|  | //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements sparse conditional constant propagation and merging: | 
|  | // | 
|  | // Specifically, this: | 
|  | //   * Assumes values are constant unless proven otherwise | 
|  | //   * Assumes BasicBlocks are dead unless proven otherwise | 
|  | //   * Proves values to be constant, and replaces them with constants | 
|  | //   * Proves conditional branches to be unconditional | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/IPO/SCCP.h" | 
|  | #include "llvm/Transforms/Scalar/SCCP.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/PointerIntPair.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/ValueLattice.h" | 
|  | #include "llvm/Analysis/ValueLatticeUtils.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/InstVisitor.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/IPO.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include <cassert> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "sccp" | 
|  |  | 
|  | STATISTIC(NumInstRemoved, "Number of instructions removed"); | 
|  | STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); | 
|  |  | 
|  | STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); | 
|  | STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); | 
|  | STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); | 
|  | STATISTIC(IPNumRangeInfoUsed, "Number of times constant range info was used by" | 
|  | "IPSCCP"); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// LatticeVal class - This class represents the different lattice values that | 
|  | /// an LLVM value may occupy.  It is a simple class with value semantics. | 
|  | /// | 
|  | class LatticeVal { | 
|  | enum LatticeValueTy { | 
|  | /// unknown - This LLVM Value has no known value yet. | 
|  | unknown, | 
|  |  | 
|  | /// constant - This LLVM Value has a specific constant value. | 
|  | constant, | 
|  |  | 
|  | /// forcedconstant - This LLVM Value was thought to be undef until | 
|  | /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged | 
|  | /// with another (different) constant, it goes to overdefined, instead of | 
|  | /// asserting. | 
|  | forcedconstant, | 
|  |  | 
|  | /// overdefined - This instruction is not known to be constant, and we know | 
|  | /// it has a value. | 
|  | overdefined | 
|  | }; | 
|  |  | 
|  | /// Val: This stores the current lattice value along with the Constant* for | 
|  | /// the constant if this is a 'constant' or 'forcedconstant' value. | 
|  | PointerIntPair<Constant *, 2, LatticeValueTy> Val; | 
|  |  | 
|  | LatticeValueTy getLatticeValue() const { | 
|  | return Val.getInt(); | 
|  | } | 
|  |  | 
|  | public: | 
|  | LatticeVal() : Val(nullptr, unknown) {} | 
|  |  | 
|  | bool isUnknown() const { return getLatticeValue() == unknown; } | 
|  |  | 
|  | bool isConstant() const { | 
|  | return getLatticeValue() == constant || getLatticeValue() == forcedconstant; | 
|  | } | 
|  |  | 
|  | bool isOverdefined() const { return getLatticeValue() == overdefined; } | 
|  |  | 
|  | Constant *getConstant() const { | 
|  | assert(isConstant() && "Cannot get the constant of a non-constant!"); | 
|  | return Val.getPointer(); | 
|  | } | 
|  |  | 
|  | /// markOverdefined - Return true if this is a change in status. | 
|  | bool markOverdefined() { | 
|  | if (isOverdefined()) | 
|  | return false; | 
|  |  | 
|  | Val.setInt(overdefined); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// markConstant - Return true if this is a change in status. | 
|  | bool markConstant(Constant *V) { | 
|  | if (getLatticeValue() == constant) { // Constant but not forcedconstant. | 
|  | assert(getConstant() == V && "Marking constant with different value"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (isUnknown()) { | 
|  | Val.setInt(constant); | 
|  | assert(V && "Marking constant with NULL"); | 
|  | Val.setPointer(V); | 
|  | } else { | 
|  | assert(getLatticeValue() == forcedconstant && | 
|  | "Cannot move from overdefined to constant!"); | 
|  | // Stay at forcedconstant if the constant is the same. | 
|  | if (V == getConstant()) return false; | 
|  |  | 
|  | // Otherwise, we go to overdefined.  Assumptions made based on the | 
|  | // forced value are possibly wrong.  Assuming this is another constant | 
|  | // could expose a contradiction. | 
|  | Val.setInt(overdefined); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getConstantInt - If this is a constant with a ConstantInt value, return it | 
|  | /// otherwise return null. | 
|  | ConstantInt *getConstantInt() const { | 
|  | if (isConstant()) | 
|  | return dyn_cast<ConstantInt>(getConstant()); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// getBlockAddress - If this is a constant with a BlockAddress value, return | 
|  | /// it, otherwise return null. | 
|  | BlockAddress *getBlockAddress() const { | 
|  | if (isConstant()) | 
|  | return dyn_cast<BlockAddress>(getConstant()); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void markForcedConstant(Constant *V) { | 
|  | assert(isUnknown() && "Can't force a defined value!"); | 
|  | Val.setInt(forcedconstant); | 
|  | Val.setPointer(V); | 
|  | } | 
|  |  | 
|  | ValueLatticeElement toValueLattice() const { | 
|  | if (isOverdefined()) | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  | if (isConstant()) | 
|  | return ValueLatticeElement::get(getConstant()); | 
|  | return ValueLatticeElement(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// SCCPSolver - This class is a general purpose solver for Sparse Conditional | 
|  | /// Constant Propagation. | 
|  | /// | 
|  | class SCCPSolver : public InstVisitor<SCCPSolver> { | 
|  | const DataLayout &DL; | 
|  | const TargetLibraryInfo *TLI; | 
|  | SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable. | 
|  | DenseMap<Value *, LatticeVal> ValueState;  // The state each value is in. | 
|  | // The state each parameter is in. | 
|  | DenseMap<Value *, ValueLatticeElement> ParamState; | 
|  |  | 
|  | /// StructValueState - This maintains ValueState for values that have | 
|  | /// StructType, for example for formal arguments, calls, insertelement, etc. | 
|  | DenseMap<std::pair<Value *, unsigned>, LatticeVal> StructValueState; | 
|  |  | 
|  | /// GlobalValue - If we are tracking any values for the contents of a global | 
|  | /// variable, we keep a mapping from the constant accessor to the element of | 
|  | /// the global, to the currently known value.  If the value becomes | 
|  | /// overdefined, it's entry is simply removed from this map. | 
|  | DenseMap<GlobalVariable *, LatticeVal> TrackedGlobals; | 
|  |  | 
|  | /// TrackedRetVals - If we are tracking arguments into and the return | 
|  | /// value out of a function, it will have an entry in this map, indicating | 
|  | /// what the known return value for the function is. | 
|  | DenseMap<Function *, LatticeVal> TrackedRetVals; | 
|  |  | 
|  | /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions | 
|  | /// that return multiple values. | 
|  | DenseMap<std::pair<Function *, unsigned>, LatticeVal> TrackedMultipleRetVals; | 
|  |  | 
|  | /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is | 
|  | /// represented here for efficient lookup. | 
|  | SmallPtrSet<Function *, 16> MRVFunctionsTracked; | 
|  |  | 
|  | /// TrackingIncomingArguments - This is the set of functions for whose | 
|  | /// arguments we make optimistic assumptions about and try to prove as | 
|  | /// constants. | 
|  | SmallPtrSet<Function *, 16> TrackingIncomingArguments; | 
|  |  | 
|  | /// The reason for two worklists is that overdefined is the lowest state | 
|  | /// on the lattice, and moving things to overdefined as fast as possible | 
|  | /// makes SCCP converge much faster. | 
|  | /// | 
|  | /// By having a separate worklist, we accomplish this because everything | 
|  | /// possibly overdefined will become overdefined at the soonest possible | 
|  | /// point. | 
|  | SmallVector<Value *, 64> OverdefinedInstWorkList; | 
|  | SmallVector<Value *, 64> InstWorkList; | 
|  |  | 
|  | // The BasicBlock work list | 
|  | SmallVector<BasicBlock *, 64>  BBWorkList; | 
|  |  | 
|  | /// KnownFeasibleEdges - Entries in this set are edges which have already had | 
|  | /// PHI nodes retriggered. | 
|  | using Edge = std::pair<BasicBlock *, BasicBlock *>; | 
|  | DenseSet<Edge> KnownFeasibleEdges; | 
|  |  | 
|  | public: | 
|  | SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli) | 
|  | : DL(DL), TLI(tli) {} | 
|  |  | 
|  | /// MarkBlockExecutable - This method can be used by clients to mark all of | 
|  | /// the blocks that are known to be intrinsically live in the processed unit. | 
|  | /// | 
|  | /// This returns true if the block was not considered live before. | 
|  | bool MarkBlockExecutable(BasicBlock *BB) { | 
|  | if (!BBExecutable.insert(BB).second) | 
|  | return false; | 
|  | DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); | 
|  | BBWorkList.push_back(BB);  // Add the block to the work list! | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// TrackValueOfGlobalVariable - Clients can use this method to | 
|  | /// inform the SCCPSolver that it should track loads and stores to the | 
|  | /// specified global variable if it can.  This is only legal to call if | 
|  | /// performing Interprocedural SCCP. | 
|  | void TrackValueOfGlobalVariable(GlobalVariable *GV) { | 
|  | // We only track the contents of scalar globals. | 
|  | if (GV->getValueType()->isSingleValueType()) { | 
|  | LatticeVal &IV = TrackedGlobals[GV]; | 
|  | if (!isa<UndefValue>(GV->getInitializer())) | 
