|  | //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// This contains a MachineSchedStrategy implementation for maximizing wave | 
|  | /// occupancy on GCN hardware. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "GCNSchedStrategy.h" | 
|  | #include "AMDGPUSubtarget.h" | 
|  | #include "SIInstrInfo.h" | 
|  | #include "SIMachineFunctionInfo.h" | 
|  | #include "SIRegisterInfo.h" | 
|  | #include "llvm/CodeGen/RegisterClassInfo.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  |  | 
|  | #define DEBUG_TYPE "misched" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy( | 
|  | const MachineSchedContext *C) : | 
|  | GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { } | 
|  |  | 
|  | static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs, | 
|  | const MachineFunction &MF) { | 
|  |  | 
|  | const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); | 
|  | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs), | 
|  | ST.getOccupancyWithNumVGPRs(VGPRs)); | 
|  | return std::min(MinRegOccupancy, | 
|  | ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(), | 
|  | *MF.getFunction())); | 
|  | } | 
|  |  | 
|  | void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) { | 
|  | GenericScheduler::initialize(DAG); | 
|  |  | 
|  | const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); | 
|  |  | 
|  | MF = &DAG->MF; | 
|  |  | 
|  | const SISubtarget &ST = MF->getSubtarget<SISubtarget>(); | 
|  |  | 
|  | // FIXME: This is also necessary, because some passes that run after | 
|  | // scheduling and before regalloc increase register pressure. | 
|  | const int ErrorMargin = 3; | 
|  |  | 
|  | SGPRExcessLimit = Context->RegClassInfo | 
|  | ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin; | 
|  | VGPRExcessLimit = Context->RegClassInfo | 
|  | ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin; | 
|  | if (TargetOccupancy) { | 
|  | SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true); | 
|  | VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy); | 
|  | } else { | 
|  | SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, | 
|  | SRI->getSGPRPressureSet()); | 
|  | VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, | 
|  | SRI->getVGPRPressureSet()); | 
|  | } | 
|  |  | 
|  | SGPRCriticalLimit -= ErrorMargin; | 
|  | VGPRCriticalLimit -= ErrorMargin; | 
|  | } | 
|  |  | 
|  | void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU, | 
|  | bool AtTop, const RegPressureTracker &RPTracker, | 
|  | const SIRegisterInfo *SRI, | 
|  | unsigned SGPRPressure, | 
|  | unsigned VGPRPressure) { | 
|  |  | 
|  | Cand.SU = SU; | 
|  | Cand.AtTop = AtTop; | 
|  |  | 
|  | // getDownwardPressure() and getUpwardPressure() make temporary changes to | 
|  | // the the tracker, so we need to pass those function a non-const copy. | 
|  | RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); | 
|  |  | 
|  | std::vector<unsigned> Pressure; | 
|  | std::vector<unsigned> MaxPressure; | 
|  |  | 
|  | if (AtTop) | 
|  | TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure); | 
|  | else { | 
|  | // FIXME: I think for bottom up scheduling, the register pressure is cached | 
|  | // and can be retrieved by DAG->getPressureDif(SU). | 
|  | TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure); | 
|  | } | 
|  |  | 
|  | unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()]; | 
|  | unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()]; | 
|  |  | 
|  | // If two instructions increase the pressure of different register sets | 
