|  | //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements semantic analysis for declarations. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/Sema/SemaInternal.h" | 
|  | #include "clang/Sema/Initialization.h" | 
|  | #include "clang/Sema/Lookup.h" | 
|  | #include "clang/Sema/CXXFieldCollector.h" | 
|  | #include "clang/Sema/Scope.h" | 
|  | #include "clang/Sema/ScopeInfo.h" | 
|  | #include "TypeLocBuilder.h" | 
|  | #include "clang/AST/APValue.h" | 
|  | #include "clang/AST/ASTConsumer.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/CXXInheritance.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/EvaluatedExprVisitor.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/StmtCXX.h" | 
|  | #include "clang/AST/CharUnits.h" | 
|  | #include "clang/Sema/DeclSpec.h" | 
|  | #include "clang/Sema/ParsedTemplate.h" | 
|  | #include "clang/Parse/ParseDiagnostic.h" | 
|  | #include "clang/Basic/PartialDiagnostic.h" | 
|  | #include "clang/Basic/SourceManager.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's) | 
|  | #include "clang/Lex/Preprocessor.h" | 
|  | #include "clang/Lex/HeaderSearch.h" | 
|  | #include "clang/Lex/ModuleLoader.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include <algorithm> | 
|  | #include <cstring> | 
|  | #include <functional> | 
|  | using namespace clang; | 
|  | using namespace sema; | 
|  |  | 
|  | Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) { | 
|  | if (OwnedType) { | 
|  | Decl *Group[2] = { OwnedType, Ptr }; | 
|  | return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2)); | 
|  | } | 
|  |  | 
|  | return DeclGroupPtrTy::make(DeclGroupRef(Ptr)); | 
|  | } | 
|  |  | 
|  | /// \brief If the identifier refers to a type name within this scope, | 
|  | /// return the declaration of that type. | 
|  | /// | 
|  | /// This routine performs ordinary name lookup of the identifier II | 
|  | /// within the given scope, with optional C++ scope specifier SS, to | 
|  | /// determine whether the name refers to a type. If so, returns an | 
|  | /// opaque pointer (actually a QualType) corresponding to that | 
|  | /// type. Otherwise, returns NULL. | 
|  | /// | 
|  | /// If name lookup results in an ambiguity, this routine will complain | 
|  | /// and then return NULL. | 
|  | ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc, | 
|  | Scope *S, CXXScopeSpec *SS, | 
|  | bool isClassName, bool HasTrailingDot, | 
|  | ParsedType ObjectTypePtr, | 
|  | bool WantNontrivialTypeSourceInfo) { | 
|  | // Determine where we will perform name lookup. | 
|  | DeclContext *LookupCtx = 0; | 
|  | if (ObjectTypePtr) { | 
|  | QualType ObjectType = ObjectTypePtr.get(); | 
|  | if (ObjectType->isRecordType()) | 
|  | LookupCtx = computeDeclContext(ObjectType); | 
|  | } else if (SS && SS->isNotEmpty()) { | 
|  | LookupCtx = computeDeclContext(*SS, false); | 
|  |  | 
|  | if (!LookupCtx) { | 
|  | if (isDependentScopeSpecifier(*SS)) { | 
|  | // C++ [temp.res]p3: | 
|  | //   A qualified-id that refers to a type and in which the | 
|  | //   nested-name-specifier depends on a template-parameter (14.6.2) | 
|  | //   shall be prefixed by the keyword typename to indicate that the | 
|  | //   qualified-id denotes a type, forming an | 
|  | //   elaborated-type-specifier (7.1.5.3). | 
|  | // | 
|  | // We therefore do not perform any name lookup if the result would | 
|  | // refer to a member of an unknown specialization. | 
|  | if (!isClassName) | 
|  | return ParsedType(); | 
|  |  | 
|  | // We know from the grammar that this name refers to a type, | 
|  | // so build a dependent node to describe the type. | 
|  | if (WantNontrivialTypeSourceInfo) | 
|  | return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get(); | 
|  |  | 
|  | NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context); | 
|  | QualType T = | 
|  | CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc, | 
|  | II, NameLoc); | 
|  |  | 
|  | return ParsedType::make(T); | 
|  | } | 
|  |  | 
|  | return ParsedType(); | 
|  | } | 
|  |  | 
|  | if (!LookupCtx->isDependentContext() && | 
|  | RequireCompleteDeclContext(*SS, LookupCtx)) | 
|  | return ParsedType(); | 
|  | } | 
|  |  | 
|  | // FIXME: LookupNestedNameSpecifierName isn't the right kind of | 
|  | // lookup for class-names. | 
|  | LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName : | 
|  | LookupOrdinaryName; | 
|  | LookupResult Result(*this, &II, NameLoc, Kind); | 
|  | if (LookupCtx) { | 
|  | // Perform "qualified" name lookup into the declaration context we | 
|  | // computed, which is either the type of the base of a member access | 
|  | // expression or the declaration context associated with a prior | 
|  | // nested-name-specifier. | 
|  | LookupQualifiedName(Result, LookupCtx); | 
|  |  | 
|  | if (ObjectTypePtr && Result.empty()) { | 
|  | // C++ [basic.lookup.classref]p3: | 
|  | //   If the unqualified-id is ~type-name, the type-name is looked up | 
|  | //   in the context of the entire postfix-expression. If the type T of | 
|  | //   the object expression is of a class type C, the type-name is also | 
|  | //   looked up in the scope of class C. At least one of the lookups shall | 
|  | //   find a name that refers to (possibly cv-qualified) T. | 
|  | LookupName(Result, S); | 
|  | } | 
|  | } else { | 
|  | // Perform unqualified name lookup. | 
|  | LookupName(Result, S); | 
|  | } | 
|  |  | 
|  | NamedDecl *IIDecl = 0; | 
|  | switch (Result.getResultKind()) { | 
|  | case LookupResult::NotFound: | 
|  | case LookupResult::NotFoundInCurrentInstantiation: | 
|  | case LookupResult::FoundOverloaded: | 
|  | case LookupResult::FoundUnresolvedValue: | 
|  | Result.suppressDiagnostics(); | 
|  | return ParsedType(); | 
|  |  | 
|  | case LookupResult::Ambiguous: | 
|  | // Recover from type-hiding ambiguities by hiding the type.  We'll | 
|  | // do the lookup again when looking for an object, and we can | 
|  | // diagnose the error then.  If we don't do this, then the error | 
|  | // about hiding the type will be immediately followed by an error | 
|  | // that only makes sense if the identifier was treated like a type. | 
|  | if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) { | 
|  | Result.suppressDiagnostics(); | 
|  | return ParsedType(); | 
|  | } | 
|  |  | 
|  | // Look to see if we have a type anywhere in the list of results. | 
|  | for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); | 
|  | Res != ResEnd; ++Res) { | 
|  | if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) { | 
|  | if (!IIDecl || | 
|  | (*Res)->getLocation().getRawEncoding() < | 
|  | IIDecl->getLocation().getRawEncoding()) | 
|  | IIDecl = *Res; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!IIDecl) { | 
|  | // None of the entities we found is a type, so there is no way | 
|  | // to even assume that the result is a type. In this case, don't | 
|  | // complain about the ambiguity. The parser will either try to | 
|  | // perform this lookup again (e.g., as an object name), which | 
|  | // will produce the ambiguity, or will complain that it expected | 
|  | // a type name. | 
|  | Result.suppressDiagnostics(); | 
|  | return ParsedType(); | 
|  | } | 
|  |  | 
|  | // We found a type within the ambiguous lookup; diagnose the | 
|  | // ambiguity and then return that type. This might be the right | 
|  | // answer, or it might not be, but it suppresses any attempt to | 
|  | // perform the name lookup again. | 
|  | break; | 
|  |  | 
|  | case LookupResult::Found: | 
|  | IIDecl = Result.getFoundDecl(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(IIDecl && "Didn't find decl"); | 
|  |  | 
|  | QualType T; | 
|  | if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) { | 
|  | DiagnoseUseOfDecl(IIDecl, NameLoc); | 
|  |  | 
|  | if (T.isNull()) | 
|  | T = Context.getTypeDeclType(TD); | 
|  |  | 
|  | if (SS && SS->isNotEmpty()) { | 
|  | if (WantNontrivialTypeSourceInfo) { | 
|  | // Construct a type with type-source information. | 
|  | TypeLocBuilder Builder; | 
|  | Builder.pushTypeSpec(T).setNameLoc(NameLoc); | 
|  |  | 
|  | T = getElaboratedType(ETK_None, *SS, T); | 
|  | ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); | 
|  | ElabTL.setKeywordLoc(SourceLocation()); | 
|  | ElabTL.setQualifierLoc(SS->getWithLocInContext(Context)); | 
|  | return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); | 
|  | } else { | 
|  | T = getElaboratedType(ETK_None, *SS, T); | 
|  | } | 
|  | } | 
|  | } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) { | 
|  | (void)DiagnoseUseOfDecl(IDecl, NameLoc); | 
|  | if (!HasTrailingDot) | 
|  | T = Context.getObjCInterfaceType(IDecl); | 
|  | } | 
|  |  | 
|  | if (T.isNull()) { | 
|  | // If it's not plausibly a type, suppress diagnostics. | 
|  | Result.suppressDiagnostics(); | 
|  | return ParsedType(); | 
|  | } | 
|  | return ParsedType::make(T); | 
|  | } | 
|  |  | 
|  | /// isTagName() - This method is called *for error recovery purposes only* | 
|  | /// to determine if the specified name is a valid tag name ("struct foo").  If | 
|  | /// so, this returns the TST for the tag corresponding to it (TST_enum, | 
|  | /// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C | 
|  | /// where the user forgot to specify the tag. | 
|  | DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { | 
|  | // Do a tag name lookup in this scope. | 
|  | LookupResult R(*this, &II, SourceLocation(), LookupTagName); | 
|  | LookupName(R, S, false); | 
|  | R.suppressDiagnostics(); | 
|  | if (R.getResultKind() == LookupResult::Found) | 
|  | if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { | 
|  | switch (TD->getTagKind()) { | 
|  | default:         return DeclSpec::TST_unspecified; | 
|  | case TTK_Struct: return DeclSpec::TST_struct; | 
|  | case TTK_Union:  return DeclSpec::TST_union; | 
|  | case TTK_Class:  return DeclSpec::TST_class; | 
|  | case TTK_Enum:   return DeclSpec::TST_enum; | 
|  | } | 
|  | } | 
|  |  | 
|  | return DeclSpec::TST_unspecified; | 
|  | } | 
|  |  | 
|  | /// isMicrosoftMissingTypename - In Microsoft mode, within class scope, | 
|  | /// if a CXXScopeSpec's type is equal to the type of one of the base classes | 
|  | /// then downgrade the missing typename error to a warning. | 
|  | /// This is needed for MSVC compatibility; Example: | 
|  | /// @code | 
|  | /// template<class T> class A { | 
|  | /// public: | 
|  | ///   typedef int TYPE; | 
|  | /// }; | 
|  | /// template<class T> class B : public A<T> { | 
|  | /// public: | 
|  | ///   A<T>::TYPE a; // no typename required because A<T> is a base class. | 
|  | /// }; | 
|  | /// @endcode | 
|  | bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) { | 
|  | if (CurContext->isRecord()) { | 
|  | const Type *Ty = SS->getScopeRep()->getAsType(); | 
|  |  | 
|  | CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext); | 
|  | for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(), | 
|  | BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) | 
|  | if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType())) | 
|  | return true; | 
|  | } | 
|  | return CurContext->isFunctionOrMethod(); | 
|  | } | 
|  |  | 
|  | bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II, | 
|  | SourceLocation IILoc, | 
|  | Scope *S, | 
|  | CXXScopeSpec *SS, | 
|  | ParsedType &SuggestedType) { | 
|  | // We don't have anything to suggest (yet). | 
|  | SuggestedType = ParsedType(); | 
|  |  | 
|  | // There may have been a typo in the name of the type. Look up typo | 
|  | // results, in case we have something that we can suggest. | 
|  | if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc), | 
|  | LookupOrdinaryName, S, SS, NULL, | 
|  | false, CTC_Type)) { | 
|  | std::string CorrectedStr(Corrected.getAsString(getLangOptions())); | 
|  | std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions())); | 
|  |  | 
|  | if (Corrected.isKeyword()) { | 
|  | // We corrected to a keyword. | 
|  | // FIXME: Actually recover with the keyword we suggest, and emit a fix-it. | 
|  | Diag(IILoc, diag::err_unknown_typename_suggest) | 
|  | << &II << CorrectedQuotedStr; | 
|  | return true; | 
|  | } else { | 
|  | NamedDecl *Result = Corrected.getCorrectionDecl(); | 
|  | if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) && | 
|  | !Result->isInvalidDecl()) { | 
|  | // We found a similarly-named type or interface; suggest that. | 
|  | if (!SS || !SS->isSet()) | 
|  | Diag(IILoc, diag::err_unknown_typename_suggest) | 
|  | << &II << CorrectedQuotedStr | 
|  | << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr); | 
|  | else if (DeclContext *DC = computeDeclContext(*SS, false)) | 
|  | Diag(IILoc, diag::err_unknown_nested_typename_suggest) | 
|  | << &II << DC << CorrectedQuotedStr << SS->getRange() | 
|  | << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr); | 
|  | else | 
|  | llvm_unreachable("could not have corrected a typo here"); | 
|  |  | 
|  | Diag(Result->getLocation(), diag::note_previous_decl) | 
|  | << CorrectedQuotedStr; | 
|  |  | 
|  | SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS, | 
|  | false, false, ParsedType(), | 
|  | /*NonTrivialTypeSourceInfo=*/true); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | // See if II is a class template that the user forgot to pass arguments to. | 
|  | UnqualifiedId Name; | 
|  | Name.setIdentifier(&II, IILoc); | 
|  | CXXScopeSpec EmptySS; | 
|  | TemplateTy TemplateResult; | 
|  | bool MemberOfUnknownSpecialization; | 
|  | if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, | 
|  | Name, ParsedType(), true, TemplateResult, | 
|  | MemberOfUnknownSpecialization) == TNK_Type_template) { | 
|  | TemplateName TplName = TemplateResult.getAsVal<TemplateName>(); | 
|  | Diag(IILoc, diag::err_template_missing_args) << TplName; | 
|  | if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) { | 
|  | Diag(TplDecl->getLocation(), diag::note_template_decl_here) | 
|  | << TplDecl->getTemplateParameters()->getSourceRange(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: Should we move the logic that tries to recover from a missing tag | 
|  | // (struct, union, enum) from Parser::ParseImplicitInt here, instead? | 
|  |  | 
|  | if (!SS || (!SS->isSet() && !SS->isInvalid())) | 
|  | Diag(IILoc, diag::err_unknown_typename) << &II; | 
|  | else if (DeclContext *DC = computeDeclContext(*SS, false)) | 
|  | Diag(IILoc, diag::err_typename_nested_not_found) | 
|  | << &II << DC << SS->getRange(); | 
|  | else if (isDependentScopeSpecifier(*SS)) { | 
|  | unsigned DiagID = diag::err_typename_missing; | 
|  | if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS)) | 
|  | DiagID = diag::warn_typename_missing; | 
|  |  | 
|  | Diag(SS->getRange().getBegin(), DiagID) | 
|  | << (NestedNameSpecifier *)SS->getScopeRep() << II.getName() | 
|  | << SourceRange(SS->getRange().getBegin(), IILoc) | 
|  | << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename "); | 
|  | SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get(); | 
|  | } else { | 
|  | assert(SS && SS->isInvalid() && | 
|  | "Invalid scope specifier has already been diagnosed"); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether the given result set contains either a type name | 
|  | /// or | 
|  | static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) { | 
|  | bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus && | 
|  | NextToken.is(tok::less); | 
|  |  | 
|  | for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { | 
|  | if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I)) | 
|  | return true; | 
|  |  | 
|  | if (CheckTemplate && isa<TemplateDecl>(*I)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Sema::NameClassification Sema::ClassifyName(Scope *S, | 
|  | CXXScopeSpec &SS, | 
|  | IdentifierInfo *&Name, | 
|  | SourceLocation NameLoc, | 
|  | const Token &NextToken) { | 
|  | DeclarationNameInfo NameInfo(Name, NameLoc); | 
|  | ObjCMethodDecl *CurMethod = getCurMethodDecl(); | 
|  |  | 
|  | if (NextToken.is(tok::coloncolon)) { | 
|  | BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(), | 
|  | QualType(), false, SS, 0, false); | 
|  |  | 
|  | } | 
|  |  | 
|  | LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); | 
|  | LookupParsedName(Result, S, &SS, !CurMethod); | 
|  |  | 
|  | // Perform lookup for Objective-C instance variables (including automatically | 
|  | // synthesized instance variables), if we're in an Objective-C method. | 
|  | // FIXME: This lookup really, really needs to be folded in to the normal | 
|  | // unqualified lookup mechanism. | 
|  | if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) { | 
|  | ExprResult E = LookupInObjCMethod(Result, S, Name, true); | 
|  | if (E.get() || E.isInvalid()) | 
|  | return E; | 
|  | } | 
|  |  | 
|  | bool SecondTry = false; | 
|  | bool IsFilteredTemplateName = false; | 
|  |  | 
|  | Corrected: | 
|  | switch (Result.getResultKind()) { | 
|  | case LookupResult::NotFound: | 
|  | // If an unqualified-id is followed by a '(', then we have a function | 
|  | // call. | 
|  | if (!SS.isSet() && NextToken.is(tok::l_paren)) { | 
|  | // In C++, this is an ADL-only call. | 
|  | // FIXME: Reference? | 
|  | if (getLangOptions().CPlusPlus) | 
|  | return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true); | 
|  |  | 
|  | // C90 6.3.2.2: | 
|  | //   If the expression that precedes the parenthesized argument list in a | 
|  | //   function call consists solely of an identifier, and if no | 
|  | //   declaration is visible for this identifier, the identifier is | 
|  | //   implicitly declared exactly as if, in the innermost block containing | 
|  | //   the function call, the declaration | 
|  | // | 
|  | //     extern int identifier (); | 
|  | // | 
|  | //   appeared. | 
|  | // | 
|  | // We also allow this in C99 as an extension. | 
|  | if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) { | 
|  | Result.addDecl(D); | 
|  | Result.resolveKind(); | 
|  | return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false); | 
|  | } | 
|  | } | 
|  |  | 
|  | // In C, we first see whether there is a tag type by the same name, in | 
|  | // which case it's likely that the user just forget to write "enum", | 
|  | // "struct", or "union". | 
|  | if (!getLangOptions().CPlusPlus && !SecondTry) { | 
|  | Result.clear(LookupTagName); | 
|  | LookupParsedName(Result, S, &SS); | 
|  | if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) { | 
|  | const char *TagName = 0; | 
|  | const char *FixItTagName = 0; | 
|  | switch (Tag->getTagKind()) { | 
|  | case TTK_Class: | 
|  | TagName = "class"; | 
|  | FixItTagName = "class "; | 
|  | break; | 
|  |  | 
|  | case TTK_Enum: | 
|  | TagName = "enum"; | 
|  | FixItTagName = "enum "; | 
|  | break; | 
|  |  | 
|  | case TTK_Struct: | 
|  | TagName = "struct"; | 
|  | FixItTagName = "struct "; | 
|  | break; | 
|  |  | 
|  | case TTK_Union: | 
|  | TagName = "union"; | 
|  | FixItTagName = "union "; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Diag(NameLoc, diag::err_use_of_tag_name_without_tag) | 
|  | << Name << TagName << getLangOptions().CPlusPlus | 
|  | << FixItHint::CreateInsertion(NameLoc, FixItTagName); | 
|  | break; | 
|  | } | 
|  |  | 
|  | Result.clear(LookupOrdinaryName); | 
|  | } | 
|  |  | 
|  | // Perform typo correction to determine if there is another name that is | 
|  | // close to this name. | 
|  | if (!SecondTry) { | 
|  | SecondTry = true; | 
|  | if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(), | 
|  | Result.getLookupKind(), S, &SS)) { | 
|  | unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest; | 
|  | unsigned QualifiedDiag = diag::err_no_member_suggest; | 
|  | std::string CorrectedStr(Corrected.getAsString(getLangOptions())); | 
|  | std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions())); | 
|  |  | 
|  | NamedDecl *FirstDecl = Corrected.getCorrectionDecl(); | 
|  | NamedDecl *UnderlyingFirstDecl | 
|  | = FirstDecl? FirstDecl->getUnderlyingDecl() : 0; | 
|  | if (getLangOptions().CPlusPlus && NextToken.is(tok::less) && | 
|  | UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) { | 
|  | UnqualifiedDiag = diag::err_no_template_suggest; | 
|  | QualifiedDiag = diag::err_no_member_template_suggest; | 
|  | } else if (UnderlyingFirstDecl && | 
|  | (isa<TypeDecl>(UnderlyingFirstDecl) || | 
|  | isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) || | 
|  | isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) { | 
|  | UnqualifiedDiag = diag::err_unknown_typename_suggest; | 
|  | QualifiedDiag = diag::err_unknown_nested_typename_suggest; | 
|  | } | 
|  |  | 
|  | if (SS.isEmpty()) | 
|  | Diag(NameLoc, UnqualifiedDiag) | 
|  | << Name << CorrectedQuotedStr | 
|  | << FixItHint::CreateReplacement(NameLoc, CorrectedStr); | 
|  | else | 
|  | Diag(NameLoc, QualifiedDiag) | 
|  | << Name << computeDeclContext(SS, false) << CorrectedQuotedStr | 
|  | << SS.getRange() | 
|  | << FixItHint::CreateReplacement(NameLoc, CorrectedStr); | 
|  |  | 
|  | // Update the name, so that the caller has the new name. | 
|  | Name = Corrected.getCorrectionAsIdentifierInfo(); | 
|  |  | 
|  | // Also update the LookupResult... | 
|  | // FIXME: This should probably go away at some point | 
|  | Result.clear(); | 
|  | Result.setLookupName(Corrected.getCorrection()); | 
|  | if (FirstDecl) Result.addDecl(FirstDecl); | 
|  |  | 
|  | // Typo correction corrected to a keyword. | 
|  | if (Corrected.isKeyword()) | 
|  | return Corrected.getCorrectionAsIdentifierInfo(); | 
|  |  | 
|  | if (FirstDecl) | 
|  | Diag(FirstDecl->getLocation(), diag::note_previous_decl) | 
|  | << CorrectedQuotedStr; | 
|  |  | 
|  | // If we found an Objective-C instance variable, let | 
|  | // LookupInObjCMethod build the appropriate expression to | 
|  | // reference the ivar. | 
|  | // FIXME: This is a gross hack. | 
|  | if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) { | 
|  | Result.clear(); | 
|  | ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier())); | 
|  | return move(E); | 
|  | } | 
|  |  | 
|  | goto Corrected; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We failed to correct; just fall through and let the parser deal with it. | 
|  | Result.suppressDiagnostics(); | 
|  | return NameClassification::Unknown(); | 
|  |  | 
|  | case LookupResult::NotFoundInCurrentInstantiation: | 
|  | // We performed name lookup into the current instantiation, and there were | 
|  | // dependent bases, so we treat this result the same way as any other | 
|  | // dependent nested-name-specifier. | 
|  |  | 
|  | // C++ [temp.res]p2: | 
|  | //   A name used in a template declaration or definition and that is | 
|  | //   dependent on a template-parameter is assumed not to name a type | 
|  | //   unless the applicable name lookup finds a type name or the name is | 
|  | //   qualified by the keyword typename. | 
|  | // | 
|  | // FIXME: If the next token is '<', we might want to ask the parser to | 
|  | // perform some heroics to see if we actually have a | 
|  | // template-argument-list, which would indicate a missing 'template' | 
|  | // keyword here. | 
|  | return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0); | 
|  |  | 
|  | case LookupResult::Found: | 
|  | case LookupResult::FoundOverloaded: | 
|  | case LookupResult::FoundUnresolvedValue: | 
|  | break; | 
|  |  | 
|  | case LookupResult::Ambiguous: | 
|  | if (getLangOptions().CPlusPlus && NextToken.is(tok::less) && | 
|  | hasAnyAcceptableTemplateNames(Result)) { | 
|  | // C++ [temp.local]p3: | 
|  | //   A lookup that finds an injected-class-name (10.2) can result in an | 
|  | //   ambiguity in certain cases (for example, if it is found in more than | 
|  | //   one base class). If all of the injected-class-names that are found | 
|  | //   refer to specializations of the same class template, and if the name | 
|  | //   is followed by a template-argument-list, the reference refers to the | 
|  | //   class template itself and not a specialization thereof, and is not | 
|  | //   ambiguous. | 
|  | // | 
|  | // This filtering can make an ambiguous result into an unambiguous one, | 
|  | // so try again after filtering out template names. | 
|  | FilterAcceptableTemplateNames(Result); | 
|  | if (!Result.isAmbiguous()) { | 
|  | IsFilteredTemplateName = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Diagnose the ambiguity and return an error. | 
|  | return NameClassification::Error(); | 
|  | } | 
|  |  | 
|  | if (getLangOptions().CPlusPlus && NextToken.is(tok::less) && | 
|  | (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) { | 
|  | // C++ [temp.names]p3: | 
|  | //   After name lookup (3.4) finds that a name is a template-name or that | 
|  | //   an operator-function-id or a literal- operator-id refers to a set of | 
|  | //   overloaded functions any member of which is a function template if | 
|  | //   this is followed by a <, the < is always taken as the delimiter of a | 
|  | //   template-argument-list and never as the less-than operator. | 
|  | if (!IsFilteredTemplateName) | 
|  | FilterAcceptableTemplateNames(Result); | 
|  |  | 
|  | if (!Result.empty()) { | 
|  | bool IsFunctionTemplate; | 
|  | TemplateName Template; | 
|  | if (Result.end() - Result.begin() > 1) { | 
|  | IsFunctionTemplate = true; | 
|  | Template = Context.getOverloadedTemplateName(Result.begin(), | 
|  | Result.end()); | 
|  | } else { | 
|  | TemplateDecl *TD | 
|  | = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl()); | 
|  | IsFunctionTemplate = isa<FunctionTemplateDecl>(TD); | 
|  |  | 
|  | if (SS.isSet() && !SS.isInvalid()) | 
|  | Template = Context.getQualifiedTemplateName(SS.getScopeRep(), | 
|  | /*TemplateKeyword=*/false, | 
|  | TD); | 
|  | else | 
|  | Template = TemplateName(TD); | 
|  | } | 
|  |  | 
|  | if (IsFunctionTemplate) { | 
|  | // Function templates always go through overload resolution, at which | 
|  | // point we'll perform the various checks (e.g., accessibility) we need | 
|  | // to based on which function we selected. | 
|  | Result.suppressDiagnostics(); | 
|  |  | 
|  | return NameClassification::FunctionTemplate(Template); | 
|  | } | 
|  |  | 
|  | return NameClassification::TypeTemplate(Template); | 
|  | } | 
|  | } | 
|  |  | 
|  | NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl(); | 
|  | if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) { | 
|  | DiagnoseUseOfDecl(Type, NameLoc); | 
|  | QualType T = Context.getTypeDeclType(Type); | 
|  | return ParsedType::make(T); | 
|  | } | 
|  |  | 
|  | ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl); | 
|  | if (!Class) { | 
|  | // FIXME: It's unfortunate that we don't have a Type node for handling this. | 
|  | if (ObjCCompatibleAliasDecl *Alias | 
|  | = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl)) | 
|  | Class = Alias->getClassInterface(); | 
|  | } | 
|  |  | 
|  | if (Class) { | 
|  | DiagnoseUseOfDecl(Class, NameLoc); | 
|  |  | 
|  | if (NextToken.is(tok::period)) { | 
|  | // Interface. <something> is parsed as a property reference expression. | 
|  | // Just return "unknown" as a fall-through for now. | 
|  | Result.suppressDiagnostics(); | 
|  | return NameClassification::Unknown(); | 
|  | } | 
|  |  | 
|  | QualType T = Context.getObjCInterfaceType(Class); | 
|  | return ParsedType::make(T); | 
|  | } | 
|  |  | 
|  | if (!Result.empty() && (*Result.begin())->isCXXClassMember()) | 
|  | return BuildPossibleImplicitMemberExpr(SS, Result, 0); | 
|  |  | 
|  | bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); | 
|  | return BuildDeclarationNameExpr(SS, Result, ADL); | 
|  | } | 
|  |  | 
|  | // Determines the context to return to after temporarily entering a | 
|  | // context.  This depends in an unnecessarily complicated way on the | 
|  | // exact ordering of callbacks from the parser. | 
|  | DeclContext *Sema::getContainingDC(DeclContext *DC) { | 
|  |  | 
|  | // Functions defined inline within classes aren't parsed until we've | 
|  | // finished parsing the top-level class, so the top-level class is | 
|  | // the context we'll need to return to. | 
|  | if (isa<FunctionDecl>(DC)) { | 
|  | DC = DC->getLexicalParent(); | 
|  |  | 
|  | // A function not defined within a class will always return to its | 
|  | // lexical context. | 
|  | if (!isa<CXXRecordDecl>(DC)) | 
|  | return DC; | 
|  |  | 
|  | // A C++ inline method/friend is parsed *after* the topmost class | 
|  | // it was declared in is fully parsed ("complete");  the topmost | 
|  | // class is the context we need to return to. | 
|  | while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent())) | 
|  | DC = RD; | 
|  |  | 
|  | // Return the declaration context of the topmost class the inline method is | 
|  | // declared in. | 
|  | return DC; | 
|  | } | 
|  |  | 
|  | return DC->getLexicalParent(); | 
|  | } | 
|  |  | 
|  | void Sema::PushDeclContext(Scope *S, DeclContext *DC) { | 
|  | assert(getContainingDC(DC) == CurContext && | 
|  | "The next DeclContext should be lexically contained in the current one."); | 
|  | CurContext = DC; | 
|  | S->setEntity(DC); | 
|  | } | 
|  |  | 
|  | void Sema::PopDeclContext() { | 
|  | assert(CurContext && "DeclContext imbalance!"); | 
|  |  | 
|  | CurContext = getContainingDC(CurContext); | 
|  | assert(CurContext && "Popped translation unit!"); | 
|  | } | 
|  |  | 
|  | /// EnterDeclaratorContext - Used when we must lookup names in the context | 
|  | /// of a declarator's nested name specifier. | 
|  | /// | 
|  | void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { | 
|  | // C++0x [basic.lookup.unqual]p13: | 
|  | //   A name used in the definition of a static data member of class | 
|  | //   X (after the qualified-id of the static member) is looked up as | 
|  | //   if the name was used in a member function of X. | 
|  | // C++0x [basic.lookup.unqual]p14: | 
|  | //   If a variable member of a namespace is defined outside of the | 
|  | //   scope of its namespace then any name used in the definition of | 
|  | //   the variable member (after the declarator-id) is looked up as | 
|  | //   if the definition of the variable member occurred in its | 
|  | //   namespace. | 
|  | // Both of these imply that we should push a scope whose context | 
|  | // is the semantic context of the declaration.  We can't use | 
|  | // PushDeclContext here because that context is not necessarily | 
|  | // lexically contained in the current context.  Fortunately, | 
|  | // the containing scope should have the appropriate information. | 
|  |  | 
|  | assert(!S->getEntity() && "scope already has entity"); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | Scope *Ancestor = S->getParent(); | 
|  | while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); | 
|  | assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch"); | 
|  | #endif | 
|  |  | 
|  | CurContext = DC; | 
|  | S->setEntity(DC); | 
|  | } | 
|  |  | 
|  | void Sema::ExitDeclaratorContext(Scope *S) { | 
|  | assert(S->getEntity() == CurContext && "Context imbalance!"); | 
|  |  | 
|  | // Switch back to the lexical context.  The safety of this is | 
|  | // enforced by an assert in EnterDeclaratorContext. | 
|  | Scope *Ancestor = S->getParent(); | 
|  | while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); | 
|  | CurContext = (DeclContext*) Ancestor->getEntity(); | 
|  |  | 
|  | // We don't need to do anything with the scope, which is going to | 
|  | // disappear. | 
|  | } | 
|  |  | 
|  |  | 
|  | void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) { | 
|  | FunctionDecl *FD = dyn_cast<FunctionDecl>(D); | 
|  | if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) { | 
|  | // We assume that the caller has already called | 
|  | // ActOnReenterTemplateScope | 
|  | FD = TFD->getTemplatedDecl(); | 
|  | } | 
|  | if (!FD) | 
|  | return; | 
|  |  | 
|  | PushDeclContext(S, FD); | 
|  | for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) { | 
|  | ParmVarDecl *Param = FD->getParamDecl(P); | 
|  | // If the parameter has an identifier, then add it to the scope | 
|  | if (Param->getIdentifier()) { | 
|  | S->AddDecl(Param); | 
|  | IdResolver.AddDecl(Param); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief Determine whether we allow overloading of the function | 
|  | /// PrevDecl with another declaration. | 
|  | /// | 
|  | /// This routine determines whether overloading is possible, not | 
|  | /// whether some new function is actually an overload. It will return | 
|  | /// true in C++ (where we can always provide overloads) or, as an | 
|  | /// extension, in C when the previous function is already an | 
|  | /// overloaded function declaration or has the "overloadable" | 
|  | /// attribute. | 
|  | static bool AllowOverloadingOfFunction(LookupResult &Previous, | 
|  | ASTContext &Context) { | 
|  | if (Context.getLangOptions().CPlusPlus) | 
|  | return true; | 
|  |  | 
|  | if (Previous.getResultKind() == LookupResult::FoundOverloaded) | 
|  | return true; | 
|  |  | 
|  | return (Previous.getResultKind() == LookupResult::Found | 
|  | && Previous.getFoundDecl()->hasAttr<OverloadableAttr>()); | 
|  | } | 
|  |  | 
|  | /// Add this decl to the scope shadowed decl chains. | 
|  | void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { | 
|  | // Move up the scope chain until we find the nearest enclosing | 
|  | // non-transparent context. The declaration will be introduced into this | 
|  | // scope. | 
|  | while (S->getEntity() && | 
|  | ((DeclContext *)S->getEntity())->isTransparentContext()) | 
|  | S = S->getParent(); | 
|  |  | 
|  | // Add scoped declarations into their context, so that they can be | 
|  | // found later. Declarations without a context won't be inserted | 
|  | // into any context. | 
|  | if (AddToContext) | 
|  | CurContext->addDecl(D); | 
|  |  | 
|  | // Out-of-line definitions shouldn't be pushed into scope in C++. | 
|  | // Out-of-line variable and function definitions shouldn't even in C. | 
|  | if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) && | 
|  | D->isOutOfLine()) | 
|  | return; | 
|  |  | 
|  | // Template instantiations should also not be pushed into scope. | 
|  | if (isa<FunctionDecl>(D) && | 
|  | cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()) | 
|  | return; | 
|  |  | 
|  | // If this replaces anything in the current scope, | 
|  | IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()), | 
|  | IEnd = IdResolver.end(); | 
|  | for (; I != IEnd; ++I) { | 
|  | if (S->isDeclScope(*I) && D->declarationReplaces(*I)) { | 
|  | S->RemoveDecl(*I); | 
|  | IdResolver.RemoveDecl(*I); | 
|  |  | 
|  | // Should only need to replace one decl. | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | S->AddDecl(D); | 
|  |  | 
|  | if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) { | 
|  | // Implicitly-generated labels may end up getting generated in an order that | 
|  | // isn't strictly lexical, which breaks name lookup. Be careful to insert | 
|  | // the label at the appropriate place in the identifier chain. | 
|  | for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) { | 
|  | DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext(); | 
|  | if (IDC == CurContext) { | 
|  | if (!S->isDeclScope(*I)) | 
|  | continue; | 
|  | } else if (IDC->Encloses(CurContext)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | IdResolver.InsertDeclAfter(I, D); | 
|  | } else { | 
|  | IdResolver.AddDecl(D); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S, | 
|  | bool ExplicitInstantiationOrSpecialization) { | 
|  | return IdResolver.isDeclInScope(D, Ctx, Context, S, | 
|  | ExplicitInstantiationOrSpecialization); | 
|  | } | 
|  |  | 
|  | Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { | 
|  | DeclContext *TargetDC = DC->getPrimaryContext(); | 
|  | do { | 
|  | if (DeclContext *ScopeDC = (DeclContext*) S->getEntity()) | 
|  | if (ScopeDC->getPrimaryContext() == TargetDC) | 
|  | return S; | 
|  | } while ((S = S->getParent())); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool isOutOfScopePreviousDeclaration(NamedDecl *, | 
|  | DeclContext*, | 
|  | ASTContext&); | 
|  |  | 
|  | /// Filters out lookup results that don't fall within the given scope | 
|  | /// as determined by isDeclInScope. | 
|  | void Sema::FilterLookupForScope(LookupResult &R, | 
|  | DeclContext *Ctx, Scope *S, | 
|  | bool ConsiderLinkage, | 
|  | bool ExplicitInstantiationOrSpecialization) { | 
|  | LookupResult::Filter F = R.makeFilter(); | 
|  | while (F.hasNext()) { | 
|  | NamedDecl *D = F.next(); | 
|  |  | 
|  | if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization)) | 
|  | continue; | 
|  |  | 
|  | if (ConsiderLinkage && | 
|  | isOutOfScopePreviousDeclaration(D, Ctx, Context)) | 
|  | continue; | 
|  |  | 
|  | F.erase(); | 
|  | } | 
|  |  | 
|  | F.done(); | 
|  | } | 
|  |  | 
|  | static bool isUsingDecl(NamedDecl *D) { | 
|  | return isa<UsingShadowDecl>(D) || | 
|  | isa<UnresolvedUsingTypenameDecl>(D) || | 
|  | isa<UnresolvedUsingValueDecl>(D); | 
|  | } | 
|  |  | 
|  | /// Removes using shadow declarations from the lookup results. | 
|  | static void RemoveUsingDecls(LookupResult &R) { | 
|  | LookupResult::Filter F = R.makeFilter(); | 
|  | while (F.hasNext()) | 
|  | if (isUsingDecl(F.next())) | 
|  | F.erase(); | 
|  |  | 
|  | F.done(); | 
|  | } | 
|  |  | 
|  | /// \brief Check for this common pattern: | 
|  | /// @code | 
|  | /// class S { | 
|  | ///   S(const S&); // DO NOT IMPLEMENT | 
|  | ///   void operator=(const S&); // DO NOT IMPLEMENT | 
|  | /// }; | 
|  | /// @endcode | 
|  | static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { | 
|  | // FIXME: Should check for private access too but access is set after we get | 
|  | // the decl here. | 
|  | if (D->doesThisDeclarationHaveABody()) | 
|  | return false; | 
|  |  | 
|  | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) | 
|  | return CD->isCopyConstructor(); | 
|  | if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) | 
|  | return Method->isCopyAssignmentOperator(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { | 
|  | assert(D); | 
|  |  | 
|  | if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) | 
|  | return false; | 
|  |  | 
|  | // Ignore class templates. | 
|  | if (D->getDeclContext()->isDependentContext() || | 
|  | D->getLexicalDeclContext()->isDependentContext()) | 
|  | return false; | 
|  |  | 
|  | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
|  | return false; | 
|  |  | 
|  | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
|  | if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD)) | 
|  | return false; | 
|  | } else { | 
|  | // 'static inline' functions are used in headers; don't warn. | 
|  | if (FD->getStorageClass() == SC_Static && | 
|  | FD->isInlineSpecified()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (FD->doesThisDeclarationHaveABody() && | 
|  | Context.DeclMustBeEmitted(FD)) | 
|  | return false; | 
|  | } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
|  | if (!VD->isFileVarDecl() || | 
|  | VD->getType().isConstant(Context) || | 
|  | Context.DeclMustBeEmitted(VD)) | 
|  | return false; | 
|  |  | 
|  | if (VD->isStaticDataMember() && | 
|  | VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
|  | return false; | 
|  |  | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Only warn for unused decls internal to the translation unit. | 
|  | if (D->getLinkage() == ExternalLinkage) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { | 
|  | if (!D) | 
|  | return; | 
|  |  | 
|  | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | const FunctionDecl *First = FD->getFirstDeclaration(); | 
|  | if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) | 
|  | return; // First should already be in the vector. | 
|  | } | 
|  |  | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
|  | const VarDecl *First = VD->getFirstDeclaration(); | 
|  | if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) | 
|  | return; // First should already be in the vector. | 
|  | } | 
|  |  | 
|  | if (ShouldWarnIfUnusedFileScopedDecl(D)) | 
|  | UnusedFileScopedDecls.push_back(D); | 
|  | } | 
|  |  | 
|  | static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) { | 
|  | if (D->isInvalidDecl()) | 
|  | return false; | 
|  |  | 
|  | if (D->isUsed() || D->hasAttr<UnusedAttr>()) | 
|  | return false; | 
|  |  | 
|  | if (isa<LabelDecl>(D)) | 
|  | return true; | 
|  |  | 
|  | // White-list anything that isn't a local variable. | 
|  | if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) || | 
|  | !D->getDeclContext()->isFunctionOrMethod()) | 
|  | return false; | 
|  |  | 
|  | // Types of valid local variables should be complete, so this should succeed. | 
|  | if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) { | 
|  |  | 
|  | // White-list anything with an __attribute__((unused)) type. | 
|  | QualType Ty = VD->getType(); | 
|  |  | 
|  | // Only look at the outermost level of typedef. | 
|  | if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) { | 
|  | if (TT->getDecl()->hasAttr<UnusedAttr>()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we failed to complete the type for some reason, or if the type is | 
|  | // dependent, don't diagnose the variable. | 
|  | if (Ty->isIncompleteType() || Ty->isDependentType()) | 
|  | return false; | 
|  |  | 
|  | if (const TagType *TT = Ty->getAs<TagType>()) { | 
|  | const TagDecl *Tag = TT->getDecl(); | 
|  | if (Tag->hasAttr<UnusedAttr>()) | 
|  | return false; | 
|  |  | 
|  | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { | 
|  | // FIXME: Checking for the presence of a user-declared constructor | 
|  | // isn't completely accurate; we'd prefer to check that the initializer | 
|  | // has no side effects. | 
|  | if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor()) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: __attribute__((unused)) templates? | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx, | 
|  | FixItHint &Hint) { | 
|  | if (isa<LabelDecl>(D)) { | 
|  | SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(), | 
|  | tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true); | 
|  | if (AfterColon.isInvalid()) | 
|  | return; | 
|  | Hint = FixItHint::CreateRemoval(CharSourceRange:: | 
|  | getCharRange(D->getLocStart(), AfterColon)); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used | 
|  | /// unless they are marked attr(unused). | 
|  | void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { | 
|  | FixItHint Hint; | 
|  | if (!ShouldDiagnoseUnusedDecl(D)) | 
|  | return; | 
|  |  | 
|  | GenerateFixForUnusedDecl(D, Context, Hint); | 
|  |  | 
|  | unsigned DiagID; | 
|  | if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) | 
|  | DiagID = diag::warn_unused_exception_param; | 
|  | else if (isa<LabelDecl>(D)) | 
|  | DiagID = diag::warn_unused_label; | 
|  | else | 
|  | DiagID = diag::warn_unused_variable; | 
|  |  | 
|  | Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint; | 
|  | } | 
|  |  | 
|  | static void CheckPoppedLabel(LabelDecl *L, Sema &S) { | 
|  | // Verify that we have no forward references left.  If so, there was a goto | 
|  | // or address of a label taken, but no definition of it.  Label fwd | 
|  | // definitions are indicated with a null substmt. | 
|  | if (L->getStmt() == 0) | 
|  | S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName(); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { | 
|  | if (S->decl_empty()) return; | 
|  | assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && | 
|  | "Scope shouldn't contain decls!"); | 
|  |  | 
|  | for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end(); | 
|  | I != E; ++I) { | 
|  | Decl *TmpD = (*I); | 
|  | assert(TmpD && "This decl didn't get pushed??"); | 
|  |  | 
|  | assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"); | 
|  | NamedDecl *D = cast<NamedDecl>(TmpD); | 
|  |  | 
|  | if (!D->getDeclName()) continue; | 
|  |  | 
|  | // Diagnose unused variables in this scope. | 
|  | if (!S->hasErrorOccurred()) | 
|  | DiagnoseUnusedDecl(D); | 
|  |  | 
|  | // If this was a forward reference to a label, verify it was defined. | 
|  | if (LabelDecl *LD = dyn_cast<LabelDecl>(D)) | 
|  | CheckPoppedLabel(LD, *this); | 
|  |  | 
|  | // Remove this name from our lexical scope. | 
|  | IdResolver.RemoveDecl(D); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Look for an Objective-C class in the translation unit. | 
|  | /// | 
|  | /// \param Id The name of the Objective-C class we're looking for. If | 
|  | /// typo-correction fixes this name, the Id will be updated | 
|  | /// to the fixed name. | 
|  | /// | 
|  | /// \param IdLoc The location of the name in the translation unit. | 
|  | /// | 
|  | /// \param TypoCorrection If true, this routine will attempt typo correction | 
|  | /// if there is no class with the given name. | 
|  | /// | 
|  | /// \returns The declaration of the named Objective-C class, or NULL if the | 
|  | /// class could not be found. | 
|  | ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id, | 
|  | SourceLocation IdLoc, | 
|  | bool DoTypoCorrection) { | 
|  | // The third "scope" argument is 0 since we aren't enabling lazy built-in | 
|  | // creation from this context. | 
|  | NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName); | 
|  |  | 
|  | if (!IDecl && DoTypoCorrection) { | 
|  | // Perform typo correction at the given location, but only if we | 
|  | // find an Objective-C class name. | 
|  | TypoCorrection C; | 
|  | if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, | 
|  | TUScope, NULL, NULL, false, CTC_NoKeywords)) && | 
|  | (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) { | 
|  | Diag(IdLoc, diag::err_undef_interface_suggest) | 
|  | << Id << IDecl->getDeclName() | 
|  | << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString()); | 
|  | Diag(IDecl->getLocation(), diag::note_previous_decl) | 
|  | << IDecl->getDeclName(); | 
|  |  | 
|  | Id = IDecl->getIdentifier(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); | 
|  | } | 
|  |  | 
|  | /// getNonFieldDeclScope - Retrieves the innermost scope, starting | 
|  | /// from S, where a non-field would be declared. This routine copes | 
|  | /// with the difference between C and C++ scoping rules in structs and | 
|  | /// unions. For example, the following code is well-formed in C but | 
|  | /// ill-formed in C++: | 
|  | /// @code | 
|  | /// struct S6 { | 
|  | ///   enum { BAR } e; | 
|  | /// }; | 
|  | /// | 
|  | /// void test_S6() { | 
|  | ///   struct S6 a; | 
|  | ///   a.e = BAR; | 
|  | /// } | 
|  | /// @endcode | 
|  | /// For the declaration of BAR, this routine will return a different | 
|  | /// scope. The scope S will be the scope of the unnamed enumeration | 
|  | /// within S6. In C++, this routine will return the scope associated | 
|  | /// with S6, because the enumeration's scope is a transparent | 
|  | /// context but structures can contain non-field names. In C, this | 
|  | /// routine will return the translation unit scope, since the | 
|  | /// enumeration's scope is a transparent context and structures cannot | 
|  | /// contain non-field names. | 
|  | Scope *Sema::getNonFieldDeclScope(Scope *S) { | 
|  | while (((S->getFlags() & Scope::DeclScope) == 0) || | 
|  | (S->getEntity() && | 
|  | ((DeclContext *)S->getEntity())->isTransparentContext()) || | 
|  | (S->isClassScope() && !getLangOptions().CPlusPlus)) | 
|  | S = S->getParent(); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | /// LazilyCreateBuiltin - The specified Builtin-ID was first used at | 
|  | /// file scope.  lazily create a decl for it. ForRedeclaration is true | 
|  | /// if we're creating this built-in in anticipation of redeclaring the | 
|  | /// built-in. | 
|  | NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid, | 
|  | Scope *S, bool ForRedeclaration, | 
|  | SourceLocation Loc) { | 
|  | Builtin::ID BID = (Builtin::ID)bid; | 
|  |  | 
|  | ASTContext::GetBuiltinTypeError Error; | 
|  | QualType R = Context.GetBuiltinType(BID, Error); | 
|  | switch (Error) { | 
|  | case ASTContext::GE_None: | 
