|  | //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This simple pass provides alias and mod/ref information for global values | 
|  | // that do not have their address taken, and keeps track of whether functions | 
|  | // read or write memory (are "pure").  For this simple (but very common) case, | 
|  | // we can provide pretty accurate and useful information. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/ADT/SCCIterator.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/MemoryBuiltins.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "globalsmodref-aa" | 
|  |  | 
|  | STATISTIC(NumNonAddrTakenGlobalVars, | 
|  | "Number of global vars without address taken"); | 
|  | STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); | 
|  | STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); | 
|  | STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); | 
|  | STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); | 
|  |  | 
|  | // An option to enable unsafe alias results from the GlobalsModRef analysis. | 
|  | // When enabled, GlobalsModRef will provide no-alias results which in extremely | 
|  | // rare cases may not be conservatively correct. In particular, in the face of | 
|  | // transforms which cause assymetry between how effective GetUnderlyingObject | 
|  | // is for two pointers, it may produce incorrect results. | 
|  | // | 
|  | // These unsafe results have been returned by GMR for many years without | 
|  | // causing significant issues in the wild and so we provide a mechanism to | 
|  | // re-enable them for users of LLVM that have a particular performance | 
|  | // sensitivity and no known issues. The option also makes it easy to evaluate | 
|  | // the performance impact of these results. | 
|  | static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( | 
|  | "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); | 
|  |  | 
|  | /// The mod/ref information collected for a particular function. | 
|  | /// | 
|  | /// We collect information about mod/ref behavior of a function here, both in | 
|  | /// general and as pertains to specific globals. We only have this detailed | 
|  | /// information when we know *something* useful about the behavior. If we | 
|  | /// saturate to fully general mod/ref, we remove the info for the function. | 
|  | class GlobalsAAResult::FunctionInfo { | 
|  | typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; | 
|  |  | 
|  | /// Build a wrapper struct that has 8-byte alignment. All heap allocations | 
|  | /// should provide this much alignment at least, but this makes it clear we | 
|  | /// specifically rely on this amount of alignment. | 
|  | struct LLVM_ALIGNAS(8) AlignedMap { | 
|  | AlignedMap() {} | 
|  | AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {} | 
|  | GlobalInfoMapType Map; | 
|  | }; | 
|  |  | 
|  | /// Pointer traits for our aligned map. | 
|  | struct AlignedMapPointerTraits { | 
|  | static inline void *getAsVoidPointer(AlignedMap *P) { return P; } | 
|  | static inline AlignedMap *getFromVoidPointer(void *P) { | 
|  | return (AlignedMap *)P; | 
|  | } | 
|  | enum { NumLowBitsAvailable = 3 }; | 
|  | static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable), | 
|  | "AlignedMap insufficiently aligned to have enough low bits."); | 
|  | }; | 
|  |  | 
|  | /// The bit that flags that this function may read any global. This is | 
|  | /// chosen to mix together with ModRefInfo bits. | 
|  | /// FIXME: This assumes ModRefInfo lattice will remain 4 bits! | 
|  | /// It overlaps with ModRefInfo::Must bit! | 
|  | /// FunctionInfo.getModRefInfo() masks out everything except ModRef so | 
|  | /// this remains correct, but the Must info is lost. | 
|  | enum { MayReadAnyGlobal = 4 }; | 
|  |  | 
|  | /// Checks to document the invariants of the bit packing here. | 
|  | static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::MustModRef)) == | 
|  | 0, | 
|  | "ModRef and the MayReadAnyGlobal flag bits overlap."); | 
|  | static_assert(((MayReadAnyGlobal | | 
|  | static_cast<int>(ModRefInfo::MustModRef)) >> | 
|  | AlignedMapPointerTraits::NumLowBitsAvailable) == 0, | 
|  | "Insufficient low bits to store our flag and ModRef info."); | 
|  |  | 
|  | public: | 
|  | FunctionInfo() : Info() {} | 
|  | ~FunctionInfo() { | 
|  | delete Info.getPointer(); | 
|  | } | 
|  | // Spell out the copy ond move constructors and assignment operators to get | 
|  | // deep copy semantics and correct move semantics in the face of the | 
|  | // pointer-int pair. | 
|  | FunctionInfo(const FunctionInfo &Arg) | 
|  | : Info(nullptr, Arg.Info.getInt()) { | 
|  | if (const auto *ArgPtr = Arg.Info.getPointer()) | 
|  | Info.setPointer(new AlignedMap(*ArgPtr)); | 
|  | } | 
|  | FunctionInfo(FunctionInfo &&Arg) | 
|  | : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { | 
|  | Arg.Info.setPointerAndInt(nullptr, 0); | 
|  | } | 
|  | FunctionInfo &operator=(const FunctionInfo &RHS) { | 
|  | delete Info.getPointer(); | 
|  | Info.setPointerAndInt(nullptr, RHS.Info.getInt()); | 
|  | if (const auto *RHSPtr = RHS.Info.getPointer()) | 
|  | Info.setPointer(new AlignedMap(*RHSPtr)); | 
|  | return *this; | 
|  | } | 
