|  | //===- SymbolTable.cpp ----------------------------------------------------===// | 
|  | // | 
|  | //                             The LLVM Linker | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Symbol table is a bag of all known symbols. We put all symbols of | 
|  | // all input files to the symbol table. The symbol table is basically | 
|  | // a hash table with the logic to resolve symbol name conflicts using | 
|  | // the symbol types. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "SymbolTable.h" | 
|  | #include "Config.h" | 
|  | #include "Error.h" | 
|  | #include "LinkerScript.h" | 
|  | #include "Memory.h" | 
|  | #include "Symbols.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::object; | 
|  | using namespace llvm::ELF; | 
|  |  | 
|  | using namespace lld; | 
|  | using namespace lld::elf; | 
|  |  | 
|  | SymbolTable *elf::Symtab; | 
|  |  | 
|  | // All input object files must be for the same architecture | 
|  | // (e.g. it does not make sense to link x86 object files with | 
|  | // MIPS object files.) This function checks for that error. | 
|  | template <class ELFT> static bool isCompatible(InputFile *F) { | 
|  | if (!isa<ELFFileBase<ELFT>>(F) && !isa<BitcodeFile>(F)) | 
|  | return true; | 
|  |  | 
|  | if (F->EKind == Config->EKind && F->EMachine == Config->EMachine) { | 
|  | if (Config->EMachine != EM_MIPS) | 
|  | return true; | 
|  | if (isMipsN32Abi(F) == Config->MipsN32Abi) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!Config->Emulation.empty()) | 
|  | error(toString(F) + " is incompatible with " + Config->Emulation); | 
|  | else | 
|  | error(toString(F) + " is incompatible with " + toString(Config->FirstElf)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Add symbols in File to the symbol table. | 
|  | template <class ELFT> void SymbolTable::addFile(InputFile *File) { | 
|  | if (!Config->FirstElf && isa<ELFFileBase<ELFT>>(File)) | 
|  | Config->FirstElf = File; | 
|  |  | 
|  | if (!isCompatible<ELFT>(File)) | 
|  | return; | 
|  |  | 
|  | // Binary file | 
|  | if (auto *F = dyn_cast<BinaryFile>(File)) { | 
|  | BinaryFile::Instances.push_back(F); | 
|  | F->parse<ELFT>(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // .a file | 
|  | if (auto *F = dyn_cast<ArchiveFile>(File)) { | 
|  | F->parse<ELFT>(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Lazy object file | 
|  | if (auto *F = dyn_cast<LazyObjectFile>(File)) { | 
|  | F->parse<ELFT>(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Config->Trace) | 
|  | message(toString(File)); | 
|  |  | 
|  | // .so file | 
|  | if (auto *F = dyn_cast<SharedFile<ELFT>>(File)) { | 
|  | // DSOs are uniquified not by filename but by soname. | 
|  | F->parseSoName(); | 
|  | if (ErrorCount || !SoNames.insert(F->SoName).second) | 
|  | return; | 
|  | SharedFile<ELFT>::Instances.push_back(F); | 
|  | F->parseRest(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // LLVM bitcode file | 
|  | if (auto *F = dyn_cast<BitcodeFile>(File)) { | 
|  | BitcodeFile::Instances.push_back(F); | 
|  | F->parse<ELFT>(ComdatGroups); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Regular object file | 
|  | auto *F = cast<ObjectFile<ELFT>>(File); | 
|  | ObjectFile<ELFT>::Instances.push_back(F); | 
|  | F->parse(ComdatGroups); | 
|  | } | 
|  |  | 
|  | // This function is where all the optimizations of link-time | 
|  | // optimization happens. When LTO is in use, some input files are | 
|  | // not in native object file format but in the LLVM bitcode format. | 
|  | // This function compiles bitcode files into a few big native files | 
|  | // using LLVM functions and replaces bitcode symbols with the results. | 
|  | // Because all bitcode files that consist of a program are passed | 
|  | // to the compiler at once, it can do whole-program optimization. | 
|  | template <class ELFT> void SymbolTable::addCombinedLTOObject() { | 
|  | if (BitcodeFile::Instances.empty()) | 
|  | return; | 
|  |  | 
|  | // Compile bitcode files and replace bitcode symbols. | 
|  | LTO.reset(new BitcodeCompiler); | 
|  | for (BitcodeFile *F : BitcodeFile::Instances) | 
|  | LTO->add(*F); | 
|  |  | 
|  | for (InputFile *File : LTO->compile()) { | 
|  | ObjectFile<ELFT> *Obj = cast<ObjectFile<ELFT>>(File); | 