|  | // Okay | 
|  | break; | 
|  |  | 
|  | case ASTContext::GE_Missing_stdio: | 
|  | if (ForRedeclaration) | 
|  | Diag(Loc, diag::warn_implicit_decl_requires_stdio) | 
|  | << Context.BuiltinInfo.GetName(BID); | 
|  | return 0; | 
|  |  | 
|  | case ASTContext::GE_Missing_setjmp: | 
|  | if (ForRedeclaration) | 
|  | Diag(Loc, diag::warn_implicit_decl_requires_setjmp) | 
|  | << Context.BuiltinInfo.GetName(BID); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) { | 
|  | Diag(Loc, diag::ext_implicit_lib_function_decl) | 
|  | << Context.BuiltinInfo.GetName(BID) | 
|  | << R; | 
|  | if (Context.BuiltinInfo.getHeaderName(BID) && | 
|  | Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc) | 
|  | != DiagnosticsEngine::Ignored) | 
|  | Diag(Loc, diag::note_please_include_header) | 
|  | << Context.BuiltinInfo.getHeaderName(BID) | 
|  | << Context.BuiltinInfo.GetName(BID); | 
|  | } | 
|  |  | 
|  | FunctionDecl *New = FunctionDecl::Create(Context, | 
|  | Context.getTranslationUnitDecl(), | 
|  | Loc, Loc, II, R, /*TInfo=*/0, | 
|  | SC_Extern, | 
|  | SC_None, false, | 
|  | /*hasPrototype=*/true); | 
|  | New->setImplicit(); | 
|  |  | 
|  | // Create Decl objects for each parameter, adding them to the | 
|  | // FunctionDecl. | 
|  | if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) { | 
|  | SmallVector<ParmVarDecl*, 16> Params; | 
|  | for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) { | 
|  | ParmVarDecl *parm = | 
|  | ParmVarDecl::Create(Context, New, SourceLocation(), | 
|  | SourceLocation(), 0, | 
|  | FT->getArgType(i), /*TInfo=*/0, | 
|  | SC_None, SC_None, 0); | 
|  | parm->setScopeInfo(0, i); | 
|  | Params.push_back(parm); | 
|  | } | 
|  | New->setParams(Params); | 
|  | } | 
|  |  | 
|  | AddKnownFunctionAttributes(New); | 
|  |  | 
|  | // TUScope is the translation-unit scope to insert this function into. | 
|  | // FIXME: This is hideous. We need to teach PushOnScopeChains to | 
|  | // relate Scopes to DeclContexts, and probably eliminate CurContext | 
|  | // entirely, but we're not there yet. | 
|  | DeclContext *SavedContext = CurContext; | 
|  | CurContext = Context.getTranslationUnitDecl(); | 
|  | PushOnScopeChains(New, TUScope); | 
|  | CurContext = SavedContext; | 
|  | return New; | 
|  | } | 
|  |  | 
|  | /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the | 
|  | /// same name and scope as a previous declaration 'Old'.  Figure out | 
|  | /// how to resolve this situation, merging decls or emitting | 
|  | /// diagnostics as appropriate. If there was an error, set New to be invalid. | 
|  | /// | 
|  | void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) { | 
|  | // If the new decl is known invalid already, don't bother doing any | 
|  | // merging checks. | 
|  | if (New->isInvalidDecl()) return; | 
|  |  | 
|  | // Allow multiple definitions for ObjC built-in typedefs. | 
|  | // FIXME: Verify the underlying types are equivalent! | 
|  | if (getLangOptions().ObjC1) { | 
|  | const IdentifierInfo *TypeID = New->getIdentifier(); | 
|  | switch (TypeID->getLength()) { | 
|  | default: break; | 
|  | case 2: | 
|  | if (!TypeID->isStr("id")) | 
|  | break; | 
|  | Context.setObjCIdRedefinitionType(New->getUnderlyingType()); | 
|  | // Install the built-in type for 'id', ignoring the current definition. | 
|  | New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); | 
|  | return; | 
|  | case 5: | 
|  | if (!TypeID->isStr("Class")) | 
|  | break; | 
|  | Context.setObjCClassRedefinitionType(New->getUnderlyingType()); | 
|  | // Install the built-in type for 'Class', ignoring the current definition. | 
|  | New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); | 
|  | return; | 
|  | case 3: | 
|  | if (!TypeID->isStr("SEL")) | 
|  | break; | 
|  | Context.setObjCSelRedefinitionType(New->getUnderlyingType()); | 
|  | // Install the built-in type for 'SEL', ignoring the current definition. | 
|  | New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); | 
|  | return; | 
|  | } | 
|  | // Fall through - the typedef name was not a builtin type. | 
|  | } | 
|  |  | 
|  | // Verify the old decl was also a type. | 
|  | TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); | 
|  | if (!Old) { | 
|  | Diag(New->getLocation(), diag::err_redefinition_different_kind) | 
|  | << New->getDeclName(); | 
|  |  | 
|  | NamedDecl *OldD = OldDecls.getRepresentativeDecl(); | 
|  | if (OldD->getLocation().isValid()) | 
|  | Diag(OldD->getLocation(), diag::note_previous_definition); | 
|  |  | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // If the old declaration is invalid, just give up here. | 
|  | if (Old->isInvalidDecl()) | 
|  | return New->setInvalidDecl(); | 
|  |  | 
|  | // Determine the "old" type we'll use for checking and diagnostics. | 
|  | QualType OldType; | 
|  | if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old)) | 
|  | OldType = OldTypedef->getUnderlyingType(); | 
|  | else | 
|  | OldType = Context.getTypeDeclType(Old); | 
|  |  | 
|  | // If the typedef types are not identical, reject them in all languages and | 
|  | // with any extensions enabled. | 
|  |  | 
|  | if (OldType != New->getUnderlyingType() && | 
|  | Context.getCanonicalType(OldType) != | 
|  | Context.getCanonicalType(New->getUnderlyingType())) { | 
|  | int Kind = 0; | 
|  | if (isa<TypeAliasDecl>(Old)) | 
|  | Kind = 1; | 
|  | Diag(New->getLocation(), diag::err_redefinition_different_typedef) | 
|  | << Kind << New->getUnderlyingType() << OldType; | 
|  | if (Old->getLocation().isValid()) | 
|  | Diag(Old->getLocation(), diag::note_previous_definition); | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // The types match.  Link up the redeclaration chain if the old | 
|  | // declaration was a typedef. | 
|  | // FIXME: this is a potential source of weirdness if the type | 
|  | // spellings don't match exactly. | 
|  | if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) | 
|  | New->setPreviousDeclaration(Typedef); | 
|  |  | 
|  | // __module_private__ is propagated to later declarations. | 
|  | if (Old->isModulePrivate()) | 
|  | New->setModulePrivate(); | 
|  | else if (New->isModulePrivate()) | 
|  | diagnoseModulePrivateRedeclaration(New, Old); | 
|  |  | 
|  | if (getLangOptions().MicrosoftExt) | 
|  | return; | 
|  |  | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | // C++ [dcl.typedef]p2: | 
|  | //   In a given non-class scope, a typedef specifier can be used to | 
|  | //   redefine the name of any type declared in that scope to refer | 
|  | //   to the type to which it already refers. | 
|  | if (!isa<CXXRecordDecl>(CurContext)) | 
|  | return; | 
|  |  | 
|  | // C++0x [dcl.typedef]p4: | 
|  | //   In a given class scope, a typedef specifier can be used to redefine | 
|  | //   any class-name declared in that scope that is not also a typedef-name | 
|  | //   to refer to the type to which it already refers. | 
|  | // | 
|  | // This wording came in via DR424, which was a correction to the | 
|  | // wording in DR56, which accidentally banned code like: | 
|  | // | 
|  | //   struct S { | 
|  | //     typedef struct A { } A; | 
|  | //   }; | 
|  | // | 
|  | // in the C++03 standard. We implement the C++0x semantics, which | 
|  | // allow the above but disallow | 
|  | // | 
|  | //   struct S { | 
|  | //     typedef int I; | 
|  | //     typedef int I; | 
|  | //   }; | 
|  | // | 
|  | // since that was the intent of DR56. | 
|  | if (!isa<TypedefNameDecl>(Old)) | 
|  | return; | 
|  |  | 
|  | Diag(New->getLocation(), diag::err_redefinition) | 
|  | << New->getDeclName(); | 
|  | Diag(Old->getLocation(), diag::note_previous_definition); | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // If we have a redefinition of a typedef in C, emit a warning.  This warning | 
|  | // is normally mapped to an error, but can be controlled with | 
|  | // -Wtypedef-redefinition.  If either the original or the redefinition is | 
|  | // in a system header, don't emit this for compatibility with GCC. | 
|  | if (getDiagnostics().getSuppressSystemWarnings() && | 
|  | (Context.getSourceManager().isInSystemHeader(Old->getLocation()) || | 
|  | Context.getSourceManager().isInSystemHeader(New->getLocation()))) | 
|  | return; | 
|  |  | 
|  | Diag(New->getLocation(), diag::warn_redefinition_of_typedef) | 
|  | << New->getDeclName(); | 
|  | Diag(Old->getLocation(), diag::note_previous_definition); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /// DeclhasAttr - returns true if decl Declaration already has the target | 
|  | /// attribute. | 
|  | static bool | 
|  | DeclHasAttr(const Decl *D, const Attr *A) { | 
|  | const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); | 
|  | const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A); | 
|  | for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i) | 
|  | if ((*i)->getKind() == A->getKind()) { | 
|  | if (Ann) { | 
|  | if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation()) | 
|  | return true; | 
|  | continue; | 
|  | } | 
|  | // FIXME: Don't hardcode this check | 
|  | if (OA && isa<OwnershipAttr>(*i)) | 
|  | return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// mergeDeclAttributes - Copy attributes from the Old decl to the New one. | 
|  | static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl, | 
|  | ASTContext &C, bool mergeDeprecation = true) { | 
|  | if (!oldDecl->hasAttrs()) | 
|  | return; | 
|  |  | 
|  | bool foundAny = newDecl->hasAttrs(); | 
|  |  | 
|  | // Ensure that any moving of objects within the allocated map is done before | 
|  | // we process them. | 
|  | if (!foundAny) newDecl->setAttrs(AttrVec()); | 
|  |  | 
|  | for (specific_attr_iterator<InheritableAttr> | 
|  | i = oldDecl->specific_attr_begin<InheritableAttr>(), | 
|  | e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) { | 
|  | // Ignore deprecated/unavailable/availability attributes if requested. | 
|  | if (!mergeDeprecation && | 
|  | (isa<DeprecatedAttr>(*i) || | 
|  | isa<UnavailableAttr>(*i) || | 
|  | isa<AvailabilityAttr>(*i))) | 
|  | continue; | 
|  |  | 
|  | if (!DeclHasAttr(newDecl, *i)) { | 
|  | InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C)); | 
|  | newAttr->setInherited(true); | 
|  | newDecl->addAttr(newAttr); | 
|  | foundAny = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!foundAny) newDecl->dropAttrs(); | 
|  | } | 
|  |  | 
|  | /// mergeParamDeclAttributes - Copy attributes from the old parameter | 
|  | /// to the new one. | 
|  | static void mergeParamDeclAttributes(ParmVarDecl *newDecl, | 
|  | const ParmVarDecl *oldDecl, | 
|  | ASTContext &C) { | 
|  | if (!oldDecl->hasAttrs()) | 
|  | return; | 
|  |  | 
|  | bool foundAny = newDecl->hasAttrs(); | 
|  |  | 
|  | // Ensure that any moving of objects within the allocated map is | 
|  | // done before we process them. | 
|  | if (!foundAny) newDecl->setAttrs(AttrVec()); | 
|  |  | 
|  | for (specific_attr_iterator<InheritableParamAttr> | 
|  | i = oldDecl->specific_attr_begin<InheritableParamAttr>(), | 
|  | e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) { | 
|  | if (!DeclHasAttr(newDecl, *i)) { | 
|  | InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C)); | 
|  | newAttr->setInherited(true); | 
|  | newDecl->addAttr(newAttr); | 
|  | foundAny = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!foundAny) newDecl->dropAttrs(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Used in MergeFunctionDecl to keep track of function parameters in | 
|  | /// C. | 
|  | struct GNUCompatibleParamWarning { | 
|  | ParmVarDecl *OldParm; | 
|  | ParmVarDecl *NewParm; | 
|  | QualType PromotedType; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | /// getSpecialMember - get the special member enum for a method. | 
|  | Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) { | 
|  | if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { | 
|  | if (Ctor->isDefaultConstructor()) | 
|  | return Sema::CXXDefaultConstructor; | 
|  |  | 
|  | if (Ctor->isCopyConstructor()) | 
|  | return Sema::CXXCopyConstructor; | 
|  |  | 
|  | if (Ctor->isMoveConstructor()) | 
|  | return Sema::CXXMoveConstructor; | 
|  | } else if (isa<CXXDestructorDecl>(MD)) { | 
|  | return Sema::CXXDestructor; | 
|  | } else if (MD->isCopyAssignmentOperator()) { | 
|  | return Sema::CXXCopyAssignment; | 
|  | } else if (MD->isMoveAssignmentOperator()) { | 
|  | return Sema::CXXMoveAssignment; | 
|  | } | 
|  |  | 
|  | return Sema::CXXInvalid; | 
|  | } | 
|  |  | 
|  | /// canRedefineFunction - checks if a function can be redefined. Currently, | 
|  | /// only extern inline functions can be redefined, and even then only in | 
|  | /// GNU89 mode. | 
|  | static bool canRedefineFunction(const FunctionDecl *FD, | 
|  | const LangOptions& LangOpts) { | 
|  | return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) && | 
|  | !LangOpts.CPlusPlus && | 
|  | FD->isInlineSpecified() && | 
|  | FD->getStorageClass() == SC_Extern); | 
|  | } | 
|  |  | 
|  | /// MergeFunctionDecl - We just parsed a function 'New' from | 
|  | /// declarator D which has the same name and scope as a previous | 
|  | /// declaration 'Old'.  Figure out how to resolve this situation, | 
|  | /// merging decls or emitting diagnostics as appropriate. | 
|  | /// | 
|  | /// In C++, New and Old must be declarations that are not | 
|  | /// overloaded. Use IsOverload to determine whether New and Old are | 
|  | /// overloaded, and to select the Old declaration that New should be | 
|  | /// merged with. | 
|  | /// | 
|  | /// Returns true if there was an error, false otherwise. | 
|  | bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) { | 
|  | // Verify the old decl was also a function. | 
|  | FunctionDecl *Old = 0; | 
|  | if (FunctionTemplateDecl *OldFunctionTemplate | 
|  | = dyn_cast<FunctionTemplateDecl>(OldD)) | 
|  | Old = OldFunctionTemplate->getTemplatedDecl(); | 
|  | else | 
|  | Old = dyn_cast<FunctionDecl>(OldD); | 
|  | if (!Old) { | 
|  | if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) { | 
|  | Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); | 
|  | Diag(Shadow->getTargetDecl()->getLocation(), | 
|  | diag::note_using_decl_target); | 
|  | Diag(Shadow->getUsingDecl()->getLocation(), | 
|  | diag::note_using_decl) << 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Diag(New->getLocation(), diag::err_redefinition_different_kind) | 
|  | << New->getDeclName(); | 
|  | Diag(OldD->getLocation(), diag::note_previous_definition); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Determine whether the previous declaration was a definition, | 
|  | // implicit declaration, or a declaration. | 
|  | diag::kind PrevDiag; | 
|  | if (Old->isThisDeclarationADefinition()) | 
|  | PrevDiag = diag::note_previous_definition; | 
|  | else if (Old->isImplicit()) | 
|  | PrevDiag = diag::note_previous_implicit_declaration; | 
|  | else | 
|  | PrevDiag = diag::note_previous_declaration; | 
|  |  | 
|  | QualType OldQType = Context.getCanonicalType(Old->getType()); | 
|  | QualType NewQType = Context.getCanonicalType(New->getType()); | 
|  |  | 
|  | // Don't complain about this if we're in GNU89 mode and the old function | 
|  | // is an extern inline function. | 
|  | if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) && | 
|  | New->getStorageClass() == SC_Static && | 
|  | Old->getStorageClass() != SC_Static && | 
|  | !canRedefineFunction(Old, getLangOptions())) { | 
|  | if (getLangOptions().MicrosoftExt) { | 
|  | Diag(New->getLocation(), diag::warn_static_non_static) << New; | 
|  | Diag(Old->getLocation(), PrevDiag); | 
|  | } else { | 
|  | Diag(New->getLocation(), diag::err_static_non_static) << New; | 
|  | Diag(Old->getLocation(), PrevDiag); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If a function is first declared with a calling convention, but is | 
|  | // later declared or defined without one, the second decl assumes the | 
|  | // calling convention of the first. | 
|  | // | 
|  | // For the new decl, we have to look at the NON-canonical type to tell the | 
|  | // difference between a function that really doesn't have a calling | 
|  | // convention and one that is declared cdecl. That's because in | 
|  | // canonicalization (see ASTContext.cpp), cdecl is canonicalized away | 
|  | // because it is the default calling convention. | 
|  | // | 
|  | // Note also that we DO NOT return at this point, because we still have | 
|  | // other tests to run. | 
|  | const FunctionType *OldType = cast<FunctionType>(OldQType); | 
|  | const FunctionType *NewType = New->getType()->getAs<FunctionType>(); | 
|  | FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); | 
|  | FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); | 
|  | bool RequiresAdjustment = false; | 
|  | if (OldTypeInfo.getCC() != CC_Default && | 
|  | NewTypeInfo.getCC() == CC_Default) { | 
|  | NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); | 
|  | RequiresAdjustment = true; | 
|  | } else if (!Context.isSameCallConv(OldTypeInfo.getCC(), | 
|  | NewTypeInfo.getCC())) { | 
|  | // Calling conventions really aren't compatible, so complain. | 
|  | Diag(New->getLocation(), diag::err_cconv_change) | 
|  | << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) | 
|  | << (OldTypeInfo.getCC() == CC_Default) | 
|  | << (OldTypeInfo.getCC() == CC_Default ? "" : | 
|  | FunctionType::getNameForCallConv(OldTypeInfo.getCC())); | 
|  | Diag(Old->getLocation(), diag::note_previous_declaration); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // FIXME: diagnose the other way around? | 
|  | if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) { | 
|  | NewTypeInfo = NewTypeInfo.withNoReturn(true); | 
|  | RequiresAdjustment = true; | 
|  | } | 
|  |  | 
|  | // Merge regparm attribute. | 
|  | if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() || | 
|  | OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) { | 
|  | if (NewTypeInfo.getHasRegParm()) { | 
|  | Diag(New->getLocation(), diag::err_regparm_mismatch) | 
|  | << NewType->getRegParmType() | 
|  | << OldType->getRegParmType(); | 
|  | Diag(Old->getLocation(), diag::note_previous_declaration); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm()); | 
|  | RequiresAdjustment = true; | 
|  | } | 
|  |  | 
|  | if (RequiresAdjustment) { | 
|  | NewType = Context.adjustFunctionType(NewType, NewTypeInfo); | 
|  | New->setType(QualType(NewType, 0)); | 
|  | NewQType = Context.getCanonicalType(New->getType()); | 
|  | } | 
|  |  | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | // (C++98 13.1p2): | 
|  | //   Certain function declarations cannot be overloaded: | 
|  | //     -- Function declarations that differ only in the return type | 
|  | //        cannot be overloaded. | 
|  | QualType OldReturnType = OldType->getResultType(); | 
|  | QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType(); | 
|  | QualType ResQT; | 
|  | if (OldReturnType != NewReturnType) { | 
|  | if (NewReturnType->isObjCObjectPointerType() | 
|  | && OldReturnType->isObjCObjectPointerType()) | 
|  | ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); | 
|  | if (ResQT.isNull()) { | 
|  | if (New->isCXXClassMember() && New->isOutOfLine()) | 
|  | Diag(New->getLocation(), | 
|  | diag::err_member_def_does_not_match_ret_type) << New; | 
|  | else | 
|  | Diag(New->getLocation(), diag::err_ovl_diff_return_type); | 
|  | Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); | 
|  | return true; | 
|  | } | 
|  | else | 
|  | NewQType = ResQT; | 
|  | } | 
|  |  | 
|  | const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); | 
|  | CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); | 
|  | if (OldMethod && NewMethod) { | 
|  | // Preserve triviality. | 
|  | NewMethod->setTrivial(OldMethod->isTrivial()); | 
|  |  | 
|  | // MSVC allows explicit template specialization at class scope: | 
|  | // 2 CXMethodDecls referring to the same function will be injected. | 
|  | // We don't want a redeclartion error. | 
|  | bool IsClassScopeExplicitSpecialization = | 
|  | OldMethod->isFunctionTemplateSpecialization() && | 
|  | NewMethod->isFunctionTemplateSpecialization(); | 
|  | bool isFriend = NewMethod->getFriendObjectKind(); | 
|  |  | 
|  | if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() && | 
|  | !IsClassScopeExplicitSpecialization) { | 
|  | //    -- Member function declarations with the same name and the | 
|  | //       same parameter types cannot be overloaded if any of them | 
|  | //       is a static member function declaration. | 
|  | if (OldMethod->isStatic() || NewMethod->isStatic()) { | 
|  | Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); | 
|  | Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // C++ [class.mem]p1: | 
|  | //   [...] A member shall not be declared twice in the | 
|  | //   member-specification, except that a nested class or member | 
|  | //   class template can be declared and then later defined. | 
|  | unsigned NewDiag; | 
|  | if (isa<CXXConstructorDecl>(OldMethod)) | 
|  | NewDiag = diag::err_constructor_redeclared; | 
|  | else if (isa<CXXDestructorDecl>(NewMethod)) | 
|  | NewDiag = diag::err_destructor_redeclared; | 
|  | else if (isa<CXXConversionDecl>(NewMethod)) | 
|  | NewDiag = diag::err_conv_function_redeclared; | 
|  | else | 
|  | NewDiag = diag::err_member_redeclared; | 
|  |  | 
|  | Diag(New->getLocation(), NewDiag); | 
|  | Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); | 
|  |  | 
|  | // Complain if this is an explicit declaration of a special | 
|  | // member that was initially declared implicitly. | 
|  | // | 
|  | // As an exception, it's okay to befriend such methods in order | 
|  | // to permit the implicit constructor/destructor/operator calls. | 
|  | } else if (OldMethod->isImplicit()) { | 
|  | if (isFriend) { | 
|  | NewMethod->setImplicit(); | 
|  | } else { | 
|  | Diag(NewMethod->getLocation(), | 
|  | diag::err_definition_of_implicitly_declared_member) | 
|  | << New << getSpecialMember(OldMethod); | 
|  | return true; | 
|  | } | 
|  | } else if (OldMethod->isExplicitlyDefaulted()) { | 
|  | Diag(NewMethod->getLocation(), | 
|  | diag::err_definition_of_explicitly_defaulted_member) | 
|  | << getSpecialMember(OldMethod); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // (C++98 8.3.5p3): | 
|  | //   All declarations for a function shall agree exactly in both the | 
|  | //   return type and the parameter-type-list. | 
|  | // We also want to respect all the extended bits except noreturn. | 
|  |  | 
|  | // noreturn should now match unless the old type info didn't have it. | 
|  | QualType OldQTypeForComparison = OldQType; | 
|  | if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) { | 
|  | assert(OldQType == QualType(OldType, 0)); | 
|  | const FunctionType *OldTypeForComparison | 
|  | = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true)); | 
|  | OldQTypeForComparison = QualType(OldTypeForComparison, 0); | 
|  | assert(OldQTypeForComparison.isCanonical()); | 
|  | } | 
|  |  | 
|  | if (OldQTypeForComparison == NewQType) | 
|  | return MergeCompatibleFunctionDecls(New, Old); | 
|  |  | 
|  | // Fall through for conflicting redeclarations and redefinitions. | 
|  | } | 
|  |  | 
|  | // C: Function types need to be compatible, not identical. This handles | 
|  | // duplicate function decls like "void f(int); void f(enum X);" properly. | 
|  | if (!getLangOptions().CPlusPlus && | 
|  | Context.typesAreCompatible(OldQType, NewQType)) { | 
|  | const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); | 
|  | const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); | 
|  | const FunctionProtoType *OldProto = 0; | 
|  | if (isa<FunctionNoProtoType>(NewFuncType) && | 
|  | (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) { | 
|  | // The old declaration provided a function prototype, but the | 
|  | // new declaration does not. Merge in the prototype. | 
|  | assert(!OldProto->hasExceptionSpec() && "Exception spec in C"); | 
|  | SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(), | 
|  | OldProto->arg_type_end()); | 
|  | NewQType = Context.getFunctionType(NewFuncType->getResultType(), | 
|  | ParamTypes.data(), ParamTypes.size(), | 
|  | OldProto->getExtProtoInfo()); | 
|  | New->setType(NewQType); | 
|  | New->setHasInheritedPrototype(); | 
|  |  | 
|  | // Synthesize a parameter for each argument type. | 
|  | SmallVector<ParmVarDecl*, 16> Params; | 
|  | for (FunctionProtoType::arg_type_iterator | 
|  | ParamType = OldProto->arg_type_begin(), | 
|  | ParamEnd = OldProto->arg_type_end(); | 
|  | ParamType != ParamEnd; ++ParamType) { | 
|  | ParmVarDecl *Param = ParmVarDecl::Create(Context, New, | 
|  | SourceLocation(), | 
|  | SourceLocation(), 0, | 
|  | *ParamType, /*TInfo=*/0, | 
|  | SC_None, SC_None, | 
|  | 0); | 
|  | Param->setScopeInfo(0, Params.size()); | 
|  | Param->setImplicit(); | 
|  | Params.push_back(Param); | 
|  | } | 
|  |  | 
|  | New->setParams(Params); | 
|  | } | 
|  |  | 
|  | return MergeCompatibleFunctionDecls(New, Old); | 
|  | } | 
|  |  | 
|  | // GNU C permits a K&R definition to follow a prototype declaration | 
|  | // if the declared types of the parameters in the K&R definition | 
|  | // match the types in the prototype declaration, even when the | 
|  | // promoted types of the parameters from the K&R definition differ | 
|  | // from the types in the prototype. GCC then keeps the types from | 
|  | // the prototype. | 
|  | // | 
|  | // If a variadic prototype is followed by a non-variadic K&R definition, | 
|  | // the K&R definition becomes variadic.  This is sort of an edge case, but | 
|  | // it's legal per the standard depending on how you read C99 6.7.5.3p15 and | 
|  | // C99 6.9.1p8. | 
|  | if (!getLangOptions().CPlusPlus && | 
|  | Old->hasPrototype() && !New->hasPrototype() && | 
|  | New->getType()->getAs<FunctionProtoType>() && | 
|  | Old->getNumParams() == New->getNumParams()) { | 
|  | SmallVector<QualType, 16> ArgTypes; | 
|  | SmallVector<GNUCompatibleParamWarning, 16> Warnings; | 
|  | const FunctionProtoType *OldProto | 
|  | = Old->getType()->getAs<FunctionProtoType>(); | 
|  | const FunctionProtoType *NewProto | 
|  | = New->getType()->getAs<FunctionProtoType>(); | 
|  |  | 
|  | // Determine whether this is the GNU C extension. | 
|  | QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(), | 
|  | NewProto->getResultType()); | 
|  | bool LooseCompatible = !MergedReturn.isNull(); | 
|  | for (unsigned Idx = 0, End = Old->getNumParams(); | 
|  | LooseCompatible && Idx != End; ++Idx) { | 
|  | ParmVarDecl *OldParm = Old->getParamDecl(Idx); | 
|  | ParmVarDecl *NewParm = New->getParamDecl(Idx); | 
|  | if (Context.typesAreCompatible(OldParm->getType(), | 
|  | NewProto->getArgType(Idx))) { | 
|  | ArgTypes.push_back(NewParm->getType()); | 
|  | } else if (Context.typesAreCompatible(OldParm->getType(), | 
|  | NewParm->getType(), | 
|  | /*CompareUnqualified=*/true)) { | 
|  | GNUCompatibleParamWarning Warn | 
|  | = { OldParm, NewParm, NewProto->getArgType(Idx) }; | 
|  | Warnings.push_back(Warn); | 
|  | ArgTypes.push_back(NewParm->getType()); | 
|  | } else | 
|  | LooseCompatible = false; | 
|  | } | 
|  |  | 
|  | if (LooseCompatible) { | 
|  | for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { | 
|  | Diag(Warnings[Warn].NewParm->getLocation(), | 
|  | diag::ext_param_promoted_not_compatible_with_prototype) | 
|  | << Warnings[Warn].PromotedType | 
|  | << Warnings[Warn].OldParm->getType(); | 
|  | if (Warnings[Warn].OldParm->getLocation().isValid()) | 
|  | Diag(Warnings[Warn].OldParm->getLocation(), | 
|  | diag::note_previous_declaration); | 
|  | } | 
|  |  | 
|  | New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0], | 
|  | ArgTypes.size(), | 
|  | OldProto->getExtProtoInfo())); | 
|  | return MergeCompatibleFunctionDecls(New, Old); | 
|  | } | 
|  |  | 
|  | // Fall through to diagnose conflicting types. | 
|  | } | 
|  |  | 
|  | // A function that has already been declared has been redeclared or defined | 
|  | // with a different type- show appropriate diagnostic | 
|  | if (unsigned BuiltinID = Old->getBuiltinID()) { | 
|  | // The user has declared a builtin function with an incompatible | 
|  | // signature. | 
|  | if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { | 
|  | // The function the user is redeclaring is a library-defined | 
|  | // function like 'malloc' or 'printf'. Warn about the | 
|  | // redeclaration, then pretend that we don't know about this | 
|  | // library built-in. | 
|  | Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; | 
|  | Diag(Old->getLocation(), diag::note_previous_builtin_declaration) | 
|  | << Old << Old->getType(); | 
|  | New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin); | 
|  | Old->setInvalidDecl(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | PrevDiag = diag::note_previous_builtin_declaration; | 
|  | } | 
|  |  | 
|  | Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); | 
|  | Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Completes the merge of two function declarations that are | 
|  | /// known to be compatible. | 
|  | /// | 
|  | /// This routine handles the merging of attributes and other | 
|  | /// properties of function declarations form the old declaration to | 
|  | /// the new declaration, once we know that New is in fact a | 
|  | /// redeclaration of Old. | 
|  | /// | 
|  | /// \returns false | 
|  | bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) { | 
|  | // Merge the attributes | 
|  | mergeDeclAttributes(New, Old, Context); | 
|  |  | 
|  | // Merge the storage class. | 
|  | if (Old->getStorageClass() != SC_Extern && | 
|  | Old->getStorageClass() != SC_None) | 
|  | New->setStorageClass(Old->getStorageClass()); | 
|  |  | 
|  | // Merge "pure" flag. | 
|  | if (Old->isPure()) | 
|  | New->setPure(); | 
|  |  | 
|  | // __module_private__ is propagated to later declarations. | 
|  | if (Old->isModulePrivate()) | 
|  | New->setModulePrivate(); | 
|  | else if (New->isModulePrivate()) | 
|  | diagnoseModulePrivateRedeclaration(New, Old); | 
|  |  | 
|  | // Merge attributes from the parameters.  These can mismatch with K&R | 
|  | // declarations. | 
|  | if (New->getNumParams() == Old->getNumParams()) | 
|  | for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) | 
|  | mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i), | 
|  | Context); | 
|  |  | 
|  | if (getLangOptions().CPlusPlus) | 
|  | return MergeCXXFunctionDecl(New, Old); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod, | 
|  | const ObjCMethodDecl *oldMethod) { | 
|  | // We don't want to merge unavailable and deprecated attributes | 
|  | // except from interface to implementation. | 
|  | bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext()); | 
|  |  | 
|  | // Merge the attributes. | 
|  | mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation); | 
|  |  | 
|  | // Merge attributes from the parameters. | 
|  | for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(), | 
|  | ni = newMethod->param_begin(), ne = newMethod->param_end(); | 
|  | ni != ne; ++ni, ++oi) | 
|  | mergeParamDeclAttributes(*ni, *oi, Context); | 
|  |  | 
|  | CheckObjCMethodOverride(newMethod, oldMethod, true); | 
|  | } | 
|  |  | 
|  | /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and | 
|  | /// scope as a previous declaration 'Old'.  Figure out how to merge their types, | 
|  | /// emitting diagnostics as appropriate. | 
|  | /// | 
|  | /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back | 
|  | /// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't | 
|  | /// check them before the initializer is attached. | 
|  | /// | 
|  | void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) { | 
|  | if (New->isInvalidDecl() || Old->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | QualType MergedT; | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | AutoType *AT = New->getType()->getContainedAutoType(); | 
|  | if (AT && !AT->isDeduced()) { | 
|  | // We don't know what the new type is until the initializer is attached. | 
|  | return; | 
|  | } else if (Context.hasSameType(New->getType(), Old->getType())) { | 
|  | // These could still be something that needs exception specs checked. | 
|  | return MergeVarDeclExceptionSpecs(New, Old); | 
|  | } | 
|  | // C++ [basic.link]p10: | 
|  | //   [...] the types specified by all declarations referring to a given | 
|  | //   object or function shall be identical, except that declarations for an | 
|  | //   array object can specify array types that differ by the presence or | 
|  | //   absence of a major array bound (8.3.4). | 
|  | else if (Old->getType()->isIncompleteArrayType() && | 
|  | New->getType()->isArrayType()) { | 
|  | CanQual<ArrayType> OldArray | 
|  | = Context.getCanonicalType(Old->getType())->getAs<ArrayType>(); | 
|  | CanQual<ArrayType> NewArray | 
|  | = Context.getCanonicalType(New->getType())->getAs<ArrayType>(); | 
|  | if (OldArray->getElementType() == NewArray->getElementType()) | 
|  | MergedT = New->getType(); | 
|  | } else if (Old->getType()->isArrayType() && | 
|  | New->getType()->isIncompleteArrayType()) { | 
|  | CanQual<ArrayType> OldArray | 
|  | = Context.getCanonicalType(Old->getType())->getAs<ArrayType>(); | 
|  | CanQual<ArrayType> NewArray | 
|  | = Context.getCanonicalType(New->getType())->getAs<ArrayType>(); | 
|  | if (OldArray->getElementType() == NewArray->getElementType()) | 
|  | MergedT = Old->getType(); | 
|  | } else if (New->getType()->isObjCObjectPointerType() | 
|  | && Old->getType()->isObjCObjectPointerType()) { | 
|  | MergedT = Context.mergeObjCGCQualifiers(New->getType(), | 
|  | Old->getType()); | 
|  | } | 
|  | } else { | 
|  | MergedT = Context.mergeTypes(New->getType(), Old->getType()); | 
|  | } | 
|  | if (MergedT.isNull()) { | 
|  | Diag(New->getLocation(), diag::err_redefinition_different_type) | 
|  | << New->getDeclName(); | 
|  | Diag(Old->getLocation(), diag::note_previous_definition); | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  | New->setType(MergedT); | 
|  | } | 
|  |  | 
|  | /// MergeVarDecl - We just parsed a variable 'New' which has the same name | 
|  | /// and scope as a previous declaration 'Old'.  Figure out how to resolve this | 
|  | /// situation, merging decls or emitting diagnostics as appropriate. | 
|  | /// | 
|  | /// Tentative definition rules (C99 6.9.2p2) are checked by | 
|  | /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative | 
|  | /// definitions here, since the initializer hasn't been attached. | 
|  | /// | 
|  | void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { | 
|  | // If the new decl is already invalid, don't do any other checking. | 
|  | if (New->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | // Verify the old decl was also a variable. | 
|  | VarDecl *Old = 0; | 
|  | if (!Previous.isSingleResult() || | 
|  | !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) { | 
|  | Diag(New->getLocation(), diag::err_redefinition_different_kind) | 
|  | << New->getDeclName(); | 
|  | Diag(Previous.getRepresentativeDecl()->getLocation(), | 
|  | diag::note_previous_definition); | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // C++ [class.mem]p1: | 
|  | //   A member shall not be declared twice in the member-specification [...] | 
|  | // | 
|  | // Here, we need only consider static data members. | 
|  | if (Old->isStaticDataMember() && !New->isOutOfLine()) { | 
|  | Diag(New->getLocation(), diag::err_duplicate_member) | 
|  | << New->getIdentifier(); | 
|  | Diag(Old->getLocation(), diag::note_previous_declaration); | 
|  | New->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | mergeDeclAttributes(New, Old, Context); | 
|  | // Warn if an already-declared variable is made a weak_import in a subsequent declaration | 
|  | if (New->getAttr<WeakImportAttr>() && | 
|  | Old->getStorageClass() == SC_None && | 
|  | !Old->getAttr<WeakImportAttr>()) { | 
|  | Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName(); | 
|  | Diag(Old->getLocation(), diag::note_previous_definition); | 
|  | // Remove weak_import attribute on new declaration. | 
|  | New->dropAttr<WeakImportAttr>(); | 
|  | } | 
|  |  | 
|  | // Merge the types. | 
|  | MergeVarDeclTypes(New, Old); | 
|  | if (New->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | // C99 6.2.2p4: Check if we have a static decl followed by a non-static. | 
|  | if (New->getStorageClass() == SC_Static && | 
|  | (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) { | 
|  | Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName(); | 
|  | Diag(Old->getLocation(), diag::note_previous_definition); | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  | // C99 6.2.2p4: | 
|  | //   For an identifier declared with the storage-class specifier | 
|  | //   extern in a scope in which a prior declaration of that | 
|  | //   identifier is visible,23) if the prior declaration specifies | 
|  | //   internal or external linkage, the linkage of the identifier at | 
|  | //   the later declaration is the same as the linkage specified at | 
|  | //   the prior declaration. If no prior declaration is visible, or | 
|  | //   if the prior declaration specifies no linkage, then the | 
|  | //   identifier has external linkage. | 
|  | if (New->hasExternalStorage() && Old->hasLinkage()) | 
|  | /* Okay */; | 
|  | else if (New->getStorageClass() != SC_Static && | 
|  | Old->getStorageClass() == SC_Static) { | 
|  | Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); | 
|  | Diag(Old->getLocation(), diag::note_previous_definition); | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // Check if extern is followed by non-extern and vice-versa. | 
|  | if (New->hasExternalStorage() && | 
|  | !Old->hasLinkage() && Old->isLocalVarDecl()) { | 
|  | Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName(); | 
|  | Diag(Old->getLocation(), diag::note_previous_definition); | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  | if (Old->hasExternalStorage() && | 
|  | !New->hasLinkage() && New->isLocalVarDecl()) { | 
|  | Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName(); | 
|  | Diag(Old->getLocation(), diag::note_previous_definition); | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // __module_private__ is propagated to later declarations. | 
|  | if (Old->isModulePrivate()) | 
|  | New->setModulePrivate(); | 
|  | else if (New->isModulePrivate()) | 
|  | diagnoseModulePrivateRedeclaration(New, Old); | 
|  |  | 
|  | // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. | 
|  |  | 
|  | // FIXME: The test for external storage here seems wrong? We still | 
|  | // need to check for mismatches. | 
|  | if (!New->hasExternalStorage() && !New->isFileVarDecl() && | 
|  | // Don't complain about out-of-line definitions of static members. | 
|  | !(Old->getLexicalDeclContext()->isRecord() && | 
|  | !New->getLexicalDeclContext()->isRecord())) { | 
|  | Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); | 
|  | Diag(Old->getLocation(), diag::note_previous_definition); | 
|  | return New->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | if (New->isThreadSpecified() && !Old->isThreadSpecified()) { | 
|  | Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); | 
|  | Diag(Old->getLocation(), diag::note_previous_definition); | 
|  | } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) { | 
|  | Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); | 
|  | Diag(Old->getLocation(), diag::note_previous_definition); | 
|  | } | 
|  |  | 
|  | // C++ doesn't have tentative definitions, so go right ahead and check here. | 
|  | const VarDecl *Def; | 
|  | if (getLangOptions().CPlusPlus && | 
|  | New->isThisDeclarationADefinition() == VarDecl::Definition && | 
|  | (Def = Old->getDefinition())) { | 
|  | Diag(New->getLocation(), diag::err_redefinition) | 
|  | << New->getDeclName(); | 
|  | Diag(Def->getLocation(), diag::note_previous_definition); | 
|  | New->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | // c99 6.2.2 P4. | 
|  | // For an identifier declared with the storage-class specifier extern in a | 
|  | // scope in which a prior declaration of that identifier is visible, if | 
|  | // the prior declaration specifies internal or external linkage, the linkage | 
|  | // of the identifier at the later declaration is the same as the linkage | 
|  | // specified at the prior declaration. | 
|  | // FIXME. revisit this code. | 
|  | if (New->hasExternalStorage() && | 
|  | Old->getLinkage() == InternalLinkage && | 
|  | New->getDeclContext() == Old->getDeclContext()) | 
|  | New->setStorageClass(Old->getStorageClass()); | 
|  |  | 
|  | // Keep a chain of previous declarations. | 
|  | New->setPreviousDeclaration(Old); | 
|  |  | 
|  | // Inherit access appropriately. | 
|  | New->setAccess(Old->getAccess()); | 
|  | } | 
|  |  | 
|  | /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with | 
|  | /// no declarator (e.g. "struct foo;") is parsed. | 
|  | Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, | 
|  | DeclSpec &DS) { | 
|  | return ParsedFreeStandingDeclSpec(S, AS, DS, | 
|  | MultiTemplateParamsArg(*this, 0, 0)); | 
|  | } | 
|  |  | 
|  | /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with | 
|  | /// no declarator (e.g. "struct foo;") is parsed. It also accopts template | 
|  | /// parameters to cope with template friend declarations. | 
|  | Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, | 
|  | DeclSpec &DS, | 
|  | MultiTemplateParamsArg TemplateParams) { | 
|  | Decl *TagD = 0; | 
|  | TagDecl *Tag = 0; | 
|  | if (DS.getTypeSpecType() == DeclSpec::TST_class || | 
|  | DS.getTypeSpecType() == DeclSpec::TST_struct || | 
|  | DS.getTypeSpecType() == DeclSpec::TST_union || | 
|  | DS.getTypeSpecType() == DeclSpec::TST_enum) { | 
|  | TagD = DS.getRepAsDecl(); | 
|  |  | 
|  | if (!TagD) // We probably had an error | 
|  | return 0; | 
|  |  | 
|  | // Note that the above type specs guarantee that the | 
|  | // type rep is a Decl, whereas in many of the others | 
|  | // it's a Type. | 
|  | Tag = dyn_cast<TagDecl>(TagD); | 
|  | } | 
|  |  | 
|  | if (unsigned TypeQuals = DS.getTypeQualifiers()) { | 
|  | // Enforce C99 6.7.3p2: "Types other than pointer types derived from object | 
|  | // or incomplete types shall not be restrict-qualified." | 
|  | if (TypeQuals & DeclSpec::TQ_restrict) | 
|  | Diag(DS.getRestrictSpecLoc(), | 
|  | diag::err_typecheck_invalid_restrict_not_pointer_noarg) | 
|  | << DS.getSourceRange(); | 
|  | } | 
|  |  | 
|  | if (DS.isConstexprSpecified()) { | 
|  | // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations | 
|  | // and definitions of functions and variables. | 
|  | if (Tag) | 
|  | Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag) | 
|  | << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 : | 
|  | DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 : | 
|  | DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3); | 
|  | else | 
|  | Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators); | 
|  | // Don't emit warnings after this error. | 
|  | return TagD; | 
|  | } | 
|  |  | 
|  | if (DS.isFriendSpecified()) { | 
|  | // If we're dealing with a decl but not a TagDecl, assume that | 
|  | // whatever routines created it handled the friendship aspect. | 
|  | if (TagD && !Tag) | 
|  | return 0; | 
|  | return ActOnFriendTypeDecl(S, DS, TemplateParams); | 
|  | } | 
|  |  | 
|  | // Track whether we warned about the fact that there aren't any | 
|  | // declarators. | 
|  | bool emittedWarning = false; | 
|  |  | 
|  | if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { | 
|  | ProcessDeclAttributeList(S, Record, DS.getAttributes().getList()); | 
|  |  | 
|  | if (!Record->getDeclName() && Record->isDefinition() && | 
|  | DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { | 
|  | if (getLangOptions().CPlusPlus || | 
|  | Record->getDeclContext()->isRecord()) | 
|  | return BuildAnonymousStructOrUnion(S, DS, AS, Record); | 
|  |  | 
|  | Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators) | 
|  | << DS.getSourceRange(); | 
|  | emittedWarning = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for Microsoft C extension: anonymous struct. | 
|  | if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus && | 
|  | CurContext->isRecord() && | 
|  | DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) { | 
|  | // Handle 2 kinds of anonymous struct: | 
|  | //   struct STRUCT; | 
|  | // and | 
|  | //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct. | 
|  | RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag); | 
|  | if ((Record && Record->getDeclName() && !Record->isDefinition()) || | 
|  | (DS.getTypeSpecType() == DeclSpec::TST_typename && | 
|  | DS.getRepAsType().get()->isStructureType())) { | 
|  | Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct) | 
|  | << DS.getSourceRange(); | 
|  | return BuildMicrosoftCAnonymousStruct(S, DS, Record); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (getLangOptions().CPlusPlus && | 
|  | DS.getStorageClassSpec() != DeclSpec::SCS_typedef) | 
|  | if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag)) | 
|  | if (Enum->enumerator_begin() == Enum->enumerator_end() && | 
|  | !Enum->getIdentifier() && !Enum->isInvalidDecl()) { | 
|  | Diag(Enum->getLocation(), diag::ext_no_declarators) | 
|  | << DS.getSourceRange(); | 
|  | emittedWarning = true; | 
|  | } | 
|  |  | 
|  | // Skip all the checks below if we have a type error. | 
|  | if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD; | 
|  |  | 
|  | if (!DS.isMissingDeclaratorOk()) { | 
|  | // Warn about typedefs of enums without names, since this is an | 
|  | // extension in both Microsoft and GNU. | 
|  | if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef && | 
|  | Tag && isa<EnumDecl>(Tag)) { | 
|  | Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name) | 
|  | << DS.getSourceRange(); | 
|  | return Tag; | 
|  | } | 
|  |  | 
|  | Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators) | 
|  | << DS.getSourceRange(); | 
|  | emittedWarning = true; | 
|  | } | 
|  |  | 
|  | // We're going to complain about a bunch of spurious specifiers; | 
|  | // only do this if we're declaring a tag, because otherwise we | 
|  | // should be getting diag::ext_no_declarators. | 
|  | if (emittedWarning || (TagD && TagD->isInvalidDecl())) | 
|  | return TagD; | 
|  |  | 
|  | // Note that a linkage-specification sets a storage class, but | 
|  | // 'extern "C" struct foo;' is actually valid and not theoretically | 
|  | // useless. | 
|  | if (DeclSpec::SCS scs = DS.getStorageClassSpec()) | 
|  | if (!DS.isExternInLinkageSpec()) | 
|  | Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier) | 
|  | << DeclSpec::getSpecifierName(scs); | 
|  |  | 
|  | if (DS.isThreadSpecified()) | 
|  | Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread"; | 
|  | if (DS.getTypeQualifiers()) { | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_const) | 
|  | Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const"; | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) | 
|  | Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile"; | 
|  | // Restrict is covered above. | 
|  | } | 
|  | if (DS.isInlineSpecified()) | 
|  | Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline"; | 
|  | if (DS.isVirtualSpecified()) | 
|  | Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual"; | 
|  | if (DS.isExplicitSpecified()) | 
|  | Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit"; | 
|  |  | 
|  | if (DS.isModulePrivateSpecified() && | 
|  | Tag && Tag->getDeclContext()->isFunctionOrMethod()) | 
|  | Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class) | 
|  | << Tag->getTagKind() | 
|  | << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc()); | 
|  |  | 
|  | // FIXME: Warn on useless attributes | 
|  |  | 
|  | return TagD; | 
|  | } | 
|  |  | 
|  | /// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec. | 
|  | /// builds a statement for it and returns it so it is evaluated. | 
|  | StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) { | 
|  | StmtResult R; | 