|  | FunctionInfo &operator=(FunctionInfo &&RHS) { | 
|  | delete Info.getPointer(); | 
|  | Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); | 
|  | RHS.Info.setPointerAndInt(nullptr, 0); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return | 
|  | /// the corresponding ModRefInfo. It must align in functionality with | 
|  | /// clearMust(). | 
|  | ModRefInfo globalClearMayReadAnyGlobal(int I) const { | 
|  | return ModRefInfo((I & static_cast<int>(ModRefInfo::ModRef)) | | 
|  | static_cast<int>(ModRefInfo::NoModRef)); | 
|  | } | 
|  |  | 
|  | /// Returns the \c ModRefInfo info for this function. | 
|  | ModRefInfo getModRefInfo() const { | 
|  | return globalClearMayReadAnyGlobal(Info.getInt()); | 
|  | } | 
|  |  | 
|  | /// Adds new \c ModRefInfo for this function to its state. | 
|  | void addModRefInfo(ModRefInfo NewMRI) { | 
|  | Info.setInt(Info.getInt() | static_cast<int>(setMust(NewMRI))); | 
|  | } | 
|  |  | 
|  | /// Returns whether this function may read any global variable, and we don't | 
|  | /// know which global. | 
|  | bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } | 
|  |  | 
|  | /// Sets this function as potentially reading from any global. | 
|  | void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } | 
|  |  | 
|  | /// Returns the \c ModRefInfo info for this function w.r.t. a particular | 
|  | /// global, which may be more precise than the general information above. | 
|  | ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { | 
|  | ModRefInfo GlobalMRI = | 
|  | mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef; | 
|  | if (AlignedMap *P = Info.getPointer()) { | 
|  | auto I = P->Map.find(&GV); | 
|  | if (I != P->Map.end()) | 
|  | GlobalMRI = unionModRef(GlobalMRI, I->second); | 
|  | } | 
|  | return GlobalMRI; | 
|  | } | 
|  |  | 
|  | /// Add mod/ref info from another function into ours, saturating towards | 
|  | /// ModRef. | 
|  | void addFunctionInfo(const FunctionInfo &FI) { | 
|  | addModRefInfo(FI.getModRefInfo()); | 
|  |  | 
|  | if (FI.mayReadAnyGlobal()) | 
|  | setMayReadAnyGlobal(); | 
|  |  | 
|  | if (AlignedMap *P = FI.Info.getPointer()) | 
|  | for (const auto &G : P->Map) | 
|  | addModRefInfoForGlobal(*G.first, G.second); | 
|  | } | 
|  |  | 
|  | void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { | 
|  | AlignedMap *P = Info.getPointer(); | 
|  | if (!P) { | 
|  | P = new AlignedMap(); | 
|  | Info.setPointer(P); | 
|  | } | 
|  | auto &GlobalMRI = P->Map[&GV]; | 
|  | GlobalMRI = unionModRef(GlobalMRI, NewMRI); | 
|  | } | 
|  |  | 
|  | /// Clear a global's ModRef info. Should be used when a global is being | 
|  | /// deleted. | 
|  | void eraseModRefInfoForGlobal(const GlobalValue &GV) { | 
|  | if (AlignedMap *P = Info.getPointer()) | 
|  | P->Map.erase(&GV); | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// All of the information is encoded into a single pointer, with a three bit | 
|  | /// integer in the low three bits. The high bit provides a flag for when this | 
|  | /// function may read any global. The low two bits are the ModRefInfo. And | 
|  | /// the pointer, when non-null, points to a map from GlobalValue to | 
|  | /// ModRefInfo specific to that GlobalValue. | 
|  | PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; | 
|  | }; | 
|  |  | 
|  | void GlobalsAAResult::DeletionCallbackHandle::deleted() { | 
|  | Value *V = getValPtr(); | 
|  | if (auto *F = dyn_cast<Function>(V)) | 
|  | GAR->FunctionInfos.erase(F); | 
|  |  | 
|  | if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | 
|  | if (GAR->NonAddressTakenGlobals.erase(GV)) { | 
|  | // This global might be an indirect global.  If so, remove it and | 
|  | // remove any AllocRelatedValues for it. | 
|  | if (GAR->IndirectGlobals.erase(GV)) { | 
|  | // Remove any entries in AllocsForIndirectGlobals for this global. | 
|  | for (auto I = GAR->AllocsForIndirectGlobals.begin(), | 
|  | E = GAR->AllocsForIndirectGlobals.end(); | 
|  | I != E; ++I) | 
|  | if (I->second == GV) | 
|  | GAR->AllocsForIndirectGlobals.erase(I); | 
|  | } | 
|  |  | 
|  | // Scan the function info we have collected and remove this global | 
|  | // from all of them. | 
|  | for (auto &FIPair : GAR->FunctionInfos) | 
|  | FIPair.second.eraseModRefInfoForGlobal(*GV); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is an allocation related to an indirect global, remove it. | 
|  | GAR->AllocsForIndirectGlobals.erase(V); | 
|  |  | 
|  | // And clear out the handle. | 
|  | setValPtr(nullptr); | 
|  | GAR->Handles.erase(I); | 
|  | // This object is now destroyed! | 
|  | } | 
|  |  | 
|  | FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) { | 
|  | FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; | 
|  |  | 
|  | if (FunctionInfo *FI = getFunctionInfo(F)) { | 
|  | if (!isModOrRefSet(FI->getModRefInfo())) | 
|  | Min = FMRB_DoesNotAccessMemory; | 
|  | else if (!isModSet(FI->getModRefInfo())) | 
|  | Min = FMRB_OnlyReadsMemory; | 
|  | } | 
|  |  | 
|  | return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); | 
|  | } | 
|  |  | 
|  | FunctionModRefBehavior | 
|  | GlobalsAAResult::getModRefBehavior(ImmutableCallSite CS) { | 
|  | FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; | 
