|  | //===-- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===/ | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// \brief Insert wait instructions for memory reads and writes. | 
|  | /// | 
|  | /// Memory reads and writes are issued asynchronously, so we need to insert | 
|  | /// S_WAITCNT instructions when we want to access any of their results or | 
|  | /// overwrite any register that's used asynchronously. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AMDGPU.h" | 
|  | #include "AMDGPUSubtarget.h" | 
|  | #include "SIDefines.h" | 
|  | #include "SIInstrInfo.h" | 
|  | #include "SIMachineFunctionInfo.h" | 
|  | #include "Utils/AMDGPUBaseInfo.h" | 
|  | #include "llvm/ADT/PostOrderIterator.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  |  | 
|  | #define DEBUG_TYPE "si-insert-waitcnts" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Class of object that encapsulates latest instruction counter score | 
|  | // associated with the operand.  Used for determining whether | 
|  | // s_waitcnt instruction needs to be emited. | 
|  |  | 
|  | #define CNT_MASK(t) (1u << (t)) | 
|  |  | 
|  | enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, NUM_INST_CNTS }; | 
|  |  | 
|  | typedef std::pair<signed, signed> RegInterval; | 
|  |  | 
|  | struct { | 
|  | int32_t VmcntMax; | 
|  | int32_t ExpcntMax; | 
|  | int32_t LgkmcntMax; | 
|  | int32_t NumVGPRsMax; | 
|  | int32_t NumSGPRsMax; | 
|  | } HardwareLimits; | 
|  |  | 
|  | struct { | 
|  | unsigned VGPR0; | 
|  | unsigned VGPRL; | 
|  | unsigned SGPR0; | 
|  | unsigned SGPRL; | 
|  | } RegisterEncoding; | 
|  |  | 
|  | enum WaitEventType { | 
|  | VMEM_ACCESS,      // vector-memory read & write | 
|  | LDS_ACCESS,       // lds read & write | 
|  | GDS_ACCESS,       // gds read & write | 
|  | SQ_MESSAGE,       // send message | 
|  | SMEM_ACCESS,      // scalar-memory read & write | 
|  | EXP_GPR_LOCK,     // export holding on its data src | 
|  | GDS_GPR_LOCK,     // GDS holding on its data and addr src | 
|  | EXP_POS_ACCESS,   // write to export position | 
|  | EXP_PARAM_ACCESS, // write to export parameter | 
|  | VMW_GPR_LOCK,     // vector-memory write holding on its data src | 
|  | NUM_WAIT_EVENTS, | 
|  | }; | 
|  |  | 
|  | // The mapping is: | 
|  | //  0                .. SQ_MAX_PGM_VGPRS-1               real VGPRs | 
|  | //  SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1                  extra VGPR-like slots | 
|  | //  NUM_ALL_VGPRS    .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs | 
|  | // We reserve a fixed number of VGPR slots in the scoring tables for | 
|  | // special tokens like SCMEM_LDS (needed for buffer load to LDS). | 
|  | enum RegisterMapping { | 
|  | SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. | 
|  | SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. | 
|  | NUM_EXTRA_VGPRS = 1,    // A reserved slot for DS. | 
|  | EXTRA_VGPR_LDS = 0,     // This is a placeholder the Shader algorithm uses. | 
|  | NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. | 
|  | }; | 
|  |  | 
|  | #define ForAllWaitEventType(w)                                                 \ | 
|  | for (enum WaitEventType w = (enum WaitEventType)0;                           \ | 
|  | (w) < (enum WaitEventType)NUM_WAIT_EVENTS;                              \ | 
|  | (w) = (enum WaitEventType)((w) + 1)) | 
|  |  | 
|  | // This is a per-basic-block object that maintains current score brackets | 
|  | // of each wait-counter, and a per-register scoreboard for each wait-couner. | 
|  | // We also maintain the latest score for every event type that can change the | 
|  | // waitcnt in order to know if there are multiple types of events within | 
|  | // the brackets. When multiple types of event happen in the bracket, | 
|  | // wait-count may get decreased out of order, therefore we need to put in | 
|  | // "s_waitcnt 0" before use. | 
|  | class BlockWaitcntBrackets { | 
|  | public: | 
|  | static int32_t getWaitCountMax(InstCounterType T) { | 
|  | switch (T) { | 
|  | case VM_CNT: | 
|  | return HardwareLimits.VmcntMax; | 
|  | case LGKM_CNT: | 
|  | return HardwareLimits.LgkmcntMax; | 
|  | case EXP_CNT: | 
|  | return HardwareLimits.ExpcntMax; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | }; | 
|  |  | 
|  | void setScoreLB(InstCounterType T, int32_t Val) { | 
|  | assert(T < NUM_INST_CNTS); | 
|  | if (T >= NUM_INST_CNTS) | 
|  | return; | 
|  | ScoreLBs[T] = Val; | 
|  | }; | 
|  |  | 
|  | void setScoreUB(InstCounterType T, int32_t Val) { | 
|  | assert(T < NUM_INST_CNTS); | 
|  | if (T >= NUM_INST_CNTS) | 
|  | return; | 
|  | ScoreUBs[T] = Val; | 
|  | if (T == EXP_CNT) { | 
|  | int32_t UB = (int)(ScoreUBs[T] - getWaitCountMax(EXP_CNT)); | 
|  | if (ScoreLBs[T] < UB) | 
|  | ScoreLBs[T] = UB; | 
|  | } | 
|  | }; | 
|  |  | 
|  | int32_t getScoreLB(InstCounterType T) { | 
|  | assert(T < NUM_INST_CNTS); | 
|  | if (T >= NUM_INST_CNTS) | 
|  | return 0; | 
|  | return ScoreLBs[T]; | 
|  | }; | 
|  |  | 
|  | int32_t getScoreUB(InstCounterType T) { | 
|  | assert(T < NUM_INST_CNTS); | 
|  | if (T >= NUM_INST_CNTS) | 
|  | return 0; | 
|  | return ScoreUBs[T]; | 
|  | }; | 
|  |  | 
|  | // Mapping from event to counter. | 
|  | InstCounterType eventCounter(WaitEventType E) { | 
|  | switch (E) { | 
|  | case VMEM_ACCESS: | 
|  | return VM_CNT; | 
|  | case LDS_ACCESS: | 
|  | case GDS_ACCESS: | 
|  | case SQ_MESSAGE: | 
|  | case SMEM_ACCESS: | 
|  | return LGKM_CNT; | 
|  | case EXP_GPR_LOCK: | 
|  | case GDS_GPR_LOCK: | 
|  | case VMW_GPR_LOCK: | 
|  | case EXP_POS_ACCESS: | 
|  | case EXP_PARAM_ACCESS: | 
|  | return EXP_CNT; | 
|  | default: | 
|  | llvm_unreachable("unhandled event type"); | 
|  | } | 
|  | return NUM_INST_CNTS; | 
|  | } | 
|  |  | 
|  | void setRegScore(int GprNo, InstCounterType T, int32_t Val) { | 
|  | if (GprNo < NUM_ALL_VGPRS) { | 
|  | if (GprNo > VgprUB) { | 
|  | VgprUB = GprNo; | 
|  | } | 
|  | VgprScores[T][GprNo] = Val; | 
|  | } else { | 
|  | assert(T == LGKM_CNT); | 
|  | if (GprNo - NUM_ALL_VGPRS > SgprUB) { | 
|  | SgprUB = GprNo - NUM_ALL_VGPRS; | 
|  | } | 
|  | SgprScores[GprNo - NUM_ALL_VGPRS] = Val; | 
|  | } | 
|  | } | 
|  |  | 
|  | int32_t getRegScore(int GprNo, InstCounterType T) { | 
|  | if (GprNo < NUM_ALL_VGPRS) { | 
|  | return VgprScores[T][GprNo]; | 
|  | } | 
|  | return SgprScores[GprNo - NUM_ALL_VGPRS]; | 
|  | } | 
|  |  | 
|  | void clear() { | 
|  | memset(ScoreLBs, 0, sizeof(ScoreLBs)); | 
|  | memset(ScoreUBs, 0, sizeof(ScoreUBs)); | 
|  | memset(EventUBs, 0, sizeof(EventUBs)); | 
|  | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; | 
|  | T = (enum InstCounterType)(T + 1)) { | 
|  | memset(VgprScores[T], 0, sizeof(VgprScores[T])); | 
|  | } | 
|  | memset(SgprScores, 0, sizeof(SgprScores)); | 
|  | } | 
|  |  | 
|  | RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, | 
|  | const MachineRegisterInfo *MRI, | 
|  | const SIRegisterInfo *TRI, unsigned OpNo, | 
|  | bool Def) const; | 
|  |  | 
|  | void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, | 
|  | const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, | 
|  | unsigned OpNo, int32_t Val); | 
|  |  | 
|  | void setWaitAtBeginning() { WaitAtBeginning = true; } | 
|  | void clearWaitAtBeginning() { WaitAtBeginning = false; } | 
|  | bool getWaitAtBeginning() const { return WaitAtBeginning; } | 
|  | void setEventUB(enum WaitEventType W, int32_t Val) { EventUBs[W] = Val; } | 
|  | int32_t getMaxVGPR() const { return VgprUB; } | 
|  | int32_t getMaxSGPR() const { return SgprUB; } | 
|  | int32_t getEventUB(enum WaitEventType W) const { | 
|  | assert(W < NUM_WAIT_EVENTS); | 
|  | return EventUBs[W]; | 
|  | } | 
|  | bool counterOutOfOrder(InstCounterType T); | 
|  | unsigned int updateByWait(InstCounterType T, int ScoreToWait); | 
|  | void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, | 
|  | const MachineRegisterInfo *MRI, WaitEventType E, | 
|  | MachineInstr &MI); | 
|  |  | 
|  | BlockWaitcntBrackets() | 
|  | : WaitAtBeginning(false), ValidLoop(false), MixedExpTypes(false), | 
|  | LoopRegion(NULL), PostOrder(0), Waitcnt(NULL), VgprUB(0), SgprUB(0) { | 
|  | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; | 
|  | T = (enum InstCounterType)(T + 1)) { | 
|  | memset(VgprScores[T], 0, sizeof(VgprScores[T])); | 
|  | } | 
|  | } | 
|  | ~BlockWaitcntBrackets(){}; | 
|  |  | 
|  | bool hasPendingSMEM() const { | 
|  | return (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && | 
|  | EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]); | 
|  | } | 
|  |  | 
|  | bool hasPendingFlat() const { | 
|  | return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && | 
|  | LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || | 
|  | (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && | 
|  | LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); | 
|  | } | 
|  |  | 
|  | void setPendingFlat() { | 
|  | LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; | 