|  | IV.markConstant(GV->getInitializer()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// AddTrackedFunction - If the SCCP solver is supposed to track calls into | 
|  | /// and out of the specified function (which cannot have its address taken), | 
|  | /// this method must be called. | 
|  | void AddTrackedFunction(Function *F) { | 
|  | // Add an entry, F -> undef. | 
|  | if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { | 
|  | MRVFunctionsTracked.insert(F); | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) | 
|  | TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), | 
|  | LatticeVal())); | 
|  | } else | 
|  | TrackedRetVals.insert(std::make_pair(F, LatticeVal())); | 
|  | } | 
|  |  | 
|  | void AddArgumentTrackedFunction(Function *F) { | 
|  | TrackingIncomingArguments.insert(F); | 
|  | } | 
|  |  | 
|  | /// Returns true if the given function is in the solver's set of | 
|  | /// argument-tracked functions. | 
|  | bool isArgumentTrackedFunction(Function *F) { | 
|  | return TrackingIncomingArguments.count(F); | 
|  | } | 
|  |  | 
|  | /// Solve - Solve for constants and executable blocks. | 
|  | void Solve(); | 
|  |  | 
|  | /// ResolvedUndefsIn - While solving the dataflow for a function, we assume | 
|  | /// that branches on undef values cannot reach any of their successors. | 
|  | /// However, this is not a safe assumption.  After we solve dataflow, this | 
|  | /// method should be use to handle this.  If this returns true, the solver | 
|  | /// should be rerun. | 
|  | bool ResolvedUndefsIn(Function &F); | 
|  |  | 
|  | bool isBlockExecutable(BasicBlock *BB) const { | 
|  | return BBExecutable.count(BB); | 
|  | } | 
|  |  | 
|  | std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const { | 
|  | std::vector<LatticeVal> StructValues; | 
|  | auto *STy = dyn_cast<StructType>(V->getType()); | 
|  | assert(STy && "getStructLatticeValueFor() can be called only on structs"); | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
|  | auto I = StructValueState.find(std::make_pair(V, i)); | 
|  | assert(I != StructValueState.end() && "Value not in valuemap!"); | 
|  | StructValues.push_back(I->second); | 
|  | } | 
|  | return StructValues; | 
|  | } | 
|  |  | 
|  | ValueLatticeElement getLatticeValueFor(Value *V) { | 
|  | assert(!V->getType()->isStructTy() && | 
|  | "Should use getStructLatticeValueFor"); | 
|  | std::pair<DenseMap<Value*, ValueLatticeElement>::iterator, bool> | 
|  | PI = ParamState.insert(std::make_pair(V, ValueLatticeElement())); | 
|  | ValueLatticeElement &LV = PI.first->second; | 
|  | if (PI.second) { | 
|  | DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V); | 
|  | assert(I != ValueState.end() && | 
|  | "V not found in ValueState nor Paramstate map!"); | 
|  | LV = I->second.toValueLattice(); | 
|  | } | 
|  |  | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | /// getTrackedRetVals - Get the inferred return value map. | 
|  | const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { | 
|  | return TrackedRetVals; | 
|  | } | 
|  |  | 
|  | /// getTrackedGlobals - Get and return the set of inferred initializers for | 
|  | /// global variables. | 
|  | const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { | 
|  | return TrackedGlobals; | 
|  | } | 
|  |  | 
|  | /// getMRVFunctionsTracked - Get the set of functions which return multiple | 
|  | /// values tracked by the pass. | 
|  | const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() { | 
|  | return MRVFunctionsTracked; | 
|  | } | 
|  |  | 
|  | /// markOverdefined - Mark the specified value overdefined.  This | 
|  | /// works with both scalars and structs. | 
|  | void markOverdefined(Value *V) { | 
|  | if (auto *STy = dyn_cast<StructType>(V->getType())) | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) | 
|  | markOverdefined(getStructValueState(V, i), V); | 
|  | else | 
|  | markOverdefined(ValueState[V], V); | 
|  | } | 
|  |  | 
|  | // isStructLatticeConstant - Return true if all the lattice values | 
|  | // corresponding to elements of the structure are not overdefined, | 
|  | // false otherwise. | 
|  | bool isStructLatticeConstant(Function *F, StructType *STy) { | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
|  | const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i)); | 
|  | assert(It != TrackedMultipleRetVals.end()); | 
|  | LatticeVal LV = It->second; | 
|  | if (LV.isOverdefined()) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // pushToWorkList - Helper for markConstant/markForcedConstant/markOverdefined | 
|  | void pushToWorkList(LatticeVal &IV, Value *V) { | 
|  | if (IV.isOverdefined()) | 
|  | return OverdefinedInstWorkList.push_back(V); | 
|  | InstWorkList.push_back(V); | 
|  | } | 
|  |  | 
|  | // markConstant - Make a value be marked as "constant".  If the value | 
|  | // is not already a constant, add it to the instruction work list so that | 
|  | // the users of the instruction are updated later. | 
|  | void markConstant(LatticeVal &IV, Value *V, Constant *C) { | 
|  | if (!IV.markConstant(C)) return; | 
|  | DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); | 
|  | pushToWorkList(IV, V); | 
|  | } | 
|  |  | 
|  | void markConstant(Value *V, Constant *C) { | 
|  | assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); | 
|  | markConstant(ValueState[V], V, C); | 
|  | } | 
|  |  | 
|  | void markForcedConstant(Value *V, Constant *C) { | 
|  | assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); | 
|  | LatticeVal &IV = ValueState[V]; | 
|  | IV.markForcedConstant(C); | 
|  | DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); | 
|  | pushToWorkList(IV, V); | 
|  | } | 
|  |  | 
|  | // markOverdefined - Make a value be marked as "overdefined". If the | 
|  | // value is not already overdefined, add it to the overdefined instruction | 
|  | // work list so that the users of the instruction are updated later. | 
|  | void markOverdefined(LatticeVal &IV, Value *V) { | 
|  | if (!IV.markOverdefined()) return; | 
|  |  | 
|  | DEBUG(dbgs() << "markOverdefined: "; | 
|  | if (auto *F = dyn_cast<Function>(V)) | 
|  | dbgs() << "Function '" << F->getName() << "'\n"; | 
|  | else | 
|  | dbgs() << *V << '\n'); | 
|  | // Only instructions go on the work list | 
|  | pushToWorkList(IV, V); | 
|  | } | 
|  |  | 
|  | void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { | 
|  | if (IV.isOverdefined() || MergeWithV.isUnknown()) | 
|  | return;  // Noop. | 
|  | if (MergeWithV.isOverdefined()) | 
|  | return markOverdefined(IV, V); | 
|  | if (IV.isUnknown()) | 
|  | return markConstant(IV, V, MergeWithV.getConstant()); | 
|  | if (IV.getConstant() != MergeWithV.getConstant()) | 
|  | return markOverdefined(IV, V); | 
|  | } | 
|  |  | 
|  | void mergeInValue(Value *V, LatticeVal MergeWithV) { | 
|  | assert(!V->getType()->isStructTy() && | 
|  | "non-structs should use markConstant"); | 
|  | mergeInValue(ValueState[V], V, MergeWithV); | 
|  | } | 
|  |  | 
|  | /// getValueState - Return the LatticeVal object that corresponds to the | 
|  | /// value.  This function handles the case when the value hasn't been seen yet | 
|  | /// by properly seeding constants etc. | 
|  | LatticeVal &getValueState(Value *V) { | 
|  | assert(!V->getType()->isStructTy() && "Should use getStructValueState"); | 
|  |  | 
|  | std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I = | 
|  | ValueState.insert(std::make_pair(V, LatticeVal())); | 
|  | LatticeVal &LV = I.first->second; | 
|  |  | 
|  | if (!I.second) | 
|  | return LV;  // Common case, already in the map. | 
|  |  | 
|  | if (auto *C = dyn_cast<Constant>(V)) { | 
|  | // Undef values remain unknown. | 
|  | if (!isa<UndefValue>(V)) | 
|  | LV.markConstant(C);          // Constants are constant | 
|  | } | 
|  |  | 
|  | // All others are underdefined by default. | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | ValueLatticeElement &getParamState(Value *V) { | 
|  | assert(!V->getType()->isStructTy() && "Should use getStructValueState"); | 
|  |  | 
|  | std::pair<DenseMap<Value*, ValueLatticeElement>::iterator, bool> | 
|  | PI = ParamState.insert(std::make_pair(V, ValueLatticeElement())); | 
|  | ValueLatticeElement &LV = PI.first->second; | 
|  | if (PI.second) | 
|  | LV = getValueState(V).toValueLattice(); | 
|  |  | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | /// getStructValueState - Return the LatticeVal object that corresponds to the | 
|  | /// value/field pair.  This function handles the case when the value hasn't | 
|  | /// been seen yet by properly seeding constants etc. | 
|  | LatticeVal &getStructValueState(Value *V, unsigned i) { | 
|  | assert(V->getType()->isStructTy() && "Should use getValueState"); | 
|  | assert(i < cast<StructType>(V->getType())->getNumElements() && | 
|  | "Invalid element #"); | 
|  |  | 
|  | std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator, | 
|  | bool> I = StructValueState.insert( | 
|  | std::make_pair(std::make_pair(V, i), LatticeVal())); | 
|  | LatticeVal &LV = I.first->second; | 
|  |  | 
|  | if (!I.second) | 
|  | return LV;  // Common case, already in the map. | 
|  |  | 
|  | if (auto *C = dyn_cast<Constant>(V)) { | 
|  | Constant *Elt = C->getAggregateElement(i); | 
|  |  | 
|  | if (!Elt) | 
|  | LV.markOverdefined();      // Unknown sort of constant. | 
|  | else if (isa<UndefValue>(Elt)) | 
|  | ; // Undef values remain unknown. | 
|  | else | 
|  | LV.markConstant(Elt);      // Constants are constant. | 
|  | } | 
|  |  | 
|  | // All others are underdefined by default. | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB | 
|  | /// work list if it is not already executable. | 