|  |  | 
|  | if (!CS.hasOperandBundles()) | 
|  | if (const Function *F = CS.getCalledFunction()) | 
|  | if (FunctionInfo *FI = getFunctionInfo(F)) { | 
|  | if (!isModOrRefSet(FI->getModRefInfo())) | 
|  | Min = FMRB_DoesNotAccessMemory; | 
|  | else if (!isModSet(FI->getModRefInfo())) | 
|  | Min = FMRB_OnlyReadsMemory; | 
|  | } | 
|  |  | 
|  | return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min); | 
|  | } | 
|  |  | 
|  | /// Returns the function info for the function, or null if we don't have | 
|  | /// anything useful to say about it. | 
|  | GlobalsAAResult::FunctionInfo * | 
|  | GlobalsAAResult::getFunctionInfo(const Function *F) { | 
|  | auto I = FunctionInfos.find(F); | 
|  | if (I != FunctionInfos.end()) | 
|  | return &I->second; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// AnalyzeGlobals - Scan through the users of all of the internal | 
|  | /// GlobalValue's in the program.  If none of them have their "address taken" | 
|  | /// (really, their address passed to something nontrivial), record this fact, | 
|  | /// and record the functions that they are used directly in. | 
|  | void GlobalsAAResult::AnalyzeGlobals(Module &M) { | 
|  | SmallPtrSet<Function *, 32> TrackedFunctions; | 
|  | for (Function &F : M) | 
|  | if (F.hasLocalLinkage()) | 
|  | if (!AnalyzeUsesOfPointer(&F)) { | 
|  | // Remember that we are tracking this global. | 
|  | NonAddressTakenGlobals.insert(&F); | 
|  | TrackedFunctions.insert(&F); | 
|  | Handles.emplace_front(*this, &F); | 
|  | Handles.front().I = Handles.begin(); | 
|  | ++NumNonAddrTakenFunctions; | 
|  | } | 
|  |  | 
|  | SmallPtrSet<Function *, 16> Readers, Writers; | 
|  | for (GlobalVariable &GV : M.globals()) | 
|  | if (GV.hasLocalLinkage()) { | 
|  | if (!AnalyzeUsesOfPointer(&GV, &Readers, | 
|  | GV.isConstant() ? nullptr : &Writers)) { | 
|  | // Remember that we are tracking this global, and the mod/ref fns | 
|  | NonAddressTakenGlobals.insert(&GV); | 
|  | Handles.emplace_front(*this, &GV); | 
|  | Handles.front().I = Handles.begin(); | 
|  |  | 
|  | for (Function *Reader : Readers) { | 
|  | if (TrackedFunctions.insert(Reader).second) { | 
|  | Handles.emplace_front(*this, Reader); | 
|  | Handles.front().I = Handles.begin(); | 
|  | } | 
|  | FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref); | 
|  | } | 
|  |  | 
|  | if (!GV.isConstant()) // No need to keep track of writers to constants | 
|  | for (Function *Writer : Writers) { | 
|  | if (TrackedFunctions.insert(Writer).second) { | 
|  | Handles.emplace_front(*this, Writer); | 
|  | Handles.front().I = Handles.begin(); | 
|  | } | 
|  | FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod); | 
|  | } | 
|  | ++NumNonAddrTakenGlobalVars; | 
|  |  | 
|  | // If this global holds a pointer type, see if it is an indirect global. | 
|  | if (GV.getValueType()->isPointerTy() && | 
|  | AnalyzeIndirectGlobalMemory(&GV)) | 
|  | ++NumIndirectGlobalVars; | 
|  | } | 
|  | Readers.clear(); | 
|  | Writers.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. | 
|  | /// If this is used by anything complex (i.e., the address escapes), return | 
|  | /// true.  Also, while we are at it, keep track of those functions that read and | 
|  | /// write to the value. | 
|  | /// | 
|  | /// If OkayStoreDest is non-null, stores into this global are allowed. | 
|  | bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, | 
|  | SmallPtrSetImpl<Function *> *Readers, | 
|  | SmallPtrSetImpl<Function *> *Writers, | 
|  | GlobalValue *OkayStoreDest) { | 
|  | if (!V->getType()->isPointerTy()) | 
|  | return true; | 
|  |  | 
|  | for (Use &U : V->uses()) { | 
|  | User *I = U.getUser(); | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I)) { | 
|  | if (Readers) | 
|  | Readers->insert(LI->getParent()->getParent()); | 
|  | } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { | 
|  | if (V == SI->getOperand(1)) { | 
|  | if (Writers) | 
|  | Writers->insert(SI->getParent()->getParent()); | 
|  | } else if (SI->getOperand(1) != OkayStoreDest) { | 
|  | return true; // Storing the pointer | 
|  | } | 
|  | } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { | 
|  | if (AnalyzeUsesOfPointer(I, Readers, Writers)) | 
|  | return true; | 
|  | } else if (Operator::getOpcode(I) == Instruction::BitCast) { | 
|  | if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) | 
|  | return true; | 
|  | } else if (auto CS = CallSite(I)) { | 
|  | // Make sure that this is just the function being called, not that it is | 
|  | // passing into the function. | 
|  | if (CS.isDataOperand(&U)) { | 
|  | // Detect calls to free. | 
|  | if (CS.isArgOperand(&U) && isFreeCall(I, &TLI)) { | 
|  | if (Writers) | 
|  | Writers->insert(CS->getParent()->getParent()); | 
|  | } else { | 
|  | return true; // Argument of an unknown call. | 
|  | } | 
|  | } | 
|  | } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { | 
|  | if (!isa<ConstantPointerNull>(ICI->getOperand(1))) | 
|  | return true; // Allow comparison against null. | 
|  | } else if (Constant *C = dyn_cast<Constant>(I)) { | 
|  | // Ignore constants which don't have any live uses. | 
|  | if (isa<GlobalValue>(C) || C->isConstantUsed()) | 
|  | return true; | 