|  | if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) { | 
|  | Expr *Exp = DS.getRepAsExpr(); | 
|  | QualType Ty = Exp->getType(); | 
|  | if (Ty->isPointerType()) { | 
|  | do | 
|  | Ty = Ty->getAs<PointerType>()->getPointeeType(); | 
|  | while (Ty->isPointerType()); | 
|  | } | 
|  | if (Ty->isVariableArrayType()) { | 
|  | R = ActOnExprStmt(MakeFullExpr(Exp)); | 
|  | } | 
|  | } | 
|  | return R; | 
|  | } | 
|  |  | 
|  | /// We are trying to inject an anonymous member into the given scope; | 
|  | /// check if there's an existing declaration that can't be overloaded. | 
|  | /// | 
|  | /// \return true if this is a forbidden redeclaration | 
|  | static bool CheckAnonMemberRedeclaration(Sema &SemaRef, | 
|  | Scope *S, | 
|  | DeclContext *Owner, | 
|  | DeclarationName Name, | 
|  | SourceLocation NameLoc, | 
|  | unsigned diagnostic) { | 
|  | LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName, | 
|  | Sema::ForRedeclaration); | 
|  | if (!SemaRef.LookupName(R, S)) return false; | 
|  |  | 
|  | if (R.getAsSingle<TagDecl>()) | 
|  | return false; | 
|  |  | 
|  | // Pick a representative declaration. | 
|  | NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); | 
|  | assert(PrevDecl && "Expected a non-null Decl"); | 
|  |  | 
|  | if (!SemaRef.isDeclInScope(PrevDecl, Owner, S)) | 
|  | return false; | 
|  |  | 
|  | SemaRef.Diag(NameLoc, diagnostic) << Name; | 
|  | SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// InjectAnonymousStructOrUnionMembers - Inject the members of the | 
|  | /// anonymous struct or union AnonRecord into the owning context Owner | 
|  | /// and scope S. This routine will be invoked just after we realize | 
|  | /// that an unnamed union or struct is actually an anonymous union or | 
|  | /// struct, e.g., | 
|  | /// | 
|  | /// @code | 
|  | /// union { | 
|  | ///   int i; | 
|  | ///   float f; | 
|  | /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and | 
|  | ///    // f into the surrounding scope.x | 
|  | /// @endcode | 
|  | /// | 
|  | /// This routine is recursive, injecting the names of nested anonymous | 
|  | /// structs/unions into the owning context and scope as well. | 
|  | static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, | 
|  | DeclContext *Owner, | 
|  | RecordDecl *AnonRecord, | 
|  | AccessSpecifier AS, | 
|  | SmallVector<NamedDecl*, 2> &Chaining, | 
|  | bool MSAnonStruct) { | 
|  | unsigned diagKind | 
|  | = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl | 
|  | : diag::err_anonymous_struct_member_redecl; | 
|  |  | 
|  | bool Invalid = false; | 
|  |  | 
|  | // Look every FieldDecl and IndirectFieldDecl with a name. | 
|  | for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(), | 
|  | DEnd = AnonRecord->decls_end(); | 
|  | D != DEnd; ++D) { | 
|  | if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) && | 
|  | cast<NamedDecl>(*D)->getDeclName()) { | 
|  | ValueDecl *VD = cast<ValueDecl>(*D); | 
|  | if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(), | 
|  | VD->getLocation(), diagKind)) { | 
|  | // C++ [class.union]p2: | 
|  | //   The names of the members of an anonymous union shall be | 
|  | //   distinct from the names of any other entity in the | 
|  | //   scope in which the anonymous union is declared. | 
|  | Invalid = true; | 
|  | } else { | 
|  | // C++ [class.union]p2: | 
|  | //   For the purpose of name lookup, after the anonymous union | 
|  | //   definition, the members of the anonymous union are | 
|  | //   considered to have been defined in the scope in which the | 
|  | //   anonymous union is declared. | 
|  | unsigned OldChainingSize = Chaining.size(); | 
|  | if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD)) | 
|  | for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(), | 
|  | PE = IF->chain_end(); PI != PE; ++PI) | 
|  | Chaining.push_back(*PI); | 
|  | else | 
|  | Chaining.push_back(VD); | 
|  |  | 
|  | assert(Chaining.size() >= 2); | 
|  | NamedDecl **NamedChain = | 
|  | new (SemaRef.Context)NamedDecl*[Chaining.size()]; | 
|  | for (unsigned i = 0; i < Chaining.size(); i++) | 
|  | NamedChain[i] = Chaining[i]; | 
|  |  | 
|  | IndirectFieldDecl* IndirectField = | 
|  | IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(), | 
|  | VD->getIdentifier(), VD->getType(), | 
|  | NamedChain, Chaining.size()); | 
|  |  | 
|  | IndirectField->setAccess(AS); | 
|  | IndirectField->setImplicit(); | 
|  | SemaRef.PushOnScopeChains(IndirectField, S); | 
|  |  | 
|  | // That includes picking up the appropriate access specifier. | 
|  | if (AS != AS_none) IndirectField->setAccess(AS); | 
|  |  | 
|  | Chaining.resize(OldChainingSize); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to | 
|  | /// a VarDecl::StorageClass. Any error reporting is up to the caller: | 
|  | /// illegal input values are mapped to SC_None. | 
|  | static StorageClass | 
|  | StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) { | 
|  | switch (StorageClassSpec) { | 
|  | case DeclSpec::SCS_unspecified:    return SC_None; | 
|  | case DeclSpec::SCS_extern:         return SC_Extern; | 
|  | case DeclSpec::SCS_static:         return SC_Static; | 
|  | case DeclSpec::SCS_auto:           return SC_Auto; | 
|  | case DeclSpec::SCS_register:       return SC_Register; | 
|  | case DeclSpec::SCS_private_extern: return SC_PrivateExtern; | 
|  | // Illegal SCSs map to None: error reporting is up to the caller. | 
|  | case DeclSpec::SCS_mutable:        // Fall through. | 
|  | case DeclSpec::SCS_typedef:        return SC_None; | 
|  | } | 
|  | llvm_unreachable("unknown storage class specifier"); | 
|  | } | 
|  |  | 
|  | /// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to | 
|  | /// a StorageClass. Any error reporting is up to the caller: | 
|  | /// illegal input values are mapped to SC_None. | 
|  | static StorageClass | 
|  | StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) { | 
|  | switch (StorageClassSpec) { | 
|  | case DeclSpec::SCS_unspecified:    return SC_None; | 
|  | case DeclSpec::SCS_extern:         return SC_Extern; | 
|  | case DeclSpec::SCS_static:         return SC_Static; | 
|  | case DeclSpec::SCS_private_extern: return SC_PrivateExtern; | 
|  | // Illegal SCSs map to None: error reporting is up to the caller. | 
|  | case DeclSpec::SCS_auto:           // Fall through. | 
|  | case DeclSpec::SCS_mutable:        // Fall through. | 
|  | case DeclSpec::SCS_register:       // Fall through. | 
|  | case DeclSpec::SCS_typedef:        return SC_None; | 
|  | } | 
|  | llvm_unreachable("unknown storage class specifier"); | 
|  | } | 
|  |  | 
|  | /// BuildAnonymousStructOrUnion - Handle the declaration of an | 
|  | /// anonymous structure or union. Anonymous unions are a C++ feature | 
|  | /// (C++ [class.union]) and a GNU C extension; anonymous structures | 
|  | /// are a GNU C and GNU C++ extension. | 
|  | Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, | 
|  | AccessSpecifier AS, | 
|  | RecordDecl *Record) { | 
|  | DeclContext *Owner = Record->getDeclContext(); | 
|  |  | 
|  | // Diagnose whether this anonymous struct/union is an extension. | 
|  | if (Record->isUnion() && !getLangOptions().CPlusPlus) | 
|  | Diag(Record->getLocation(), diag::ext_anonymous_union); | 
|  | else if (!Record->isUnion()) | 
|  | Diag(Record->getLocation(), diag::ext_anonymous_struct); | 
|  |  | 
|  | // C and C++ require different kinds of checks for anonymous | 
|  | // structs/unions. | 
|  | bool Invalid = false; | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | const char* PrevSpec = 0; | 
|  | unsigned DiagID; | 
|  | // C++ [class.union]p3: | 
|  | //   Anonymous unions declared in a named namespace or in the | 
|  | //   global namespace shall be declared static. | 
|  | if (DS.getStorageClassSpec() != DeclSpec::SCS_static && | 
|  | (isa<TranslationUnitDecl>(Owner) || | 
|  | (isa<NamespaceDecl>(Owner) && | 
|  | cast<NamespaceDecl>(Owner)->getDeclName()))) { | 
|  | Diag(Record->getLocation(), diag::err_anonymous_union_not_static); | 
|  | Invalid = true; | 
|  |  | 
|  | // Recover by adding 'static'. | 
|  | DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), | 
|  | PrevSpec, DiagID, getLangOptions()); | 
|  | } | 
|  | // C++ [class.union]p3: | 
|  | //   A storage class is not allowed in a declaration of an | 
|  | //   anonymous union in a class scope. | 
|  | else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && | 
|  | isa<RecordDecl>(Owner)) { | 
|  | Diag(DS.getStorageClassSpecLoc(), | 
|  | diag::err_anonymous_union_with_storage_spec); | 
|  | Invalid = true; | 
|  |  | 
|  | // Recover by removing the storage specifier. | 
|  | DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(), | 
|  | PrevSpec, DiagID, getLangOptions()); | 
|  | } | 
|  |  | 
|  | // Ignore const/volatile/restrict qualifiers. | 
|  | if (DS.getTypeQualifiers()) { | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_const) | 
|  | Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified) | 
|  | << Record->isUnion() << 0 | 
|  | << FixItHint::CreateRemoval(DS.getConstSpecLoc()); | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) | 
|  | Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified) | 
|  | << Record->isUnion() << 1 | 
|  | << FixItHint::CreateRemoval(DS.getVolatileSpecLoc()); | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) | 
|  | Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified) | 
|  | << Record->isUnion() << 2 | 
|  | << FixItHint::CreateRemoval(DS.getRestrictSpecLoc()); | 
|  |  | 
|  | DS.ClearTypeQualifiers(); | 
|  | } | 
|  |  | 
|  | // C++ [class.union]p2: | 
|  | //   The member-specification of an anonymous union shall only | 
|  | //   define non-static data members. [Note: nested types and | 
|  | //   functions cannot be declared within an anonymous union. ] | 
|  | for (DeclContext::decl_iterator Mem = Record->decls_begin(), | 
|  | MemEnd = Record->decls_end(); | 
|  | Mem != MemEnd; ++Mem) { | 
|  | if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) { | 
|  | // C++ [class.union]p3: | 
|  | //   An anonymous union shall not have private or protected | 
|  | //   members (clause 11). | 
|  | assert(FD->getAccess() != AS_none); | 
|  | if (FD->getAccess() != AS_public) { | 
|  | Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) | 
|  | << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected); | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | // C++ [class.union]p1 | 
|  | //   An object of a class with a non-trivial constructor, a non-trivial | 
|  | //   copy constructor, a non-trivial destructor, or a non-trivial copy | 
|  | //   assignment operator cannot be a member of a union, nor can an | 
|  | //   array of such objects. | 
|  | if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD)) | 
|  | Invalid = true; | 
|  | } else if ((*Mem)->isImplicit()) { | 
|  | // Any implicit members are fine. | 
|  | } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) { | 
|  | // This is a type that showed up in an | 
|  | // elaborated-type-specifier inside the anonymous struct or | 
|  | // union, but which actually declares a type outside of the | 
|  | // anonymous struct or union. It's okay. | 
|  | } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) { | 
|  | if (!MemRecord->isAnonymousStructOrUnion() && | 
|  | MemRecord->getDeclName()) { | 
|  | // Visual C++ allows type definition in anonymous struct or union. | 
|  | if (getLangOptions().MicrosoftExt) | 
|  | Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) | 
|  | << (int)Record->isUnion(); | 
|  | else { | 
|  | // This is a nested type declaration. | 
|  | Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) | 
|  | << (int)Record->isUnion(); | 
|  | Invalid = true; | 
|  | } | 
|  | } | 
|  | } else if (isa<AccessSpecDecl>(*Mem)) { | 
|  | // Any access specifier is fine. | 
|  | } else { | 
|  | // We have something that isn't a non-static data | 
|  | // member. Complain about it. | 
|  | unsigned DK = diag::err_anonymous_record_bad_member; | 
|  | if (isa<TypeDecl>(*Mem)) | 
|  | DK = diag::err_anonymous_record_with_type; | 
|  | else if (isa<FunctionDecl>(*Mem)) | 
|  | DK = diag::err_anonymous_record_with_function; | 
|  | else if (isa<VarDecl>(*Mem)) | 
|  | DK = diag::err_anonymous_record_with_static; | 
|  |  | 
|  | // Visual C++ allows type definition in anonymous struct or union. | 
|  | if (getLangOptions().MicrosoftExt && | 
|  | DK == diag::err_anonymous_record_with_type) | 
|  | Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type) | 
|  | << (int)Record->isUnion(); | 
|  | else { | 
|  | Diag((*Mem)->getLocation(), DK) | 
|  | << (int)Record->isUnion(); | 
|  | Invalid = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Record->isUnion() && !Owner->isRecord()) { | 
|  | Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) | 
|  | << (int)getLangOptions().CPlusPlus; | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | // Mock up a declarator. | 
|  | Declarator Dc(DS, Declarator::MemberContext); | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); | 
|  | assert(TInfo && "couldn't build declarator info for anonymous struct/union"); | 
|  |  | 
|  | // Create a declaration for this anonymous struct/union. | 
|  | NamedDecl *Anon = 0; | 
|  | if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { | 
|  | Anon = FieldDecl::Create(Context, OwningClass, | 
|  | DS.getSourceRange().getBegin(), | 
|  | Record->getLocation(), | 
|  | /*IdentifierInfo=*/0, | 
|  | Context.getTypeDeclType(Record), | 
|  | TInfo, | 
|  | /*BitWidth=*/0, /*Mutable=*/false, | 
|  | /*HasInit=*/false); | 
|  | Anon->setAccess(AS); | 
|  | if (getLangOptions().CPlusPlus) | 
|  | FieldCollector->Add(cast<FieldDecl>(Anon)); | 
|  | } else { | 
|  | DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); | 
|  | assert(SCSpec != DeclSpec::SCS_typedef && | 
|  | "Parser allowed 'typedef' as storage class VarDecl."); | 
|  | VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec); | 
|  | if (SCSpec == DeclSpec::SCS_mutable) { | 
|  | // mutable can only appear on non-static class members, so it's always | 
|  | // an error here | 
|  | Diag(Record->getLocation(), diag::err_mutable_nonmember); | 
|  | Invalid = true; | 
|  | SC = SC_None; | 
|  | } | 
|  | SCSpec = DS.getStorageClassSpecAsWritten(); | 
|  | VarDecl::StorageClass SCAsWritten | 
|  | = StorageClassSpecToVarDeclStorageClass(SCSpec); | 
|  |  | 
|  | Anon = VarDecl::Create(Context, Owner, | 
|  | DS.getSourceRange().getBegin(), | 
|  | Record->getLocation(), /*IdentifierInfo=*/0, | 
|  | Context.getTypeDeclType(Record), | 
|  | TInfo, SC, SCAsWritten); | 
|  |  | 
|  | // Default-initialize the implicit variable. This initialization will be | 
|  | // trivial in almost all cases, except if a union member has an in-class | 
|  | // initializer: | 
|  | //   union { int n = 0; }; | 
|  | ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false); | 
|  | } | 
|  | Anon->setImplicit(); | 
|  |  | 
|  | // Add the anonymous struct/union object to the current | 
|  | // context. We'll be referencing this object when we refer to one of | 
|  | // its members. | 
|  | Owner->addDecl(Anon); | 
|  |  | 
|  | // Inject the members of the anonymous struct/union into the owning | 
|  | // context and into the identifier resolver chain for name lookup | 
|  | // purposes. | 
|  | SmallVector<NamedDecl*, 2> Chain; | 
|  | Chain.push_back(Anon); | 
|  |  | 
|  | if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, | 
|  | Chain, false)) | 
|  | Invalid = true; | 
|  |  | 
|  | // Mark this as an anonymous struct/union type. Note that we do not | 
|  | // do this until after we have already checked and injected the | 
|  | // members of this anonymous struct/union type, because otherwise | 
|  | // the members could be injected twice: once by DeclContext when it | 
|  | // builds its lookup table, and once by | 
|  | // InjectAnonymousStructOrUnionMembers. | 
|  | Record->setAnonymousStructOrUnion(true); | 
|  |  | 
|  | if (Invalid) | 
|  | Anon->setInvalidDecl(); | 
|  |  | 
|  | return Anon; | 
|  | } | 
|  |  | 
|  | /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an | 
|  | /// Microsoft C anonymous structure. | 
|  | /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx | 
|  | /// Example: | 
|  | /// | 
|  | /// struct A { int a; }; | 
|  | /// struct B { struct A; int b; }; | 
|  | /// | 
|  | /// void foo() { | 
|  | ///   B var; | 
|  | ///   var.a = 3; | 
|  | /// } | 
|  | /// | 
|  | Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, | 
|  | RecordDecl *Record) { | 
|  |  | 
|  | // If there is no Record, get the record via the typedef. | 
|  | if (!Record) | 
|  | Record = DS.getRepAsType().get()->getAsStructureType()->getDecl(); | 
|  |  | 
|  | // Mock up a declarator. | 
|  | Declarator Dc(DS, Declarator::TypeNameContext); | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); | 
|  | assert(TInfo && "couldn't build declarator info for anonymous struct"); | 
|  |  | 
|  | // Create a declaration for this anonymous struct. | 
|  | NamedDecl* Anon = FieldDecl::Create(Context, | 
|  | cast<RecordDecl>(CurContext), | 
|  | DS.getSourceRange().getBegin(), | 
|  | DS.getSourceRange().getBegin(), | 
|  | /*IdentifierInfo=*/0, | 
|  | Context.getTypeDeclType(Record), | 
|  | TInfo, | 
|  | /*BitWidth=*/0, /*Mutable=*/false, | 
|  | /*HasInit=*/false); | 
|  | Anon->setImplicit(); | 
|  |  | 
|  | // Add the anonymous struct object to the current context. | 
|  | CurContext->addDecl(Anon); | 
|  |  | 
|  | // Inject the members of the anonymous struct into the current | 
|  | // context and into the identifier resolver chain for name lookup | 
|  | // purposes. | 
|  | SmallVector<NamedDecl*, 2> Chain; | 
|  | Chain.push_back(Anon); | 
|  |  | 
|  | if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext, | 
|  | Record->getDefinition(), | 
|  | AS_none, Chain, true)) | 
|  | Anon->setInvalidDecl(); | 
|  |  | 
|  | return Anon; | 
|  | } | 
|  |  | 
|  | /// GetNameForDeclarator - Determine the full declaration name for the | 
|  | /// given Declarator. | 
|  | DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) { | 
|  | return GetNameFromUnqualifiedId(D.getName()); | 
|  | } | 
|  |  | 
|  | /// \brief Retrieves the declaration name from a parsed unqualified-id. | 
|  | DeclarationNameInfo | 
|  | Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) { | 
|  | DeclarationNameInfo NameInfo; | 
|  | NameInfo.setLoc(Name.StartLocation); | 
|  |  | 
|  | switch (Name.getKind()) { | 
|  |  | 
|  | case UnqualifiedId::IK_ImplicitSelfParam: | 
|  | case UnqualifiedId::IK_Identifier: | 
|  | NameInfo.setName(Name.Identifier); | 
|  | NameInfo.setLoc(Name.StartLocation); | 
|  | return NameInfo; | 
|  |  | 
|  | case UnqualifiedId::IK_OperatorFunctionId: | 
|  | NameInfo.setName(Context.DeclarationNames.getCXXOperatorName( | 
|  | Name.OperatorFunctionId.Operator)); | 
|  | NameInfo.setLoc(Name.StartLocation); | 
|  | NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc | 
|  | = Name.OperatorFunctionId.SymbolLocations[0]; | 
|  | NameInfo.getInfo().CXXOperatorName.EndOpNameLoc | 
|  | = Name.EndLocation.getRawEncoding(); | 
|  | return NameInfo; | 
|  |  | 
|  | case UnqualifiedId::IK_LiteralOperatorId: | 
|  | NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName( | 
|  | Name.Identifier)); | 
|  | NameInfo.setLoc(Name.StartLocation); | 
|  | NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation); | 
|  | return NameInfo; | 
|  |  | 
|  | case UnqualifiedId::IK_ConversionFunctionId: { | 
|  | TypeSourceInfo *TInfo; | 
|  | QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo); | 
|  | if (Ty.isNull()) | 
|  | return DeclarationNameInfo(); | 
|  | NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName( | 
|  | Context.getCanonicalType(Ty))); | 
|  | NameInfo.setLoc(Name.StartLocation); | 
|  | NameInfo.setNamedTypeInfo(TInfo); | 
|  | return NameInfo; | 
|  | } | 
|  |  | 
|  | case UnqualifiedId::IK_ConstructorName: { | 
|  | TypeSourceInfo *TInfo; | 
|  | QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo); | 
|  | if (Ty.isNull()) | 
|  | return DeclarationNameInfo(); | 
|  | NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( | 
|  | Context.getCanonicalType(Ty))); | 
|  | NameInfo.setLoc(Name.StartLocation); | 
|  | NameInfo.setNamedTypeInfo(TInfo); | 
|  | return NameInfo; | 
|  | } | 
|  |  | 
|  | case UnqualifiedId::IK_ConstructorTemplateId: { | 
|  | // In well-formed code, we can only have a constructor | 
|  | // template-id that refers to the current context, so go there | 
|  | // to find the actual type being constructed. | 
|  | CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext); | 
|  | if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name) | 
|  | return DeclarationNameInfo(); | 
|  |  | 
|  | // Determine the type of the class being constructed. | 
|  | QualType CurClassType = Context.getTypeDeclType(CurClass); | 
|  |  | 
|  | // FIXME: Check two things: that the template-id names the same type as | 
|  | // CurClassType, and that the template-id does not occur when the name | 
|  | // was qualified. | 
|  |  | 
|  | NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( | 
|  | Context.getCanonicalType(CurClassType))); | 
|  | NameInfo.setLoc(Name.StartLocation); | 
|  | // FIXME: should we retrieve TypeSourceInfo? | 
|  | NameInfo.setNamedTypeInfo(0); | 
|  | return NameInfo; | 
|  | } | 
|  |  | 
|  | case UnqualifiedId::IK_DestructorName: { | 
|  | TypeSourceInfo *TInfo; | 
|  | QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo); | 
|  | if (Ty.isNull()) | 
|  | return DeclarationNameInfo(); | 
|  | NameInfo.setName(Context.DeclarationNames.getCXXDestructorName( | 
|  | Context.getCanonicalType(Ty))); | 
|  | NameInfo.setLoc(Name.StartLocation); | 
|  | NameInfo.setNamedTypeInfo(TInfo); | 
|  | return NameInfo; | 
|  | } | 
|  |  | 
|  | case UnqualifiedId::IK_TemplateId: { | 
|  | TemplateName TName = Name.TemplateId->Template.get(); | 
|  | SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc; | 
|  | return Context.getNameForTemplate(TName, TNameLoc); | 
|  | } | 
|  |  | 
|  | } // switch (Name.getKind()) | 
|  |  | 
|  | llvm_unreachable("Unknown name kind"); | 
|  | } | 
|  |  | 
|  | static QualType getCoreType(QualType Ty) { | 
|  | do { | 
|  | if (Ty->isPointerType() || Ty->isReferenceType()) | 
|  | Ty = Ty->getPointeeType(); | 
|  | else if (Ty->isArrayType()) | 
|  | Ty = Ty->castAsArrayTypeUnsafe()->getElementType(); | 
|  | else | 
|  | return Ty.withoutLocalFastQualifiers(); | 
|  | } while (true); | 
|  | } | 
|  |  | 
|  | /// isNearlyMatchingFunction - Determine whether the C++ functions | 
|  | /// Declaration and Definition are "nearly" matching. This heuristic | 
|  | /// is used to improve diagnostics in the case where an out-of-line | 
|  | /// function definition doesn't match any declaration within the class | 
|  | /// or namespace. Also sets Params to the list of indices to the | 
|  | /// parameters that differ between the declaration and the definition. | 
|  | static bool isNearlyMatchingFunction(ASTContext &Context, | 
|  | FunctionDecl *Declaration, | 
|  | FunctionDecl *Definition, | 
|  | llvm::SmallVectorImpl<unsigned> &Params) { | 
|  | Params.clear(); | 
|  | if (Declaration->param_size() != Definition->param_size()) | 
|  | return false; | 
|  | for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { | 
|  | QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType(); | 
|  | QualType DefParamTy = Definition->getParamDecl(Idx)->getType(); | 
|  |  | 
|  | // The parameter types are identical | 
|  | if (Context.hasSameType(DefParamTy, DeclParamTy)) | 
|  | continue; | 
|  |  | 
|  | QualType DeclParamBaseTy = getCoreType(DeclParamTy); | 
|  | QualType DefParamBaseTy = getCoreType(DefParamTy); | 
|  | const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier(); | 
|  | const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier(); | 
|  |  | 
|  | if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) || | 
|  | (DeclTyName && DeclTyName == DefTyName)) | 
|  | Params.push_back(Idx); | 
|  | else  // The two parameters aren't even close | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// NeedsRebuildingInCurrentInstantiation - Checks whether the given | 
|  | /// declarator needs to be rebuilt in the current instantiation. | 
|  | /// Any bits of declarator which appear before the name are valid for | 
|  | /// consideration here.  That's specifically the type in the decl spec | 
|  | /// and the base type in any member-pointer chunks. | 
|  | static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D, | 
|  | DeclarationName Name) { | 
|  | // The types we specifically need to rebuild are: | 
|  | //   - typenames, typeofs, and decltypes | 
|  | //   - types which will become injected class names | 
|  | // Of course, we also need to rebuild any type referencing such a | 
|  | // type.  It's safest to just say "dependent", but we call out a | 
|  | // few cases here. | 
|  |  | 
|  | DeclSpec &DS = D.getMutableDeclSpec(); | 
|  | switch (DS.getTypeSpecType()) { | 
|  | case DeclSpec::TST_typename: | 
|  | case DeclSpec::TST_typeofType: | 
|  | case DeclSpec::TST_decltype: | 
|  | case DeclSpec::TST_underlyingType: { | 
|  | // Grab the type from the parser. | 
|  | TypeSourceInfo *TSI = 0; | 
|  | QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI); | 
|  | if (T.isNull() || !T->isDependentType()) break; | 
|  |  | 
|  | // Make sure there's a type source info.  This isn't really much | 
|  | // of a waste; most dependent types should have type source info | 
|  | // attached already. | 
|  | if (!TSI) | 
|  | TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc()); | 
|  |  | 
|  | // Rebuild the type in the current instantiation. | 
|  | TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name); | 
|  | if (!TSI) return true; | 
|  |  | 
|  | // Store the new type back in the decl spec. | 
|  | ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI); | 
|  | DS.UpdateTypeRep(LocType); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case DeclSpec::TST_typeofExpr: { | 
|  | Expr *E = DS.getRepAsExpr(); | 
|  | ExprResult Result = S.RebuildExprInCurrentInstantiation(E); | 
|  | if (Result.isInvalid()) return true; | 
|  | DS.UpdateExprRep(Result.get()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | // Nothing to do for these decl specs. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // It doesn't matter what order we do this in. | 
|  | for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { | 
|  | DeclaratorChunk &Chunk = D.getTypeObject(I); | 
|  |  | 
|  | // The only type information in the declarator which can come | 
|  | // before the declaration name is the base type of a member | 
|  | // pointer. | 
|  | if (Chunk.Kind != DeclaratorChunk::MemberPointer) | 
|  | continue; | 
|  |  | 
|  | // Rebuild the scope specifier in-place. | 
|  | CXXScopeSpec &SS = Chunk.Mem.Scope(); | 
|  | if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) { | 
|  | return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), | 
|  | /*IsFunctionDefinition=*/false); | 
|  | } | 
|  |  | 
|  | /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13: | 
|  | ///   If T is the name of a class, then each of the following shall have a | 
|  | ///   name different from T: | 
|  | ///     - every static data member of class T; | 
|  | ///     - every member function of class T | 
|  | ///     - every member of class T that is itself a type; | 
|  | /// \returns true if the declaration name violates these rules. | 
|  | bool Sema::DiagnoseClassNameShadow(DeclContext *DC, | 
|  | DeclarationNameInfo NameInfo) { | 
|  | DeclarationName Name = NameInfo.getName(); | 
|  |  | 
|  | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) | 
|  | if (Record->getIdentifier() && Record->getDeclName() == Name) { | 
|  | Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Decl *Sema::HandleDeclarator(Scope *S, Declarator &D, | 
|  | MultiTemplateParamsArg TemplateParamLists, | 
|  | bool IsFunctionDefinition) { | 
|  | // TODO: consider using NameInfo for diagnostic. | 
|  | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | 
|  | DeclarationName Name = NameInfo.getName(); | 
|  |  | 
|  | // All of these full declarators require an identifier.  If it doesn't have | 
|  | // one, the ParsedFreeStandingDeclSpec action should be used. | 
|  | if (!Name) { | 
|  | if (!D.isInvalidType())  // Reject this if we think it is valid. | 
|  | Diag(D.getDeclSpec().getSourceRange().getBegin(), | 
|  | diag::err_declarator_need_ident) | 
|  | << D.getDeclSpec().getSourceRange() << D.getSourceRange(); | 
|  | return 0; | 
|  | } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType)) | 
|  | return 0; | 
|  |  | 
|  | // The scope passed in may not be a decl scope.  Zip up the scope tree until | 
|  | // we find one that is. | 
|  | while ((S->getFlags() & Scope::DeclScope) == 0 || | 
|  | (S->getFlags() & Scope::TemplateParamScope) != 0) | 
|  | S = S->getParent(); | 
|  |  | 
|  | DeclContext *DC = CurContext; | 
|  | if (D.getCXXScopeSpec().isInvalid()) | 
|  | D.setInvalidType(); | 
|  | else if (D.getCXXScopeSpec().isSet()) { | 
|  | if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(), | 
|  | UPPC_DeclarationQualifier)) | 
|  | return 0; | 
|  |  | 
|  | bool EnteringContext = !D.getDeclSpec().isFriendSpecified(); | 
|  | DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext); | 
|  | if (!DC) { | 
|  | // If we could not compute the declaration context, it's because the | 
|  | // declaration context is dependent but does not refer to a class, | 
|  | // class template, or class template partial specialization. Complain | 
|  | // and return early, to avoid the coming semantic disaster. | 
|  | Diag(D.getIdentifierLoc(), | 
|  | diag::err_template_qualified_declarator_no_match) | 
|  | << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep() | 
|  | << D.getCXXScopeSpec().getRange(); | 
|  | return 0; | 
|  | } | 
|  | bool IsDependentContext = DC->isDependentContext(); | 
|  |  | 
|  | if (!IsDependentContext && | 
|  | RequireCompleteDeclContext(D.getCXXScopeSpec(), DC)) | 
|  | return 0; | 
|  |  | 
|  | if (isa<CXXRecordDecl>(DC)) { | 
|  | if (!cast<CXXRecordDecl>(DC)->hasDefinition()) { | 
|  | Diag(D.getIdentifierLoc(), | 
|  | diag::err_member_def_undefined_record) | 
|  | << Name << DC << D.getCXXScopeSpec().getRange(); | 
|  | D.setInvalidType(); | 
|  | } else if (isa<CXXRecordDecl>(CurContext) && | 
|  | !D.getDeclSpec().isFriendSpecified()) { | 
|  | // The user provided a superfluous scope specifier inside a class | 
|  | // definition: | 
|  | // | 
|  | // class X { | 
|  | //   void X::f(); | 
|  | // }; | 
|  | if (CurContext->Equals(DC)) | 
|  | Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification) | 
|  | << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange()); | 
|  | else | 
|  | Diag(D.getIdentifierLoc(), diag::err_member_qualification) | 
|  | << Name << D.getCXXScopeSpec().getRange(); | 
|  |  | 
|  | // Pretend that this qualifier was not here. | 
|  | D.getCXXScopeSpec().clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check whether we need to rebuild the type of the given | 
|  | // declaration in the current instantiation. | 
|  | if (EnteringContext && IsDependentContext && | 
|  | TemplateParamLists.size() != 0) { | 
|  | ContextRAII SavedContext(*this, DC); | 
|  | if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name)) | 
|  | D.setInvalidType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DiagnoseClassNameShadow(DC, NameInfo)) | 
|  | // If this is a typedef, we'll end up spewing multiple diagnostics. | 
|  | // Just return early; it's safer. | 
|  | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) | 
|  | return 0; | 
|  |  | 
|  | NamedDecl *New; | 
|  |  | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
|  | QualType R = TInfo->getType(); | 
|  |  | 
|  | if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, | 
|  | UPPC_DeclarationType)) | 
|  | D.setInvalidType(); | 
|  |  | 
|  | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | 
|  | ForRedeclaration); | 
|  |  | 
|  | // See if this is a redefinition of a variable in the same scope. | 
|  | if (!D.getCXXScopeSpec().isSet()) { | 
|  | bool IsLinkageLookup = false; | 
|  |  | 
|  | // If the declaration we're planning to build will be a function | 
|  | // or object with linkage, then look for another declaration with | 
|  | // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6). | 
|  | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) | 
|  | /* Do nothing*/; | 
|  | else if (R->isFunctionType()) { | 
|  | if (CurContext->isFunctionOrMethod() || | 
|  | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) | 
|  | IsLinkageLookup = true; | 
|  | } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern) | 
|  | IsLinkageLookup = true; | 
|  | else if (CurContext->getRedeclContext()->isTranslationUnit() && | 
|  | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) | 
|  | IsLinkageLookup = true; | 
|  |  | 
|  | if (IsLinkageLookup) | 
|  | Previous.clear(LookupRedeclarationWithLinkage); | 
|  |  | 
|  | LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup); | 
|  | } else { // Something like "int foo::x;" | 
|  | LookupQualifiedName(Previous, DC); | 
|  |  | 
|  | // Don't consider using declarations as previous declarations for | 
|  | // out-of-line members. | 
|  | RemoveUsingDecls(Previous); | 
|  |  | 
|  | // C++ 7.3.1.2p2: | 
|  | // Members (including explicit specializations of templates) of a named | 
|  | // namespace can also be defined outside that namespace by explicit | 
|  | // qualification of the name being defined, provided that the entity being | 
|  | // defined was already declared in the namespace and the definition appears | 
|  | // after the point of declaration in a namespace that encloses the | 
|  | // declarations namespace. | 
|  | // | 
|  | // Note that we only check the context at this point. We don't yet | 
|  | // have enough information to make sure that PrevDecl is actually | 
|  | // the declaration we want to match. For example, given: | 
|  | // | 
|  | //   class X { | 
|  | //     void f(); | 
|  | //     void f(float); | 
|  | //   }; | 
|  | // | 
|  | //   void X::f(int) { } // ill-formed | 
|  | // | 
|  | // In this case, PrevDecl will point to the overload set | 
|  | // containing the two f's declared in X, but neither of them | 
|  | // matches. | 
|  |  | 
|  | // First check whether we named the global scope. | 
|  | if (isa<TranslationUnitDecl>(DC)) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope) | 
|  | << Name << D.getCXXScopeSpec().getRange(); | 
|  | } else { | 
|  | DeclContext *Cur = CurContext; | 
|  | while (isa<LinkageSpecDecl>(Cur)) | 
|  | Cur = Cur->getParent(); | 
|  | if (!Cur->Encloses(DC)) { | 
|  | // The qualifying scope doesn't enclose the original declaration. | 
|  | // Emit diagnostic based on current scope. | 
|  | SourceLocation L = D.getIdentifierLoc(); | 
|  | SourceRange R = D.getCXXScopeSpec().getRange(); | 
|  | if (isa<FunctionDecl>(Cur)) | 
|  | Diag(L, diag::err_invalid_declarator_in_function) << Name << R; | 
|  | else | 
|  | Diag(L, diag::err_invalid_declarator_scope) | 
|  | << Name << cast<NamedDecl>(DC) << R; | 
|  | D.setInvalidType(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Previous.isSingleResult() && | 
|  | Previous.getFoundDecl()->isTemplateParameter()) { | 
|  | // Maybe we will complain about the shadowed template parameter. | 
|  | if (!D.isInvalidType()) | 
|  | if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), | 
|  | Previous.getFoundDecl())) | 
|  | D.setInvalidType(); | 
|  |  | 
|  | // Just pretend that we didn't see the previous declaration. | 
|  | Previous.clear(); | 
|  | } | 
|  |  | 
|  | // In C++, the previous declaration we find might be a tag type | 
|  | // (class or enum). In this case, the new declaration will hide the | 
|  | // tag type. Note that this does does not apply if we're declaring a | 
|  | // typedef (C++ [dcl.typedef]p4). | 
|  | if (Previous.isSingleTagDecl() && | 
|  | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef) | 
|  | Previous.clear(); | 
|  |  | 
|  | bool Redeclaration = false; | 
|  | bool AddToScope = true; | 
|  | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { | 
|  | if (TemplateParamLists.size()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_template_typedef); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration); | 
|  | } else if (R->isFunctionType()) { | 
|  | New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous, | 
|  | move(TemplateParamLists), | 
|  | IsFunctionDefinition, Redeclaration, | 
|  | AddToScope); | 
|  | } else { | 
|  | New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous, | 
|  | move(TemplateParamLists), | 
|  | Redeclaration); | 
|  | } | 
|  |  | 
|  | if (New == 0) | 
|  | return 0; | 
|  |  | 
|  | // If this has an identifier and is not an invalid redeclaration or | 
|  | // function template specialization, add it to the scope stack. | 
|  | if (New->getDeclName() && AddToScope && | 
|  | !(Redeclaration && New->isInvalidDecl())) | 
|  | PushOnScopeChains(New, S); | 
|  |  | 
|  | return New; | 
|  | } | 
|  |  | 
|  | /// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array | 
|  | /// types into constant array types in certain situations which would otherwise | 
|  | /// be errors (for GCC compatibility). | 
|  | static QualType TryToFixInvalidVariablyModifiedType(QualType T, | 
|  | ASTContext &Context, | 
|  | bool &SizeIsNegative, | 
|  | llvm::APSInt &Oversized) { | 
|  | // This method tries to turn a variable array into a constant | 
|  | // array even when the size isn't an ICE.  This is necessary | 
|  | // for compatibility with code that depends on gcc's buggy | 
|  | // constant expression folding, like struct {char x[(int)(char*)2];} | 
|  | SizeIsNegative = false; | 
|  | Oversized = 0; | 
|  |  | 
|  | if (T->isDependentType()) | 
|  | return QualType(); | 
|  |  | 
|  | QualifierCollector Qs; | 
|  | const Type *Ty = Qs.strip(T); | 
|  |  | 
|  | if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) { | 
|  | QualType Pointee = PTy->getPointeeType(); | 
|  | QualType FixedType = | 
|  | TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative, | 
|  | Oversized); | 
|  | if (FixedType.isNull()) return FixedType; | 
|  | FixedType = Context.getPointerType(FixedType); | 
|  | return Qs.apply(Context, FixedType); | 
|  | } | 
|  | if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) { | 
|  | QualType Inner = PTy->getInnerType(); | 
|  | QualType FixedType = | 
|  | TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative, | 
|  | Oversized); | 
|  | if (FixedType.isNull()) return FixedType; | 
|  | FixedType = Context.getParenType(FixedType); | 
|  | return Qs.apply(Context, FixedType); | 
|  | } | 
|  |  | 
|  | const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T); | 
|  | if (!VLATy) | 
|  | return QualType(); | 
|  | // FIXME: We should probably handle this case | 
|  | if (VLATy->getElementType()->isVariablyModifiedType()) | 
|  | return QualType(); | 
|  |  | 
|  | Expr::EvalResult EvalResult; | 
|  | if (!VLATy->getSizeExpr() || | 
|  | !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) || | 
|  | !EvalResult.Val.isInt()) | 
|  | return QualType(); | 
|  |  | 
|  | // Check whether the array size is negative. | 
|  | llvm::APSInt &Res = EvalResult.Val.getInt(); | 
|  | if (Res.isSigned() && Res.isNegative()) { | 
|  | SizeIsNegative = true; | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // Check whether the array is too large to be addressed. | 
|  | unsigned ActiveSizeBits | 
|  | = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(), | 
|  | Res); | 
|  | if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { | 
|  | Oversized = Res; | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | return Context.getConstantArrayType(VLATy->getElementType(), | 
|  | Res, ArrayType::Normal, 0); | 
|  | } | 
|  |  | 
|  | /// \brief Register the given locally-scoped external C declaration so | 
|  | /// that it can be found later for redeclarations | 
|  | void | 
|  | Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, | 
|  | const LookupResult &Previous, | 
|  | Scope *S) { | 
|  | assert(ND->getLexicalDeclContext()->isFunctionOrMethod() && | 
|  | "Decl is not a locally-scoped decl!"); | 
|  | // Note that we have a locally-scoped external with this name. | 
|  | LocallyScopedExternalDecls[ND->getDeclName()] = ND; | 
|  |  | 
|  | if (!Previous.isSingleResult()) | 
|  | return; | 
|  |  | 
|  | NamedDecl *PrevDecl = Previous.getFoundDecl(); | 
|  |  | 
|  | // If there was a previous declaration of this variable, it may be | 
|  | // in our identifier chain. Update the identifier chain with the new | 
|  | // declaration. | 
|  | if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) { | 
|  | // The previous declaration was found on the identifer resolver | 
|  | // chain, so remove it from its scope. | 
|  |  | 
|  | if (S->isDeclScope(PrevDecl)) { | 
|  | // Special case for redeclarations in the SAME scope. | 
|  | // Because this declaration is going to be added to the identifier chain | 
|  | // later, we should temporarily take it OFF the chain. | 
|  | IdResolver.RemoveDecl(ND); | 
|  |  | 
|  | } else { | 
|  | // Find the scope for the original declaration. | 
|  | while (S && !S->isDeclScope(PrevDecl)) | 
|  | S = S->getParent(); | 
|  | } | 
|  |  | 
|  | if (S) | 
|  | S->RemoveDecl(PrevDecl); | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm::DenseMap<DeclarationName, NamedDecl *>::iterator | 
|  | Sema::findLocallyScopedExternalDecl(DeclarationName Name) { | 
|  | if (ExternalSource) { | 
|  | // Load locally-scoped external decls from the external source. | 
|  | SmallVector<NamedDecl *, 4> Decls; | 
|  | ExternalSource->ReadLocallyScopedExternalDecls(Decls); | 
|  | for (unsigned I = 0, N = Decls.size(); I != N; ++I) { | 
|  | llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos | 
|  | = LocallyScopedExternalDecls.find(Decls[I]->getDeclName()); | 
|  | if (Pos == LocallyScopedExternalDecls.end()) | 
|  | LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return LocallyScopedExternalDecls.find(Name); | 
|  | } | 
|  |  | 
|  | /// \brief Diagnose function specifiers on a declaration of an identifier that | 
|  | /// does not identify a function. | 
|  | void Sema::DiagnoseFunctionSpecifiers(Declarator& D) { | 
|  | // FIXME: We should probably indicate the identifier in question to avoid | 
|  | // confusion for constructs like "inline int a(), b;" | 
|  | if (D.getDeclSpec().isInlineSpecified()) | 
|  | Diag(D.getDeclSpec().getInlineSpecLoc(), | 
|  | diag::err_inline_non_function); | 
|  |  | 
|  | if (D.getDeclSpec().isVirtualSpecified()) | 
|  | Diag(D.getDeclSpec().getVirtualSpecLoc(), | 
|  | diag::err_virtual_non_function); | 
|  |  | 
|  | if (D.getDeclSpec().isExplicitSpecified()) | 
|  | Diag(D.getDeclSpec().getExplicitSpecLoc(), | 
|  | diag::err_explicit_non_function); | 
|  | } | 
|  |  | 
|  | NamedDecl* | 
|  | Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, | 
|  | QualType R,  TypeSourceInfo *TInfo, | 
|  | LookupResult &Previous, bool &Redeclaration) { | 
|  | // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). | 
|  | if (D.getCXXScopeSpec().isSet()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) | 
|  | << D.getCXXScopeSpec().getRange(); | 
|  | D.setInvalidType(); | 
|  | // Pretend we didn't see the scope specifier. | 
|  | DC = CurContext; | 
|  | Previous.clear(); | 
|  | } | 
|  |  | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | // Check that there are no default arguments (C++ only). | 
|  | CheckExtraCXXDefaultArguments(D); | 
|  | } | 
|  |  | 
|  | DiagnoseFunctionSpecifiers(D); | 
|  |  | 
|  | if (D.getDeclSpec().isThreadSpecified()) | 
|  | Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); | 
|  | if (D.getDeclSpec().isConstexprSpecified()) | 
|  | Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr) | 
|  | << 1; | 
|  |  | 
|  | if (D.getName().Kind != UnqualifiedId::IK_Identifier) { | 
|  | Diag(D.getName().StartLocation, diag::err_typedef_not_identifier) | 
|  | << D.getName().getSourceRange(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo); | 
|  | if (!NewTD) return 0; | 
|  |  | 
|  | // Handle attributes prior to checking for duplicates in MergeVarDecl | 
|  | ProcessDeclAttributes(S, NewTD, D); | 
|  |  | 
|  | CheckTypedefForVariablyModifiedType(S, NewTD); | 
|  |  | 
|  | return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration); | 
|  | } | 
|  |  | 
|  | void | 
|  | Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) { | 
|  | // C99 6.7.7p2: If a typedef name specifies a variably modified type | 
|  | // then it shall have block scope. | 
|  | // Note that variably modified types must be fixed before merging the decl so | 
|  | // that redeclarations will match. | 
|  | QualType T = NewTD->getUnderlyingType(); | 
|  | if (T->isVariablyModifiedType()) { | 
|  | getCurFunction()->setHasBranchProtectedScope(); | 
|  |  | 
|  | if (S->getFnParent() == 0) { | 
|  | bool SizeIsNegative; | 
|  | llvm::APSInt Oversized; | 
|  | QualType FixedTy = | 
|  | TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative, | 
|  | Oversized); | 
|  | if (!FixedTy.isNull()) { | 
|  | Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size); | 
|  | NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy)); | 
|  | } else { | 
|  | if (SizeIsNegative) | 
|  | Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size); | 
|  | else if (T->isVariableArrayType()) | 
|  | Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope); | 
|  | else if (Oversized.getBoolValue()) | 
|  | Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10); | 
|  | else | 
|  | Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope); | 
|  | NewTD->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which | 
|  | /// declares a typedef-name, either using the 'typedef' type specifier or via | 
|  | /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'. | 
|  | NamedDecl* | 
|  | Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD, | 
|  | LookupResult &Previous, bool &Redeclaration) { | 
|  | // Merge the decl with the existing one if appropriate. If the decl is | 
|  | // in an outer scope, it isn't the same thing. | 
|  | FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false, | 
|  | /*ExplicitInstantiationOrSpecialization=*/false); | 
|  | if (!Previous.empty()) { | 
|  | Redeclaration = true; | 
|  | MergeTypedefNameDecl(NewTD, Previous); | 
|  | } | 
|  |  | 
|  | // If this is the C FILE type, notify the AST context. | 
|  | if (IdentifierInfo *II = NewTD->getIdentifier()) | 
|  | if (!NewTD->isInvalidDecl() && | 
|  | NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { | 
|  | if (II->isStr("FILE")) | 
|  | Context.setFILEDecl(NewTD); | 
|  | else if (II->isStr("jmp_buf")) | 
|  | Context.setjmp_bufDecl(NewTD); | 
|  | else if (II->isStr("sigjmp_buf")) | 
|  | Context.setsigjmp_bufDecl(NewTD); | 
|  | else if (II->isStr("__builtin_va_list")) | 
|  | Context.setBuiltinVaListType(Context.getTypedefType(NewTD)); | 
|  | } | 
|  |  | 
|  | return NewTD; | 
|  | } | 
|  |  | 
|  | /// \brief Determines whether the given declaration is an out-of-scope | 
|  | /// previous declaration. | 
|  | /// | 
|  | /// This routine should be invoked when name lookup has found a | 
|  | /// previous declaration (PrevDecl) that is not in the scope where a | 
|  | /// new declaration by the same name is being introduced. If the new | 
|  | /// declaration occurs in a local scope, previous declarations with | 
|  | /// linkage may still be considered previous declarations (C99 | 
|  | /// 6.2.2p4-5, C++ [basic.link]p6). | 
|  | /// | 
|  | /// \param PrevDecl the previous declaration found by name | 
|  | /// lookup | 
|  | /// | 
|  | /// \param DC the context in which the new declaration is being | 
|  | /// declared. | 
|  | /// | 