|  | // by the same amount, the generic scheduler will prefer to schedule the | 
|  | // instruction that increases the set with the least amount of registers, | 
|  | // which in our case would be SGPRs.  This is rarely what we want, so | 
|  | // when we report excess/critical register pressure, we do it either | 
|  | // only for VGPRs or only for SGPRs. | 
|  |  | 
|  | // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs. | 
|  | const unsigned MaxVGPRPressureInc = 16; | 
|  | bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit; | 
|  | bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit; | 
|  |  | 
|  |  | 
|  | // FIXME: We have to enter REG-EXCESS before we reach the actual threshold | 
|  | // to increase the likelihood we don't go over the limits.  We should improve | 
|  | // the analysis to look through dependencies to find the path with the least | 
|  | // register pressure. | 
|  |  | 
|  | // We only need to update the RPDelata for instructions that increase | 
|  | // register pressure.  Instructions that decrease or keep reg pressure | 
|  | // the same will be marked as RegExcess in tryCandidate() when they | 
|  | // are compared with instructions that increase the register pressure. | 
|  | if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) { | 
|  | Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet()); | 
|  | Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit); | 
|  | } | 
|  |  | 
|  | if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) { | 
|  | Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet()); | 
|  | Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit); | 
|  | } | 
|  |  | 
|  | // Register pressure is considered 'CRITICAL' if it is approaching a value | 
|  | // that would reduce the wave occupancy for the execution unit.  When | 
|  | // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both | 
|  | // has the same cost, so we don't need to prefer one over the other. | 
|  |  | 
|  | int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit; | 
|  | int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit; | 
|  |  | 
|  | if (SGPRDelta >= 0 || VGPRDelta >= 0) { | 
|  | if (SGPRDelta > VGPRDelta) { | 
|  | Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet()); | 
|  | Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta); | 
|  | } else { | 
|  | Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet()); | 
|  | Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // This function is mostly cut and pasted from | 
|  | // GenericScheduler::pickNodeFromQueue() | 
|  | void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone, | 
|  | const CandPolicy &ZonePolicy, | 
|  | const RegPressureTracker &RPTracker, | 
|  | SchedCandidate &Cand) { | 
|  | const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); | 
|  | ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos(); | 
|  | unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()]; | 
|  | unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()]; | 
|  | ReadyQueue &Q = Zone.Available; | 
|  | for (SUnit *SU : Q) { | 
|  |  | 
|  | SchedCandidate TryCand(ZonePolicy); | 
|  | initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI, | 
|  | SGPRPressure, VGPRPressure); | 
|  | // Pass SchedBoundary only when comparing nodes from the same boundary. | 
|  | SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; | 
|  | GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg); | 
|  | if (TryCand.Reason != NoCand) { | 
|  | // Initialize resource delta if needed in case future heuristics query it. | 
