|  | //===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the Hexagon specific subclass of TargetSubtarget. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Hexagon.h" | 
|  | #include "HexagonInstrInfo.h" | 
|  | #include "HexagonRegisterInfo.h" | 
|  | #include "HexagonSubtarget.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "MCTargetDesc/HexagonMCTargetDesc.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/ScheduleDAG.h" | 
|  | #include "llvm/CodeGen/ScheduleDAGInstrs.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <map> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "hexagon-subtarget" | 
|  |  | 
|  | #define GET_SUBTARGETINFO_CTOR | 
|  | #define GET_SUBTARGETINFO_TARGET_DESC | 
|  | #include "HexagonGenSubtargetInfo.inc" | 
|  |  | 
|  | static cl::opt<bool> EnableMemOps("enable-hexagon-memops", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::ValueDisallowed, cl::init(true), | 
|  | cl::desc("Generate V4 MEMOP in code generation for Hexagon target")); | 
|  |  | 
|  | static cl::opt<bool> DisableMemOps("disable-hexagon-memops", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::ValueDisallowed, cl::init(false), | 
|  | cl::desc("Do not generate V4 MEMOP in code generation for Hexagon target")); | 
|  |  | 
|  | static cl::opt<bool> EnableIEEERndNear("enable-hexagon-ieee-rnd-near", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(false), | 
|  | cl::desc("Generate non-chopped conversion from fp to int.")); | 
|  |  | 
|  | static cl::opt<bool> EnableBSBSched("enable-bsb-sched", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> EnableHexagonHVXDouble("enable-hexagon-hvx-double", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(false), | 
|  | cl::desc("Enable Hexagon Double Vector eXtensions")); | 
|  |  | 
|  | static cl::opt<bool> EnableHexagonHVX("enable-hexagon-hvx", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(false), | 
|  | cl::desc("Enable Hexagon Vector eXtensions")); | 
|  |  | 
|  | static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> EnableDotCurSched("enable-cur-sched", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(true), | 
|  | cl::desc("Enable the scheduler to generate .cur")); | 
|  |  | 
|  | static cl::opt<bool> EnableVecFrwdSched("enable-evec-frwd-sched", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> DisableHexagonMISched("disable-hexagon-misched", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(false), | 
|  | cl::desc("Disable Hexagon MI Scheduling")); | 
|  |  | 
|  | static cl::opt<bool> EnableSubregLiveness("hexagon-subreg-liveness", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(true), | 
|  | cl::desc("Enable subregister liveness tracking for Hexagon")); | 
|  |  | 
|  | static cl::opt<bool> OverrideLongCalls("hexagon-long-calls", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(false), | 
|  | cl::desc("If present, forces/disables the use of long calls")); | 
|  |  | 
|  | static cl::opt<bool> EnablePredicatedCalls("hexagon-pred-calls", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(false), | 
|  | cl::desc("Consider calls to be predicable")); | 
|  |  | 
|  | static cl::opt<bool> SchedPredsCloser("sched-preds-closer", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> EnableCheckBankConflict("hexagon-check-bank-conflict", | 
|  | cl::Hidden, cl::ZeroOrMore, cl::init(true), | 
|  | cl::desc("Enable checking for cache bank conflicts")); | 
|  |  | 
|  |  | 
|  | HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU, | 
|  | StringRef FS, const TargetMachine &TM) | 
|  | : HexagonGenSubtargetInfo(TT, CPU, FS), | 
|  | CPUString(Hexagon_MC::selectHexagonCPU(TT, CPU)), | 