|  | } else { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable | 
|  | /// which holds a pointer type.  See if the global always points to non-aliased | 
|  | /// heap memory: that is, all initializers of the globals are allocations, and | 
|  | /// those allocations have no use other than initialization of the global. | 
|  | /// Further, all loads out of GV must directly use the memory, not store the | 
|  | /// pointer somewhere.  If this is true, we consider the memory pointed to by | 
|  | /// GV to be owned by GV and can disambiguate other pointers from it. | 
|  | bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) { | 
|  | // Keep track of values related to the allocation of the memory, f.e. the | 
|  | // value produced by the malloc call and any casts. | 
|  | std::vector<Value *> AllocRelatedValues; | 
|  |  | 
|  | // If the initializer is a valid pointer, bail. | 
|  | if (Constant *C = GV->getInitializer()) | 
|  | if (!C->isNullValue()) | 
|  | return false; | 
|  |  | 
|  | // Walk the user list of the global.  If we find anything other than a direct | 
|  | // load or store, bail out. | 
|  | for (User *U : GV->users()) { | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(U)) { | 
|  | // The pointer loaded from the global can only be used in simple ways: | 
|  | // we allow addressing of it and loading storing to it.  We do *not* allow | 
|  | // storing the loaded pointer somewhere else or passing to a function. | 
|  | if (AnalyzeUsesOfPointer(LI)) | 
|  | return false; // Loaded pointer escapes. | 
|  | // TODO: Could try some IP mod/ref of the loaded pointer. | 
|  | } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { | 
|  | // Storing the global itself. | 
|  | if (SI->getOperand(0) == GV) | 
|  | return false; | 
|  |  | 
|  | // If storing the null pointer, ignore it. | 
|  | if (isa<ConstantPointerNull>(SI->getOperand(0))) | 
|  | continue; | 
|  |  | 
|  | // Check the value being stored. | 
|  | Value *Ptr = GetUnderlyingObject(SI->getOperand(0), | 
|  | GV->getParent()->getDataLayout()); | 
|  |  | 
|  | if (!isAllocLikeFn(Ptr, &TLI)) | 
|  | return false; // Too hard to analyze. | 
|  |  | 
|  | // Analyze all uses of the allocation.  If any of them are used in a | 
|  | // non-simple way (e.g. stored to another global) bail out. | 
|  | if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, | 
|  | GV)) | 
|  | return false; // Loaded pointer escapes. | 
|  |  | 
|  | // Remember that this allocation is related to the indirect global. | 
|  | AllocRelatedValues.push_back(Ptr); | 
|  | } else { | 
|  | // Something complex, bail out. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, this is an indirect global.  Remember all of the allocations for | 
|  | // this global in AllocsForIndirectGlobals. | 
|  | while (!AllocRelatedValues.empty()) { | 
|  | AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; | 
|  | Handles.emplace_front(*this, AllocRelatedValues.back()); | 
|  | Handles.front().I = Handles.begin(); | 
|  | AllocRelatedValues.pop_back(); | 
|  | } | 
|  | IndirectGlobals.insert(GV); | 
|  | Handles.emplace_front(*this, GV); | 
|  | Handles.front().I = Handles.begin(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { | 
|  | // We do a bottom-up SCC traversal of the call graph.  In other words, we | 
|  | // visit all callees before callers (leaf-first). | 
|  | unsigned SCCID = 0; | 
|  | for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { | 
|  | const std::vector<CallGraphNode *> &SCC = *I; | 
|  | assert(!SCC.empty() && "SCC with no functions?"); | 
|  |  | 
|  | for (auto *CGN : SCC) | 
|  | if (Function *F = CGN->getFunction()) | 
|  | FunctionToSCCMap[F] = SCCID; | 
|  | ++SCCID; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// AnalyzeCallGraph - At this point, we know the functions where globals are | 
|  | /// immediately stored to and read from.  Propagate this information up the call | 
|  | /// graph to all callers and compute the mod/ref info for all memory for each | 
|  | /// function. | 
|  | void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { | 
|  | // We do a bottom-up SCC traversal of the call graph.  In other words, we | 
|  | // visit all callees before callers (leaf-first). | 
|  | for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { | 
|  | const std::vector<CallGraphNode *> &SCC = *I; | 
|  | assert(!SCC.empty() && "SCC with no functions?"); | 
|  |  | 
|  | Function *F = SCC[0]->getFunction(); | 
|  |  | 
|  | if (!F || !F->isDefinitionExact()) { | 
|  | // Calls externally or not exact - can't say anything useful. Remove any | 
|  | // existing function records (may have been created when scanning | 
|  | // globals). | 
|  | for (auto *Node : SCC) | 
|  | FunctionInfos.erase(Node->getFunction()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | FunctionInfo &FI = FunctionInfos[F]; | 
|  | bool KnowNothing = false; | 
|  |  | 
|  | // Collect the mod/ref properties due to called functions.  We only compute | 
|  | // one mod-ref set. | 
|  | for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { | 
|  | if (!F) { | 
|  | KnowNothing = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (F->isDeclaration() || F->hasFnAttribute(Attribute::OptimizeNone)) { | 