|  | /// \returns true if PrevDecl is an out-of-scope previous declaration | 
|  | /// for a new delcaration with the same name. | 
|  | static bool | 
|  | isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC, | 
|  | ASTContext &Context) { | 
|  | if (!PrevDecl) | 
|  | return false; | 
|  |  | 
|  | if (!PrevDecl->hasLinkage()) | 
|  | return false; | 
|  |  | 
|  | if (Context.getLangOptions().CPlusPlus) { | 
|  | // C++ [basic.link]p6: | 
|  | //   If there is a visible declaration of an entity with linkage | 
|  | //   having the same name and type, ignoring entities declared | 
|  | //   outside the innermost enclosing namespace scope, the block | 
|  | //   scope declaration declares that same entity and receives the | 
|  | //   linkage of the previous declaration. | 
|  | DeclContext *OuterContext = DC->getRedeclContext(); | 
|  | if (!OuterContext->isFunctionOrMethod()) | 
|  | // This rule only applies to block-scope declarations. | 
|  | return false; | 
|  |  | 
|  | DeclContext *PrevOuterContext = PrevDecl->getDeclContext(); | 
|  | if (PrevOuterContext->isRecord()) | 
|  | // We found a member function: ignore it. | 
|  | return false; | 
|  |  | 
|  | // Find the innermost enclosing namespace for the new and | 
|  | // previous declarations. | 
|  | OuterContext = OuterContext->getEnclosingNamespaceContext(); | 
|  | PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext(); | 
|  |  | 
|  | // The previous declaration is in a different namespace, so it | 
|  | // isn't the same function. | 
|  | if (!OuterContext->Equals(PrevOuterContext)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) { | 
|  | CXXScopeSpec &SS = D.getCXXScopeSpec(); | 
|  | if (!SS.isSet()) return; | 
|  | DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext())); | 
|  | } | 
|  |  | 
|  | bool Sema::inferObjCARCLifetime(ValueDecl *decl) { | 
|  | QualType type = decl->getType(); | 
|  | Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); | 
|  | if (lifetime == Qualifiers::OCL_Autoreleasing) { | 
|  | // Various kinds of declaration aren't allowed to be __autoreleasing. | 
|  | unsigned kind = -1U; | 
|  | if (VarDecl *var = dyn_cast<VarDecl>(decl)) { | 
|  | if (var->hasAttr<BlocksAttr>()) | 
|  | kind = 0; // __block | 
|  | else if (!var->hasLocalStorage()) | 
|  | kind = 1; // global | 
|  | } else if (isa<ObjCIvarDecl>(decl)) { | 
|  | kind = 3; // ivar | 
|  | } else if (isa<FieldDecl>(decl)) { | 
|  | kind = 2; // field | 
|  | } | 
|  |  | 
|  | if (kind != -1U) { | 
|  | Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) | 
|  | << kind; | 
|  | } | 
|  | } else if (lifetime == Qualifiers::OCL_None) { | 
|  | // Try to infer lifetime. | 
|  | if (!type->isObjCLifetimeType()) | 
|  | return false; | 
|  |  | 
|  | lifetime = type->getObjCARCImplicitLifetime(); | 
|  | type = Context.getLifetimeQualifiedType(type, lifetime); | 
|  | decl->setType(type); | 
|  | } | 
|  |  | 
|  | if (VarDecl *var = dyn_cast<VarDecl>(decl)) { | 
|  | // Thread-local variables cannot have lifetime. | 
|  | if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone && | 
|  | var->isThreadSpecified()) { | 
|  | Diag(var->getLocation(), diag::err_arc_thread_ownership) | 
|  | << var->getType(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | NamedDecl* | 
|  | Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC, | 
|  | QualType R, TypeSourceInfo *TInfo, | 
|  | LookupResult &Previous, | 
|  | MultiTemplateParamsArg TemplateParamLists, | 
|  | bool &Redeclaration) { | 
|  | DeclarationName Name = GetNameForDeclarator(D).getName(); | 
|  |  | 
|  | // Check that there are no default arguments (C++ only). | 
|  | if (getLangOptions().CPlusPlus) | 
|  | CheckExtraCXXDefaultArguments(D); | 
|  |  | 
|  | DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec(); | 
|  | assert(SCSpec != DeclSpec::SCS_typedef && | 
|  | "Parser allowed 'typedef' as storage class VarDecl."); | 
|  | VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec); | 
|  | if (SCSpec == DeclSpec::SCS_mutable) { | 
|  | // mutable can only appear on non-static class members, so it's always | 
|  | // an error here | 
|  | Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); | 
|  | D.setInvalidType(); | 
|  | SC = SC_None; | 
|  | } | 
|  | SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten(); | 
|  | VarDecl::StorageClass SCAsWritten | 
|  | = StorageClassSpecToVarDeclStorageClass(SCSpec); | 
|  |  | 
|  | IdentifierInfo *II = Name.getAsIdentifierInfo(); | 
|  | if (!II) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) | 
|  | << Name.getAsString(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DiagnoseFunctionSpecifiers(D); | 
|  |  | 
|  | if (!DC->isRecord() && S->getFnParent() == 0) { | 
|  | // C99 6.9p2: The storage-class specifiers auto and register shall not | 
|  | // appear in the declaration specifiers in an external declaration. | 
|  | if (SC == SC_Auto || SC == SC_Register) { | 
|  |  | 
|  | // If this is a register variable with an asm label specified, then this | 
|  | // is a GNU extension. | 
|  | if (SC == SC_Register && D.getAsmLabel()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register); | 
|  | else | 
|  | Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); | 
|  | D.setInvalidType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (getLangOptions().OpenCL) { | 
|  | // Set up the special work-group-local storage class for variables in the | 
|  | // OpenCL __local address space. | 
|  | if (R.getAddressSpace() == LangAS::opencl_local) | 
|  | SC = SC_OpenCLWorkGroupLocal; | 
|  | } | 
|  |  | 
|  | bool isExplicitSpecialization = false; | 
|  | VarDecl *NewVD; | 
|  | if (!getLangOptions().CPlusPlus) { | 
|  | NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(), | 
|  | D.getIdentifierLoc(), II, | 
|  | R, TInfo, SC, SCAsWritten); | 
|  |  | 
|  | if (D.isInvalidType()) | 
|  | NewVD->setInvalidDecl(); | 
|  | } else { | 
|  | if (DC->isRecord() && !CurContext->isRecord()) { | 
|  | // This is an out-of-line definition of a static data member. | 
|  | if (SC == SC_Static) { | 
|  | Diag(D.getDeclSpec().getStorageClassSpecLoc(), | 
|  | diag::err_static_out_of_line) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | 
|  | } else if (SC == SC_None) | 
|  | SC = SC_Static; | 
|  | } | 
|  | if (SC == SC_Static) { | 
|  | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) { | 
|  | if (RD->isLocalClass()) | 
|  | Diag(D.getIdentifierLoc(), | 
|  | diag::err_static_data_member_not_allowed_in_local_class) | 
|  | << Name << RD->getDeclName(); | 
|  |  | 
|  | // C++ [class.union]p1: If a union contains a static data member, | 
|  | // the program is ill-formed. | 
|  | // | 
|  | // We also disallow static data members in anonymous structs. | 
|  | if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName())) | 
|  | Diag(D.getIdentifierLoc(), | 
|  | diag::err_static_data_member_not_allowed_in_union_or_anon_struct) | 
|  | << Name << RD->isUnion(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Match up the template parameter lists with the scope specifier, then | 
|  | // determine whether we have a template or a template specialization. | 
|  | isExplicitSpecialization = false; | 
|  | bool Invalid = false; | 
|  | if (TemplateParameterList *TemplateParams | 
|  | = MatchTemplateParametersToScopeSpecifier( | 
|  | D.getDeclSpec().getSourceRange().getBegin(), | 
|  | D.getIdentifierLoc(), | 
|  | D.getCXXScopeSpec(), | 
|  | TemplateParamLists.get(), | 
|  | TemplateParamLists.size(), | 
|  | /*never a friend*/ false, | 
|  | isExplicitSpecialization, | 
|  | Invalid)) { | 
|  | if (TemplateParams->size() > 0) { | 
|  | // There is no such thing as a variable template. | 
|  | Diag(D.getIdentifierLoc(), diag::err_template_variable) | 
|  | << II | 
|  | << SourceRange(TemplateParams->getTemplateLoc(), | 
|  | TemplateParams->getRAngleLoc()); | 
|  | return 0; | 
|  | } else { | 
|  | // There is an extraneous 'template<>' for this variable. Complain | 
|  | // about it, but allow the declaration of the variable. | 
|  | Diag(TemplateParams->getTemplateLoc(), | 
|  | diag::err_template_variable_noparams) | 
|  | << II | 
|  | << SourceRange(TemplateParams->getTemplateLoc(), | 
|  | TemplateParams->getRAngleLoc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(), | 
|  | D.getIdentifierLoc(), II, | 
|  | R, TInfo, SC, SCAsWritten); | 
|  |  | 
|  | // If this decl has an auto type in need of deduction, make a note of the | 
|  | // Decl so we can diagnose uses of it in its own initializer. | 
|  | if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto && | 
|  | R->getContainedAutoType()) | 
|  | ParsingInitForAutoVars.insert(NewVD); | 
|  |  | 
|  | if (D.isInvalidType() || Invalid) | 
|  | NewVD->setInvalidDecl(); | 
|  |  | 
|  | SetNestedNameSpecifier(NewVD, D); | 
|  |  | 
|  | if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) { | 
|  | NewVD->setTemplateParameterListsInfo(Context, | 
|  | TemplateParamLists.size(), | 
|  | TemplateParamLists.release()); | 
|  | } | 
|  |  | 
|  | if (D.getDeclSpec().isConstexprSpecified()) { | 
|  | // FIXME: once we know whether there's an initializer, apply this to | 
|  | // static data members too. | 
|  | if (!NewVD->isStaticDataMember() && | 
|  | !NewVD->isThisDeclarationADefinition()) { | 
|  | // 'constexpr' is redundant and ill-formed on a non-defining declaration | 
|  | // of a variable. Suggest replacing it with 'const' if appropriate. | 
|  | SourceLocation ConstexprLoc = D.getDeclSpec().getConstexprSpecLoc(); | 
|  | SourceRange ConstexprRange(ConstexprLoc, ConstexprLoc); | 
|  | // If the declarator is complex, we need to move the keyword to the | 
|  | // innermost chunk as we switch it from 'constexpr' to 'const'. | 
|  | int Kind = DeclaratorChunk::Paren; | 
|  | for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { | 
|  | Kind = D.getTypeObject(I).Kind; | 
|  | if (Kind != DeclaratorChunk::Paren) | 
|  | break; | 
|  | } | 
|  | if ((D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) || | 
|  | Kind == DeclaratorChunk::Reference) | 
|  | Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl) | 
|  | << FixItHint::CreateRemoval(ConstexprRange); | 
|  | else if (Kind == DeclaratorChunk::Paren) | 
|  | Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl) | 
|  | << FixItHint::CreateReplacement(ConstexprRange, "const"); | 
|  | else | 
|  | Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl) | 
|  | << FixItHint::CreateRemoval(ConstexprRange) | 
|  | << FixItHint::CreateInsertion(D.getIdentifierLoc(), "const "); | 
|  | } else { | 
|  | NewVD->setConstexpr(true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set the lexical context. If the declarator has a C++ scope specifier, the | 
|  | // lexical context will be different from the semantic context. | 
|  | NewVD->setLexicalDeclContext(CurContext); | 
|  |  | 
|  | if (D.getDeclSpec().isThreadSpecified()) { | 
|  | if (NewVD->hasLocalStorage()) | 
|  | Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global); | 
|  | else if (!Context.getTargetInfo().isTLSSupported()) | 
|  | Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported); | 
|  | else | 
|  | NewVD->setThreadSpecified(true); | 
|  | } | 
|  |  | 
|  | if (D.getDeclSpec().isModulePrivateSpecified()) { | 
|  | if (isExplicitSpecialization) | 
|  | Diag(NewVD->getLocation(), diag::err_module_private_specialization) | 
|  | << 2 | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); | 
|  | else if (NewVD->hasLocalStorage()) | 
|  | Diag(NewVD->getLocation(), diag::err_module_private_local) | 
|  | << 0 << NewVD->getDeclName() | 
|  | << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); | 
|  | else | 
|  | NewVD->setModulePrivate(); | 
|  | } | 
|  |  | 
|  | // Handle attributes prior to checking for duplicates in MergeVarDecl | 
|  | ProcessDeclAttributes(S, NewVD, D); | 
|  |  | 
|  | // In auto-retain/release, infer strong retension for variables of | 
|  | // retainable type. | 
|  | if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD)) | 
|  | NewVD->setInvalidDecl(); | 
|  |  | 
|  | // Handle GNU asm-label extension (encoded as an attribute). | 
|  | if (Expr *E = (Expr*)D.getAsmLabel()) { | 
|  | // The parser guarantees this is a string. | 
|  | StringLiteral *SE = cast<StringLiteral>(E); | 
|  | StringRef Label = SE->getString(); | 
|  | if (S->getFnParent() != 0) { | 
|  | switch (SC) { | 
|  | case SC_None: | 
|  | case SC_Auto: | 
|  | Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label; | 
|  | break; | 
|  | case SC_Register: | 
|  | if (!Context.getTargetInfo().isValidGCCRegisterName(Label)) | 
|  | Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; | 
|  | break; | 
|  | case SC_Static: | 
|  | case SC_Extern: | 
|  | case SC_PrivateExtern: | 
|  | case SC_OpenCLWorkGroupLocal: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), | 
|  | Context, Label)); | 
|  | } | 
|  |  | 
|  | // Diagnose shadowed variables before filtering for scope. | 
|  | if (!D.getCXXScopeSpec().isSet()) | 
|  | CheckShadow(S, NewVD, Previous); | 
|  |  | 
|  | // Don't consider existing declarations that are in a different | 
|  | // scope and are out-of-semantic-context declarations (if the new | 
|  | // declaration has linkage). | 
|  | FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(), | 
|  | isExplicitSpecialization); | 
|  |  | 
|  | if (!getLangOptions().CPlusPlus) | 
|  | CheckVariableDeclaration(NewVD, Previous, Redeclaration); | 
|  | else { | 
|  | // Merge the decl with the existing one if appropriate. | 
|  | if (!Previous.empty()) { | 
|  | if (Previous.isSingleResult() && | 
|  | isa<FieldDecl>(Previous.getFoundDecl()) && | 
|  | D.getCXXScopeSpec().isSet()) { | 
|  | // The user tried to define a non-static data member | 
|  | // out-of-line (C++ [dcl.meaning]p1). | 
|  | Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) | 
|  | << D.getCXXScopeSpec().getRange(); | 
|  | Previous.clear(); | 
|  | NewVD->setInvalidDecl(); | 
|  | } | 
|  | } else if (D.getCXXScopeSpec().isSet()) { | 
|  | // No previous declaration in the qualifying scope. | 
|  | Diag(D.getIdentifierLoc(), diag::err_no_member) | 
|  | << Name << computeDeclContext(D.getCXXScopeSpec(), true) | 
|  | << D.getCXXScopeSpec().getRange(); | 
|  | NewVD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | CheckVariableDeclaration(NewVD, Previous, Redeclaration); | 
|  |  | 
|  | // This is an explicit specialization of a static data member. Check it. | 
|  | if (isExplicitSpecialization && !NewVD->isInvalidDecl() && | 
|  | CheckMemberSpecialization(NewVD, Previous)) | 
|  | NewVD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // attributes declared post-definition are currently ignored | 
|  | // FIXME: This should be handled in attribute merging, not | 
|  | // here. | 
|  | if (Previous.isSingleResult()) { | 
|  | VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl()); | 
|  | if (Def && (Def = Def->getDefinition()) && | 
|  | Def != NewVD && D.hasAttributes()) { | 
|  | Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition); | 
|  | Diag(Def->getLocation(), diag::note_previous_definition); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a locally-scoped extern C variable, update the map of | 
|  | // such variables. | 
|  | if (CurContext->isFunctionOrMethod() && NewVD->isExternC() && | 
|  | !NewVD->isInvalidDecl()) | 
|  | RegisterLocallyScopedExternCDecl(NewVD, Previous, S); | 
|  |  | 
|  | // If there's a #pragma GCC visibility in scope, and this isn't a class | 
|  | // member, set the visibility of this variable. | 
|  | if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord()) | 
|  | AddPushedVisibilityAttribute(NewVD); | 
|  |  | 
|  | MarkUnusedFileScopedDecl(NewVD); | 
|  |  | 
|  | return NewVD; | 
|  | } | 
|  |  | 
|  | /// \brief Diagnose variable or built-in function shadowing.  Implements | 
|  | /// -Wshadow. | 
|  | /// | 
|  | /// This method is called whenever a VarDecl is added to a "useful" | 
|  | /// scope. | 
|  | /// | 
|  | /// \param S the scope in which the shadowing name is being declared | 
|  | /// \param R the lookup of the name | 
|  | /// | 
|  | void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) { | 
|  | // Return if warning is ignored. | 
|  | if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) == | 
|  | DiagnosticsEngine::Ignored) | 
|  | return; | 
|  |  | 
|  | // Don't diagnose declarations at file scope. | 
|  | if (D->hasGlobalStorage()) | 
|  | return; | 
|  |  | 
|  | DeclContext *NewDC = D->getDeclContext(); | 
|  |  | 
|  | // Only diagnose if we're shadowing an unambiguous field or variable. | 
|  | if (R.getResultKind() != LookupResult::Found) | 
|  | return; | 
|  |  | 
|  | NamedDecl* ShadowedDecl = R.getFoundDecl(); | 
|  | if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl)) | 
|  | return; | 
|  |  | 
|  | // Fields are not shadowed by variables in C++ static methods. | 
|  | if (isa<FieldDecl>(ShadowedDecl)) | 
|  | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC)) | 
|  | if (MD->isStatic()) | 
|  | return; | 
|  |  | 
|  | if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl)) | 
|  | if (shadowedVar->isExternC()) { | 
|  | // For shadowing external vars, make sure that we point to the global | 
|  | // declaration, not a locally scoped extern declaration. | 
|  | for (VarDecl::redecl_iterator | 
|  | I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end(); | 
|  | I != E; ++I) | 
|  | if (I->isFileVarDecl()) { | 
|  | ShadowedDecl = *I; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | DeclContext *OldDC = ShadowedDecl->getDeclContext(); | 
|  |  | 
|  | // Only warn about certain kinds of shadowing for class members. | 
|  | if (NewDC && NewDC->isRecord()) { | 
|  | // In particular, don't warn about shadowing non-class members. | 
|  | if (!OldDC->isRecord()) | 
|  | return; | 
|  |  | 
|  | // TODO: should we warn about static data members shadowing | 
|  | // static data members from base classes? | 
|  |  | 
|  | // TODO: don't diagnose for inaccessible shadowed members. | 
|  | // This is hard to do perfectly because we might friend the | 
|  | // shadowing context, but that's just a false negative. | 
|  | } | 
|  |  | 
|  | // Determine what kind of declaration we're shadowing. | 
|  | unsigned Kind; | 
|  | if (isa<RecordDecl>(OldDC)) { | 
|  | if (isa<FieldDecl>(ShadowedDecl)) | 
|  | Kind = 3; // field | 
|  | else | 
|  | Kind = 2; // static data member | 
|  | } else if (OldDC->isFileContext()) | 
|  | Kind = 1; // global | 
|  | else | 
|  | Kind = 0; // local | 
|  |  | 
|  | DeclarationName Name = R.getLookupName(); | 
|  |  | 
|  | // Emit warning and note. | 
|  | Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC; | 
|  | Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); | 
|  | } | 
|  |  | 
|  | /// \brief Check -Wshadow without the advantage of a previous lookup. | 
|  | void Sema::CheckShadow(Scope *S, VarDecl *D) { | 
|  | if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) == | 
|  | DiagnosticsEngine::Ignored) | 
|  | return; | 
|  |  | 
|  | LookupResult R(*this, D->getDeclName(), D->getLocation(), | 
|  | Sema::LookupOrdinaryName, Sema::ForRedeclaration); | 
|  | LookupName(R, S); | 
|  | CheckShadow(S, D, R); | 
|  | } | 
|  |  | 
|  | /// \brief Perform semantic checking on a newly-created variable | 
|  | /// declaration. | 
|  | /// | 
|  | /// This routine performs all of the type-checking required for a | 
|  | /// variable declaration once it has been built. It is used both to | 
|  | /// check variables after they have been parsed and their declarators | 
|  | /// have been translated into a declaration, and to check variables | 
|  | /// that have been instantiated from a template. | 
|  | /// | 
|  | /// Sets NewVD->isInvalidDecl() if an error was encountered. | 
|  | void Sema::CheckVariableDeclaration(VarDecl *NewVD, | 
|  | LookupResult &Previous, | 
|  | bool &Redeclaration) { | 
|  | // If the decl is already known invalid, don't check it. | 
|  | if (NewVD->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | QualType T = NewVD->getType(); | 
|  |  | 
|  | if (T->isObjCObjectType()) { | 
|  | Diag(NewVD->getLocation(), diag::err_statically_allocated_object) | 
|  | << FixItHint::CreateInsertion(NewVD->getLocation(), "*"); | 
|  | T = Context.getObjCObjectPointerType(T); | 
|  | NewVD->setType(T); | 
|  | } | 
|  |  | 
|  | // Emit an error if an address space was applied to decl with local storage. | 
|  | // This includes arrays of objects with address space qualifiers, but not | 
|  | // automatic variables that point to other address spaces. | 
|  | // ISO/IEC TR 18037 S5.1.2 | 
|  | if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) { | 
|  | Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl); | 
|  | return NewVD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | if (NewVD->hasLocalStorage() && T.isObjCGCWeak() | 
|  | && !NewVD->hasAttr<BlocksAttr>()) { | 
|  | if (getLangOptions().getGC() != LangOptions::NonGC) | 
|  | Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local); | 
|  | else | 
|  | Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local); | 
|  | } | 
|  |  | 
|  | bool isVM = T->isVariablyModifiedType(); | 
|  | if (isVM || NewVD->hasAttr<CleanupAttr>() || | 
|  | NewVD->hasAttr<BlocksAttr>()) | 
|  | getCurFunction()->setHasBranchProtectedScope(); | 
|  |  | 
|  | if ((isVM && NewVD->hasLinkage()) || | 
|  | (T->isVariableArrayType() && NewVD->hasGlobalStorage())) { | 
|  | bool SizeIsNegative; | 
|  | llvm::APSInt Oversized; | 
|  | QualType FixedTy = | 
|  | TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative, | 
|  | Oversized); | 
|  |  | 
|  | if (FixedTy.isNull() && T->isVariableArrayType()) { | 
|  | const VariableArrayType *VAT = Context.getAsVariableArrayType(T); | 
|  | // FIXME: This won't give the correct result for | 
|  | // int a[10][n]; | 
|  | SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); | 
|  |  | 
|  | if (NewVD->isFileVarDecl()) | 
|  | Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope) | 
|  | << SizeRange; | 
|  | else if (NewVD->getStorageClass() == SC_Static) | 
|  | Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage) | 
|  | << SizeRange; | 
|  | else | 
|  | Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage) | 
|  | << SizeRange; | 
|  | return NewVD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | if (FixedTy.isNull()) { | 
|  | if (NewVD->isFileVarDecl()) | 
|  | Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope); | 
|  | else | 
|  | Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage); | 
|  | return NewVD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size); | 
|  | NewVD->setType(FixedTy); | 
|  | } | 
|  |  | 
|  | if (Previous.empty() && NewVD->isExternC()) { | 
|  | // Since we did not find anything by this name and we're declaring | 
|  | // an extern "C" variable, look for a non-visible extern "C" | 
|  | // declaration with the same name. | 
|  | llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos | 
|  | = findLocallyScopedExternalDecl(NewVD->getDeclName()); | 
|  | if (Pos != LocallyScopedExternalDecls.end()) | 
|  | Previous.addDecl(Pos->second); | 
|  | } | 
|  |  | 
|  | if (T->isVoidType() && !NewVD->hasExternalStorage()) { | 
|  | Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type) | 
|  | << T; | 
|  | return NewVD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) { | 
|  | Diag(NewVD->getLocation(), diag::err_block_on_nonlocal); | 
|  | return NewVD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | if (isVM && NewVD->hasAttr<BlocksAttr>()) { | 
|  | Diag(NewVD->getLocation(), diag::err_block_on_vm); | 
|  | return NewVD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // Function pointers and references cannot have qualified function type, only | 
|  | // function pointer-to-members can do that. | 
|  | QualType Pointee; | 
|  | unsigned PtrOrRef = 0; | 
|  | if (const PointerType *Ptr = T->getAs<PointerType>()) | 
|  | Pointee = Ptr->getPointeeType(); | 
|  | else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) { | 
|  | Pointee = Ref->getPointeeType(); | 
|  | PtrOrRef = 1; | 
|  | } | 
|  | if (!Pointee.isNull() && Pointee->isFunctionProtoType() && | 
|  | Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) { | 
|  | Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer) | 
|  | << PtrOrRef; | 
|  | return NewVD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | if (!Previous.empty()) { | 
|  | Redeclaration = true; | 
|  | MergeVarDecl(NewVD, Previous); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Data used with FindOverriddenMethod | 
|  | struct FindOverriddenMethodData { | 
|  | Sema *S; | 
|  | CXXMethodDecl *Method; | 
|  | }; | 
|  |  | 
|  | /// \brief Member lookup function that determines whether a given C++ | 
|  | /// method overrides a method in a base class, to be used with | 
|  | /// CXXRecordDecl::lookupInBases(). | 
|  | static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier, | 
|  | CXXBasePath &Path, | 
|  | void *UserData) { | 
|  | RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl(); | 
|  |  | 
|  | FindOverriddenMethodData *Data | 
|  | = reinterpret_cast<FindOverriddenMethodData*>(UserData); | 
|  |  | 
|  | DeclarationName Name = Data->Method->getDeclName(); | 
|  |  | 
|  | // FIXME: Do we care about other names here too? | 
|  | if (Name.getNameKind() == DeclarationName::CXXDestructorName) { | 
|  | // We really want to find the base class destructor here. | 
|  | QualType T = Data->S->Context.getTypeDeclType(BaseRecord); | 
|  | CanQualType CT = Data->S->Context.getCanonicalType(T); | 
|  |  | 
|  | Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT); | 
|  | } | 
|  |  | 
|  | for (Path.Decls = BaseRecord->lookup(Name); | 
|  | Path.Decls.first != Path.Decls.second; | 
|  | ++Path.Decls.first) { | 
|  | NamedDecl *D = *Path.Decls.first; | 
|  | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { | 
|  | if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// AddOverriddenMethods - See if a method overrides any in the base classes, | 
|  | /// and if so, check that it's a valid override and remember it. | 
|  | bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { | 
|  | // Look for virtual methods in base classes that this method might override. | 
|  | CXXBasePaths Paths; | 
|  | FindOverriddenMethodData Data; | 
|  | Data.Method = MD; | 
|  | Data.S = this; | 
|  | bool AddedAny = false; | 
|  | if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) { | 
|  | for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(), | 
|  | E = Paths.found_decls_end(); I != E; ++I) { | 
|  | if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) { | 
|  | MD->addOverriddenMethod(OldMD->getCanonicalDecl()); | 
|  | if (!CheckOverridingFunctionReturnType(MD, OldMD) && | 
|  | !CheckOverridingFunctionExceptionSpec(MD, OldMD) && | 
|  | !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) { | 
|  | AddedAny = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return AddedAny; | 
|  | } | 
|  |  | 
|  | static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD, | 
|  | bool isFriendDecl) { | 
|  | DeclarationName Name = NewFD->getDeclName(); | 
|  | DeclContext *DC = NewFD->getDeclContext(); | 
|  | LookupResult Prev(S, Name, NewFD->getLocation(), | 
|  | Sema::LookupOrdinaryName, Sema::ForRedeclaration); | 
|  | llvm::SmallVector<unsigned, 1> MismatchedParams; | 
|  | llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches; | 
|  | TypoCorrection Correction; | 
|  | unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend | 
|  | : diag::err_member_def_does_not_match; | 
|  |  | 
|  | NewFD->setInvalidDecl(); | 
|  | S.LookupQualifiedName(Prev, DC); | 
|  | assert(!Prev.isAmbiguous() && | 
|  | "Cannot have an ambiguity in previous-declaration lookup"); | 
|  | if (!Prev.empty()) { | 
|  | for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end(); | 
|  | Func != FuncEnd; ++Func) { | 
|  | FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func); | 
|  | if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD, | 
|  | MismatchedParams)) { | 
|  | // Add 1 to the index so that 0 can mean the mismatch didn't | 
|  | // involve a parameter | 
|  | unsigned ParamNum = | 
|  | MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1; | 
|  | NearMatches.push_back(std::make_pair(FD, ParamNum)); | 
|  | } | 
|  | } | 
|  | // If the qualified name lookup yielded nothing, try typo correction | 
|  | } else if ((Correction = S.CorrectTypo(Prev.getLookupNameInfo(), | 
|  | Prev.getLookupKind(), 0, 0, DC)) && | 
|  | Correction.getCorrection() != Name) { | 
|  | for (TypoCorrection::decl_iterator CDecl = Correction.begin(), | 
|  | CDeclEnd = Correction.end(); | 
|  | CDecl != CDeclEnd; ++CDecl) { | 
|  | FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); | 
|  | if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD, | 
|  | MismatchedParams)) { | 
|  | // Add 1 to the index so that 0 can mean the mismatch didn't | 
|  | // involve a parameter | 
|  | unsigned ParamNum = | 
|  | MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1; | 
|  | NearMatches.push_back(std::make_pair(FD, ParamNum)); | 
|  | } | 
|  | } | 
|  | if (!NearMatches.empty()) | 
|  | DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest | 
|  | : diag::err_member_def_does_not_match_suggest; | 
|  | } | 
|  |  | 
|  | // Ignore the correction if it didn't yield any close FunctionDecl matches | 
|  | if (Correction && NearMatches.empty()) | 
|  | Correction = TypoCorrection(); | 
|  |  | 
|  | if (Correction) | 
|  | S.Diag(NewFD->getLocation(), DiagMsg) | 
|  | << Name << DC << Correction.getQuoted(S.getLangOptions()) | 
|  | << FixItHint::CreateReplacement( | 
|  | NewFD->getLocation(), Correction.getAsString(S.getLangOptions())); | 
|  | else | 
|  | S.Diag(NewFD->getLocation(), DiagMsg) << Name << DC << NewFD->getLocation(); | 
|  |  | 
|  | for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator | 
|  | NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end(); | 
|  | NearMatch != NearMatchEnd; ++NearMatch) { | 
|  | FunctionDecl *FD = NearMatch->first; | 
|  |  | 
|  | if (unsigned Idx = NearMatch->second) { | 
|  | ParmVarDecl *FDParam = FD->getParamDecl(Idx-1); | 
|  | S.Diag(FDParam->getTypeSpecStartLoc(), | 
|  | diag::note_member_def_close_param_match) | 
|  | << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType(); | 
|  | } else if (Correction) { | 
|  | S.Diag(FD->getLocation(), diag::note_previous_decl) | 
|  | << Correction.getQuoted(S.getLangOptions()); | 
|  | } else | 
|  | S.Diag(FD->getLocation(), diag::note_member_def_close_match); | 
|  | } | 
|  | } | 
|  |  | 
|  | NamedDecl* | 
|  | Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC, | 
|  | QualType R, TypeSourceInfo *TInfo, | 
|  | LookupResult &Previous, | 
|  | MultiTemplateParamsArg TemplateParamLists, | 
|  | bool IsFunctionDefinition, bool &Redeclaration, | 
|  | bool &AddToScope) { | 
|  | assert(R.getTypePtr()->isFunctionType()); | 
|  |  | 
|  | // TODO: consider using NameInfo for diagnostic. | 
|  | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | 
|  | DeclarationName Name = NameInfo.getName(); | 
|  | FunctionDecl::StorageClass SC = SC_None; | 
|  | switch (D.getDeclSpec().getStorageClassSpec()) { | 
|  | default: llvm_unreachable("Unknown storage class!"); | 
|  | case DeclSpec::SCS_auto: | 
|  | case DeclSpec::SCS_register: | 
|  | case DeclSpec::SCS_mutable: | 
|  | Diag(D.getDeclSpec().getStorageClassSpecLoc(), | 
|  | diag::err_typecheck_sclass_func); | 
|  | D.setInvalidType(); | 
|  | break; | 
|  | case DeclSpec::SCS_unspecified: SC = SC_None; break; | 
|  | case DeclSpec::SCS_extern:      SC = SC_Extern; break; | 
|  | case DeclSpec::SCS_static: { | 
|  | if (CurContext->getRedeclContext()->isFunctionOrMethod()) { | 
|  | // C99 6.7.1p5: | 
|  | //   The declaration of an identifier for a function that has | 
|  | //   block scope shall have no explicit storage-class specifier | 
|  | //   other than extern | 
|  | // See also (C++ [dcl.stc]p4). | 
|  | Diag(D.getDeclSpec().getStorageClassSpecLoc(), | 
|  | diag::err_static_block_func); | 
|  | SC = SC_None; | 
|  | } else | 
|  | SC = SC_Static; | 
|  | break; | 
|  | } | 
|  | case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break; | 
|  | } | 
|  |  | 
|  | if (D.getDeclSpec().isThreadSpecified()) | 
|  | Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); | 
|  |  | 
|  | // Do not allow returning a objc interface by-value. | 
|  | if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) { | 
|  | Diag(D.getIdentifierLoc(), | 
|  | diag::err_object_cannot_be_passed_returned_by_value) << 0 | 
|  | << R->getAs<FunctionType>()->getResultType() | 
|  | << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*"); | 
|  |  | 
|  | QualType T = R->getAs<FunctionType>()->getResultType(); | 
|  | T = Context.getObjCObjectPointerType(T); | 
|  | if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) { | 
|  | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | 
|  | R = Context.getFunctionType(T, FPT->arg_type_begin(), | 
|  | FPT->getNumArgs(), EPI); | 
|  | } | 
|  | else if (isa<FunctionNoProtoType>(R)) | 
|  | R = Context.getFunctionNoProtoType(T); | 
|  | } | 
|  |  | 
|  | FunctionDecl *NewFD; | 
|  | bool isInline = D.getDeclSpec().isInlineSpecified(); | 
|  | bool isFriend = false; | 
|  | DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten(); | 
|  | FunctionDecl::StorageClass SCAsWritten | 
|  | = StorageClassSpecToFunctionDeclStorageClass(SCSpec); | 
|  | FunctionTemplateDecl *FunctionTemplate = 0; | 
|  | bool isExplicitSpecialization = false; | 
|  | bool isFunctionTemplateSpecialization = false; | 
|  | bool isDependentClassScopeExplicitSpecialization = false; | 
|  |  | 
|  | if (!getLangOptions().CPlusPlus) { | 
|  | // Determine whether the function was written with a | 
|  | // prototype. This true when: | 
|  | //   - there is a prototype in the declarator, or | 
|  | //   - the type R of the function is some kind of typedef or other reference | 
|  | //     to a type name (which eventually refers to a function type). | 
|  | bool HasPrototype = | 
|  | (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) || | 
|  | (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType()); | 
|  |  | 
|  | NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(), | 
|  | NameInfo, R, TInfo, SC, SCAsWritten, isInline, | 
|  | HasPrototype); | 
|  | if (D.isInvalidType()) | 
|  | NewFD->setInvalidDecl(); | 
|  |  | 
|  | // Set the lexical context. | 
|  | NewFD->setLexicalDeclContext(CurContext); | 
|  | // Filter out previous declarations that don't match the scope. | 
|  | FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(), | 
|  | /*ExplicitInstantiationOrSpecialization=*/false); | 
|  | } else { | 
|  | isFriend = D.getDeclSpec().isFriendSpecified(); | 
|  | bool isVirtual = D.getDeclSpec().isVirtualSpecified(); | 
|  | bool isExplicit = D.getDeclSpec().isExplicitSpecified(); | 
|  | bool isConstexpr = D.getDeclSpec().isConstexprSpecified(); | 
|  | bool isVirtualOkay = false; | 
|  |  | 
|  | // Check that the return type is not an abstract class type. | 
|  | // For record types, this is done by the AbstractClassUsageDiagnoser once | 
|  | // the class has been completely parsed. | 
|  | if (!DC->isRecord() && | 
|  | RequireNonAbstractType(D.getIdentifierLoc(), | 
|  | R->getAs<FunctionType>()->getResultType(), | 
|  | diag::err_abstract_type_in_decl, | 
|  | AbstractReturnType)) | 
|  | D.setInvalidType(); | 
|  |  | 
|  | if (Name.getNameKind() == DeclarationName::CXXConstructorName) { | 
|  | // This is a C++ constructor declaration. | 
|  | assert(DC->isRecord() && | 
|  | "Constructors can only be declared in a member context"); | 
|  |  | 
|  | R = CheckConstructorDeclarator(D, R, SC); | 
|  |  | 
|  | // Create the new declaration | 
|  | CXXConstructorDecl *NewCD = CXXConstructorDecl::Create( | 
|  | Context, | 
|  | cast<CXXRecordDecl>(DC), | 
|  | D.getSourceRange().getBegin(), | 
|  | NameInfo, R, TInfo, | 
|  | isExplicit, isInline, | 
|  | /*isImplicitlyDeclared=*/false, | 
|  | isConstexpr); | 
|  |  | 
|  | NewFD = NewCD; | 
|  | } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) { | 
|  | // This is a C++ destructor declaration. | 
|  | if (DC->isRecord()) { | 
|  | R = CheckDestructorDeclarator(D, R, SC); | 
|  | CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); | 
|  |  | 
|  | CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record, | 
|  | D.getSourceRange().getBegin(), | 
|  | NameInfo, R, TInfo, | 
|  | isInline, | 
|  | /*isImplicitlyDeclared=*/false); | 
|  | NewFD = NewDD; | 
|  | isVirtualOkay = true; | 
|  |  | 
|  | // If the class is complete, then we now create the implicit exception | 
|  | // specification. If the class is incomplete or dependent, we can't do | 
|  | // it yet. | 
|  | if (getLangOptions().CPlusPlus0x && !Record->isDependentType() && | 
|  | Record->getDefinition() && !Record->isBeingDefined() && | 
|  | R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) { | 
|  | AdjustDestructorExceptionSpec(Record, NewDD); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); | 
|  |  | 
|  | // Create a FunctionDecl to satisfy the function definition parsing | 
|  | // code path. | 
|  | NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(), | 
|  | D.getIdentifierLoc(), Name, R, TInfo, | 
|  | SC, SCAsWritten, isInline, | 
|  | /*hasPrototype=*/true, isConstexpr); | 
|  | D.setInvalidType(); | 
|  | } | 
|  | } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { | 
|  | if (!DC->isRecord()) { | 
|  | Diag(D.getIdentifierLoc(), | 
|  | diag::err_conv_function_not_member); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | CheckConversionDeclarator(D, R, SC); | 
|  | NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC), | 
|  | D.getSourceRange().getBegin(), | 
|  | NameInfo, R, TInfo, | 
|  | isInline, isExplicit, isConstexpr, | 
|  | SourceLocation()); | 
|  |  | 
|  | isVirtualOkay = true; | 
|  | } else if (DC->isRecord()) { | 
|  | // If the name of the function is the same as the name of the record, | 
|  | // then this must be an invalid constructor that has a return type. | 
|  | // (The parser checks for a return type and makes the declarator a | 
|  | // constructor if it has no return type). | 
|  | if (Name.getAsIdentifierInfo() && | 
|  | Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){ | 
|  | Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) | 
|  | << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool isStatic = SC == SC_Static; | 
|  |  | 
|  | // [class.free]p1: | 
|  | // Any allocation function for a class T is a static member | 
|  | // (even if not explicitly declared static). | 
|  | if (Name.getCXXOverloadedOperator() == OO_New || | 
|  | Name.getCXXOverloadedOperator() == OO_Array_New) | 
|  | isStatic = true; | 
|  |  | 
|  | // [class.free]p6 Any deallocation function for a class X is a static member | 
|  | // (even if not explicitly declared static). | 
|  | if (Name.getCXXOverloadedOperator() == OO_Delete || | 
|  | Name.getCXXOverloadedOperator() == OO_Array_Delete) | 
|  | isStatic = true; | 
|  |  | 
|  | // This is a C++ method declaration. | 
|  | CXXMethodDecl *NewMD = CXXMethodDecl::Create( | 
|  | Context, cast<CXXRecordDecl>(DC), | 
|  | D.getSourceRange().getBegin(), | 
|  | NameInfo, R, TInfo, | 
|  | isStatic, SCAsWritten, isInline, | 
|  | isConstexpr, | 
|  | SourceLocation()); | 
|  | NewFD = NewMD; | 
|  |  | 
|  | isVirtualOkay = !isStatic; | 
|  | } else { | 
|  | // Determine whether the function was written with a | 
|  | // prototype. This true when: | 
|  | //   - we're in C++ (where every function has a prototype), | 
|  | NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(), | 
|  | NameInfo, R, TInfo, SC, SCAsWritten, isInline, | 
|  | true/*HasPrototype*/, isConstexpr); | 
|  | } | 
|  |  | 
|  | if (isFriend && !isInline && IsFunctionDefinition) { | 
|  | // C++ [class.friend]p5 | 
|  | //   A function can be defined in a friend declaration of a | 
|  | //   class . . . . Such a function is implicitly inline. | 
|  | NewFD->setImplicitlyInline(); | 
|  | } | 
|  |  | 
|  | SetNestedNameSpecifier(NewFD, D); | 
|  | isExplicitSpecialization = false; | 
|  | isFunctionTemplateSpecialization = false; | 
|  | if (D.isInvalidType()) | 
|  | NewFD->setInvalidDecl(); | 
|  |  | 
|  | // Set the lexical context. If the declarator has a C++ | 
|  | // scope specifier, or is the object of a friend declaration, the | 
|  | // lexical context will be different from the semantic context. | 
|  | NewFD->setLexicalDeclContext(CurContext); | 
|  |  | 
|  | // Match up the template parameter lists with the scope specifier, then | 
|  | // determine whether we have a template or a template specialization. | 
|  | bool Invalid = false; | 
|  | if (TemplateParameterList *TemplateParams | 
|  | = MatchTemplateParametersToScopeSpecifier( | 
|  | D.getDeclSpec().getSourceRange().getBegin(), | 
|  | D.getIdentifierLoc(), | 
|  | D.getCXXScopeSpec(), | 
|  | TemplateParamLists.get(), | 
|  | TemplateParamLists.size(), | 
|  | isFriend, | 
|  | isExplicitSpecialization, | 
|  | Invalid)) { | 
|  | if (TemplateParams->size() > 0) { | 
|  | // This is a function template | 
|  |  | 
|  | // Check that we can declare a template here. | 
|  | if (CheckTemplateDeclScope(S, TemplateParams)) | 
|  | return 0; | 
|  |  | 
|  | // A destructor cannot be a template. | 
|  | if (Name.getNameKind() == DeclarationName::CXXDestructorName) { | 
|  | Diag(NewFD->getLocation(), diag::err_destructor_template); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | FunctionTemplate = FunctionTemplateDecl::Create(Context, DC, | 
|  | NewFD->getLocation(), | 
|  | Name, TemplateParams, | 
|  | NewFD); | 
|  | FunctionTemplate->setLexicalDeclContext(CurContext); | 
|  | NewFD->setDescribedFunctionTemplate(FunctionTemplate); | 
|  |  | 
|  | // For source fidelity, store the other template param lists. | 
|  | if (TemplateParamLists.size() > 1) { | 
|  | NewFD->setTemplateParameterListsInfo(Context, | 
|  | TemplateParamLists.size() - 1, | 
|  | TemplateParamLists.release()); | 
|  | } | 
|  | } else { | 
|  | // This is a function template specialization. | 
|  | isFunctionTemplateSpecialization = true; | 
|  | // For source fidelity, store all the template param lists. | 
|  | NewFD->setTemplateParameterListsInfo(Context, | 
|  | TemplateParamLists.size(), | 
|  | TemplateParamLists.release()); | 
|  |  | 
|  | // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);". | 
|  | if (isFriend) { | 
|  | // We want to remove the "template<>", found here. | 
|  | SourceRange RemoveRange = TemplateParams->getSourceRange(); | 
|  |  | 
|  | // If we remove the template<> and the name is not a | 
|  | // template-id, we're actually silently creating a problem: | 
|  | // the friend declaration will refer to an untemplated decl, | 
|  | // and clearly the user wants a template specialization.  So | 
|  | // we need to insert '<>' after the name. | 
|  | SourceLocation InsertLoc; | 
|  | if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) { | 
|  | InsertLoc = D.getName().getSourceRange().getEnd(); | 
|  | InsertLoc = PP.getLocForEndOfToken(InsertLoc); | 
|  | } | 
|  |  | 
|  | Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend) | 
|  | << Name << RemoveRange | 
|  | << FixItHint::CreateRemoval(RemoveRange) | 
|  | << FixItHint::CreateInsertion(InsertLoc, "<>"); | 
|  | } | 
|  | } | 
|  | } | 
|  | else { | 
|  | // All template param lists were matched against the scope specifier: | 
|  | // this is NOT (an explicit specialization of) a template. | 
|  | if (TemplateParamLists.size() > 0) | 
|  | // For source fidelity, store all the template param lists. | 
|  | NewFD->setTemplateParameterListsInfo(Context, | 
|  | TemplateParamLists.size(), | 
|  | TemplateParamLists.release()); | 
|  | } | 
|  |  | 
|  | if (Invalid) { | 
|  | NewFD->setInvalidDecl(); | 
|  | if (FunctionTemplate) | 
|  | FunctionTemplate->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // C++ [dcl.fct.spec]p5: | 
|  | //   The virtual specifier shall only be used in declarations of | 
|  | //   nonstatic class member functions that appear within a | 
|  | //   member-specification of a class declaration; see 10.3. | 
|  | // | 
|  | if (isVirtual && !NewFD->isInvalidDecl()) { | 
|  | if (!isVirtualOkay) { | 
|  | Diag(D.getDeclSpec().getVirtualSpecLoc(), | 
|  | diag::err_virtual_non_function); | 
|  | } else if (!CurContext->isRecord()) { | 
|  | // 'virtual' was specified outside of the class. | 
|  | Diag(D.getDeclSpec().getVirtualSpecLoc(), | 
|  | diag::err_virtual_out_of_class) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); | 
|  | } else if (NewFD->getDescribedFunctionTemplate()) { | 
|  | // C++ [temp.mem]p3: | 
|  | //  A member function template shall not be virtual. | 
|  | Diag(D.getDeclSpec().getVirtualSpecLoc(), | 
|  | diag::err_virtual_member_function_template) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); | 
|  | } else { | 
|  | // Okay: Add virtual to the method. | 
|  | NewFD->setVirtualAsWritten(true); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [dcl.fct.spec]p3: | 
|  | //  The inline specifier shall not appear on a block scope function declaration. | 
|  | if (isInline && !NewFD->isInvalidDecl()) { | 
|  | if (CurContext->isFunctionOrMethod()) { | 
|  | // 'inline' is not allowed on block scope function declaration. | 
|  | Diag(D.getDeclSpec().getInlineSpecLoc(), | 
|  | diag::err_inline_declaration_block_scope) << Name | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [dcl.fct.spec]p6: | 
|  | //  The explicit specifier shall be used only in the declaration of a | 
|  | //  constructor or conversion function within its class definition; see 12.3.1 | 
|  | //  and 12.3.2. | 
|  | if (isExplicit && !NewFD->isInvalidDecl()) { | 
|  | if (!CurContext->isRecord()) { | 
|  | // 'explicit' was specified outside of the class. | 
|  | Diag(D.getDeclSpec().getExplicitSpecLoc(), | 
|  | diag::err_explicit_out_of_class) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc()); | 
|  | } else if (!isa<CXXConstructorDecl>(NewFD) && | 
|  | !isa<CXXConversionDecl>(NewFD)) { | 
|  | // 'explicit' was specified on a function that wasn't a constructor | 
|  | // or conversion function. | 
|  | Diag(D.getDeclSpec().getExplicitSpecLoc(), | 
|  | diag::err_explicit_non_ctor_or_conv_function) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isConstexpr) { | 
|  | // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors | 
|  | // are implicitly inline. | 
|  | NewFD->setImplicitlyInline(); | 
|  |  | 
|  | // FIXME: If this is a redeclaration, check the original declaration was | 
|  | // marked constepr. | 
|  |  | 
|  | // C++0x [dcl.constexpr]p3: functions declared constexpr are required to | 
|  | // be either constructors or to return a literal type. Therefore, | 
|  | // destructors cannot be declared constexpr. | 
|  | if (isa<CXXDestructorDecl>(NewFD)) | 
|  | Diag(D.getDeclSpec().getConstexprSpecLoc(), | 
|  | diag::err_constexpr_dtor); | 
|  | } | 
|  |  | 
|  | // If __module_private__ was specified, mark the function accordingly. | 
|  | if (D.getDeclSpec().isModulePrivateSpecified()) { | 
|  | if (isFunctionTemplateSpecialization) { | 
|  | SourceLocation ModulePrivateLoc | 
|  | = D.getDeclSpec().getModulePrivateSpecLoc(); | 
|  | Diag(ModulePrivateLoc, diag::err_module_private_specialization) | 
|  | << 0 | 
|  | << FixItHint::CreateRemoval(ModulePrivateLoc); | 
|  | } else { | 
|  | NewFD->setModulePrivate(); | 
|  | if (FunctionTemplate) | 
|  | FunctionTemplate->setModulePrivate(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Filter out previous declarations that don't match the scope. | 
|  | FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(), | 
|  | isExplicitSpecialization || | 
|  | isFunctionTemplateSpecialization); | 
|  |  | 
|  | if (isFriend) { | 
|  | // For now, claim that the objects have no previous declaration. | 
|  | if (FunctionTemplate) { | 