|  | DenseSet<CachedHashStringRef> DummyGroups; | 
|  | Obj->parse(DummyGroups); | 
|  | ObjectFile<ELFT>::Instances.push_back(Obj); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | DefinedRegular *SymbolTable::addAbsolute(StringRef Name, uint8_t Visibility, | 
|  | uint8_t Binding) { | 
|  | Symbol *Sym = addRegular<ELFT>(Name, Visibility, STT_NOTYPE, 0, 0, Binding, | 
|  | nullptr, nullptr); | 
|  | return cast<DefinedRegular>(Sym->body()); | 
|  | } | 
|  |  | 
|  | // Add Name as an "ignored" symbol. An ignored symbol is a regular | 
|  | // linker-synthesized defined symbol, but is only defined if needed. | 
|  | template <class ELFT> | 
|  | DefinedRegular *SymbolTable::addIgnored(StringRef Name, uint8_t Visibility) { | 
|  | SymbolBody *S = find(Name); | 
|  | if (!S || S->isInCurrentDSO()) | 
|  | return nullptr; | 
|  | return addAbsolute<ELFT>(Name, Visibility); | 
|  | } | 
|  |  | 
|  | // Set a flag for --trace-symbol so that we can print out a log message | 
|  | // if a new symbol with the same name is inserted into the symbol table. | 
|  | void SymbolTable::trace(StringRef Name) { | 
|  | Symtab.insert({CachedHashStringRef(Name), {-1, true}}); | 
|  | } | 
|  |  | 
|  | // Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM. | 
|  | // Used to implement --wrap. | 
|  | template <class ELFT> void SymbolTable::addSymbolWrap(StringRef Name) { | 
|  | SymbolBody *B = find(Name); | 
|  | if (!B) | 
|  | return; | 
|  | Symbol *Sym = B->symbol(); | 
|  | Symbol *Real = addUndefined<ELFT>(Saver.save("__real_" + Name)); | 
|  | Symbol *Wrap = addUndefined<ELFT>(Saver.save("__wrap_" + Name)); | 
|  |  | 
|  | // Tell LTO not to eliminate this symbol | 
|  | Wrap->IsUsedInRegularObj = true; | 
|  |  | 
|  | Config->RenamedSymbols[Real] = {Sym, Real->Binding}; | 
|  | Config->RenamedSymbols[Sym] = {Wrap, Sym->Binding}; | 
|  | } | 
|  |  | 
|  | // Creates alias for symbol. Used to implement --defsym=ALIAS=SYM. | 
|  | template <class ELFT> | 
|  | void SymbolTable::addSymbolAlias(StringRef Alias, StringRef Name) { | 
|  | SymbolBody *B = find(Name); | 
|  | if (!B) { | 
|  | error("-defsym: undefined symbol: " + Name); | 
|  | return; | 
|  | } | 
|  | Symbol *Sym = B->symbol(); | 
|  | Symbol *AliasSym = addUndefined<ELFT>(Alias); | 
|  |  | 
|  | // Tell LTO not to eliminate this symbol | 
|  | Sym->IsUsedInRegularObj = true; | 
|  | Config->RenamedSymbols[AliasSym] = {Sym, AliasSym->Binding}; | 
|  | } | 
|  |  | 
|  | // Apply symbol renames created by -wrap and -defsym. The renames are created | 
|  | // before LTO in addSymbolWrap() and addSymbolAlias() to have a chance to inform | 
|  | // LTO (if LTO is running) not to include these symbols in IPO. Now that the | 
|  | // symbols are finalized, we can perform the replacement. | 
|  | void SymbolTable::applySymbolRenames() { | 
|  | for (auto &KV : Config->RenamedSymbols) { | 
|  | Symbol *Dst = KV.first; | 
|  | Symbol *Src = KV.second.Target; | 
|  | Dst->body()->copy(Src->body()); | 
|  | Dst->Binding = KV.second.OriginalBinding; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) { | 
|  | if (VA == STV_DEFAULT) | 
|  | return VB; | 
|  | if (VB == STV_DEFAULT) | 
|  | return VA; | 
|  | return std::min(VA, VB); | 
|  | } | 
|  |  | 
|  | // Find an existing symbol or create and insert a new one. | 
|  | std::pair<Symbol *, bool> SymbolTable::insert(StringRef Name) { | 
|  | // <name>@@<version> means the symbol is the default version. In that | 
|  | // case <name>@@<version> will be used to resolve references to <name>. | 
|  | size_t Pos = Name.find("@@"); | 
|  | if (Pos != StringRef::npos) | 
|  | Name = Name.take_front(Pos); | 
|  |  | 
|  | auto P = Symtab.insert( | 
|  | {CachedHashStringRef(Name), SymIndex((int)SymVector.size(), false)}); | 
|  | SymIndex &V = P.first->second; | 
|  | bool IsNew = P.second; | 
|  |  | 
|  | if (V.Idx == -1) { | 
|  | IsNew = true; | 
|  | V = SymIndex((int)SymVector.size(), true); | 
|  | } | 
|  |  | 
|  | Symbol *Sym; | 
|  | if (IsNew) { | 
|  | Sym = make<Symbol>(); | 
|  | Sym->InVersionScript = false; | 
|  | Sym->Binding = STB_WEAK; | 
|  | Sym->Visibility = STV_DEFAULT; | 
|  | Sym->IsUsedInRegularObj = false; | 
|  | Sym->ExportDynamic = false; | 
|  | Sym->Traced = V.Traced; | 
|  | Sym->VersionId = Config->DefaultSymbolVersion; | 
