|  | //===-- SparcV9CodeEmitter.cpp -  --------===// | 
|  | // | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/GlobalVariable.h" | 
|  | #include "llvm/PassManager.h" | 
|  | #include "llvm/CodeGen/MachineCodeEmitter.h" | 
|  | #include "llvm/CodeGen/MachineFunctionInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "Support/hash_set" | 
|  | #include "SparcInternals.h" | 
|  | #include "SparcV9CodeEmitter.h" | 
|  |  | 
|  | bool UltraSparc::addPassesToEmitMachineCode(PassManager &PM, | 
|  | MachineCodeEmitter &MCE) { | 
|  | //PM.add(new SparcV9CodeEmitter(MCE)); | 
|  | //MachineCodeEmitter *M = MachineCodeEmitter::createDebugMachineCodeEmitter(); | 
|  | MachineCodeEmitter *M = MachineCodeEmitter::createFilePrinterEmitter(MCE); | 
|  | PM.add(new SparcV9CodeEmitter(this, *M)); | 
|  | PM.add(createMachineCodeDestructionPass()); // Free stuff no longer needed | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class JITResolver { | 
|  | MachineCodeEmitter &MCE; | 
|  |  | 
|  | // LazyCodeGenMap - Keep track of call sites for functions that are to be | 
|  | // lazily resolved. | 
|  | std::map<unsigned, Function*> LazyCodeGenMap; | 
|  |  | 
|  | // LazyResolverMap - Keep track of the lazy resolver created for a | 
|  | // particular function so that we can reuse them if necessary. | 
|  | std::map<Function*, unsigned> LazyResolverMap; | 
|  | public: | 
|  | JITResolver(MachineCodeEmitter &mce) : MCE(mce) {} | 
|  | unsigned getLazyResolver(Function *F); | 
|  | unsigned addFunctionReference(unsigned Address, Function *F); | 
|  |  | 
|  | private: | 
|  | unsigned emitStubForFunction(Function *F); | 
|  | static void CompilationCallback(); | 
|  | unsigned resolveFunctionReference(unsigned RetAddr); | 
|  | }; | 
|  |  | 
|  | JITResolver *TheJITResolver; | 
|  | } | 
|  |  | 
|  | /// addFunctionReference - This method is called when we need to emit the | 
|  | /// address of a function that has not yet been emitted, so we don't know the | 
|  | /// address.  Instead, we emit a call to the CompilationCallback method, and | 
|  | /// keep track of where we are. | 
|  | /// | 
|  | unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) { | 
|  | LazyCodeGenMap[Address] = F; | 
|  | return (intptr_t)&JITResolver::CompilationCallback; | 
|  | } | 
|  |  | 
|  | unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) { | 
|  | std::map<unsigned, Function*>::iterator I = LazyCodeGenMap.find(RetAddr); | 
|  | assert(I != LazyCodeGenMap.end() && "Not in map!"); | 
|  | Function *F = I->second; | 
|  | LazyCodeGenMap.erase(I); | 
|  | return MCE.forceCompilationOf(F); | 
|  | } | 
|  |  | 
|  | unsigned JITResolver::getLazyResolver(Function *F) { | 
|  | std::map<Function*, unsigned>::iterator I = LazyResolverMap.lower_bound(F); | 
|  | if (I != LazyResolverMap.end() && I->first == F) return I->second; | 
|  |  | 
|  | //std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n"; | 
|  |  | 
|  | unsigned Stub = emitStubForFunction(F); | 
|  | LazyResolverMap.insert(I, std::make_pair(F, Stub)); | 
|  | return Stub; | 
|  | } | 
|  |  | 
|  | void JITResolver::CompilationCallback() { | 
|  | uint64_t *StackPtr = (uint64_t*)__builtin_frame_address(0); | 
|  | uint64_t RetAddr = (uint64_t)(intptr_t)__builtin_return_address(0); | 
|  |  | 
|  | #if 0 | 
|  | std::cerr << "In callback! Addr=0x" << std::hex << RetAddr | 