|  | FunctionTemplate->setObjectOfFriendDecl(false); | 
|  | FunctionTemplate->setAccess(AS_public); | 
|  | } | 
|  | NewFD->setObjectOfFriendDecl(false); | 
|  | NewFD->setAccess(AS_public); | 
|  | } | 
|  |  | 
|  | if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) { | 
|  | // A method is implicitly inline if it's defined in its class | 
|  | // definition. | 
|  | NewFD->setImplicitlyInline(); | 
|  | } | 
|  |  | 
|  | if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) && | 
|  | !CurContext->isRecord()) { | 
|  | // C++ [class.static]p1: | 
|  | //   A data or function member of a class may be declared static | 
|  | //   in a class definition, in which case it is a static member of | 
|  | //   the class. | 
|  |  | 
|  | // Complain about the 'static' specifier if it's on an out-of-line | 
|  | // member function definition. | 
|  | Diag(D.getDeclSpec().getStorageClassSpecLoc(), | 
|  | diag::err_static_out_of_line) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle GNU asm-label extension (encoded as an attribute). | 
|  | if (Expr *E = (Expr*) D.getAsmLabel()) { | 
|  | // The parser guarantees this is a string. | 
|  | StringLiteral *SE = cast<StringLiteral>(E); | 
|  | NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context, | 
|  | SE->getString())); | 
|  | } | 
|  |  | 
|  | // Copy the parameter declarations from the declarator D to the function | 
|  | // declaration NewFD, if they are available.  First scavenge them into Params. | 
|  | SmallVector<ParmVarDecl*, 16> Params; | 
|  | if (D.isFunctionDeclarator()) { | 
|  | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); | 
|  |  | 
|  | // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs | 
|  | // function that takes no arguments, not a function that takes a | 
|  | // single void argument. | 
|  | // We let through "const void" here because Sema::GetTypeForDeclarator | 
|  | // already checks for that case. | 
|  | if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && | 
|  | FTI.ArgInfo[0].Param && | 
|  | cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) { | 
|  | // Empty arg list, don't push any params. | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param); | 
|  |  | 
|  | // In C++, the empty parameter-type-list must be spelled "void"; a | 
|  | // typedef of void is not permitted. | 
|  | if (getLangOptions().CPlusPlus && | 
|  | Param->getType().getUnqualifiedType() != Context.VoidTy) { | 
|  | bool IsTypeAlias = false; | 
|  | if (const TypedefType *TT = Param->getType()->getAs<TypedefType>()) | 
|  | IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl()); | 
|  | else if (const TemplateSpecializationType *TST = | 
|  | Param->getType()->getAs<TemplateSpecializationType>()) | 
|  | IsTypeAlias = TST->isTypeAlias(); | 
|  | Diag(Param->getLocation(), diag::err_param_typedef_of_void) | 
|  | << IsTypeAlias; | 
|  | } | 
|  | } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) { | 
|  | for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) { | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param); | 
|  | assert(Param->getDeclContext() != NewFD && "Was set before ?"); | 
|  | Param->setDeclContext(NewFD); | 
|  | Params.push_back(Param); | 
|  |  | 
|  | if (Param->isInvalidDecl()) | 
|  | NewFD->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) { | 
|  | // When we're declaring a function with a typedef, typeof, etc as in the | 
|  | // following example, we'll need to synthesize (unnamed) | 
|  | // parameters for use in the declaration. | 
|  | // | 
|  | // @code | 
|  | // typedef void fn(int); | 
|  | // fn f; | 
|  | // @endcode | 
|  |  | 
|  | // Synthesize a parameter for each argument type. | 
|  | for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(), | 
|  | AE = FT->arg_type_end(); AI != AE; ++AI) { | 
|  | ParmVarDecl *Param = | 
|  | BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI); | 
|  | Param->setScopeInfo(0, Params.size()); | 
|  | Params.push_back(Param); | 
|  | } | 
|  | } else { | 
|  | assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && | 
|  | "Should not need args for typedef of non-prototype fn"); | 
|  | } | 
|  | // Finally, we know we have the right number of parameters, install them. | 
|  | NewFD->setParams(Params); | 
|  |  | 
|  | // Process the non-inheritable attributes on this declaration. | 
|  | ProcessDeclAttributes(S, NewFD, D, | 
|  | /*NonInheritable=*/true, /*Inheritable=*/false); | 
|  |  | 
|  | if (!getLangOptions().CPlusPlus) { | 
|  | // Perform semantic checking on the function declaration. | 
|  | bool isExplicitSpecialization=false; | 
|  | if (!NewFD->isInvalidDecl()) { | 
|  | if (NewFD->getResultType()->isVariablyModifiedType()) { | 
|  | // Functions returning a variably modified type violate C99 6.7.5.2p2 | 
|  | // because all functions have linkage. | 
|  | Diag(NewFD->getLocation(), diag::err_vm_func_decl); | 
|  | NewFD->setInvalidDecl(); | 
|  | } else { | 
|  | if (NewFD->isMain()) | 
|  | CheckMain(NewFD, D.getDeclSpec()); | 
|  | CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization, | 
|  | Redeclaration); | 
|  | } | 
|  | } | 
|  | assert((NewFD->isInvalidDecl() || !Redeclaration || | 
|  | Previous.getResultKind() != LookupResult::FoundOverloaded) && | 
|  | "previous declaration set still overloaded"); | 
|  | } else { | 
|  | // If the declarator is a template-id, translate the parser's template | 
|  | // argument list into our AST format. | 
|  | bool HasExplicitTemplateArgs = false; | 
|  | TemplateArgumentListInfo TemplateArgs; | 
|  | if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { | 
|  | TemplateIdAnnotation *TemplateId = D.getName().TemplateId; | 
|  | TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); | 
|  | TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); | 
|  | ASTTemplateArgsPtr TemplateArgsPtr(*this, | 
|  | TemplateId->getTemplateArgs(), | 
|  | TemplateId->NumArgs); | 
|  | translateTemplateArguments(TemplateArgsPtr, | 
|  | TemplateArgs); | 
|  | TemplateArgsPtr.release(); | 
|  |  | 
|  | HasExplicitTemplateArgs = true; | 
|  |  | 
|  | if (NewFD->isInvalidDecl()) { | 
|  | HasExplicitTemplateArgs = false; | 
|  | } else if (FunctionTemplate) { | 
|  | // Function template with explicit template arguments. | 
|  | Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec) | 
|  | << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc); | 
|  |  | 
|  | HasExplicitTemplateArgs = false; | 
|  | } else if (!isFunctionTemplateSpecialization && | 
|  | !D.getDeclSpec().isFriendSpecified()) { | 
|  | // We have encountered something that the user meant to be a | 
|  | // specialization (because it has explicitly-specified template | 
|  | // arguments) but that was not introduced with a "template<>" (or had | 
|  | // too few of them). | 
|  | Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header) | 
|  | << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc) | 
|  | << FixItHint::CreateInsertion( | 
|  | D.getDeclSpec().getSourceRange().getBegin(), | 
|  | "template<> "); | 
|  | isFunctionTemplateSpecialization = true; | 
|  | } else { | 
|  | // "friend void foo<>(int);" is an implicit specialization decl. | 
|  | isFunctionTemplateSpecialization = true; | 
|  | } | 
|  | } else if (isFriend && isFunctionTemplateSpecialization) { | 
|  | // This combination is only possible in a recovery case;  the user | 
|  | // wrote something like: | 
|  | //   template <> friend void foo(int); | 
|  | // which we're recovering from as if the user had written: | 
|  | //   friend void foo<>(int); | 
|  | // Go ahead and fake up a template id. | 
|  | HasExplicitTemplateArgs = true; | 
|  | TemplateArgs.setLAngleLoc(D.getIdentifierLoc()); | 
|  | TemplateArgs.setRAngleLoc(D.getIdentifierLoc()); | 
|  | } | 
|  |  | 
|  | // If it's a friend (and only if it's a friend), it's possible | 
|  | // that either the specialized function type or the specialized | 
|  | // template is dependent, and therefore matching will fail.  In | 
|  | // this case, don't check the specialization yet. | 
|  | if (isFunctionTemplateSpecialization && isFriend && | 
|  | (NewFD->getType()->isDependentType() || DC->isDependentContext())) { | 
|  | assert(HasExplicitTemplateArgs && | 
|  | "friend function specialization without template args"); | 
|  | if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs, | 
|  | Previous)) | 
|  | NewFD->setInvalidDecl(); | 
|  | } else if (isFunctionTemplateSpecialization) { | 
|  | if (CurContext->isDependentContext() && CurContext->isRecord() | 
|  | && !isFriend) { | 
|  | isDependentClassScopeExplicitSpecialization = true; | 
|  | Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ? | 
|  | diag::ext_function_specialization_in_class : | 
|  | diag::err_function_specialization_in_class) | 
|  | << NewFD->getDeclName(); | 
|  | } else if (CheckFunctionTemplateSpecialization(NewFD, | 
|  | (HasExplicitTemplateArgs ? &TemplateArgs : 0), | 
|  | Previous)) | 
|  | NewFD->setInvalidDecl(); | 
|  |  | 
|  | // C++ [dcl.stc]p1: | 
|  | //   A storage-class-specifier shall not be specified in an explicit | 
|  | //   specialization (14.7.3) | 
|  | if (SC != SC_None) { | 
|  | if (SC != NewFD->getStorageClass()) | 
|  | Diag(NewFD->getLocation(), | 
|  | diag::err_explicit_specialization_inconsistent_storage_class) | 
|  | << SC | 
|  | << FixItHint::CreateRemoval( | 
|  | D.getDeclSpec().getStorageClassSpecLoc()); | 
|  |  | 
|  | else | 
|  | Diag(NewFD->getLocation(), | 
|  | diag::ext_explicit_specialization_storage_class) | 
|  | << FixItHint::CreateRemoval( | 
|  | D.getDeclSpec().getStorageClassSpecLoc()); | 
|  | } | 
|  |  | 
|  | } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) { | 
|  | if (CheckMemberSpecialization(NewFD, Previous)) | 
|  | NewFD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // Perform semantic checking on the function declaration. | 
|  | if (!isDependentClassScopeExplicitSpecialization) { | 
|  | if (NewFD->isInvalidDecl()) { | 
|  | // If this is a class member, mark the class invalid immediately. | 
|  | // This avoids some consistency errors later. | 
|  | if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD)) | 
|  | methodDecl->getParent()->setInvalidDecl(); | 
|  | } else { | 
|  | if (NewFD->isMain()) | 
|  | CheckMain(NewFD, D.getDeclSpec()); | 
|  | CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization, | 
|  | Redeclaration); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert((NewFD->isInvalidDecl() || !Redeclaration || | 
|  | Previous.getResultKind() != LookupResult::FoundOverloaded) && | 
|  | "previous declaration set still overloaded"); | 
|  |  | 
|  | NamedDecl *PrincipalDecl = (FunctionTemplate | 
|  | ? cast<NamedDecl>(FunctionTemplate) | 
|  | : NewFD); | 
|  |  | 
|  | if (isFriend && Redeclaration) { | 
|  | AccessSpecifier Access = AS_public; | 
|  | if (!NewFD->isInvalidDecl()) | 
|  | Access = NewFD->getPreviousDeclaration()->getAccess(); | 
|  |  | 
|  | NewFD->setAccess(Access); | 
|  | if (FunctionTemplate) FunctionTemplate->setAccess(Access); | 
|  |  | 
|  | PrincipalDecl->setObjectOfFriendDecl(true); | 
|  | } | 
|  |  | 
|  | if (NewFD->isOverloadedOperator() && !DC->isRecord() && | 
|  | PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) | 
|  | PrincipalDecl->setNonMemberOperator(); | 
|  |  | 
|  | // If we have a function template, check the template parameter | 
|  | // list. This will check and merge default template arguments. | 
|  | if (FunctionTemplate) { | 
|  | FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration(); | 
|  | CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(), | 
|  | PrevTemplate? PrevTemplate->getTemplateParameters() : 0, | 
|  | D.getDeclSpec().isFriendSpecified() | 
|  | ? (IsFunctionDefinition | 
|  | ? TPC_FriendFunctionTemplateDefinition | 
|  | : TPC_FriendFunctionTemplate) | 
|  | : (D.getCXXScopeSpec().isSet() && | 
|  | DC && DC->isRecord() && | 
|  | DC->isDependentContext()) | 
|  | ? TPC_ClassTemplateMember | 
|  | : TPC_FunctionTemplate); | 
|  | } | 
|  |  | 
|  | if (NewFD->isInvalidDecl()) { | 
|  | // Ignore all the rest of this. | 
|  | } else if (!Redeclaration) { | 
|  | // Fake up an access specifier if it's supposed to be a class member. | 
|  | if (isa<CXXRecordDecl>(NewFD->getDeclContext())) | 
|  | NewFD->setAccess(AS_public); | 
|  |  | 
|  | // Qualified decls generally require a previous declaration. | 
|  | if (D.getCXXScopeSpec().isSet()) { | 
|  | // ...with the major exception of templated-scope or | 
|  | // dependent-scope friend declarations. | 
|  |  | 
|  | // TODO: we currently also suppress this check in dependent | 
|  | // contexts because (1) the parameter depth will be off when | 
|  | // matching friend templates and (2) we might actually be | 
|  | // selecting a friend based on a dependent factor.  But there | 
|  | // are situations where these conditions don't apply and we | 
|  | // can actually do this check immediately. | 
|  | if (isFriend && | 
|  | (TemplateParamLists.size() || | 
|  | D.getCXXScopeSpec().getScopeRep()->isDependent() || | 
|  | CurContext->isDependentContext())) { | 
|  | // ignore these | 
|  | } else { | 
|  | // The user tried to provide an out-of-line definition for a | 
|  | // function that is a member of a class or namespace, but there | 
|  | // was no such member function declared (C++ [class.mfct]p2, | 
|  | // C++ [namespace.memdef]p2). For example: | 
|  | // | 
|  | // class X { | 
|  | //   void f() const; | 
|  | // }; | 
|  | // | 
|  | // void X::f() { } // ill-formed | 
|  | // | 
|  | // Complain about this problem, and attempt to suggest close | 
|  | // matches (e.g., those that differ only in cv-qualifiers and | 
|  | // whether the parameter types are references). | 
|  |  | 
|  | DiagnoseInvalidRedeclaration(*this, NewFD, false); | 
|  | } | 
|  |  | 
|  | // Unqualified local friend declarations are required to resolve | 
|  | // to something. | 
|  | } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) { | 
|  | DiagnoseInvalidRedeclaration(*this, NewFD, true); | 
|  | } | 
|  |  | 
|  | } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && | 
|  | !isFriend && !isFunctionTemplateSpecialization && | 
|  | !isExplicitSpecialization) { | 
|  | // An out-of-line member function declaration must also be a | 
|  | // definition (C++ [dcl.meaning]p1). | 
|  | // Note that this is not the case for explicit specializations of | 
|  | // function templates or member functions of class templates, per | 
|  | // C++ [temp.expl.spec]p2. We also allow these declarations as an extension | 
|  | // for compatibility with old SWIG code which likes to generate them. | 
|  | Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration) | 
|  | << D.getCXXScopeSpec().getRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Handle attributes. We need to have merged decls when handling attributes | 
|  | // (for example to check for conflicts, etc). | 
|  | // FIXME: This needs to happen before we merge declarations. Then, | 
|  | // let attribute merging cope with attribute conflicts. | 
|  | ProcessDeclAttributes(S, NewFD, D, | 
|  | /*NonInheritable=*/false, /*Inheritable=*/true); | 
|  |  | 
|  | // attributes declared post-definition are currently ignored | 
|  | // FIXME: This should happen during attribute merging | 
|  | if (Redeclaration && Previous.isSingleResult()) { | 
|  | const FunctionDecl *Def; | 
|  | FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl()); | 
|  | if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) { | 
|  | Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition); | 
|  | Diag(Def->getLocation(), diag::note_previous_definition); | 
|  | } | 
|  | } | 
|  |  | 
|  | AddKnownFunctionAttributes(NewFD); | 
|  |  | 
|  | if (NewFD->hasAttr<OverloadableAttr>() && | 
|  | !NewFD->getType()->getAs<FunctionProtoType>()) { | 
|  | Diag(NewFD->getLocation(), | 
|  | diag::err_attribute_overloadable_no_prototype) | 
|  | << NewFD; | 
|  |  | 
|  | // Turn this into a variadic function with no parameters. | 
|  | const FunctionType *FT = NewFD->getType()->getAs<FunctionType>(); | 
|  | FunctionProtoType::ExtProtoInfo EPI; | 
|  | EPI.Variadic = true; | 
|  | EPI.ExtInfo = FT->getExtInfo(); | 
|  |  | 
|  | QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI); | 
|  | NewFD->setType(R); | 
|  | } | 
|  |  | 
|  | // If there's a #pragma GCC visibility in scope, and this isn't a class | 
|  | // member, set the visibility of this function. | 
|  | if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord()) | 
|  | AddPushedVisibilityAttribute(NewFD); | 
|  |  | 
|  | // If this is a locally-scoped extern C function, update the | 
|  | // map of such names. | 
|  | if (CurContext->isFunctionOrMethod() && NewFD->isExternC() | 
|  | && !NewFD->isInvalidDecl()) | 
|  | RegisterLocallyScopedExternCDecl(NewFD, Previous, S); | 
|  |  | 
|  | // Set this FunctionDecl's range up to the right paren. | 
|  | NewFD->setRangeEnd(D.getSourceRange().getEnd()); | 
|  |  | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | if (FunctionTemplate) { | 
|  | if (NewFD->isInvalidDecl()) | 
|  | FunctionTemplate->setInvalidDecl(); | 
|  | return FunctionTemplate; | 
|  | } | 
|  | } | 
|  |  | 
|  | MarkUnusedFileScopedDecl(NewFD); | 
|  |  | 
|  | if (getLangOptions().CUDA) | 
|  | if (IdentifierInfo *II = NewFD->getIdentifier()) | 
|  | if (!NewFD->isInvalidDecl() && | 
|  | NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { | 
|  | if (II->isStr("cudaConfigureCall")) { | 
|  | if (!R->getAs<FunctionType>()->getResultType()->isScalarType()) | 
|  | Diag(NewFD->getLocation(), diag::err_config_scalar_return); | 
|  |  | 
|  | Context.setcudaConfigureCallDecl(NewFD); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Here we have an function template explicit specialization at class scope. | 
|  | // The actually specialization will be postponed to template instatiation | 
|  | // time via the ClassScopeFunctionSpecializationDecl node. | 
|  | if (isDependentClassScopeExplicitSpecialization) { | 
|  | ClassScopeFunctionSpecializationDecl *NewSpec = | 
|  | ClassScopeFunctionSpecializationDecl::Create( | 
|  | Context, CurContext,  SourceLocation(), | 
|  | cast<CXXMethodDecl>(NewFD)); | 
|  | CurContext->addDecl(NewSpec); | 
|  | AddToScope = false; | 
|  | } | 
|  |  | 
|  | return NewFD; | 
|  | } | 
|  |  | 
|  | /// \brief Perform semantic checking of a new function declaration. | 
|  | /// | 
|  | /// Performs semantic analysis of the new function declaration | 
|  | /// NewFD. This routine performs all semantic checking that does not | 
|  | /// require the actual declarator involved in the declaration, and is | 
|  | /// used both for the declaration of functions as they are parsed | 
|  | /// (called via ActOnDeclarator) and for the declaration of functions | 
|  | /// that have been instantiated via C++ template instantiation (called | 
|  | /// via InstantiateDecl). | 
|  | /// | 
|  | /// \param IsExplicitSpecialiation whether this new function declaration is | 
|  | /// an explicit specialization of the previous declaration. | 
|  | /// | 
|  | /// This sets NewFD->isInvalidDecl() to true if there was an error. | 
|  | void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, | 
|  | LookupResult &Previous, | 
|  | bool IsExplicitSpecialization, | 
|  | bool &Redeclaration) { | 
|  | assert(!NewFD->getResultType()->isVariablyModifiedType() | 
|  | && "Variably modified return types are not handled here"); | 
|  |  | 
|  | // Check for a previous declaration of this name. | 
|  | if (Previous.empty() && NewFD->isExternC()) { | 
|  | // Since we did not find anything by this name and we're declaring | 
|  | // an extern "C" function, look for a non-visible extern "C" | 
|  | // declaration with the same name. | 
|  | llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos | 
|  | = findLocallyScopedExternalDecl(NewFD->getDeclName()); | 
|  | if (Pos != LocallyScopedExternalDecls.end()) | 
|  | Previous.addDecl(Pos->second); | 
|  | } | 
|  |  | 
|  | // Merge or overload the declaration with an existing declaration of | 
|  | // the same name, if appropriate. | 
|  | if (!Previous.empty()) { | 
|  | // Determine whether NewFD is an overload of PrevDecl or | 
|  | // a declaration that requires merging. If it's an overload, | 
|  | // there's no more work to do here; we'll just add the new | 
|  | // function to the scope. | 
|  |  | 
|  | NamedDecl *OldDecl = 0; | 
|  | if (!AllowOverloadingOfFunction(Previous, Context)) { | 
|  | Redeclaration = true; | 
|  | OldDecl = Previous.getFoundDecl(); | 
|  | } else { | 
|  | switch (CheckOverload(S, NewFD, Previous, OldDecl, | 
|  | /*NewIsUsingDecl*/ false)) { | 
|  | case Ovl_Match: | 
|  | Redeclaration = true; | 
|  | break; | 
|  |  | 
|  | case Ovl_NonFunction: | 
|  | Redeclaration = true; | 
|  | break; | 
|  |  | 
|  | case Ovl_Overload: | 
|  | Redeclaration = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) { | 
|  | // If a function name is overloadable in C, then every function | 
|  | // with that name must be marked "overloadable". | 
|  | Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing) | 
|  | << Redeclaration << NewFD; | 
|  | NamedDecl *OverloadedDecl = 0; | 
|  | if (Redeclaration) | 
|  | OverloadedDecl = OldDecl; | 
|  | else if (!Previous.empty()) | 
|  | OverloadedDecl = Previous.getRepresentativeDecl(); | 
|  | if (OverloadedDecl) | 
|  | Diag(OverloadedDecl->getLocation(), | 
|  | diag::note_attribute_overloadable_prev_overload); | 
|  | NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), | 
|  | Context)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Redeclaration) { | 
|  | // NewFD and OldDecl represent declarations that need to be | 
|  | // merged. | 
|  | if (MergeFunctionDecl(NewFD, OldDecl)) | 
|  | return NewFD->setInvalidDecl(); | 
|  |  | 
|  | Previous.clear(); | 
|  | Previous.addDecl(OldDecl); | 
|  |  | 
|  | if (FunctionTemplateDecl *OldTemplateDecl | 
|  | = dyn_cast<FunctionTemplateDecl>(OldDecl)) { | 
|  | NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl()); | 
|  | FunctionTemplateDecl *NewTemplateDecl | 
|  | = NewFD->getDescribedFunctionTemplate(); | 
|  | assert(NewTemplateDecl && "Template/non-template mismatch"); | 
|  | if (CXXMethodDecl *Method | 
|  | = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) { | 
|  | Method->setAccess(OldTemplateDecl->getAccess()); | 
|  | NewTemplateDecl->setAccess(OldTemplateDecl->getAccess()); | 
|  | } | 
|  |  | 
|  | // If this is an explicit specialization of a member that is a function | 
|  | // template, mark it as a member specialization. | 
|  | if (IsExplicitSpecialization && | 
|  | NewTemplateDecl->getInstantiatedFromMemberTemplate()) { | 
|  | NewTemplateDecl->setMemberSpecialization(); | 
|  | assert(OldTemplateDecl->isMemberSpecialization()); | 
|  | } | 
|  |  | 
|  | if (OldTemplateDecl->isModulePrivate()) | 
|  | NewTemplateDecl->setModulePrivate(); | 
|  |  | 
|  | } else { | 
|  | if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions | 
|  | NewFD->setAccess(OldDecl->getAccess()); | 
|  | NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Semantic checking for this function declaration (in isolation). | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | // C++-specific checks. | 
|  | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) { | 
|  | CheckConstructor(Constructor); | 
|  | } else if (CXXDestructorDecl *Destructor = | 
|  | dyn_cast<CXXDestructorDecl>(NewFD)) { | 
|  | CXXRecordDecl *Record = Destructor->getParent(); | 
|  | QualType ClassType = Context.getTypeDeclType(Record); | 
|  |  | 
|  | // FIXME: Shouldn't we be able to perform this check even when the class | 
|  | // type is dependent? Both gcc and edg can handle that. | 
|  | if (!ClassType->isDependentType()) { | 
|  | DeclarationName Name | 
|  | = Context.DeclarationNames.getCXXDestructorName( | 
|  | Context.getCanonicalType(ClassType)); | 
|  | if (NewFD->getDeclName() != Name) { | 
|  | Diag(NewFD->getLocation(), diag::err_destructor_name); | 
|  | return NewFD->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  | } else if (CXXConversionDecl *Conversion | 
|  | = dyn_cast<CXXConversionDecl>(NewFD)) { | 
|  | ActOnConversionDeclarator(Conversion); | 
|  | } | 
|  |  | 
|  | // Find any virtual functions that this function overrides. | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) { | 
|  | if (!Method->isFunctionTemplateSpecialization() && | 
|  | !Method->getDescribedFunctionTemplate()) { | 
|  | if (AddOverriddenMethods(Method->getParent(), Method)) { | 
|  | // If the function was marked as "static", we have a problem. | 
|  | if (NewFD->getStorageClass() == SC_Static) { | 
|  | Diag(NewFD->getLocation(), diag::err_static_overrides_virtual) | 
|  | << NewFD->getDeclName(); | 
|  | for (CXXMethodDecl::method_iterator | 
|  | Overridden = Method->begin_overridden_methods(), | 
|  | OverriddenEnd = Method->end_overridden_methods(); | 
|  | Overridden != OverriddenEnd; | 
|  | ++Overridden) { | 
|  | Diag((*Overridden)->getLocation(), | 
|  | diag::note_overridden_virtual_function); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Extra checking for C++ overloaded operators (C++ [over.oper]). | 
|  | if (NewFD->isOverloadedOperator() && | 
|  | CheckOverloadedOperatorDeclaration(NewFD)) | 
|  | return NewFD->setInvalidDecl(); | 
|  |  | 
|  | // Extra checking for C++0x literal operators (C++0x [over.literal]). | 
|  | if (NewFD->getLiteralIdentifier() && | 
|  | CheckLiteralOperatorDeclaration(NewFD)) | 
|  | return NewFD->setInvalidDecl(); | 
|  |  | 
|  | // In C++, check default arguments now that we have merged decls. Unless | 
|  | // the lexical context is the class, because in this case this is done | 
|  | // during delayed parsing anyway. | 
|  | if (!CurContext->isRecord()) | 
|  | CheckCXXDefaultArguments(NewFD); | 
|  |  | 
|  | // If this function declares a builtin function, check the type of this | 
|  | // declaration against the expected type for the builtin. | 
|  | if (unsigned BuiltinID = NewFD->getBuiltinID()) { | 
|  | ASTContext::GetBuiltinTypeError Error; | 
|  | QualType T = Context.GetBuiltinType(BuiltinID, Error); | 
|  | if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) { | 
|  | // The type of this function differs from the type of the builtin, | 
|  | // so forget about the builtin entirely. | 
|  | Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) { | 
|  | // C++ [basic.start.main]p3:  A program that declares main to be inline | 
|  | //   or static is ill-formed. | 
|  | // C99 6.7.4p4:  In a hosted environment, the inline function specifier | 
|  | //   shall not appear in a declaration of main. | 
|  | // static main is not an error under C99, but we should warn about it. | 
|  | if (FD->getStorageClass() == SC_Static) | 
|  | Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus | 
|  | ? diag::err_static_main : diag::warn_static_main) | 
|  | << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); | 
|  | if (FD->isInlineSpecified()) | 
|  | Diag(DS.getInlineSpecLoc(), diag::err_inline_main) | 
|  | << FixItHint::CreateRemoval(DS.getInlineSpecLoc()); | 
|  |  | 
|  | QualType T = FD->getType(); | 
|  | assert(T->isFunctionType() && "function decl is not of function type"); | 
|  | const FunctionType* FT = T->getAs<FunctionType>(); | 
|  |  | 
|  | if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) { | 
|  | Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint); | 
|  | FD->setInvalidDecl(true); | 
|  | } | 
|  |  | 
|  | // Treat protoless main() as nullary. | 
|  | if (isa<FunctionNoProtoType>(FT)) return; | 
|  |  | 
|  | const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT); | 
|  | unsigned nparams = FTP->getNumArgs(); | 
|  | assert(FD->getNumParams() == nparams); | 
|  |  | 
|  | bool HasExtraParameters = (nparams > 3); | 
|  |  | 
|  | // Darwin passes an undocumented fourth argument of type char**.  If | 
|  | // other platforms start sprouting these, the logic below will start | 
|  | // getting shifty. | 
|  | if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin()) | 
|  | HasExtraParameters = false; | 
|  |  | 
|  | if (HasExtraParameters) { | 
|  | Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams; | 
|  | FD->setInvalidDecl(true); | 
|  | nparams = 3; | 
|  | } | 
|  |  | 
|  | // FIXME: a lot of the following diagnostics would be improved | 
|  | // if we had some location information about types. | 
|  |  | 
|  | QualType CharPP = | 
|  | Context.getPointerType(Context.getPointerType(Context.CharTy)); | 
|  | QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP }; | 
|  |  | 
|  | for (unsigned i = 0; i < nparams; ++i) { | 
|  | QualType AT = FTP->getArgType(i); | 
|  |  | 
|  | bool mismatch = true; | 
|  |  | 
|  | if (Context.hasSameUnqualifiedType(AT, Expected[i])) | 
|  | mismatch = false; | 
|  | else if (Expected[i] == CharPP) { | 
|  | // As an extension, the following forms are okay: | 
|  | //   char const ** | 
|  | //   char const * const * | 
|  | //   char * const * | 
|  |  | 
|  | QualifierCollector qs; | 
|  | const PointerType* PT; | 
|  | if ((PT = qs.strip(AT)->getAs<PointerType>()) && | 
|  | (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) && | 
|  | (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) { | 
|  | qs.removeConst(); | 
|  | mismatch = !qs.empty(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mismatch) { | 
|  | Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i]; | 
|  | // TODO: suggest replacing given type with expected type | 
|  | FD->setInvalidDecl(true); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (nparams == 1 && !FD->isInvalidDecl()) { | 
|  | Diag(FD->getLocation(), diag::warn_main_one_arg); | 
|  | } | 
|  |  | 
|  | if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { | 
|  | Diag(FD->getLocation(), diag::err_main_template_decl); | 
|  | FD->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { | 
|  | // FIXME: Need strict checking.  In C89, we need to check for | 
|  | // any assignment, increment, decrement, function-calls, or | 
|  | // commas outside of a sizeof.  In C99, it's the same list, | 
|  | // except that the aforementioned are allowed in unevaluated | 
|  | // expressions.  Everything else falls under the | 
|  | // "may accept other forms of constant expressions" exception. | 
|  | // (We never end up here for C++, so the constant expression | 
|  | // rules there don't matter.) | 
|  | if (Init->isConstantInitializer(Context, false)) | 
|  | return false; | 
|  | Diag(Init->getExprLoc(), diag::err_init_element_not_constant) | 
|  | << Init->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Visits an initialization expression to see if OrigDecl is evaluated in | 
|  | // its own initialization and throws a warning if it does. | 
|  | class SelfReferenceChecker | 
|  | : public EvaluatedExprVisitor<SelfReferenceChecker> { | 
|  | Sema &S; | 
|  | Decl *OrigDecl; | 
|  | bool isRecordType; | 
|  | bool isPODType; | 
|  |  | 
|  | public: | 
|  | typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited; | 
|  |  | 
|  | SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context), | 
|  | S(S), OrigDecl(OrigDecl) { | 
|  | isPODType = false; | 
|  | isRecordType = false; | 
|  | if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) { | 
|  | isPODType = VD->getType().isPODType(S.Context); | 
|  | isRecordType = VD->getType()->isRecordType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VisitExpr(Expr *E) { | 
|  | if (isa<ObjCMessageExpr>(*E)) return; | 
|  | if (isRecordType) { | 
|  | Expr *expr = E; | 
|  | if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { | 
|  | ValueDecl *VD = ME->getMemberDecl(); | 
|  | if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return; | 
|  | expr = ME->getBase(); | 
|  | } | 
|  | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) { | 
|  | HandleDeclRefExpr(DRE); | 
|  | return; | 
|  | } | 
|  | } | 
|  | Inherited::VisitExpr(E); | 
|  | } | 
|  |  | 
|  | void VisitMemberExpr(MemberExpr *E) { | 
|  | if (E->getType()->canDecayToPointerType()) return; | 
|  | if (isa<FieldDecl>(E->getMemberDecl())) | 
|  | if (DeclRefExpr *DRE | 
|  | = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) { | 
|  | HandleDeclRefExpr(DRE); | 
|  | return; | 
|  | } | 
|  | Inherited::VisitMemberExpr(E); | 
|  | } | 
|  |  | 
|  | void VisitImplicitCastExpr(ImplicitCastExpr *E) { | 
|  | if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) || | 
|  | (isRecordType && E->getCastKind() == CK_NoOp)) { | 
|  | Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts(); | 
|  | if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr)) | 
|  | SubExpr = ME->getBase()->IgnoreParenImpCasts(); | 
|  | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) { | 
|  | HandleDeclRefExpr(DRE); | 
|  | return; | 
|  | } | 
|  | } | 
|  | Inherited::VisitImplicitCastExpr(E); | 
|  | } | 
|  |  | 
|  | void VisitUnaryOperator(UnaryOperator *E) { | 
|  | // For POD record types, addresses of its own members are well-defined. | 
|  | if (isRecordType && isPODType) return; | 
|  | Inherited::VisitUnaryOperator(E); | 
|  | } | 
|  |  | 
|  | void HandleDeclRefExpr(DeclRefExpr *DRE) { | 
|  | Decl* ReferenceDecl = DRE->getDecl(); | 
|  | if (OrigDecl != ReferenceDecl) return; | 
|  | LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName, | 
|  | Sema::NotForRedeclaration); | 
|  | S.DiagRuntimeBehavior(DRE->getLocStart(), DRE, | 
|  | S.PDiag(diag::warn_uninit_self_reference_in_init) | 
|  | << Result.getLookupName() | 
|  | << OrigDecl->getLocation() | 
|  | << DRE->getSourceRange()); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// CheckSelfReference - Warns if OrigDecl is used in expression E. | 
|  | void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) { | 
|  | SelfReferenceChecker(*this, OrigDecl).VisitExpr(E); | 
|  | } | 
|  |  | 
|  | /// AddInitializerToDecl - Adds the initializer Init to the | 
|  | /// declaration dcl. If DirectInit is true, this is C++ direct | 
|  | /// initialization rather than copy initialization. | 
|  | void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, | 
|  | bool DirectInit, bool TypeMayContainAuto) { | 
|  | // If there is no declaration, there was an error parsing it.  Just ignore | 
|  | // the initializer. | 
|  | if (RealDecl == 0 || RealDecl->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | // Check for self-references within variable initializers. | 
|  | if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) { | 
|  | // Variables declared within a function/method body are handled | 
|  | // by a dataflow analysis. | 
|  | if (!vd->hasLocalStorage() && !vd->isStaticLocal()) | 
|  | CheckSelfReference(RealDecl, Init); | 
|  | } | 
|  | else { | 
|  | CheckSelfReference(RealDecl, Init); | 
|  | } | 
|  |  | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) { | 
|  | // With declarators parsed the way they are, the parser cannot | 
|  | // distinguish between a normal initializer and a pure-specifier. | 
|  | // Thus this grotesque test. | 
|  | IntegerLiteral *IL; | 
|  | if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 && | 
|  | Context.getCanonicalType(IL->getType()) == Context.IntTy) | 
|  | CheckPureMethod(Method, Init->getSourceRange()); | 
|  | else { | 
|  | Diag(Method->getLocation(), diag::err_member_function_initialization) | 
|  | << Method->getDeclName() << Init->getSourceRange(); | 
|  | Method->setInvalidDecl(); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); | 
|  | if (!VDecl) { | 
|  | assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here"); | 
|  | Diag(RealDecl->getLocation(), diag::err_illegal_initializer); | 
|  | RealDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. | 
|  | if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) { | 
|  | TypeSourceInfo *DeducedType = 0; | 
|  | if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType)) | 
|  | Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure) | 
|  | << VDecl->getDeclName() << VDecl->getType() << Init->getType() | 
|  | << Init->getSourceRange(); | 
|  | if (!DeducedType) { | 
|  | RealDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | VDecl->setTypeSourceInfo(DeducedType); | 
|  | VDecl->setType(DeducedType->getType()); | 
|  |  | 
|  | // In ARC, infer lifetime. | 
|  | if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl)) | 
|  | VDecl->setInvalidDecl(); | 
|  |  | 
|  | // If this is a redeclaration, check that the type we just deduced matches | 
|  | // the previously declared type. | 
|  | if (VarDecl *Old = VDecl->getPreviousDeclaration()) | 
|  | MergeVarDeclTypes(VDecl, Old); | 
|  | } | 
|  |  | 
|  |  | 
|  | // A definition must end up with a complete type, which means it must be | 
|  | // complete with the restriction that an array type might be completed by the | 
|  | // initializer; note that later code assumes this restriction. | 
|  | QualType BaseDeclType = VDecl->getType(); | 
|  | if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType)) | 
|  | BaseDeclType = Array->getElementType(); | 
|  | if (RequireCompleteType(VDecl->getLocation(), BaseDeclType, | 
|  | diag::err_typecheck_decl_incomplete_type)) { | 
|  | RealDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The variable can not have an abstract class type. | 
|  | if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), | 
|  | diag::err_abstract_type_in_decl, | 
|  | AbstractVariableType)) | 
|  | VDecl->setInvalidDecl(); | 
|  |  | 
|  | const VarDecl *Def; | 
|  | if ((Def = VDecl->getDefinition()) && Def != VDecl) { | 
|  | Diag(VDecl->getLocation(), diag::err_redefinition) | 
|  | << VDecl->getDeclName(); | 
|  | Diag(Def->getLocation(), diag::note_previous_definition); | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const VarDecl* PrevInit = 0; | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | // C++ [class.static.data]p4 | 
|  | //   If a static data member is of const integral or const | 
|  | //   enumeration type, its declaration in the class definition can | 
|  | //   specify a constant-initializer which shall be an integral | 
|  | //   constant expression (5.19). In that case, the member can appear | 
|  | //   in integral constant expressions. The member shall still be | 
|  | //   defined in a namespace scope if it is used in the program and the | 
|  | //   namespace scope definition shall not contain an initializer. | 
|  | // | 
|  | // We already performed a redefinition check above, but for static | 
|  | // data members we also need to check whether there was an in-class | 
|  | // declaration with an initializer. | 
|  | if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) { | 
|  | Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName(); | 
|  | Diag(PrevInit->getLocation(), diag::note_previous_definition); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (VDecl->hasLocalStorage()) | 
|  | getCurFunction()->setHasBranchProtectedScope(); | 
|  |  | 
|  | if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) { | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside | 
|  | // a kernel function cannot be initialized." | 
|  | if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) { | 
|  | Diag(VDecl->getLocation(), diag::err_local_cant_init); | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Capture the variable that is being initialized and the style of | 
|  | // initialization. | 
|  | InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); | 
|  |  | 
|  | // FIXME: Poor source location information. | 
|  | InitializationKind Kind | 
|  | = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(), | 
|  | Init->getLocStart(), | 
|  | Init->getLocEnd()) | 
|  | : InitializationKind::CreateCopy(VDecl->getLocation(), | 
|  | Init->getLocStart()); | 
|  |  | 
|  | // Get the decls type and save a reference for later, since | 
|  | // CheckInitializerTypes may change it. | 
|  | QualType DclT = VDecl->getType(), SavT = DclT; | 
|  | if (VDecl->isLocalVarDecl()) { | 
|  | if (VDecl->hasExternalStorage()) { // C99 6.7.8p5 | 
|  | Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); | 
|  | VDecl->setInvalidDecl(); | 
|  | } else if (!VDecl->isInvalidDecl()) { | 
|  | InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1); | 
|  | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, | 
|  | MultiExprArg(*this, &Init, 1), | 
|  | &DclT); | 
|  | if (Result.isInvalid()) { | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Init = Result.takeAs<Expr>(); | 
|  |  | 
|  | // C++ 3.6.2p2, allow dynamic initialization of static initializers. | 
|  | // Don't check invalid declarations to avoid emitting useless diagnostics. | 
|  | if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) { | 
|  | if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4. | 
|  | CheckForConstantInitializer(Init, DclT); | 
|  | } | 
|  | } | 
|  | } else if (VDecl->isStaticDataMember() && | 
|  | VDecl->getLexicalDeclContext()->isRecord()) { | 
|  | // This is an in-class initialization for a static data member, e.g., | 
|  | // | 
|  | // struct S { | 
|  | //   static const int value = 17; | 
|  | // }; | 
|  |  | 
|  | // Try to perform the initialization regardless. | 
|  | if (!VDecl->isInvalidDecl()) { | 
|  | InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1); | 
|  | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, | 
|  | MultiExprArg(*this, &Init, 1), | 
|  | &DclT); | 
|  | if (Result.isInvalid()) { | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Init = Result.takeAs<Expr>(); | 
|  | } | 
|  |  | 
|  | // C++ [class.mem]p4: | 
|  | //   A member-declarator can contain a constant-initializer only | 
|  | //   if it declares a static member (9.4) of const integral or | 
|  | //   const enumeration type, see 9.4.2. | 
|  | // | 
|  | // C++0x [class.static.data]p3: | 
|  | //   If a non-volatile const static data member is of integral or | 
|  | //   enumeration type, its declaration in the class definition can | 
|  | //   specify a brace-or-equal-initializer in which every initalizer-clause | 
|  | //   that is an assignment-expression is a constant expression. A static | 
|  | //   data member of literal type can be declared in the class definition | 
|  | //   with the constexpr specifier; if so, its declaration shall specify a | 
|  | //   brace-or-equal-initializer in which every initializer-clause that is | 
|  | //   an assignment-expression is a constant expression. | 
|  | QualType T = VDecl->getType(); | 
|  |  | 
|  | // Do nothing on dependent types. | 
|  | if (T->isDependentType()) { | 
|  |  | 
|  | // Allow any 'static constexpr' members, whether or not they are of literal | 
|  | // type. We separately check that the initializer is a constant expression, | 
|  | // which implicitly requires the member to be of literal type. | 
|  | } else if (VDecl->isConstexpr()) { | 
|  |  | 
|  | // Require constness. | 
|  | } else if (!T.isConstQualified()) { | 
|  | Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const) | 
|  | << Init->getSourceRange(); | 
|  | VDecl->setInvalidDecl(); | 
|  |  | 
|  | // We allow integer constant expressions in all cases. | 
|  | } else if (T->isIntegralOrEnumerationType()) { | 
|  | // FIXME: In C++0x, a non-constexpr const static data member with an | 
|  | // in-class initializer cannot be volatile. | 
|  |  | 
|  | // Check whether the expression is a constant expression. | 
|  | SourceLocation Loc; | 
|  | if (Init->isValueDependent()) | 
|  | ; // Nothing to check. | 
|  | else if (Init->isIntegerConstantExpr(Context, &Loc)) | 
|  | ; // Ok, it's an ICE! | 
|  | else if (Init->isEvaluatable(Context)) { | 
|  | // If we can constant fold the initializer through heroics, accept it, | 
|  | // but report this as a use of an extension for -pedantic. | 
|  | Diag(Loc, diag::ext_in_class_initializer_non_constant) | 
|  | << Init->getSourceRange(); | 
|  | } else { | 
|  | // Otherwise, this is some crazy unknown case.  Report the issue at the | 
|  | // location provided by the isIntegerConstantExpr failed check. | 
|  | Diag(Loc, diag::err_in_class_initializer_non_constant) | 
|  | << Init->getSourceRange(); | 
|  | VDecl->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | // Suggest adding 'constexpr' in C++0x for literal types. | 
|  | } else if (getLangOptions().CPlusPlus0x && T->isLiteralType()) { | 
|  | Diag(VDecl->getLocation(), diag::ext_in_class_initializer_literal_type) | 
|  | << T << Init->getSourceRange() | 
|  | << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr "); | 
|  | VDecl->setConstexpr(true); | 
|  |  | 
|  | // We allow floating-point constants as an extension. | 
|  | } else if (T->isFloatingType()) { // also permits complex, which is ok | 
|  | Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type) | 
|  | << T << Init->getSourceRange(); | 
|  |  | 
|  | if (!Init->isValueDependent() && | 
|  | !Init->isConstantInitializer(Context, false)) { | 
|  | Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant) | 
|  | << Init->getSourceRange(); | 
|  | VDecl->setInvalidDecl(); | 
|  | } | 
|  | } else { | 
|  | Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type) | 
|  | << T << Init->getSourceRange(); | 
|  | VDecl->setInvalidDecl(); | 
|  | } | 
|  | } else if (VDecl->isFileVarDecl()) { | 
|  | if (VDecl->getStorageClassAsWritten() == SC_Extern && | 
|  | (!getLangOptions().CPlusPlus || | 
|  | !Context.getBaseElementType(VDecl->getType()).isConstQualified())) | 
|  | Diag(VDecl->getLocation(), diag::warn_extern_init); | 
|  | if (!VDecl->isInvalidDecl()) { | 
|  | InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1); | 
|  | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, | 
|  | MultiExprArg(*this, &Init, 1), | 
|  | &DclT); | 
|  | if (Result.isInvalid()) { | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Init = Result.takeAs<Expr>(); | 
|  | } | 
|  |  | 
|  | // C++ 3.6.2p2, allow dynamic initialization of static initializers. | 
|  | // Don't check invalid declarations to avoid emitting useless diagnostics. | 
|  | if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) { | 
|  | // C99 6.7.8p4. All file scoped initializers need to be constant. | 
|  | CheckForConstantInitializer(Init, DclT); | 
|  | } | 
|  | } | 
|  | // If the type changed, it means we had an incomplete type that was | 
|  | // completed by the initializer. For example: | 
|  | //   int ary[] = { 1, 3, 5 }; | 
|  | // "ary" transitions from a VariableArrayType to a ConstantArrayType. | 
|  | if (!VDecl->isInvalidDecl() && (DclT != SavT)) { | 
|  | VDecl->setType(DclT); | 
|  | Init->setType(DclT); | 
|  | } | 
|  |  | 
|  | // Check any implicit conversions within the expression. | 
|  | CheckImplicitConversions(Init, VDecl->getLocation()); | 
|  |  | 
|  | if (!VDecl->isInvalidDecl()) | 
|  | checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init); | 
|  |  | 
|  | if (VDecl->isConstexpr() && !VDecl->isInvalidDecl() && | 
|  | !VDecl->getType()->isDependentType() && | 
|  | !Init->isTypeDependent() && !Init->isValueDependent() && | 
|  | !Init->isConstantInitializer(Context, | 
|  | VDecl->getType()->isReferenceType())) { | 
|  | // FIXME: Improve this diagnostic to explain why the initializer is not | 
|  | // a constant expression. | 
|  | Diag(VDecl->getLocation(), diag::err_constexpr_var_requires_const_init) | 
|  | << VDecl << Init->getSourceRange(); | 
|  | } | 
|  |  | 
|  | Init = MaybeCreateExprWithCleanups(Init); | 
|  | // Attach the initializer to the decl. | 
|  | VDecl->setInit(Init); | 
|  |  | 
|  | CheckCompleteVariableDeclaration(VDecl); | 
|  | } | 
|  |  | 
|  | /// ActOnInitializerError - Given that there was an error parsing an | 
|  | /// initializer for the given declaration, try to return to some form | 
|  | /// of sanity. | 
|  | void Sema::ActOnInitializerError(Decl *D) { | 
|  | // Our main concern here is re-establishing invariants like "a | 
|  | // variable's type is either dependent or complete". | 
|  | if (!D || D->isInvalidDecl()) return; | 
|  |  | 
|  | VarDecl *VD = dyn_cast<VarDecl>(D); | 
|  | if (!VD) return; | 
|  |  | 