|  | LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; | 
|  | } | 
|  |  | 
|  | int pendingFlat(InstCounterType Ct) const { return LastFlat[Ct]; } | 
|  |  | 
|  | void setLastFlat(InstCounterType Ct, int Val) { LastFlat[Ct] = Val; } | 
|  |  | 
|  | bool getRevisitLoop() const { return RevisitLoop; } | 
|  | void setRevisitLoop(bool RevisitLoopIn) { RevisitLoop = RevisitLoopIn; } | 
|  |  | 
|  | void setPostOrder(int32_t PostOrderIn) { PostOrder = PostOrderIn; } | 
|  | int32_t getPostOrder() const { return PostOrder; } | 
|  |  | 
|  | void setWaitcnt(MachineInstr *WaitcntIn) { Waitcnt = WaitcntIn; } | 
|  | void clearWaitcnt() { Waitcnt = NULL; } | 
|  | MachineInstr *getWaitcnt() const { return Waitcnt; } | 
|  |  | 
|  | bool mixedExpTypes() const { return MixedExpTypes; } | 
|  | void setMixedExpTypes(bool MixedExpTypesIn) { | 
|  | MixedExpTypes = MixedExpTypesIn; | 
|  | } | 
|  |  | 
|  | void print(raw_ostream &); | 
|  | void dump() { print(dbgs()); } | 
|  |  | 
|  | private: | 
|  | bool WaitAtBeginning; | 
|  | bool RevisitLoop; | 
|  | bool ValidLoop; | 
|  | bool MixedExpTypes; | 
|  | MachineLoop *LoopRegion; | 
|  | int32_t PostOrder; | 
|  | MachineInstr *Waitcnt; | 
|  | int32_t ScoreLBs[NUM_INST_CNTS] = {0}; | 
|  | int32_t ScoreUBs[NUM_INST_CNTS] = {0}; | 
|  | int32_t EventUBs[NUM_WAIT_EVENTS] = {0}; | 
|  | // Remember the last flat memory operation. | 
|  | int32_t LastFlat[NUM_INST_CNTS] = {0}; | 
|  | // wait_cnt scores for every vgpr. | 
|  | // Keep track of the VgprUB and SgprUB to make merge at join efficient. | 
|  | int32_t VgprUB; | 
|  | int32_t SgprUB; | 
|  | int32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS]; | 
|  | // Wait cnt scores for every sgpr, only lgkmcnt is relevant. | 
|  | int32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; | 
|  | }; | 
|  |  | 
|  | // This is a per-loop-region object that records waitcnt status at the end of | 
|  | // loop footer from the previous iteration. We also maintain an iteration | 
|  | // count to track the number of times the loop has been visited. When it | 
|  | // doesn't converge naturally, we force convergence by inserting s_waitcnt 0 | 
|  | // at the end of the loop footer. | 
|  | class LoopWaitcntData { | 
|  | public: | 
|  | void incIterCnt() { IterCnt++; } | 
|  | void resetIterCnt() { IterCnt = 0; } | 
|  | int32_t getIterCnt() { return IterCnt; } | 
|  |  | 
|  | LoopWaitcntData() : LfWaitcnt(NULL), IterCnt(0) {} | 
|  | ~LoopWaitcntData(){}; | 
|  |  | 
|  | void setWaitcnt(MachineInstr *WaitcntIn) { LfWaitcnt = WaitcntIn; } | 
|  | MachineInstr *getWaitcnt() const { return LfWaitcnt; } | 
|  |  | 
|  | void print() { | 
|  | DEBUG(dbgs() << "  iteration " << IterCnt << '\n';); | 
|  | return; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // s_waitcnt added at the end of loop footer to stablize wait scores | 
|  | // at the end of the loop footer. | 
|  | MachineInstr *LfWaitcnt; | 
|  | // Number of iterations the loop has been visited, not including the initial | 
|  | // walk over. | 
|  | int32_t IterCnt; | 
|  | }; | 
|  |  | 
|  | class SIInsertWaitcnts : public MachineFunctionPass { | 
|  |  | 
|  | private: | 
|  | const SISubtarget *ST; | 
|  | const SIInstrInfo *TII; | 
|  | const SIRegisterInfo *TRI; | 
|  | const MachineRegisterInfo *MRI; | 
|  | const MachineLoopInfo *MLI; | 
|  | AMDGPU::IsaInfo::IsaVersion IV; | 
|  | AMDGPUAS AMDGPUASI; | 
|  |  | 
|  | DenseSet<MachineBasicBlock *> BlockVisitedSet; | 
|  | DenseSet<MachineInstr *> CompilerGeneratedWaitcntSet; | 
|  | DenseSet<MachineInstr *> VCCZBugHandledSet; | 
|  |  | 
|  | DenseMap<MachineBasicBlock *, std::unique_ptr<BlockWaitcntBrackets>> | 
|  | BlockWaitcntBracketsMap; | 
|  |  | 
|  | DenseSet<MachineBasicBlock *> BlockWaitcntProcessedSet; | 
|  |  | 
|  | DenseMap<MachineLoop *, std::unique_ptr<LoopWaitcntData>> LoopWaitcntDataMap; | 
|  |  | 
|  | std::vector<std::unique_ptr<BlockWaitcntBrackets>> KillWaitBrackets; | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | SIInsertWaitcnts() | 
|  | : MachineFunctionPass(ID), ST(nullptr), TII(nullptr), TRI(nullptr), | 
|  | MRI(nullptr), MLI(nullptr) {} | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | StringRef getPassName() const override { | 
|  | return "SI insert wait instructions"; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<MachineLoopInfo>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | void addKillWaitBracket(BlockWaitcntBrackets *Bracket) { | 
|  | // The waitcnt information is copied because it changes as the block is | 
|  | // traversed. | 
|  | KillWaitBrackets.push_back(make_unique<BlockWaitcntBrackets>(*Bracket)); | 
|  | } | 
|  |  | 
|  | MachineInstr *generateSWaitCntInstBefore(MachineInstr &MI, | 
|  | BlockWaitcntBrackets *ScoreBrackets); | 
|  | void updateEventWaitCntAfter(MachineInstr &Inst, | 
|  | BlockWaitcntBrackets *ScoreBrackets); | 
|  | void mergeInputScoreBrackets(MachineBasicBlock &Block); | 
|  | MachineBasicBlock *loopBottom(const MachineLoop *Loop); | 
|  | void insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block); | 
|  | void insertWaitcntBeforeCF(MachineBasicBlock &Block, MachineInstr *Inst); | 
|  | }; | 
|  |  | 
|  | } // End anonymous namespace. | 
|  |  | 
|  | RegInterval BlockWaitcntBrackets::getRegInterval(const MachineInstr *MI, | 
|  | const SIInstrInfo *TII, | 
|  | const MachineRegisterInfo *MRI, | 
|  | const SIRegisterInfo *TRI, | 
|  | unsigned OpNo, | 
|  | bool Def) const { | 
|  | const MachineOperand &Op = MI->getOperand(OpNo); | 
|  | if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || | 
|  | (Def && !Op.isDef())) | 
|  | return {-1, -1}; | 
|  |  | 
|  | // A use via a PW operand does not need a waitcnt. | 
|  | // A partial write is not a WAW. | 
|  | assert(!Op.getSubReg() || !Op.isUndef()); | 
|  |  | 
|  | RegInterval Result; | 
|  | const MachineRegisterInfo &MRIA = *MRI; | 
|  |  | 
|  | unsigned Reg = TRI->getEncodingValue(Op.getReg()); | 
|  |  | 
|  | if (TRI->isVGPR(MRIA, Op.getReg())) { | 
|  | assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); | 
|  | Result.first = Reg - RegisterEncoding.VGPR0; | 
|  | assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); | 
|  | } else if (TRI->isSGPRReg(MRIA, Op.getReg())) { | 
|  | assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); | 
|  | Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; | 
|  | assert(Result.first >= NUM_ALL_VGPRS && | 
|  | Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); | 
|  | } | 
|  | // TODO: Handle TTMP | 
|  | // else if (TRI->isTTMP(MRIA, Reg.getReg())) ... | 
|  | else | 
|  | return {-1, -1}; | 
|  |  | 
|  | const MachineInstr &MIA = *MI; | 
|  | const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo); | 
|  | unsigned Size = RC->getSize(); | 
|  | Result.second = Result.first + (Size / 4); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void BlockWaitcntBrackets::setExpScore(const MachineInstr *MI, | 
|  | const SIInstrInfo *TII, | 
|  | const SIRegisterInfo *TRI, | 
|  | const MachineRegisterInfo *MRI, | 
|  | unsigned OpNo, int32_t Val) { | 
|  | RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); | 
|  | DEBUG({ | 
|  | const MachineOperand &Opnd = MI->getOperand(OpNo); | 
|  | assert(TRI->isVGPR(*MRI, Opnd.getReg())); | 
|  | }); | 
|  | for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { | 
|  | setRegScore(RegNo, EXP_CNT, Val); | 
|  | } | 
|  | } | 
|  |  | 
|  | void BlockWaitcntBrackets::updateByEvent(const SIInstrInfo *TII, | 
|  | const SIRegisterInfo *TRI, | 
|  | const MachineRegisterInfo *MRI, | 
|  | WaitEventType E, MachineInstr &Inst) { | 
|  | const MachineRegisterInfo &MRIA = *MRI; | 
|  | InstCounterType T = eventCounter(E); | 
|  | int32_t CurrScore = getScoreUB(T) + 1; | 
|  | // EventUB and ScoreUB need to be update regardless if this event changes | 
|  | // the score of a register or not. | 
|  | // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. | 
|  | EventUBs[E] = CurrScore; | 
|  | setScoreUB(T, CurrScore); | 
|  |  | 
|  | if (T == EXP_CNT) { | 
|  | // Check for mixed export types. If they are mixed, then a waitcnt exp(0) | 
|  | // is required. | 
|  | if (!MixedExpTypes) { | 
|  | MixedExpTypes = counterOutOfOrder(EXP_CNT); | 
|  | } | 
|  |  | 
|  | // Put score on the source vgprs. If this is a store, just use those | 
|  | // specific register(s). | 
|  | if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { | 
|  | // All GDS operations must protect their address register (same as | 
|  | // export.) | 
|  | if (Inst.getOpcode() != AMDGPU::DS_APPEND && | 
|  | Inst.getOpcode() != AMDGPU::DS_CONSUME) { | 
|  | setExpScore( | 
|  | &Inst, TII, TRI, MRI, | 
|  | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr), | 
|  | CurrScore); | 
|  | } | 
|  | if (Inst.mayStore()) { | 
|  | setExpScore( | 
|  | &Inst, TII, TRI, MRI, | 
|  | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), | 
|  | CurrScore); | 
|  | if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), | 
|  | AMDGPU::OpName::data1) != -1) { | 