|  | SymVector.push_back(Sym); | 
|  | } else { | 
|  | Sym = SymVector[V.Idx]; | 
|  | } | 
|  | return {Sym, IsNew}; | 
|  | } | 
|  |  | 
|  | // Find an existing symbol or create and insert a new one, then apply the given | 
|  | // attributes. | 
|  | std::pair<Symbol *, bool> SymbolTable::insert(StringRef Name, uint8_t Type, | 
|  | uint8_t Visibility, | 
|  | bool CanOmitFromDynSym, | 
|  | InputFile *File) { | 
|  | bool IsUsedInRegularObj = !File || File->kind() == InputFile::ObjectKind; | 
|  | Symbol *S; | 
|  | bool WasInserted; | 
|  | std::tie(S, WasInserted) = insert(Name); | 
|  |  | 
|  | // Merge in the new symbol's visibility. | 
|  | S->Visibility = getMinVisibility(S->Visibility, Visibility); | 
|  |  | 
|  | if (!CanOmitFromDynSym && (Config->Shared || Config->ExportDynamic)) | 
|  | S->ExportDynamic = true; | 
|  |  | 
|  | if (IsUsedInRegularObj) | 
|  | S->IsUsedInRegularObj = true; | 
|  |  | 
|  | if (!WasInserted && S->body()->Type != SymbolBody::UnknownType && | 
|  | ((Type == STT_TLS) != S->body()->isTls())) { | 
|  | error("TLS attribute mismatch: " + toString(*S->body()) + | 
|  | "\n>>> defined in " + toString(S->body()->File) + | 
|  | "\n>>> defined in " + toString(File)); | 
|  | } | 
|  |  | 
|  | return {S, WasInserted}; | 
|  | } | 
|  |  | 
|  | template <class ELFT> Symbol *SymbolTable::addUndefined(StringRef Name) { | 
|  | return addUndefined<ELFT>(Name, /*IsLocal=*/false, STB_GLOBAL, STV_DEFAULT, | 
|  | /*Type*/ 0, | 
|  | /*CanOmitFromDynSym*/ false, /*File*/ nullptr); | 
|  | } | 
|  |  | 
|  | static uint8_t getVisibility(uint8_t StOther) { return StOther & 3; } | 
|  |  | 
|  | template <class ELFT> | 
|  | Symbol *SymbolTable::addUndefined(StringRef Name, bool IsLocal, uint8_t Binding, | 
|  | uint8_t StOther, uint8_t Type, | 
|  | bool CanOmitFromDynSym, InputFile *File) { | 
|  | Symbol *S; | 
|  | bool WasInserted; | 
|  | uint8_t Visibility = getVisibility(StOther); | 
|  | std::tie(S, WasInserted) = | 
|  | insert(Name, Type, Visibility, CanOmitFromDynSym, File); | 
|  | // An undefined symbol with non default visibility must be satisfied | 
|  | // in the same DSO. | 
|  | if (WasInserted || | 
|  | (isa<SharedSymbol>(S->body()) && Visibility != STV_DEFAULT)) { | 
|  | S->Binding = Binding; | 
|  | replaceBody<Undefined>(S, Name, IsLocal, StOther, Type, File); | 
|  | return S; | 
|  | } | 
|  | if (Binding != STB_WEAK) { | 
|  | SymbolBody *B = S->body(); | 
|  | if (B->isShared() || B->isLazy() || B->isUndefined()) | 
|  | S->Binding = Binding; | 
|  | if (auto *SS = dyn_cast<SharedSymbol>(B)) | 
|  | cast<SharedFile<ELFT>>(SS->File)->IsUsed = true; | 
|  | } | 
|  | if (auto *L = dyn_cast<Lazy>(S->body())) { | 
|  | // An undefined weak will not fetch archive members, but we have to remember | 
|  | // its type. See also comment in addLazyArchive. | 
|  | if (S->isWeak()) | 
|  | L->Type = Type; | 
|  | else if (InputFile *F = L->fetch()) | 
|  | addFile<ELFT>(F); | 
|  | } | 
|  | return S; | 
|  | } | 
|  |  | 
|  | // Using .symver foo,foo@@VER unfortunately creates two symbols: foo and | 
|  | // foo@@VER. We want to effectively ignore foo, so give precedence to | 
|  | // foo@@VER. | 
|  | // FIXME: If users can transition to using | 
|  | // .symver foo,foo@@@VER | 
|  | // we can delete this hack. | 
|  | static int compareVersion(Symbol *S, StringRef Name) { | 
|  | bool A = Name.contains("@@"); | 
|  | bool B = S->body()->getName().contains("@@"); | 
|  | if (A && !B) | 
|  | return 1; | 
|  | if (!A && B) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // We have a new defined symbol with the specified binding. Return 1 if the new | 
|  | // symbol should win, -1 if the new symbol should lose, or 0 if both symbols are | 
|  | // strong defined symbols. | 
|  | static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding, | 
|  | StringRef Name) { | 
|  | if (WasInserted) | 
|  | return 1; | 
|  | SymbolBody *Body = S->body(); | 
|  | if (!Body->isInCurrentDSO()) | 
|  | return 1; | 
|  |  | 
|  | if (int R = compareVersion(S, Name)) | 
|  | return R; | 
|  |  | 
|  | if (Binding == STB_WEAK) | 
|  | return -1; | 
|  | if (S->isWeak()) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // We have a new non-common defined symbol with the specified binding. Return 1 | 
