|  | //===------ CGGPUBuiltin.cpp - Codegen for GPU builtins -------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Generates code for built-in GPU calls which are not runtime-specific. | 
|  | // (Runtime-specific codegen lives in programming model specific files.) | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CodeGenFunction.h" | 
|  | #include "clang/Basic/Builtins.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Transforms/Utils/AMDGPUEmitPrintf.h" | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace CodeGen; | 
|  |  | 
|  | static llvm::Function *GetVprintfDeclaration(llvm::Module &M) { | 
|  | llvm::Type *ArgTypes[] = {llvm::Type::getInt8PtrTy(M.getContext()), | 
|  | llvm::Type::getInt8PtrTy(M.getContext())}; | 
|  | llvm::FunctionType *VprintfFuncType = llvm::FunctionType::get( | 
|  | llvm::Type::getInt32Ty(M.getContext()), ArgTypes, false); | 
|  |  | 
|  | if (auto* F = M.getFunction("vprintf")) { | 
|  | // Our CUDA system header declares vprintf with the right signature, so | 
|  | // nobody else should have been able to declare vprintf with a bogus | 
|  | // signature. | 
|  | assert(F->getFunctionType() == VprintfFuncType); | 
|  | return F; | 
|  | } | 
|  |  | 
|  | // vprintf doesn't already exist; create a declaration and insert it into the | 
|  | // module. | 
|  | return llvm::Function::Create( | 
|  | VprintfFuncType, llvm::GlobalVariable::ExternalLinkage, "vprintf", &M); | 
|  | } | 
|  |  | 
|  | // Transforms a call to printf into a call to the NVPTX vprintf syscall (which | 
|  | // isn't particularly special; it's invoked just like a regular function). | 
|  | // vprintf takes two args: A format string, and a pointer to a buffer containing | 
|  | // the varargs. | 
|  | // | 
|  | // For example, the call | 
|  | // | 
|  | //   printf("format string", arg1, arg2, arg3); | 
|  | // | 
|  | // is converted into something resembling | 
|  | // | 
|  | //   struct Tmp { | 
|  | //     Arg1 a1; | 
|  | //     Arg2 a2; | 
|  | //     Arg3 a3; | 
|  | //   }; | 
|  | //   char* buf = alloca(sizeof(Tmp)); | 
|  | //   *(Tmp*)buf = {a1, a2, a3}; | 
|  | //   vprintf("format string", buf); | 
|  | // | 
|  | // buf is aligned to the max of {alignof(Arg1), ...}.  Furthermore, each of the | 
|  | // args is itself aligned to its preferred alignment. | 
|  | // | 
|  | // Note that by the time this function runs, E's args have already undergone the | 
|  | // standard C vararg promotion (short -> int, float -> double, etc.). | 
|  | RValue | 
|  | CodeGenFunction::EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, | 
|  | ReturnValueSlot ReturnValue) { | 
|  | assert(getTarget().getTriple().isNVPTX()); | 
|  | assert(E->getBuiltinCallee() == Builtin::BIprintf); | 
|  | assert(E->getNumArgs() >= 1); // printf always has at least one arg. | 
|  |  | 
|  | const llvm::DataLayout &DL = CGM.getDataLayout(); | 
|  | llvm::LLVMContext &Ctx = CGM.getLLVMContext(); | 
|  |  | 
|  | CallArgList Args; | 
|  | EmitCallArgs(Args, | 
|  | E->getDirectCallee()->getType()->getAs<FunctionProtoType>(), | 
|  | E->arguments(), E->getDirectCallee(), | 
|  | /* ParamsToSkip = */ 0); | 
|  |  | 
|  | // We don't know how to emit non-scalar varargs. | 
|  | if (std::any_of(Args.begin() + 1, Args.end(), [&](const CallArg &A) { | 