|  | << " SP=0x" << (unsigned)StackPtr << std::dec | 
|  | << ": Resolving call to function: " | 
|  | << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n"; | 
|  | #endif | 
|  |  | 
|  | std::cerr << "Sparc's JIT Resolver not implemented!\n"; | 
|  | abort(); | 
|  |  | 
|  | #if 0 | 
|  | unsigned NewVal = TheJITResolver->resolveFunctionReference((void*)RetAddr); | 
|  |  | 
|  | // Rewrite the call target... so that we don't fault every time we execute | 
|  | // the call. | 
|  | *(unsigned*)RetAddr = NewVal; | 
|  |  | 
|  | // Change the return address to reexecute the call instruction... | 
|  | StackPtr[1] -= 4; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /// emitStubForFunction - This method is used by the JIT when it needs to emit | 
|  | /// the address of a function for a function whose code has not yet been | 
|  | /// generated.  In order to do this, it generates a stub which jumps to the lazy | 
|  | /// function compiler, which will eventually get fixed to call the function | 
|  | /// directly. | 
|  | /// | 
|  | unsigned JITResolver::emitStubForFunction(Function *F) { | 
|  | #if 0 | 
|  | MCE.startFunctionStub(*F, 6); | 
|  | MCE.emitByte(0xE8);   // Call with 32 bit pc-rel destination... | 
|  |  | 
|  | unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F); | 
|  | MCE.emitWord(Address-MCE.getCurrentPCValue()-4); | 
|  |  | 
|  | MCE.emitByte(0xCD);   // Interrupt - Just a marker identifying the stub! | 
|  | return (intptr_t)MCE.finishFunctionStub(*F); | 
|  | #endif | 
|  | std::cerr << "Sparc's JITResolver::emitStubForFunction() not implemented!\n"; | 
|  | abort(); | 
|  | } | 
|  |  | 
|  |  | 
|  | void SparcV9CodeEmitter::emitConstant(unsigned Val, unsigned Size) { | 
|  | // Output the constant in big endian byte order... | 
|  | unsigned byteVal; | 
|  | for (int i = Size-1; i >= 0; --i) { | 
|  | byteVal = Val >> 8*i; | 
|  | MCE->emitByte(byteVal & 255); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned getRealRegNum(unsigned fakeReg, unsigned regClass) { | 
|  | switch (regClass) { | 
|  | case UltraSparcRegInfo::IntRegType: { | 
|  | // Sparc manual, p31 | 
|  | static const unsigned IntRegMap[] = { | 
|  | // "o0", "o1", "o2", "o3", "o4", "o5",       "o7", | 
|  | 8, 9, 10, 11, 12, 13, 15, | 
|  | // "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", | 
|  | 16, 17, 18, 19, 20, 21, 22, 23, | 
|  | // "i0", "i1", "i2", "i3", "i4", "i5", | 
|  | 24, 25, 26, 27, 28, 29, | 
|  | // "i6", "i7", | 
|  | 30, 31, | 
|  | // "g0", "g1", "g2", "g3", "g4", "g5",  "g6", "g7", | 
|  | 0, 1, 2, 3, 4, 5, 6, 7, | 
|  | // "o6" | 
|  | 14 | 
|  | }; | 
|  |  | 
|  | return IntRegMap[fakeReg]; | 
|  | break; | 
|  | } | 
|  | case UltraSparcRegInfo::FPSingleRegType: { | 
|  | return fakeReg; | 
|  | } | 
|  | case UltraSparcRegInfo::FPDoubleRegType: { | 
|  | return fakeReg; | 
|  | } | 
|  | case UltraSparcRegInfo::FloatCCRegType: { | 
|  | return fakeReg; | 
|  |  | 
|  | } | 
|  | case UltraSparcRegInfo::IntCCRegType: { | 
|  | return fakeReg; | 
|  | } | 
|  | default: | 
|  | assert(0 && "Invalid unified register number in getRegType"); | 
|  | return fakeReg; | 
|  | } | 
|  | } | 
|  |  | 
|  | int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI, | 
|  | MachineOperand &MO) { | 