|  | if (TryCand.ResDelta == SchedResourceDelta()) | 
|  | TryCand.initResourceDelta(Zone.DAG, SchedModel); | 
|  | Cand.setBest(TryCand); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // This function is mostly cut and pasted from | 
|  | // GenericScheduler::pickNodeBidirectional() | 
|  | SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) { | 
|  | // Schedule as far as possible in the direction of no choice. This is most | 
|  | // efficient, but also provides the best heuristics for CriticalPSets. | 
|  | if (SUnit *SU = Bot.pickOnlyChoice()) { | 
|  | IsTopNode = false; | 
|  | return SU; | 
|  | } | 
|  | if (SUnit *SU = Top.pickOnlyChoice()) { | 
|  | IsTopNode = true; | 
|  | return SU; | 
|  | } | 
|  | // Set the bottom-up policy based on the state of the current bottom zone and | 
|  | // the instructions outside the zone, including the top zone. | 
|  | CandPolicy BotPolicy; | 
|  | setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); | 
|  | // Set the top-down policy based on the state of the current top zone and | 
|  | // the instructions outside the zone, including the bottom zone. | 
|  | CandPolicy TopPolicy; | 
|  | setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); | 
|  |  | 
|  | // See if BotCand is still valid (because we previously scheduled from Top). | 
|  | DEBUG(dbgs() << "Picking from Bot:\n"); | 
|  | if (!BotCand.isValid() || BotCand.SU->isScheduled || | 
|  | BotCand.Policy != BotPolicy) { | 
|  | BotCand.reset(CandPolicy()); | 
|  | pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); | 
|  | assert(BotCand.Reason != NoCand && "failed to find the first candidate"); | 
|  | } else { | 
|  | DEBUG(traceCandidate(BotCand)); | 
|  | } | 
|  |  | 
|  | // Check if the top Q has a better candidate. | 
|  | DEBUG(dbgs() << "Picking from Top:\n"); | 
|  | if (!TopCand.isValid() || TopCand.SU->isScheduled || | 
|  | TopCand.Policy != TopPolicy) { | 
|  | TopCand.reset(CandPolicy()); | 
|  | pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); | 
|  | assert(TopCand.Reason != NoCand && "failed to find the first candidate"); | 
|  | } else { | 
|  | DEBUG(traceCandidate(TopCand)); | 
|  | } | 
|  |  | 
|  | // Pick best from BotCand and TopCand. | 
|  | DEBUG( | 
|  | dbgs() << "Top Cand: "; | 
|  | traceCandidate(TopCand); | 
|  | dbgs() << "Bot Cand: "; | 
|  | traceCandidate(BotCand); | 
|  | ); | 
|  | SchedCandidate Cand; | 
|  | if (TopCand.Reason == BotCand.Reason) { | 
|  | Cand = BotCand; | 
|  | GenericSchedulerBase::CandReason TopReason = TopCand.Reason; | 
|  | TopCand.Reason = NoCand; | 
|  | GenericScheduler::tryCandidate(Cand, TopCand, nullptr); | 
|  | if (TopCand.Reason != NoCand) { | 
|  | Cand.setBest(TopCand); | 
|  | } else { | 
|  | TopCand.Reason = TopReason; | 
|  | } | 
|  | } else { | 
|  | if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) { | 
|  | Cand = TopCand; | 
|  | } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) { | 
|  | Cand = BotCand; | 
|  | } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) { | 
|  | Cand = TopCand; | 
|  | } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) { | 
|  | Cand = BotCand; | 
|  | } else { | 
|  | if (BotCand.Reason > TopCand.Reason) { | 
|  | Cand = TopCand; | 
|  | } else { | 
|  | Cand = BotCand; | 
|  | } | 
|  | } | 
|  | } | 
|  | DEBUG( | 
|  | dbgs() << "Picking: "; | 
|  | traceCandidate(Cand); | 
|  | ); | 
|  |  | 
|  | IsTopNode = Cand.AtTop; | 
|  | return Cand.SU; | 
|  | } | 
|  |  | 