|  | InstrInfo(initializeSubtargetDependencies(CPU, FS)), | 
|  | RegInfo(getHwMode()), TLInfo(TM, *this), | 
|  | InstrItins(getInstrItineraryForCPU(CPUString)) { | 
|  | // Beware of the default constructor of InstrItineraryData: it will | 
|  | // reset all members to 0. | 
|  | assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized"); | 
|  | } | 
|  |  | 
|  | HexagonSubtarget & | 
|  | HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) { | 
|  | static std::map<StringRef, Hexagon::ArchEnum> CpuTable{ | 
|  | {"hexagonv4", Hexagon::ArchEnum::V4}, | 
|  | {"hexagonv5", Hexagon::ArchEnum::V5}, | 
|  | {"hexagonv55", Hexagon::ArchEnum::V55}, | 
|  | {"hexagonv60", Hexagon::ArchEnum::V60}, | 
|  | {"hexagonv62", Hexagon::ArchEnum::V62}, | 
|  | }; | 
|  |  | 
|  | auto FoundIt = CpuTable.find(CPUString); | 
|  | if (FoundIt != CpuTable.end()) | 
|  | HexagonArchVersion = FoundIt->second; | 
|  | else | 
|  | llvm_unreachable("Unrecognized Hexagon processor version"); | 
|  |  | 
|  | UseHVXOps = false; | 
|  | UseHVXDblOps = false; | 
|  | UseLongCalls = false; | 
|  |  | 
|  | UseMemOps = DisableMemOps ? false : EnableMemOps; | 
|  | ModeIEEERndNear = EnableIEEERndNear; | 
|  | UseBSBScheduling = hasV60TOps() && EnableBSBSched; | 
|  |  | 
|  | ParseSubtargetFeatures(CPUString, FS); | 
|  |  | 
|  | if (EnableHexagonHVX.getPosition()) | 
|  | UseHVXOps = EnableHexagonHVX; | 
|  | if (EnableHexagonHVXDouble.getPosition()) | 
|  | UseHVXDblOps = EnableHexagonHVXDouble; | 
|  | if (OverrideLongCalls.getPosition()) | 
|  | UseLongCalls = OverrideLongCalls; | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) { | 
|  | for (SUnit &SU : DAG->SUnits) { | 
|  | if (!SU.isInstr()) | 
|  | continue; | 
|  | SmallVector<SDep, 4> Erase; | 
|  | for (auto &D : SU.Preds) | 
|  | if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF) | 
|  | Erase.push_back(D); | 
|  | for (auto &E : Erase) | 
|  | SU.removePred(E); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) { | 
|  | for (SUnit &SU : DAG->SUnits) { | 
|  | // Update the latency of chain edges between v60 vector load or store | 
|  | // instructions to be 1. These instruction cannot be scheduled in the | 
|  | // same packet. | 
|  | MachineInstr &MI1 = *SU.getInstr(); | 
|  | auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII); | 
|  | bool IsStoreMI1 = MI1.mayStore(); | 
|  | bool IsLoadMI1 = MI1.mayLoad(); | 
|  | if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1)) | 
|  | continue; | 
|  | for (SDep &SI : SU.Succs) { | 
|  | if (SI.getKind() != SDep::Order || SI.getLatency() != 0) | 
|  | continue; | 
|  | MachineInstr &MI2 = *SI.getSUnit()->getInstr(); | 
|  | if (!QII->isHVXVec(MI2)) | 
|  | continue; | 
|  | if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) { | 
|  | SI.setLatency(1); | 
|  | SU.setHeightDirty(); | 
|  | // Change the dependence in the opposite direction too. | 
|  | for (SDep &PI : SI.getSUnit()->Preds) { | 
|  | if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order) | 
|  | continue; | 
|  | PI.setLatency(1); | 
|  | SI.getSUnit()->setDepthDirty(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if a call and subsequent A2_tfrpi instructions should maintain | 
|  | // scheduling affinity. We are looking for the TFRI to be consumed in | 
|  | // the next instruction. This should help reduce the instances of | 
|  | // double register pairs being allocated and scheduled before a call | 
|  | // when not used until after the call. This situation is exacerbated | 
|  | // by the fact that we allocate the pair from the callee saves list, | 