|  | void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { | 
|  | if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) | 
|  | return;  // This edge is already known to be executable! | 
|  |  | 
|  | if (!MarkBlockExecutable(Dest)) { | 
|  | // If the destination is already executable, we just made an *edge* | 
|  | // feasible that wasn't before.  Revisit the PHI nodes in the block | 
|  | // because they have potentially new operands. | 
|  | DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() | 
|  | << " -> " << Dest->getName() << '\n'); | 
|  |  | 
|  | for (PHINode &PN : Dest->phis()) | 
|  | visitPHINode(PN); | 
|  | } | 
|  | } | 
|  |  | 
|  | // getFeasibleSuccessors - Return a vector of booleans to indicate which | 
|  | // successors are reachable from a given terminator instruction. | 
|  | void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs); | 
|  |  | 
|  | // isEdgeFeasible - Return true if the control flow edge from the 'From' basic | 
|  | // block to the 'To' basic block is currently feasible. | 
|  | bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); | 
|  |  | 
|  | // OperandChangedState - This method is invoked on all of the users of an | 
|  | // instruction that was just changed state somehow.  Based on this | 
|  | // information, we need to update the specified user of this instruction. | 
|  | void OperandChangedState(Instruction *I) { | 
|  | if (BBExecutable.count(I->getParent()))   // Inst is executable? | 
|  | visit(*I); | 
|  | } | 
|  |  | 
|  | private: | 
|  | friend class InstVisitor<SCCPSolver>; | 
|  |  | 
|  | // visit implementations - Something changed in this instruction.  Either an | 
|  | // operand made a transition, or the instruction is newly executable.  Change | 
|  | // the value type of I to reflect these changes if appropriate. | 
|  | void visitPHINode(PHINode &I); | 
|  |  | 
|  | // Terminators | 
|  |  | 
|  | void visitReturnInst(ReturnInst &I); | 
|  | void visitTerminatorInst(TerminatorInst &TI); | 
|  |  | 
|  | void visitCastInst(CastInst &I); | 
|  | void visitSelectInst(SelectInst &I); | 
|  | void visitBinaryOperator(Instruction &I); | 
|  | void visitCmpInst(CmpInst &I); | 
|  | void visitExtractValueInst(ExtractValueInst &EVI); | 
|  | void visitInsertValueInst(InsertValueInst &IVI); | 
|  |  | 
|  | void visitCatchSwitchInst(CatchSwitchInst &CPI) { | 
|  | markOverdefined(&CPI); | 
|  | visitTerminatorInst(CPI); | 
|  | } | 
|  |  | 
|  | // Instructions that cannot be folded away. | 
|  |  | 
|  | void visitStoreInst     (StoreInst &I); | 
|  | void visitLoadInst      (LoadInst &I); | 
|  | void visitGetElementPtrInst(GetElementPtrInst &I); | 
|  |  | 
|  | void visitCallInst      (CallInst &I) { | 
|  | visitCallSite(&I); | 
|  | } | 
|  |  | 
|  | void visitInvokeInst    (InvokeInst &II) { | 
|  | visitCallSite(&II); | 
|  | visitTerminatorInst(II); | 
|  | } | 
|  |  | 
|  | void visitCallSite      (CallSite CS); | 
|  | void visitResumeInst    (TerminatorInst &I) { /*returns void*/ } | 
|  | void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } | 
|  | void visitFenceInst     (FenceInst &I) { /*returns void*/ } | 
|  |  | 
|  | void visitInstruction(Instruction &I) { | 
|  | // All the instructions we don't do any special handling for just | 
|  | // go to overdefined. | 
|  | DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n'); | 
|  | markOverdefined(&I); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // getFeasibleSuccessors - Return a vector of booleans to indicate which | 
|  | // successors are reachable from a given terminator instruction. | 
|  | void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, | 
|  | SmallVectorImpl<bool> &Succs) { | 
|  | Succs.resize(TI.getNumSuccessors()); | 
|  | if (auto *BI = dyn_cast<BranchInst>(&TI)) { | 
|  | if (BI->isUnconditional()) { | 
|  | Succs[0] = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | LatticeVal BCValue = getValueState(BI->getCondition()); | 
|  | ConstantInt *CI = BCValue.getConstantInt(); | 
|  | if (!CI) { | 
|  | // Overdefined condition variables, and branches on unfoldable constant | 
|  | // conditions, mean the branch could go either way. | 
|  | if (!BCValue.isUnknown()) | 
|  | Succs[0] = Succs[1] = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Constant condition variables mean the branch can only go a single way. | 
|  | Succs[CI->isZero()] = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Unwinding instructions successors are always executable. | 
|  | if (TI.isExceptional()) { | 
|  | Succs.assign(TI.getNumSuccessors(), true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (auto *SI = dyn_cast<SwitchInst>(&TI)) { | 
|  | if (!SI->getNumCases()) { | 
|  | Succs[0] = true; | 
|  | return; | 
|  | } | 
|  | LatticeVal SCValue = getValueState(SI->getCondition()); | 
|  | ConstantInt *CI = SCValue.getConstantInt(); | 
|  |  | 
|  | if (!CI) {   // Overdefined or unknown condition? | 
|  | // All destinations are executable! | 
|  | if (!SCValue.isUnknown()) | 
|  | Succs.assign(TI.getNumSuccessors(), true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // In case of indirect branch and its address is a blockaddress, we mark | 
|  | // the target as executable. | 
|  | if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) { | 
|  | // Casts are folded by visitCastInst. | 
|  | LatticeVal IBRValue = getValueState(IBR->getAddress()); | 
|  | BlockAddress *Addr = IBRValue.getBlockAddress(); | 
|  | if (!Addr) {   // Overdefined or unknown condition? | 
|  | // All destinations are executable! | 
|  | if (!IBRValue.isUnknown()) | 
|  | Succs.assign(TI.getNumSuccessors(), true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | BasicBlock* T = Addr->getBasicBlock(); | 
|  | assert(Addr->getFunction() == T->getParent() && | 
|  | "Block address of a different function ?"); | 
|  | for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) { | 
|  | // This is the target. | 
|  | if (IBR->getDestination(i) == T) { | 
|  | Succs[i] = true; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we didn't find our destination in the IBR successor list, then we | 
|  | // have undefined behavior. Its ok to assume no successor is executable. | 
|  | return; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n'); | 
|  | llvm_unreachable("SCCP: Don't know how to handle this terminator!"); | 
|  | } | 
|  |  | 
|  | // isEdgeFeasible - Return true if the control flow edge from the 'From' basic | 
|  | // block to the 'To' basic block is currently feasible. | 
|  | bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { | 
|  | assert(BBExecutable.count(To) && "Dest should always be alive!"); | 
|  |  | 
|  | // Make sure the source basic block is executable!! | 
|  | if (!BBExecutable.count(From)) return false; | 
|  |  | 
|  | // Check to make sure this edge itself is actually feasible now. | 
|  | TerminatorInst *TI = From->getTerminator(); | 
|  | if (auto *BI = dyn_cast<BranchInst>(TI)) { | 
|  | if (BI->isUnconditional()) | 
|  | return true; | 
|  |  | 
|  | LatticeVal BCValue = getValueState(BI->getCondition()); | 
|  |  | 
|  | // Overdefined condition variables mean the branch could go either way, | 
|  | // undef conditions mean that neither edge is feasible yet. | 
|  | ConstantInt *CI = BCValue.getConstantInt(); | 
|  | if (!CI) | 
|  | return !BCValue.isUnknown(); | 
|  |  | 
|  | // Constant condition variables mean the branch can only go a single way. | 
|  | return BI->getSuccessor(CI->isZero()) == To; | 
|  | } | 
|  |  | 
|  | // Unwinding instructions successors are always executable. | 
|  | if (TI->isExceptional()) | 
|  | return true; | 
|  |  | 
|  | if (auto *SI = dyn_cast<SwitchInst>(TI)) { | 
|  | if (SI->getNumCases() < 1) | 
|  | return true; | 
|  |  | 
|  | LatticeVal SCValue = getValueState(SI->getCondition()); | 
|  | ConstantInt *CI = SCValue.getConstantInt(); | 
|  |  | 
|  | if (!CI) | 
|  | return !SCValue.isUnknown(); | 
|  |  | 
|  | return SI->findCaseValue(CI)->getCaseSuccessor() == To; | 
|  | } | 
|  |  | 
|  | // In case of indirect branch and its address is a blockaddress, we mark | 
|  | // the target as executable. | 
|  | if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) { | 
|  | LatticeVal IBRValue = getValueState(IBR->getAddress()); | 
|  | BlockAddress *Addr = IBRValue.getBlockAddress(); | 
|  |  | 
|  | if (!Addr) | 
|  | return !IBRValue.isUnknown(); | 
|  |  | 
|  | // At this point, the indirectbr is branching on a blockaddress. | 
|  | return Addr->getBasicBlock() == To; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Unknown terminator instruction: " << *TI << '\n'); | 
|  | llvm_unreachable("SCCP: Don't know how to handle this terminator!"); | 
|  | } | 
|  |  | 
|  | // visit Implementations - Something changed in this instruction, either an | 
|  | // operand made a transition, or the instruction is newly executable.  Change | 
|  | // the value type of I to reflect these changes if appropriate.  This method | 
|  | // makes sure to do the following actions: | 
|  | // | 
|  | // 1. If a phi node merges two constants in, and has conflicting value coming | 
|  | //    from different branches, or if the PHI node merges in an overdefined | 
|  | //    value, then the PHI node becomes overdefined. | 
|  | // 2. If a phi node merges only constants in, and they all agree on value, the | 
|  | //    PHI node becomes a constant value equal to that. | 
|  | // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant | 
|  | // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined | 
|  | // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined | 