|  | // if the new symbol should win, -1 if the new symbol should lose, or 0 if there | 
|  | // is a conflict. If the new symbol wins, also update the binding. | 
|  | static int compareDefinedNonCommon(Symbol *S, bool WasInserted, uint8_t Binding, | 
|  | bool IsAbsolute, uint64_t Value, | 
|  | StringRef Name) { | 
|  | if (int Cmp = compareDefined(S, WasInserted, Binding, Name)) { | 
|  | if (Cmp > 0) | 
|  | S->Binding = Binding; | 
|  | return Cmp; | 
|  | } | 
|  | SymbolBody *B = S->body(); | 
|  | if (isa<DefinedCommon>(B)) { | 
|  | // Non-common symbols take precedence over common symbols. | 
|  | if (Config->WarnCommon) | 
|  | warn("common " + S->body()->getName() + " is overridden"); | 
|  | return 1; | 
|  | } else if (auto *R = dyn_cast<DefinedRegular>(B)) { | 
|  | if (R->Section == nullptr && Binding == STB_GLOBAL && IsAbsolute && | 
|  | R->Value == Value) | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Symbol *SymbolTable::addCommon(StringRef N, uint64_t Size, uint32_t Alignment, | 
|  | uint8_t Binding, uint8_t StOther, uint8_t Type, | 
|  | InputFile *File) { | 
|  | Symbol *S; | 
|  | bool WasInserted; | 
|  | std::tie(S, WasInserted) = insert(N, Type, getVisibility(StOther), | 
|  | /*CanOmitFromDynSym*/ false, File); | 
|  | int Cmp = compareDefined(S, WasInserted, Binding, N); | 
|  | if (Cmp > 0) { | 
|  | S->Binding = Binding; | 
|  | replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type, File); | 
|  | } else if (Cmp == 0) { | 
|  | auto *C = dyn_cast<DefinedCommon>(S->body()); | 
|  | if (!C) { | 
|  | // Non-common symbols take precedence over common symbols. | 
|  | if (Config->WarnCommon) | 
|  | warn("common " + S->body()->getName() + " is overridden"); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | if (Config->WarnCommon) | 
|  | warn("multiple common of " + S->body()->getName()); | 
|  |  | 
|  | Alignment = C->Alignment = std::max(C->Alignment, Alignment); | 
|  | if (Size > C->Size) | 
|  | replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type, File); | 
|  | } | 
|  | return S; | 
|  | } | 
|  |  | 
|  | static void warnOrError(const Twine &Msg) { | 
|  | if (Config->AllowMultipleDefinition) | 
|  | warn(Msg); | 
|  | else | 
|  | error(Msg); | 
|  | } | 
|  |  | 
|  | static void reportDuplicate(SymbolBody *Sym, InputFile *NewFile) { | 
|  | warnOrError("duplicate symbol: " + toString(*Sym) + "\n>>> defined in " + | 
|  | toString(Sym->File) + "\n>>> defined in " + toString(NewFile)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static void reportDuplicate(SymbolBody *Sym, InputSectionBase *ErrSec, | 
|  | typename ELFT::uint ErrOffset) { | 
|  | DefinedRegular *D = dyn_cast<DefinedRegular>(Sym); | 
|  | if (!D || !D->Section || !ErrSec) { | 
|  | reportDuplicate(Sym, ErrSec ? ErrSec->File : nullptr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Construct and print an error message in the form of: | 
|  | // | 
|  | //   ld.lld: error: duplicate symbol: foo | 
|  | //   >>> defined at bar.c:30 | 
|  | //   >>>            bar.o (/home/alice/src/bar.o) | 
|  | //   >>> defined at baz.c:563 | 
|  | //   >>>            baz.o in archive libbaz.a | 
|  | auto *Sec1 = cast<InputSectionBase>(D->Section); | 
|  | std::string Src1 = Sec1->getSrcMsg<ELFT>(D->Value); | 
|  | std::string Obj1 = Sec1->getObjMsg<ELFT>(D->Value); | 
|  | std::string Src2 = ErrSec->getSrcMsg<ELFT>(ErrOffset); | 
|  | std::string Obj2 = ErrSec->getObjMsg<ELFT>(ErrOffset); | 
|  |  | 
|  | std::string Msg = "duplicate symbol: " + toString(*Sym) + "\n>>> defined at "; | 
|  | if (!Src1.empty()) | 
|  | Msg += Src1 + "\n>>>            "; | 
|  | Msg += Obj1 + "\n>>> defined at "; | 
|  | if (!Src2.empty()) | 
|  | Msg += Src2 + "\n>>>            "; | 
|  | Msg += Obj2; | 
|  | warnOrError(Msg); | 
|  | } | 
|  |  | 
|  | template <typename ELFT> | 
|  | Symbol *SymbolTable::addRegular(StringRef Name, uint8_t StOther, uint8_t Type, | 
|  | uint64_t Value, uint64_t Size, uint8_t Binding, | 
|  | SectionBase *Section, InputFile *File) { | 
|  | Symbol *S; | 
|  | bool WasInserted; | 
|  | std::tie(S, WasInserted) = insert(Name, Type, getVisibility(StOther), | 
|  | /*CanOmitFromDynSym*/ false, File); | 
|  | int Cmp = compareDefinedNonCommon(S, WasInserted, Binding, Section == nullptr, | 