|  | // leading to excess spills and restores. | 
|  | bool HexagonSubtarget::CallMutation::shouldTFRICallBind( | 
|  | const HexagonInstrInfo &HII, const SUnit &Inst1, | 
|  | const SUnit &Inst2) const { | 
|  | if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi) | 
|  | return false; | 
|  |  | 
|  | // TypeXTYPE are 64 bit operations. | 
|  | unsigned Type = HII.getType(*Inst2.getInstr()); | 
|  | return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op || | 
|  | Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM; | 
|  | } | 
|  |  | 
|  | void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAG) { | 
|  | SUnit* LastSequentialCall = nullptr; | 
|  | unsigned VRegHoldingRet = 0; | 
|  | unsigned RetRegister; | 
|  | SUnit* LastUseOfRet = nullptr; | 
|  | auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo(); | 
|  | auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); | 
|  |  | 
|  | // Currently we only catch the situation when compare gets scheduled | 
|  | // before preceding call. | 
|  | for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) { | 
|  | // Remember the call. | 
|  | if (DAG->SUnits[su].getInstr()->isCall()) | 
|  | LastSequentialCall = &DAG->SUnits[su]; | 
|  | // Look for a compare that defines a predicate. | 
|  | else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall) | 
|  | DAG->SUnits[su].addPred(SDep(LastSequentialCall, SDep::Barrier)); | 
|  | // Look for call and tfri* instructions. | 
|  | else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 && | 
|  | shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1])) | 
|  | DAG->SUnits[su].addPred(SDep(&DAG->SUnits[su-1], SDep::Barrier)); | 
|  | // Prevent redundant register copies between two calls, which are caused by | 
|  | // both the return value and the argument for the next call being in %R0. | 
|  | // Example: | 
|  | //   1: <call1> | 
|  | //   2: %VregX = COPY %R0 | 
|  | //   3: <use of %VregX> | 
|  | //   4: %R0 = ... | 
|  | //   5: <call2> | 
|  | // The scheduler would often swap 3 and 4, so an additional register is | 
|  | // needed. This code inserts a Barrier dependence between 3 & 4 to prevent | 
|  | // this. The same applies for %D0 and %V0/%W0, which are also handled. | 
|  | else if (SchedRetvalOptimization) { | 
|  | const MachineInstr *MI = DAG->SUnits[su].getInstr(); | 
|  | if (MI->isCopy() && (MI->readsRegister(Hexagon::R0, &TRI) || | 
|  | MI->readsRegister(Hexagon::V0, &TRI)))  { | 
|  | // %vregX = COPY %R0 | 
|  | VRegHoldingRet = MI->getOperand(0).getReg(); | 
|  | RetRegister = MI->getOperand(1).getReg(); | 
|  | LastUseOfRet = nullptr; | 
|  | } else if (VRegHoldingRet && MI->readsVirtualRegister(VRegHoldingRet)) | 
|  | // <use of %vregX> | 
|  | LastUseOfRet = &DAG->SUnits[su]; | 
|  | else if (LastUseOfRet && MI->definesRegister(RetRegister, &TRI)) | 
|  | // %R0 = ... | 
|  | DAG->SUnits[su].addPred(SDep(LastUseOfRet, SDep::Barrier)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) { | 
|  | if (!EnableCheckBankConflict) | 
|  | return; | 
|  |  | 
|  | const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII); | 
|  |  | 
|  | // Create artificial edges between loads that could likely cause a bank | 
|  | // conflict. Since such loads would normally not have any dependency | 
|  | // between them, we cannot rely on existing edges. | 
|  | for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) { | 
|  | SUnit &S0 = DAG->SUnits[i]; | 
|  | MachineInstr &L0 = *S0.getInstr(); | 
|  | if (!L0.mayLoad() || L0.mayStore() || | 
|  | HII.getAddrMode(L0) != HexagonII::BaseImmOffset) | 
|  | continue; | 
|  | int Offset0; | 
|  | unsigned Size0; | 
|  | unsigned Base0 = HII.getBaseAndOffset(L0, Offset0, Size0); | 
|  | // Is the access size is longer than the L1 cache line, skip the check. | 
|  | if (Base0 == 0 || Size0 >= 32) | 
|  | continue; | 
|  | // Scan only up to 32 instructions ahead (to avoid n^2 complexity). | 
|  | for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) { | 
|  | SUnit &S1 = DAG->SUnits[j]; | 
|  | MachineInstr &L1 = *S1.getInstr(); | 
|  | if (!L1.mayLoad() || L1.mayStore() || | 
|  | HII.getAddrMode(L1) != HexagonII::BaseImmOffset) | 
|  | continue; | 
|  | int Offset1; | 
|  | unsigned Size1; | 
|  | unsigned Base1 = HII.getBaseAndOffset(L1, Offset1, Size1); | 
|  | if (Base1 == 0 || Size1 >= 32 || Base0 != Base1) | 
|  | continue; | 
|  | // Check bits 3 and 4 of the offset: if they differ, a bank conflict | 
|  | // is unlikely. | 
|  | if (((Offset0 ^ Offset1) & 0x18) != 0) | 
|  | continue; | 
|  | // Bits 3 and 4 are the same, add an artificial edge and set extra | 
|  | // latency. | 
|  | SDep A(&S0, SDep::Artificial); | 
|  | A.setLatency(1); | 
|  | S1.addPred(A, true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Perform target specific adjustments to the latency of a schedule | 
|  | /// dependency. | 
|  | void HexagonSubtarget::adjustSchedDependency(SUnit *Src, SUnit *Dst, | 
|  | SDep &Dep) const { | 
|  | MachineInstr *SrcInst = Src->getInstr(); | 
|  | MachineInstr *DstInst = Dst->getInstr(); | 
|  | if (!Src->isInstr() || !Dst->isInstr()) | 
|  | return; | 
|  |  | 
|  | const HexagonInstrInfo *QII = getInstrInfo(); | 
|  |  | 
|  | // Instructions with .new operands have zero latency. | 
|  | SmallSet<SUnit *, 4> ExclSrc; | 
|  | SmallSet<SUnit *, 4> ExclDst; | 
|  | if (QII->canExecuteInBundle(*SrcInst, *DstInst) && | 
|  | isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) { | 
|  | Dep.setLatency(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!hasV60TOps()) | 
|  | return; | 
|  |  | 
|  | // If it's a REG_SEQUENCE, use its destination instruction to determine | 
|  | // the correct latency. | 
|  | if (DstInst->isRegSequence() && Dst->NumSuccs == 1) { | 
|  | unsigned RSeqReg = DstInst->getOperand(0).getReg(); | 
|  | MachineInstr *RSeqDst = Dst->Succs[0].getSUnit()->getInstr(); | 
|  | unsigned UseIdx = -1; | 
|  | for (unsigned OpNum = 0; OpNum < RSeqDst->getNumOperands(); OpNum++) { | 
|  | const MachineOperand &MO = RSeqDst->getOperand(OpNum); | 
|  | if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == RSeqReg) { | 
|  | UseIdx = OpNum; | 
|  | break; | 
|  | } | 
|  | } | 
|  | unsigned RSeqLatency = (InstrInfo.getOperandLatency(&InstrItins, *SrcInst, | 
|  | 0, *RSeqDst, UseIdx)); | 
|  | Dep.setLatency(RSeqLatency); | 
|  | } | 
|  |  | 
|  | // Try to schedule uses near definitions to generate .cur. | 
|  | ExclSrc.clear(); | 
|  | ExclDst.clear(); | 
|  | if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) && | 
|  | isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) { | 
|  | Dep.setLatency(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | updateLatency(*SrcInst, *DstInst, Dep); | 
|  | } | 
|  |  | 
|  | void HexagonSubtarget::getPostRAMutations( | 
|  | std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { | 
|  | Mutations.push_back(llvm::make_unique<UsrOverflowMutation>()); | 
|  | Mutations.push_back(llvm::make_unique<HVXMemLatencyMutation>()); | 
|  | Mutations.push_back(llvm::make_unique<BankConflictMutation>()); | 
|  | } | 
|  |  | 
|  | void HexagonSubtarget::getSMSMutations( | 
|  | std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { | 
|  | Mutations.push_back(llvm::make_unique<UsrOverflowMutation>()); | 
|  | Mutations.push_back(llvm::make_unique<HVXMemLatencyMutation>()); | 
|  | } | 
|  |  | 
|  | // Pin the vtable to this file. | 
|  | void HexagonSubtarget::anchor() {} | 
|  |  | 
|  | bool HexagonSubtarget::enableMachineScheduler() const { | 
|  | if (DisableHexagonMISched.getNumOccurrences()) | 
|  | return !DisableHexagonMISched; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonSubtarget::usePredicatedCalls() const { | 
|  | return EnablePredicatedCalls; | 
|  | } | 
|  |  | 
|  | void HexagonSubtarget::updateLatency(MachineInstr &SrcInst, | 
|  | MachineInstr &DstInst, SDep &Dep) const { | 
|  | if (Dep.isArtificial()) { | 
|  | Dep.setLatency(1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!hasV60TOps()) | 
|  | return; | 
|  |  | 
|  | auto &QII = static_cast<const HexagonInstrInfo&>(*getInstrInfo()); | 
|  |  | 
|  | // BSB scheduling. | 
|  | if (QII.isHVXVec(SrcInst) || useBSBScheduling()) | 
|  | Dep.setLatency((Dep.getLatency() + 1) >> 1); | 
|  | } | 
|  |  | 
|  | void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const { | 
|  | MachineInstr *SrcI = Src->getInstr(); | 
|  | for (auto &I : Src->Succs) { | 
|  | if (!I.isAssignedRegDep() || I.getSUnit() != Dst) | 
|  | continue; | 
|  | unsigned DepR = I.getReg(); | 
|  | int DefIdx = -1; | 
|  | for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) { | 
|  | const MachineOperand &MO = SrcI->getOperand(OpNum); | 
|  | if (MO.isReg() && MO.isDef() && MO.getReg() == DepR) | 
|  | DefIdx = OpNum; | 
|  | } | 
|  | assert(DefIdx >= 0 && "Def Reg not found in Src MI"); | 
|  | MachineInstr *DstI = Dst->getInstr(); | 
|  | for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) { | 
|  | const MachineOperand &MO = DstI->getOperand(OpNum); | 
|  | if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) { | 
|  | int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcI, | 
|  | DefIdx, *DstI, OpNum)); | 
|  |  | 
|  | // For some instructions (ex: COPY), we might end up with < 0 latency | 
|  | // as they don't have any Itinerary class associated with them. | 
|  | if (Latency <= 0) | 
|  | Latency = 1; | 
|  |  | 
|  | I.setLatency(Latency); | 
|  | updateLatency(*SrcI, *DstI, I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update the latency of opposite edge too. | 
|  | for (auto &J : Dst->Preds) { | 
|  | if (J.getSUnit() != Src) | 
|  | continue; | 
|  | J.setLatency(I.getLatency()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Change the latency between the two SUnits. | 
|  | void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat) | 
|  | const { | 
|  | for (auto &I : Src->Succs) { | 
|  | if (I.getSUnit() != Dst) | 
|  | continue; | 
|  | SDep T = I; | 
|  | I.setLatency(Lat); | 
|  |  | 
|  | // Update the latency of opposite edge too. | 
|  | T.setSUnit(Src); | 
|  | auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T); | 
|  | assert(F != Dst->Preds.end()); | 
|  | F->setLatency(I.getLatency()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If the SUnit has a zero latency edge, return the other SUnit. | 
|  | static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) { | 
|  | for (auto &I : Deps) | 
|  | if (I.isAssignedRegDep() && I.getLatency() == 0 && | 
|  | !I.getSUnit()->getInstr()->isPseudo()) | 
|  | return I.getSUnit(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Return true if these are the best two instructions to schedule | 
|  | // together with a zero latency. Only one dependence should have a zero | 
|  | // latency. If there are multiple choices, choose the best, and change | 
|  | // the others, if needed. | 
|  | bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst, | 
|  | const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc, | 
|  | SmallSet<SUnit*, 4> &ExclDst) const { | 
|  | MachineInstr &SrcInst = *Src->getInstr(); | 
|  | MachineInstr &DstInst = *Dst->getInstr(); | 
|  |  | 
|  | // Ignore Boundary SU nodes as these have null instructions. | 
|  | if (Dst->isBoundaryNode()) | 
|  | return false; | 
|  |  | 
|  | if (SrcInst.isPHI() || DstInst.isPHI()) | 
|  | return false; | 
|  |  | 
|  | if (!TII->isToBeScheduledASAP(SrcInst, DstInst) && | 
|  | !TII->canExecuteInBundle(SrcInst, DstInst)) | 
|  | return false; | 
|  |  | 
|  | // The architecture doesn't allow three dependent instructions in the same | 
|  | // packet. So, if the destination has a zero latency successor, then it's | 
|  | // not a candidate for a zero latency predecessor. | 
|  | if (getZeroLatency(Dst, Dst->Succs) != nullptr) | 
|  | return false; | 
|  |  | 
|  | // Check if the Dst instruction is the best candidate first. | 
|  | SUnit *Best = nullptr; | 
|  | SUnit *DstBest = nullptr; | 
|  | SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds); | 
|  | if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) { | 
|  | // Check that Src doesn't have a better candidate. | 
|  | DstBest = getZeroLatency(Src, Src->Succs); | 
|  | if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum) | 
|  | Best = Dst; | 
|  | } | 
|  | if (Best != Dst) | 
|  | return false; | 
|  |  | 
|  | // The caller frequently adds the same dependence twice. If so, then | 
|  | // return true for this case too. | 
|  | if ((Src == SrcBest && Dst == DstBest ) || | 
|  | (SrcBest == nullptr && Dst == DstBest) || | 
|  | (Src == SrcBest && Dst == nullptr)) | 
|  | return true; | 
|  |  | 
|  | // Reassign the latency for the previous bests, which requires setting | 
|  | // the dependence edge in both directions. | 
|  | if (SrcBest != nullptr) { | 
|  | if (!hasV60TOps()) | 
|  | changeLatency(SrcBest, Dst, 1); | 
|  | else | 
|  | restoreLatency(SrcBest, Dst); | 
|  | } | 
|  | if (DstBest != nullptr) { | 
|  | if (!hasV60TOps()) | 
|  | changeLatency(Src, DstBest, 1); | 
|  | else | 
|  | restoreLatency(Src, DstBest); | 
|  | } | 
|  |  | 
|  | // Attempt to find another opprotunity for zero latency in a different | 
|  | // dependence. | 
|  | if (SrcBest && DstBest) | 
|  | // If there is an edge from SrcBest to DstBst, then try to change that | 
|  | // to 0 now. | 
|  | changeLatency(SrcBest, DstBest, 0); | 
|  | else if (DstBest) { | 
|  | // Check if the previous best destination instruction has a new zero | 
|  | // latency dependence opportunity. | 
|  | ExclSrc.insert(Src); | 
|  | for (auto &I : DstBest->Preds) | 
|  | if (ExclSrc.count(I.getSUnit()) == 0 && | 
|  | isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst)) | 
|  | changeLatency(I.getSUnit(), DstBest, 0); | 
|  | } else if (SrcBest) { | 
|  | // Check if previous best source instruction has a new zero latency | 
|  | // dependence opportunity. | 
|  | ExclDst.insert(Dst); | 
|  | for (auto &I : SrcBest->Succs) | 
|  | if (ExclDst.count(I.getSUnit()) == 0 && | 
|  | isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst)) | 
|  | changeLatency(SrcBest, I.getSUnit(), 0); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned HexagonSubtarget::getL1CacheLineSize() const { | 
|  | return 32; | 
|  | } | 
|  |  | 
|  | unsigned HexagonSubtarget::getL1PrefetchDistance() const { | 
|  | return 32; | 
|  | } | 
|  |  | 
|  | bool HexagonSubtarget::enableSubRegLiveness() const { | 
|  | return EnableSubregLiveness; | 
|  | } |