|  | int64_t rv = 0; // Return value; defaults to 0 for unhandled cases | 
|  | // or things that get fixed up later by the JIT. | 
|  |  | 
|  | if (MO.isVirtualRegister()) { | 
|  | std::cerr << "ERROR: virtual register found in machine code.\n"; | 
|  | abort(); | 
|  | } else if (MO.isPCRelativeDisp()) { | 
|  | Value *V = MO.getVRegValue(); | 
|  | if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { | 
|  | std::cerr << "Saving reference to BB (VReg)\n"; | 
|  | unsigned* CurrPC = (unsigned*)(intptr_t)MCE->getCurrentPCValue(); | 
|  | BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); | 
|  | } else if (Constant *C = dyn_cast<Constant>(V)) { | 
|  | if (ConstantMap.find(C) != ConstantMap.end()) | 
|  | rv = (int64_t)(intptr_t)ConstantMap[C] - MCE->getCurrentPCValue(); | 
|  | else { | 
|  | std::cerr << "ERROR: constant not in map:" << MO << "\n"; | 
|  | abort(); | 
|  | } | 
|  | } else { | 
|  | std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n"; | 
|  | abort(); | 
|  | } | 
|  | } else if (MO.isPhysicalRegister()) { | 
|  | // This is necessary because the Sparc doesn't actually lay out registers | 
|  | // in the real fashion -- it skips those that it chooses not to allocate, | 
|  | // i.e. those that are the SP, etc. | 
|  | unsigned fakeReg = MO.getReg(), realReg, regClass, regType; | 
|  | regType = TM->getRegInfo().getRegType(fakeReg); | 
|  | // At least map fakeReg into its class | 
|  | fakeReg = TM->getRegInfo().getClassRegNum(fakeReg, regClass); | 
|  | // Find the real register number for use in an instruction | 
|  | realReg = getRealRegNum(fakeReg, regClass); | 
|  | std::cerr << "Reg[" << std::dec << fakeReg << "] = " << realReg << "\n"; | 
|  | rv = realReg; | 
|  | } else if (MO.isImmediate()) { | 
|  | rv = MO.getImmedValue(); | 
|  | } else if (MO.isGlobalAddress()) { | 
|  | rv = (int64_t) | 
|  | (intptr_t)getGlobalAddress(cast<GlobalValue>(MO.getVRegValue()), | 
|  | MI, MO.isPCRelative()); | 
|  | } else if (MO.isMachineBasicBlock()) { | 
|  | // Duplicate code of the above case for VirtualRegister, BasicBlock... | 
|  | // It should really hit this case, but Sparc backend uses VRegs instead | 
|  | std::cerr << "Saving reference to MBB\n"; | 
|  | BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock(); | 
|  | unsigned* CurrPC = (unsigned*)(intptr_t)MCE->getCurrentPCValue(); | 
|  | BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); | 
|  | } else if (MO.isExternalSymbol()) { | 
|  | // Sparc backend doesn't generate this (yet...) | 
|  | std::cerr << "ERROR: External symbol unhandled: " << MO << "\n"; | 
|  | abort(); | 
|  | } else if (MO.isFrameIndex()) { | 
|  | // Sparc backend doesn't generate this (yet...) | 
|  | int FrameIndex = MO.getFrameIndex(); | 
|  | std::cerr << "ERROR: Frame index unhandled.\n"; | 
|  | abort(); | 
|  | } else if (MO.isConstantPoolIndex()) { | 
|  | // Sparc backend doesn't generate this (yet...) | 
|  | std::cerr << "ERROR: Constant Pool index unhandled.\n"; | 
|  | abort(); | 
|  | } else { | 
|  | std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n"; | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | // Finally, deal with the various bitfield-extracting functions that | 
|  | // are used in SPARC assembly. (Some of these make no sense in combination | 
|  | // with some of the above; we'll trust that the instruction selector | 