|  | Value, Name); | 
|  | if (Cmp > 0) | 
|  | replaceBody<DefinedRegular>(S, Name, /*IsLocal=*/false, StOther, Type, | 
|  | Value, Size, Section, File); | 
|  | else if (Cmp == 0) | 
|  | reportDuplicate<ELFT>(S->body(), | 
|  | dyn_cast_or_null<InputSectionBase>(Section), Value); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | template <typename ELFT> | 
|  | void SymbolTable::addShared(SharedFile<ELFT> *File, StringRef Name, | 
|  | const typename ELFT::Sym &Sym, | 
|  | const typename ELFT::Verdef *Verdef) { | 
|  | // DSO symbols do not affect visibility in the output, so we pass STV_DEFAULT | 
|  | // as the visibility, which will leave the visibility in the symbol table | 
|  | // unchanged. | 
|  | Symbol *S; | 
|  | bool WasInserted; | 
|  | std::tie(S, WasInserted) = insert(Name, Sym.getType(), STV_DEFAULT, | 
|  | /*CanOmitFromDynSym*/ true, File); | 
|  | // Make sure we preempt DSO symbols with default visibility. | 
|  | if (Sym.getVisibility() == STV_DEFAULT) | 
|  | S->ExportDynamic = true; | 
|  |  | 
|  | SymbolBody *Body = S->body(); | 
|  | // An undefined symbol with non default visibility must be satisfied | 
|  | // in the same DSO. | 
|  | if (WasInserted || | 
|  | (isa<Undefined>(Body) && Body->getVisibility() == STV_DEFAULT)) { | 
|  | replaceBody<SharedSymbol>(S, File, Name, Sym.st_other, Sym.getType(), &Sym, | 
|  | Verdef); | 
|  | if (!S->isWeak()) | 
|  | File->IsUsed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | Symbol *SymbolTable::addBitcode(StringRef Name, uint8_t Binding, | 
|  | uint8_t StOther, uint8_t Type, | 
|  | bool CanOmitFromDynSym, BitcodeFile *F) { | 
|  | Symbol *S; | 
|  | bool WasInserted; | 
|  | std::tie(S, WasInserted) = | 
|  | insert(Name, Type, getVisibility(StOther), CanOmitFromDynSym, F); | 
|  | int Cmp = compareDefinedNonCommon(S, WasInserted, Binding, | 
|  | /*IsAbs*/ false, /*Value*/ 0, Name); | 
|  | if (Cmp > 0) | 
|  | replaceBody<DefinedRegular>(S, Name, /*IsLocal=*/false, StOther, Type, 0, 0, | 
|  | nullptr, F); | 
|  | else if (Cmp == 0) | 
|  | reportDuplicate(S->body(), F); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | SymbolBody *SymbolTable::find(StringRef Name) { | 
|  | auto It = Symtab.find(CachedHashStringRef(Name)); | 
|  | if (It == Symtab.end()) | 
|  | return nullptr; | 
|  | SymIndex V = It->second; | 
|  | if (V.Idx == -1) | 
|  | return nullptr; | 
|  | return SymVector[V.Idx]->body(); | 
|  | } | 
|  |  | 
|  | SymbolBody *SymbolTable::findInCurrentDSO(StringRef Name) { | 
|  | if (SymbolBody *S = find(Name)) | 
|  | if (S->isInCurrentDSO()) | 
|  | return S; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Symbol *SymbolTable::addLazyArchive(ArchiveFile *F, | 
|  | const object::Archive::Symbol Sym) { | 
|  | Symbol *S; | 
|  | bool WasInserted; | 
|  | StringRef Name = Sym.getName(); | 
|  | std::tie(S, WasInserted) = insert(Name); | 
|  | if (WasInserted) { | 
|  | replaceBody<LazyArchive>(S, *F, Sym, SymbolBody::UnknownType); | 
|  | return S; | 
|  | } | 
|  | if (!S->body()->isUndefined()) | 
|  | return S; | 
|  |  | 
|  | // Weak undefined symbols should not fetch members from archives. If we were | 
|  | // to keep old symbol we would not know that an archive member was available | 
|  | // if a strong undefined symbol shows up afterwards in the link. If a strong | 
|  | // undefined symbol never shows up, this lazy symbol will get to the end of | 
|  | // the link and must be treated as the weak undefined one. We already marked | 
|  | // this symbol as used when we added it to the symbol table, but we also need | 
|  | // to preserve its type. FIXME: Move the Type field to Symbol. | 
|  | if (S->isWeak()) { | 
|  | replaceBody<LazyArchive>(S, *F, Sym, S->body()->Type); | 
|  | return S; | 
|  | } | 
|  | std::pair<MemoryBufferRef, uint64_t> MBInfo = F->getMember(&Sym); | 
|  | if (!MBInfo.first.getBuffer().empty()) | 
|  | addFile<ELFT>(createObjectFile(MBInfo.first, F->getName(), MBInfo.second)); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void SymbolTable::addLazyObject(StringRef Name, LazyObjectFile &Obj) { | 
|  | Symbol *S; | 
|  | bool WasInserted; | 
|  | std::tie(S, WasInserted) = insert(Name); | 
|  | if (WasInserted) { | 
