (insn->hasOpSize ? 2 : 4); | 
|  | insn->addressSize = (insn->hasAdSize ? 4 : 8); | 
|  | insn->displacementSize = (insn->hasOpSize ? 2 : 4); | 
|  | insn->immediateSize = (insn->hasOpSize ? 2 : 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int readModRM(struct InternalInstruction* insn); | 
|  |  | 
|  | /* | 
|  | * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of | 
|  | *   extended or escape opcodes). | 
|  | * | 
|  | * @param insn  - The instruction whose opcode is to be read. | 
|  | * @return      - 0 if the opcode could be read successfully; nonzero otherwise. | 
|  | */ | 
|  | static int readOpcode(struct InternalInstruction* insn) { | 
|  | /* Determine the length of the primary opcode */ | 
|  |  | 
|  | uint8_t current; | 
|  |  | 
|  | dbgprintf(insn, "readOpcode()"); | 
|  |  | 
|  | insn->opcodeType = ONEBYTE; | 
|  |  | 
|  | if (insn->vectorExtensionType == TYPE_EVEX) { | 
|  | switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) { | 
|  | default: | 
|  | dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)", | 
|  | mmFromEVEX2of4(insn->vectorExtensionPrefix[1])); | 
|  | return -1; | 
|  | case VEX_LOB_0F: | 
|  | insn->opcodeType = TWOBYTE; | 
|  | return consumeByte(insn, &insn->opcode); | 
|  | case VEX_LOB_0F38: | 
|  | insn->opcodeType = THREEBYTE_38; | 
|  | return consumeByte(insn, &insn->opcode); | 
|  | case VEX_LOB_0F3A: | 
|  | insn->opcodeType = THREEBYTE_3A; | 
|  | return consumeByte(insn, &insn->opcode); | 
|  | } | 
|  | } else if (insn->vectorExtensionType == TYPE_VEX_3B) { | 
|  | switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) { | 
|  | default: | 
|  | dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", | 
|  | mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])); | 
|  | return -1; | 
|  | case VEX_LOB_0F: | 
|  | insn->opcodeType = TWOBYTE; | 
|  | return consumeByte(insn, &insn->opcode); | 
|  | case VEX_LOB_0F38: | 
|  | insn->opcodeType = THREEBYTE_38; | 
|  | return consumeByte(insn, &insn->opcode); | 
|  | case VEX_LOB_0F3A: | 
|  | insn->opcodeType = THREEBYTE_3A; | 
|  | return consumeByte(insn, &insn->opcode); | 
|  | } | 
|  | } else if (insn->vectorExtensionType == TYPE_VEX_2B) { | 
|  | insn->opcodeType = TWOBYTE; | 
|  | return consumeByte(insn, &insn->opcode); | 
|  | } else if (insn->vectorExtensionType == TYPE_XOP) { | 
|  | switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) { | 
|  | default: | 
|  | dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", | 
|  | mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])); | 
|  | return -1; | 
|  | case XOP_MAP_SELECT_8: | 
|  | insn->opcodeType = XOP8_MAP; | 
|  | return consumeByte(insn, &insn->opcode); | 
|  | case XOP_MAP_SELECT_9: | 
|  | insn->opcodeType = XOP9_MAP; | 
|  | return consumeByte(insn, &insn->opcode); | 
|  | case XOP_MAP_SELECT_A: | 
|  | insn->opcodeType = XOPA_MAP; | 
|  | return consumeByte(insn, &insn->opcode); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (consumeByte(insn, ¤t)) | 
|  | return -1; | 
|  |  | 
|  | if (current == 0x0f) { | 
|  | dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current); | 
|  |  | 
|  | if (consumeByte(insn, ¤t)) | 
|  | return -1; | 
|  |  | 
|  | if (current == 0x38) { | 
|  | dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); | 
|  |  | 
|  | if (consumeByte(insn, ¤t)) | 
|  | return -1; | 
|  |  | 
|  | insn->opcodeType = THREEBYTE_38; | 
|  | } else if (current == 0x3a) { | 
|  | dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); | 
|  |  | 
|  | if (consumeByte(insn, ¤t)) | 
|  | return -1; | 
|  |  | 
|  | insn->opcodeType = THREEBYTE_3A; | 
|  | } else if (current == 0x0f) { | 
|  | dbgprintf(insn, "Found a 3dnow escape prefix (0x%hhx)", current); | 
|  |  | 
|  | // Consume operands before the opcode to comply with the 3DNow encoding | 
|  | if (readModRM(insn)) | 
|  | return -1; | 
|  |  | 
|  | if (consumeByte(insn, ¤t)) | 
|  | return -1; | 
|  |  | 
|  | insn->opcodeType = THREEDNOW_MAP; | 
|  | } else { | 
|  | dbgprintf(insn, "Didn't find a three-byte escape prefix"); | 
|  |  | 
|  | insn->opcodeType = TWOBYTE; | 
|  | } | 
|  | } else if (insn->mandatoryPrefix) | 
|  | // The opcode with mandatory prefix must start with opcode escape. | 
|  | // If not it's legacy repeat prefix | 
|  | insn->mandatoryPrefix = 0; | 
|  |  | 
|  | /* | 
|  | * At this point we have consumed the full opcode. | 
|  | * Anything we consume from here on must be unconsumed. | 
|  | */ | 
|  |  | 
|  | insn->opcode = current; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * getIDWithAttrMask - Determines the ID of an instruction, consuming | 
|  | *   the ModR/M byte as appropriate for extended and escape opcodes, | 
|  | *   and using a supplied attribute mask. | 
|  | * | 
|  | * @param instructionID - A pointer whose target is filled in with the ID of the | 
|  | *                        instruction. | 
|  | * @param insn          - The instruction whose ID is to be determined. | 
|  | * @param attrMask      - The attribute mask to search. | 
|  | * @return              - 0 if the ModR/M could be read when needed or was not | 
|  | *                        needed; nonzero otherwise. | 
|  | */ | 
|  | static int getIDWithAttrMask(uint16_t* instructionID, | 
|  | struct InternalInstruction* insn, | 
|  | uint16_t attrMask) { | 
|  | bool hasModRMExtension; | 
|  |  | 
|  | InstructionContext instructionClass = contextForAttrs(attrMask); | 
|  |  | 
|  | hasModRMExtension = modRMRequired(insn->opcodeType, | 
|  | instructionClass, | 
|  | insn->opcode); | 
|  |  | 