|  | // Try to get mod/ref behaviour from function attributes. | 
|  | if (F->doesNotAccessMemory()) { | 
|  | // Can't do better than that! | 
|  | } else if (F->onlyReadsMemory()) { | 
|  | FI.addModRefInfo(ModRefInfo::Ref); | 
|  | if (!F->isIntrinsic() && !F->onlyAccessesArgMemory()) | 
|  | // This function might call back into the module and read a global - | 
|  | // consider every global as possibly being read by this function. | 
|  | FI.setMayReadAnyGlobal(); | 
|  | } else { | 
|  | FI.addModRefInfo(ModRefInfo::ModRef); | 
|  | // Can't say anything useful unless it's an intrinsic - they don't | 
|  | // read or write global variables of the kind considered here. | 
|  | KnowNothing = !F->isIntrinsic(); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); | 
|  | CI != E && !KnowNothing; ++CI) | 
|  | if (Function *Callee = CI->second->getFunction()) { | 
|  | if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { | 
|  | // Propagate function effect up. | 
|  | FI.addFunctionInfo(*CalleeFI); | 
|  | } else { | 
|  | // Can't say anything about it.  However, if it is inside our SCC, | 
|  | // then nothing needs to be done. | 
|  | CallGraphNode *CalleeNode = CG[Callee]; | 
|  | if (!is_contained(SCC, CalleeNode)) | 
|  | KnowNothing = true; | 
|  | } | 
|  | } else { | 
|  | KnowNothing = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we can't say anything useful about this SCC, remove all SCC functions | 
|  | // from the FunctionInfos map. | 
|  | if (KnowNothing) { | 
|  | for (auto *Node : SCC) | 
|  | FunctionInfos.erase(Node->getFunction()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Scan the function bodies for explicit loads or stores. | 
|  | for (auto *Node : SCC) { | 
|  | if (isModAndRefSet(FI.getModRefInfo())) | 
|  | break; // The mod/ref lattice saturates here. | 
|  |  | 
|  | // Don't prove any properties based on the implementation of an optnone | 
|  | // function. Function attributes were already used as a best approximation | 
|  | // above. | 
|  | if (Node->getFunction()->hasFnAttribute(Attribute::OptimizeNone)) | 
|  | continue; | 
|  |  | 
|  | for (Instruction &I : instructions(Node->getFunction())) { | 
|  | if (isModAndRefSet(FI.getModRefInfo())) | 
|  | break; // The mod/ref lattice saturates here. | 
|  |  | 
|  | // We handle calls specially because the graph-relevant aspects are | 
|  | // handled above. | 
|  | if (auto CS = CallSite(&I)) { | 
|  | if (isAllocationFn(&I, &TLI) || isFreeCall(&I, &TLI)) { | 
|  | // FIXME: It is completely unclear why this is necessary and not | 
|  | // handled by the above graph code. | 
|  | FI.addModRefInfo(ModRefInfo::ModRef); | 
|  | } else if (Function *Callee = CS.getCalledFunction()) { | 
|  | // The callgraph doesn't include intrinsic calls. | 
|  | if (Callee->isIntrinsic()) { | 
|  | if (isa<DbgInfoIntrinsic>(I)) | 
|  | // Don't let dbg intrinsics affect alias info. | 
|  | continue; | 
|  |  | 
|  | FunctionModRefBehavior Behaviour = | 
|  | AAResultBase::getModRefBehavior(Callee); | 
|  | FI.addModRefInfo(createModRefInfo(Behaviour)); | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // All non-call instructions we use the primary predicates for whether | 
|  | // thay read or write memory. | 
|  | if (I.mayReadFromMemory()) | 
|  | FI.addModRefInfo(ModRefInfo::Ref); | 
|  | if (I.mayWriteToMemory()) | 
|  | FI.addModRefInfo(ModRefInfo::Mod); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!isModSet(FI.getModRefInfo())) | 
|  | ++NumReadMemFunctions; | 
|  | if (!isModOrRefSet(FI.getModRefInfo())) | 
|  | ++NumNoMemFunctions; | 
|  |  | 
|  | // Finally, now that we know the full effect on this SCC, clone the | 
|  | // information to each function in the SCC. | 
|  | // FI is a reference into FunctionInfos, so copy it now so that it doesn't | 
|  | // get invalidated if DenseMap decides to re-hash. | 
|  | FunctionInfo CachedFI = FI; | 
|  | for (unsigned i = 1, e = SCC.size(); i != e; ++i) | 
|  | FunctionInfos[SCC[i]->getFunction()] = CachedFI; | 
|  | } | 
|  | } | 
|  |  | 
|  | // GV is a non-escaping global. V is a pointer address that has been loaded from. | 
|  | // If we can prove that V must escape, we can conclude that a load from V cannot | 
|  | // alias GV. | 
|  | static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV, | 
|  | const Value *V, | 
|  | int &Depth, | 
|  | const DataLayout &DL) { | 
|  | SmallPtrSet<const Value *, 8> Visited; | 
|  | SmallVector<const Value *, 8> Inputs; | 
|  | Visited.insert(V); | 
|  | Inputs.push_back(V); | 
|  | do { | 
|  | const Value *Input = Inputs.pop_back_val(); | 
|  |  | 
|  | if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) || | 
|  | isa<InvokeInst>(Input)) | 
|  | // Arguments to functions or returns from functions are inherently | 
|  | // escaping, so we can immediately classify those as not aliasing any | 
|  | // non-addr-taken globals. | 
|  | // | 
|  | // (Transitive) loads from a global are also safe - if this aliased | 
|  | // another global, its address would escape, so no alias. | 
|  | continue; | 
|  |  | 
|  | // Recurse through a limited number of selects, loads and PHIs. This is an | 