|  | // Auto types are meaningless if we can't make sense of the initializer. | 
|  | if (ParsingInitForAutoVars.count(D)) { | 
|  | D->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | QualType Ty = VD->getType(); | 
|  | if (Ty->isDependentType()) return; | 
|  |  | 
|  | // Require a complete type. | 
|  | if (RequireCompleteType(VD->getLocation(), | 
|  | Context.getBaseElementType(Ty), | 
|  | diag::err_typecheck_decl_incomplete_type)) { | 
|  | VD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Require an abstract type. | 
|  | if (RequireNonAbstractType(VD->getLocation(), Ty, | 
|  | diag::err_abstract_type_in_decl, | 
|  | AbstractVariableType)) { | 
|  | VD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Don't bother complaining about constructors or destructors, | 
|  | // though. | 
|  | } | 
|  |  | 
|  | void Sema::ActOnUninitializedDecl(Decl *RealDecl, | 
|  | bool TypeMayContainAuto) { | 
|  | // If there is no declaration, there was an error parsing it. Just ignore it. | 
|  | if (RealDecl == 0) | 
|  | return; | 
|  |  | 
|  | if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) { | 
|  | QualType Type = Var->getType(); | 
|  |  | 
|  | // C++0x [dcl.spec.auto]p3 | 
|  | if (TypeMayContainAuto && Type->getContainedAutoType()) { | 
|  | Diag(Var->getLocation(), diag::err_auto_var_requires_init) | 
|  | << Var->getDeclName() << Type; | 
|  | Var->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // C++0x [dcl.constexpr]p9: An object or reference declared constexpr must | 
|  | // have an initializer. | 
|  | // C++0x [class.static.data]p3: A static data member can be declared with | 
|  | // the constexpr specifier; if so, its declaration shall specify | 
|  | // a brace-or-equal-initializer. | 
|  | if (Var->isConstexpr()) { | 
|  | // FIXME: Provide fix-its to convert the constexpr to const. | 
|  | if (Var->isStaticDataMember() && Var->getAnyInitializer()) { | 
|  | Diag(Var->getLocation(), diag::err_constexpr_initialized_static_member) | 
|  | << Var->getDeclName(); | 
|  | } else { | 
|  | Diag(Var->getLocation(), diag::err_constexpr_var_requires_init) | 
|  | << Var->getDeclName(); | 
|  | } | 
|  | Var->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (Var->isThisDeclarationADefinition()) { | 
|  | case VarDecl::Definition: | 
|  | if (!Var->isStaticDataMember() || !Var->getAnyInitializer()) | 
|  | break; | 
|  |  | 
|  | // We have an out-of-line definition of a static data member | 
|  | // that has an in-class initializer, so we type-check this like | 
|  | // a declaration. | 
|  | // | 
|  | // Fall through | 
|  |  | 
|  | case VarDecl::DeclarationOnly: | 
|  | // It's only a declaration. | 
|  |  | 
|  | // Block scope. C99 6.7p7: If an identifier for an object is | 
|  | // declared with no linkage (C99 6.2.2p6), the type for the | 
|  | // object shall be complete. | 
|  | if (!Type->isDependentType() && Var->isLocalVarDecl() && | 
|  | !Var->getLinkage() && !Var->isInvalidDecl() && | 
|  | RequireCompleteType(Var->getLocation(), Type, | 
|  | diag::err_typecheck_decl_incomplete_type)) | 
|  | Var->setInvalidDecl(); | 
|  |  | 
|  | // Make sure that the type is not abstract. | 
|  | if (!Type->isDependentType() && !Var->isInvalidDecl() && | 
|  | RequireNonAbstractType(Var->getLocation(), Type, | 
|  | diag::err_abstract_type_in_decl, | 
|  | AbstractVariableType)) | 
|  | Var->setInvalidDecl(); | 
|  | return; | 
|  |  | 
|  | case VarDecl::TentativeDefinition: | 
|  | // File scope. C99 6.9.2p2: A declaration of an identifier for an | 
|  | // object that has file scope without an initializer, and without a | 
|  | // storage-class specifier or with the storage-class specifier "static", | 
|  | // constitutes a tentative definition. Note: A tentative definition with | 
|  | // external linkage is valid (C99 6.2.2p5). | 
|  | if (!Var->isInvalidDecl()) { | 
|  | if (const IncompleteArrayType *ArrayT | 
|  | = Context.getAsIncompleteArrayType(Type)) { | 
|  | if (RequireCompleteType(Var->getLocation(), | 
|  | ArrayT->getElementType(), | 
|  | diag::err_illegal_decl_array_incomplete_type)) | 
|  | Var->setInvalidDecl(); | 
|  | } else if (Var->getStorageClass() == SC_Static) { | 
|  | // C99 6.9.2p3: If the declaration of an identifier for an object is | 
|  | // a tentative definition and has internal linkage (C99 6.2.2p3), the | 
|  | // declared type shall not be an incomplete type. | 
|  | // NOTE: code such as the following | 
|  | //     static struct s; | 
|  | //     struct s { int a; }; | 
|  | // is accepted by gcc. Hence here we issue a warning instead of | 
|  | // an error and we do not invalidate the static declaration. | 
|  | // NOTE: to avoid multiple warnings, only check the first declaration. | 
|  | if (Var->getPreviousDeclaration() == 0) | 
|  | RequireCompleteType(Var->getLocation(), Type, | 
|  | diag::ext_typecheck_decl_incomplete_type); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Record the tentative definition; we're done. | 
|  | if (!Var->isInvalidDecl()) | 
|  | TentativeDefinitions.push_back(Var); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Provide a specific diagnostic for uninitialized variable | 
|  | // definitions with incomplete array type. | 
|  | if (Type->isIncompleteArrayType()) { | 
|  | Diag(Var->getLocation(), | 
|  | diag::err_typecheck_incomplete_array_needs_initializer); | 
|  | Var->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Provide a specific diagnostic for uninitialized variable | 
|  | // definitions with reference type. | 
|  | if (Type->isReferenceType()) { | 
|  | Diag(Var->getLocation(), diag::err_reference_var_requires_init) | 
|  | << Var->getDeclName() | 
|  | << SourceRange(Var->getLocation(), Var->getLocation()); | 
|  | Var->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Do not attempt to type-check the default initializer for a | 
|  | // variable with dependent type. | 
|  | if (Type->isDependentType()) | 
|  | return; | 
|  |  | 
|  | if (Var->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | if (RequireCompleteType(Var->getLocation(), | 
|  | Context.getBaseElementType(Type), | 
|  | diag::err_typecheck_decl_incomplete_type)) { | 
|  | Var->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The variable can not have an abstract class type. | 
|  | if (RequireNonAbstractType(Var->getLocation(), Type, | 
|  | diag::err_abstract_type_in_decl, | 
|  | AbstractVariableType)) { | 
|  | Var->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check for jumps past the implicit initializer.  C++0x | 
|  | // clarifies that this applies to a "variable with automatic | 
|  | // storage duration", not a "local variable". | 
|  | // C++0x [stmt.dcl]p3 | 
|  | //   A program that jumps from a point where a variable with automatic | 
|  | //   storage duration is not in scope to a point where it is in scope is | 
|  | //   ill-formed unless the variable has scalar type, class type with a | 
|  | //   trivial default constructor and a trivial destructor, a cv-qualified | 
|  | //   version of one of these types, or an array of one of the preceding | 
|  | //   types and is declared without an initializer. | 
|  | if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) { | 
|  | if (const RecordType *Record | 
|  | = Context.getBaseElementType(Type)->getAs<RecordType>()) { | 
|  | CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl()); | 
|  | if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) || | 
|  | (getLangOptions().CPlusPlus0x && | 
|  | (!CXXRecord->hasTrivialDefaultConstructor() || | 
|  | !CXXRecord->hasTrivialDestructor()))) | 
|  | getCurFunction()->setHasBranchProtectedScope(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++03 [dcl.init]p9: | 
|  | //   If no initializer is specified for an object, and the | 
|  | //   object is of (possibly cv-qualified) non-POD class type (or | 
|  | //   array thereof), the object shall be default-initialized; if | 
|  | //   the object is of const-qualified type, the underlying class | 
|  | //   type shall have a user-declared default | 
|  | //   constructor. Otherwise, if no initializer is specified for | 
|  | //   a non- static object, the object and its subobjects, if | 
|  | //   any, have an indeterminate initial value); if the object | 
|  | //   or any of its subobjects are of const-qualified type, the | 
|  | //   program is ill-formed. | 
|  | // C++0x [dcl.init]p11: | 
|  | //   If no initializer is specified for an object, the object is | 
|  | //   default-initialized; [...]. | 
|  | InitializedEntity Entity = InitializedEntity::InitializeVariable(Var); | 
|  | InitializationKind Kind | 
|  | = InitializationKind::CreateDefault(Var->getLocation()); | 
|  |  | 
|  | InitializationSequence InitSeq(*this, Entity, Kind, 0, 0); | 
|  | ExprResult Init = InitSeq.Perform(*this, Entity, Kind, | 
|  | MultiExprArg(*this, 0, 0)); | 
|  | if (Init.isInvalid()) | 
|  | Var->setInvalidDecl(); | 
|  | else if (Init.get()) | 
|  | Var->setInit(MaybeCreateExprWithCleanups(Init.get())); | 
|  |  | 
|  | CheckCompleteVariableDeclaration(Var); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::ActOnCXXForRangeDecl(Decl *D) { | 
|  | VarDecl *VD = dyn_cast<VarDecl>(D); | 
|  | if (!VD) { | 
|  | Diag(D->getLocation(), diag::err_for_range_decl_must_be_var); | 
|  | D->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | VD->setCXXForRangeDecl(true); | 
|  |  | 
|  | // for-range-declaration cannot be given a storage class specifier. | 
|  | int Error = -1; | 
|  | switch (VD->getStorageClassAsWritten()) { | 
|  | case SC_None: | 
|  | break; | 
|  | case SC_Extern: | 
|  | Error = 0; | 
|  | break; | 
|  | case SC_Static: | 
|  | Error = 1; | 
|  | break; | 
|  | case SC_PrivateExtern: | 
|  | Error = 2; | 
|  | break; | 
|  | case SC_Auto: | 
|  | Error = 3; | 
|  | break; | 
|  | case SC_Register: | 
|  | Error = 4; | 
|  | break; | 
|  | case SC_OpenCLWorkGroupLocal: | 
|  | llvm_unreachable("Unexpected storage class"); | 
|  | } | 
|  | if (VD->isConstexpr()) | 
|  | Error = 5; | 
|  | if (Error != -1) { | 
|  | Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class) | 
|  | << VD->getDeclName() << Error; | 
|  | D->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::CheckCompleteVariableDeclaration(VarDecl *var) { | 
|  | if (var->isInvalidDecl()) return; | 
|  |  | 
|  | // In ARC, don't allow jumps past the implicit initialization of a | 
|  | // local retaining variable. | 
|  | if (getLangOptions().ObjCAutoRefCount && | 
|  | var->hasLocalStorage()) { | 
|  | switch (var->getType().getObjCLifetime()) { | 
|  | case Qualifiers::OCL_None: | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | break; | 
|  |  | 
|  | case Qualifiers::OCL_Weak: | 
|  | case Qualifiers::OCL_Strong: | 
|  | getCurFunction()->setHasBranchProtectedScope(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // All the following checks are C++ only. | 
|  | if (!getLangOptions().CPlusPlus) return; | 
|  |  | 
|  | QualType baseType = Context.getBaseElementType(var->getType()); | 
|  | if (baseType->isDependentType()) return; | 
|  |  | 
|  | // __block variables might require us to capture a copy-initializer. | 
|  | if (var->hasAttr<BlocksAttr>()) { | 
|  | // It's currently invalid to ever have a __block variable with an | 
|  | // array type; should we diagnose that here? | 
|  |  | 
|  | // Regardless, we don't want to ignore array nesting when | 
|  | // constructing this copy. | 
|  | QualType type = var->getType(); | 
|  |  | 
|  | if (type->isStructureOrClassType()) { | 
|  | SourceLocation poi = var->getLocation(); | 
|  | Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi); | 
|  | ExprResult result = | 
|  | PerformCopyInitialization( | 
|  | InitializedEntity::InitializeBlock(poi, type, false), | 
|  | poi, Owned(varRef)); | 
|  | if (!result.isInvalid()) { | 
|  | result = MaybeCreateExprWithCleanups(result); | 
|  | Expr *init = result.takeAs<Expr>(); | 
|  | Context.setBlockVarCopyInits(var, init); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for global constructors. | 
|  | if (!var->getDeclContext()->isDependentContext() && | 
|  | var->hasGlobalStorage() && | 
|  | !var->isStaticLocal() && | 
|  | var->getInit() && | 
|  | !var->getInit()->isConstantInitializer(Context, | 
|  | baseType->isReferenceType())) | 
|  | Diag(var->getLocation(), diag::warn_global_constructor) | 
|  | << var->getInit()->getSourceRange(); | 
|  |  | 
|  | // Require the destructor. | 
|  | if (const RecordType *recordType = baseType->getAs<RecordType>()) | 
|  | FinalizeVarWithDestructor(var, recordType); | 
|  | } | 
|  |  | 
|  | /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform | 
|  | /// any semantic actions necessary after any initializer has been attached. | 
|  | void | 
|  | Sema::FinalizeDeclaration(Decl *ThisDecl) { | 
|  | // Note that we are no longer parsing the initializer for this declaration. | 
|  | ParsingInitForAutoVars.erase(ThisDecl); | 
|  | } | 
|  |  | 
|  | Sema::DeclGroupPtrTy | 
|  | Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, | 
|  | Decl **Group, unsigned NumDecls) { | 
|  | SmallVector<Decl*, 8> Decls; | 
|  |  | 
|  | if (DS.isTypeSpecOwned()) | 
|  | Decls.push_back(DS.getRepAsDecl()); | 
|  |  | 
|  | for (unsigned i = 0; i != NumDecls; ++i) | 
|  | if (Decl *D = Group[i]) | 
|  | Decls.push_back(D); | 
|  |  | 
|  | return BuildDeclaratorGroup(Decls.data(), Decls.size(), | 
|  | DS.getTypeSpecType() == DeclSpec::TST_auto); | 
|  | } | 
|  |  | 
|  | /// BuildDeclaratorGroup - convert a list of declarations into a declaration | 
|  | /// group, performing any necessary semantic checking. | 
|  | Sema::DeclGroupPtrTy | 
|  | Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls, | 
|  | bool TypeMayContainAuto) { | 
|  | // C++0x [dcl.spec.auto]p7: | 
|  | //   If the type deduced for the template parameter U is not the same in each | 
|  | //   deduction, the program is ill-formed. | 
|  | // FIXME: When initializer-list support is added, a distinction is needed | 
|  | // between the deduced type U and the deduced type which 'auto' stands for. | 
|  | //   auto a = 0, b = { 1, 2, 3 }; | 
|  | // is legal because the deduced type U is 'int' in both cases. | 
|  | if (TypeMayContainAuto && NumDecls > 1) { | 
|  | QualType Deduced; | 
|  | CanQualType DeducedCanon; | 
|  | VarDecl *DeducedDecl = 0; | 
|  | for (unsigned i = 0; i != NumDecls; ++i) { | 
|  | if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) { | 
|  | AutoType *AT = D->getType()->getContainedAutoType(); | 
|  | // Don't reissue diagnostics when instantiating a template. | 
|  | if (AT && D->isInvalidDecl()) | 
|  | break; | 
|  | if (AT && AT->isDeduced()) { | 
|  | QualType U = AT->getDeducedType(); | 
|  | CanQualType UCanon = Context.getCanonicalType(U); | 
|  | if (Deduced.isNull()) { | 
|  | Deduced = U; | 
|  | DeducedCanon = UCanon; | 
|  | DeducedDecl = D; | 
|  | } else if (DeducedCanon != UCanon) { | 
|  | Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), | 
|  | diag::err_auto_different_deductions) | 
|  | << Deduced << DeducedDecl->getDeclName() | 
|  | << U << D->getDeclName() | 
|  | << DeducedDecl->getInit()->getSourceRange() | 
|  | << D->getInit()->getSourceRange(); | 
|  | D->setInvalidDecl(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() | 
|  | /// to introduce parameters into function prototype scope. | 
|  | Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) { | 
|  | const DeclSpec &DS = D.getDeclSpec(); | 
|  |  | 
|  | // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. | 
|  | VarDecl::StorageClass StorageClass = SC_None; | 
|  | VarDecl::StorageClass StorageClassAsWritten = SC_None; | 
|  | if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { | 
|  | StorageClass = SC_Register; | 
|  | StorageClassAsWritten = SC_Register; | 
|  | } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { | 
|  | Diag(DS.getStorageClassSpecLoc(), | 
|  | diag::err_invalid_storage_class_in_func_decl); | 
|  | D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
|  | } | 
|  |  | 
|  | if (D.getDeclSpec().isThreadSpecified()) | 
|  | Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); | 
|  | if (D.getDeclSpec().isConstexprSpecified()) | 
|  | Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr) | 
|  | << 0; | 
|  |  | 
|  | DiagnoseFunctionSpecifiers(D); | 
|  |  | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
|  | QualType parmDeclType = TInfo->getType(); | 
|  |  | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | // Check that there are no default arguments inside the type of this | 
|  | // parameter. | 
|  | CheckExtraCXXDefaultArguments(D); | 
|  |  | 
|  | // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). | 
|  | if (D.getCXXScopeSpec().isSet()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) | 
|  | << D.getCXXScopeSpec().getRange(); | 
|  | D.getCXXScopeSpec().clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Ensure we have a valid name | 
|  | IdentifierInfo *II = 0; | 
|  | if (D.hasName()) { | 
|  | II = D.getIdentifier(); | 
|  | if (!II) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name) | 
|  | << GetNameForDeclarator(D).getName().getAsString(); | 
|  | D.setInvalidType(true); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for redeclaration of parameters, e.g. int foo(int x, int x); | 
|  | if (II) { | 
|  | LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName, | 
|  | ForRedeclaration); | 
|  | LookupName(R, S); | 
|  | if (R.isSingleResult()) { | 
|  | NamedDecl *PrevDecl = R.getFoundDecl(); | 
|  | if (PrevDecl->isTemplateParameter()) { | 
|  | // Maybe we will complain about the shadowed template parameter. | 
|  | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | 
|  | // Just pretend that we didn't see the previous declaration. | 
|  | PrevDecl = 0; | 
|  | } else if (S->isDeclScope(PrevDecl)) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | 
|  |  | 
|  | // Recover by removing the name | 
|  | II = 0; | 
|  | D.SetIdentifier(0, D.getIdentifierLoc()); | 
|  | D.setInvalidType(true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Temporarily put parameter variables in the translation unit, not | 
|  | // the enclosing context.  This prevents them from accidentally | 
|  | // looking like class members in C++. | 
|  | ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(), | 
|  | D.getSourceRange().getBegin(), | 
|  | D.getIdentifierLoc(), II, | 
|  | parmDeclType, TInfo, | 
|  | StorageClass, StorageClassAsWritten); | 
|  |  | 
|  | if (D.isInvalidType()) | 
|  | New->setInvalidDecl(); | 
|  |  | 
|  | assert(S->isFunctionPrototypeScope()); | 
|  | assert(S->getFunctionPrototypeDepth() >= 1); | 
|  | New->setScopeInfo(S->getFunctionPrototypeDepth() - 1, | 
|  | S->getNextFunctionPrototypeIndex()); | 
|  |  | 
|  | // Add the parameter declaration into this scope. | 
|  | S->AddDecl(New); | 
|  | if (II) | 
|  | IdResolver.AddDecl(New); | 
|  |  | 
|  | ProcessDeclAttributes(S, New, D); | 
|  |  | 
|  | if (D.getDeclSpec().isModulePrivateSpecified()) | 
|  | Diag(New->getLocation(), diag::err_module_private_local) | 
|  | << 1 << New->getDeclName() | 
|  | << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); | 
|  |  | 
|  | if (New->hasAttr<BlocksAttr>()) { | 
|  | Diag(New->getLocation(), diag::err_block_on_nonlocal); | 
|  | } | 
|  | return New; | 
|  | } | 
|  |  | 
|  | /// \brief Synthesizes a variable for a parameter arising from a | 
|  | /// typedef. | 
|  | ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC, | 
|  | SourceLocation Loc, | 
|  | QualType T) { | 
|  | /* FIXME: setting StartLoc == Loc. | 
|  | Would it be worth to modify callers so as to provide proper source | 
|  | location for the unnamed parameters, embedding the parameter's type? */ | 
|  | ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0, | 
|  | T, Context.getTrivialTypeSourceInfo(T, Loc), | 
|  | SC_None, SC_None, 0); | 
|  | Param->setImplicit(); | 
|  | return Param; | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param, | 
|  | ParmVarDecl * const *ParamEnd) { | 
|  | // Don't diagnose unused-parameter errors in template instantiations; we | 
|  | // will already have done so in the template itself. | 
|  | if (!ActiveTemplateInstantiations.empty()) | 
|  | return; | 
|  |  | 
|  | for (; Param != ParamEnd; ++Param) { | 
|  | if (!(*Param)->isUsed() && (*Param)->getDeclName() && | 
|  | !(*Param)->hasAttr<UnusedAttr>()) { | 
|  | Diag((*Param)->getLocation(), diag::warn_unused_parameter) | 
|  | << (*Param)->getDeclName(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param, | 
|  | ParmVarDecl * const *ParamEnd, | 
|  | QualType ReturnTy, | 
|  | NamedDecl *D) { | 
|  | if (LangOpts.NumLargeByValueCopy == 0) // No check. | 
|  | return; | 
|  |  | 
|  | // Warn if the return value is pass-by-value and larger than the specified | 
|  | // threshold. | 
|  | if (ReturnTy.isPODType(Context)) { | 
|  | unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity(); | 
|  | if (Size > LangOpts.NumLargeByValueCopy) | 
|  | Diag(D->getLocation(), diag::warn_return_value_size) | 
|  | << D->getDeclName() << Size; | 
|  | } | 
|  |  | 
|  | // Warn if any parameter is pass-by-value and larger than the specified | 
|  | // threshold. | 
|  | for (; Param != ParamEnd; ++Param) { | 
|  | QualType T = (*Param)->getType(); | 
|  | if (!T.isPODType(Context)) | 
|  | continue; | 
|  | unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); | 
|  | if (Size > LangOpts.NumLargeByValueCopy) | 
|  | Diag((*Param)->getLocation(), diag::warn_parameter_size) | 
|  | << (*Param)->getDeclName() << Size; | 
|  | } | 
|  | } | 
|  |  | 
|  | ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc, | 
|  | SourceLocation NameLoc, IdentifierInfo *Name, | 
|  | QualType T, TypeSourceInfo *TSInfo, | 
|  | VarDecl::StorageClass StorageClass, | 
|  | VarDecl::StorageClass StorageClassAsWritten) { | 
|  | // In ARC, infer a lifetime qualifier for appropriate parameter types. | 
|  | if (getLangOptions().ObjCAutoRefCount && | 
|  | T.getObjCLifetime() == Qualifiers::OCL_None && | 
|  | T->isObjCLifetimeType()) { | 
|  |  | 
|  | Qualifiers::ObjCLifetime lifetime; | 
|  |  | 
|  | // Special cases for arrays: | 
|  | //   - if it's const, use __unsafe_unretained | 
|  | //   - otherwise, it's an error | 
|  | if (T->isArrayType()) { | 
|  | if (!T.isConstQualified()) { | 
|  | Diag(NameLoc, diag::err_arc_array_param_no_ownership) | 
|  | << TSInfo->getTypeLoc().getSourceRange(); | 
|  | } | 
|  | lifetime = Qualifiers::OCL_ExplicitNone; | 
|  | } else { | 
|  | lifetime = T->getObjCARCImplicitLifetime(); | 
|  | } | 
|  | T = Context.getLifetimeQualifiedType(T, lifetime); | 
|  | } | 
|  |  | 
|  | ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name, | 
|  | Context.getAdjustedParameterType(T), | 
|  | TSInfo, | 
|  | StorageClass, StorageClassAsWritten, | 
|  | 0); | 
|  |  | 
|  | // Parameters can not be abstract class types. | 
|  | // For record types, this is done by the AbstractClassUsageDiagnoser once | 
|  | // the class has been completely parsed. | 
|  | if (!CurContext->isRecord() && | 
|  | RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl, | 
|  | AbstractParamType)) | 
|  | New->setInvalidDecl(); | 
|  |  | 
|  | // Parameter declarators cannot be interface types. All ObjC objects are | 
|  | // passed by reference. | 
|  | if (T->isObjCObjectType()) { | 
|  | Diag(NameLoc, | 
|  | diag::err_object_cannot_be_passed_returned_by_value) << 1 << T | 
|  | << FixItHint::CreateInsertion(NameLoc, "*"); | 
|  | T = Context.getObjCObjectPointerType(T); | 
|  | New->setType(T); | 
|  | } | 
|  |  | 
|  | // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage | 
|  | // duration shall not be qualified by an address-space qualifier." | 
|  | // Since all parameters have automatic store duration, they can not have | 
|  | // an address space. | 
|  | if (T.getAddressSpace() != 0) { | 
|  | Diag(NameLoc, diag::err_arg_with_address_space); | 
|  | New->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | return New; | 
|  | } | 
|  |  | 
|  | void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, | 
|  | SourceLocation LocAfterDecls) { | 
|  | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); | 
|  |  | 
|  | // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' | 
|  | // for a K&R function. | 
|  | if (!FTI.hasPrototype) { | 
|  | for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) { | 
|  | --i; | 
|  | if (FTI.ArgInfo[i].Param == 0) { | 
|  | llvm::SmallString<256> Code; | 
|  | llvm::raw_svector_ostream(Code) << "  int " | 
|  | << FTI.ArgInfo[i].Ident->getName() | 
|  | << ";\n"; | 
|  | Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared) | 
|  | << FTI.ArgInfo[i].Ident | 
|  | << FixItHint::CreateInsertion(LocAfterDecls, Code.str()); | 
|  |  | 
|  | // Implicitly declare the argument as type 'int' for lack of a better | 
|  | // type. | 
|  | AttributeFactory attrs; | 
|  | DeclSpec DS(attrs); | 
|  | const char* PrevSpec; // unused | 
|  | unsigned DiagID; // unused | 
|  | DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc, | 
|  | PrevSpec, DiagID); | 
|  | Declarator ParamD(DS, Declarator::KNRTypeListContext); | 
|  | ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc); | 
|  | FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, | 
|  | Declarator &D) { | 
|  | assert(getCurFunctionDecl() == 0 && "Function parsing confused"); | 
|  | assert(D.isFunctionDeclarator() && "Not a function declarator!"); | 
|  | Scope *ParentScope = FnBodyScope->getParent(); | 
|  |  | 
|  | Decl *DP = HandleDeclarator(ParentScope, D, | 
|  | MultiTemplateParamsArg(*this), | 
|  | /*IsFunctionDefinition=*/true); | 
|  | return ActOnStartOfFunctionDef(FnBodyScope, DP); | 
|  | } | 
|  |  | 
|  | static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) { | 
|  | // Don't warn about invalid declarations. | 
|  | if (FD->isInvalidDecl()) | 
|  | return false; | 
|  |  | 
|  | // Or declarations that aren't global. | 
|  | if (!FD->isGlobal()) | 
|  | return false; | 
|  |  | 
|  | // Don't warn about C++ member functions. | 
|  | if (isa<CXXMethodDecl>(FD)) | 
|  | return false; | 
|  |  | 
|  | // Don't warn about 'main'. | 
|  | if (FD->isMain()) | 
|  | return false; | 
|  |  | 
|  | // Don't warn about inline functions. | 
|  | if (FD->isInlined()) | 
|  | return false; | 
|  |  | 
|  | // Don't warn about function templates. | 
|  | if (FD->getDescribedFunctionTemplate()) | 
|  | return false; | 
|  |  | 
|  | // Don't warn about function template specializations. | 
|  | if (FD->isFunctionTemplateSpecialization()) | 
|  | return false; | 
|  |  | 
|  | bool MissingPrototype = true; | 
|  | for (const FunctionDecl *Prev = FD->getPreviousDeclaration(); | 
|  | Prev; Prev = Prev->getPreviousDeclaration()) { | 
|  | // Ignore any declarations that occur in function or method | 
|  | // scope, because they aren't visible from the header. | 
|  | if (Prev->getDeclContext()->isFunctionOrMethod()) | 
|  | continue; | 
|  |  | 
|  | MissingPrototype = !Prev->getType()->isFunctionProtoType(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return MissingPrototype; | 
|  | } | 
|  |  | 
|  | void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) { | 
|  | // Don't complain if we're in GNU89 mode and the previous definition | 
|  | // was an extern inline function. | 
|  | const FunctionDecl *Definition; | 
|  | if (FD->isDefined(Definition) && | 
|  | !canRedefineFunction(Definition, getLangOptions())) { | 
|  | if (getLangOptions().GNUMode && Definition->isInlineSpecified() && | 
|  | Definition->getStorageClass() == SC_Extern) | 
|  | Diag(FD->getLocation(), diag::err_redefinition_extern_inline) | 
|  | << FD->getDeclName() << getLangOptions().CPlusPlus; | 
|  | else | 
|  | Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName(); | 
|  | Diag(Definition->getLocation(), diag::note_previous_definition); | 
|  | } | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) { | 
|  | // Clear the last template instantiation error context. | 
|  | LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation(); | 
|  |  | 
|  | if (!D) | 
|  | return D; | 
|  | FunctionDecl *FD = 0; | 
|  |  | 
|  | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) | 
|  | FD = FunTmpl->getTemplatedDecl(); | 
|  | else | 
|  | FD = cast<FunctionDecl>(D); | 
|  |  | 
|  | // Enter a new function scope | 
|  | PushFunctionScope(); | 
|  |  | 
|  | // See if this is a redefinition. | 
|  | if (!FD->isLateTemplateParsed()) | 
|  | CheckForFunctionRedefinition(FD); | 
|  |  | 
|  | // Builtin functions cannot be defined. | 
|  | if (unsigned BuiltinID = FD->getBuiltinID()) { | 
|  | if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { | 
|  | Diag(FD->getLocation(), diag::err_builtin_definition) << FD; | 
|  | FD->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The return type of a function definition must be complete | 
|  | // (C99 6.9.1p3, C++ [dcl.fct]p6). | 
|  | QualType ResultType = FD->getResultType(); | 
|  | if (!ResultType->isDependentType() && !ResultType->isVoidType() && | 
|  | !FD->isInvalidDecl() && | 
|  | RequireCompleteType(FD->getLocation(), ResultType, | 
|  | diag::err_func_def_incomplete_result)) | 
|  | FD->setInvalidDecl(); | 
|  |  | 
|  | // GNU warning -Wmissing-prototypes: | 
|  | //   Warn if a global function is defined without a previous | 
|  | //   prototype declaration. This warning is issued even if the | 
|  | //   definition itself provides a prototype. The aim is to detect | 
|  | //   global functions that fail to be declared in header files. | 
|  | if (ShouldWarnAboutMissingPrototype(FD)) | 
|  | Diag(FD->getLocation(), diag::warn_missing_prototype) << FD; | 
|  |  | 
|  | if (FnBodyScope) | 
|  | PushDeclContext(FnBodyScope, FD); | 
|  |  | 
|  | // Check the validity of our function parameters | 
|  | CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(), | 
|  | /*CheckParameterNames=*/true); | 
|  |  | 
|  | // Introduce our parameters into the function scope | 
|  | for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) { | 
|  | ParmVarDecl *Param = FD->getParamDecl(p); | 
|  | Param->setOwningFunction(FD); | 
|  |  | 
|  | // If this has an identifier, add it to the scope stack. | 
|  | if (Param->getIdentifier() && FnBodyScope) { | 
|  | CheckShadow(FnBodyScope, Param); | 
|  |  | 
|  | PushOnScopeChains(Param, FnBodyScope); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Checking attributes of current function definition | 
|  | // dllimport attribute. | 
|  | DLLImportAttr *DA = FD->getAttr<DLLImportAttr>(); | 
|  | if (DA && (!FD->getAttr<DLLExportAttr>())) { | 
|  | // dllimport attribute cannot be directly applied to definition. | 
|  | // Microsoft accepts dllimport for functions defined within class scope. | 
|  | if (!DA->isInherited() && | 
|  | !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) { | 
|  | Diag(FD->getLocation(), | 
|  | diag::err_attribute_can_be_applied_only_to_symbol_declaration) | 
|  | << "dllimport"; | 
|  | FD->setInvalidDecl(); | 
|  | return FD; | 
|  | } | 
|  |  | 
|  | // Visual C++ appears to not think this is an issue, so only issue | 
|  | // a warning when Microsoft extensions are disabled. | 
|  | if (!LangOpts.MicrosoftExt) { | 
|  | // If a symbol previously declared dllimport is later defined, the | 
|  | // attribute is ignored in subsequent references, and a warning is | 
|  | // emitted. | 
|  | Diag(FD->getLocation(), | 
|  | diag::warn_redeclaration_without_attribute_prev_attribute_ignored) | 
|  | << FD->getName() << "dllimport"; | 
|  | } | 
|  | } | 
|  | return FD; | 
|  | } | 
|  |  | 
|  | /// \brief Given the set of return statements within a function body, | 
|  | /// compute the variables that are subject to the named return value | 
|  | /// optimization. | 
|  | /// | 
|  | /// Each of the variables that is subject to the named return value | 
|  | /// optimization will be marked as NRVO variables in the AST, and any | 
|  | /// return statement that has a marked NRVO variable as its NRVO candidate can | 
|  | /// use the named return value optimization. | 
|  | /// | 
|  | /// This function applies a very simplistic algorithm for NRVO: if every return | 
|  | /// statement in the function has the same NRVO candidate, that candidate is | 
|  | /// the NRVO variable. | 
|  | /// | 
|  | /// FIXME: Employ a smarter algorithm that accounts for multiple return | 
|  | /// statements and the lifetimes of the NRVO candidates. We should be able to | 
|  | /// find a maximal set of NRVO variables. | 
|  | void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) { | 
|  | ReturnStmt **Returns = Scope->Returns.data(); | 
|  |  | 
|  | const VarDecl *NRVOCandidate = 0; | 
|  | for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) { | 
|  | if (!Returns[I]->getNRVOCandidate()) | 
|  | return; | 
|  |  | 
|  | if (!NRVOCandidate) | 
|  | NRVOCandidate = Returns[I]->getNRVOCandidate(); | 
|  | else if (NRVOCandidate != Returns[I]->getNRVOCandidate()) | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (NRVOCandidate) | 
|  | const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true); | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) { | 
|  | return ActOnFinishFunctionBody(D, move(BodyArg), false); | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body, | 
|  | bool IsInstantiation) { | 
|  | FunctionDecl *FD = 0; | 
|  | FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl); | 
|  | if (FunTmpl) | 
|  | FD = FunTmpl->getTemplatedDecl(); | 
|  | else | 
|  | FD = dyn_cast_or_null<FunctionDecl>(dcl); | 
|  |  | 
|  | sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); | 
|  | sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0; | 
|  |  | 
|  | if (FD) { | 
|  | FD->setBody(Body); | 
|  | if (FD->isMain()) { | 
|  | // C and C++ allow for main to automagically return 0. | 
|  | // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3. | 
|  | FD->setHasImplicitReturnZero(true); | 
|  | WP.disableCheckFallThrough(); | 
|  | } else if (FD->hasAttr<NakedAttr>()) { | 
|  | // If the function is marked 'naked', don't complain about missing return | 
|  | // statements. | 
|  | WP.disableCheckFallThrough(); | 
|  | } | 
|  |  | 
|  | // MSVC permits the use of pure specifier (=0) on function definition, | 
|  | // defined at class scope, warn about this non standard construct. | 
|  | if (getLangOptions().MicrosoftExt && FD->isPure()) | 
|  | Diag(FD->getLocation(), diag::warn_pure_function_definition); | 
|  |  | 
|  | if (!FD->isInvalidDecl()) { | 
|  | DiagnoseUnusedParameters(FD->param_begin(), FD->param_end()); | 
|  | DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(), | 
|  | FD->getResultType(), FD); | 
|  |  | 
|  | // If this is a constructor, we need a vtable. | 
|  | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD)) | 
|  | MarkVTableUsed(FD->getLocation(), Constructor->getParent()); | 
|  |  | 
|  | computeNRVO(Body, getCurFunction()); | 
|  | } | 
|  |  | 
|  | assert(FD == getCurFunctionDecl() && "Function parsing confused"); | 
|  | } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) { | 
|  | assert(MD == getCurMethodDecl() && "Method parsing confused"); | 
|  | MD->setBody(Body); | 
|  | if (Body) | 
|  | MD->setEndLoc(Body->getLocEnd()); | 
|  | if (!MD->isInvalidDecl()) { | 
|  | DiagnoseUnusedParameters(MD->param_begin(), MD->param_end()); | 
|  | DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(), | 
|  | MD->getResultType(), MD); | 
|  |  | 
|  | if (Body) | 
|  | computeNRVO(Body, getCurFunction()); | 
|  | } | 
|  | if (ObjCShouldCallSuperDealloc) { | 
|  | Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc); | 
|  | ObjCShouldCallSuperDealloc = false; | 
|  | } | 
|  | if (ObjCShouldCallSuperFinalize) { | 
|  | Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize); | 
|  | ObjCShouldCallSuperFinalize = false; | 
|  | } | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | assert(!ObjCShouldCallSuperDealloc && "This should only be set for " | 
|  | "ObjC methods, which should have been handled in the block above."); | 
|  | assert(!ObjCShouldCallSuperFinalize && "This should only be set for " | 
|  | "ObjC methods, which should have been handled in the block above."); | 
|  |  | 
|  | // Verify and clean out per-function state. | 
|  | if (Body) { | 
|  | // C++ constructors that have function-try-blocks can't have return | 
|  | // statements in the handlers of that block. (C++ [except.handle]p14) | 
|  | // Verify this. | 
|  | if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body)) | 
|  | DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body)); | 
|  |  | 
|  | // Verify that gotos and switch cases don't jump into scopes illegally. | 
|  | if (getCurFunction()->NeedsScopeChecking() && | 
|  | !dcl->isInvalidDecl() && | 
|  | !hasAnyUnrecoverableErrorsInThisFunction()) | 
|  | DiagnoseInvalidJumps(Body); | 
|  |  | 
|  | if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) { | 
|  | if (!Destructor->getParent()->isDependentType()) | 
|  | CheckDestructor(Destructor); | 
|  |  | 
|  | MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), | 
|  | Destructor->getParent()); | 
|  | } | 
|  |  | 
|  | // If any errors have occurred, clear out any temporaries that may have | 
|  | // been leftover. This ensures that these temporaries won't be picked up for | 
|  | // deletion in some later function. | 
|  | if (PP.getDiagnostics().hasErrorOccurred() || | 
|  | PP.getDiagnostics().getSuppressAllDiagnostics()) { | 
|  | ExprTemporaries.clear(); | 
|  | ExprNeedsCleanups = false; | 
|  | } else if (!isa<FunctionTemplateDecl>(dcl)) { | 
|  | // Since the body is valid, issue any analysis-based warnings that are | 
|  | // enabled. | 
|  | ActivePolicy = &WP; | 
|  | } | 
|  |  | 
|  | assert(ExprTemporaries.empty() && "Leftover temporaries in function"); | 
|  | assert(!ExprNeedsCleanups && "Unaccounted cleanups in function"); | 
|  | } | 
|  |  | 
|  | if (!IsInstantiation) | 
|  | PopDeclContext(); | 
|  |  | 
|  | PopFunctionOrBlockScope(ActivePolicy, dcl); | 
|  |  | 
|  | // If any errors have occurred, clear out any temporaries that may have | 
|  | // been leftover. This ensures that these temporaries won't be picked up for | 
|  | // deletion in some later function. | 
|  | if (getDiagnostics().hasErrorOccurred()) { | 
|  | ExprTemporaries.clear(); | 
|  | ExprNeedsCleanups = false; | 
|  | } | 
|  |  | 
|  | return dcl; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// When we finish delayed parsing of an attribute, we must attach it to the | 
|  | /// relevant Decl. | 
|  | void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D, | 
|  | ParsedAttributes &Attrs) { | 
|  | ProcessDeclAttributeList(S, D, Attrs.getList()); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ImplicitlyDefineFunction - An undeclared identifier was used in a function | 
|  | /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). | 
|  | NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, | 
|  | IdentifierInfo &II, Scope *S) { | 
|  | // Before we produce a declaration for an implicitly defined | 
|  | // function, see whether there was a locally-scoped declaration of | 
|  | // this name as a function or variable. If so, use that | 
|  | // (non-visible) declaration, and complain about it. | 
|  | llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos | 
|  | = findLocallyScopedExternalDecl(&II); | 
|  | if (Pos != LocallyScopedExternalDecls.end()) { | 
|  | Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second; | 
|  | Diag(Pos->second->getLocation(), diag::note_previous_declaration); | 
|  | return Pos->second; | 
|  | } | 
|  |  | 
|  | // Extension in C99.  Legal in C90, but warn about it. | 
|  | if (II.getName().startswith("__builtin_")) | 
|  | Diag(Loc, diag::warn_builtin_unknown) << &II; | 
|  | else if (getLangOptions().C99) | 
|  | Diag(Loc, diag::ext_implicit_function_decl) << &II; | 
|  | else | 
|  | Diag(Loc, diag::warn_implicit_function_decl) << &II; | 
|  |  | 
|  | // Set a Declarator for the implicit definition: int foo(); | 
|  | const char *Dummy; | 
|  | AttributeFactory attrFactory; | 
|  | DeclSpec DS(attrFactory); | 
|  | unsigned DiagID; | 
|  | bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID); | 
|  | (void)Error; // Silence warning. | 
|  | assert(!Error && "Error setting up implicit decl!"); | 
|  | Declarator D(DS, Declarator::BlockContext); | 
|  | D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0, | 
|  | 0, 0, true, SourceLocation(), | 
|  | SourceLocation(), | 
|  | EST_None, SourceLocation(), | 
|  | 0, 0, 0, 0, Loc, Loc, D), | 
|  | DS.getAttributes(), | 
|  | SourceLocation()); | 
|  | D.SetIdentifier(&II, Loc); | 
|  |  | 
|  | // Insert this function into translation-unit scope. | 
|  |  | 
|  | DeclContext *PrevDC = CurContext; | 
|  | CurContext = Context.getTranslationUnitDecl(); | 
|  |  | 
|  | FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D)); | 
|  | FD->setImplicit(); | 
|  |  | 
|  | CurContext = PrevDC; | 
|  |  | 
|  | AddKnownFunctionAttributes(FD); | 
|  |  | 
|  | return FD; | 
|  | } | 
|  |  | 
|  | /// \brief Adds any function attributes that we know a priori based on | 
|  | /// the declaration of this function. | 
|  | /// | 
|  | /// These attributes can apply both to implicitly-declared builtins | 
|  | /// (like __builtin___printf_chk) or to library-declared functions | 
|  | /// like NSLog or printf. | 
|  | /// | 
|  | /// We need to check for duplicate attributes both here and where user-written | 
|  | /// attributes are applied to declarations. | 
|  | void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) { | 
|  | if (FD->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | // If this is a built-in function, map its builtin attributes to | 
|  | // actual attributes. | 
|  | if (unsigned BuiltinID = FD->getBuiltinID()) { | 
|  | // Handle printf-formatting attributes. | 
|  | unsigned FormatIdx; | 
|  | bool HasVAListArg; | 
|  | if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) { | 
|  | if (!FD->getAttr<FormatAttr>()) | 
|  | FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context, | 
|  | "printf", FormatIdx+1, | 
|  | HasVAListArg ? 0 : FormatIdx+2)); | 
|  | } | 
|  | if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx, | 
|  | HasVAListArg)) { | 
|  | if (!FD->getAttr<FormatAttr>()) | 
|  | FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context, | 
|  | "scanf", FormatIdx+1, | 
|  | HasVAListArg ? 0 : FormatIdx+2)); | 
|  | } | 
|  |  | 
|  | // Mark const if we don't care about errno and that is the only | 
|  | // thing preventing the function from being const. This allows | 
|  | // IRgen to use LLVM intrinsics for such functions. | 
|  | if (!getLangOptions().MathErrno && | 
|  | Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) { | 
|  | if (!FD->getAttr<ConstAttr>()) | 
|  | FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context)); | 
|  | } | 
|  |  | 
|  | if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>()) | 
|  | FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context)); | 
|  | if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>()) | 
|  | FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context)); | 
|  | } | 
|  |  | 
|  | IdentifierInfo *Name = FD->getIdentifier(); | 
|  | if (!Name) | 
|  | return; | 
|  | if ((!getLangOptions().CPlusPlus && | 
|  | FD->getDeclContext()->isTranslationUnit()) || | 
|  | (isa<LinkageSpecDecl>(FD->getDeclContext()) && | 
|  | cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() == | 
|  | LinkageSpecDecl::lang_c)) { | 
|  | // Okay: this could be a libc/libm/Objective-C function we know | 
|  | // about. | 
|  | } else | 
|  | return; | 
|  |  | 
|  | if (Name->isStr("NSLog") || Name->isStr("NSLogv")) { | 
|  | // FIXME: NSLog and NSLogv should be target specific | 
|  | if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) { | 
|  | // FIXME: We known better than our headers. | 
|  | const_cast<FormatAttr *>(Format)->setType(Context, "printf"); | 
|  | } else | 
|  | FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context, | 
|  | "printf", 1, | 
|  | Name->isStr("NSLogv") ? 0 : 2)); | 
|  | } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) { | 
|  | // FIXME: asprintf and vasprintf aren't C99 functions. Should they be | 
|  | // target-specific builtins, perhaps? | 
|  | if (!FD->getAttr<FormatAttr>()) | 
|  | FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context, | 
|  | "printf", 2, | 
|  | Name->isStr("vasprintf") ? 0 : 3)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, | 
|  | TypeSourceInfo *TInfo) { | 
|  | assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); | 
|  | assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); | 
|  |  | 
|  | if (!TInfo) { | 
|  | assert(D.isInvalidType() && "no declarator info for valid type"); | 
|  | TInfo = Context.getTrivialTypeSourceInfo(T); | 
|  | } | 
|  |  | 
|  | // Scope manipulation handled by caller. | 
|  | TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext, | 
|  | D.getSourceRange().getBegin(), | 
|  | D.getIdentifierLoc(), | 
|  | D.getIdentifier(), | 
|  | TInfo); | 
|  |  | 
|  | // Bail out immediately if we have an invalid declaration. | 
|  | if (D.isInvalidType()) { | 
|  | NewTD->setInvalidDecl(); | 
|  | return NewTD; | 
|  | } | 
|  |  | 
|  | if (D.getDeclSpec().isModulePrivateSpecified()) { | 
|  | if (CurContext->isFunctionOrMethod()) | 
|  | Diag(NewTD->getLocation(), diag::err_module_private_local) | 
|  | << 2 << NewTD->getDeclName() | 
|  | << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); | 
|  | else | 
|  | NewTD->setModulePrivate(); | 
|  | } | 
|  |  | 
|  | // C++ [dcl.typedef]p8: | 
|  | //   If the typedef declaration defines an unnamed class (or | 
|  | //   enum), the first typedef-name declared by the declaration | 
|  | //   to be that class type (or enum type) is used to denote the | 
|  | //   class type (or enum type) for linkage purposes only. | 
|  | // We need to check whether the type was declared in the declaration. | 
|  | switch (D.getDeclSpec().getTypeSpecType()) { | 
|  | case TST_enum: | 
|  | case TST_struct: | 
|  | case TST_union: | 
|  | case TST_class: { | 
|  | TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); | 
|  |  | 
|  | // Do nothing if the tag is not anonymous or already has an | 
|  | // associated typedef (from an earlier typedef in this decl group). | 
|  | if (tagFromDeclSpec->getIdentifier()) break; | 
|  | if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break; | 
|  |  | 
|  | // A well-formed anonymous tag must always be a TUK_Definition. | 
|  | assert(tagFromDeclSpec->isThisDeclarationADefinition()); | 
|  |  | 
|  | // The type must match the tag exactly;  no qualifiers allowed. | 
|  | if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec))) | 
|  | break; | 
|  |  | 
|  | // Otherwise, set this is the anon-decl typedef for the tag. | 
|  | tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NewTD; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief Determine whether a tag with a given kind is acceptable | 
|  | /// as a redeclaration of the given tag declaration. | 
|  | /// | 
|  | /// \returns true if the new tag kind is acceptable, false otherwise. | 
|  | bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous, | 
|  | TagTypeKind NewTag, bool isDefinition, | 
|  | SourceLocation NewTagLoc, | 
|  | const IdentifierInfo &Name) { | 
|  | // C++ [dcl.type.elab]p3: | 
|  | //   The class-key or enum keyword present in the | 
|  | //   elaborated-type-specifier shall agree in kind with the | 
|  | //   declaration to which the name in the elaborated-type-specifier | 
|  | //   refers. This rule also applies to the form of | 
|  | //   elaborated-type-specifier that declares a class-name or | 
|  | //   friend class since it can be construed as referring to the | 
|  | //   definition of the class. Thus, in any | 
|  | //   elaborated-type-specifier, the enum keyword shall be used to | 
|  | //   refer to an enumeration (7.2), the union class-key shall be | 
|  | //   used to refer to a union (clause 9), and either the class or | 