|  | return !A.getRValue(*this).isScalar(); | 
|  | })) { | 
|  | CGM.ErrorUnsupported(E, "non-scalar arg to printf"); | 
|  | return RValue::get(llvm::ConstantInt::get(IntTy, 0)); | 
|  | } | 
|  |  | 
|  | // Construct and fill the args buffer that we'll pass to vprintf. | 
|  | llvm::Value *BufferPtr; | 
|  | if (Args.size() <= 1) { | 
|  | // If there are no args, pass a null pointer to vprintf. | 
|  | BufferPtr = llvm::ConstantPointerNull::get(llvm::Type::getInt8PtrTy(Ctx)); | 
|  | } else { | 
|  | llvm::SmallVector<llvm::Type *, 8> ArgTypes; | 
|  | for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I) | 
|  | ArgTypes.push_back(Args[I].getRValue(*this).getScalarVal()->getType()); | 
|  |  | 
|  | // Using llvm::StructType is correct only because printf doesn't accept | 
|  | // aggregates.  If we had to handle aggregates here, we'd have to manually | 
|  | // compute the offsets within the alloca -- we wouldn't be able to assume | 
|  | // that the alignment of the llvm type was the same as the alignment of the | 
|  | // clang type. | 
|  | llvm::Type *AllocaTy = llvm::StructType::create(ArgTypes, "printf_args"); | 
|  | llvm::Value *Alloca = CreateTempAlloca(AllocaTy); | 
|  |  | 
|  | for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I) { | 
|  | llvm::Value *P = Builder.CreateStructGEP(AllocaTy, Alloca, I - 1); | 
|  | llvm::Value *Arg = Args[I].getRValue(*this).getScalarVal(); | 
|  | Builder.CreateAlignedStore(Arg, P, DL.getPrefTypeAlign(Arg->getType())); | 
|  | } | 
|  | BufferPtr = Builder.CreatePointerCast(Alloca, llvm::Type::getInt8PtrTy(Ctx)); | 
|  | } | 
|  |  | 
|  | // Invoke vprintf and return. | 
|  | llvm::Function* VprintfFunc = GetVprintfDeclaration(CGM.getModule()); | 
|  | return RValue::get(Builder.CreateCall( | 
|  | VprintfFunc, {Args[0].getRValue(*this).getScalarVal(), BufferPtr})); | 
|  | } | 
|  |  | 
|  | RValue | 
|  | CodeGenFunction::EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E, | 
|  | ReturnValueSlot ReturnValue) { | 
|  | assert(getTarget().getTriple().getArch() == llvm::Triple::amdgcn); | 
|  | assert(E->getBuiltinCallee() == Builtin::BIprintf || | 
|  | E->getBuiltinCallee() == Builtin::BI__builtin_printf); | 
|  | assert(E->getNumArgs() >= 1); // printf always has at least one arg. | 
|  |  | 
|  | CallArgList CallArgs; | 
|  | EmitCallArgs(CallArgs, | 
|  | E->getDirectCallee()->getType()->getAs<FunctionProtoType>(), | 
|  | E->arguments(), E->getDirectCallee(), | 
|  | /* ParamsToSkip = */ 0); | 
|  |  | 
|  | SmallVector<llvm::Value *, 8> Args; | 
|  | for (auto A : CallArgs) { | 
|  | // We don't know how to emit non-scalar varargs. | 
|  | if (!A.getRValue(*this).isScalar()) { | 
|  | CGM.ErrorUnsupported(E, "non-scalar arg to printf"); | 
|  | return RValue::get(llvm::ConstantInt::get(IntTy, -1)); | 
|  | } | 
|  |  | 
|  | llvm::Value *Arg = A.getRValue(*this).getScalarVal(); | 
|  | Args.push_back(Arg); | 
|  | } | 
|  |  | 
|  | llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); | 
|  | IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); | 
|  | auto Printf = llvm::emitAMDGPUPrintfCall(IRB, Args); | 
|  | Builder.SetInsertPoint(IRB.GetInsertBlock(), IRB.GetInsertPoint()); | 
|  | return RValue::get(Printf); | 
|  | } |