|  | // 6. If a conditional branch has a value that is constant, make the selected | 
|  | //    destination executable | 
|  | // 7. If a conditional branch has a value that is overdefined, make all | 
|  | //    successors executable. | 
|  | void SCCPSolver::visitPHINode(PHINode &PN) { | 
|  | // If this PN returns a struct, just mark the result overdefined. | 
|  | // TODO: We could do a lot better than this if code actually uses this. | 
|  | if (PN.getType()->isStructTy()) | 
|  | return markOverdefined(&PN); | 
|  |  | 
|  | if (getValueState(&PN).isOverdefined()) | 
|  | return;  // Quick exit | 
|  |  | 
|  | // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, | 
|  | // and slow us down a lot.  Just mark them overdefined. | 
|  | if (PN.getNumIncomingValues() > 64) | 
|  | return markOverdefined(&PN); | 
|  |  | 
|  | // Look at all of the executable operands of the PHI node.  If any of them | 
|  | // are overdefined, the PHI becomes overdefined as well.  If they are all | 
|  | // constant, and they agree with each other, the PHI becomes the identical | 
|  | // constant.  If they are constant and don't agree, the PHI is overdefined. | 
|  | // If there are no executable operands, the PHI remains unknown. | 
|  | Constant *OperandVal = nullptr; | 
|  | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { | 
|  | LatticeVal IV = getValueState(PN.getIncomingValue(i)); | 
|  | if (IV.isUnknown()) continue;  // Doesn't influence PHI node. | 
|  |  | 
|  | if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) | 
|  | continue; | 
|  |  | 
|  | if (IV.isOverdefined())    // PHI node becomes overdefined! | 
|  | return markOverdefined(&PN); | 
|  |  | 
|  | if (!OperandVal) {   // Grab the first value. | 
|  | OperandVal = IV.getConstant(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // There is already a reachable operand.  If we conflict with it, | 
|  | // then the PHI node becomes overdefined.  If we agree with it, we | 
|  | // can continue on. | 
|  |  | 
|  | // Check to see if there are two different constants merging, if so, the PHI | 
|  | // node is overdefined. | 
|  | if (IV.getConstant() != OperandVal) | 
|  | return markOverdefined(&PN); | 
|  | } | 
|  |  | 
|  | // If we exited the loop, this means that the PHI node only has constant | 
|  | // arguments that agree with each other(and OperandVal is the constant) or | 
|  | // OperandVal is null because there are no defined incoming arguments.  If | 
|  | // this is the case, the PHI remains unknown. | 
|  | if (OperandVal) | 
|  | markConstant(&PN, OperandVal);      // Acquire operand value | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitReturnInst(ReturnInst &I) { | 
|  | if (I.getNumOperands() == 0) return;  // ret void | 
|  |  | 
|  | Function *F = I.getParent()->getParent(); | 
|  | Value *ResultOp = I.getOperand(0); | 
|  |  | 
|  | // If we are tracking the return value of this function, merge it in. | 
|  | if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { | 
|  | DenseMap<Function*, LatticeVal>::iterator TFRVI = | 
|  | TrackedRetVals.find(F); | 
|  | if (TFRVI != TrackedRetVals.end()) { | 
|  | mergeInValue(TFRVI->second, F, getValueState(ResultOp)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle functions that return multiple values. | 
|  | if (!TrackedMultipleRetVals.empty()) { | 
|  | if (auto *STy = dyn_cast<StructType>(ResultOp->getType())) | 
|  | if (MRVFunctionsTracked.count(F)) | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) | 
|  | mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, | 
|  | getStructValueState(ResultOp, i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { | 
|  | SmallVector<bool, 16> SuccFeasible; | 
|  | getFeasibleSuccessors(TI, SuccFeasible); | 
|  |  | 
|  | BasicBlock *BB = TI.getParent(); | 
|  |  | 
|  | // Mark all feasible successors executable. | 
|  | for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) | 
|  | if (SuccFeasible[i]) | 
|  | markEdgeExecutable(BB, TI.getSuccessor(i)); | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitCastInst(CastInst &I) { | 
|  | LatticeVal OpSt = getValueState(I.getOperand(0)); | 
|  | if (OpSt.isOverdefined())          // Inherit overdefinedness of operand | 
|  | markOverdefined(&I); | 
|  | else if (OpSt.isConstant()) { | 
|  | // Fold the constant as we build. | 
|  | Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(), | 
|  | I.getType(), DL); | 
|  | if (isa<UndefValue>(C)) | 
|  | return; | 
|  | // Propagate constant value | 
|  | markConstant(&I, C); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { | 
|  | // If this returns a struct, mark all elements over defined, we don't track | 
|  | // structs in structs. | 
|  | if (EVI.getType()->isStructTy()) | 
|  | return markOverdefined(&EVI); | 
|  |  | 
|  | // If this is extracting from more than one level of struct, we don't know. | 
|  | if (EVI.getNumIndices() != 1) | 
|  | return markOverdefined(&EVI); | 
|  |  | 
|  | Value *AggVal = EVI.getAggregateOperand(); | 
|  | if (AggVal->getType()->isStructTy()) { | 
|  | unsigned i = *EVI.idx_begin(); | 
|  | LatticeVal EltVal = getStructValueState(AggVal, i); | 
|  | mergeInValue(getValueState(&EVI), &EVI, EltVal); | 
|  | } else { | 
|  | // Otherwise, must be extracting from an array. | 
|  | return markOverdefined(&EVI); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { | 
|  | auto *STy = dyn_cast<StructType>(IVI.getType()); | 
|  | if (!STy) | 
|  | return markOverdefined(&IVI); | 
|  |  | 
|  | // If this has more than one index, we can't handle it, drive all results to | 
|  | // undef. | 
|  | if (IVI.getNumIndices() != 1) | 
|  | return markOverdefined(&IVI); | 
|  |  | 
|  | Value *Aggr = IVI.getAggregateOperand(); | 
|  | unsigned Idx = *IVI.idx_begin(); | 
|  |  | 
|  | // Compute the result based on what we're inserting. | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
|  | // This passes through all values that aren't the inserted element. | 
|  | if (i != Idx) { | 
|  | LatticeVal EltVal = getStructValueState(Aggr, i); | 
|  | mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Value *Val = IVI.getInsertedValueOperand(); | 
|  | if (Val->getType()->isStructTy()) | 
|  | // We don't track structs in structs. | 
|  | markOverdefined(getStructValueState(&IVI, i), &IVI); | 
|  | else { | 
|  | LatticeVal InVal = getValueState(Val); | 
|  | mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitSelectInst(SelectInst &I) { | 
|  | // If this select returns a struct, just mark the result overdefined. | 
|  | // TODO: We could do a lot better than this if code actually uses this. | 
|  | if (I.getType()->isStructTy()) | 
|  | return markOverdefined(&I); | 
|  |  | 
|  | LatticeVal CondValue = getValueState(I.getCondition()); | 
|  | if (CondValue.isUnknown()) | 
|  | return; | 
|  |  | 
|  | if (ConstantInt *CondCB = CondValue.getConstantInt()) { | 
|  | Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); | 
|  | mergeInValue(&I, getValueState(OpVal)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, the condition is overdefined or a constant we can't evaluate. | 
|  | // See if we can produce something better than overdefined based on the T/F | 
|  | // value. | 
|  | LatticeVal TVal = getValueState(I.getTrueValue()); | 
|  | LatticeVal FVal = getValueState(I.getFalseValue()); | 
|  |  | 
|  | // select ?, C, C -> C. | 
|  | if (TVal.isConstant() && FVal.isConstant() && | 
|  | TVal.getConstant() == FVal.getConstant()) | 
|  | return markConstant(&I, FVal.getConstant()); | 
|  |  | 
|  | if (TVal.isUnknown())   // select ?, undef, X -> X. | 
|  | return mergeInValue(&I, FVal); | 
|  | if (FVal.isUnknown())   // select ?, X, undef -> X. | 
|  | return mergeInValue(&I, TVal); | 
|  | markOverdefined(&I); | 
|  | } | 
|  |  | 
|  | // Handle Binary Operators. | 
|  | void SCCPSolver::visitBinaryOperator(Instruction &I) { | 
|  | LatticeVal V1State = getValueState(I.getOperand(0)); | 
|  | LatticeVal V2State = getValueState(I.getOperand(1)); | 
|  |  | 
|  | LatticeVal &IV = ValueState[&I]; | 
|  | if (IV.isOverdefined()) return; | 
|  |  | 
|  | if (V1State.isConstant() && V2State.isConstant()) { | 
|  | Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(), | 
|  | V2State.getConstant()); | 
|  | // X op Y -> undef. | 
|  | if (isa<UndefValue>(C)) | 
|  | return; | 
|  | return markConstant(IV, &I, C); | 
|  | } | 
|  |  | 
|  | // If something is undef, wait for it to resolve. | 
|  | if (!V1State.isOverdefined() && !V2State.isOverdefined()) | 
|  | return; | 
|  |  | 
|  | // Otherwise, one of our operands is overdefined.  Try to produce something | 
|  | // better than overdefined with some tricks. | 
|  | // If this is 0 / Y, it doesn't matter that the second operand is | 
|  | // overdefined, and we can replace it with zero. | 
|  | if (I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv) | 
|  | if (V1State.isConstant() && V1State.getConstant()->isNullValue()) | 
|  | return markConstant(IV, &I, V1State.getConstant()); | 
|  |  | 
|  | // If this is: | 
|  | // -> AND/MUL with 0 | 
|  | // -> OR with -1 | 
|  | // it doesn't matter that the other operand is overdefined. | 
|  | if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Mul || | 
|  | I.getOpcode() == Instruction::Or) { | 
|  | LatticeVal *NonOverdefVal = nullptr; | 
|  | if (!V1State.isOverdefined()) | 
|  | NonOverdefVal = &V1State; | 
|  | else if (!V2State.isOverdefined()) | 
|  | NonOverdefVal = &V2State; | 
|  |  | 
|  | if (NonOverdefVal) { | 
|  | if (NonOverdefVal->isUnknown()) | 
|  | return; | 
|  |  | 
|  | if (I.getOpcode() == Instruction::And || | 