|  | // will not produce nonsense, and not check for valid combinations here.) | 
|  | if (MO.opLoBits32()) {          // %lo(val) | 
|  | return rv & 0x03ff; | 
|  | } else if (MO.opHiBits32()) {   // %lm(val) | 
|  | return (rv >> 10) & 0x03fffff; | 
|  | } else if (MO.opLoBits64()) {   // %hm(val) | 
|  | return (rv >> 32) & 0x03ff; | 
|  | } else if (MO.opHiBits64()) {   // %hh(val) | 
|  | return rv >> 42; | 
|  | } else {                        // (unadorned) val | 
|  | return rv; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) { | 
|  | Val >>= bit; | 
|  | return (Val & 1); | 
|  | } | 
|  |  | 
|  | void* SparcV9CodeEmitter::convertAddress(intptr_t Addr, bool isPCRelative) { | 
|  | if (isPCRelative) { | 
|  | return (void*)(Addr - (intptr_t)MCE->getCurrentPCValue()); | 
|  | } else { | 
|  | return (void*)Addr; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) { | 
|  | std::cerr << "Starting function " << MF.getFunction()->getName() | 
|  | << ", address: " << "0x" << std::hex | 
|  | << (long)MCE->getCurrentPCValue() << "\n"; | 
|  |  | 
|  | MCE->startFunction(MF); | 
|  |  | 
|  | // FIXME: the Sparc backend does not use the ConstantPool!! | 
|  | //MCE->emitConstantPool(MF.getConstantPool()); | 
|  |  | 
|  | // Instead, the Sparc backend has its own constant pool implementation: | 
|  | const hash_set<const Constant*> &pool = MF.getInfo()->getConstantPoolValues(); | 
|  | for (hash_set<const Constant*>::const_iterator I = pool.begin(), | 
|  | E = pool.end();  I != E; ++I) | 
|  | { | 
|  | const Constant *C = *I; | 
|  | // For now we just allocate some memory on the heap, this can be | 
|  | // dramatically improved. | 
|  | const Type *Ty = ((Value*)C)->getType(); | 
|  | void *Addr = malloc(TM->getTargetData().getTypeSize(Ty)); | 
|  | //FIXME | 
|  | //TheVM.InitializeMemory(C, Addr); | 
|  | std::cerr << "Adding ConstantMap[" << C << "]=" << std::dec << Addr << "\n"; | 
|  | ConstantMap[C] = Addr; | 
|  | } | 
|  |  | 
|  | for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) | 
|  | emitBasicBlock(*I); | 
|  | MCE->finishFunction(MF); | 
|  |  | 
|  | std::cerr << "Finishing function " << MF.getFunction()->getName() << "\n"; | 
|  | ConstantMap.clear(); | 
|  | for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { | 
|  | long Location = BBLocations[BBRefs[i].first]; | 
|  | unsigned *Ref = BBRefs[i].second.first; | 
|  | MachineInstr *MI = BBRefs[i].second.second; | 
|  | std::cerr << "Fixup @" << std::hex << Ref << " to " << Location | 
|  | << " in instr: " << std::dec << *MI << "\n"; | 
|  | } | 
|  |  | 
|  | // Resolve branches to BasicBlocks for the entire function | 
|  | for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { | 
|  | long Location = BBLocations[BBRefs[i].first]; | 
|  | unsigned *Ref = BBRefs[i].second.first; | 
|  | MachineInstr *MI = BBRefs[i].second.second; | 
|  | std::cerr << "attempting to resolve BB: " << i << "\n"; | 
|  | for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) { | 
|  | MachineOperand &op = MI->getOperand(ii); | 
|  | if (op.isPCRelativeDisp()) { | 
|  | // the instruction's branch target is made such that it branches to | 
|  | // PC + (br target * 4), so undo that arithmetic here: | 
|  | // Location is the target of the branch | 
|  | // Ref is the location of the instruction, and hence the PC | 