|  | setExpScore(&Inst, TII, TRI, MRI, | 
|  | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), | 
|  | AMDGPU::OpName::data1), | 
|  | CurrScore); | 
|  | } | 
|  | } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && | 
|  | Inst.getOpcode() != AMDGPU::DS_GWS_INIT && | 
|  | Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && | 
|  | Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && | 
|  | Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && | 
|  | Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && | 
|  | Inst.getOpcode() != AMDGPU::DS_APPEND && | 
|  | Inst.getOpcode() != AMDGPU::DS_CONSUME && | 
|  | Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { | 
|  | for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { | 
|  | const MachineOperand &Op = Inst.getOperand(I); | 
|  | if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) { | 
|  | setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (TII->isFLAT(Inst)) { | 
|  | if (Inst.mayStore()) { | 
|  | setExpScore( | 
|  | &Inst, TII, TRI, MRI, | 
|  | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), | 
|  | CurrScore); | 
|  | } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { | 
|  | setExpScore( | 
|  | &Inst, TII, TRI, MRI, | 
|  | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), | 
|  | CurrScore); | 
|  | } | 
|  | } else if (TII->isMIMG(Inst)) { | 
|  | if (Inst.mayStore()) { | 
|  | setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); | 
|  | } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { | 
|  | setExpScore( | 
|  | &Inst, TII, TRI, MRI, | 
|  | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), | 
|  | CurrScore); | 
|  | } | 
|  | } else if (TII->isMTBUF(Inst)) { | 
|  | if (Inst.mayStore()) { | 
|  | setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); | 
|  | } | 
|  | } else if (TII->isMUBUF(Inst)) { | 
|  | if (Inst.mayStore()) { | 
|  | setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); | 
|  | } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { | 
|  | setExpScore( | 
|  | &Inst, TII, TRI, MRI, | 
|  | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), | 
|  | CurrScore); | 
|  | } | 
|  | } else { | 
|  | if (TII->isEXP(Inst)) { | 
|  | // For export the destination registers are really temps that | 
|  | // can be used as the actual source after export patching, so | 
|  | // we need to treat them like sources and set the EXP_CNT | 
|  | // score. | 
|  | for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { | 
|  | MachineOperand &DefMO = Inst.getOperand(I); | 
|  | if (DefMO.isReg() && DefMO.isDef() && | 
|  | TRI->isVGPR(MRIA, DefMO.getReg())) { | 
|  | setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, | 
|  | CurrScore); | 
|  | } | 
|  | } | 
|  | } | 
|  | for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { | 
|  | MachineOperand &MO = Inst.getOperand(I); | 
|  | if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) { | 
|  | setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); | 
|  | } | 
|  | } | 
|  | } | 
|  | #if 0 // TODO: check if this is handled by MUBUF code above. | 
|  | } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || | 
|  | Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || | 
|  | Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { | 
|  | MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); | 
|  | unsigned OpNo;//TODO: find the OpNo for this operand; | 
|  | RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); | 
|  | for (signed RegNo = Interval.first; RegNo < Interval.second; | 
|  | ++RegNo) { | 
|  | setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); | 
|  | } | 
|  | #endif | 
|  | } else { | 
|  | // Match the score to the destination registers. | 
|  | for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { | 
|  | RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); | 
|  | if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) | 
|  | continue; | 
|  | for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { | 
|  | setRegScore(RegNo, T, CurrScore); | 
|  | } | 
|  | } | 
|  | if (TII->isDS(Inst) && Inst.mayStore()) { | 
|  | setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void BlockWaitcntBrackets::print(raw_ostream &OS) { | 
|  | OS << '\n'; | 
|  | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; | 
|  | T = (enum InstCounterType)(T + 1)) { | 
|  | int LB = getScoreLB(T); | 
|  | int UB = getScoreUB(T); | 
|  |  | 
|  | switch (T) { | 
|  | case VM_CNT: | 
|  | OS << "    VM_CNT(" << UB - LB << "): "; | 
|  | break; | 
|  | case LGKM_CNT: | 
|  | OS << "    LGKM_CNT(" << UB - LB << "): "; | 
|  | break; | 
|  | case EXP_CNT: | 
|  | OS << "    EXP_CNT(" << UB - LB << "): "; | 
|  | break; | 
|  | default: | 
|  | OS << "    UNKNOWN(" << UB - LB << "): "; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (LB < UB) { | 
|  | // Print vgpr scores. | 
|  | for (int J = 0; J <= getMaxVGPR(); J++) { | 
|  | int RegScore = getRegScore(J, T); | 
|  | if (RegScore <= LB) | 
|  | continue; | 
|  | int RelScore = RegScore - LB - 1; | 
|  | if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { | 
|  | OS << RelScore << ":v" << J << " "; | 
|  | } else { | 
|  | OS << RelScore << ":ds "; | 
|  | } | 
|  | } | 
|  | // Also need to print sgpr scores for lgkm_cnt. | 
|  | if (T == LGKM_CNT) { | 
|  | for (int J = 0; J <= getMaxSGPR(); J++) { | 
|  | int RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); | 
|  | if (RegScore <= LB) | 
|  | continue; | 
|  | int RelScore = RegScore - LB - 1; | 
|  | OS << RelScore << ":s" << J << " "; | 
|  | } | 
|  | } | 
|  | } | 
|  | OS << '\n'; | 
|  | } | 
|  | OS << '\n'; | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned int BlockWaitcntBrackets::updateByWait(InstCounterType T, | 
|  | int ScoreToWait) { | 
|  | unsigned int NeedWait = 0; | 
|  | if (ScoreToWait == -1) { | 
|  | // The score to wait is unknown. This implies that it was not encountered | 
|  | // during the path of the CFG walk done during the current traversal but | 
|  | // may be seen on a different path. Emit an s_wait counter with a | 
|  | // conservative value of 0 for the counter. | 
|  | NeedWait = CNT_MASK(T); | 
|  | setScoreLB(T, getScoreUB(T)); | 
|  | return NeedWait; | 
|  | } | 
|  |  | 
|  | // If the score of src_operand falls within the bracket, we need an | 
|  | // s_waitcnt instruction. | 
|  | const int32_t LB = getScoreLB(T); | 
|  | const int32_t UB = getScoreUB(T); | 
|  | if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { | 
|  | if (T == VM_CNT && hasPendingFlat()) { | 
|  | // If there is a pending FLAT operation, and this is a VM waitcnt, | 
|  | // then we need to force a waitcnt 0 for VM. | 
|  | NeedWait = CNT_MASK(T); | 
|  | setScoreLB(T, getScoreUB(T)); | 
|  | } else if (counterOutOfOrder(T)) { | 
|  | // Counter can get decremented out-of-order when there | 
|  | // are multiple types event in the brack. Also emit an s_wait counter | 
|  | // with a conservative value of 0 for the counter. | 
|  | NeedWait = CNT_MASK(T); | 
|  | setScoreLB(T, getScoreUB(T)); | 
|  | } else { | 
|  | NeedWait = CNT_MASK(T); | 
|  | setScoreLB(T, ScoreToWait); | 
|  | } | 
|  | } | 
|  |  | 
|  | return NeedWait; | 
|  | } | 
|  |  | 
|  | // Where there are multiple types of event in the bracket of a counter, | 
|  | // the decrement may go out of order. | 
|  | bool BlockWaitcntBrackets::counterOutOfOrder(InstCounterType T) { | 
|  | switch (T) { | 
|  | case VM_CNT: | 
|  | return false; | 
|  | case LGKM_CNT: { | 
|  | if (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && | 
|  | EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]) { | 
|  | // Scalar memory read always can go out of order. | 
|  | return true; | 
|  | } | 
|  | int NumEventTypes = 0; | 
|  | if (EventUBs[LDS_ACCESS] > ScoreLBs[LGKM_CNT] && | 
|  | EventUBs[LDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { | 
|  | NumEventTypes++; | 
|  | } | 
|  | if (EventUBs[GDS_ACCESS] > ScoreLBs[LGKM_CNT] && | 
|  | EventUBs[GDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { | 
|  | NumEventTypes++; | 
|  | } | 
|  | if (EventUBs[SQ_MESSAGE] > ScoreLBs[LGKM_CNT] && | 
|  | EventUBs[SQ_MESSAGE] <= ScoreUBs[LGKM_CNT]) { | 
|  | NumEventTypes++; | 
|  | } | 
|  | if (NumEventTypes <= 1) { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case EXP_CNT: { | 
|  | // If there has been a mixture of export types, then a waitcnt exp(0) is | 
|  | // required. | 
|  | if (MixedExpTypes) | 
|  | return true; | 
|  | int NumEventTypes = 0; | 
|  | if (EventUBs[EXP_GPR_LOCK] > ScoreLBs[EXP_CNT] && | 
|  | EventUBs[EXP_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { | 
|  | NumEventTypes++; | 
|  | } | 
|  | if (EventUBs[GDS_GPR_LOCK] > ScoreLBs[EXP_CNT] && | 
|  | EventUBs[GDS_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { | 
|  | NumEventTypes++; | 
|  | } | 
|  | if (EventUBs[VMW_GPR_LOCK] > ScoreLBs[EXP_CNT] && | 
|  | EventUBs[VMW_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { | 
|  | NumEventTypes++; | 
|  | } | 
|  | if (EventUBs[EXP_PARAM_ACCESS] > ScoreLBs[EXP_CNT] && | 
|  | EventUBs[EXP_PARAM_ACCESS] <= ScoreUBs[EXP_CNT]) { | 
|  | NumEventTypes++; | 
|  | } | 
|  |  | 
|  | if (EventUBs[EXP_POS_ACCESS] > ScoreLBs[EXP_CNT] && | 
|  | EventUBs[EXP_POS_ACCESS] <= ScoreUBs[EXP_CNT]) { | 
|  | NumEventTypes++; | 
|  | } | 
|  |  | 
|  | if (NumEventTypes <= 1) { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, | 
|  | false) | 
|  | INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, | 
|  | false) | 
|  |  | 
|  | char SIInsertWaitcnts::ID = 0; | 
|  |  | 
|  | char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; | 
|  |  | 
|  | FunctionPass *llvm::createSIInsertWaitcntsPass() { | 
|  | return new SIInsertWaitcnts(); | 
|  | } | 
|  |  | 
|  | static bool readsVCCZ(const MachineInstr &MI) { | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && | 
|  | !MI.getOperand(1).isUndef(); | 
|  | } | 
|  |  | 
|  | ///  \brief Generate s_waitcnt instruction to be placed before cur_Inst. | 
|  | ///  Instructions of a given type are returned in order, | 
|  | ///  but instructions of different types can complete out of order. | 
|  | ///  We rely on this in-order completion | 
|  | ///  and simply assign a score to the memory access instructions. | 
|  | ///  We keep track of the active "score bracket" to determine | 
|  | ///  if an access of a memory read requires an s_waitcnt | 
|  | ///  and if so what the value of each counter is. | 
|  | ///  The "score bracket" is bound by the lower bound and upper bound | 
|  | ///  scores (*_score_LB and *_score_ub respectively). | 
|  | MachineInstr *SIInsertWaitcnts::generateSWaitCntInstBefore( | 
|  | MachineInstr &MI, BlockWaitcntBrackets *ScoreBrackets) { | 
|  | // To emit, or not to emit - that's the question! | 
|  | // Start with an assumption that there is no need to emit. | 
|  | unsigned int EmitSwaitcnt = 0; | 
|  | // s_waitcnt instruction to return; default is NULL. | 
|  | MachineInstr *SWaitInst = nullptr; | 
|  | // No need to wait before phi. If a phi-move exists, then the wait should | 
|  | // has been inserted before the move. If a phi-move does not exist, then | 
|  | // wait should be inserted before the real use. The same is true for | 
|  | // sc-merge. It is not a coincident that all these cases correspond to the | 
|  | // instructions that are skipped in the assembling loop. | 
|  | bool NeedLineMapping = false; // TODO: Check on this. | 
|  | if (MI.isDebugValue() && | 
|  | // TODO: any other opcode? | 
|  | !NeedLineMapping) { | 
|  | return SWaitInst; | 
|  | } | 
|  |  | 
|  | // See if an s_waitcnt is forced at block entry, or is needed at | 
|  | // program end. | 
|  | if (ScoreBrackets->getWaitAtBeginning()) { | 
|  | // Note that we have already cleared the state, so we don't need to update | 
|  | // it. | 
|  | ScoreBrackets->clearWaitAtBeginning(); | 
|  | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; | 
|  | T = (enum InstCounterType)(T + 1)) { | 
|  | EmitSwaitcnt |= CNT_MASK(T); | 
|  | ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if this instruction has a forced S_WAITCNT VM. | 
|  | // TODO: Handle other cases of NeedsWaitcntVmBefore() | 
|  | else if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || | 
|  | MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || | 
|  | MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL) { | 
|  | EmitSwaitcnt |= | 
|  | ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); | 
|  | } | 
|  |  | 
|  | // All waits must be resolved at call return. | 
|  | // NOTE: this could be improved with knowledge of all call sites or | 
|  | //   with knowledge of the called routines. | 
|  | if (MI.getOpcode() == AMDGPU::RETURN || | 
|  | MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) { | 
|  | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; | 
|  | T = (enum InstCounterType)(T + 1)) { | 
|  | if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { | 
|  | ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); | 
|  | EmitSwaitcnt |= CNT_MASK(T); | 
|  | } | 
|  | } | 
|  | } | 
|  | // Resolve vm waits before gs-done. | 
|  | else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || | 
|  | MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && | 
|  | ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == | 
|  | AMDGPU::SendMsg::ID_GS_DONE)) { | 
|  | if (ScoreBrackets->getScoreUB(VM_CNT) > ScoreBrackets->getScoreLB(VM_CNT)) { | 
|  | ScoreBrackets->setScoreLB(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); | 
|  | EmitSwaitcnt |= CNT_MASK(VM_CNT); | 
|  | } | 
|  | } | 
|  | #if 0 // TODO: the following blocks of logic when we have fence. | 
|  | else if (MI.getOpcode() == SC_FENCE) { | 
|  | const unsigned int group_size = | 
|  | context->shader_info->GetMaxThreadGroupSize(); | 
|  | // group_size == 0 means thread group size is unknown at compile time | 
|  | const bool group_is_multi_wave = | 
|  | (group_size == 0 || group_size > target_info->GetWaveFrontSize()); | 
|  | const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); | 
|  |  | 
|  | for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { | 
|  | SCRegType src_type = Inst->GetSrcType(i); | 
|  | switch (src_type) { | 
|  | case SCMEM_LDS: | 
|  | if (group_is_multi_wave || | 
|  | context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, | 
|  | ScoreBrackets->getScoreUB(LGKM_CNT)); | 
|  | // LDS may have to wait for VM_CNT after buffer load to LDS | 
|  | if (target_info->HasBufferLoadToLDS()) { | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait(VM_CNT, | 
|  | ScoreBrackets->getScoreUB(VM_CNT)); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SCMEM_GDS: | 
|  | if (group_is_multi_wave || fence_is_global) { | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, | 
|  | ScoreBrackets->getScoreUB(EXP_CNT)); | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, | 
|  | ScoreBrackets->getScoreUB(LGKM_CNT)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SCMEM_UAV: | 
|  | case SCMEM_TFBUF: | 
|  | case SCMEM_RING: | 
|  | case SCMEM_SCATTER: | 
|  | if (group_is_multi_wave || fence_is_global) { | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, | 
|  | ScoreBrackets->getScoreUB(EXP_CNT)); | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait(VM_CNT, | 
|  | ScoreBrackets->getScoreUB(VM_CNT)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SCMEM_SCRATCH: | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Export & GDS instructions do not read the EXEC mask until after the export | 
|  | // is granted (which can occur well after the instruction is issued). | 
|  | // The shader program must flush all EXP operations on the export-count | 
|  | // before overwriting the EXEC mask. | 
|  | else { | 
|  | if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { | 
|  | // Export and GDS are tracked individually, either may trigger a waitcnt | 
|  | // for EXEC. | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait( | 
|  | EXP_CNT, ScoreBrackets->getEventUB(EXP_GPR_LOCK)); | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait( | 
|  | EXP_CNT, ScoreBrackets->getEventUB(EXP_PARAM_ACCESS)); | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait( | 
|  | EXP_CNT, ScoreBrackets->getEventUB(EXP_POS_ACCESS)); | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait( | 
|  | EXP_CNT, ScoreBrackets->getEventUB(GDS_GPR_LOCK)); | 
|  | } | 
|  |  | 
|  | #if 0 // TODO: the following code to handle CALL. | 
|  | // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT. | 
|  | // However, there is a problem with EXP_CNT, because the call cannot | 
|  | // easily tell if a register is used in the function, and if it did, then | 
|  | // the referring instruction would have to have an S_WAITCNT, which is | 
|  | // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs | 
|  | // before the call. | 
|  | if (MI.getOpcode() == SC_CALL) { | 
|  | if (ScoreBrackets->getScoreUB(EXP_CNT) > | 
|  | ScoreBrackets->getScoreLB(EXP_CNT)) { | 
|  | ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); | 
|  | EmitSwaitcnt |= CNT_MASK(EXP_CNT); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Look at the source operands of every instruction to see if | 
|  | // any of them results from a previous memory operation that affects | 
|  | // its current usage. If so, an s_waitcnt instruction needs to be | 
|  | // emitted. | 
|  | // If the source operand was defined by a load, add the s_waitcnt | 
|  | // instruction. | 
|  | for (const MachineMemOperand *Memop : MI.memoperands()) { | 
|  | unsigned AS = Memop->getAddrSpace(); | 
|  | if (AS != AMDGPUASI.LOCAL_ADDRESS) | 
|  | continue; | 
|  | unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; | 
|  | // VM_CNT is only relevant to vgpr or LDS. | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait( | 
|  | VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); | 
|  | } | 
|  | for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { | 