|  | // arbitrary depth of 4, lower numbers could be used to fix compile time | 
|  | // issues if needed, but this is generally expected to be only be important | 
|  | // for small depths. | 
|  | if (++Depth > 4) | 
|  | return false; | 
|  |  | 
|  | if (auto *LI = dyn_cast<LoadInst>(Input)) { | 
|  | Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL)); | 
|  | continue; | 
|  | } | 
|  | if (auto *SI = dyn_cast<SelectInst>(Input)) { | 
|  | const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); | 
|  | const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); | 
|  | if (Visited.insert(LHS).second) | 
|  | Inputs.push_back(LHS); | 
|  | if (Visited.insert(RHS).second) | 
|  | Inputs.push_back(RHS); | 
|  | continue; | 
|  | } | 
|  | if (auto *PN = dyn_cast<PHINode>(Input)) { | 
|  | for (const Value *Op : PN->incoming_values()) { | 
|  | Op = GetUnderlyingObject(Op, DL); | 
|  | if (Visited.insert(Op).second) | 
|  | Inputs.push_back(Op); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } while (!Inputs.empty()); | 
|  |  | 
|  | // All inputs were known to be no-alias. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // There are particular cases where we can conclude no-alias between | 
|  | // a non-addr-taken global and some other underlying object. Specifically, | 
|  | // a non-addr-taken global is known to not be escaped from any function. It is | 
|  | // also incorrect for a transformation to introduce an escape of a global in | 
|  | // a way that is observable when it was not there previously. One function | 
|  | // being transformed to introduce an escape which could possibly be observed | 
|  | // (via loading from a global or the return value for example) within another | 
|  | // function is never safe. If the observation is made through non-atomic | 
|  | // operations on different threads, it is a data-race and UB. If the | 
|  | // observation is well defined, by being observed the transformation would have | 
|  | // changed program behavior by introducing the observed escape, making it an | 
|  | // invalid transform. | 
|  | // | 
|  | // This property does require that transformations which *temporarily* escape | 
|  | // a global that was not previously escaped, prior to restoring it, cannot rely | 
|  | // on the results of GMR::alias. This seems a reasonable restriction, although | 
|  | // currently there is no way to enforce it. There is also no realistic | 
|  | // optimization pass that would make this mistake. The closest example is | 
|  | // a transformation pass which does reg2mem of SSA values but stores them into | 
|  | // global variables temporarily before restoring the global variable's value. | 
|  | // This could be useful to expose "benign" races for example. However, it seems | 
|  | // reasonable to require that a pass which introduces escapes of global | 
|  | // variables in this way to either not trust AA results while the escape is | 
|  | // active, or to be forced to operate as a module pass that cannot co-exist | 
|  | // with an alias analysis such as GMR. | 
|  | bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, | 
|  | const Value *V) { | 
|  | // In order to know that the underlying object cannot alias the | 
|  | // non-addr-taken global, we must know that it would have to be an escape. | 
|  | // Thus if the underlying object is a function argument, a load from | 
|  | // a global, or the return of a function, it cannot alias. We can also | 
|  | // recurse through PHI nodes and select nodes provided all of their inputs | 
|  | // resolve to one of these known-escaping roots. | 
|  | SmallPtrSet<const Value *, 8> Visited; | 
|  | SmallVector<const Value *, 8> Inputs; | 
|  | Visited.insert(V); | 
|  | Inputs.push_back(V); | 
|  | int Depth = 0; | 
|  | do { | 
|  | const Value *Input = Inputs.pop_back_val(); | 
|  |  | 
|  | if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { | 
|  | // If one input is the very global we're querying against, then we can't | 
|  | // conclude no-alias. | 
|  | if (InputGV == GV) | 
|  | return false; | 
|  |  | 
|  | // Distinct GlobalVariables never alias, unless overriden or zero-sized. | 
|  | // FIXME: The condition can be refined, but be conservative for now. | 
|  | auto *GVar = dyn_cast<GlobalVariable>(GV); | 
|  | auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); | 
|  | if (GVar && InputGVar && | 
|  | !GVar->isDeclaration() && !InputGVar->isDeclaration() && | 
|  | !GVar->isInterposable() && !InputGVar->isInterposable()) { | 
|  | Type *GVType = GVar->getInitializer()->getType(); | 
|  | Type *InputGVType = InputGVar->getInitializer()->getType(); | 
|  | if (GVType->isSized() && InputGVType->isSized() && | 
|  | (DL.getTypeAllocSize(GVType) > 0) && | 
|  | (DL.getTypeAllocSize(InputGVType) > 0)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Conservatively return false, even though we could be smarter | 
|  | // (e.g. look through GlobalAliases). | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (isa<Argument>(Input) || isa<CallInst>(Input) || | 
|  | isa<InvokeInst>(Input)) { | 
|  | // Arguments to functions or returns from functions are inherently | 
|  | // escaping, so we can immediately classify those as not aliasing any | 