|  | unsigned branchTarget = (Location - (long)Ref) >> 2; | 
|  | // Save the flags. | 
|  | bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false; | 
|  | if (op.opLoBits32()) { loBits32=true; } | 
|  | if (op.opHiBits32()) { hiBits32=true; } | 
|  | if (op.opLoBits64()) { loBits64=true; } | 
|  | if (op.opHiBits64()) { hiBits64=true; } | 
|  | MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed, | 
|  | branchTarget); | 
|  | if (loBits32) { MI->setOperandLo32(ii); } | 
|  | else if (hiBits32) { MI->setOperandHi32(ii); } | 
|  | else if (loBits64) { MI->setOperandLo64(ii); } | 
|  | else if (hiBits64) { MI->setOperandHi64(ii); } | 
|  | std::cerr << "Rewrote BB ref: "; | 
|  | unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI); | 
|  | *Ref = fixedInstr; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | BBRefs.clear(); | 
|  | BBLocations.clear(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) { | 
|  | currBB = MBB.getBasicBlock(); | 
|  | BBLocations[currBB] = MCE->getCurrentPCValue(); | 
|  | for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) | 
|  | emitInstruction(**I); | 
|  | } | 
|  |  | 
|  | void SparcV9CodeEmitter::emitInstruction(MachineInstr &MI) { | 
|  | emitConstant(getBinaryCodeForInstr(MI), 4); | 
|  | } | 
|  |  | 
|  | void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI, | 
|  | bool isPCRelative) | 
|  | { | 
|  | if (isPCRelative) { // must be a call, this is a major hack! | 
|  | // Try looking up the function to see if it is already compiled! | 
|  | if (void *Addr = (void*)(intptr_t)MCE->getGlobalValueAddress(V)) { | 
|  | intptr_t CurByte = MCE->getCurrentPCValue(); | 
|  | // The real target of the call is Addr = PC + (target * 4) | 
|  | // CurByte is the PC, Addr we just received | 
|  | return (void*) (((long)Addr - (long)CurByte) >> 2); | 
|  | } else { | 
|  | if (Function *F = dyn_cast<Function>(V)) { | 
|  | // Function has not yet been code generated! | 
|  | TheJITResolver->addFunctionReference(MCE->getCurrentPCValue(), | 
|  | cast<Function>(V)); | 
|  | // Delayed resolution... | 
|  | return | 
|  | (void*)(intptr_t)TheJITResolver->getLazyResolver(cast<Function>(V)); | 
|  |  | 
|  | } else if (Constant *C = ConstantPointerRef::get(V)) { | 
|  | if (ConstantMap.find(C) != ConstantMap.end()) { | 
|  | return ConstantMap[C]; | 
|  | } else { | 
|  | std::cerr << "Constant: 0x" << std::hex << &*C << std::dec | 
|  | << ", " << *V << " not found in ConstantMap!\n"; | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | } else if (const GlobalVariable *G = dyn_cast<GlobalVariable>(V)) { | 
|  | if (G->isConstant()) { | 
|  | const Constant* C = G->getInitializer(); | 
|  | if (ConstantMap.find(C) != ConstantMap.end()) { | 
|  | return ConstantMap[C]; | 
|  | } else { | 
|  | std::cerr << "Constant: " << *G << " not found in ConstantMap!\n"; | 
|  | abort(); | 
|  | } | 
|  | } else { | 
|  | std::cerr << "Variable: " << *G << " address not found!\n"; | 
|  | abort(); | 
|  | } | 
|  | #endif | 
|  | } else { | 
|  | std::cerr << "Unhandled global: " << *V << "\n"; | 
|  | abort(); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | return convertAddress((intptr_t)MCE->getGlobalValueAddress(V), | 
|  | isPCRelative); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | #include "SparcV9CodeEmitter.inc" | 
|  |  |