|  | const MachineOperand &Op = MI.getOperand(I); | 
|  | const MachineRegisterInfo &MRIA = *MRI; | 
|  | RegInterval Interval = | 
|  | ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, false); | 
|  | for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { | 
|  | if (TRI->isVGPR(MRIA, Op.getReg())) { | 
|  | // VM_CNT is only relevant to vgpr or LDS. | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait( | 
|  | VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); | 
|  | } | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait( | 
|  | LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); | 
|  | } | 
|  | } | 
|  | // End of for loop that looks at all source operands to decide vm_wait_cnt | 
|  | // and lgk_wait_cnt. | 
|  |  | 
|  | // Two cases are handled for destination operands: | 
|  | // 1) If the destination operand was defined by a load, add the s_waitcnt | 
|  | // instruction to guarantee the right WAW order. | 
|  | // 2) If a destination operand that was used by a recent export/store ins, | 
|  | // add s_waitcnt on exp_cnt to guarantee the WAR order. | 
|  | if (MI.mayStore()) { | 
|  | for (const MachineMemOperand *Memop : MI.memoperands()) { | 
|  | unsigned AS = Memop->getAddrSpace(); | 
|  | if (AS != AMDGPUASI.LOCAL_ADDRESS) | 
|  | continue; | 
|  | unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait( | 
|  | VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait( | 
|  | EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); | 
|  | } | 
|  | } | 
|  | for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { | 
|  | MachineOperand &Def = MI.getOperand(I); | 
|  | const MachineRegisterInfo &MRIA = *MRI; | 
|  | RegInterval Interval = | 
|  | ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, true); | 
|  | for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { | 
|  | if (TRI->isVGPR(MRIA, Def.getReg())) { | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait( | 
|  | VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait( | 
|  | EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); | 
|  | } | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait( | 
|  | LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); | 
|  | } | 
|  | } // End of for loop that looks at all dest operands. | 
|  | } | 
|  |  | 
|  | // TODO: Tie force zero to a compiler triage option. | 
|  | bool ForceZero = false; | 
|  |  | 
|  | // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 | 
|  | // occurs before the instruction. Doing it here prevents any additional | 
|  | // S_WAITCNTs from being emitted if the instruction was marked as | 
|  | // requiring a WAITCNT beforehand. | 
|  | if (MI.getOpcode() == AMDGPU::S_BARRIER && ST->needWaitcntBeforeBarrier()) { | 
|  | EmitSwaitcnt |= | 
|  | ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait( | 
|  | EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); | 
|  | EmitSwaitcnt |= ScoreBrackets->updateByWait( | 
|  | LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT)); | 
|  | } | 
|  |  | 
|  | // TODO: Remove this work-around, enable the assert for Bug 457939 | 
|  | //       after fixing the scheduler. Also, the Shader Compiler code is | 
|  | //       independent of target. | 
|  | if (readsVCCZ(MI) && ST->getGeneration() <= SISubtarget::SEA_ISLANDS) { | 
|  | if (ScoreBrackets->getScoreLB(LGKM_CNT) < | 
|  | ScoreBrackets->getScoreUB(LGKM_CNT) && | 
|  | ScoreBrackets->hasPendingSMEM()) { | 
|  | // Wait on everything, not just LGKM.  vccz reads usually come from | 
|  | // terminators, and we always wait on everything at the end of the | 
|  | // block, so if we only wait on LGKM here, we might end up with | 
|  | // another s_waitcnt inserted right after this if there are non-LGKM | 
|  | // instructions still outstanding. | 
|  | ForceZero = true; | 
|  | EmitSwaitcnt = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Does this operand processing indicate s_wait counter update? | 
|  | if (EmitSwaitcnt) { | 
|  | int CntVal[NUM_INST_CNTS]; | 
|  |  | 
|  | bool UseDefaultWaitcntStrategy = true; | 
|  | if (ForceZero) { | 
|  | // Force all waitcnts to 0. | 
|  | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; | 
|  | T = (enum InstCounterType)(T + 1)) { | 
|  | ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); | 
|  | } | 
|  | CntVal[VM_CNT] = 0; | 
|  | CntVal[EXP_CNT] = 0; | 
|  | CntVal[LGKM_CNT] = 0; | 
|  | UseDefaultWaitcntStrategy = false; | 
|  | } | 
|  |  | 
|  | if (UseDefaultWaitcntStrategy) { | 
|  | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; | 
|  | T = (enum InstCounterType)(T + 1)) { | 
|  | if (EmitSwaitcnt & CNT_MASK(T)) { | 
|  | int Delta = | 
|  | ScoreBrackets->getScoreUB(T) - ScoreBrackets->getScoreLB(T); | 
|  | int MaxDelta = ScoreBrackets->getWaitCountMax(T); | 
|  | if (Delta >= MaxDelta) { | 
|  | Delta = -1; | 
|  | if (T != EXP_CNT) { | 
|  | ScoreBrackets->setScoreLB( | 
|  | T, ScoreBrackets->getScoreUB(T) - MaxDelta); | 
|  | } | 
|  | EmitSwaitcnt &= ~CNT_MASK(T); | 
|  | } | 
|  | CntVal[T] = Delta; | 
|  | } else { | 
|  | // If we are not waiting for a particular counter then encode | 
|  | // it as -1 which means "don't care." | 
|  | CntVal[T] = -1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we are not waiting on any counter we can skip the wait altogether. | 
|  | if (EmitSwaitcnt != 0) { | 
|  | MachineInstr *OldWaitcnt = ScoreBrackets->getWaitcnt(); | 
|  | int Imm = (!OldWaitcnt) ? 0 : OldWaitcnt->getOperand(0).getImm(); | 
|  | if (!OldWaitcnt || (AMDGPU::decodeVmcnt(IV, Imm) != | 
|  | (CntVal[VM_CNT] & AMDGPU::getVmcntBitMask(IV))) || | 
|  | (AMDGPU::decodeExpcnt(IV, Imm) != | 
|  | (CntVal[EXP_CNT] & AMDGPU::getExpcntBitMask(IV))) || | 
|  | (AMDGPU::decodeLgkmcnt(IV, Imm) != | 
|  | (CntVal[LGKM_CNT] & AMDGPU::getLgkmcntBitMask(IV)))) { | 
|  | MachineLoop *ContainingLoop = MLI->getLoopFor(MI.getParent()); | 
|  | if (ContainingLoop) { | 
|  | MachineBasicBlock *TBB = ContainingLoop->getTopBlock(); | 
|  | BlockWaitcntBrackets *ScoreBracket = | 
|  | BlockWaitcntBracketsMap[TBB].get(); | 
|  | if (!ScoreBracket) { | 
|  | assert(BlockVisitedSet.find(TBB) == BlockVisitedSet.end()); | 
|  | BlockWaitcntBracketsMap[TBB] = make_unique<BlockWaitcntBrackets>(); | 
|  | ScoreBracket = BlockWaitcntBracketsMap[TBB].get(); | 
|  | } | 
|  | ScoreBracket->setRevisitLoop(true); | 
|  | DEBUG(dbgs() << "set-revisit: block" | 
|  | << ContainingLoop->getTopBlock()->getNumber() << '\n';); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update an existing waitcount, or make a new one. | 
|  | MachineFunction &MF = *MI.getParent()->getParent(); | 
|  | if (OldWaitcnt && OldWaitcnt->getOpcode() != AMDGPU::S_WAITCNT) { | 
|  | SWaitInst = OldWaitcnt; | 
|  | } else { | 
|  | SWaitInst = MF.CreateMachineInstr(TII->get(AMDGPU::S_WAITCNT), | 
|  | MI.getDebugLoc()); | 
|  | CompilerGeneratedWaitcntSet.insert(SWaitInst); | 
|  | } | 
|  |  | 
|  | const MachineOperand &Op = | 
|  | MachineOperand::CreateImm(AMDGPU::encodeWaitcnt( | 
|  | IV, CntVal[VM_CNT], CntVal[EXP_CNT], CntVal[LGKM_CNT])); | 
|  | SWaitInst->addOperand(MF, Op); | 
|  |  | 
|  | if (CntVal[EXP_CNT] == 0) { | 
|  | ScoreBrackets->setMixedExpTypes(false); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SWaitInst; | 
|  | } | 
|  |  | 
|  | void SIInsertWaitcnts::insertWaitcntBeforeCF(MachineBasicBlock &MBB, | 
|  | MachineInstr *Waitcnt) { | 
|  | if (MBB.empty()) { | 
|  | MBB.push_back(Waitcnt); | 
|  | return; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator It = MBB.end(); | 
|  | MachineInstr *MI = &*(--It); | 
|  | if (MI->isBranch()) { | 
|  | MBB.insert(It, Waitcnt); | 
|  | } else { | 
|  | MBB.push_back(Waitcnt); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | void SIInsertWaitcnts::updateEventWaitCntAfter( | 
|  | MachineInstr &Inst, BlockWaitcntBrackets *ScoreBrackets) { | 
|  | // Now look at the instruction opcode. If it is a memory access | 
|  | // instruction, update the upper-bound of the appropriate counter's | 
|  | // bracket and the destination operand scores. | 
|  | // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. | 
|  | if (TII->isDS(Inst) && (Inst.mayLoad() || Inst.mayStore())) { | 
|  | if (TII->getNamedOperand(Inst, AMDGPU::OpName::gds)->getImm() != 0) { | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); | 
|  | } else { | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); | 
|  | } | 
|  | } else if (TII->isFLAT(Inst)) { | 
|  | assert(Inst.mayLoad() || Inst.mayStore()); | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); | 
|  |  | 
|  | // This is a flat memory operation. Check to see if it has memory | 
|  | // tokens for both LDS and Memory, and if so mark it as a flat. | 
|  | bool FoundLDSMem = false; | 
|  | for (const MachineMemOperand *Memop : Inst.memoperands()) { | 
|  | unsigned AS = Memop->getAddrSpace(); | 
|  | if (AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS) | 
|  | FoundLDSMem = true; | 
|  | } | 
|  |  | 
|  | // This is a flat memory operation, so note it - it will require | 