|  | if (hasModRMExtension) { | 
|  | if (readModRM(insn)) | 
|  | return -1; | 
|  |  | 
|  | *instructionID = decode(insn->opcodeType, | 
|  | instructionClass, | 
|  | insn->opcode, | 
|  | insn->modRM); | 
|  | } else { | 
|  | *instructionID = decode(insn->opcodeType, | 
|  | instructionClass, | 
|  | insn->opcode, | 
|  | 0); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * is16BitEquivalent - Determines whether two instruction names refer to | 
|  | * equivalent instructions but one is 16-bit whereas the other is not. | 
|  | * | 
|  | * @param orig  - The instruction that is not 16-bit | 
|  | * @param equiv - The instruction that is 16-bit | 
|  | */ | 
|  | static bool is16BitEquivalent(const char *orig, const char *equiv) { | 
|  | off_t i; | 
|  |  | 
|  | for (i = 0;; i++) { | 
|  | if (orig[i] == '\0' && equiv[i] == '\0') | 
|  | return true; | 
|  | if (orig[i] == '\0' || equiv[i] == '\0') | 
|  | return false; | 
|  | if (orig[i] != equiv[i]) { | 
|  | if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W') | 
|  | continue; | 
|  | if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1') | 
|  | continue; | 
|  | if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6') | 
|  | continue; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * is64Bit - Determines whether this instruction is a 64-bit instruction. | 
|  | * | 
|  | * @param name - The instruction that is not 16-bit | 
|  | */ | 
|  | static bool is64Bit(const char *name) { | 
|  | off_t i; | 
|  |  | 
|  | for (i = 0;; ++i) { | 
|  | if (name[i] == '\0') | 
|  | return false; | 
|  | if (name[i] == '6' && name[i+1] == '4') | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * getID - Determines the ID of an instruction, consuming the ModR/M byte as | 
|  | *   appropriate for extended and escape opcodes.  Determines the attributes and | 
|  | *   context for the instruction before doing so. | 
|  | * | 
|  | * @param insn  - The instruction whose ID is to be determined. | 
|  | * @return      - 0 if the ModR/M could be read when needed or was not needed; | 
|  | *                nonzero otherwise. | 
|  | */ | 
|  | static int getID(struct InternalInstruction* insn, const void *miiArg) { | 
|  | uint16_t attrMask; | 
|  | uint16_t instructionID; | 
|  |  | 
|  | dbgprintf(insn, "getID()"); | 
|  |  | 
|  | attrMask = ATTR_NONE; | 
|  |  | 
|  | if (insn->mode == MODE_64BIT) | 
|  | attrMask |= ATTR_64BIT; | 
|  |  | 
|  | if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) { | 
|  | attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX; | 
|  |  | 
|  | if (insn->vectorExtensionType == TYPE_EVEX) { | 
|  | switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) { | 
|  | case VEX_PREFIX_66: | 
|  | attrMask |= ATTR_OPSIZE; | 
|  | break; | 
|  | case VEX_PREFIX_F3: | 
|  | attrMask |= ATTR_XS; | 
|  | break; | 
|  | case VEX_PREFIX_F2: | 
|  | attrMask |= ATTR_XD; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (zFromEVEX4of4(insn->vectorExtensionPrefix[3])) | 
|  | attrMask |= ATTR_EVEXKZ; | 
|  | if (bFromEVEX4of4(insn->vectorExtensionPrefix[3])) | 
|  | attrMask |= ATTR_EVEXB; | 
|  | if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])) | 
|  | attrMask |= ATTR_EVEXK; | 
|  | if (lFromEVEX4of4(insn->vectorExtensionPrefix[3])) | 
|  | attrMask |= ATTR_EVEXL; | 
|  | if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3])) | 
|  | attrMask |= ATTR_EVEXL2; | 
|  | } else if (insn->vectorExtensionType == TYPE_VEX_3B) { | 
|  | switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) { | 
|  | case VEX_PREFIX_66: | 
|  | attrMask |= ATTR_OPSIZE; | 
|  | break; | 
|  | case VEX_PREFIX_F3: | 
|  | attrMask |= ATTR_XS; | 
|  | break; | 
|  | case VEX_PREFIX_F2: | 
|  | attrMask |= ATTR_XD; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (lFromVEX3of3(insn->vectorExtensionPrefix[2])) | 
|  | attrMask |= ATTR_VEXL; | 
|  | } else if (insn->vectorExtensionType == TYPE_VEX_2B) { | 
|  | switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { | 
|  | case VEX_PREFIX_66: | 
|  | attrMask |= ATTR_OPSIZE; | 
|  | break; | 
|  | case VEX_PREFIX_F3: | 
|  | attrMask |= ATTR_XS; | 
|  | break; | 
|  | case VEX_PREFIX_F2: | 
|  | attrMask |= ATTR_XD; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (lFromVEX2of2(insn->vectorExtensionPrefix[1])) | 
|  | attrMask |= ATTR_VEXL; | 
|  | } else if (insn->vectorExtensionType == TYPE_XOP) { | 
|  | switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { | 
|  | case VEX_PREFIX_66: | 
|  | attrMask |= ATTR_OPSIZE; | 
|  | break; | 
|  | case VEX_PREFIX_F3: | 
|  | attrMask |= ATTR_XS; | 
|  | break; | 
|  | case VEX_PREFIX_F2: | 
|  | attrMask |= ATTR_XD; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (lFromXOP3of3(insn->vectorExtensionPrefix[2])) | 
|  | attrMask |= ATTR_VEXL; | 
|  | } else { | 
|  | return -1; | 
|  | } | 
|  | } else if (!insn->mandatoryPrefix) { | 
|  | // If we don't have mandatory prefix we should use legacy prefixes here | 
|  | if (insn->hasOpSize && (insn->mode != MODE_16BIT)) | 
|  | attrMask |= ATTR_OPSIZE; | 
|  | if (insn->hasAdSize) | 
|  | attrMask |= ATTR_ADSIZE; | 
|  | if (insn->opcodeType == ONEBYTE) { | 
|  | if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90)) | 
|  | // Special support for PAUSE | 
|  | attrMask |= ATTR_XS; | 
|  | } else { | 
|  | if (insn->repeatPrefix == 0xf2) | 
|  | attrMask |= ATTR_XD; | 
|  | else if (insn->repeatPrefix == 0xf3) | 
|  | attrMask |= ATTR_XS; | 
|  | } | 
|  | } else { | 
|  | switch (insn->mandatoryPrefix) { | 
|  | case 0xf2: | 
|  | attrMask |= ATTR_XD; | 
|  | break; | 