|  | // This function is mostly cut and pasted from | 
|  | // GenericScheduler::pickNode() | 
|  | SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) { | 
|  | if (DAG->top() == DAG->bottom()) { | 
|  | assert(Top.Available.empty() && Top.Pending.empty() && | 
|  | Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); | 
|  | return nullptr; | 
|  | } | 
|  | SUnit *SU; | 
|  | do { | 
|  | if (RegionPolicy.OnlyTopDown) { | 
|  | SU = Top.pickOnlyChoice(); | 
|  | if (!SU) { | 
|  | CandPolicy NoPolicy; | 
|  | TopCand.reset(NoPolicy); | 
|  | pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); | 
|  | assert(TopCand.Reason != NoCand && "failed to find a candidate"); | 
|  | SU = TopCand.SU; | 
|  | } | 
|  | IsTopNode = true; | 
|  | } else if (RegionPolicy.OnlyBottomUp) { | 
|  | SU = Bot.pickOnlyChoice(); | 
|  | if (!SU) { | 
|  | CandPolicy NoPolicy; | 
|  | BotCand.reset(NoPolicy); | 
|  | pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); | 
|  | assert(BotCand.Reason != NoCand && "failed to find a candidate"); | 
|  | SU = BotCand.SU; | 
|  | } | 
|  | IsTopNode = false; | 
|  | } else { | 
|  | SU = pickNodeBidirectional(IsTopNode); | 
|  | } | 
|  | } while (SU->isScheduled); | 
|  |  | 
|  | if (SU->isTopReady()) | 
|  | Top.removeReady(SU); | 
|  | if (SU->isBottomReady()) | 
|  | Bot.removeReady(SU); | 
|  |  | 
|  | DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); | 
|  | return SU; | 
|  | } | 
|  |  | 
|  | GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C, | 
|  | std::unique_ptr<MachineSchedStrategy> S) : | 
|  | ScheduleDAGMILive(C, std::move(S)), | 
|  | ST(MF.getSubtarget<SISubtarget>()), | 
|  | MFI(*MF.getInfo<SIMachineFunctionInfo>()), | 
|  | StartingOccupancy(ST.getOccupancyWithLocalMemSize(MFI.getLDSSize(), | 
|  | *MF.getFunction())), | 
|  | MinOccupancy(StartingOccupancy), Stage(0) { | 
|  |  | 
|  | DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n"); | 
|  | } | 
|  |  | 
|  | void GCNScheduleDAGMILive::schedule() { | 
|  | std::vector<MachineInstr*> Unsched; | 
|  | Unsched.reserve(NumRegionInstrs); | 
|  | for (auto &I : *this) | 
|  | Unsched.push_back(&I); | 
|  |  | 
|  | std::pair<unsigned, unsigned> PressureBefore; | 
|  | if (LIS) { | 
|  | DEBUG(dbgs() << "Pressure before scheduling:\n"); | 
|  | discoverLiveIns(); | 
|  | PressureBefore = getRealRegPressure(); | 
|  | } | 
|  |  | 
|  | ScheduleDAGMILive::schedule(); | 
|  | if (Stage == 0) | 
|  | Regions.push_back(std::make_pair(RegionBegin, RegionEnd)); | 
|  |  | 
|  | if (!LIS) | 
|  | return; | 
|  |  | 
|  | // Check the results of scheduling. | 
|  | GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; | 
|  | DEBUG(dbgs() << "Pressure after scheduling:\n"); | 
|  | auto PressureAfter = getRealRegPressure(); | 
|  | LiveIns.clear(); | 
|  |  | 
|  | if (PressureAfter.first <= S.SGPRCriticalLimit && | 
|  | PressureAfter.second <= S.VGPRCriticalLimit) { | 
|  | DEBUG(dbgs() << "Pressure in desired limits, done.\n"); | 
|  | return; | 
|  | } | 
|  | unsigned WavesAfter = getMaxWaves(PressureAfter.first, | 
|  | PressureAfter.second, MF); | 
|  | unsigned WavesBefore = getMaxWaves(PressureBefore.first, | 
|  | PressureBefore.second, MF); | 
|  | DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore << | 
|  | ", after " << WavesAfter << ".\n"); | 
|  |  | 
|  | // We could not keep current target occupancy because of the just scheduled | 
|  | // region. Record new occupancy for next scheduling cycle. | 
|  | unsigned NewOccupancy = std::max(WavesAfter, WavesBefore); | 