|  | // that both the VM and LGKM be flushed to zero if it is pending when | 
|  | // a VM or LGKM dependency occurs. | 
|  | if (FoundLDSMem) { | 
|  | ScoreBrackets->setPendingFlat(); | 
|  | } | 
|  | } else if (SIInstrInfo::isVMEM(Inst) && | 
|  | // TODO: get a better carve out. | 
|  | Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && | 
|  | Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && | 
|  | Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL) { | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); | 
|  | if ( // TODO: assumed yes -- target_info->MemWriteNeedsExpWait() && | 
|  | (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()))) { | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); | 
|  | } | 
|  | } else if (TII->isSMRD(Inst)) { | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); | 
|  | } else { | 
|  | switch (Inst.getOpcode()) { | 
|  | case AMDGPU::S_SENDMSG: | 
|  | case AMDGPU::S_SENDMSGHALT: | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); | 
|  | break; | 
|  | case AMDGPU::EXP: | 
|  | case AMDGPU::EXP_DONE: { | 
|  | int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); | 
|  | if (Imm >= 32 && Imm <= 63) | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); | 
|  | else if (Imm >= 12 && Imm <= 15) | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); | 
|  | else | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); | 
|  | break; | 
|  | } | 
|  | case AMDGPU::S_MEMTIME: | 
|  | case AMDGPU::S_MEMREALTIME: | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SIInsertWaitcnts::mergeInputScoreBrackets(MachineBasicBlock &Block) { | 
|  | BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); | 
|  | int32_t MaxPending[NUM_INST_CNTS] = {0}; | 
|  | int32_t MaxFlat[NUM_INST_CNTS] = {0}; | 
|  | bool MixedExpTypes = false; | 
|  |  | 
|  | // Clear the score bracket state. | 
|  | ScoreBrackets->clear(); | 
|  |  | 
|  | // Compute the number of pending elements on block entry. | 
|  |  | 
|  | // IMPORTANT NOTE: If iterative handling of loops is added, the code will | 
|  | // need to handle single BBs with backedges to themselves. This means that | 
|  | // they will need to retain and not clear their initial state. | 
|  |  | 
|  | // See if there are any uninitialized predecessors. If so, emit an | 
|  | // s_waitcnt 0 at the beginning of the block. | 
|  | for (MachineBasicBlock *pred : Block.predecessors()) { | 
|  | BlockWaitcntBrackets *PredScoreBrackets = | 
|  | BlockWaitcntBracketsMap[pred].get(); | 
|  | bool Visited = BlockVisitedSet.find(pred) != BlockVisitedSet.end(); | 
|  | if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { | 
|  | break; | 
|  | } | 
|  | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; | 
|  | T = (enum InstCounterType)(T + 1)) { | 
|  | int span = | 
|  | PredScoreBrackets->getScoreUB(T) - PredScoreBrackets->getScoreLB(T); | 
|  | MaxPending[T] = std::max(MaxPending[T], span); | 
|  | span = | 
|  | PredScoreBrackets->pendingFlat(T) - PredScoreBrackets->getScoreLB(T); | 
|  | MaxFlat[T] = std::max(MaxFlat[T], span); | 
|  | } | 
|  |  | 
|  | MixedExpTypes |= PredScoreBrackets->mixedExpTypes(); | 
|  | } | 
|  |  | 
|  | // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? | 
|  | // Also handle kills for exit block. | 
|  | if (Block.succ_empty() && !KillWaitBrackets.empty()) { | 
|  | for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { | 
|  | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; | 
|  | T = (enum InstCounterType)(T + 1)) { | 
|  | int Span = KillWaitBrackets[I]->getScoreUB(T) - | 
|  | KillWaitBrackets[I]->getScoreLB(T); | 
|  | MaxPending[T] = std::max(MaxPending[T], Span); | 
|  | Span = KillWaitBrackets[I]->pendingFlat(T) - | 
|  | KillWaitBrackets[I]->getScoreLB(T); | 
|  | MaxFlat[T] = std::max(MaxFlat[T], Span); | 
|  | } | 
|  |  | 
|  | MixedExpTypes |= KillWaitBrackets[I]->mixedExpTypes(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Special handling for GDS_GPR_LOCK and EXP_GPR_LOCK. | 
|  | for (MachineBasicBlock *Pred : Block.predecessors()) { | 
|  | BlockWaitcntBrackets *PredScoreBrackets = | 
|  | BlockWaitcntBracketsMap[Pred].get(); | 
|  | bool Visited = BlockVisitedSet.find(Pred) != BlockVisitedSet.end(); | 
|  | if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | int GDSSpan = PredScoreBrackets->getEventUB(GDS_GPR_LOCK) - | 
|  | PredScoreBrackets->getScoreLB(EXP_CNT); | 
|  | MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); | 
|  | int EXPSpan = PredScoreBrackets->getEventUB(EXP_GPR_LOCK) - | 
|  | PredScoreBrackets->getScoreLB(EXP_CNT); | 
|  | MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); | 
|  | } | 
|  |  | 
|  | // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? | 
|  | if (Block.succ_empty() && !KillWaitBrackets.empty()) { | 
|  | for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { | 
|  | int GDSSpan = KillWaitBrackets[I]->getEventUB(GDS_GPR_LOCK) - | 
|  | KillWaitBrackets[I]->getScoreLB(EXP_CNT); | 
|  | MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); | 
|  | int EXPSpan = KillWaitBrackets[I]->getEventUB(EXP_GPR_LOCK) - | 
|  | KillWaitBrackets[I]->getScoreLB(EXP_CNT); | 
|  | MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | // LC does not (unlike) add a waitcnt at beginning. Leaving it as marker. | 
|  | // TODO: how does LC distinguish between function entry and main entry? | 
|  | // If this is the entry to a function, force a wait. | 
|  | MachineBasicBlock &Entry = Block.getParent()->front(); | 
|  | if (Entry.getNumber() == Block.getNumber()) { | 
|  | ScoreBrackets->setWaitAtBeginning(); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Now set the current Block's brackets to the largest ending bracket. | 
|  | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; | 
|  | T = (enum InstCounterType)(T + 1)) { | 
|  | ScoreBrackets->setScoreUB(T, MaxPending[T]); | 
|  | ScoreBrackets->setScoreLB(T, 0); | 
|  | ScoreBrackets->setLastFlat(T, MaxFlat[T]); | 
|  | } | 
|  |  | 
|  | ScoreBrackets->setMixedExpTypes(MixedExpTypes); | 
|  |  | 
|  | // Set the register scoreboard. | 
|  | for (MachineBasicBlock *Pred : Block.predecessors()) { | 
|  | if (BlockVisitedSet.find(Pred) == BlockVisitedSet.end()) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | BlockWaitcntBrackets *PredScoreBrackets = | 
|  | BlockWaitcntBracketsMap[Pred].get(); | 
|  |  | 
|  | // Now merge the gpr_reg_score information | 
|  | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; | 
|  | T = (enum InstCounterType)(T + 1)) { | 
|  | int PredLB = PredScoreBrackets->getScoreLB(T); | 
|  | int PredUB = PredScoreBrackets->getScoreUB(T); | 
|  | if (PredLB < PredUB) { | 
|  | int PredScale = MaxPending[T] - PredUB; | 
|  | // Merge vgpr scores. | 
|  | for (int J = 0; J <= PredScoreBrackets->getMaxVGPR(); J++) { | 
|  | int PredRegScore = PredScoreBrackets->getRegScore(J, T); | 
|  | if (PredRegScore <= PredLB) | 
|  | continue; | 
|  | int NewRegScore = PredScale + PredRegScore; | 
|  | ScoreBrackets->setRegScore( | 
|  | J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); | 
|  | } | 
|  | // Also need to merge sgpr scores for lgkm_cnt. | 
|  | if (T == LGKM_CNT) { | 
|  | for (int J = 0; J <= PredScoreBrackets->getMaxSGPR(); J++) { | 
|  | int PredRegScore = | 
|  | PredScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); | 
|  | if (PredRegScore <= PredLB) | 
|  | continue; | 
|  | int NewRegScore = PredScale + PredRegScore; | 
|  | ScoreBrackets->setRegScore( | 
|  | J + NUM_ALL_VGPRS, LGKM_CNT, | 
|  | std::max( | 
|  | ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), | 
|  | NewRegScore)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Also merge the WaitEvent information. | 
|  | ForAllWaitEventType(W) { | 
|  | enum InstCounterType T = PredScoreBrackets->eventCounter(W); | 
|  | int PredEventUB = PredScoreBrackets->getEventUB(W); | 
|  | if (PredEventUB > PredScoreBrackets->getScoreLB(T)) { | 
|  | int NewEventUB = | 
|  | MaxPending[T] + PredEventUB - PredScoreBrackets->getScoreUB(T); | 
|  | if (NewEventUB > 0) { | 
|  | ScoreBrackets->setEventUB( | 
|  | W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? | 
|  | // Set the register scoreboard. | 
|  | if (Block.succ_empty() && !KillWaitBrackets.empty()) { | 
|  | for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { | 
|  | // Now merge the gpr_reg_score information. | 
|  | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; | 
|  | T = (enum InstCounterType)(T + 1)) { | 
|  | int PredLB = KillWaitBrackets[I]->getScoreLB(T); | 
|  | int PredUB = KillWaitBrackets[I]->getScoreUB(T); | 
|  | if (PredLB < PredUB) { | 
|  | int PredScale = MaxPending[T] - PredUB; | 
|  | // Merge vgpr scores. | 
|  | for (int J = 0; J <= KillWaitBrackets[I]->getMaxVGPR(); J++) { | 
|  | int PredRegScore = KillWaitBrackets[I]->getRegScore(J, T); | 
|  | if (PredRegScore <= PredLB) | 
|  | continue; | 
|  | int NewRegScore = PredScale + PredRegScore; | 
|  | ScoreBrackets->setRegScore( | 