|  | case 0xf3: | 
|  | attrMask |= ATTR_XS; | 
|  | break; | 
|  | case 0x66: | 
|  | if (insn->mode != MODE_16BIT) | 
|  | attrMask |= ATTR_OPSIZE; | 
|  | break; | 
|  | case 0x67: | 
|  | attrMask |= ATTR_ADSIZE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | if (insn->rexPrefix & 0x08) { | 
|  | attrMask |= ATTR_REXW; | 
|  | attrMask &= ~ATTR_ADSIZE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * JCXZ/JECXZ need special handling for 16-bit mode because the meaning | 
|  | * of the AdSize prefix is inverted w.r.t. 32-bit mode. | 
|  | */ | 
|  | if (insn->mode == MODE_16BIT && insn->opcodeType == ONEBYTE && | 
|  | insn->opcode == 0xE3) | 
|  | attrMask ^= ATTR_ADSIZE; | 
|  |  | 
|  | // If we're in 16-bit mode and this is one of the relative jumps and opsize | 
|  | // prefix isn't present, we need to force the opsize attribute since the | 
|  | // prefix is inverted relative to 32-bit mode. | 
|  | if (insn->mode == MODE_16BIT && !insn->hasOpSize && | 
|  | insn->opcodeType == ONEBYTE && | 
|  | (insn->opcode == 0xE8 || insn->opcode == 0xE9)) | 
|  | attrMask |= ATTR_OPSIZE; | 
|  |  | 
|  | if (insn->mode == MODE_16BIT && !insn->hasOpSize && | 
|  | insn->opcodeType == TWOBYTE && | 
|  | insn->opcode >= 0x80 && insn->opcode <= 0x8F) | 
|  | attrMask |= ATTR_OPSIZE; | 
|  |  | 
|  | if (getIDWithAttrMask(&instructionID, insn, attrMask)) | 
|  | return -1; | 
|  |  | 
|  | /* The following clauses compensate for limitations of the tables. */ | 
|  |  | 
|  | if (insn->mode != MODE_64BIT && | 
|  | insn->vectorExtensionType != TYPE_NO_VEX_XOP) { | 
|  | /* | 
|  | * The tables can't distinquish between cases where the W-bit is used to | 
|  | * select register size and cases where its a required part of the opcode. | 
|  | */ | 
|  | if ((insn->vectorExtensionType == TYPE_EVEX && | 
|  | wFromEVEX3of4(insn->vectorExtensionPrefix[2])) || | 
|  | (insn->vectorExtensionType == TYPE_VEX_3B && | 
|  | wFromVEX3of3(insn->vectorExtensionPrefix[2])) || | 
|  | (insn->vectorExtensionType == TYPE_XOP && | 
|  | wFromXOP3of3(insn->vectorExtensionPrefix[2]))) { | 
|  |  | 
|  | uint16_t instructionIDWithREXW; | 
|  | if (getIDWithAttrMask(&instructionIDWithREXW, | 
|  | insn, attrMask | ATTR_REXW)) { | 
|  | insn->instructionID = instructionID; | 
|  | insn->spec = specifierForUID(instructionID); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | auto SpecName = GetInstrName(instructionIDWithREXW, miiArg); | 
|  | // If not a 64-bit instruction. Switch the opcode. | 
|  | if (!is64Bit(SpecName.data())) { | 
|  | insn->instructionID = instructionIDWithREXW; | 
|  | insn->spec = specifierForUID(instructionIDWithREXW); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Absolute moves, umonitor, and movdir64b need special handling. | 
|  | * -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are | 
|  | *  inverted w.r.t. | 
|  | * -For 32-bit mode we need to ensure the ADSIZE prefix is observed in | 
|  | *  any position. | 
|  | */ | 
|  | if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) || | 
|  | (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) || | 
|  | (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) { | 
|  | /* Make sure we observed the prefixes in any position. */ | 
|  | if (insn->hasAdSize) | 
|  | attrMask |= ATTR_ADSIZE; | 
|  | if (insn->hasOpSize) | 
|  | attrMask |= ATTR_OPSIZE; | 
|  |  | 
|  | /* In 16-bit, invert the attributes. */ | 
|  | if (insn->mode == MODE_16BIT) { | 
|  | attrMask ^= ATTR_ADSIZE; | 
|  |  | 
|  | /* The OpSize attribute is only valid with the absolute moves. */ | 
|  | if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) | 
|  | attrMask ^= ATTR_OPSIZE; | 
|  | } | 
|  |  | 
|  | if (getIDWithAttrMask(&instructionID, insn, attrMask)) | 
|  | return -1; | 
|  |  | 
|  | insn->instructionID = instructionID; | 
|  | insn->spec = specifierForUID(instructionID); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((insn->mode == MODE_16BIT || insn->hasOpSize) && | 
|  | !(attrMask & ATTR_OPSIZE)) { | 
|  | /* | 
|  | * The instruction tables make no distinction between instructions that | 
|  | * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a | 
|  | * particular spot (i.e., many MMX operations).  In general we're | 
|  | * conservative, but in the specific case where OpSize is present but not | 
|  | * in the right place we check if there's a 16-bit operation. | 
|  | */ | 
|  |  | 
|  | const struct InstructionSpecifier *spec; | 
|  | uint16_t instructionIDWithOpsize; | 
|  | llvm::StringRef specName, specWithOpSizeName; | 
|  |  | 
|  | spec = specifierForUID(instructionID); | 
|  |  | 
|  | if (getIDWithAttrMask(&instructionIDWithOpsize, | 
|  | insn, | 
|  | attrMask | ATTR_OPSIZE)) { | 
|  | /* | 
|  | * ModRM required with OpSize but not present; give up and return version | 
|  | * without OpSize set | 
|  | */ | 
|  |  | 
|  | insn->instructionID = instructionID; | 
|  | insn->spec = spec; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | specName = GetInstrName(instructionID, miiArg); | 
|  | specWithOpSizeName = GetInstrName(instructionIDWithOpsize, miiArg); | 
|  |  | 
|  | if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) && | 
|  | (insn->mode == MODE_16BIT) ^ insn->hasOpSize) { | 
|  | insn->instructionID = instructionIDWithOpsize; | 
|  | insn->spec = specifierForUID(instructionIDWithOpsize); | 
|  | } else { | 
|  | insn->instructionID = instructionID; | 
|  | insn->spec = spec; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 && | 
|  | insn->rexPrefix & 0x01) { | 
|  | /* | 