|  | replaceBody<LazyObject>(S, Name, Obj, SymbolBody::UnknownType); | 
|  | return; | 
|  | } | 
|  | if (!S->body()->isUndefined()) | 
|  | return; | 
|  |  | 
|  | // See comment for addLazyArchive above. | 
|  | if (S->isWeak()) | 
|  | replaceBody<LazyObject>(S, Name, Obj, S->body()->Type); | 
|  | else if (InputFile *F = Obj.fetch()) | 
|  | addFile<ELFT>(F); | 
|  | } | 
|  |  | 
|  | // Process undefined (-u) flags by loading lazy symbols named by those flags. | 
|  | template <class ELFT> void SymbolTable::scanUndefinedFlags() { | 
|  | for (StringRef S : Config->Undefined) | 
|  | if (auto *L = dyn_cast_or_null<Lazy>(find(S))) | 
|  | if (InputFile *File = L->fetch()) | 
|  | addFile<ELFT>(File); | 
|  | } | 
|  |  | 
|  | // This function takes care of the case in which shared libraries depend on | 
|  | // the user program (not the other way, which is usual). Shared libraries | 
|  | // may have undefined symbols, expecting that the user program provides | 
|  | // the definitions for them. An example is BSD's __progname symbol. | 
|  | // We need to put such symbols to the main program's .dynsym so that | 
|  | // shared libraries can find them. | 
|  | // Except this, we ignore undefined symbols in DSOs. | 
|  | template <class ELFT> void SymbolTable::scanShlibUndefined() { | 
|  | for (SharedFile<ELFT> *File : SharedFile<ELFT>::Instances) { | 
|  | for (StringRef U : File->getUndefinedSymbols()) { | 
|  | SymbolBody *Sym = find(U); | 
|  | if (!Sym || !Sym->isDefined()) | 
|  | continue; | 
|  | Sym->symbol()->ExportDynamic = true; | 
|  |  | 
|  | // If -dynamic-list is given, the default version is set to | 
|  | // VER_NDX_LOCAL, which prevents a symbol to be exported via .dynsym. | 
|  | // Set to VER_NDX_GLOBAL so the symbol will be handled as if it were | 
|  | // specified by -dynamic-list. | 
|  | Sym->symbol()->VersionId = VER_NDX_GLOBAL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Initialize DemangledSyms with a map from demangled symbols to symbol | 
|  | // objects. Used to handle "extern C++" directive in version scripts. | 
|  | // | 
|  | // The map will contain all demangled symbols. That can be very large, | 
|  | // and in LLD we generally want to avoid do anything for each symbol. | 
|  | // Then, why are we doing this? Here's why. | 
|  | // | 
|  | // Users can use "extern C++ {}" directive to match against demangled | 
|  | // C++ symbols. For example, you can write a pattern such as | 
|  | // "llvm::*::foo(int, ?)". Obviously, there's no way to handle this | 
|  | // other than trying to match a pattern against all demangled symbols. | 
|  | // So, if "extern C++" feature is used, we need to demangle all known | 
|  | // symbols. | 
|  | StringMap<std::vector<SymbolBody *>> &SymbolTable::getDemangledSyms() { | 
|  | if (!DemangledSyms) { | 
|  | DemangledSyms.emplace(); | 
|  | for (Symbol *Sym : SymVector) { | 
|  | SymbolBody *B = Sym->body(); | 
|  | if (B->isUndefined()) | 
|  | continue; | 
|  | if (Optional<std::string> S = demangle(B->getName())) | 
|  | (*DemangledSyms)[*S].push_back(B); | 
|  | else | 
|  | (*DemangledSyms)[B->getName()].push_back(B); | 
|  | } | 
|  | } | 
|  | return *DemangledSyms; | 
|  | } | 
|  |  | 
|  | std::vector<SymbolBody *> SymbolTable::findByVersion(SymbolVersion Ver) { | 
|  | if (Ver.IsExternCpp) | 
|  | return getDemangledSyms().lookup(Ver.Name); | 
|  | if (SymbolBody *B = find(Ver.Name)) | 
|  | if (!B->isUndefined()) | 
|  | return {B}; | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | std::vector<SymbolBody *> SymbolTable::findAllByVersion(SymbolVersion Ver) { | 
|  | std::vector<SymbolBody *> Res; | 
|  | StringMatcher M(Ver.Name); | 
|  |  | 
|  | if (Ver.IsExternCpp) { | 
|  | for (auto &P : getDemangledSyms()) | 
|  | if (M.match(P.first())) | 
|  | Res.insert(Res.end(), P.second.begin(), P.second.end()); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | for (Symbol *Sym : SymVector) { | 
|  | SymbolBody *B = Sym->body(); | 
|  | if (!B->isUndefined() && M.match(B->getName())) | 
|  | Res.push_back(B); | 
|  | } | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // If there's only one anonymous version definition in a version | 
|  | // script file, the script does not actually define any symbol version, | 
|  | // but just specifies symbols visibilities. | 