|  | J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); | 
|  | } | 
|  | // Also need to merge sgpr scores for lgkm_cnt. | 
|  | if (T == LGKM_CNT) { | 
|  | for (int J = 0; J <= KillWaitBrackets[I]->getMaxSGPR(); J++) { | 
|  | int PredRegScore = | 
|  | KillWaitBrackets[I]->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); | 
|  | if (PredRegScore <= PredLB) | 
|  | continue; | 
|  | int NewRegScore = PredScale + PredRegScore; | 
|  | ScoreBrackets->setRegScore( | 
|  | J + NUM_ALL_VGPRS, LGKM_CNT, | 
|  | std::max( | 
|  | ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), | 
|  | NewRegScore)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Also merge the WaitEvent information. | 
|  | ForAllWaitEventType(W) { | 
|  | enum InstCounterType T = KillWaitBrackets[I]->eventCounter(W); | 
|  | int PredEventUB = KillWaitBrackets[I]->getEventUB(W); | 
|  | if (PredEventUB > KillWaitBrackets[I]->getScoreLB(T)) { | 
|  | int NewEventUB = | 
|  | MaxPending[T] + PredEventUB - KillWaitBrackets[I]->getScoreUB(T); | 
|  | if (NewEventUB > 0) { | 
|  | ScoreBrackets->setEventUB( | 
|  | W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Special case handling of GDS_GPR_LOCK and EXP_GPR_LOCK. Merge this for the | 
|  | // sequencing predecessors, because changes to EXEC require waitcnts due to | 
|  | // the delayed nature of these operations. | 
|  | for (MachineBasicBlock *Pred : Block.predecessors()) { | 
|  | if (BlockVisitedSet.find(Pred) == BlockVisitedSet.end()) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | BlockWaitcntBrackets *PredScoreBrackets = | 
|  | BlockWaitcntBracketsMap[Pred].get(); | 
|  |  | 
|  | int pred_gds_ub = PredScoreBrackets->getEventUB(GDS_GPR_LOCK); | 
|  | if (pred_gds_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { | 
|  | int new_gds_ub = MaxPending[EXP_CNT] + pred_gds_ub - | 
|  | PredScoreBrackets->getScoreUB(EXP_CNT); | 
|  | if (new_gds_ub > 0) { | 
|  | ScoreBrackets->setEventUB( | 
|  | GDS_GPR_LOCK, | 
|  | std::max(ScoreBrackets->getEventUB(GDS_GPR_LOCK), new_gds_ub)); | 
|  | } | 
|  | } | 
|  | int pred_exp_ub = PredScoreBrackets->getEventUB(EXP_GPR_LOCK); | 
|  | if (pred_exp_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { | 
|  | int new_exp_ub = MaxPending[EXP_CNT] + pred_exp_ub - | 
|  | PredScoreBrackets->getScoreUB(EXP_CNT); | 
|  | if (new_exp_ub > 0) { | 
|  | ScoreBrackets->setEventUB( | 
|  | EXP_GPR_LOCK, | 
|  | std::max(ScoreBrackets->getEventUB(EXP_GPR_LOCK), new_exp_ub)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return the "bottom" block of a loop. This differs from | 
|  | /// MachineLoop::getBottomBlock in that it works even if the loop is | 
|  | /// discontiguous. | 
|  | MachineBasicBlock *SIInsertWaitcnts::loopBottom(const MachineLoop *Loop) { | 
|  | MachineBasicBlock *Bottom = Loop->getHeader(); | 
|  | for (MachineBasicBlock *MBB : Loop->blocks()) | 
|  | if (MBB->getNumber() > Bottom->getNumber()) | 
|  | Bottom = MBB; | 
|  | return Bottom; | 
|  | } | 
|  |  | 
|  | // Generate s_waitcnt instructions where needed. | 
|  | void SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, | 
|  | MachineBasicBlock &Block) { | 
|  | // Initialize the state information. | 
|  | mergeInputScoreBrackets(Block); | 
|  |  | 
|  | BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); | 
|  |  | 
|  | DEBUG({ | 
|  | dbgs() << "Block" << Block.getNumber(); | 
|  | ScoreBrackets->dump(); | 
|  | }); | 
|  |  | 
|  | bool InsertNOP = false; | 
|  |  | 
|  | // Walk over the instructions. | 
|  | for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end(); | 
|  | Iter != E;) { | 
|  | MachineInstr &Inst = *Iter; | 
|  | // Remove any previously existing waitcnts. | 
|  | if (Inst.getOpcode() == AMDGPU::S_WAITCNT) { | 
|  | // TODO: Register the old waitcnt and optimize the following waitcnts. | 
|  | // Leaving the previously existing waitcnts is conservatively correct. | 
|  | if (CompilerGeneratedWaitcntSet.find(&Inst) == | 
|  | CompilerGeneratedWaitcntSet.end()) | 
|  | ++Iter; | 
|  | else { | 
|  | ScoreBrackets->setWaitcnt(&Inst); | 
|  | ++Iter; | 
|  | Inst.removeFromParent(); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Kill instructions generate a conditional branch to the endmain block. | 
|  | // Merge the current waitcnt state into the endmain block information. | 
|  | // TODO: Are there other flavors of KILL instruction? | 
|  | if (Inst.getOpcode() == AMDGPU::KILL) { | 
|  | addKillWaitBracket(ScoreBrackets); | 
|  | } | 
|  |  | 
|  | bool VCCZBugWorkAround = false; | 
|  | if (readsVCCZ(Inst) && | 
|  | (VCCZBugHandledSet.find(&Inst) == VCCZBugHandledSet.end())) { | 
|  | if (ScoreBrackets->getScoreLB(LGKM_CNT) < | 
|  | ScoreBrackets->getScoreUB(LGKM_CNT) && | 
|  | ScoreBrackets->hasPendingSMEM()) { | 
|  | if (ST->getGeneration() <= SISubtarget::SEA_ISLANDS) | 
|  | VCCZBugWorkAround = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Generate an s_waitcnt instruction to be placed before | 
|  | // cur_Inst, if needed. | 
|  | MachineInstr *SWaitInst = generateSWaitCntInstBefore(Inst, ScoreBrackets); | 
|  |  | 
|  | if (SWaitInst) { | 
|  | Block.insert(Inst, SWaitInst); | 
|  | if (ScoreBrackets->getWaitcnt() != SWaitInst) { | 
|  | DEBUG(dbgs() << "insertWaitcntInBlock\n" | 
|  | << "Old Instr: " << Inst << '\n' | 
|  | << "New Instr: " << *SWaitInst << '\n';); | 
|  | } | 
|  | } | 
|  |  | 
|  | updateEventWaitCntAfter(Inst, ScoreBrackets); | 
|  |  | 
|  | #if 0 // TODO: implement resource type check controlled by options with ub = LB. | 
|  | // If this instruction generates a S_SETVSKIP because it is an | 
|  | // indexed resource, and we are on Tahiti, then it will also force | 
|  | // an S_WAITCNT vmcnt(0) | 
|  | if (RequireCheckResourceType(Inst, context)) { | 
|  | // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. | 
|  | ScoreBrackets->setScoreLB(VM_CNT, | 
|  | ScoreBrackets->getScoreUB(VM_CNT)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | ScoreBrackets->clearWaitcnt(); | 
|  |  | 
|  | if (SWaitInst) { | 
|  | DEBUG({ SWaitInst->print(dbgs() << '\n'); }); | 
|  | } | 
|  | DEBUG({ | 
|  | Inst.print(dbgs()); | 
|  | ScoreBrackets->dump(); | 
|  | }); | 
|  |  | 
|  | // Check to see if this is a GWS instruction. If so, and if this is CI or | 
|  | // VI, then the generated code sequence will include an S_WAITCNT 0. | 
|  | // TODO: Are these the only GWS instructions? | 
|  | if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT || | 
|  | Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V || | 
|  | Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR || | 
|  | Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P || | 
|  | Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) { | 
|  | // TODO: && context->target_info->GwsRequiresMemViolTest() ) { | 
|  | ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); | 
|  | ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); | 
|  | ScoreBrackets->updateByWait(LGKM_CNT, | 
|  | ScoreBrackets->getScoreUB(LGKM_CNT)); | 
|  | } | 
|  |  | 
|  | // TODO: Remove this work-around after fixing the scheduler and enable the | 
|  | // assert above. | 
|  | if (VCCZBugWorkAround) { | 
|  | // Restore the vccz bit.  Any time a value is written to vcc, the vcc | 
|  | // bit is updated, so we can restore the bit by reading the value of | 
|  | // vcc and then writing it back to the register. | 
|  | BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), | 
|  | AMDGPU::VCC) | 
|  | .addReg(AMDGPU::VCC); | 
|  | VCCZBugHandledSet.insert(&Inst); | 
|  | } | 
|  |  | 
|  | if (ST->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { | 
|  |  | 
|  | // This avoids a s_nop after a waitcnt has just been inserted. | 
|  | if (!SWaitInst && InsertNOP) { | 
|  | BuildMI(Block, Inst, DebugLoc(), TII->get(AMDGPU::S_NOP)).addImm(0); | 
|  | } | 
|  | InsertNOP = false; | 
|  |  | 
|  | // Any occurrence of consecutive VMEM or SMEM instructions forms a VMEM | 
|  | // or SMEM clause, respectively. | 
|  | // | 
|  | // The temporary workaround is to break the clauses with S_NOP. | 
|  | // | 
|  | // The proper solution would be to allocate registers such that all source | 
|  | // and destination registers don't overlap, e.g. this is illegal: | 
|  | //   r0 = load r2 | 
|  | //   r2 = load r0 | 
|  | bool IsSMEM = false; | 
|  | bool IsVMEM = false; | 
|  | if (TII->isSMRD(Inst)) | 
|  | IsSMEM = true; | 
|  | else if (TII->usesVM_CNT(Inst)) | 
|  | IsVMEM = true; | 
|  |  | 
|  | ++Iter; | 
|  | if (Iter == E) | 
|  | break; | 
|  |  | 
|  | MachineInstr &Next = *Iter; | 
|  |  | 
|  | // TODO: How about consecutive SMEM instructions? | 
|  | //       The comments above says break the clause but the code does not. | 
|  | // if ((TII->isSMRD(next) && isSMEM) || | 
|  | if (!IsSMEM && TII->usesVM_CNT(Next) && IsVMEM && | 
|  | // TODO: Enable this check when hasSoftClause is upstreamed. | 
|  | // ST->hasSoftClauses() && | 
|  | ST->isXNACKEnabled()) { | 
|  | // Insert a NOP to break the clause. | 