|  | * NOOP shouldn't decode as NOOP if REX.b is set. Instead | 
|  | * it should decode as XCHG %r8, %eax. | 
|  | */ | 
|  |  | 
|  | const struct InstructionSpecifier *spec; | 
|  | uint16_t instructionIDWithNewOpcode; | 
|  | const struct InstructionSpecifier *specWithNewOpcode; | 
|  |  | 
|  | spec = specifierForUID(instructionID); | 
|  |  | 
|  | /* Borrow opcode from one of the other XCHGar opcodes */ | 
|  | insn->opcode = 0x91; | 
|  |  | 
|  | if (getIDWithAttrMask(&instructionIDWithNewOpcode, | 
|  | insn, | 
|  | attrMask)) { | 
|  | insn->opcode = 0x90; | 
|  |  | 
|  | insn->instructionID = instructionID; | 
|  | insn->spec = spec; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode); | 
|  |  | 
|  | /* Change back */ | 
|  | insn->opcode = 0x90; | 
|  |  | 
|  | insn->instructionID = instructionIDWithNewOpcode; | 
|  | insn->spec = specWithNewOpcode; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | insn->instructionID = instructionID; | 
|  | insn->spec = specifierForUID(insn->instructionID); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readSIB - Consumes the SIB byte to determine addressing information for an | 
|  | *   instruction. | 
|  | * | 
|  | * @param insn  - The instruction whose SIB byte is to be read. | 
|  | * @return      - 0 if the SIB byte was successfully read; nonzero otherwise. | 
|  | */ | 
|  | static int readSIB(struct InternalInstruction* insn) { | 
|  | SIBBase sibBaseBase = SIB_BASE_NONE; | 
|  | uint8_t index, base; | 
|  |  | 
|  | dbgprintf(insn, "readSIB()"); | 
|  |  | 
|  | if (insn->consumedSIB) | 
|  | return 0; | 
|  |  | 
|  | insn->consumedSIB = true; | 
|  |  | 
|  | switch (insn->addressSize) { | 
|  | case 2: | 
|  | dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode"); | 
|  | return -1; | 
|  | case 4: | 
|  | insn->sibIndexBase = SIB_INDEX_EAX; | 
|  | sibBaseBase = SIB_BASE_EAX; | 
|  | break; | 
|  | case 8: | 
|  | insn->sibIndexBase = SIB_INDEX_RAX; | 
|  | sibBaseBase = SIB_BASE_RAX; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (consumeByte(insn, &insn->sib)) | 
|  | return -1; | 
|  |  | 
|  | index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3); | 
|  |  | 
|  | if (index == 0x4) { | 
|  | insn->sibIndex = SIB_INDEX_NONE; | 
|  | } else { | 
|  | insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index); | 
|  | } | 
|  |  | 
|  | insn->sibScale = 1 << scaleFromSIB(insn->sib); | 
|  |  | 
|  | base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3); | 
|  |  | 
|  | switch (base) { | 
|  | case 0x5: | 
|  | case 0xd: | 
|  | switch (modFromModRM(insn->modRM)) { | 
|  | case 0x0: | 
|  | insn->eaDisplacement = EA_DISP_32; | 
|  | insn->sibBase = SIB_BASE_NONE; | 
|  | break; | 
|  | case 0x1: | 
|  | insn->eaDisplacement = EA_DISP_8; | 
|  | insn->sibBase = (SIBBase)(sibBaseBase + base); | 
|  | break; | 
|  | case 0x2: | 
|  | insn->eaDisplacement = EA_DISP_32; | 
|  | insn->sibBase = (SIBBase)(sibBaseBase + base); | 
|  | break; | 
|  | case 0x3: | 
|  | debug("Cannot have Mod = 0b11 and a SIB byte"); | 
|  | return -1; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | insn->sibBase = (SIBBase)(sibBaseBase + base); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readDisplacement - Consumes the displacement of an instruction. | 
|  | * | 
|  | * @param insn  - The instruction whose displacement is to be read. | 
|  | * @return      - 0 if the displacement byte was successfully read; nonzero | 
|  | *                otherwise. | 
|  | */ | 
|  | static int readDisplacement(struct InternalInstruction* insn) { | 
|  | int8_t d8; | 
|  | int16_t d16; | 
|  | int32_t d32; | 
|  |  | 
|  | dbgprintf(insn, "readDisplacement()"); | 
|  |  | 
|  | if (insn->consumedDisplacement) | 
|  | return 0; | 
|  |  | 
|  | insn->consumedDisplacement = true; | 
|  | insn->displacementOffset = insn->readerCursor - insn->startLocation; | 
|  |  | 
|  | switch (insn->eaDisplacement) { | 
|  | case EA_DISP_NONE: | 
|  | insn->consumedDisplacement = false; | 
|  | break; | 
|  | case EA_DISP_8: | 
|  | if (consumeInt8(insn, &d8)) | 
|  | return -1; | 
|  | insn->displacement = d8; | 
|  | break; | 
|  | case EA_DISP_16: | 
|  | if (consumeInt16(insn, &d16)) | 
|  | return -1; | 
|  | insn->displacement = d16; | 
|  | break; | 
|  | case EA_DISP_32: | 
|  | if (consumeInt32(insn, &d32)) | 
|  | return -1; | 
|  | insn->displacement = d32; | 
|  | break; | 
|  | } | 
|  |  | 
|  | insn->consumedDisplacement = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and | 
|  | *   displacement) for an instruction and interprets it. | 
|  | * | 
|  | * @param insn  - The instruction whose addressing information is to be read. | 
|  | * @return      - 0 if the information was successfully read; nonzero otherwise. | 
|  | */ | 
|  | static int readModRM(struct InternalInstruction* insn) { | 
|  | uint8_t mod, rm, reg, evexrm; | 
|  |  | 
|  | dbgprintf(insn, "readModRM()"); | 
|  |  | 
|  | if (insn->consumedModRM) | 
|  | return 0; | 
|  |  | 
|  | if (consumeByte(insn, &insn->modRM)) | 
|  | return -1; | 
|  | insn->consumedModRM = true; | 
|  |  | 
|  | mod     = modFromModRM(insn->modRM); | 
|  | rm      = rmFromModRM(insn->modRM); | 
|  | reg     = regFromModRM(insn->modRM); | 
|  |  | 
|  | /* | 
|  | * This goes by insn->registerSize to pick the correct register, which messes | 
|  | * up if we're using (say) XMM or 8-bit register operands.  That gets fixed in | 
|  | * fixupReg(). | 
|  | */ | 
|  | switch (insn->registerSize) { | 
|  | case 2: | 
|  | insn->regBase = MODRM_REG_AX; | 
|  | insn->eaRegBase = EA_REG_AX; | 
|  | break; | 