|  | //   struct class-key shall be used to refer to a class (clause 9) | 
|  | //   declared using the class or struct class-key. | 
|  | TagTypeKind OldTag = Previous->getTagKind(); | 
|  | if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct)) | 
|  | if (OldTag == NewTag) | 
|  | return true; | 
|  |  | 
|  | if ((OldTag == TTK_Struct || OldTag == TTK_Class) && | 
|  | (NewTag == TTK_Struct || NewTag == TTK_Class)) { | 
|  | // Warn about the struct/class tag mismatch. | 
|  | bool isTemplate = false; | 
|  | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous)) | 
|  | isTemplate = Record->getDescribedClassTemplate(); | 
|  |  | 
|  | if (!ActiveTemplateInstantiations.empty()) { | 
|  | // In a template instantiation, do not offer fix-its for tag mismatches | 
|  | // since they usually mess up the template instead of fixing the problem. | 
|  | Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) | 
|  | << (NewTag == TTK_Class) << isTemplate << &Name; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (isDefinition) { | 
|  | // On definitions, check previous tags and issue a fix-it for each | 
|  | // one that doesn't match the current tag. | 
|  | if (Previous->getDefinition()) { | 
|  | // Don't suggest fix-its for redefinitions. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool previousMismatch = false; | 
|  | for (TagDecl::redecl_iterator I(Previous->redecls_begin()), | 
|  | E(Previous->redecls_end()); I != E; ++I) { | 
|  | if (I->getTagKind() != NewTag) { | 
|  | if (!previousMismatch) { | 
|  | previousMismatch = true; | 
|  | Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch) | 
|  | << (NewTag == TTK_Class) << isTemplate << &Name; | 
|  | } | 
|  | Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion) | 
|  | << (NewTag == TTK_Class) | 
|  | << FixItHint::CreateReplacement(I->getInnerLocStart(), | 
|  | NewTag == TTK_Class? | 
|  | "class" : "struct"); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check for a previous definition.  If current tag and definition | 
|  | // are same type, do nothing.  If no definition, but disagree with | 
|  | // with previous tag type, give a warning, but no fix-it. | 
|  | const TagDecl *Redecl = Previous->getDefinition() ? | 
|  | Previous->getDefinition() : Previous; | 
|  | if (Redecl->getTagKind() == NewTag) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) | 
|  | << (NewTag == TTK_Class) | 
|  | << isTemplate << &Name; | 
|  | Diag(Redecl->getLocation(), diag::note_previous_use); | 
|  |  | 
|  | // If there is a previous defintion, suggest a fix-it. | 
|  | if (Previous->getDefinition()) { | 
|  | Diag(NewTagLoc, diag::note_struct_class_suggestion) | 
|  | << (Redecl->getTagKind() == TTK_Class) | 
|  | << FixItHint::CreateReplacement(SourceRange(NewTagLoc), | 
|  | Redecl->getTagKind() == TTK_Class? "class" : "struct"); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the | 
|  | /// former case, Name will be non-null.  In the later case, Name will be null. | 
|  | /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a | 
|  | /// reference/declaration/definition of a tag. | 
|  | Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, | 
|  | SourceLocation KWLoc, CXXScopeSpec &SS, | 
|  | IdentifierInfo *Name, SourceLocation NameLoc, | 
|  | AttributeList *Attr, AccessSpecifier AS, | 
|  | SourceLocation ModulePrivateLoc, | 
|  | MultiTemplateParamsArg TemplateParameterLists, | 
|  | bool &OwnedDecl, bool &IsDependent, | 
|  | bool ScopedEnum, bool ScopedEnumUsesClassTag, | 
|  | TypeResult UnderlyingType) { | 
|  | // If this is not a definition, it must have a name. | 
|  | assert((Name != 0 || TUK == TUK_Definition) && | 
|  | "Nameless record must be a definition!"); | 
|  | assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference); | 
|  |  | 
|  | OwnedDecl = false; | 
|  | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); | 
|  |  | 
|  | // FIXME: Check explicit specializations more carefully. | 
|  | bool isExplicitSpecialization = false; | 
|  | bool Invalid = false; | 
|  |  | 
|  | // We only need to do this matching if we have template parameters | 
|  | // or a scope specifier, which also conveniently avoids this work | 
|  | // for non-C++ cases. | 
|  | if (TemplateParameterLists.size() > 0 || | 
|  | (SS.isNotEmpty() && TUK != TUK_Reference)) { | 
|  | if (TemplateParameterList *TemplateParams | 
|  | = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS, | 
|  | TemplateParameterLists.get(), | 
|  | TemplateParameterLists.size(), | 
|  | TUK == TUK_Friend, | 
|  | isExplicitSpecialization, | 
|  | Invalid)) { | 
|  | if (TemplateParams->size() > 0) { | 
|  | // This is a declaration or definition of a class template (which may | 
|  | // be a member of another template). | 
|  |  | 
|  | if (Invalid) | 
|  | return 0; | 
|  |  | 
|  | OwnedDecl = false; | 
|  | DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc, | 
|  | SS, Name, NameLoc, Attr, | 
|  | TemplateParams, AS, | 
|  | ModulePrivateLoc, | 
|  | TemplateParameterLists.size() - 1, | 
|  | (TemplateParameterList**) TemplateParameterLists.release()); | 
|  | return Result.get(); | 
|  | } else { | 
|  | // The "template<>" header is extraneous. | 
|  | Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) | 
|  | << TypeWithKeyword::getTagTypeKindName(Kind) << Name; | 
|  | isExplicitSpecialization = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Figure out the underlying type if this a enum declaration. We need to do | 
|  | // this early, because it's needed to detect if this is an incompatible | 
|  | // redeclaration. | 
|  | llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying; | 
|  |  | 
|  | if (Kind == TTK_Enum) { | 
|  | if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) | 
|  | // No underlying type explicitly specified, or we failed to parse the | 
|  | // type, default to int. | 
|  | EnumUnderlying = Context.IntTy.getTypePtr(); | 
|  | else if (UnderlyingType.get()) { | 
|  | // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an | 
|  | // integral type; any cv-qualification is ignored. | 
|  | TypeSourceInfo *TI = 0; | 
|  | QualType T = GetTypeFromParser(UnderlyingType.get(), &TI); | 
|  | EnumUnderlying = TI; | 
|  |  | 
|  | SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); | 
|  |  | 
|  | if (!T->isDependentType() && !T->isIntegralType(Context)) { | 
|  | Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) | 
|  | << T; | 
|  | // Recover by falling back to int. | 
|  | EnumUnderlying = Context.IntTy.getTypePtr(); | 
|  | } | 
|  |  | 
|  | if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI, | 
|  | UPPC_FixedUnderlyingType)) | 
|  | EnumUnderlying = Context.IntTy.getTypePtr(); | 
|  |  | 
|  | } else if (getLangOptions().MicrosoftExt) | 
|  | // Microsoft enums are always of int type. | 
|  | EnumUnderlying = Context.IntTy.getTypePtr(); | 
|  | } | 
|  |  | 
|  | DeclContext *SearchDC = CurContext; | 
|  | DeclContext *DC = CurContext; | 
|  | bool isStdBadAlloc = false; | 
|  |  | 
|  | RedeclarationKind Redecl = ForRedeclaration; | 
|  | if (TUK == TUK_Friend || TUK == TUK_Reference) | 
|  | Redecl = NotForRedeclaration; | 
|  |  | 
|  | LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl); | 
|  |  | 
|  | if (Name && SS.isNotEmpty()) { | 
|  | // We have a nested-name tag ('struct foo::bar'). | 
|  |  | 
|  | // Check for invalid 'foo::'. | 
|  | if (SS.isInvalid()) { | 
|  | Name = 0; | 
|  | goto CreateNewDecl; | 
|  | } | 
|  |  | 
|  | // If this is a friend or a reference to a class in a dependent | 
|  | // context, don't try to make a decl for it. | 
|  | if (TUK == TUK_Friend || TUK == TUK_Reference) { | 
|  | DC = computeDeclContext(SS, false); | 
|  | if (!DC) { | 
|  | IsDependent = true; | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | DC = computeDeclContext(SS, true); | 
|  | if (!DC) { | 
|  | Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec) | 
|  | << SS.getRange(); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (RequireCompleteDeclContext(SS, DC)) | 
|  | return 0; | 
|  |  | 
|  | SearchDC = DC; | 
|  | // Look-up name inside 'foo::'. | 
|  | LookupQualifiedName(Previous, DC); | 
|  |  | 
|  | if (Previous.isAmbiguous()) | 
|  | return 0; | 
|  |  | 
|  | if (Previous.empty()) { | 
|  | // Name lookup did not find anything. However, if the | 
|  | // nested-name-specifier refers to the current instantiation, | 
|  | // and that current instantiation has any dependent base | 
|  | // classes, we might find something at instantiation time: treat | 
|  | // this as a dependent elaborated-type-specifier. | 
|  | // But this only makes any sense for reference-like lookups. | 
|  | if (Previous.wasNotFoundInCurrentInstantiation() && | 
|  | (TUK == TUK_Reference || TUK == TUK_Friend)) { | 
|  | IsDependent = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // A tag 'foo::bar' must already exist. | 
|  | Diag(NameLoc, diag::err_not_tag_in_scope) | 
|  | << Kind << Name << DC << SS.getRange(); | 
|  | Name = 0; | 
|  | Invalid = true; | 
|  | goto CreateNewDecl; | 
|  | } | 
|  | } else if (Name) { | 
|  | // If this is a named struct, check to see if there was a previous forward | 
|  | // declaration or definition. | 
|  | // FIXME: We're looking into outer scopes here, even when we | 
|  | // shouldn't be. Doing so can result in ambiguities that we | 
|  | // shouldn't be diagnosing. | 
|  | LookupName(Previous, S); | 
|  |  | 
|  | if (Previous.isAmbiguous() && | 
|  | (TUK == TUK_Definition || TUK == TUK_Declaration)) { | 
|  | LookupResult::Filter F = Previous.makeFilter(); | 
|  | while (F.hasNext()) { | 
|  | NamedDecl *ND = F.next(); | 
|  | if (ND->getDeclContext()->getRedeclContext() != SearchDC) | 
|  | F.erase(); | 
|  | } | 
|  | F.done(); | 
|  | } | 
|  |  | 
|  | // Note:  there used to be some attempt at recovery here. | 
|  | if (Previous.isAmbiguous()) | 
|  | return 0; | 
|  |  | 
|  | if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) { | 
|  | // FIXME: This makes sure that we ignore the contexts associated | 
|  | // with C structs, unions, and enums when looking for a matching | 
|  | // tag declaration or definition. See the similar lookup tweak | 
|  | // in Sema::LookupName; is there a better way to deal with this? | 
|  | while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC)) | 
|  | SearchDC = SearchDC->getParent(); | 
|  | } | 
|  | } else if (S->isFunctionPrototypeScope()) { | 
|  | // If this is an enum declaration in function prototype scope, set its | 
|  | // initial context to the translation unit. | 
|  | SearchDC = Context.getTranslationUnitDecl(); | 
|  | } | 
|  |  | 
|  | if (Previous.isSingleResult() && | 
|  | Previous.getFoundDecl()->isTemplateParameter()) { | 
|  | // Maybe we will complain about the shadowed template parameter. | 
|  | DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl()); | 
|  | // Just pretend that we didn't see the previous declaration. | 
|  | Previous.clear(); | 
|  | } | 
|  |  | 
|  | if (getLangOptions().CPlusPlus && Name && DC && StdNamespace && | 
|  | DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) { | 
|  | // This is a declaration of or a reference to "std::bad_alloc". | 
|  | isStdBadAlloc = true; | 
|  |  | 
|  | if (Previous.empty() && StdBadAlloc) { | 
|  | // std::bad_alloc has been implicitly declared (but made invisible to | 
|  | // name lookup). Fill in this implicit declaration as the previous | 
|  | // declaration, so that the declarations get chained appropriately. | 
|  | Previous.addDecl(getStdBadAlloc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we didn't find a previous declaration, and this is a reference | 
|  | // (or friend reference), move to the correct scope.  In C++, we | 
|  | // also need to do a redeclaration lookup there, just in case | 
|  | // there's a shadow friend decl. | 
|  | if (Name && Previous.empty() && | 
|  | (TUK == TUK_Reference || TUK == TUK_Friend)) { | 
|  | if (Invalid) goto CreateNewDecl; | 
|  | assert(SS.isEmpty()); | 
|  |  | 
|  | if (TUK == TUK_Reference) { | 
|  | // C++ [basic.scope.pdecl]p5: | 
|  | //   -- for an elaborated-type-specifier of the form | 
|  | // | 
|  | //          class-key identifier | 
|  | // | 
|  | //      if the elaborated-type-specifier is used in the | 
|  | //      decl-specifier-seq or parameter-declaration-clause of a | 
|  | //      function defined in namespace scope, the identifier is | 
|  | //      declared as a class-name in the namespace that contains | 
|  | //      the declaration; otherwise, except as a friend | 
|  | //      declaration, the identifier is declared in the smallest | 
|  | //      non-class, non-function-prototype scope that contains the | 
|  | //      declaration. | 
|  | // | 
|  | // C99 6.7.2.3p8 has a similar (but not identical!) provision for | 
|  | // C structs and unions. | 
|  | // | 
|  | // It is an error in C++ to declare (rather than define) an enum | 
|  | // type, including via an elaborated type specifier.  We'll | 
|  | // diagnose that later; for now, declare the enum in the same | 
|  | // scope as we would have picked for any other tag type. | 
|  | // | 
|  | // GNU C also supports this behavior as part of its incomplete | 
|  | // enum types extension, while GNU C++ does not. | 
|  | // | 
|  | // Find the context where we'll be declaring the tag. | 
|  | // FIXME: We would like to maintain the current DeclContext as the | 
|  | // lexical context, | 
|  | while (SearchDC->isRecord() || SearchDC->isTransparentContext()) | 
|  | SearchDC = SearchDC->getParent(); | 
|  |  | 
|  | // Find the scope where we'll be declaring the tag. | 
|  | while (S->isClassScope() || | 
|  | (getLangOptions().CPlusPlus && | 
|  | S->isFunctionPrototypeScope()) || | 
|  | ((S->getFlags() & Scope::DeclScope) == 0) || | 
|  | (S->getEntity() && | 
|  | ((DeclContext *)S->getEntity())->isTransparentContext())) | 
|  | S = S->getParent(); | 
|  | } else { | 
|  | assert(TUK == TUK_Friend); | 
|  | // C++ [namespace.memdef]p3: | 
|  | //   If a friend declaration in a non-local class first declares a | 
|  | //   class or function, the friend class or function is a member of | 
|  | //   the innermost enclosing namespace. | 
|  | SearchDC = SearchDC->getEnclosingNamespaceContext(); | 
|  | } | 
|  |  | 
|  | // In C++, we need to do a redeclaration lookup to properly | 
|  | // diagnose some problems. | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | Previous.setRedeclarationKind(ForRedeclaration); | 
|  | LookupQualifiedName(Previous, SearchDC); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Previous.empty()) { | 
|  | NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl(); | 
|  |  | 
|  | // It's okay to have a tag decl in the same scope as a typedef | 
|  | // which hides a tag decl in the same scope.  Finding this | 
|  | // insanity with a redeclaration lookup can only actually happen | 
|  | // in C++. | 
|  | // | 
|  | // This is also okay for elaborated-type-specifiers, which is | 
|  | // technically forbidden by the current standard but which is | 
|  | // okay according to the likely resolution of an open issue; | 
|  | // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407 | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) { | 
|  | if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) { | 
|  | TagDecl *Tag = TT->getDecl(); | 
|  | if (Tag->getDeclName() == Name && | 
|  | Tag->getDeclContext()->getRedeclContext() | 
|  | ->Equals(TD->getDeclContext()->getRedeclContext())) { | 
|  | PrevDecl = Tag; | 
|  | Previous.clear(); | 
|  | Previous.addDecl(Tag); | 
|  | Previous.resolveKind(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { | 
|  | // If this is a use of a previous tag, or if the tag is already declared | 
|  | // in the same scope (so that the definition/declaration completes or | 
|  | // rementions the tag), reuse the decl. | 
|  | if (TUK == TUK_Reference || TUK == TUK_Friend || | 
|  | isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) { | 
|  | // Make sure that this wasn't declared as an enum and now used as a | 
|  | // struct or something similar. | 
|  | if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, | 
|  | TUK == TUK_Definition, KWLoc, | 
|  | *Name)) { | 
|  | bool SafeToContinue | 
|  | = (PrevTagDecl->getTagKind() != TTK_Enum && | 
|  | Kind != TTK_Enum); | 
|  | if (SafeToContinue) | 
|  | Diag(KWLoc, diag::err_use_with_wrong_tag) | 
|  | << Name | 
|  | << FixItHint::CreateReplacement(SourceRange(KWLoc), | 
|  | PrevTagDecl->getKindName()); | 
|  | else | 
|  | Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; | 
|  | Diag(PrevTagDecl->getLocation(), diag::note_previous_use); | 
|  |  | 
|  | if (SafeToContinue) | 
|  | Kind = PrevTagDecl->getTagKind(); | 
|  | else { | 
|  | // Recover by making this an anonymous redefinition. | 
|  | Name = 0; | 
|  | Previous.clear(); | 
|  | Invalid = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) { | 
|  | const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl); | 
|  |  | 
|  | // All conflicts with previous declarations are recovered by | 
|  | // returning the previous declaration. | 
|  | if (ScopedEnum != PrevEnum->isScoped()) { | 
|  | Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch) | 
|  | << PrevEnum->isScoped(); | 
|  | Diag(PrevTagDecl->getLocation(), diag::note_previous_use); | 
|  | return PrevTagDecl; | 
|  | } | 
|  | else if (EnumUnderlying && PrevEnum->isFixed()) { | 
|  | QualType T; | 
|  | if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) | 
|  | T = TI->getType(); | 
|  | else | 
|  | T = QualType(EnumUnderlying.get<const Type*>(), 0); | 
|  |  | 
|  | if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) { | 
|  | Diag(NameLoc.isValid() ? NameLoc : KWLoc, | 
|  | diag::err_enum_redeclare_type_mismatch) | 
|  | << T | 
|  | << PrevEnum->getIntegerType(); | 
|  | Diag(PrevTagDecl->getLocation(), diag::note_previous_use); | 
|  | return PrevTagDecl; | 
|  | } | 
|  | } | 
|  | else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) { | 
|  | Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch) | 
|  | << PrevEnum->isFixed(); | 
|  | Diag(PrevTagDecl->getLocation(), diag::note_previous_use); | 
|  | return PrevTagDecl; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Invalid) { | 
|  | // If this is a use, just return the declaration we found. | 
|  |  | 
|  | // FIXME: In the future, return a variant or some other clue | 
|  | // for the consumer of this Decl to know it doesn't own it. | 
|  | // For our current ASTs this shouldn't be a problem, but will | 
|  | // need to be changed with DeclGroups. | 
|  | if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() || | 
|  | getLangOptions().MicrosoftExt)) || TUK == TUK_Friend) | 
|  | return PrevTagDecl; | 
|  |  | 
|  | // Diagnose attempts to redefine a tag. | 
|  | if (TUK == TUK_Definition) { | 
|  | if (TagDecl *Def = PrevTagDecl->getDefinition()) { | 
|  | // If we're defining a specialization and the previous definition | 
|  | // is from an implicit instantiation, don't emit an error | 
|  | // here; we'll catch this in the general case below. | 
|  | if (!isExplicitSpecialization || | 
|  | !isa<CXXRecordDecl>(Def) || | 
|  | cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind() | 
|  | == TSK_ExplicitSpecialization) { | 
|  | Diag(NameLoc, diag::err_redefinition) << Name; | 
|  | Diag(Def->getLocation(), diag::note_previous_definition); | 
|  | // If this is a redefinition, recover by making this | 
|  | // struct be anonymous, which will make any later | 
|  | // references get the previous definition. | 
|  | Name = 0; | 
|  | Previous.clear(); | 
|  | Invalid = true; | 
|  | } | 
|  | } else { | 
|  | // If the type is currently being defined, complain | 
|  | // about a nested redefinition. | 
|  | const TagType *Tag | 
|  | = cast<TagType>(Context.getTagDeclType(PrevTagDecl)); | 
|  | if (Tag->isBeingDefined()) { | 
|  | Diag(NameLoc, diag::err_nested_redefinition) << Name; | 
|  | Diag(PrevTagDecl->getLocation(), | 
|  | diag::note_previous_definition); | 
|  | Name = 0; | 
|  | Previous.clear(); | 
|  | Invalid = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, this is definition of a previously declared or referenced | 
|  | // tag PrevDecl. We're going to create a new Decl for it. | 
|  | } | 
|  | } | 
|  | // If we get here we have (another) forward declaration or we | 
|  | // have a definition.  Just create a new decl. | 
|  |  | 
|  | } else { | 
|  | // If we get here, this is a definition of a new tag type in a nested | 
|  | // scope, e.g. "struct foo; void bar() { struct foo; }", just create a | 
|  | // new decl/type.  We set PrevDecl to NULL so that the entities | 
|  | // have distinct types. | 
|  | Previous.clear(); | 
|  | } | 
|  | // If we get here, we're going to create a new Decl. If PrevDecl | 
|  | // is non-NULL, it's a definition of the tag declared by | 
|  | // PrevDecl. If it's NULL, we have a new definition. | 
|  |  | 
|  |  | 
|  | // Otherwise, PrevDecl is not a tag, but was found with tag | 
|  | // lookup.  This is only actually possible in C++, where a few | 
|  | // things like templates still live in the tag namespace. | 
|  | } else { | 
|  | assert(getLangOptions().CPlusPlus); | 
|  |  | 
|  | // Use a better diagnostic if an elaborated-type-specifier | 
|  | // found the wrong kind of type on the first | 
|  | // (non-redeclaration) lookup. | 
|  | if ((TUK == TUK_Reference || TUK == TUK_Friend) && | 
|  | !Previous.isForRedeclaration()) { | 
|  | unsigned Kind = 0; | 
|  | if (isa<TypedefDecl>(PrevDecl)) Kind = 1; | 
|  | else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2; | 
|  | else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3; | 
|  | Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind; | 
|  | Diag(PrevDecl->getLocation(), diag::note_declared_at); | 
|  | Invalid = true; | 
|  |  | 
|  | // Otherwise, only diagnose if the declaration is in scope. | 
|  | } else if (!isDeclInScope(PrevDecl, SearchDC, S, | 
|  | isExplicitSpecialization)) { | 
|  | // do nothing | 
|  |  | 
|  | // Diagnose implicit declarations introduced by elaborated types. | 
|  | } else if (TUK == TUK_Reference || TUK == TUK_Friend) { | 
|  | unsigned Kind = 0; | 
|  | if (isa<TypedefDecl>(PrevDecl)) Kind = 1; | 
|  | else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2; | 
|  | else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3; | 
|  | Diag(NameLoc, diag::err_tag_reference_conflict) << Kind; | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; | 
|  | Invalid = true; | 
|  |  | 
|  | // Otherwise it's a declaration.  Call out a particularly common | 
|  | // case here. | 
|  | } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) { | 
|  | unsigned Kind = 0; | 
|  | if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1; | 
|  | Diag(NameLoc, diag::err_tag_definition_of_typedef) | 
|  | << Name << Kind << TND->getUnderlyingType(); | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; | 
|  | Invalid = true; | 
|  |  | 
|  | // Otherwise, diagnose. | 
|  | } else { | 
|  | // The tag name clashes with something else in the target scope, | 
|  | // issue an error and recover by making this tag be anonymous. | 
|  | Diag(NameLoc, diag::err_redefinition_different_kind) << Name; | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_definition); | 
|  | Name = 0; | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | // The existing declaration isn't relevant to us; we're in a | 
|  | // new scope, so clear out the previous declaration. | 
|  | Previous.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | CreateNewDecl: | 
|  |  | 
|  | TagDecl *PrevDecl = 0; | 
|  | if (Previous.isSingleResult()) | 
|  | PrevDecl = cast<TagDecl>(Previous.getFoundDecl()); | 
|  |  | 
|  | // If there is an identifier, use the location of the identifier as the | 
|  | // location of the decl, otherwise use the location of the struct/union | 
|  | // keyword. | 
|  | SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; | 
|  |  | 
|  | // Otherwise, create a new declaration. If there is a previous | 
|  | // declaration of the same entity, the two will be linked via | 
|  | // PrevDecl. | 
|  | TagDecl *New; | 
|  |  | 
|  | bool IsForwardReference = false; | 
|  | if (Kind == TTK_Enum) { | 
|  | // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: | 
|  | // enum X { A, B, C } D;    D should chain to X. | 
|  | New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, | 
|  | cast_or_null<EnumDecl>(PrevDecl), ScopedEnum, | 
|  | ScopedEnumUsesClassTag, !EnumUnderlying.isNull()); | 
|  | // If this is an undefined enum, warn. | 
|  | if (TUK != TUK_Definition && !Invalid) { | 
|  | TagDecl *Def; | 
|  | if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) { | 
|  | // C++0x: 7.2p2: opaque-enum-declaration. | 
|  | // Conflicts are diagnosed above. Do nothing. | 
|  | } | 
|  | else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) { | 
|  | Diag(Loc, diag::ext_forward_ref_enum_def) | 
|  | << New; | 
|  | Diag(Def->getLocation(), diag::note_previous_definition); | 
|  | } else { | 
|  | unsigned DiagID = diag::ext_forward_ref_enum; | 
|  | if (getLangOptions().MicrosoftExt) | 
|  | DiagID = diag::ext_ms_forward_ref_enum; | 
|  | else if (getLangOptions().CPlusPlus) | 
|  | DiagID = diag::err_forward_ref_enum; | 
|  | Diag(Loc, DiagID); | 
|  |  | 
|  | // If this is a forward-declared reference to an enumeration, make a | 
|  | // note of it; we won't actually be introducing the declaration into | 
|  | // the declaration context. | 
|  | if (TUK == TUK_Reference) | 
|  | IsForwardReference = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (EnumUnderlying) { | 
|  | EnumDecl *ED = cast<EnumDecl>(New); | 
|  | if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) | 
|  | ED->setIntegerTypeSourceInfo(TI); | 
|  | else | 
|  | ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0)); | 
|  | ED->setPromotionType(ED->getIntegerType()); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | // struct/union/class | 
|  |  | 
|  | // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: | 
|  | // struct X { int A; } D;    D should chain to X. | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | // FIXME: Look for a way to use RecordDecl for simple structs. | 
|  | New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, | 
|  | cast_or_null<CXXRecordDecl>(PrevDecl)); | 
|  |  | 
|  | if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit())) | 
|  | StdBadAlloc = cast<CXXRecordDecl>(New); | 
|  | } else | 
|  | New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, | 
|  | cast_or_null<RecordDecl>(PrevDecl)); | 
|  | } | 
|  |  | 
|  | // Maybe add qualifier info. | 
|  | if (SS.isNotEmpty()) { | 
|  | if (SS.isSet()) { | 
|  | New->setQualifierInfo(SS.getWithLocInContext(Context)); | 
|  | if (TemplateParameterLists.size() > 0) { | 
|  | New->setTemplateParameterListsInfo(Context, | 
|  | TemplateParameterLists.size(), | 
|  | (TemplateParameterList**) TemplateParameterLists.release()); | 
|  | } | 
|  | } | 
|  | else | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { | 
|  | // Add alignment attributes if necessary; these attributes are checked when | 
|  | // the ASTContext lays out the structure. | 
|  | // | 
|  | // It is important for implementing the correct semantics that this | 
|  | // happen here (in act on tag decl). The #pragma pack stack is | 
|  | // maintained as a result of parser callbacks which can occur at | 
|  | // many points during the parsing of a struct declaration (because | 
|  | // the #pragma tokens are effectively skipped over during the | 
|  | // parsing of the struct). | 
|  | AddAlignmentAttributesForRecord(RD); | 
|  |  | 
|  | AddMsStructLayoutForRecord(RD); | 
|  | } | 
|  |  | 
|  | if (PrevDecl && PrevDecl->isModulePrivate()) | 
|  | New->setModulePrivate(); | 
|  | else if (ModulePrivateLoc.isValid()) { | 
|  | if (isExplicitSpecialization) | 
|  | Diag(New->getLocation(), diag::err_module_private_specialization) | 
|  | << 2 | 
|  | << FixItHint::CreateRemoval(ModulePrivateLoc); | 
|  | else if (PrevDecl && !PrevDecl->isModulePrivate()) | 
|  | diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc); | 
|  | // __module_private__ does not apply to local classes. However, we only | 
|  | // diagnose this as an error when the declaration specifiers are | 
|  | // freestanding. Here, we just ignore the __module_private__. | 
|  | // foobar | 
|  | else if (!SearchDC->isFunctionOrMethod()) | 
|  | New->setModulePrivate(); | 
|  | } | 
|  |  | 
|  | // If this is a specialization of a member class (of a class template), | 
|  | // check the specialization. | 
|  | if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous)) | 
|  | Invalid = true; | 
|  |  | 
|  | if (Invalid) | 
|  | New->setInvalidDecl(); | 
|  |  | 
|  | if (Attr) | 
|  | ProcessDeclAttributeList(S, New, Attr); | 
|  |  | 
|  | // If we're declaring or defining a tag in function prototype scope | 
|  | // in C, note that this type can only be used within the function. | 
|  | if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus) | 
|  | Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); | 
|  |  | 
|  | // Set the lexical context. If the tag has a C++ scope specifier, the | 
|  | // lexical context will be different from the semantic context. | 
|  | New->setLexicalDeclContext(CurContext); | 
|  |  | 
|  | // Mark this as a friend decl if applicable. | 
|  | // In Microsoft mode, a friend declaration also acts as a forward | 
|  | // declaration so we always pass true to setObjectOfFriendDecl to make | 
|  | // the tag name visible. | 
|  | if (TUK == TUK_Friend) | 
|  | New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() || | 
|  | getLangOptions().MicrosoftExt); | 
|  |  | 
|  | // Set the access specifier. | 
|  | if (!Invalid && SearchDC->isRecord()) | 
|  | SetMemberAccessSpecifier(New, PrevDecl, AS); | 
|  |  | 
|  | if (TUK == TUK_Definition) | 
|  | New->startDefinition(); | 
|  |  | 
|  | // If this has an identifier, add it to the scope stack. | 
|  | if (TUK == TUK_Friend) { | 
|  | // We might be replacing an existing declaration in the lookup tables; | 
|  | // if so, borrow its access specifier. | 
|  | if (PrevDecl) | 
|  | New->setAccess(PrevDecl->getAccess()); | 
|  |  | 
|  | DeclContext *DC = New->getDeclContext()->getRedeclContext(); | 
|  | DC->makeDeclVisibleInContext(New, /* Recoverable = */ false); | 
|  | if (Name) // can be null along some error paths | 
|  | if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) | 
|  | PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false); | 
|  | } else if (Name) { | 
|  | S = getNonFieldDeclScope(S); | 
|  | PushOnScopeChains(New, S, !IsForwardReference); | 
|  | if (IsForwardReference) | 
|  | SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false); | 
|  |  | 
|  | } else { | 
|  | CurContext->addDecl(New); | 
|  | } | 
|  |  | 
|  | // If this is the C FILE type, notify the AST context. | 
|  | if (IdentifierInfo *II = New->getIdentifier()) | 
|  | if (!New->isInvalidDecl() && | 
|  | New->getDeclContext()->getRedeclContext()->isTranslationUnit() && | 
|  | II->isStr("FILE")) | 
|  | Context.setFILEDecl(New); | 
|  |  | 
|  | OwnedDecl = true; | 
|  | return New; | 
|  | } | 
|  |  | 
|  | void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) { | 
|  | AdjustDeclIfTemplate(TagD); | 
|  | TagDecl *Tag = cast<TagDecl>(TagD); | 
|  |  | 
|  | // Enter the tag context. | 
|  | PushDeclContext(S, Tag); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) { | 
|  | assert(isa<ObjCContainerDecl>(IDecl) && | 
|  | "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"); | 
|  | DeclContext *OCD = cast<DeclContext>(IDecl); | 
|  | assert(getContainingDC(OCD) == CurContext && | 
|  | "The next DeclContext should be lexically contained in the current one."); | 
|  | CurContext = OCD; | 
|  | } | 
|  |  | 
|  | void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD, | 
|  | SourceLocation FinalLoc, | 
|  | SourceLocation LBraceLoc) { | 
|  | AdjustDeclIfTemplate(TagD); | 
|  | CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD); | 
|  |  | 
|  | FieldCollector->StartClass(); | 
|  |  | 
|  | if (!Record->getIdentifier()) | 
|  | return; | 
|  |  | 
|  | if (FinalLoc.isValid()) | 
|  | Record->addAttr(new (Context) FinalAttr(FinalLoc, Context)); | 
|  |  | 
|  | // C++ [class]p2: | 
|  | //   [...] The class-name is also inserted into the scope of the | 
|  | //   class itself; this is known as the injected-class-name. For | 
|  | //   purposes of access checking, the injected-class-name is treated | 
|  | //   as if it were a public member name. | 
|  | CXXRecordDecl *InjectedClassName | 
|  | = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext, | 
|  | Record->getLocStart(), Record->getLocation(), | 
|  | Record->getIdentifier(), | 
|  | /*PrevDecl=*/0, | 
|  | /*DelayTypeCreation=*/true); | 
|  | Context.getTypeDeclType(InjectedClassName, Record); | 
|  | InjectedClassName->setImplicit(); | 
|  | InjectedClassName->setAccess(AS_public); | 
|  | if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) | 
|  | InjectedClassName->setDescribedClassTemplate(Template); | 
|  | PushOnScopeChains(InjectedClassName, S); | 
|  | assert(InjectedClassName->isInjectedClassName() && | 
|  | "Broken injected-class-name"); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD, | 
|  | SourceLocation RBraceLoc) { | 
|  | AdjustDeclIfTemplate(TagD); | 
|  | TagDecl *Tag = cast<TagDecl>(TagD); | 
|  | Tag->setRBraceLoc(RBraceLoc); | 
|  |  | 
|  | if (isa<CXXRecordDecl>(Tag)) | 
|  | FieldCollector->FinishClass(); | 
|  |  | 
|  | // Exit this scope of this tag's definition. | 
|  | PopDeclContext(); | 
|  |  | 
|  | // Notify the consumer that we've defined a tag. | 
|  | Consumer.HandleTagDeclDefinition(Tag); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnObjCContainerFinishDefinition() { | 
|  | // Exit this scope of this interface definition. | 
|  | PopDeclContext(); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) { | 
|  | AdjustDeclIfTemplate(TagD); | 
|  | TagDecl *Tag = cast<TagDecl>(TagD); | 
|  | Tag->setInvalidDecl(); | 
|  |  | 
|  | // We're undoing ActOnTagStartDefinition here, not | 
|  | // ActOnStartCXXMemberDeclarations, so we don't have to mess with | 
|  | // the FieldCollector. | 
|  |  | 
|  | PopDeclContext(); | 
|  | } | 
|  |  | 
|  | // Note that FieldName may be null for anonymous bitfields. | 
|  | bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName, | 
|  | QualType FieldTy, const Expr *BitWidth, | 
|  | bool *ZeroWidth) { | 
|  | // Default to true; that shouldn't confuse checks for emptiness | 
|  | if (ZeroWidth) | 
|  | *ZeroWidth = true; | 
|  |  | 
|  | // C99 6.7.2.1p4 - verify the field type. | 
|  | // C++ 9.6p3: A bit-field shall have integral or enumeration type. | 
|  | if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) { | 
|  | // Handle incomplete types with specific error. | 
|  | if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete)) | 
|  | return true; | 
|  | if (FieldName) | 
|  | return Diag(FieldLoc, diag::err_not_integral_type_bitfield) | 
|  | << FieldName << FieldTy << BitWidth->getSourceRange(); | 
|  | return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield) | 
|  | << FieldTy << BitWidth->getSourceRange(); | 
|  | } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth), | 
|  | UPPC_BitFieldWidth)) | 
|  | return true; | 
|  |  | 
|  | // If the bit-width is type- or value-dependent, don't try to check | 
|  | // it now. | 
|  | if (BitWidth->isValueDependent() || BitWidth->isTypeDependent()) | 
|  | return false; | 
|  |  | 
|  | llvm::APSInt Value; | 
|  | if (VerifyIntegerConstantExpression(BitWidth, &Value)) | 
|  | return true; | 
|  |  | 
|  | if (Value != 0 && ZeroWidth) | 
|  | *ZeroWidth = false; | 
|  |  | 
|  | // Zero-width bitfield is ok for anonymous field. | 
|  | if (Value == 0 && FieldName) | 
|  | return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName; | 
|  |  | 
|  | if (Value.isSigned() && Value.isNegative()) { | 
|  | if (FieldName) | 
|  | return Diag(FieldLoc, diag::err_bitfield_has_negative_width) | 
|  | << FieldName << Value.toString(10); | 
|  | return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width) | 
|  | << Value.toString(10); | 
|  | } | 
|  |  | 
|  | if (!FieldTy->isDependentType()) { | 
|  | uint64_t TypeSize = Context.getTypeSize(FieldTy); | 
|  | if (Value.getZExtValue() > TypeSize) { | 
|  | if (!getLangOptions().CPlusPlus) { | 
|  | if (FieldName) | 
|  | return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size) | 
|  | << FieldName << (unsigned)Value.getZExtValue() | 
|  | << (unsigned)TypeSize; | 
|  |  | 
|  | return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size) | 
|  | << (unsigned)Value.getZExtValue() << (unsigned)TypeSize; | 
|  | } | 
|  |  | 
|  | if (FieldName) | 
|  | Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size) | 
|  | << FieldName << (unsigned)Value.getZExtValue() | 
|  | << (unsigned)TypeSize; | 
|  | else | 
|  | Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size) | 
|  | << (unsigned)Value.getZExtValue() << (unsigned)TypeSize; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ActOnField - Each field of a C struct/union is passed into this in order | 
|  | /// to create a FieldDecl object for it. | 
|  | Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, | 
|  | Declarator &D, Expr *BitfieldWidth) { | 
|  | FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD), | 
|  | DeclStart, D, static_cast<Expr*>(BitfieldWidth), | 
|  | /*HasInit=*/false, AS_public); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | /// HandleField - Analyze a field of a C struct or a C++ data member. | 
|  | /// | 
|  | FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record, | 
|  | SourceLocation DeclStart, | 
|  | Declarator &D, Expr *BitWidth, bool HasInit, | 
|  | AccessSpecifier AS) { | 
|  | IdentifierInfo *II = D.getIdentifier(); | 
|  | SourceLocation Loc = DeclStart; | 
|  | if (II) Loc = D.getIdentifierLoc(); | 
|  |  | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
|  | QualType T = TInfo->getType(); | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | CheckExtraCXXDefaultArguments(D); | 
|  |  | 
|  | if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, | 
|  | UPPC_DataMemberType)) { | 
|  | D.setInvalidType(); | 
|  | T = Context.IntTy; | 
|  | TInfo = Context.getTrivialTypeSourceInfo(T, Loc); | 
|  | } | 
|  | } | 
|  |  | 
|  | DiagnoseFunctionSpecifiers(D); | 
|  |  | 
|  | if (D.getDeclSpec().isThreadSpecified()) | 
|  | Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); | 
|  | if (D.getDeclSpec().isConstexprSpecified()) | 
|  | Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr) | 
|  | << 2; | 
|  |  | 
|  | // Check to see if this name was declared as a member previously | 
|  | LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration); | 
|  | LookupName(Previous, S); | 
|  | assert((Previous.empty() || Previous.isOverloadedResult() || | 
|  | Previous.isSingleResult()) | 
|  | && "Lookup of member name should be either overloaded, single or null"); | 
|  |  | 
|  | // If the name is overloaded then get any declaration else get the single result | 
|  | NamedDecl *PrevDecl = Previous.isOverloadedResult() ? | 
|  | Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>(); | 
|  |  | 
|  | if (PrevDecl && PrevDecl->isTemplateParameter()) { | 
|  | // Maybe we will complain about the shadowed template parameter. | 
|  | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | 
|  | // Just pretend that we didn't see the previous declaration. | 
|  | PrevDecl = 0; | 
|  | } | 
|  |  | 
|  | if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) | 
|  | PrevDecl = 0; | 
|  |  | 
|  | bool Mutable | 
|  | = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable); | 
|  | SourceLocation TSSL = D.getSourceRange().getBegin(); | 
|  | FieldDecl *NewFD | 
|  | = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit, | 
|  | TSSL, AS, PrevDecl, &D); | 
|  |  | 
|  | if (NewFD->isInvalidDecl()) | 
|  | Record->setInvalidDecl(); | 
|  |  | 
|  | if (D.getDeclSpec().isModulePrivateSpecified()) | 
|  | NewFD->setModulePrivate(); | 
|  |  | 
|  | if (NewFD->isInvalidDecl() && PrevDecl) { | 
|  | // Don't introduce NewFD into scope; there's already something | 
|  | // with the same name in the same scope. | 
|  | } else if (II) { | 
|  | PushOnScopeChains(NewFD, S); | 
|  | } else | 
|  | Record->addDecl(NewFD); | 
|  |  | 
|  | return NewFD; | 
|  | } | 
|  |  | 
|  | /// \brief Build a new FieldDecl and check its well-formedness. | 
|  | /// | 
|  | /// This routine builds a new FieldDecl given the fields name, type, | 
|  | /// record, etc. \p PrevDecl should refer to any previous declaration | 
|  | /// with the same name and in the same scope as the field to be | 
|  | /// created. | 
|  | /// | 
|  | /// \returns a new FieldDecl. | 
|  | /// | 
|  | /// \todo The Declarator argument is a hack. It will be removed once | 
|  | FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T, | 
|  | TypeSourceInfo *TInfo, | 
|  | RecordDecl *Record, SourceLocation Loc, | 
|  | bool Mutable, Expr *BitWidth, bool HasInit, | 
|  | SourceLocation TSSL, | 
|  | AccessSpecifier AS, NamedDecl *PrevDecl, | 
|  | Declarator *D) { | 
|  | IdentifierInfo *II = Name.getAsIdentifierInfo(); | 
|  | bool InvalidDecl = false; | 
|  | if (D) InvalidDecl = D->isInvalidType(); | 
|  |  | 
|  | // If we receive a broken type, recover by assuming 'int' and | 
|  | // marking this declaration as invalid. | 
|  | if (T.isNull()) { | 
|  | InvalidDecl = true; | 
|  | T = Context.IntTy; | 
|  | } | 
|  |  | 
|  | QualType EltTy = Context.getBaseElementType(T); | 
|  | if (!EltTy->isDependentType() && | 
|  | RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) { | 
|  | // Fields of incomplete type force their record to be invalid. | 
|  | Record->setInvalidDecl(); | 
|  | InvalidDecl = true; | 
|  | } | 
|  |  | 
|  | // C99 6.7.2.1p8: A member of a structure or union may have any type other | 
|  | // than a variably modified type. | 
|  | if (!InvalidDecl && T->isVariablyModifiedType()) { | 
|  | bool SizeIsNegative; | 
|  | llvm::APSInt Oversized; | 
|  | QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context, | 
|  | SizeIsNegative, | 
|  | Oversized); | 
|  | if (!FixedTy.isNull()) { | 
|  | Diag(Loc, diag::warn_illegal_constant_array_size); | 
|  | T = FixedTy; | 
|  | } else { | 
|  | if (SizeIsNegative) | 
|  | Diag(Loc, diag::err_typecheck_negative_array_size); | 
|  | else if (Oversized.getBoolValue()) | 
|  | Diag(Loc, diag::err_array_too_large) | 
|  | << Oversized.toString(10); | 
|  | else | 
|  | Diag(Loc, diag::err_typecheck_field_variable_size); | 
|  | InvalidDecl = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fields can not have abstract class types | 
|  | if (!InvalidDecl && RequireNonAbstractType(Loc, T, | 
|  | diag::err_abstract_type_in_decl, | 
|  | AbstractFieldType)) | 
|  | InvalidDecl = true; | 
|  |  | 
|  | bool ZeroWidth = false; | 
|  | // If this is declared as a bit-field, check the bit-field. | 
|  | if (!InvalidDecl && BitWidth && | 
|  | VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) { | 
|  | InvalidDecl = true; | 
|  | BitWidth = 0; | 
|  | ZeroWidth = false; | 
|  | } | 
|  |  | 
|  | // Check that 'mutable' is consistent with the type of the declaration. | 
|  | if (!InvalidDecl && Mutable) { | 
|  | unsigned DiagID = 0; | 
|  | if (T->isReferenceType()) | 
|  | DiagID = diag::err_mutable_reference; | 
|  | else if (T.isConstQualified()) | 
|  | DiagID = diag::err_mutable_const; | 
|  |  | 
|  | if (DiagID) { | 
|  | SourceLocation ErrLoc = Loc; | 
|  | if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid()) | 
|  | ErrLoc = D->getDeclSpec().getStorageClassSpecLoc(); | 
|  | Diag(ErrLoc, DiagID); | 
|  | Mutable = false; | 
|  | InvalidDecl = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo, | 
|  | BitWidth, Mutable, HasInit); | 
|  | if (InvalidDecl) | 
|  | NewFD->setInvalidDecl(); | 
|  |  | 
|  | if (PrevDecl && !isa<TagDecl>(PrevDecl)) { | 
|  | Diag(Loc, diag::err_duplicate_member) << II; | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | 
|  | NewFD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | if (!InvalidDecl && getLangOptions().CPlusPlus) { | 
|  | if (Record->isUnion()) { | 
|  | if (const RecordType *RT = EltTy->getAs<RecordType>()) { | 
|  | CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (RDecl->getDefinition()) { | 
|  | // C++ [class.union]p1: An object of a class with a non-trivial | 
|  | // constructor, a non-trivial copy constructor, a non-trivial | 
|  | // destructor, or a non-trivial copy assignment operator | 
|  | // cannot be a member of a union, nor can an array of such | 
|  | // objects. | 
|  | if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD)) | 
|  | NewFD->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [class.union]p1: If a union contains a member of reference type, | 
|  | // the program is ill-formed. | 
|  | if (EltTy->isReferenceType()) { | 
|  | Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type) | 
|  | << NewFD->getDeclName() << EltTy; | 
|  | NewFD->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: We need to pass in the attributes given an AST | 
|  | // representation, not a parser representation. | 
|  | if (D) | 
|  | // FIXME: What to pass instead of TUScope? | 
|  | ProcessDeclAttributes(TUScope, NewFD, *D); | 
|  |  | 
|  | // In auto-retain/release, infer strong retension for fields of | 
|  | // retainable type. | 
|  | if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD)) | 
|  | NewFD->setInvalidDecl(); | 
|  |  | 
|  | if (T.isObjCGCWeak()) | 
|  | Diag(Loc, diag::warn_attribute_weak_on_field); | 
|  |  | 
|  | NewFD->setAccess(AS); | 
|  | return NewFD; | 
|  | } | 
|  |  | 
|  | bool Sema::CheckNontrivialField(FieldDecl *FD) { | 
|  | assert(FD); | 
|  | assert(getLangOptions().CPlusPlus && "valid check only for C++"); | 
|  |  | 
|  | if (FD->isInvalidDecl()) | 
|  | return true; | 
|  |  | 
|  | QualType EltTy = Context.getBaseElementType(FD->getType()); | 
|  | if (const RecordType *RT = EltTy->getAs<RecordType>()) { | 
|  | CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (RDecl->getDefinition()) { | 
|  | // We check for copy constructors before constructors | 
|  | // because otherwise we'll never get complaints about | 
|  | // copy constructors. | 
|  |  | 
|  | CXXSpecialMember member = CXXInvalid; | 
|  | if (!RDecl->hasTrivialCopyConstructor()) | 
|  | member = CXXCopyConstructor; | 
|  | else if (!RDecl->hasTrivialDefaultConstructor()) | 
|  | member = CXXDefaultConstructor; | 
|  | else if (!RDecl->hasTrivialCopyAssignment()) | 
|  | member = CXXCopyAssignment; | 
|  | else if (!RDecl->hasTrivialDestructor()) | 
|  | member = CXXDestructor; | 
|  |  | 
|  | if (member != CXXInvalid) { | 
|  | if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) { | 
|  | // Objective-C++ ARC: it is an error to have a non-trivial field of | 
|  | // a union. However, system headers in Objective-C programs | 
|  | // occasionally have Objective-C lifetime objects within unions, | 
|  | // and rather than cause the program to fail, we make those | 
|  | // members unavailable. | 
|  | SourceLocation Loc = FD->getLocation(); | 
|  | if (getSourceManager().isInSystemHeader(Loc)) { | 
|  | if (!FD->hasAttr<UnavailableAttr>()) | 
|  | FD->addAttr(new (Context) UnavailableAttr(Loc, Context, | 
|  | "this system field has retaining ownership")); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member) | 
|  | << (int)FD->getParent()->isUnion() << FD->getDeclName() << member; | 
|  | DiagnoseNontrivial(RT, member); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// DiagnoseNontrivial - Given that a class has a non-trivial | 
|  | /// special member, figure out why. | 
|  | void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) { | 
|  | QualType QT(T, 0U); | 