|  | InsertNOP = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // There must be "S_NOP 0" between an instruction writing M0 and | 
|  | // S_SENDMSG. | 
|  | if ((Next.getOpcode() == AMDGPU::S_SENDMSG || | 
|  | Next.getOpcode() == AMDGPU::S_SENDMSGHALT) && | 
|  | Inst.definesRegister(AMDGPU::M0)) | 
|  | InsertNOP = true; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ++Iter; | 
|  | } | 
|  |  | 
|  | // Check if we need to force convergence at loop footer. | 
|  | MachineLoop *ContainingLoop = MLI->getLoopFor(&Block); | 
|  | if (ContainingLoop && loopBottom(ContainingLoop) == &Block) { | 
|  | LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); | 
|  | WaitcntData->print(); | 
|  | DEBUG(dbgs() << '\n';); | 
|  |  | 
|  | // The iterative waitcnt insertion algorithm aims for optimal waitcnt | 
|  | // placement and doesn't always guarantee convergence for a loop. Each | 
|  | // loop should take at most 2 iterations for it to converge naturally. | 
|  | // When this max is reached and result doesn't converge, we force | 
|  | // convergence by inserting a s_waitcnt at the end of loop footer. | 
|  | if (WaitcntData->getIterCnt() > 2) { | 
|  | // To ensure convergence, need to make wait events at loop footer be no | 
|  | // more than those from the previous iteration. | 
|  | // As a simplification, Instead of tracking individual scores and | 
|  | // generate the precise wait count, just wait on 0. | 
|  | bool HasPending = false; | 
|  | MachineInstr *SWaitInst = WaitcntData->getWaitcnt(); | 
|  | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; | 
|  | T = (enum InstCounterType)(T + 1)) { | 
|  | if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { | 
|  | ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); | 
|  | HasPending = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HasPending) { | 
|  | if (!SWaitInst) { | 
|  | SWaitInst = Block.getParent()->CreateMachineInstr( | 
|  | TII->get(AMDGPU::S_WAITCNT), DebugLoc()); | 
|  | CompilerGeneratedWaitcntSet.insert(SWaitInst); | 
|  | const MachineOperand &Op = MachineOperand::CreateImm(0); | 
|  | SWaitInst->addOperand(MF, Op); | 
|  | #if 0 // TODO: Format the debug output | 
|  | OutputTransformBanner("insertWaitcntInBlock",0,"Create:",context); | 
|  | OutputTransformAdd(SWaitInst, context); | 
|  | #endif | 
|  | } | 
|  | #if 0 // TODO: ?? | 
|  | _DEV( REPORTED_STATS->force_waitcnt_converge = 1; ) | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (SWaitInst) { | 
|  | DEBUG({ | 
|  | SWaitInst->print(dbgs()); | 
|  | dbgs() << "\nAdjusted score board:"; | 
|  | ScoreBrackets->dump(); | 
|  | }); | 
|  |  | 
|  | // Add this waitcnt to the block. It is either newly created or | 
|  | // created in previous iterations and added back since block traversal | 
|  | // always remove waitcnt. | 
|  | insertWaitcntBeforeCF(Block, SWaitInst); | 
|  | WaitcntData->setWaitcnt(SWaitInst); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { | 
|  | ST = &MF.getSubtarget<SISubtarget>(); | 
|  | TII = ST->getInstrInfo(); | 
|  | TRI = &TII->getRegisterInfo(); | 
|  | MRI = &MF.getRegInfo(); | 
|  | MLI = &getAnalysis<MachineLoopInfo>(); | 
|  | IV = AMDGPU::IsaInfo::getIsaVersion(ST->getFeatureBits()); | 
|  | AMDGPUASI = ST->getAMDGPUAS(); | 
|  |  | 
|  | HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); | 
|  | HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); | 
|  | HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); | 
|  |  | 
|  | HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs(); | 
|  | HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs(); | 
|  | assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS); | 
|  | assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS); | 
|  |  | 
|  | RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); | 
|  | RegisterEncoding.VGPRL = | 
|  | RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1; | 
|  | RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); | 
|  | RegisterEncoding.SGPRL = | 
|  | RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1; | 
|  |  | 
|  | // Walk over the blocks in reverse post-dominator order, inserting | 
|  | // s_waitcnt where needed. | 
|  | ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); | 
|  | bool Modified = false; | 
|  | for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator | 
|  | I = RPOT.begin(), | 
|  | E = RPOT.end(), J = RPOT.begin(); | 
|  | I != E;) { | 
|  | MachineBasicBlock &MBB = **I; | 
|  |  | 
|  | BlockVisitedSet.insert(&MBB); | 
|  |  | 
|  | BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); | 
|  | if (!ScoreBrackets) { | 
|  | BlockWaitcntBracketsMap[&MBB] = make_unique<BlockWaitcntBrackets>(); | 
|  | ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); | 
|  | } | 
|  | ScoreBrackets->setPostOrder(MBB.getNumber()); | 
|  | MachineLoop *ContainingLoop = MLI->getLoopFor(&MBB); | 
|  | if (ContainingLoop && LoopWaitcntDataMap[ContainingLoop] == nullptr) | 
|  | LoopWaitcntDataMap[ContainingLoop] = make_unique<LoopWaitcntData>(); | 
|  |  | 
|  | // If we are walking into the block from before the loop, then guarantee | 
|  | // at least 1 re-walk over the loop to propagate the information, even if | 
|  | // no S_WAITCNT instructions were generated. | 
|  | if (ContainingLoop && ContainingLoop->getTopBlock() == &MBB && J < I && | 
|  | (BlockWaitcntProcessedSet.find(&MBB) == | 
|  | BlockWaitcntProcessedSet.end())) { | 
|  | BlockWaitcntBracketsMap[&MBB]->setRevisitLoop(true); | 
|  | DEBUG(dbgs() << "set-revisit: block" | 
|  | << ContainingLoop->getTopBlock()->getNumber() << '\n';); | 
|  | } | 
|  |  | 
|  | // Walk over the instructions. | 
|  | insertWaitcntInBlock(MF, MBB); | 
|  |  | 
|  | // Flag that waitcnts have been processed at least once. | 
|  | BlockWaitcntProcessedSet.insert(&MBB); | 
|  |  | 
|  | // See if we want to revisit the loop. | 
|  | if (ContainingLoop && loopBottom(ContainingLoop) == &MBB) { | 
|  | MachineBasicBlock *EntryBB = ContainingLoop->getTopBlock(); | 
|  | BlockWaitcntBrackets *EntrySB = BlockWaitcntBracketsMap[EntryBB].get(); | 
|  | if (EntrySB && EntrySB->getRevisitLoop()) { | 
|  | EntrySB->setRevisitLoop(false); | 
|  | J = I; | 
|  | int32_t PostOrder = EntrySB->getPostOrder(); | 
|  | // TODO: Avoid this loop. Find another way to set I. | 
|  | for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator | 
|  | X = RPOT.begin(), | 
|  | Y = RPOT.end(); | 
|  | X != Y; ++X) { | 
|  | MachineBasicBlock &MBBX = **X; | 
|  | if (MBBX.getNumber() == PostOrder) { | 
|  | I = X; | 
|  | break; | 
|  | } | 
|  | } | 
|  | LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); | 
|  | WaitcntData->incIterCnt(); | 
|  | DEBUG(dbgs() << "revisit: block" << EntryBB->getNumber() << '\n';); | 
|  | continue; | 
|  | } else { | 
|  | LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); | 
|  | // Loop converged, reset iteration count. If this loop gets revisited, | 
|  | // it must be from an outer loop, the counter will restart, this will | 
|  | // ensure we don't force convergence on such revisits. | 
|  | WaitcntData->resetIterCnt(); | 
|  | } | 
|  | } | 
|  |  | 
|  | J = I; | 
|  | ++I; | 
|  | } | 
|  |  | 
|  | SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; | 
|  |  | 
|  | bool HaveScalarStores = false; | 
|  |  | 
|  | for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; | 
|  | ++BI) { | 
|  |  | 
|  | MachineBasicBlock &MBB = *BI; | 
|  |  | 
|  | for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; | 
|  | ++I) { | 
|  |  | 
|  | if (!HaveScalarStores && TII->isScalarStore(*I)) | 
|  | HaveScalarStores = true; | 
|  |  | 
|  | if (I->getOpcode() == AMDGPU::S_ENDPGM || | 
|  | I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) | 
|  | EndPgmBlocks.push_back(&MBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HaveScalarStores) { | 
|  | // If scalar writes are used, the cache must be flushed or else the next | 
|  | // wave to reuse the same scratch memory can be clobbered. | 
|  | // | 
|  | // Insert s_dcache_wb at wave termination points if there were any scalar | 
|  | // stores, and only if the cache hasn't already been flushed. This could be | 
|  | // improved by looking across blocks for flushes in postdominating blocks | 
|  | // from the stores but an explicitly requested flush is probably very rare. | 
|  | for (MachineBasicBlock *MBB : EndPgmBlocks) { | 
|  | bool SeenDCacheWB = false; | 
|  |  | 
|  | for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; | 
|  | ++I) { | 
|  |  | 
|  | if (I->getOpcode() == AMDGPU::S_DCACHE_WB) | 
|  | SeenDCacheWB = true; | 
|  | else if (TII->isScalarStore(*I)) | 
|  | SeenDCacheWB = false; | 
|  |  | 
|  | // FIXME: It would be better to insert this before a waitcnt if any. | 
|  | if ((I->getOpcode() == AMDGPU::S_ENDPGM || | 
|  | I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && | 
|  | !SeenDCacheWB) { | 
|  | Modified = true; | 
|  | BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Modified; | 
|  | } |