|  | case 4: | 
|  | insn->regBase = MODRM_REG_EAX; | 
|  | insn->eaRegBase = EA_REG_EAX; | 
|  | break; | 
|  | case 8: | 
|  | insn->regBase = MODRM_REG_RAX; | 
|  | insn->eaRegBase = EA_REG_RAX; | 
|  | break; | 
|  | } | 
|  |  | 
|  | reg |= rFromREX(insn->rexPrefix) << 3; | 
|  | rm  |= bFromREX(insn->rexPrefix) << 3; | 
|  |  | 
|  | evexrm = 0; | 
|  | if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) { | 
|  | reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; | 
|  | evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; | 
|  | } | 
|  |  | 
|  | insn->reg = (Reg)(insn->regBase + reg); | 
|  |  | 
|  | switch (insn->addressSize) { | 
|  | case 2: { | 
|  | EABase eaBaseBase = EA_BASE_BX_SI; | 
|  |  | 
|  | switch (mod) { | 
|  | case 0x0: | 
|  | if (rm == 0x6) { | 
|  | insn->eaBase = EA_BASE_NONE; | 
|  | insn->eaDisplacement = EA_DISP_16; | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | } else { | 
|  | insn->eaBase = (EABase)(eaBaseBase + rm); | 
|  | insn->eaDisplacement = EA_DISP_NONE; | 
|  | } | 
|  | break; | 
|  | case 0x1: | 
|  | insn->eaBase = (EABase)(eaBaseBase + rm); | 
|  | insn->eaDisplacement = EA_DISP_8; | 
|  | insn->displacementSize = 1; | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | case 0x2: | 
|  | insn->eaBase = (EABase)(eaBaseBase + rm); | 
|  | insn->eaDisplacement = EA_DISP_16; | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | case 0x3: | 
|  | insn->eaBase = (EABase)(insn->eaRegBase + rm); | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 4: | 
|  | case 8: { | 
|  | EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX); | 
|  |  | 
|  | switch (mod) { | 
|  | case 0x0: | 
|  | insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */ | 
|  | // In determining whether RIP-relative mode is used (rm=5), | 
|  | // or whether a SIB byte is present (rm=4), | 
|  | // the extension bits (REX.b and EVEX.x) are ignored. | 
|  | switch (rm & 7) { | 
|  | case 0x4: // SIB byte is present | 
|  | insn->eaBase = (insn->addressSize == 4 ? | 
|  | EA_BASE_sib : EA_BASE_sib64); | 
|  | if (readSIB(insn) || readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | case 0x5: // RIP-relative | 
|  | insn->eaBase = EA_BASE_NONE; | 
|  | insn->eaDisplacement = EA_DISP_32; | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | default: | 
|  | insn->eaBase = (EABase)(eaBaseBase + rm); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 0x1: | 
|  | insn->displacementSize = 1; | 
|  | LLVM_FALLTHROUGH; | 
|  | case 0x2: | 
|  | insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32); | 
|  | switch (rm & 7) { | 
|  | case 0x4: // SIB byte is present | 
|  | insn->eaBase = EA_BASE_sib; | 
|  | if (readSIB(insn) || readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | default: | 
|  | insn->eaBase = (EABase)(eaBaseBase + rm); | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 0x3: | 
|  | insn->eaDisplacement = EA_DISP_NONE; | 
|  | insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } /* switch (insn->addressSize) */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define GENERIC_FIXUP_FUNC(name, base, prefix, mask)      \ | 
|  | static uint16_t name(struct InternalInstruction *insn,  \ | 
|  | OperandType type,                  \ | 
|  | uint8_t index,                     \ | 
|  | uint8_t *valid) {                  \ | 
|  | *valid = 1;                                           \ | 
|  | switch (type) {                                       \ | 
|  | default:                                              \ | 
|  | debug("Unhandled register type");                   \ | 
|  | *valid = 0;                                         \ | 
|  | return 0;                                           \ | 
|  | case TYPE_Rv:                                         \ | 
|  | return base + index;                                \ | 
|  | case TYPE_R8:                                         \ | 
|  | index &= mask;                                      \ | 
|  | if (index > 0xf)                                    \ | 
|  | *valid = 0;                                       \ | 
|  | if (insn->rexPrefix &&                              \ | 
|  | index >= 4 && index <= 7) {                      \ | 
|  | return prefix##_SPL + (index - 4);                \ | 
|  | } else {                                            \ | 
|  | return prefix##_AL + index;                       \ | 
|  | }                                                   \ | 
|  | case TYPE_R16:                                        \ | 
|  | index &= mask;                                      \ | 
|  | if (index > 0xf)                                    \ | 
|  | *valid = 0;                                       \ | 
|  | return prefix##_AX + index;                         \ | 
|  | case TYPE_R32:                                        \ | 
|  | index &= mask;                                      \ | 
|  | if (index > 0xf)                                    \ | 
|  | *valid = 0;                                       \ | 
|  | return prefix##_EAX + index;                        \ | 
|  | case TYPE_R64:                                        \ | 
|  | index &= mask;                                      \ | 
|  | if (index > 0xf)                                    \ | 
|  | *valid = 0;                                       \ | 
|  | return prefix##_RAX + index;                        \ | 
|  | case TYPE_ZMM:                                        \ | 
|  | return prefix##_ZMM0 + index;                       \ | 
|  | case TYPE_YMM:                                        \ | 