|  | if (NewOccupancy < MinOccupancy) { | 
|  | MinOccupancy = NewOccupancy; | 
|  | DEBUG(dbgs() << "Occupancy lowered for the function to " | 
|  | << MinOccupancy << ".\n"); | 
|  | } | 
|  |  | 
|  | if (WavesAfter >= WavesBefore) | 
|  | return; | 
|  |  | 
|  | DEBUG(dbgs() << "Attempting to revert scheduling.\n"); | 
|  | RegionEnd = RegionBegin; | 
|  | for (MachineInstr *MI : Unsched) { | 
|  | if (MI->getIterator() != RegionEnd) { | 
|  | BB->remove(MI); | 
|  | BB->insert(RegionEnd, MI); | 
|  | LIS->handleMove(*MI, true); | 
|  | } | 
|  | // Reset read-undef flags and update them later. | 
|  | for (auto &Op : MI->operands()) | 
|  | if (Op.isReg() && Op.isDef()) | 
|  | Op.setIsUndef(false); | 
|  | RegisterOperands RegOpers; | 
|  | RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); | 
|  | if (ShouldTrackLaneMasks) { | 
|  | // Adjust liveness and add missing dead+read-undef flags. | 
|  | SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); | 
|  | RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); | 
|  | } else { | 
|  | // Adjust for missing dead-def flags. | 
|  | RegOpers.detectDeadDefs(*MI, *LIS); | 
|  | } | 
|  | RegionEnd = MI->getIterator(); | 
|  | ++RegionEnd; | 
|  | DEBUG(dbgs() << "Scheduling " << *MI); | 
|  | } | 
|  | RegionBegin = Unsched.front()->getIterator(); | 
|  | if (Stage == 0) | 
|  | Regions.back() = std::make_pair(RegionBegin, RegionEnd); | 
|  |  | 
|  | placeDebugValues(); | 
|  | } | 
|  |  | 
|  | static inline void setMask(const MachineRegisterInfo &MRI, | 
|  | const SIRegisterInfo *SRI, unsigned Reg, | 
|  | LaneBitmask &PrevMask, LaneBitmask NewMask, | 
|  | unsigned &SGPRs, unsigned &VGPRs) { | 
|  | int NewRegs = countPopulation(NewMask.getAsInteger()) - | 
|  | countPopulation(PrevMask.getAsInteger()); | 
|  | if (SRI->isSGPRReg(MRI, Reg)) | 
|  | SGPRs += NewRegs; | 
|  | if (SRI->isVGPR(MRI, Reg)) | 
|  | VGPRs += NewRegs; | 
|  | assert ((int)SGPRs >= 0 && (int)VGPRs >= 0); | 
|  | PrevMask = NewMask; | 
|  | } | 
|  |  | 
|  | void GCNScheduleDAGMILive::discoverLiveIns() { | 
|  | unsigned SGPRs = 0; | 
|  | unsigned VGPRs = 0; | 
|  |  | 
|  | const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); | 
|  | SlotIndex SI = LIS->getInstructionIndex(*begin()).getBaseIndex(); | 
|  | assert (SI.isValid()); | 
|  |  | 
|  | DEBUG(dbgs() << "Region live-ins:"); | 
|  | for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { | 
|  | unsigned Reg = TargetRegisterInfo::index2VirtReg(I); | 
|  | if (MRI.reg_nodbg_empty(Reg)) | 
|  | continue; | 
|  | const LiveInterval &LI = LIS->getInterval(Reg); | 
|  | LaneBitmask LaneMask = LaneBitmask::getNone(); | 
|  | if (LI.hasSubRanges()) { | 
|  | for (const auto &S : LI.subranges()) | 
|  | if (S.liveAt(SI)) | 
|  | LaneMask |= S.LaneMask; | 
|  | } else if (LI.liveAt(SI)) { | 
|  | LaneMask = MRI.getMaxLaneMaskForVReg(Reg); | 
|  | } | 
|  |  | 
|  | if (LaneMask.any()) { | 
|  | setMask(MRI, SRI, Reg, LiveIns[Reg], LaneMask, SGPRs, VGPRs); | 
|  |  | 
|  | DEBUG(dbgs() << ' ' << PrintVRegOrUnit(Reg, SRI) << ':' | 
|  | << PrintLaneMask(LiveIns[Reg])); | 
|  | } | 
|  | } | 
|  |  | 
|  | LiveInPressure = std::make_pair(SGPRs, VGPRs); | 
|  |  | 
|  | DEBUG(dbgs() << "\nLive-in pressure:\nSGPR = " << SGPRs | 
|  | << "\nVGPR = " << VGPRs << '\n'); | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, unsigned> | 
|  | GCNScheduleDAGMILive::getRealRegPressure() const { | 
|  | unsigned SGPRs, MaxSGPRs, VGPRs, MaxVGPRs; | 
|  | SGPRs = MaxSGPRs = LiveInPressure.first; | 
|  | VGPRs = MaxVGPRs = LiveInPressure.second; | 