|  | void SymbolTable::handleAnonymousVersion() { | 
|  | for (SymbolVersion &Ver : Config->VersionScriptGlobals) | 
|  | assignExactVersion(Ver, VER_NDX_GLOBAL, "global"); | 
|  | for (SymbolVersion &Ver : Config->VersionScriptGlobals) | 
|  | assignWildcardVersion(Ver, VER_NDX_GLOBAL); | 
|  | for (SymbolVersion &Ver : Config->VersionScriptLocals) | 
|  | assignExactVersion(Ver, VER_NDX_LOCAL, "local"); | 
|  | for (SymbolVersion &Ver : Config->VersionScriptLocals) | 
|  | assignWildcardVersion(Ver, VER_NDX_LOCAL); | 
|  | } | 
|  |  | 
|  | // Set symbol versions to symbols. This function handles patterns | 
|  | // containing no wildcard characters. | 
|  | void SymbolTable::assignExactVersion(SymbolVersion Ver, uint16_t VersionId, | 
|  | StringRef VersionName) { | 
|  | if (Ver.HasWildcard) | 
|  | return; | 
|  |  | 
|  | // Get a list of symbols which we need to assign the version to. | 
|  | std::vector<SymbolBody *> Syms = findByVersion(Ver); | 
|  | if (Syms.empty()) { | 
|  | if (Config->NoUndefinedVersion) | 
|  | error("version script assignment of '" + VersionName + "' to symbol '" + | 
|  | Ver.Name + "' failed: symbol not defined"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Assign the version. | 
|  | for (SymbolBody *B : Syms) { | 
|  | // Skip symbols containing version info because symbol versions | 
|  | // specified by symbol names take precedence over version scripts. | 
|  | // See parseSymbolVersion(). | 
|  | if (B->getName().contains('@')) | 
|  | continue; | 
|  |  | 
|  | Symbol *Sym = B->symbol(); | 
|  | if (Sym->InVersionScript) | 
|  | warn("duplicate symbol '" + Ver.Name + "' in version script"); | 
|  | Sym->VersionId = VersionId; | 
|  | Sym->InVersionScript = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void SymbolTable::assignWildcardVersion(SymbolVersion Ver, uint16_t VersionId) { | 
|  | if (!Ver.HasWildcard) | 
|  | return; | 
|  |  | 
|  | // Exact matching takes precendence over fuzzy matching, | 
|  | // so we set a version to a symbol only if no version has been assigned | 
|  | // to the symbol. This behavior is compatible with GNU. | 
|  | for (SymbolBody *B : findAllByVersion(Ver)) | 
|  | if (B->symbol()->VersionId == Config->DefaultSymbolVersion) | 
|  | B->symbol()->VersionId = VersionId; | 
|  | } | 
|  |  | 
|  | // This function processes version scripts by updating VersionId | 
|  | // member of symbols. | 
|  | void SymbolTable::scanVersionScript() { | 
|  | // Handle edge cases first. | 
|  | handleAnonymousVersion(); | 
|  |  | 
|  | // Now we have version definitions, so we need to set version ids to symbols. | 
|  | // Each version definition has a glob pattern, and all symbols that match | 
|  | // with the pattern get that version. | 
|  |  | 
|  | // First, we assign versions to exact matching symbols, | 
|  | // i.e. version definitions not containing any glob meta-characters. | 
|  | for (VersionDefinition &V : Config->VersionDefinitions) | 
|  | for (SymbolVersion &Ver : V.Globals) | 
|  | assignExactVersion(Ver, V.Id, V.Name); | 
|  |  | 
|  | // Next, we assign versions to fuzzy matching symbols, | 
|  | // i.e. version definitions containing glob meta-characters. | 
|  | // Note that because the last match takes precedence over previous matches, | 
|  | // we iterate over the definitions in the reverse order. | 
|  | for (VersionDefinition &V : llvm::reverse(Config->VersionDefinitions)) | 
|  | for (SymbolVersion &Ver : V.Globals) | 
|  | assignWildcardVersion(Ver, V.Id); | 
|  |  | 
|  | // Symbol themselves might know their versions because symbols | 
|  | // can contain versions in the form of <name>@<version>. | 
|  | // Let them parse and update their names to exclude version suffix. | 
|  | for (Symbol *Sym : SymVector) | 
|  | Sym->body()->parseSymbolVersion(); | 
|  | } | 
|  |  | 
|  | template void SymbolTable::addSymbolWrap<ELF32LE>(StringRef); | 
|  | template void SymbolTable::addSymbolWrap<ELF32BE>(StringRef); | 
|  | template void SymbolTable::addSymbolWrap<ELF64LE>(StringRef); | 
|  | template void SymbolTable::addSymbolWrap<ELF64BE>(StringRef); | 
|  |  | 
|  | template Symbol *SymbolTable::addUndefined<ELF32LE>(StringRef); | 
|  | template Symbol *SymbolTable::addUndefined<ELF32BE>(StringRef); | 