|  | return prefix##_YMM0 + index;                       \ | 
|  | case TYPE_XMM:                                        \ | 
|  | return prefix##_XMM0 + index;                       \ | 
|  | case TYPE_VK:                                         \ | 
|  | index &= 0xf;                                       \ | 
|  | if (index > 7)                                      \ | 
|  | *valid = 0;                                       \ | 
|  | return prefix##_K0 + index;                         \ | 
|  | case TYPE_MM64:                                       \ | 
|  | return prefix##_MM0 + (index & 0x7);                \ | 
|  | case TYPE_SEGMENTREG:                                 \ | 
|  | if ((index & 7) > 5)                                \ | 
|  | *valid = 0;                                       \ | 
|  | return prefix##_ES + (index & 7);                   \ | 
|  | case TYPE_DEBUGREG:                                   \ | 
|  | return prefix##_DR0 + index;                        \ | 
|  | case TYPE_CONTROLREG:                                 \ | 
|  | return prefix##_CR0 + index;                        \ | 
|  | case TYPE_BNDR:                                       \ | 
|  | if (index > 3)                                      \ | 
|  | *valid = 0;                                       \ | 
|  | return prefix##_BND0 + index;                       \ | 
|  | case TYPE_MVSIBX:                                     \ | 
|  | return prefix##_XMM0 + index;                       \ | 
|  | case TYPE_MVSIBY:                                     \ | 
|  | return prefix##_YMM0 + index;                       \ | 
|  | case TYPE_MVSIBZ:                                     \ | 
|  | return prefix##_ZMM0 + index;                       \ | 
|  | }                                                     \ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fixup*Value - Consults an operand type to determine the meaning of the | 
|  | *   reg or R/M field.  If the operand is an XMM operand, for example, an | 
|  | *   operand would be XMM0 instead of AX, which readModRM() would otherwise | 
|  | *   misinterpret it as. | 
|  | * | 
|  | * @param insn  - The instruction containing the operand. | 
|  | * @param type  - The operand type. | 
|  | * @param index - The existing value of the field as reported by readModRM(). | 
|  | * @param valid - The address of a uint8_t.  The target is set to 1 if the | 
|  | *                field is valid for the register class; 0 if not. | 
|  | * @return      - The proper value. | 
|  | */ | 
|  | GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase,    MODRM_REG, 0x1f) | 
|  | GENERIC_FIXUP_FUNC(fixupRMValue,  insn->eaRegBase,  EA_REG,    0xf) | 
|  |  | 
|  | /* | 
|  | * fixupReg - Consults an operand specifier to determine which of the | 
|  | *   fixup*Value functions to use in correcting readModRM()'ss interpretation. | 
|  | * | 
|  | * @param insn  - See fixup*Value(). | 
|  | * @param op    - The operand specifier. | 
|  | * @return      - 0 if fixup was successful; -1 if the register returned was | 
|  | *                invalid for its class. | 
|  | */ | 
|  | static int fixupReg(struct InternalInstruction *insn, | 
|  | const struct OperandSpecifier *op) { | 
|  | uint8_t valid; | 
|  |  | 
|  | dbgprintf(insn, "fixupReg()"); | 
|  |  | 
|  | switch ((OperandEncoding)op->encoding) { | 
|  | default: | 
|  | debug("Expected a REG or R/M encoding in fixupReg"); | 
|  | return -1; | 
|  | case ENCODING_VVVV: | 
|  | insn->vvvv = (Reg)fixupRegValue(insn, | 
|  | (OperandType)op->type, | 
|  | insn->vvvv, | 
|  | &valid); | 
|  | if (!valid) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_REG: | 
|  | insn->reg = (Reg)fixupRegValue(insn, | 
|  | (OperandType)op->type, | 
|  | insn->reg - insn->regBase, | 
|  | &valid); | 
|  | if (!valid) | 
|  | return -1; | 
|  | break; | 
|  | CASE_ENCODING_RM: | 
|  | if (insn->eaBase >= insn->eaRegBase) { | 
|  | insn->eaBase = (EABase)fixupRMValue(insn, | 
|  | (OperandType)op->type, | 
|  | insn->eaBase - insn->eaRegBase, | 
|  | &valid); | 
|  | if (!valid) | 
|  | return -1; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readOpcodeRegister - Reads an operand from the opcode field of an | 
|  | *   instruction and interprets it appropriately given the operand width. | 
|  | *   Handles AddRegFrm instructions. | 
|  | * | 
|  | * @param insn  - the instruction whose opcode field is to be read. | 
|  | * @param size  - The width (in bytes) of the register being specified. | 
|  | *                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means | 
|  | *                RAX. | 
|  | * @return      - 0 on success; nonzero otherwise. | 
|  | */ | 
|  | static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) { | 
|  | dbgprintf(insn, "readOpcodeRegister()"); | 
|  |  | 
|  | if (size == 0) | 
|  | size = insn->registerSize; | 
|  |  | 
|  | switch (size) { | 
|  | case 1: | 
|  | insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | 
|  | | (insn->opcode & 7))); | 
|  | if (insn->rexPrefix && | 
|  | insn->opcodeRegister >= MODRM_REG_AL + 0x4 && | 
|  | insn->opcodeRegister < MODRM_REG_AL + 0x8) { | 
|  | insn->opcodeRegister = (Reg)(MODRM_REG_SPL | 
|  | + (insn->opcodeRegister - MODRM_REG_AL - 4)); | 
|  | } | 
|  |  | 
|  | break; | 
|  | case 2: | 
|  | insn->opcodeRegister = (Reg)(MODRM_REG_AX | 
|  | + ((bFromREX(insn->rexPrefix) << 3) | 
|  | | (insn->opcode & 7))); | 
|  | break; | 
|  | case 4: | 
|  | insn->opcodeRegister = (Reg)(MODRM_REG_EAX | 
|  | + ((bFromREX(insn->rexPrefix) << 3) | 
|  | | (insn->opcode & 7))); | 
|  | break; | 