|  | // non-addr-taken globals. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Recurse through a limited number of selects, loads and PHIs. This is an | 
|  | // arbitrary depth of 4, lower numbers could be used to fix compile time | 
|  | // issues if needed, but this is generally expected to be only be important | 
|  | // for small depths. | 
|  | if (++Depth > 4) | 
|  | return false; | 
|  |  | 
|  | if (auto *LI = dyn_cast<LoadInst>(Input)) { | 
|  | // A pointer loaded from a global would have been captured, and we know | 
|  | // that the global is non-escaping, so no alias. | 
|  | const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL); | 
|  | if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL)) | 
|  | // The load does not alias with GV. | 
|  | continue; | 
|  | // Otherwise, a load could come from anywhere, so bail. | 
|  | return false; | 
|  | } | 
|  | if (auto *SI = dyn_cast<SelectInst>(Input)) { | 
|  | const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); | 
|  | const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); | 
|  | if (Visited.insert(LHS).second) | 
|  | Inputs.push_back(LHS); | 
|  | if (Visited.insert(RHS).second) | 
|  | Inputs.push_back(RHS); | 
|  | continue; | 
|  | } | 
|  | if (auto *PN = dyn_cast<PHINode>(Input)) { | 
|  | for (const Value *Op : PN->incoming_values()) { | 
|  | Op = GetUnderlyingObject(Op, DL); | 
|  | if (Visited.insert(Op).second) | 
|  | Inputs.push_back(Op); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // FIXME: It would be good to handle other obvious no-alias cases here, but | 
|  | // it isn't clear how to do so reasonbly without building a small version | 
|  | // of BasicAA into this code. We could recurse into AAResultBase::alias | 
|  | // here but that seems likely to go poorly as we're inside the | 
|  | // implementation of such a query. Until then, just conservatievly retun | 
|  | // false. | 
|  | return false; | 
|  | } while (!Inputs.empty()); | 
|  |  | 
|  | // If all the inputs to V were definitively no-alias, then V is no-alias. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// alias - If one of the pointers is to a global that we are tracking, and the | 
|  | /// other is some random pointer, we know there cannot be an alias, because the | 
|  | /// address of the global isn't taken. | 
|  | AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, | 
|  | const MemoryLocation &LocB) { | 
|  | // Get the base object these pointers point to. | 
|  | const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL); | 
|  | const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL); | 
|  |  | 
|  | // If either of the underlying values is a global, they may be non-addr-taken | 
|  | // globals, which we can answer queries about. | 
|  | const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); | 
|  | const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); | 
|  | if (GV1 || GV2) { | 
|  | // If the global's address is taken, pretend we don't know it's a pointer to | 
|  | // the global. | 
|  | if (GV1 && !NonAddressTakenGlobals.count(GV1)) | 
|  | GV1 = nullptr; | 
|  | if (GV2 && !NonAddressTakenGlobals.count(GV2)) | 
|  | GV2 = nullptr; | 
|  |  | 
|  | // If the two pointers are derived from two different non-addr-taken | 
|  | // globals we know these can't alias. | 
|  | if (GV1 && GV2 && GV1 != GV2) | 
|  | return NoAlias; | 
|  |  | 
|  | // If one is and the other isn't, it isn't strictly safe but we can fake | 
|  | // this result if necessary for performance. This does not appear to be | 
|  | // a common problem in practice. | 
|  | if (EnableUnsafeGlobalsModRefAliasResults) | 
|  | if ((GV1 || GV2) && GV1 != GV2) | 
|  | return NoAlias; | 
|  |  | 
|  | // Check for a special case where a non-escaping global can be used to | 
|  | // conclude no-alias. | 
|  | if ((GV1 || GV2) && GV1 != GV2) { | 
|  | const GlobalValue *GV = GV1 ? GV1 : GV2; | 
|  | const Value *UV = GV1 ? UV2 : UV1; | 
|  | if (isNonEscapingGlobalNoAlias(GV, UV)) | 
|  | return NoAlias; | 
|  | } | 
|  |  | 
|  | // Otherwise if they are both derived from the same addr-taken global, we | 
|  | // can't know the two accesses don't overlap. | 
|  | } | 
|  |  | 
|  | // These pointers may be based on the memory owned by an indirect global.  If | 
|  | // so, we may be able to handle this.  First check to see if the base pointer | 
|  | // is a direct load from an indirect global. | 
|  | GV1 = GV2 = nullptr; | 
|  | if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) | 
|  | if (IndirectGlobals.count(GV)) | 
|  | GV1 = GV; | 
|  | if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) | 
|  | if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) | 
|  | if (IndirectGlobals.count(GV)) | 
|  | GV2 = GV; | 
|  |  | 
|  | // These pointers may also be from an allocation for the indirect global.  If | 
|  | // so, also handle them. | 
|  | if (!GV1) | 
|  | GV1 = AllocsForIndirectGlobals.lookup(UV1); | 
|  | if (!GV2) | 
|  | GV2 = AllocsForIndirectGlobals.lookup(UV2); | 
|  |  | 
|  | // Now that we know whether the two pointers are related to indirect globals, | 
|  | // use this to disambiguate the pointers. If the pointers are based on | 