|  |  | 
|  | const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); | 
|  | DenseMap<unsigned, LaneBitmask> LiveRegs(LiveIns); | 
|  |  | 
|  | for (const MachineInstr &MI : *this) { | 
|  | if (MI.isDebugValue()) | 
|  | continue; | 
|  | SlotIndex SI = LIS->getInstructionIndex(MI).getBaseIndex(); | 
|  | assert (SI.isValid()); | 
|  |  | 
|  | // Remove dead registers or mask bits. | 
|  | for (auto &It : LiveRegs) { | 
|  | if (It.second.none()) | 
|  | continue; | 
|  | const LiveInterval &LI = LIS->getInterval(It.first); | 
|  | if (LI.hasSubRanges()) { | 
|  | for (const auto &S : LI.subranges()) | 
|  | if (!S.liveAt(SI)) | 
|  | setMask(MRI, SRI, It.first, It.second, It.second & ~S.LaneMask, | 
|  | SGPRs, VGPRs); | 
|  | } else if (!LI.liveAt(SI)) { | 
|  | setMask(MRI, SRI, It.first, It.second, LaneBitmask::getNone(), | 
|  | SGPRs, VGPRs); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add new registers or mask bits. | 
|  | for (const auto &MO : MI.defs()) { | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | continue; | 
|  | unsigned SubRegIdx = MO.getSubReg(); | 
|  | LaneBitmask LaneMask = SubRegIdx != 0 | 
|  | ? TRI->getSubRegIndexLaneMask(SubRegIdx) | 
|  | : MRI.getMaxLaneMaskForVReg(Reg); | 
|  | LaneBitmask &LM = LiveRegs[Reg]; | 
|  | setMask(MRI, SRI, Reg, LM, LM | LaneMask, SGPRs, VGPRs); | 
|  | } | 
|  | MaxSGPRs = std::max(MaxSGPRs, SGPRs); | 
|  | MaxVGPRs = std::max(MaxVGPRs, VGPRs); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Real region's register pressure:\nSGPR = " << MaxSGPRs | 
|  | << "\nVGPR = " << MaxVGPRs << '\n'); | 
|  |  | 
|  | return std::make_pair(MaxSGPRs, MaxVGPRs); | 
|  | } | 
|  |  | 
|  | void GCNScheduleDAGMILive::finalizeSchedule() { | 
|  | // Retry function scheduling if we found resulting occupancy and it is | 
|  | // lower than used for first pass scheduling. This will give more freedom | 
|  | // to schedule low register pressure blocks. | 
|  | // Code is partially copied from MachineSchedulerBase::scheduleRegions(). | 
|  |  | 
|  | if (!LIS || StartingOccupancy <= MinOccupancy) | 
|  | return; | 
|  |  | 
|  | DEBUG(dbgs() << "Retrying function scheduling with lowest recorded occupancy " | 
|  | << MinOccupancy << ".\n"); | 
|  |  | 
|  | Stage++; | 
|  | GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; | 
|  | S.setTargetOccupancy(MinOccupancy); | 
|  |  | 
|  | MachineBasicBlock *MBB = nullptr; | 
|  | for (auto Region : Regions) { | 
|  | RegionBegin = Region.first; | 
|  | RegionEnd = Region.second; | 
|  |  | 
|  | if (RegionBegin->getParent() != MBB) { | 
|  | if (MBB) finishBlock(); | 
|  | MBB = RegionBegin->getParent(); | 
|  | startBlock(MBB); | 
|  | } | 
|  |  | 
|  | unsigned NumRegionInstrs = std::distance(begin(), end()); | 
|  | enterRegion(MBB, begin(), end(), NumRegionInstrs); | 
|  |  | 
|  | // Skip empty scheduling regions (0 or 1 schedulable instructions). | 
|  | if (begin() == end() || begin() == std::prev(end())) { | 
|  | exitRegion(); | 
|  | continue; | 
|  | } | 
|  | DEBUG(dbgs() << "********** MI Scheduling **********\n"); | 
|  | DEBUG(dbgs() << MF.getName() | 
|  | << ":BB#" << MBB->getNumber() << " " << MBB->getName() | 
|  | << "\n  From: " << *begin() << "    To: "; | 
|  | if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; | 
|  | else dbgs() << "End"; | 
|  | dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); | 
|  |  | 
|  | schedule(); | 
|  |  | 
|  | exitRegion(); | 
|  | } | 
|  | finishBlock(); | 
|  | LiveIns.shrink_and_clear(); | 
|  | } |