|  | case 8: | 
|  | insn->opcodeRegister = (Reg)(MODRM_REG_RAX | 
|  | + ((bFromREX(insn->rexPrefix) << 3) | 
|  | | (insn->opcode & 7))); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readImmediate - Consumes an immediate operand from an instruction, given the | 
|  | *   desired operand size. | 
|  | * | 
|  | * @param insn  - The instruction whose operand is to be read. | 
|  | * @param size  - The width (in bytes) of the operand. | 
|  | * @return      - 0 if the immediate was successfully consumed; nonzero | 
|  | *                otherwise. | 
|  | */ | 
|  | static int readImmediate(struct InternalInstruction* insn, uint8_t size) { | 
|  | uint8_t imm8; | 
|  | uint16_t imm16; | 
|  | uint32_t imm32; | 
|  | uint64_t imm64; | 
|  |  | 
|  | dbgprintf(insn, "readImmediate()"); | 
|  |  | 
|  | if (insn->numImmediatesConsumed == 2) { | 
|  | debug("Already consumed two immediates"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (size == 0) | 
|  | size = insn->immediateSize; | 
|  | else | 
|  | insn->immediateSize = size; | 
|  | insn->immediateOffset = insn->readerCursor - insn->startLocation; | 
|  |  | 
|  | switch (size) { | 
|  | case 1: | 
|  | if (consumeByte(insn, &imm8)) | 
|  | return -1; | 
|  | insn->immediates[insn->numImmediatesConsumed] = imm8; | 
|  | break; | 
|  | case 2: | 
|  | if (consumeUInt16(insn, &imm16)) | 
|  | return -1; | 
|  | insn->immediates[insn->numImmediatesConsumed] = imm16; | 
|  | break; | 
|  | case 4: | 
|  | if (consumeUInt32(insn, &imm32)) | 
|  | return -1; | 
|  | insn->immediates[insn->numImmediatesConsumed] = imm32; | 
|  | break; | 
|  | case 8: | 
|  | if (consumeUInt64(insn, &imm64)) | 
|  | return -1; | 
|  | insn->immediates[insn->numImmediatesConsumed] = imm64; | 
|  | break; | 
|  | } | 
|  |  | 
|  | insn->numImmediatesConsumed++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix. | 
|  | * | 
|  | * @param insn  - The instruction whose operand is to be read. | 
|  | * @return      - 0 if the vvvv was successfully consumed; nonzero | 
|  | *                otherwise. | 
|  | */ | 
|  | static int readVVVV(struct InternalInstruction* insn) { | 
|  | dbgprintf(insn, "readVVVV()"); | 
|  |  | 
|  | int vvvv; | 
|  | if (insn->vectorExtensionType == TYPE_EVEX) | 
|  | vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 | | 
|  | vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2])); | 
|  | else if (insn->vectorExtensionType == TYPE_VEX_3B) | 
|  | vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]); | 
|  | else if (insn->vectorExtensionType == TYPE_VEX_2B) | 
|  | vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]); | 
|  | else if (insn->vectorExtensionType == TYPE_XOP) | 
|  | vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]); | 
|  | else | 
|  | return -1; | 
|  |  | 
|  | if (insn->mode != MODE_64BIT) | 
|  | vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later. | 
|  |  | 
|  | insn->vvvv = static_cast<Reg>(vvvv); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readMaskRegister - Reads an mask register from the opcode field of an | 
|  | *   instruction. | 
|  | * | 
|  | * @param insn    - The instruction whose opcode field is to be read. | 
|  | * @return        - 0 on success; nonzero otherwise. | 
|  | */ | 
|  | static int readMaskRegister(struct InternalInstruction* insn) { | 
|  | dbgprintf(insn, "readMaskRegister()"); | 
|  |  | 
|  | if (insn->vectorExtensionType != TYPE_EVEX) | 
|  | return -1; | 
|  |  | 
|  | insn->writemask = | 
|  | static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readOperands - Consults the specifier for an instruction and consumes all | 
|  | *   operands for that instruction, interpreting them as it goes. | 
|  | * | 
|  | * @param insn  - The instruction whose operands are to be read and interpreted. | 
|  | * @return      - 0 if all operands could be read; nonzero otherwise. | 
|  | */ | 
|  | static int readOperands(struct InternalInstruction* insn) { | 
|  | int hasVVVV, needVVVV; | 
|  | int sawRegImm = 0; | 
|  |  | 
|  | dbgprintf(insn, "readOperands()"); | 
|  |  | 
|  | /* If non-zero vvvv specified, need to make sure one of the operands | 
|  | uses it. */ | 
|  | hasVVVV = !readVVVV(insn); | 
|  | needVVVV = hasVVVV && (insn->vvvv != 0); | 
|  |  | 
|  | for (const auto &Op : x86OperandSets[insn->spec->operands]) { | 
|  | switch (Op.encoding) { | 
|  | case ENCODING_NONE: | 
|  | case ENCODING_SI: | 
|  | case ENCODING_DI: | 
|  | break; | 
|  | CASE_ENCODING_VSIB: | 
|  | // VSIB can use the V2 bit so check only the other bits. | 
|  | if (needVVVV) | 
|  | needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0); | 
|  | if (readModRM(insn)) | 
|  | return -1; | 
|  |  | 
|  | // Reject if SIB wasn't used. | 
|  | if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64) | 
|  | return -1; | 
|  |  | 
|  | // If sibIndex was set to SIB_INDEX_NONE, index offset is 4. | 
|  | if (insn->sibIndex == SIB_INDEX_NONE) | 
|  | insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4); | 
|  |  | 
|  | // If EVEX.v2 is set this is one of the 16-31 registers. | 
|  | if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT && | 
|  | v2FromEVEX4of4(insn->vectorExtensionPrefix[3])) | 
|  | insn->sibIndex = (SIBIndex)(insn->sibIndex + 16); | 
|  |  | 
|  | // Adjust the index register to the correct size. | 
|  | switch ((OperandType)Op.type) { | 
|  | default: | 
|  | debug("Unhandled VSIB index type"); | 
|  | return -1; | 
|  | case TYPE_MVSIBX: | 
|  | insn->sibIndex = (SIBIndex)(SIB_INDEX_XMM0 + | 
|  | (insn->sibIndex - insn->sibIndexBase)); | 
|  | break; | 
|  | case TYPE_MVSIBY: | 
|  | insn->sibIndex = (SIBIndex)(SIB_INDEX_YMM0 + | 
|  | (insn->sibIndex - insn->sibIndexBase)); | 
|  | break; | 
|  | case TYPE_MVSIBZ: | 
|  | insn->sibIndex = (SIBIndex)(SIB_INDEX_ZMM0 + | 
|  | (insn->sibIndex - insn->sibIndexBase)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Apply the AVX512 compressed displacement scaling factor. | 
|  | if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) | 
|  | insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB); | 
|  | break; | 
|  | case ENCODING_REG: | 
|  | CASE_ENCODING_RM: | 
|  | if (readModRM(insn)) | 
|  | return -1; | 
|  | if (fixupReg(insn, &Op)) | 
|  | return -1; | 
|  | // Apply the AVX512 compressed displacement scaling factor. | 
|  | if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) | 
|  | insn->displacement *= 1 << (Op.encoding - ENCODING_RM); | 
|  | break; | 
|  | case ENCODING_IB: | 
|  | if (sawRegImm) { | 
|  | /* Saw a register immediate so don't read again and instead split the | 
|  | previous immediate.  FIXME: This is a hack. */ | 
|  | insn->immediates[insn->numImmediatesConsumed] = | 
|  | insn->immediates[insn->numImmediatesConsumed - 1] & 0xf; | 
|  | ++insn->numImmediatesConsumed; | 
|  | break; | 
|  | } | 
|  | if (readImmediate(insn, 1)) | 
|  | return -1; | 
|  | if (Op.type == TYPE_XMM || Op.type == TYPE_YMM) | 
|  | sawRegImm = 1; | 
|  | break; | 
|  | case ENCODING_IW: | 
|  | if (readImmediate(insn, 2)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_ID: | 
|  | if (readImmediate(insn, 4)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_IO: | 
|  | if (readImmediate(insn, 8)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_Iv: | 
|  | if (readImmediate(insn, insn->immediateSize)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_Ia: | 
|  | if (readImmediate(insn, insn->addressSize)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_IRC: | 
|  | insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) | | 
|  | lFromEVEX4of4(insn->vectorExtensionPrefix[3]); | 
|  | break; | 
|  | case ENCODING_RB: | 
|  | if (readOpcodeRegister(insn, 1)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_RW: | 
|  | if (readOpcodeRegister(insn, 2)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_RD: | 
|  | if (readOpcodeRegister(insn, 4)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_RO: | 
|  | if (readOpcodeRegister(insn, 8)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_Rv: | 
|  | if (readOpcodeRegister(insn, 0)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_FP: | 
|  | break; | 
|  | case ENCODING_VVVV: | 
|  | needVVVV = 0; /* Mark that we have found a VVVV operand. */ | 
|  | if (!hasVVVV) | 
|  | return -1; | 
|  | if (insn->mode != MODE_64BIT) | 
|  | insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7); | 
|  | if (fixupReg(insn, &Op)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_WRITEMASK: | 
|  | if (readMaskRegister(insn)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_DUP: | 
|  | break; | 
|  | default: | 
|  | dbgprintf(insn, "Encountered an operand with an unknown encoding."); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */ | 
|  | if (needVVVV) return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * decodeInstruction - Reads and interprets a full instruction provided by the | 
|  | *   user. | 
|  | * | 
|  | * @param insn      - A pointer to the instruction to be populated.  Must be | 
|  | *                    pre-allocated. | 
|  | * @param reader    - The function to be used to read the instruction's bytes. | 
|  | * @param readerArg - A generic argument to be passed to the reader to store | 
|  | *                    any internal state. | 
|  | * @param logger    - If non-NULL, the function to be used to write log messages | 
|  | *                    and warnings. | 
|  | * @param loggerArg - A generic argument to be passed to the logger to store | 
|  | *                    any internal state. | 
|  | * @param startLoc  - The address (in the reader's address space) of the first | 
|  | *                    byte in the instruction. | 
|  | * @param mode      - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to | 
|  | *                    decode the instruction in. | 
|  | * @return          - 0 if the instruction's memory could be read; nonzero if | 
|  | *                    not. | 
|  | */ | 
|  | int llvm::X86Disassembler::decodeInstruction( | 
|  | struct InternalInstruction *insn, byteReader_t reader, | 
|  | const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg, | 
|  | uint64_t startLoc, DisassemblerMode mode) { | 
|  | memset(insn, 0, sizeof(struct InternalInstruction)); | 
|  |  | 
|  | insn->reader = reader; | 
|  | insn->readerArg = readerArg; | 
|  | insn->dlog = logger; | 
|  | insn->dlogArg = loggerArg; | 
|  | insn->startLocation = startLoc; | 
|  | insn->readerCursor = startLoc; | 
|  | insn->mode = mode; | 
|  | insn->numImmediatesConsumed = 0; | 
|  |  | 
|  | if (readPrefixes(insn)       || | 
|  | readOpcode(insn)         || | 
|  | getID(insn, miiArg)      || | 
|  | insn->instructionID == 0 || | 
|  | readOperands(insn)) | 
|  | return -1; | 
|  |  | 
|  | insn->operands = x86OperandSets[insn->spec->operands]; | 
|  |  | 
|  | insn->length = insn->readerCursor - insn->startLocation; | 
|  |  | 
|  | dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu", | 
|  | startLoc, insn->readerCursor, insn->length); | 
|  |  | 
|  | if (insn->length > 15) | 
|  | dbgprintf(insn, "Instruction exceeds 15-byte limit"); | 
|  |  | 
|  | return 0; | 
|  | } |