|  | template Symbol *SymbolTable::addUndefined<ELF64LE>(StringRef); | 
|  | template Symbol *SymbolTable::addUndefined<ELF64BE>(StringRef); | 
|  |  | 
|  | template void SymbolTable::addSymbolAlias<ELF32LE>(StringRef, StringRef); | 
|  | template void SymbolTable::addSymbolAlias<ELF32BE>(StringRef, StringRef); | 
|  | template void SymbolTable::addSymbolAlias<ELF64LE>(StringRef, StringRef); | 
|  | template void SymbolTable::addSymbolAlias<ELF64BE>(StringRef, StringRef); | 
|  |  | 
|  | template void SymbolTable::addCombinedLTOObject<ELF32LE>(); | 
|  | template void SymbolTable::addCombinedLTOObject<ELF32BE>(); | 
|  | template void SymbolTable::addCombinedLTOObject<ELF64LE>(); | 
|  | template void SymbolTable::addCombinedLTOObject<ELF64BE>(); | 
|  |  | 
|  | template Symbol *SymbolTable::addRegular<ELF32LE>(StringRef, uint8_t, uint8_t, | 
|  | uint64_t, uint64_t, uint8_t, | 
|  | SectionBase *, InputFile *); | 
|  | template Symbol *SymbolTable::addRegular<ELF32BE>(StringRef, uint8_t, uint8_t, | 
|  | uint64_t, uint64_t, uint8_t, | 
|  | SectionBase *, InputFile *); | 
|  | template Symbol *SymbolTable::addRegular<ELF64LE>(StringRef, uint8_t, uint8_t, | 
|  | uint64_t, uint64_t, uint8_t, | 
|  | SectionBase *, InputFile *); | 
|  | template Symbol *SymbolTable::addRegular<ELF64BE>(StringRef, uint8_t, uint8_t, | 
|  | uint64_t, uint64_t, uint8_t, | 
|  | SectionBase *, InputFile *); | 
|  |  | 
|  | template DefinedRegular *SymbolTable::addAbsolute<ELF32LE>(StringRef, uint8_t, | 
|  | uint8_t); | 
|  | template DefinedRegular *SymbolTable::addAbsolute<ELF32BE>(StringRef, uint8_t, | 
|  | uint8_t); | 
|  | template DefinedRegular *SymbolTable::addAbsolute<ELF64LE>(StringRef, uint8_t, | 
|  | uint8_t); | 
|  | template DefinedRegular *SymbolTable::addAbsolute<ELF64BE>(StringRef, uint8_t, | 
|  | uint8_t); | 
|  |  | 
|  | template DefinedRegular *SymbolTable::addIgnored<ELF32LE>(StringRef, uint8_t); | 
|  | template DefinedRegular *SymbolTable::addIgnored<ELF32BE>(StringRef, uint8_t); | 
|  | template DefinedRegular *SymbolTable::addIgnored<ELF64LE>(StringRef, uint8_t); | 
|  | template DefinedRegular *SymbolTable::addIgnored<ELF64BE>(StringRef, uint8_t); | 
|  |  | 
|  | template Symbol * | 
|  | SymbolTable::addLazyArchive<ELF32LE>(ArchiveFile *, | 
|  | const object::Archive::Symbol); | 
|  | template Symbol * | 
|  | SymbolTable::addLazyArchive<ELF32BE>(ArchiveFile *, | 
|  | const object::Archive::Symbol); | 
|  | template Symbol * | 
|  | SymbolTable::addLazyArchive<ELF64LE>(ArchiveFile *, | 
|  | const object::Archive::Symbol); | 
|  | template Symbol * | 
|  | SymbolTable::addLazyArchive<ELF64BE>(ArchiveFile *, | 
|  | const object::Archive::Symbol); | 
|  |  | 
|  | template void SymbolTable::addLazyObject<ELF32LE>(StringRef, LazyObjectFile &); | 
|  | template void SymbolTable::addLazyObject<ELF32BE>(StringRef, LazyObjectFile &); | 
|  | template void SymbolTable::addLazyObject<ELF64LE>(StringRef, LazyObjectFile &); | 
|  | template void SymbolTable::addLazyObject<ELF64BE>(StringRef, LazyObjectFile &); | 
|  |  | 
|  | template void SymbolTable::addShared<ELF32LE>(SharedFile<ELF32LE> *, StringRef, | 
|  | const typename ELF32LE::Sym &, | 
|  | const typename ELF32LE::Verdef *); | 
|  | template void SymbolTable::addShared<ELF32BE>(SharedFile<ELF32BE> *, StringRef, | 
|  | const typename ELF32BE::Sym &, | 
|  | const typename ELF32BE::Verdef *); | 
|  | template void SymbolTable::addShared<ELF64LE>(SharedFile<ELF64LE> *, StringRef, | 
|  | const typename ELF64LE::Sym &, | 
|  | const typename ELF64LE::Verdef *); | 
|  | template void SymbolTable::addShared<ELF64BE>(SharedFile<ELF64BE> *, StringRef, | 
|  | const typename ELF64BE::Sym &, | 
|  | const typename ELF64BE::Verdef *); | 
|  |  | 
|  | template void SymbolTable::scanUndefinedFlags<ELF32LE>(); | 
|  | template void SymbolTable::scanUndefinedFlags<ELF32BE>(); | 
|  | template void SymbolTable::scanUndefinedFlags<ELF64LE>(); | 
|  | template void SymbolTable::scanUndefinedFlags<ELF64BE>(); | 
|  |  | 
|  | template void SymbolTable::scanShlibUndefined<ELF32LE>(); | 
|  | template void SymbolTable::scanShlibUndefined<ELF32BE>(); | 
|  | template void SymbolTable::scanShlibUndefined<ELF64LE>(); | 
|  | template void SymbolTable::scanShlibUndefined<ELF64BE>(); |