|  | I.getOpcode() == Instruction::Mul) { | 
|  | // X and 0 = 0 | 
|  | // X * 0 = 0 | 
|  | if (NonOverdefVal->getConstant()->isNullValue()) | 
|  | return markConstant(IV, &I, NonOverdefVal->getConstant()); | 
|  | } else { | 
|  | // X or -1 = -1 | 
|  | if (ConstantInt *CI = NonOverdefVal->getConstantInt()) | 
|  | if (CI->isMinusOne()) | 
|  | return markConstant(IV, &I, NonOverdefVal->getConstant()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | markOverdefined(&I); | 
|  | } | 
|  |  | 
|  | // Handle ICmpInst instruction. | 
|  | void SCCPSolver::visitCmpInst(CmpInst &I) { | 
|  | LatticeVal V1State = getValueState(I.getOperand(0)); | 
|  | LatticeVal V2State = getValueState(I.getOperand(1)); | 
|  |  | 
|  | LatticeVal &IV = ValueState[&I]; | 
|  | if (IV.isOverdefined()) return; | 
|  |  | 
|  | if (V1State.isConstant() && V2State.isConstant()) { | 
|  | Constant *C = ConstantExpr::getCompare( | 
|  | I.getPredicate(), V1State.getConstant(), V2State.getConstant()); | 
|  | if (isa<UndefValue>(C)) | 
|  | return; | 
|  | return markConstant(IV, &I, C); | 
|  | } | 
|  |  | 
|  | // If operands are still unknown, wait for it to resolve. | 
|  | if (!V1State.isOverdefined() && !V2State.isOverdefined()) | 
|  | return; | 
|  |  | 
|  | markOverdefined(&I); | 
|  | } | 
|  |  | 
|  | // Handle getelementptr instructions.  If all operands are constants then we | 
|  | // can turn this into a getelementptr ConstantExpr. | 
|  | void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { | 
|  | if (ValueState[&I].isOverdefined()) return; | 
|  |  | 
|  | SmallVector<Constant*, 8> Operands; | 
|  | Operands.reserve(I.getNumOperands()); | 
|  |  | 
|  | for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { | 
|  | LatticeVal State = getValueState(I.getOperand(i)); | 
|  | if (State.isUnknown()) | 
|  | return;  // Operands are not resolved yet. | 
|  |  | 
|  | if (State.isOverdefined()) | 
|  | return markOverdefined(&I); | 
|  |  | 
|  | assert(State.isConstant() && "Unknown state!"); | 
|  | Operands.push_back(State.getConstant()); | 
|  | } | 
|  |  | 
|  | Constant *Ptr = Operands[0]; | 
|  | auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end()); | 
|  | Constant *C = | 
|  | ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices); | 
|  | if (isa<UndefValue>(C)) | 
|  | return; | 
|  | markConstant(&I, C); | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitStoreInst(StoreInst &SI) { | 
|  | // If this store is of a struct, ignore it. | 
|  | if (SI.getOperand(0)->getType()->isStructTy()) | 
|  | return; | 
|  |  | 
|  | if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) | 
|  | return; | 
|  |  | 
|  | GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); | 
|  | DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); | 
|  | if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; | 
|  |  | 
|  | // Get the value we are storing into the global, then merge it. | 
|  | mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); | 
|  | if (I->second.isOverdefined()) | 
|  | TrackedGlobals.erase(I);      // No need to keep tracking this! | 
|  | } | 
|  |  | 
|  | // Handle load instructions.  If the operand is a constant pointer to a constant | 
|  | // global, we can replace the load with the loaded constant value! | 
|  | void SCCPSolver::visitLoadInst(LoadInst &I) { | 
|  | // If this load is of a struct, just mark the result overdefined. | 
|  | if (I.getType()->isStructTy()) | 
|  | return markOverdefined(&I); | 
|  |  | 
|  | LatticeVal PtrVal = getValueState(I.getOperand(0)); | 
|  | if (PtrVal.isUnknown()) return;   // The pointer is not resolved yet! | 
|  |  | 
|  | LatticeVal &IV = ValueState[&I]; | 
|  | if (IV.isOverdefined()) return; | 
|  |  | 
|  | if (!PtrVal.isConstant() || I.isVolatile()) | 
|  | return markOverdefined(IV, &I); | 
|  |  | 
|  | Constant *Ptr = PtrVal.getConstant(); | 
|  |  | 
|  | // load null is undefined. | 
|  | if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) | 
|  | return; | 
|  |  | 
|  | // Transform load (constant global) into the value loaded. | 
|  | if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) { | 
|  | if (!TrackedGlobals.empty()) { | 
|  | // If we are tracking this global, merge in the known value for it. | 
|  | DenseMap<GlobalVariable*, LatticeVal>::iterator It = | 
|  | TrackedGlobals.find(GV); | 
|  | if (It != TrackedGlobals.end()) { | 
|  | mergeInValue(IV, &I, It->second); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transform load from a constant into a constant if possible. | 
|  | if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) { | 
|  | if (isa<UndefValue>(C)) | 
|  | return; | 
|  | return markConstant(IV, &I, C); | 
|  | } | 
|  |  | 
|  | // Otherwise we cannot say for certain what value this load will produce. | 
|  | // Bail out. | 
|  | markOverdefined(IV, &I); | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitCallSite(CallSite CS) { | 
|  | Function *F = CS.getCalledFunction(); | 
|  | Instruction *I = CS.getInstruction(); | 
|  |  | 
|  | // The common case is that we aren't tracking the callee, either because we | 
|  | // are not doing interprocedural analysis or the callee is indirect, or is | 
|  | // external.  Handle these cases first. | 
|  | if (!F || F->isDeclaration()) { | 
|  | CallOverdefined: | 
|  | // Void return and not tracking callee, just bail. | 
|  | if (I->getType()->isVoidTy()) return; | 
|  |  | 
|  | // Otherwise, if we have a single return value case, and if the function is | 
|  | // a declaration, maybe we can constant fold it. | 
|  | if (F && F->isDeclaration() && !I->getType()->isStructTy() && | 
|  | canConstantFoldCallTo(CS, F)) { | 
|  | SmallVector<Constant*, 8> Operands; | 
|  | for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); | 
|  | AI != E; ++AI) { | 
|  | LatticeVal State = getValueState(*AI); | 
|  |  | 
|  | if (State.isUnknown()) | 
|  | return;  // Operands are not resolved yet. | 
|  | if (State.isOverdefined()) | 
|  | return markOverdefined(I); | 
|  | assert(State.isConstant() && "Unknown state!"); | 
|  | Operands.push_back(State.getConstant()); | 
|  | } | 
|  |  | 
|  | if (getValueState(I).isOverdefined()) | 
|  | return; | 
|  |  | 
|  | // If we can constant fold this, mark the result of the call as a | 
|  | // constant. | 
|  | if (Constant *C = ConstantFoldCall(CS, F, Operands, TLI)) { | 
|  | // call -> undef. | 
|  | if (isa<UndefValue>(C)) | 
|  | return; | 
|  | return markConstant(I, C); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we don't know anything about this call, mark it overdefined. | 
|  | return markOverdefined(I); | 
|  | } | 
|  |  | 
|  | // If this is a local function that doesn't have its address taken, mark its | 
|  | // entry block executable and merge in the actual arguments to the call into | 
|  | // the formal arguments of the function. | 
|  | if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ | 
|  | MarkBlockExecutable(&F->front()); | 
|  |  | 
|  | // Propagate information from this call site into the callee. | 
|  | CallSite::arg_iterator CAI = CS.arg_begin(); | 
|  | for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); | 
|  | AI != E; ++AI, ++CAI) { | 
|  | // If this argument is byval, and if the function is not readonly, there | 
|  | // will be an implicit copy formed of the input aggregate. | 
|  | if (AI->hasByValAttr() && !F->onlyReadsMemory()) { | 
|  | markOverdefined(&*AI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (auto *STy = dyn_cast<StructType>(AI->getType())) { | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
|  | LatticeVal CallArg = getStructValueState(*CAI, i); | 
|  | mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg); | 
|  | } | 
|  | } else { | 
|  | // Most other parts of the Solver still only use the simpler value | 
|  | // lattice, so we propagate changes for parameters to both lattices. | 
|  | getParamState(&*AI).mergeIn(getValueState(*CAI).toValueLattice(), DL); | 
|  | mergeInValue(&*AI, getValueState(*CAI)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a single/zero retval case, see if we're tracking the function. | 
|  | if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { | 
|  | if (!MRVFunctionsTracked.count(F)) | 
|  | goto CallOverdefined;  // Not tracking this callee. | 
|  |  | 
|  | // If we are tracking this callee, propagate the result of the function | 
|  | // into this call site. | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) | 
|  | mergeInValue(getStructValueState(I, i), I, | 
|  | TrackedMultipleRetVals[std::make_pair(F, i)]); | 
|  | } else { | 
|  | DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); | 
|  | if (TFRVI == TrackedRetVals.end()) | 
|  | goto CallOverdefined;  // Not tracking this callee. | 
|  |  | 
|  | // If so, propagate the return value of the callee into this call result. | 
|  | mergeInValue(I, TFRVI->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SCCPSolver::Solve() { | 
|  | // Process the work lists until they are empty! | 
|  | while (!BBWorkList.empty() || !InstWorkList.empty() || | 
|  | !OverdefinedInstWorkList.empty()) { | 
|  | // Process the overdefined instruction's work list first, which drives other | 
|  | // things to overdefined more quickly. | 
|  | while (!OverdefinedInstWorkList.empty()) { | 
|  | Value *I = OverdefinedInstWorkList.pop_back_val(); | 
|  |  | 
|  | DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); | 
|  |  | 
|  | // "I" got into the work list because it either made the transition from | 
|  | // bottom to constant, or to overdefined. | 
|  | // | 
|  | // Anything on this worklist that is overdefined need not be visited | 
|  | // since all of its users will have already been marked as overdefined | 
|  | // Update all of the users of this instruction's value. | 
|  | // | 
|  | for (User *U : I->users()) | 
|  | if (auto *UI = dyn_cast<Instruction>(U)) | 
|  | OperandChangedState(UI); | 
|  | } | 
|  |  | 
|  | // Process the instruction work list. | 
|  | while (!InstWorkList.empty()) { | 
|  | Value *I = InstWorkList.pop_back_val(); | 
|  |  | 
|  | DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); | 
|  |  | 
|  | // "I" got into the work list because it made the transition from undef to | 
|  | // constant. | 
|  | // | 
|  | // Anything on this worklist that is overdefined need not be visited | 
|  | // since all of its users will have already been marked as overdefined. | 
|  | // Update all of the users of this instruction's value. | 
|  | // | 
|  | if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) | 
|  | for (User *U : I->users()) | 
|  | if (auto *UI = dyn_cast<Instruction>(U)) | 
|  | OperandChangedState(UI); | 
|  | } | 
|  |  | 
|  | // Process the basic block work list. | 
|  | while (!BBWorkList.empty()) { | 
|  | BasicBlock *BB = BBWorkList.back(); | 
|  | BBWorkList.pop_back(); | 
|  |  | 
|  | DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); | 
|  |  | 
|  | // Notify all instructions in this basic block that they are newly | 
|  | // executable. | 
|  | visit(BB); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ResolvedUndefsIn - While solving the dataflow for a function, we assume | 
|  | /// that branches on undef values cannot reach any of their successors. | 
|  | /// However, this is not a safe assumption.  After we solve dataflow, this | 
|  | /// method should be use to handle this.  If this returns true, the solver | 
|  | /// should be rerun. | 
|  | /// | 
|  | /// This method handles this by finding an unresolved branch and marking it one | 
|  | /// of the edges from the block as being feasible, even though the condition | 
|  | /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the | 
|  | /// CFG and only slightly pessimizes the analysis results (by marking one, | 
|  | /// potentially infeasible, edge feasible).  This cannot usefully modify the | 
|  | /// constraints on the condition of the branch, as that would impact other users | 
|  | /// of the value. | 
|  | /// | 
|  | /// This scan also checks for values that use undefs, whose results are actually | 
|  | /// defined.  For example, 'zext i8 undef to i32' should produce all zeros | 
|  | /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, | 
|  | /// even if X isn't defined. | 
|  | bool SCCPSolver::ResolvedUndefsIn(Function &F) { | 
|  | for (BasicBlock &BB : F) { | 
|  | if (!BBExecutable.count(&BB)) | 
|  | continue; | 
|  |  | 
|  | for (Instruction &I : BB) { | 
|  | // Look for instructions which produce undef values. | 
|  | if (I.getType()->isVoidTy()) continue; | 
|  |  | 
|  | if (auto *STy = dyn_cast<StructType>(I.getType())) { | 
|  | // Only a few things that can be structs matter for undef. | 
|  |  | 
|  | // Tracked calls must never be marked overdefined in ResolvedUndefsIn. | 
|  | if (CallSite CS = CallSite(&I)) | 
|  | if (Function *F = CS.getCalledFunction()) | 
|  | if (MRVFunctionsTracked.count(F)) | 
|  | continue; | 
|  |  | 
|  | // extractvalue and insertvalue don't need to be marked; they are | 
|  | // tracked as precisely as their operands. | 
|  | if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) | 
|  | continue; | 
|  |  | 
|  | // Send the results of everything else to overdefined.  We could be | 
|  | // more precise than this but it isn't worth bothering. | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
|  | LatticeVal &LV = getStructValueState(&I, i); | 
|  | if (LV.isUnknown()) | 
|  | markOverdefined(LV, &I); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | LatticeVal &LV = getValueState(&I); | 
|  | if (!LV.isUnknown()) continue; | 
|  |  | 
|  | // extractvalue is safe; check here because the argument is a struct. | 
|  | if (isa<ExtractValueInst>(I)) | 
|  | continue; | 
|  |  | 
|  | // Compute the operand LatticeVals, for convenience below. | 
|  | // Anything taking a struct is conservatively assumed to require | 
|  | // overdefined markings. | 
|  | if (I.getOperand(0)->getType()->isStructTy()) { | 
|  | markOverdefined(&I); | 
|  | return true; | 
|  | } | 
|  | LatticeVal Op0LV = getValueState(I.getOperand(0)); | 
|  | LatticeVal Op1LV; | 
|  | if (I.getNumOperands() == 2) { | 
|  | if (I.getOperand(1)->getType()->isStructTy()) { | 
|  | markOverdefined(&I); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Op1LV = getValueState(I.getOperand(1)); | 
|  | } | 
|  | // If this is an instructions whose result is defined even if the input is | 
|  | // not fully defined, propagate the information. | 
|  | Type *ITy = I.getType(); | 
|  | switch (I.getOpcode()) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Trunc: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::BitCast: | 
|  | break; // Any undef -> undef | 
|  | case Instruction::FSub: | 
|  | case Instruction::FAdd: | 
|  | case Instruction::FMul: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::FRem: | 
|  | // Floating-point binary operation: be conservative. | 
|  | if (Op0LV.isUnknown() && Op1LV.isUnknown()) | 
|  | markForcedConstant(&I, Constant::getNullValue(ITy)); | 
|  | else | 
|  | markOverdefined(&I); | 
|  | return true; | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::PtrToInt: | 
|  | case Instruction::IntToPtr: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::UIToFP: | 
|  | // undef -> 0; some outputs are impossible | 
|  | markForcedConstant(&I, Constant::getNullValue(ITy)); | 
|  | return true; | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | // Both operands undef -> undef | 
|  | if (Op0LV.isUnknown() && Op1LV.isUnknown()) | 
|  | break; | 
|  | // undef * X -> 0.   X could be zero. | 
|  | // undef & X -> 0.   X could be zero. | 
|  | markForcedConstant(&I, Constant::getNullValue(ITy)); | 
|  | return true; | 
|  | case Instruction::Or: | 
|  | // Both operands undef -> undef | 
|  | if (Op0LV.isUnknown() && Op1LV.isUnknown()) | 
|  | break; | 
|  | // undef | X -> -1.   X could be -1. | 
|  | markForcedConstant(&I, Constant::getAllOnesValue(ITy)); | 
|  | return true; | 
|  | case Instruction::Xor: | 
|  | // undef ^ undef -> 0; strictly speaking, this is not strictly | 
|  | // necessary, but we try to be nice to people who expect this | 
|  | // behavior in simple cases | 
|  | if (Op0LV.isUnknown() && Op1LV.isUnknown()) { | 
|  | markForcedConstant(&I, Constant::getNullValue(ITy)); | 
|  | return true; | 
|  | } | 
|  | // undef ^ X -> undef | 
|  | break; | 
|  | case Instruction::SDiv: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SRem: | 
|  | case Instruction::URem: | 
|  | // X / undef -> undef.  No change. | 
|  | // X % undef -> undef.  No change. | 
|  | if (Op1LV.isUnknown()) break; | 
|  |  | 
|  | // X / 0 -> undef.  No change. | 
|  | // X % 0 -> undef.  No change. | 
|  | if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue()) | 
|  | break; | 
|  |  | 
|  | // undef / X -> 0.   X could be maxint. | 
|  | // undef % X -> 0.   X could be 1. | 
|  | markForcedConstant(&I, Constant::getNullValue(ITy)); | 
|  | return true; | 
|  | case Instruction::AShr: | 
|  | // X >>a undef -> undef. | 
|  | if (Op1LV.isUnknown()) break; | 
|  |  | 
|  | // Shifting by the bitwidth or more is undefined. | 
|  | if (Op1LV.isConstant()) { | 
|  | if (auto *ShiftAmt = Op1LV.getConstantInt()) | 
|  | if (ShiftAmt->getLimitedValue() >= | 
|  | ShiftAmt->getType()->getScalarSizeInBits()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // undef >>a X -> 0 | 
|  | markForcedConstant(&I, Constant::getNullValue(ITy)); | 
|  | return true; | 
|  | case Instruction::LShr: | 
|  | case Instruction::Shl: | 
|  | // X << undef -> undef. | 
|  | // X >> undef -> undef. | 
|  | if (Op1LV.isUnknown()) break; | 
|  |  | 
|  | // Shifting by the bitwidth or more is undefined. | 
|  | if (Op1LV.isConstant()) { | 
|  | if (auto *ShiftAmt = Op1LV.getConstantInt()) | 
|  | if (ShiftAmt->getLimitedValue() >= | 
|  | ShiftAmt->getType()->getScalarSizeInBits()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // undef << X -> 0 | 
|  | // undef >> X -> 0 | 
|  | markForcedConstant(&I, Constant::getNullValue(ITy)); | 
|  | return true; | 
|  | case Instruction::Select: | 
|  | Op1LV = getValueState(I.getOperand(1)); | 
|  | // undef ? X : Y  -> X or Y.  There could be commonality between X/Y. | 
|  | if (Op0LV.isUnknown()) { | 
|  | if (!Op1LV.isConstant())  // Pick the constant one if there is any. | 
|  | Op1LV = getValueState(I.getOperand(2)); | 
|  | } else if (Op1LV.isUnknown()) { | 
|  | // c ? undef : undef -> undef.  No change. | 
|  | Op1LV = getValueState(I.getOperand(2)); | 
|  | if (Op1LV.isUnknown()) | 
|  | break; | 
|  | // Otherwise, c ? undef : x -> x. | 
|  | } else { | 
|  | // Leave Op1LV as Operand(1)'s LatticeValue. | 
|  | } | 
|  |  | 
|  | if (Op1LV.isConstant()) | 
|  | markForcedConstant(&I, Op1LV.getConstant()); | 
|  | else | 
|  | markOverdefined(&I); | 
|  | return true; | 
|  | case Instruction::Load: | 
|  | // A load here means one of two things: a load of undef from a global, | 
|  | // a load from an unknown pointer.  Either way, having it return undef | 
|  | // is okay. | 
|  | break; | 
|  | case Instruction::ICmp: | 
|  | // X == undef -> undef.  Other comparisons get more complicated. | 
|  | if (cast<ICmpInst>(&I)->isEquality()) | 
|  | break; | 
|  | markOverdefined(&I); | 
|  | return true; | 
|  | case Instruction::Call: | 
|  | case Instruction::Invoke: | 
|  | // There are two reasons a call can have an undef result | 
|  | // 1. It could be tracked. | 
|  | // 2. It could be constant-foldable. | 
|  | // Because of the way we solve return values, tracked calls must | 
|  | // never be marked overdefined in ResolvedUndefsIn. | 
|  | if (Function *F = CallSite(&I).getCalledFunction()) | 
|  | if (TrackedRetVals.count(F)) | 
|  | break; | 
|  |  | 
|  | // If the call is constant-foldable, we mark it overdefined because | 
|  | // we do not know what return values are valid. | 
|  | markOverdefined(&I); | 
|  | return true; | 
|  | default: | 
|  | // If we don't know what should happen here, conservatively mark it | 
|  | // overdefined. | 
|  | markOverdefined(&I); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check to see if we have a branch or switch on an undefined value.  If so | 
|  | // we force the branch to go one way or the other to make the successor | 
|  | // values live.  It doesn't really matter which way we force it. | 
|  | TerminatorInst *TI = BB.getTerminator(); | 
|  | if (auto *BI = dyn_cast<BranchInst>(TI)) { | 
|  | if (!BI->isConditional()) continue; | 
|  | if (!getValueState(BI->getCondition()).isUnknown()) | 
|  | continue; | 
|  |  | 
|  | // If the input to SCCP is actually branch on undef, fix the undef to | 
|  | // false. | 
|  | if (isa<UndefValue>(BI->getCondition())) { | 
|  | BI->setCondition(ConstantInt::getFalse(BI->getContext())); | 
|  | markEdgeExecutable(&BB, TI->getSuccessor(1)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, it is a branch on a symbolic value which is currently | 
|  | // considered to be undef.  Handle this by forcing the input value to the | 
|  | // branch to false. | 
|  | markForcedConstant(BI->getCondition(), | 
|  | ConstantInt::getFalse(TI->getContext())); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) { | 
|  | // Indirect branch with no successor ?. Its ok to assume it branches | 
|  | // to no target. | 
|  | if (IBR->getNumSuccessors() < 1) | 
|  | continue; | 
|  |  | 
|  | if (!getValueState(IBR->getAddress()).isUnknown()) | 
|  | continue; | 
|  |  | 
|  | // If the input to SCCP is actually branch on undef, fix the undef to | 
|  | // the first successor of the indirect branch. | 
|  | if (isa<UndefValue>(IBR->getAddress())) { | 
|  | IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0))); | 
|  | markEdgeExecutable(&BB, IBR->getSuccessor(0)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, it is a branch on a symbolic value which is currently | 
|  | // considered to be undef.  Handle this by forcing the input value to the | 
|  | // branch to the first successor. | 
|  | markForcedConstant(IBR->getAddress(), | 
|  | BlockAddress::get(IBR->getSuccessor(0))); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (auto *SI = dyn_cast<SwitchInst>(TI)) { | 
|  | if (!SI->getNumCases() || !getValueState(SI->getCondition()).isUnknown()) | 
|  | continue; | 
|  |  | 
|  | // If the input to SCCP is actually switch on undef, fix the undef to | 
|  | // the first constant. | 
|  | if (isa<UndefValue>(SI->getCondition())) { | 
|  | SI->setCondition(SI->case_begin()->getCaseValue()); | 
|  | markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | markForcedConstant(SI->getCondition(), SI->case_begin()->getCaseValue()); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool tryToReplaceWithConstantRange(SCCPSolver &Solver, Value *V) { | 
|  | bool Changed = false; | 
|  |  | 
|  | // Currently we only use range information for integer values. | 
|  | if (!V->getType()->isIntegerTy()) | 
|  | return false; | 
|  |  | 
|  | const ValueLatticeElement &IV = Solver.getLatticeValueFor(V); | 
|  | if (!IV.isConstantRange()) | 
|  | return false; | 
|  |  | 
|  | for (auto UI = V->uses().begin(), E = V->uses().end(); UI != E;) { | 
|  | const Use &U = *UI++; | 
|  | auto *Icmp = dyn_cast<ICmpInst>(U.getUser()); | 
|  | if (!Icmp || !Solver.isBlockExecutable(Icmp->getParent())) | 
|  | continue; | 
|  |  | 
|  | auto getIcmpLatticeValue = [&](Value *Op) { | 
|  | if (auto *C = dyn_cast<Constant>(Op)) | 
|  | return ValueLatticeElement::get(C); | 
|  | return Solver.getLatticeValueFor(Op); | 
|  | }; | 
|  |  | 
|  | ValueLatticeElement A = getIcmpLatticeValue(Icmp->getOperand(0)); | 
|  | ValueLatticeElement B = getIcmpLatticeValue(Icmp->getOperand(1)); | 
|  |  | 
|  | Constant *C = nullptr; | 
|  | if (A.satisfiesPredicate(Icmp->getPredicate(), B)) | 
|  | C = ConstantInt::getTrue(Icmp->getType()); | 
|  | else if (A.satisfiesPredicate(Icmp->getInversePredicate(), B)) | 
|  | C = ConstantInt::getFalse(Icmp->getType()); | 
|  |  | 
|  | if (C) { | 
|  | Icmp->replaceAllUsesWith(C); | 
|  | DEBUG(dbgs() << "Replacing " << *Icmp << " with " << *C | 
|  | << ", because of range information " << A << " " << B | 
|  | << "\n"); | 
|  | Icmp->eraseFromParent(); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) { | 
|  | Constant *Const = nullptr; | 
|  | if (V->getType()->isStructTy()) { | 
|  | std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V); | 
|  | if (llvm::any_of(IVs, | 
|  | [](const LatticeVal &LV) { return LV.isOverdefined(); })) | 
|  | return false; | 
|  | std::vector<Constant *> ConstVals; | 
|  | auto *ST = dyn_cast<StructType>(V->getType()); | 
|  | for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { | 
|  | LatticeVal V = IVs[i]; | 
|  | ConstVals.push_back(V.isConstant() | 
|  | ? V.getConstant() | 
|  | : UndefValue::get(ST->getElementType(i))); | 
|  | } | 
|  | Const = ConstantStruct::get(ST, ConstVals); | 
|  | } else { | 
|  | const ValueLatticeElement &IV = Solver.getLatticeValueFor(V); | 
|  | if (IV.isOverdefined()) | 
|  | return false; | 
|  |  | 
|  | if (IV.isConstantRange()) { | 
|  | if (IV.getConstantRange().isSingleElement()) | 
|  | Const = | 
|  | ConstantInt::get(V->getType(), IV.asConstantInteger().getValue()); | 
|  | else | 
|  | return false; | 
|  | } else | 
|  | Const = | 
|  | IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType()); | 
|  | } | 
|  | assert(Const && "Constant is nullptr here!"); | 
|  | DEBUG(dbgs() << "  Constant: " << *Const << " = " << *V << '\n'); | 
|  |  | 
|  | // Replaces all of the uses of a variable with uses of the constant. | 
|  | V->replaceAllUsesWith(Const); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm, | 
|  | // and return true if the function was modified. | 
|  | static bool runSCCP(Function &F, const DataLayout &DL, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); | 
|  | SCCPSolver Solver(DL, TLI); | 
|  |  | 
|  | // Mark the first block of the function as being executable. | 
|  | Solver.MarkBlockExecutable(&F.front()); | 
|  |  | 
|  | // Mark all arguments to the function as being overdefined. | 
|  | for (Argument &AI : F.args()) | 
|  | Solver.markOverdefined(&AI); | 
|  |  | 
|  | // Solve for constants. | 
|  | bool ResolvedUndefs = true; | 
|  | while (ResolvedUndefs) { | 
|  | Solver.Solve(); | 
|  | DEBUG(dbgs() << "RESOLVING UNDEFs\n"); | 
|  | ResolvedUndefs = Solver.ResolvedUndefsIn(F); | 
|  | } | 
|  |  | 
|  | bool MadeChanges = false; | 
|  |  | 
|  | // If we decided that there are basic blocks that are dead in this function, | 
|  | // delete their contents now.  Note that we cannot actually delete the blocks, | 
|  | // as we cannot modify the CFG of the function. | 
|  |  | 
|  | for (BasicBlock &BB : F) { | 
|  | if (!Solver.isBlockExecutable(&BB)) { | 
|  | DEBUG(dbgs() << "  BasicBlock Dead:" << BB); | 
|  |  | 
|  | ++NumDeadBlocks; | 
|  | NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB); | 
|  |  | 
|  | MadeChanges = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Iterate over all of the instructions in a function, replacing them with | 
|  | // constants if we have found them to be of constant values. | 
|  | for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) { | 
|  | Instruction *Inst = &*BI++; | 
|  | if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst)) | 
|  | continue; | 
|  |  | 
|  | if (tryToReplaceWithConstant(Solver, Inst)) { | 
|  | if (isInstructionTriviallyDead(Inst)) | 
|  | Inst->eraseFromParent(); | 
|  | // Hey, we just changed something! | 
|  | MadeChanges = true; | 
|  | ++NumInstRemoved; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return MadeChanges; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) { | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); | 
|  | if (!runSCCP(F, DL, &TLI)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | auto PA = PreservedAnalyses(); | 
|  | PA.preserve<GlobalsAA>(); | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // | 
|  | /// SCCP Class - This class uses the SCCPSolver to implement a per-function | 
|  | /// Sparse Conditional Constant Propagator. | 
|  | /// | 
|  | class SCCPLegacyPass : public FunctionPass { | 
|  | public: | 
|  | // Pass identification, replacement for typeid | 
|  | static char ID; | 
|  |  | 
|  | SCCPLegacyPass() : FunctionPass(ID) { | 
|  | initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | AU.addPreserved<GlobalsAAWrapperPass>(); | 
|  | } | 
|  |  | 
|  | // runOnFunction - Run the Sparse Conditional Constant Propagation | 
|  | // algorithm, and return true if the function was modified. | 
|  | bool runOnFunction(Function &F) override { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | const TargetLibraryInfo *TLI = | 
|  | &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); | 
|  | return runSCCP(F, DL, TLI); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char SCCPLegacyPass::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp", | 
|  | "Sparse Conditional Constant Propagation", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(SCCPLegacyPass, "sccp", | 
|  | "Sparse Conditional Constant Propagation", false, false) | 
|  |  | 
|  | // createSCCPPass - This is the public interface to this file. | 
|  | FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); } | 
|  |  | 
|  | static void findReturnsToZap(Function &F, | 
|  | SmallVector<ReturnInst *, 8> &ReturnsToZap, | 
|  | SCCPSolver &Solver) { | 
|  | // We can only do this if we know that nothing else can call the function. | 
|  | if (!Solver.isArgumentTrackedFunction(&F)) | 
|  | return; | 
|  |  | 
|  | for (BasicBlock &BB : F) | 
|  | if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator())) | 
|  | if (!isa<UndefValue>(RI->getOperand(0))) | 
|  | ReturnsToZap.push_back(RI); | 
|  | } | 
|  |  | 
|  | static bool runIPSCCP(Module &M, const DataLayout &DL, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | SCCPSolver Solver(DL, TLI); | 
|  |  | 
|  | // Loop over all functions, marking arguments to those with their addresses | 
|  | // taken or that are external as overdefined. | 
|  | for (Function &F : M) { | 
|  | if (F.isDeclaration()) | 
|  | continue; | 
|  |  | 
|  | // Determine if we can track the function's return values. If so, add the | 
|  | // function to the solver's set of return-tracked functions. | 
|  | if (canTrackReturnsInterprocedurally(&F)) | 
|  | Solver.AddTrackedFunction(&F); | 
|  |  | 
|  | // Determine if we can track the function's arguments. If so, add the | 
|  | // function to the solver's set of argument-tracked functions. | 
|  | if (canTrackArgumentsInterprocedurally(&F)) { | 
|  | Solver.AddArgumentTrackedFunction(&F); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Assume the function is called. | 
|  | Solver.MarkBlockExecutable(&F.front()); | 
|  |  | 
|  | // Assume nothing about the incoming arguments. | 
|  | for (Argument &AI : F.args()) | 
|  | Solver.markOverdefined(&AI); | 
|  | } | 
|  |  | 
|  | // Determine if we can track any of the module's global variables. If so, add | 
|  | // the global variables we can track to the solver's set of tracked global | 
|  | // variables. | 
|  | for (GlobalVariable &G : M.globals()) { | 
|  | G.removeDeadConstantUsers(); | 
|  | if (canTrackGlobalVariableInterprocedurally(&G)) | 
|  | Solver.TrackValueOfGlobalVariable(&G); | 
|  | } | 
|  |  | 
|  | // Solve for constants. | 
|  | bool ResolvedUndefs = true; | 
|  | while (ResolvedUndefs) { | 
|  | Solver.Solve(); | 
|  |  | 
|  | DEBUG(dbgs() << "RESOLVING UNDEFS\n"); | 
|  | ResolvedUndefs = false; | 
|  | for (Function &F : M) | 
|  | ResolvedUndefs |= Solver.ResolvedUndefsIn(F); | 
|  | } | 
|  |  | 
|  | bool MadeChanges = false; | 
|  |  | 
|  | // Iterate over all of the instructions in the module, replacing them with | 
|  | // constants if we have found them to be of constant values. | 
|  | SmallVector<BasicBlock*, 512> BlocksToErase; | 
|  |  | 
|  | for (Function &F : M) { | 
|  | if (F.isDeclaration()) | 
|  | continue; | 
|  |  | 
|  | if (Solver.isBlockExecutable(&F.front())) | 
|  | for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; | 
|  | ++AI) { | 
|  | if (!AI->use_empty() && tryToReplaceWithConstant(Solver, &*AI)) { | 
|  | ++IPNumArgsElimed; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!AI->use_empty() && tryToReplaceWithConstantRange(Solver, &*AI)) | 
|  | ++IPNumRangeInfoUsed; | 
|  | } | 
|  |  | 
|  | for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { | 
|  | if (!Solver.isBlockExecutable(&*BB)) { | 
|  | DEBUG(dbgs() << "  BasicBlock Dead:" << *BB); | 
|  |  | 
|  | ++NumDeadBlocks; | 
|  | NumInstRemoved += | 
|  | changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false); | 
|  |  | 
|  | MadeChanges = true; | 
|  |  | 
|  | if (&*BB != &F.front()) | 
|  | BlocksToErase.push_back(&*BB); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { | 
|  | Instruction *Inst = &*BI++; | 
|  | if (Inst->getType()->isVoidTy()) | 
|  | continue; | 
|  | if (tryToReplaceWithConstant(Solver, Inst)) { | 
|  | if (Inst->isSafeToRemove()) | 
|  | Inst->eraseFromParent(); | 
|  | // Hey, we just changed something! | 
|  | MadeChanges = true; | 
|  | ++IPNumInstRemoved; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that all instructions in the function are constant folded, erase dead | 
|  | // blocks, because we can now use ConstantFoldTerminator to get rid of | 
|  | // in-edges. | 
|  | for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { | 
|  | // If there are any PHI nodes in this successor, drop entries for BB now. | 
|  | BasicBlock *DeadBB = BlocksToErase[i]; | 
|  | for (Value::user_iterator UI = DeadBB->user_begin(), | 
|  | UE = DeadBB->user_end(); | 
|  | UI != UE;) { | 
|  | // Grab the user and then increment the iterator early, as the user | 
|  | // will be deleted. Step past all adjacent uses from the same user. | 
|  | auto *I = dyn_cast<Instruction>(*UI); | 
|  | do { ++UI; } while (UI != UE && *UI == I); | 
|  |  | 
|  | // Ignore blockaddress users; BasicBlock's dtor will handle them. | 
|  | if (!I) continue; | 
|  |  | 
|  | bool Folded = ConstantFoldTerminator(I->getParent()); | 
|  | assert(Folded && | 
|  | "Expect TermInst on constantint or blockaddress to be folded"); | 
|  | (void) Folded; | 
|  | } | 
|  |  | 
|  | // Finally, delete the basic block. | 
|  | F.getBasicBlockList().erase(DeadBB); | 
|  | } | 
|  | BlocksToErase.clear(); | 
|  | } | 
|  |  | 
|  | // If we inferred constant or undef return values for a function, we replaced | 
|  | // all call uses with the inferred value.  This means we don't need to bother | 
|  | // actually returning anything from the function.  Replace all return | 
|  | // instructions with return undef. | 
|  | // | 
|  | // Do this in two stages: first identify the functions we should process, then | 
|  | // actually zap their returns.  This is important because we can only do this | 
|  | // if the address of the function isn't taken.  In cases where a return is the | 
|  | // last use of a function, the order of processing functions would affect | 
|  | // whether other functions are optimizable. | 
|  | SmallVector<ReturnInst*, 8> ReturnsToZap; | 
|  |  | 
|  | const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); | 
|  | for (const auto &I : RV) { | 
|  | Function *F = I.first; | 
|  | if (I.second.isOverdefined() || F->getReturnType()->isVoidTy()) | 
|  | continue; | 
|  | findReturnsToZap(*F, ReturnsToZap, Solver); | 
|  | } | 
|  |  | 
|  | for (const auto &F : Solver.getMRVFunctionsTracked()) { | 
|  | assert(F->getReturnType()->isStructTy() && | 
|  | "The return type should be a struct"); | 
|  | StructType *STy = cast<StructType>(F->getReturnType()); | 
|  | if (Solver.isStructLatticeConstant(F, STy)) | 
|  | findReturnsToZap(*F, ReturnsToZap, Solver); | 
|  | } | 
|  |  | 
|  | // Zap all returns which we've identified as zap to change. | 
|  | for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { | 
|  | Function *F = ReturnsToZap[i]->getParent()->getParent(); | 
|  | ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); | 
|  | } | 
|  |  | 
|  | // If we inferred constant or undef values for globals variables, we can | 
|  | // delete the global and any stores that remain to it. | 
|  | const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); | 
|  | for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), | 
|  | E = TG.end(); I != E; ++I) { | 
|  | GlobalVariable *GV = I->first; | 
|  | assert(!I->second.isOverdefined() && | 
|  | "Overdefined values should have been taken out of the map!"); | 
|  | DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n"); | 
|  | while (!GV->use_empty()) { | 
|  | StoreInst *SI = cast<StoreInst>(GV->user_back()); | 
|  | SI->eraseFromParent(); | 
|  | } | 
|  | M.getGlobalList().erase(GV); | 
|  | ++IPNumGlobalConst; | 
|  | } | 
|  |  | 
|  | return MadeChanges; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses IPSCCPPass::run(Module &M, ModuleAnalysisManager &AM) { | 
|  | const DataLayout &DL = M.getDataLayout(); | 
|  | auto &TLI = AM.getResult<TargetLibraryAnalysis>(M); | 
|  | if (!runIPSCCP(M, DL, &TLI)) | 
|  | return PreservedAnalyses::all(); | 
|  | return PreservedAnalyses::none(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // | 
|  | /// IPSCCP Class - This class implements interprocedural Sparse Conditional | 
|  | /// Constant Propagation. | 
|  | /// | 
|  | class IPSCCPLegacyPass : public ModulePass { | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | IPSCCPLegacyPass() : ModulePass(ID) { | 
|  | initializeIPSCCPLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnModule(Module &M) override { | 
|  | if (skipModule(M)) | 
|  | return false; | 
|  | const DataLayout &DL = M.getDataLayout(); | 
|  | const TargetLibraryInfo *TLI = | 
|  | &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); | 
|  | return runIPSCCP(M, DL, TLI); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char IPSCCPLegacyPass::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(IPSCCPLegacyPass, "ipsccp", | 
|  | "Interprocedural Sparse Conditional Constant Propagation", | 
|  | false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(IPSCCPLegacyPass, "ipsccp", | 
|  | "Interprocedural Sparse Conditional Constant Propagation", | 
|  | false, false) | 
|  |  | 
|  | // createIPSCCPPass - This is the public interface to this file. | 
|  | ModulePass *llvm::createIPSCCPPass() { return new IPSCCPLegacyPass(); } |