|  | CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl()); | 
|  |  | 
|  | // Check whether the member was user-declared. | 
|  | switch (member) { | 
|  | case CXXInvalid: | 
|  | break; | 
|  |  | 
|  | case CXXDefaultConstructor: | 
|  | if (RD->hasUserDeclaredConstructor()) { | 
|  | typedef CXXRecordDecl::ctor_iterator ctor_iter; | 
|  | for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){ | 
|  | const FunctionDecl *body = 0; | 
|  | ci->hasBody(body); | 
|  | if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) { | 
|  | SourceLocation CtorLoc = ci->getLocation(); | 
|  | Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("found no user-declared constructors"); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case CXXCopyConstructor: | 
|  | if (RD->hasUserDeclaredCopyConstructor()) { | 
|  | SourceLocation CtorLoc = | 
|  | RD->getCopyConstructor(0)->getLocation(); | 
|  | Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member; | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case CXXMoveConstructor: | 
|  | if (RD->hasUserDeclaredMoveConstructor()) { | 
|  | SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation(); | 
|  | Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member; | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case CXXCopyAssignment: | 
|  | if (RD->hasUserDeclaredCopyAssignment()) { | 
|  | // FIXME: this should use the location of the copy | 
|  | // assignment, not the type. | 
|  | SourceLocation TyLoc = RD->getSourceRange().getBegin(); | 
|  | Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member; | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case CXXMoveAssignment: | 
|  | if (RD->hasUserDeclaredMoveAssignment()) { | 
|  | SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation(); | 
|  | Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member; | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case CXXDestructor: | 
|  | if (RD->hasUserDeclaredDestructor()) { | 
|  | SourceLocation DtorLoc = LookupDestructor(RD)->getLocation(); | 
|  | Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member; | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | typedef CXXRecordDecl::base_class_iterator base_iter; | 
|  |  | 
|  | // Virtual bases and members inhibit trivial copying/construction, | 
|  | // but not trivial destruction. | 
|  | if (member != CXXDestructor) { | 
|  | // Check for virtual bases.  vbases includes indirect virtual bases, | 
|  | // so we just iterate through the direct bases. | 
|  | for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) | 
|  | if (bi->isVirtual()) { | 
|  | SourceLocation BaseLoc = bi->getSourceRange().getBegin(); | 
|  | Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check for virtual methods. | 
|  | typedef CXXRecordDecl::method_iterator meth_iter; | 
|  | for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me; | 
|  | ++mi) { | 
|  | if (mi->isVirtual()) { | 
|  | SourceLocation MLoc = mi->getSourceRange().getBegin(); | 
|  | Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool (CXXRecordDecl::*hasTrivial)() const; | 
|  | switch (member) { | 
|  | case CXXDefaultConstructor: | 
|  | hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break; | 
|  | case CXXCopyConstructor: | 
|  | hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break; | 
|  | case CXXCopyAssignment: | 
|  | hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break; | 
|  | case CXXDestructor: | 
|  | hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break; | 
|  | default: | 
|  | llvm_unreachable("unexpected special member"); | 
|  | } | 
|  |  | 
|  | // Check for nontrivial bases (and recurse). | 
|  | for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) { | 
|  | const RecordType *BaseRT = bi->getType()->getAs<RecordType>(); | 
|  | assert(BaseRT && "Don't know how to handle dependent bases"); | 
|  | CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl()); | 
|  | if (!(BaseRecTy->*hasTrivial)()) { | 
|  | SourceLocation BaseLoc = bi->getSourceRange().getBegin(); | 
|  | Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member; | 
|  | DiagnoseNontrivial(BaseRT, member); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for nontrivial members (and recurse). | 
|  | typedef RecordDecl::field_iterator field_iter; | 
|  | for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe; | 
|  | ++fi) { | 
|  | QualType EltTy = Context.getBaseElementType((*fi)->getType()); | 
|  | if (const RecordType *EltRT = EltTy->getAs<RecordType>()) { | 
|  | CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl()); | 
|  |  | 
|  | if (!(EltRD->*hasTrivial)()) { | 
|  | SourceLocation FLoc = (*fi)->getLocation(); | 
|  | Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member; | 
|  | DiagnoseNontrivial(EltRT, member); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (EltTy->isObjCLifetimeType()) { | 
|  | switch (EltTy.getObjCLifetime()) { | 
|  | case Qualifiers::OCL_None: | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | break; | 
|  |  | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | case Qualifiers::OCL_Weak: | 
|  | case Qualifiers::OCL_Strong: | 
|  | Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership) | 
|  | << QT << EltTy.getObjCLifetime(); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("found no explanation for non-trivial member"); | 
|  | } | 
|  |  | 
|  | /// TranslateIvarVisibility - Translate visibility from a token ID to an | 
|  | ///  AST enum value. | 
|  | static ObjCIvarDecl::AccessControl | 
|  | TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { | 
|  | switch (ivarVisibility) { | 
|  | default: llvm_unreachable("Unknown visitibility kind"); | 
|  | case tok::objc_private: return ObjCIvarDecl::Private; | 
|  | case tok::objc_public: return ObjCIvarDecl::Public; | 
|  | case tok::objc_protected: return ObjCIvarDecl::Protected; | 
|  | case tok::objc_package: return ObjCIvarDecl::Package; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ActOnIvar - Each ivar field of an objective-c class is passed into this | 
|  | /// in order to create an IvarDecl object for it. | 
|  | Decl *Sema::ActOnIvar(Scope *S, | 
|  | SourceLocation DeclStart, | 
|  | Declarator &D, Expr *BitfieldWidth, | 
|  | tok::ObjCKeywordKind Visibility) { | 
|  |  | 
|  | IdentifierInfo *II = D.getIdentifier(); | 
|  | Expr *BitWidth = (Expr*)BitfieldWidth; | 
|  | SourceLocation Loc = DeclStart; | 
|  | if (II) Loc = D.getIdentifierLoc(); | 
|  |  | 
|  | // FIXME: Unnamed fields can be handled in various different ways, for | 
|  | // example, unnamed unions inject all members into the struct namespace! | 
|  |  | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
|  | QualType T = TInfo->getType(); | 
|  |  | 
|  | if (BitWidth) { | 
|  | // 6.7.2.1p3, 6.7.2.1p4 | 
|  | if (VerifyBitField(Loc, II, T, BitWidth)) { | 
|  | D.setInvalidType(); | 
|  | BitWidth = 0; | 
|  | } | 
|  | } else { | 
|  | // Not a bitfield. | 
|  |  | 
|  | // validate II. | 
|  |  | 
|  | } | 
|  | if (T->isReferenceType()) { | 
|  | Diag(Loc, diag::err_ivar_reference_type); | 
|  | D.setInvalidType(); | 
|  | } | 
|  | // C99 6.7.2.1p8: A member of a structure or union may have any type other | 
|  | // than a variably modified type. | 
|  | else if (T->isVariablyModifiedType()) { | 
|  | Diag(Loc, diag::err_typecheck_ivar_variable_size); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Get the visibility (access control) for this ivar. | 
|  | ObjCIvarDecl::AccessControl ac = | 
|  | Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility) | 
|  | : ObjCIvarDecl::None; | 
|  | // Must set ivar's DeclContext to its enclosing interface. | 
|  | ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext); | 
|  | ObjCContainerDecl *EnclosingContext; | 
|  | if (ObjCImplementationDecl *IMPDecl = | 
|  | dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { | 
|  | if (!LangOpts.ObjCNonFragileABI2) { | 
|  | // Case of ivar declared in an implementation. Context is that of its class. | 
|  | EnclosingContext = IMPDecl->getClassInterface(); | 
|  | assert(EnclosingContext && "Implementation has no class interface!"); | 
|  | } | 
|  | else | 
|  | EnclosingContext = EnclosingDecl; | 
|  | } else { | 
|  | if (ObjCCategoryDecl *CDecl = | 
|  | dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { | 
|  | if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) { | 
|  | Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension(); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | EnclosingContext = EnclosingDecl; | 
|  | } | 
|  |  | 
|  | // Construct the decl. | 
|  | ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext, | 
|  | DeclStart, Loc, II, T, | 
|  | TInfo, ac, (Expr *)BitfieldWidth); | 
|  |  | 
|  | if (II) { | 
|  | NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName, | 
|  | ForRedeclaration); | 
|  | if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S) | 
|  | && !isa<TagDecl>(PrevDecl)) { | 
|  | Diag(Loc, diag::err_duplicate_member) << II; | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | 
|  | NewID->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Process attributes attached to the ivar. | 
|  | ProcessDeclAttributes(S, NewID, D); | 
|  |  | 
|  | if (D.isInvalidType()) | 
|  | NewID->setInvalidDecl(); | 
|  |  | 
|  | // In ARC, infer 'retaining' for ivars of retainable type. | 
|  | if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID)) | 
|  | NewID->setInvalidDecl(); | 
|  |  | 
|  | if (D.getDeclSpec().isModulePrivateSpecified()) | 
|  | NewID->setModulePrivate(); | 
|  |  | 
|  | if (II) { | 
|  | // FIXME: When interfaces are DeclContexts, we'll need to add | 
|  | // these to the interface. | 
|  | S->AddDecl(NewID); | 
|  | IdResolver.AddDecl(NewID); | 
|  | } | 
|  |  | 
|  | return NewID; | 
|  | } | 
|  |  | 
|  | /// ActOnLastBitfield - This routine handles synthesized bitfields rules for | 
|  | /// class and class extensions. For every class @interface and class | 
|  | /// extension @interface, if the last ivar is a bitfield of any type, | 
|  | /// then add an implicit `char :0` ivar to the end of that interface. | 
|  | void Sema::ActOnLastBitfield(SourceLocation DeclLoc, | 
|  | SmallVectorImpl<Decl *> &AllIvarDecls) { | 
|  | if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty()) | 
|  | return; | 
|  |  | 
|  | Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1]; | 
|  | ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl); | 
|  |  | 
|  | if (!Ivar->isBitField()) | 
|  | return; | 
|  | uint64_t BitFieldSize = | 
|  | Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue(); | 
|  | if (BitFieldSize == 0) | 
|  | return; | 
|  | ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext); | 
|  | if (!ID) { | 
|  | if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) { | 
|  | if (!CD->IsClassExtension()) | 
|  | return; | 
|  | } | 
|  | // No need to add this to end of @implementation. | 
|  | else | 
|  | return; | 
|  | } | 
|  | // All conditions are met. Add a new bitfield to the tail end of ivars. | 
|  | llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0); | 
|  | Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc); | 
|  |  | 
|  | Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext), | 
|  | DeclLoc, DeclLoc, 0, | 
|  | Context.CharTy, | 
|  | Context.getTrivialTypeSourceInfo(Context.CharTy, | 
|  | DeclLoc), | 
|  | ObjCIvarDecl::Private, BW, | 
|  | true); | 
|  | AllIvarDecls.push_back(Ivar); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnFields(Scope* S, | 
|  | SourceLocation RecLoc, Decl *EnclosingDecl, | 
|  | llvm::ArrayRef<Decl *> Fields, | 
|  | SourceLocation LBrac, SourceLocation RBrac, | 
|  | AttributeList *Attr) { | 
|  | assert(EnclosingDecl && "missing record or interface decl"); | 
|  |  | 
|  | // If the decl this is being inserted into is invalid, then it may be a | 
|  | // redeclaration or some other bogus case.  Don't try to add fields to it. | 
|  | if (EnclosingDecl->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | // Verify that all the fields are okay. | 
|  | unsigned NumNamedMembers = 0; | 
|  | SmallVector<FieldDecl*, 32> RecFields; | 
|  |  | 
|  | RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); | 
|  | bool ARCErrReported = false; | 
|  | for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end(); | 
|  | i != end; ++i) { | 
|  | FieldDecl *FD = cast<FieldDecl>(*i); | 
|  |  | 
|  | // Get the type for the field. | 
|  | const Type *FDTy = FD->getType().getTypePtr(); | 
|  |  | 
|  | if (!FD->isAnonymousStructOrUnion()) { | 
|  | // Remember all fields written by the user. | 
|  | RecFields.push_back(FD); | 
|  | } | 
|  |  | 
|  | // If the field is already invalid for some reason, don't emit more | 
|  | // diagnostics about it. | 
|  | if (FD->isInvalidDecl()) { | 
|  | EnclosingDecl->setInvalidDecl(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // C99 6.7.2.1p2: | 
|  | //   A structure or union shall not contain a member with | 
|  | //   incomplete or function type (hence, a structure shall not | 
|  | //   contain an instance of itself, but may contain a pointer to | 
|  | //   an instance of itself), except that the last member of a | 
|  | //   structure with more than one named member may have incomplete | 
|  | //   array type; such a structure (and any union containing, | 
|  | //   possibly recursively, a member that is such a structure) | 
|  | //   shall not be a member of a structure or an element of an | 
|  | //   array. | 
|  | if (FDTy->isFunctionType()) { | 
|  | // Field declared as a function. | 
|  | Diag(FD->getLocation(), diag::err_field_declared_as_function) | 
|  | << FD->getDeclName(); | 
|  | FD->setInvalidDecl(); | 
|  | EnclosingDecl->setInvalidDecl(); | 
|  | continue; | 
|  | } else if (FDTy->isIncompleteArrayType() && Record && | 
|  | ((i + 1 == Fields.end() && !Record->isUnion()) || | 
|  | ((getLangOptions().MicrosoftExt || | 
|  | getLangOptions().CPlusPlus) && | 
|  | (i + 1 == Fields.end() || Record->isUnion())))) { | 
|  | // Flexible array member. | 
|  | // Microsoft and g++ is more permissive regarding flexible array. | 
|  | // It will accept flexible array in union and also | 
|  | // as the sole element of a struct/class. | 
|  | if (getLangOptions().MicrosoftExt) { | 
|  | if (Record->isUnion()) | 
|  | Diag(FD->getLocation(), diag::ext_flexible_array_union_ms) | 
|  | << FD->getDeclName(); | 
|  | else if (Fields.size() == 1) | 
|  | Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms) | 
|  | << FD->getDeclName() << Record->getTagKind(); | 
|  | } else if (getLangOptions().CPlusPlus) { | 
|  | if (Record->isUnion()) | 
|  | Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu) | 
|  | << FD->getDeclName(); | 
|  | else if (Fields.size() == 1) | 
|  | Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu) | 
|  | << FD->getDeclName() << Record->getTagKind(); | 
|  | } else if (NumNamedMembers < 1) { | 
|  | Diag(FD->getLocation(), diag::err_flexible_array_empty_struct) | 
|  | << FD->getDeclName(); | 
|  | FD->setInvalidDecl(); | 
|  | EnclosingDecl->setInvalidDecl(); | 
|  | continue; | 
|  | } | 
|  | if (!FD->getType()->isDependentType() && | 
|  | !Context.getBaseElementType(FD->getType()).isPODType(Context)) { | 
|  | Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type) | 
|  | << FD->getDeclName() << FD->getType(); | 
|  | FD->setInvalidDecl(); | 
|  | EnclosingDecl->setInvalidDecl(); | 
|  | continue; | 
|  | } | 
|  | // Okay, we have a legal flexible array member at the end of the struct. | 
|  | if (Record) | 
|  | Record->setHasFlexibleArrayMember(true); | 
|  | } else if (!FDTy->isDependentType() && | 
|  | RequireCompleteType(FD->getLocation(), FD->getType(), | 
|  | diag::err_field_incomplete)) { | 
|  | // Incomplete type | 
|  | FD->setInvalidDecl(); | 
|  | EnclosingDecl->setInvalidDecl(); | 
|  | continue; | 
|  | } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) { | 
|  | if (FDTTy->getDecl()->hasFlexibleArrayMember()) { | 
|  | // If this is a member of a union, then entire union becomes "flexible". | 
|  | if (Record && Record->isUnion()) { | 
|  | Record->setHasFlexibleArrayMember(true); | 
|  | } else { | 
|  | // If this is a struct/class and this is not the last element, reject | 
|  | // it.  Note that GCC supports variable sized arrays in the middle of | 
|  | // structures. | 
|  | if (i + 1 != Fields.end()) | 
|  | Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct) | 
|  | << FD->getDeclName() << FD->getType(); | 
|  | else { | 
|  | // We support flexible arrays at the end of structs in | 
|  | // other structs as an extension. | 
|  | Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) | 
|  | << FD->getDeclName(); | 
|  | if (Record) | 
|  | Record->setHasFlexibleArrayMember(true); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (Record && FDTTy->getDecl()->hasObjectMember()) | 
|  | Record->setHasObjectMember(true); | 
|  | } else if (FDTy->isObjCObjectType()) { | 
|  | /// A field cannot be an Objective-c object | 
|  | Diag(FD->getLocation(), diag::err_statically_allocated_object) | 
|  | << FixItHint::CreateInsertion(FD->getLocation(), "*"); | 
|  | QualType T = Context.getObjCObjectPointerType(FD->getType()); | 
|  | FD->setType(T); | 
|  | } | 
|  | else if (!getLangOptions().CPlusPlus) { | 
|  | if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) { | 
|  | // It's an error in ARC if a field has lifetime. | 
|  | // We don't want to report this in a system header, though, | 
|  | // so we just make the field unavailable. | 
|  | // FIXME: that's really not sufficient; we need to make the type | 
|  | // itself invalid to, say, initialize or copy. | 
|  | QualType T = FD->getType(); | 
|  | Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime(); | 
|  | if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) { | 
|  | SourceLocation loc = FD->getLocation(); | 
|  | if (getSourceManager().isInSystemHeader(loc)) { | 
|  | if (!FD->hasAttr<UnavailableAttr>()) { | 
|  | FD->addAttr(new (Context) UnavailableAttr(loc, Context, | 
|  | "this system field has retaining ownership")); | 
|  | } | 
|  | } else { | 
|  | Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct); | 
|  | } | 
|  | ARCErrReported = true; | 
|  | } | 
|  | } | 
|  | else if (getLangOptions().ObjC1 && | 
|  | getLangOptions().getGC() != LangOptions::NonGC && | 
|  | Record && !Record->hasObjectMember()) { | 
|  | if (FD->getType()->isObjCObjectPointerType() || | 
|  | FD->getType().isObjCGCStrong()) | 
|  | Record->setHasObjectMember(true); | 
|  | else if (Context.getAsArrayType(FD->getType())) { | 
|  | QualType BaseType = Context.getBaseElementType(FD->getType()); | 
|  | if (BaseType->isRecordType() && | 
|  | BaseType->getAs<RecordType>()->getDecl()->hasObjectMember()) | 
|  | Record->setHasObjectMember(true); | 
|  | else if (BaseType->isObjCObjectPointerType() || | 
|  | BaseType.isObjCGCStrong()) | 
|  | Record->setHasObjectMember(true); | 
|  | } | 
|  | } | 
|  | } | 
|  | // Keep track of the number of named members. | 
|  | if (FD->getIdentifier()) | 
|  | ++NumNamedMembers; | 
|  | } | 
|  |  | 
|  | // Okay, we successfully defined 'Record'. | 
|  | if (Record) { | 
|  | bool Completed = false; | 
|  | if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) { | 
|  | if (!CXXRecord->isInvalidDecl()) { | 
|  | // Set access bits correctly on the directly-declared conversions. | 
|  | UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions(); | 
|  | for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); | 
|  | I != E; ++I) | 
|  | Convs->setAccess(I, (*I)->getAccess()); | 
|  |  | 
|  | if (!CXXRecord->isDependentType()) { | 
|  | // Objective-C Automatic Reference Counting: | 
|  | //   If a class has a non-static data member of Objective-C pointer | 
|  | //   type (or array thereof), it is a non-POD type and its | 
|  | //   default constructor (if any), copy constructor, copy assignment | 
|  | //   operator, and destructor are non-trivial. | 
|  | // | 
|  | // This rule is also handled by CXXRecordDecl::completeDefinition(). | 
|  | // However, here we check whether this particular class is only | 
|  | // non-POD because of the presence of an Objective-C pointer member. | 
|  | // If so, objects of this type cannot be shared between code compiled | 
|  | // with instant objects and code compiled with manual retain/release. | 
|  | if (getLangOptions().ObjCAutoRefCount && | 
|  | CXXRecord->hasObjectMember() && | 
|  | CXXRecord->getLinkage() == ExternalLinkage) { | 
|  | if (CXXRecord->isPOD()) { | 
|  | Diag(CXXRecord->getLocation(), | 
|  | diag::warn_arc_non_pod_class_with_object_member) | 
|  | << CXXRecord; | 
|  | } else { | 
|  | // FIXME: Fix-Its would be nice here, but finding a good location | 
|  | // for them is going to be tricky. | 
|  | if (CXXRecord->hasTrivialCopyConstructor()) | 
|  | Diag(CXXRecord->getLocation(), | 
|  | diag::warn_arc_trivial_member_function_with_object_member) | 
|  | << CXXRecord << 0; | 
|  | if (CXXRecord->hasTrivialCopyAssignment()) | 
|  | Diag(CXXRecord->getLocation(), | 
|  | diag::warn_arc_trivial_member_function_with_object_member) | 
|  | << CXXRecord << 1; | 
|  | if (CXXRecord->hasTrivialDestructor()) | 
|  | Diag(CXXRecord->getLocation(), | 
|  | diag::warn_arc_trivial_member_function_with_object_member) | 
|  | << CXXRecord << 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Adjust user-defined destructor exception spec. | 
|  | if (getLangOptions().CPlusPlus0x && | 
|  | CXXRecord->hasUserDeclaredDestructor()) | 
|  | AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor()); | 
|  |  | 
|  | // Add any implicitly-declared members to this class. | 
|  | AddImplicitlyDeclaredMembersToClass(CXXRecord); | 
|  |  | 
|  | // If we have virtual base classes, we may end up finding multiple | 
|  | // final overriders for a given virtual function. Check for this | 
|  | // problem now. | 
|  | if (CXXRecord->getNumVBases()) { | 
|  | CXXFinalOverriderMap FinalOverriders; | 
|  | CXXRecord->getFinalOverriders(FinalOverriders); | 
|  |  | 
|  | for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), | 
|  | MEnd = FinalOverriders.end(); | 
|  | M != MEnd; ++M) { | 
|  | for (OverridingMethods::iterator SO = M->second.begin(), | 
|  | SOEnd = M->second.end(); | 
|  | SO != SOEnd; ++SO) { | 
|  | assert(SO->second.size() > 0 && | 
|  | "Virtual function without overridding functions?"); | 
|  | if (SO->second.size() == 1) | 
|  | continue; | 
|  |  | 
|  | // C++ [class.virtual]p2: | 
|  | //   In a derived class, if a virtual member function of a base | 
|  | //   class subobject has more than one final overrider the | 
|  | //   program is ill-formed. | 
|  | Diag(Record->getLocation(), diag::err_multiple_final_overriders) | 
|  | << (NamedDecl *)M->first << Record; | 
|  | Diag(M->first->getLocation(), | 
|  | diag::note_overridden_virtual_function); | 
|  | for (OverridingMethods::overriding_iterator | 
|  | OM = SO->second.begin(), | 
|  | OMEnd = SO->second.end(); | 
|  | OM != OMEnd; ++OM) | 
|  | Diag(OM->Method->getLocation(), diag::note_final_overrider) | 
|  | << (NamedDecl *)M->first << OM->Method->getParent(); | 
|  |  | 
|  | Record->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  | CXXRecord->completeDefinition(&FinalOverriders); | 
|  | Completed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Completed) | 
|  | Record->completeDefinition(); | 
|  |  | 
|  | // Now that the record is complete, do any delayed exception spec checks | 
|  | // we were missing. | 
|  | while (!DelayedDestructorExceptionSpecChecks.empty()) { | 
|  | const CXXDestructorDecl *Dtor = | 
|  | DelayedDestructorExceptionSpecChecks.back().first; | 
|  | if (Dtor->getParent() != Record) | 
|  | break; | 
|  |  | 
|  | assert(!Dtor->getParent()->isDependentType() && | 
|  | "Should not ever add destructors of templates into the list."); | 
|  | CheckOverridingFunctionExceptionSpec(Dtor, | 
|  | DelayedDestructorExceptionSpecChecks.back().second); | 
|  | DelayedDestructorExceptionSpecChecks.pop_back(); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | ObjCIvarDecl **ClsFields = | 
|  | reinterpret_cast<ObjCIvarDecl**>(RecFields.data()); | 
|  | if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) { | 
|  | ID->setLocEnd(RBrac); | 
|  | // Add ivar's to class's DeclContext. | 
|  | for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { | 
|  | ClsFields[i]->setLexicalDeclContext(ID); | 
|  | ID->addDecl(ClsFields[i]); | 
|  | } | 
|  | // Must enforce the rule that ivars in the base classes may not be | 
|  | // duplicates. | 
|  | if (ID->getSuperClass()) | 
|  | DiagnoseDuplicateIvars(ID, ID->getSuperClass()); | 
|  | } else if (ObjCImplementationDecl *IMPDecl = | 
|  | dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { | 
|  | assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); | 
|  | for (unsigned I = 0, N = RecFields.size(); I != N; ++I) | 
|  | // Ivar declared in @implementation never belongs to the implementation. | 
|  | // Only it is in implementation's lexical context. | 
|  | ClsFields[I]->setLexicalDeclContext(IMPDecl); | 
|  | CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); | 
|  | } else if (ObjCCategoryDecl *CDecl = | 
|  | dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { | 
|  | // case of ivars in class extension; all other cases have been | 
|  | // reported as errors elsewhere. | 
|  | // FIXME. Class extension does not have a LocEnd field. | 
|  | // CDecl->setLocEnd(RBrac); | 
|  | // Add ivar's to class extension's DeclContext. | 
|  | for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { | 
|  | ClsFields[i]->setLexicalDeclContext(CDecl); | 
|  | CDecl->addDecl(ClsFields[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Attr) | 
|  | ProcessDeclAttributeList(S, Record, Attr); | 
|  |  | 
|  | // If there's a #pragma GCC visibility in scope, and this isn't a subclass, | 
|  | // set the visibility of this record. | 
|  | if (Record && !Record->getDeclContext()->isRecord()) | 
|  | AddPushedVisibilityAttribute(Record); | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether the given integral value is representable within | 
|  | /// the given type T. | 
|  | static bool isRepresentableIntegerValue(ASTContext &Context, | 
|  | llvm::APSInt &Value, | 
|  | QualType T) { | 
|  | assert(T->isIntegralType(Context) && "Integral type required!"); | 
|  | unsigned BitWidth = Context.getIntWidth(T); | 
|  |  | 
|  | if (Value.isUnsigned() || Value.isNonNegative()) { | 
|  | if (T->isSignedIntegerOrEnumerationType()) | 
|  | --BitWidth; | 
|  | return Value.getActiveBits() <= BitWidth; | 
|  | } | 
|  | return Value.getMinSignedBits() <= BitWidth; | 
|  | } | 
|  |  | 
|  | // \brief Given an integral type, return the next larger integral type | 
|  | // (or a NULL type of no such type exists). | 
|  | static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) { | 
|  | // FIXME: Int128/UInt128 support, which also needs to be introduced into | 
|  | // enum checking below. | 
|  | assert(T->isIntegralType(Context) && "Integral type required!"); | 
|  | const unsigned NumTypes = 4; | 
|  | QualType SignedIntegralTypes[NumTypes] = { | 
|  | Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy | 
|  | }; | 
|  | QualType UnsignedIntegralTypes[NumTypes] = { | 
|  | Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, | 
|  | Context.UnsignedLongLongTy | 
|  | }; | 
|  |  | 
|  | unsigned BitWidth = Context.getTypeSize(T); | 
|  | QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes | 
|  | : UnsignedIntegralTypes; | 
|  | for (unsigned I = 0; I != NumTypes; ++I) | 
|  | if (Context.getTypeSize(Types[I]) > BitWidth) | 
|  | return Types[I]; | 
|  |  | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum, | 
|  | EnumConstantDecl *LastEnumConst, | 
|  | SourceLocation IdLoc, | 
|  | IdentifierInfo *Id, | 
|  | Expr *Val) { | 
|  | unsigned IntWidth = Context.getTargetInfo().getIntWidth(); | 
|  | llvm::APSInt EnumVal(IntWidth); | 
|  | QualType EltTy; | 
|  |  | 
|  | if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue)) | 
|  | Val = 0; | 
|  |  | 
|  | if (Val) { | 
|  | if (Enum->isDependentType() || Val->isTypeDependent()) | 
|  | EltTy = Context.DependentTy; | 
|  | else { | 
|  | // C99 6.7.2.2p2: Make sure we have an integer constant expression. | 
|  | SourceLocation ExpLoc; | 
|  | if (!Val->isValueDependent() && | 
|  | VerifyIntegerConstantExpression(Val, &EnumVal)) { | 
|  | Val = 0; | 
|  | } else { | 
|  | if (!getLangOptions().CPlusPlus) { | 
|  | // C99 6.7.2.2p2: | 
|  | //   The expression that defines the value of an enumeration constant | 
|  | //   shall be an integer constant expression that has a value | 
|  | //   representable as an int. | 
|  |  | 
|  | // Complain if the value is not representable in an int. | 
|  | if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy)) | 
|  | Diag(IdLoc, diag::ext_enum_value_not_int) | 
|  | << EnumVal.toString(10) << Val->getSourceRange() | 
|  | << (EnumVal.isUnsigned() || EnumVal.isNonNegative()); | 
|  | else if (!Context.hasSameType(Val->getType(), Context.IntTy)) { | 
|  | // Force the type of the expression to 'int'. | 
|  | Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Enum->isFixed()) { | 
|  | EltTy = Enum->getIntegerType(); | 
|  |  | 
|  | // C++0x [dcl.enum]p5: | 
|  | //   ... if the initializing value of an enumerator cannot be | 
|  | //   represented by the underlying type, the program is ill-formed. | 
|  | if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) { | 
|  | if (getLangOptions().MicrosoftExt) { | 
|  | Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy; | 
|  | Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take(); | 
|  | } else | 
|  | Diag(IdLoc, diag::err_enumerator_too_large) | 
|  | << EltTy; | 
|  | } else | 
|  | Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take(); | 
|  | } | 
|  | else { | 
|  | // C++0x [dcl.enum]p5: | 
|  | //   If the underlying type is not fixed, the type of each enumerator | 
|  | //   is the type of its initializing value: | 
|  | //     - If an initializer is specified for an enumerator, the | 
|  | //       initializing value has the same type as the expression. | 
|  | EltTy = Val->getType(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Val) { | 
|  | if (Enum->isDependentType()) | 
|  | EltTy = Context.DependentTy; | 
|  | else if (!LastEnumConst) { | 
|  | // C++0x [dcl.enum]p5: | 
|  | //   If the underlying type is not fixed, the type of each enumerator | 
|  | //   is the type of its initializing value: | 
|  | //     - If no initializer is specified for the first enumerator, the | 
|  | //       initializing value has an unspecified integral type. | 
|  | // | 
|  | // GCC uses 'int' for its unspecified integral type, as does | 
|  | // C99 6.7.2.2p3. | 
|  | if (Enum->isFixed()) { | 
|  | EltTy = Enum->getIntegerType(); | 
|  | } | 
|  | else { | 
|  | EltTy = Context.IntTy; | 
|  | } | 
|  | } else { | 
|  | // Assign the last value + 1. | 
|  | EnumVal = LastEnumConst->getInitVal(); | 
|  | ++EnumVal; | 
|  | EltTy = LastEnumConst->getType(); | 
|  |  | 
|  | // Check for overflow on increment. | 
|  | if (EnumVal < LastEnumConst->getInitVal()) { | 
|  | // C++0x [dcl.enum]p5: | 
|  | //   If the underlying type is not fixed, the type of each enumerator | 
|  | //   is the type of its initializing value: | 
|  | // | 
|  | //     - Otherwise the type of the initializing value is the same as | 
|  | //       the type of the initializing value of the preceding enumerator | 
|  | //       unless the incremented value is not representable in that type, | 
|  | //       in which case the type is an unspecified integral type | 
|  | //       sufficient to contain the incremented value. If no such type | 
|  | //       exists, the program is ill-formed. | 
|  | QualType T = getNextLargerIntegralType(Context, EltTy); | 
|  | if (T.isNull() || Enum->isFixed()) { | 
|  | // There is no integral type larger enough to represent this | 
|  | // value. Complain, then allow the value to wrap around. | 
|  | EnumVal = LastEnumConst->getInitVal(); | 
|  | EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2); | 
|  | ++EnumVal; | 
|  | if (Enum->isFixed()) | 
|  | // When the underlying type is fixed, this is ill-formed. | 
|  | Diag(IdLoc, diag::err_enumerator_wrapped) | 
|  | << EnumVal.toString(10) | 
|  | << EltTy; | 
|  | else | 
|  | Diag(IdLoc, diag::warn_enumerator_too_large) | 
|  | << EnumVal.toString(10); | 
|  | } else { | 
|  | EltTy = T; | 
|  | } | 
|  |  | 
|  | // Retrieve the last enumerator's value, extent that type to the | 
|  | // type that is supposed to be large enough to represent the incremented | 
|  | // value, then increment. | 
|  | EnumVal = LastEnumConst->getInitVal(); | 
|  | EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); | 
|  | EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); | 
|  | ++EnumVal; | 
|  |  | 
|  | // If we're not in C++, diagnose the overflow of enumerator values, | 
|  | // which in C99 means that the enumerator value is not representable in | 
|  | // an int (C99 6.7.2.2p2). However, we support GCC's extension that | 
|  | // permits enumerator values that are representable in some larger | 
|  | // integral type. | 
|  | if (!getLangOptions().CPlusPlus && !T.isNull()) | 
|  | Diag(IdLoc, diag::warn_enum_value_overflow); | 
|  | } else if (!getLangOptions().CPlusPlus && | 
|  | !isRepresentableIntegerValue(Context, EnumVal, EltTy)) { | 
|  | // Enforce C99 6.7.2.2p2 even when we compute the next value. | 
|  | Diag(IdLoc, diag::ext_enum_value_not_int) | 
|  | << EnumVal.toString(10) << 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!EltTy->isDependentType()) { | 
|  | // Make the enumerator value match the signedness and size of the | 
|  | // enumerator's type. | 
|  | EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); | 
|  | EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); | 
|  | } | 
|  |  | 
|  | return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy, | 
|  | Val, EnumVal); | 
|  | } | 
|  |  | 
|  |  | 
|  | Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst, | 
|  | SourceLocation IdLoc, IdentifierInfo *Id, | 
|  | AttributeList *Attr, | 
|  | SourceLocation EqualLoc, Expr *val) { | 
|  | EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl); | 
|  | EnumConstantDecl *LastEnumConst = | 
|  | cast_or_null<EnumConstantDecl>(lastEnumConst); | 
|  | Expr *Val = static_cast<Expr*>(val); | 
|  |  | 
|  | // The scope passed in may not be a decl scope.  Zip up the scope tree until | 
|  | // we find one that is. | 
|  | S = getNonFieldDeclScope(S); | 
|  |  | 
|  | // Verify that there isn't already something declared with this name in this | 
|  | // scope. | 
|  | NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName, | 
|  | ForRedeclaration); | 
|  | if (PrevDecl && PrevDecl->isTemplateParameter()) { | 
|  | // Maybe we will complain about the shadowed template parameter. | 
|  | DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); | 
|  | // Just pretend that we didn't see the previous declaration. | 
|  | PrevDecl = 0; | 
|  | } | 
|  |  | 
|  | if (PrevDecl) { | 
|  | // When in C++, we may get a TagDecl with the same name; in this case the | 
|  | // enum constant will 'hide' the tag. | 
|  | assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) && | 
|  | "Received TagDecl when not in C++!"); | 
|  | if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) { | 
|  | if (isa<EnumConstantDecl>(PrevDecl)) | 
|  | Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; | 
|  | else | 
|  | Diag(IdLoc, diag::err_redefinition) << Id; | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_definition); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [class.mem]p13: | 
|  | //   If T is the name of a class, then each of the following shall have a | 
|  | //   name different from T: | 
|  | //     - every enumerator of every member of class T that is an enumerated | 
|  | //       type | 
|  | if (CXXRecordDecl *Record | 
|  | = dyn_cast<CXXRecordDecl>( | 
|  | TheEnumDecl->getDeclContext()->getRedeclContext())) | 
|  | if (Record->getIdentifier() && Record->getIdentifier() == Id) | 
|  | Diag(IdLoc, diag::err_member_name_of_class) << Id; | 
|  |  | 
|  | EnumConstantDecl *New = | 
|  | CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val); | 
|  |  | 
|  | if (New) { | 
|  | // Process attributes. | 
|  | if (Attr) ProcessDeclAttributeList(S, New, Attr); | 
|  |  | 
|  | // Register this decl in the current scope stack. | 
|  | New->setAccess(TheEnumDecl->getAccess()); | 
|  | PushOnScopeChains(New, S); | 
|  | } | 
|  |  | 
|  | return New; | 
|  | } | 
|  |  | 
|  | void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc, | 
|  | SourceLocation RBraceLoc, Decl *EnumDeclX, | 
|  | Decl **Elements, unsigned NumElements, | 
|  | Scope *S, AttributeList *Attr) { | 
|  | EnumDecl *Enum = cast<EnumDecl>(EnumDeclX); | 
|  | QualType EnumType = Context.getTypeDeclType(Enum); | 
|  |  | 
|  | if (Attr) | 
|  | ProcessDeclAttributeList(S, Enum, Attr); | 
|  |  | 
|  | if (Enum->isDependentType()) { | 
|  | for (unsigned i = 0; i != NumElements; ++i) { | 
|  | EnumConstantDecl *ECD = | 
|  | cast_or_null<EnumConstantDecl>(Elements[i]); | 
|  | if (!ECD) continue; | 
|  |  | 
|  | ECD->setType(EnumType); | 
|  | } | 
|  |  | 
|  | Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // TODO: If the result value doesn't fit in an int, it must be a long or long | 
|  | // long value.  ISO C does not support this, but GCC does as an extension, | 
|  | // emit a warning. | 
|  | unsigned IntWidth = Context.getTargetInfo().getIntWidth(); | 
|  | unsigned CharWidth = Context.getTargetInfo().getCharWidth(); | 
|  | unsigned ShortWidth = Context.getTargetInfo().getShortWidth(); | 
|  |  | 
|  | // Verify that all the values are okay, compute the size of the values, and | 
|  | // reverse the list. | 
|  | unsigned NumNegativeBits = 0; | 
|  | unsigned NumPositiveBits = 0; | 
|  |  | 
|  | // Keep track of whether all elements have type int. | 
|  | bool AllElementsInt = true; | 
|  |  | 
|  | for (unsigned i = 0; i != NumElements; ++i) { | 
|  | EnumConstantDecl *ECD = | 
|  | cast_or_null<EnumConstantDecl>(Elements[i]); | 
|  | if (!ECD) continue;  // Already issued a diagnostic. | 
|  |  | 
|  | const llvm::APSInt &InitVal = ECD->getInitVal(); | 
|  |  | 
|  | // Keep track of the size of positive and negative values. | 
|  | if (InitVal.isUnsigned() || InitVal.isNonNegative()) | 
|  | NumPositiveBits = std::max(NumPositiveBits, | 
|  | (unsigned)InitVal.getActiveBits()); | 
|  | else | 
|  | NumNegativeBits = std::max(NumNegativeBits, | 
|  | (unsigned)InitVal.getMinSignedBits()); | 
|  |  | 
|  | // Keep track of whether every enum element has type int (very commmon). | 
|  | if (AllElementsInt) | 
|  | AllElementsInt = ECD->getType() == Context.IntTy; | 
|  | } | 
|  |  | 
|  | // Figure out the type that should be used for this enum. | 
|  | QualType BestType; | 
|  | unsigned BestWidth; | 
|  |  | 
|  | // C++0x N3000 [conv.prom]p3: | 
|  | //   An rvalue of an unscoped enumeration type whose underlying | 
|  | //   type is not fixed can be converted to an rvalue of the first | 
|  | //   of the following types that can represent all the values of | 
|  | //   the enumeration: int, unsigned int, long int, unsigned long | 
|  | //   int, long long int, or unsigned long long int. | 
|  | // C99 6.4.4.3p2: | 
|  | //   An identifier declared as an enumeration constant has type int. | 
|  | // The C99 rule is modified by a gcc extension | 
|  | QualType BestPromotionType; | 
|  |  | 
|  | bool Packed = Enum->getAttr<PackedAttr>() ? true : false; | 
|  | // -fshort-enums is the equivalent to specifying the packed attribute on all | 
|  | // enum definitions. | 
|  | if (LangOpts.ShortEnums) | 
|  | Packed = true; | 
|  |  | 
|  | if (Enum->isFixed()) { | 
|  | BestType = BestPromotionType = Enum->getIntegerType(); | 
|  | // We don't need to set BestWidth, because BestType is going to be the type | 
|  | // of the enumerators, but we do anyway because otherwise some compilers | 
|  | // warn that it might be used uninitialized. | 
|  | BestWidth = CharWidth; | 
|  | } | 
|  | else if (NumNegativeBits) { | 
|  | // If there is a negative value, figure out the smallest integer type (of | 
|  | // int/long/longlong) that fits. | 
|  | // If it's packed, check also if it fits a char or a short. | 
|  | if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) { | 
|  | BestType = Context.SignedCharTy; | 
|  | BestWidth = CharWidth; | 
|  | } else if (Packed && NumNegativeBits <= ShortWidth && | 
|  | NumPositiveBits < ShortWidth) { | 
|  | BestType = Context.ShortTy; | 
|  | BestWidth = ShortWidth; | 
|  | } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { | 
|  | BestType = Context.IntTy; | 
|  | BestWidth = IntWidth; | 
|  | } else { | 
|  | BestWidth = Context.getTargetInfo().getLongWidth(); | 
|  |  | 
|  | if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { | 
|  | BestType = Context.LongTy; | 
|  | } else { | 
|  | BestWidth = Context.getTargetInfo().getLongLongWidth(); | 
|  |  | 
|  | if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) | 
|  | Diag(Enum->getLocation(), diag::warn_enum_too_large); | 
|  | BestType = Context.LongLongTy; | 
|  | } | 
|  | } | 
|  | BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType); | 
|  | } else { | 
|  | // If there is no negative value, figure out the smallest type that fits | 
|  | // all of the enumerator values. | 
|  | // If it's packed, check also if it fits a char or a short. | 
|  | if (Packed && NumPositiveBits <= CharWidth) { | 
|  | BestType = Context.UnsignedCharTy; | 
|  | BestPromotionType = Context.IntTy; | 
|  | BestWidth = CharWidth; | 
|  | } else if (Packed && NumPositiveBits <= ShortWidth) { | 
|  | BestType = Context.UnsignedShortTy; | 
|  | BestPromotionType = Context.IntTy; | 
|  | BestWidth = ShortWidth; | 
|  | } else if (NumPositiveBits <= IntWidth) { | 
|  | BestType = Context.UnsignedIntTy; | 
|  | BestWidth = IntWidth; | 
|  | BestPromotionType | 
|  | = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus) | 
|  | ? Context.UnsignedIntTy : Context.IntTy; | 
|  | } else if (NumPositiveBits <= | 
|  | (BestWidth = Context.getTargetInfo().getLongWidth())) { | 
|  | BestType = Context.UnsignedLongTy; | 
|  | BestPromotionType | 
|  | = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus) | 
|  | ? Context.UnsignedLongTy : Context.LongTy; | 
|  | } else { | 
|  | BestWidth = Context.getTargetInfo().getLongLongWidth(); | 
|  | assert(NumPositiveBits <= BestWidth && | 
|  | "How could an initializer get larger than ULL?"); | 
|  | BestType = Context.UnsignedLongLongTy; | 
|  | BestPromotionType | 
|  | = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus) | 
|  | ? Context.UnsignedLongLongTy : Context.LongLongTy; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Loop over all of the enumerator constants, changing their types to match | 
|  | // the type of the enum if needed. | 
|  | for (unsigned i = 0; i != NumElements; ++i) { | 
|  | EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]); | 
|  | if (!ECD) continue;  // Already issued a diagnostic. | 
|  |  | 
|  | // Standard C says the enumerators have int type, but we allow, as an | 
|  | // extension, the enumerators to be larger than int size.  If each | 
|  | // enumerator value fits in an int, type it as an int, otherwise type it the | 
|  | // same as the enumerator decl itself.  This means that in "enum { X = 1U }" | 
|  | // that X has type 'int', not 'unsigned'. | 
|  |  | 
|  | // Determine whether the value fits into an int. | 
|  | llvm::APSInt InitVal = ECD->getInitVal(); | 
|  |  | 
|  | // If it fits into an integer type, force it.  Otherwise force it to match | 
|  | // the enum decl type. | 
|  | QualType NewTy; | 
|  | unsigned NewWidth; | 
|  | bool NewSign; | 
|  | if (!getLangOptions().CPlusPlus && | 
|  | isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) { | 
|  | NewTy = Context.IntTy; | 
|  | NewWidth = IntWidth; | 
|  | NewSign = true; | 
|  | } else if (ECD->getType() == BestType) { | 
|  | // Already the right type! | 
|  | if (getLangOptions().CPlusPlus) | 
|  | // C++ [dcl.enum]p4: Following the closing brace of an | 
|  | // enum-specifier, each enumerator has the type of its | 
|  | // enumeration. | 
|  | ECD->setType(EnumType); | 
|  | continue; | 
|  | } else { | 
|  | NewTy = BestType; | 
|  | NewWidth = BestWidth; | 
|  | NewSign = BestType->isSignedIntegerOrEnumerationType(); | 
|  | } | 
|  |  | 
|  | // Adjust the APSInt value. | 
|  | InitVal = InitVal.extOrTrunc(NewWidth); | 
|  | InitVal.setIsSigned(NewSign); | 
|  | ECD->setInitVal(InitVal); | 
|  |  | 
|  | // Adjust the Expr initializer and type. | 
|  | if (ECD->getInitExpr() && | 
|  | !Context.hasSameType(NewTy, ECD->getInitExpr()->getType())) | 
|  | ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy, | 
|  | CK_IntegralCast, | 
|  | ECD->getInitExpr(), | 
|  | /*base paths*/ 0, | 
|  | VK_RValue)); | 
|  | if (getLangOptions().CPlusPlus) | 
|  | // C++ [dcl.enum]p4: Following the closing brace of an | 
|  | // enum-specifier, each enumerator has the type of its | 
|  | // enumeration. | 
|  | ECD->setType(EnumType); | 
|  | else | 
|  | ECD->setType(NewTy); | 
|  | } | 
|  |  | 
|  | Enum->completeDefinition(BestType, BestPromotionType, | 
|  | NumPositiveBits, NumNegativeBits); | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr, | 
|  | SourceLocation StartLoc, | 
|  | SourceLocation EndLoc) { | 
|  | StringLiteral *AsmString = cast<StringLiteral>(expr); | 
|  |  | 
|  | FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext, | 
|  | AsmString, StartLoc, | 
|  | EndLoc); | 
|  | CurContext->addDecl(New); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc, | 
|  | IdentifierInfo &ModuleName, | 
|  | SourceLocation ModuleNameLoc) { | 
|  | ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc, | 
|  | ModuleName, ModuleNameLoc); | 
|  | if (!Module) | 
|  | return true; | 
|  |  | 
|  | // FIXME: Actually create a declaration to describe the module import. | 
|  | (void)Module; | 
|  | return DeclResult((Decl *)0); | 
|  | } | 
|  |  | 
|  | void | 
|  | Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old, | 
|  | SourceLocation ModulePrivateKeyword) { | 
|  | assert(!Old->isModulePrivate() && "Old is module-private!"); | 
|  |  | 
|  | Diag(New->getLocation(), diag::err_module_private_follows_public) | 
|  | << New->getDeclName() << SourceRange(ModulePrivateKeyword); | 
|  | Diag(Old->getLocation(), diag::note_previous_declaration) | 
|  | << Old->getDeclName(); | 
|  |  | 
|  | // Drop the __module_private__ from the new declaration, since it's invalid. | 
|  | New->setModulePrivate(false); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnPragmaWeakID(IdentifierInfo* Name, | 
|  | SourceLocation PragmaLoc, | 
|  | SourceLocation NameLoc) { | 
|  | Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName); | 
|  |  | 
|  | if (PrevDecl) { | 
|  | PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context)); | 
|  | } else { | 
|  | (void)WeakUndeclaredIdentifiers.insert( | 
|  | std::pair<IdentifierInfo*,WeakInfo> | 
|  | (Name, WeakInfo((IdentifierInfo*)0, NameLoc))); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name, | 
|  | IdentifierInfo* AliasName, | 
|  | SourceLocation PragmaLoc, | 
|  | SourceLocation NameLoc, | 
|  | SourceLocation AliasNameLoc) { | 
|  | Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc, | 
|  | LookupOrdinaryName); | 
|  | WeakInfo W = WeakInfo(Name, NameLoc); | 
|  |  | 
|  | if (PrevDecl) { | 
|  | if (!PrevDecl->hasAttr<AliasAttr>()) | 
|  | if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl)) | 
|  | DeclApplyPragmaWeak(TUScope, ND, W); | 
|  | } else { | 
|  | (void)WeakUndeclaredIdentifiers.insert( | 
|  | std::pair<IdentifierInfo*,WeakInfo>(AliasName, W)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Decl *Sema::getObjCDeclContext() const { | 
|  | return (dyn_cast_or_null<ObjCContainerDecl>(CurContext)); | 
|  | } |