|  | // different indirect globals they cannot alias. | 
|  | if (GV1 && GV2 && GV1 != GV2) | 
|  | return NoAlias; | 
|  |  | 
|  | // If one is based on an indirect global and the other isn't, it isn't | 
|  | // strictly safe but we can fake this result if necessary for performance. | 
|  | // This does not appear to be a common problem in practice. | 
|  | if (EnableUnsafeGlobalsModRefAliasResults) | 
|  | if ((GV1 || GV2) && GV1 != GV2) | 
|  | return NoAlias; | 
|  |  | 
|  | return AAResultBase::alias(LocA, LocB); | 
|  | } | 
|  |  | 
|  | ModRefInfo GlobalsAAResult::getModRefInfoForArgument(ImmutableCallSite CS, | 
|  | const GlobalValue *GV) { | 
|  | if (CS.doesNotAccessMemory()) | 
|  | return ModRefInfo::NoModRef; | 
|  | ModRefInfo ConservativeResult = | 
|  | CS.onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef; | 
|  |  | 
|  | // Iterate through all the arguments to the called function. If any argument | 
|  | // is based on GV, return the conservative result. | 
|  | for (auto &A : CS.args()) { | 
|  | SmallVector<Value*, 4> Objects; | 
|  | GetUnderlyingObjects(A, Objects, DL); | 
|  |  | 
|  | // All objects must be identified. | 
|  | if (!all_of(Objects, isIdentifiedObject) && | 
|  | // Try ::alias to see if all objects are known not to alias GV. | 
|  | !all_of(Objects, [&](Value *V) { | 
|  | return this->alias(MemoryLocation(V), MemoryLocation(GV)) == NoAlias; | 
|  | })) | 
|  | return ConservativeResult; | 
|  |  | 
|  | if (is_contained(Objects, GV)) | 
|  | return ConservativeResult; | 
|  | } | 
|  |  | 
|  | // We identified all objects in the argument list, and none of them were GV. | 
|  | return ModRefInfo::NoModRef; | 
|  | } | 
|  |  | 
|  | ModRefInfo GlobalsAAResult::getModRefInfo(ImmutableCallSite CS, | 
|  | const MemoryLocation &Loc) { | 
|  | ModRefInfo Known = ModRefInfo::ModRef; | 
|  |  | 
|  | // If we are asking for mod/ref info of a direct call with a pointer to a | 
|  | // global we are tracking, return information if we have it. | 
|  | if (const GlobalValue *GV = | 
|  | dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL))) | 
|  | if (GV->hasLocalLinkage()) | 
|  | if (const Function *F = CS.getCalledFunction()) | 
|  | if (NonAddressTakenGlobals.count(GV)) | 
|  | if (const FunctionInfo *FI = getFunctionInfo(F)) | 
|  | Known = unionModRef(FI->getModRefInfoForGlobal(*GV), | 
|  | getModRefInfoForArgument(CS, GV)); | 
|  |  | 
|  | if (!isModOrRefSet(Known)) | 
|  | return ModRefInfo::NoModRef; // No need to query other mod/ref analyses | 
|  | return intersectModRef(Known, AAResultBase::getModRefInfo(CS, Loc)); | 
|  | } | 
|  |  | 
|  | GlobalsAAResult::GlobalsAAResult(const DataLayout &DL, | 
|  | const TargetLibraryInfo &TLI) | 
|  | : AAResultBase(), DL(DL), TLI(TLI) {} | 
|  |  | 
|  | GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) | 
|  | : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI), | 
|  | NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), | 
|  | IndirectGlobals(std::move(Arg.IndirectGlobals)), | 
|  | AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), | 
|  | FunctionInfos(std::move(Arg.FunctionInfos)), | 
|  | Handles(std::move(Arg.Handles)) { | 
|  | // Update the parent for each DeletionCallbackHandle. | 
|  | for (auto &H : Handles) { | 
|  | assert(H.GAR == &Arg); | 
|  | H.GAR = this; | 
|  | } | 
|  | } | 
|  |  | 
|  | GlobalsAAResult::~GlobalsAAResult() {} | 
|  |  | 
|  | /*static*/ GlobalsAAResult | 
|  | GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI, | 
|  | CallGraph &CG) { | 
|  | GlobalsAAResult Result(M.getDataLayout(), TLI); | 
|  |  | 
|  | // Discover which functions aren't recursive, to feed into AnalyzeGlobals. | 
|  | Result.CollectSCCMembership(CG); | 
|  |  | 
|  | // Find non-addr taken globals. | 
|  | Result.AnalyzeGlobals(M); | 
|  |  | 
|  | // Propagate on CG. | 
|  | Result.AnalyzeCallGraph(CG, M); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | AnalysisKey GlobalsAA::Key; | 
|  |  | 
|  | GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) { | 
|  | return GlobalsAAResult::analyzeModule(M, | 
|  | AM.getResult<TargetLibraryAnalysis>(M), | 
|  | AM.getResult<CallGraphAnalysis>(M)); | 
|  | } | 
|  |  | 
|  | char GlobalsAAWrapperPass::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", | 
|  | "Globals Alias Analysis", false, true) | 
|  | INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", | 
|  | "Globals Alias Analysis", false, true) | 
|  |  | 
|  | ModulePass *llvm::createGlobalsAAWrapperPass() { | 
|  | return new GlobalsAAWrapperPass(); | 
|  | } | 
|  |  | 
|  | GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { | 
|  | initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool GlobalsAAWrapperPass::runOnModule(Module &M) { | 
|  | Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( | 
|  | M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), | 
|  | getAnalysis<CallGraphWrapperPass>().getCallGraph()))); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool GlobalsAAWrapperPass::doFinalization(Module &M) { | 
|  | Result.reset(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | AU.addRequired<CallGraphWrapperPass>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | } |