|  | //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the X86 implementation of the TargetInstrInfo class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86InstrInfo.h" | 
|  | #include "X86.h" | 
|  | #include "X86InstrBuilder.h" | 
|  | #include "X86MachineFunctionInfo.h" | 
|  | #include "X86Subtarget.h" | 
|  | #include "X86TargetMachine.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/CodeGen/LiveVariables.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/StackMaps.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCExpr.h" | 
|  | #include "llvm/MC/MCInst.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include <limits> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "x86-instr-info" | 
|  |  | 
|  | #define GET_INSTRINFO_CTOR_DTOR | 
|  | #include "X86GenInstrInfo.inc" | 
|  |  | 
|  | static cl::opt<bool> | 
|  | NoFusing("disable-spill-fusing", | 
|  | cl::desc("Disable fusing of spill code into instructions")); | 
|  | static cl::opt<bool> | 
|  | PrintFailedFusing("print-failed-fuse-candidates", | 
|  | cl::desc("Print instructions that the allocator wants to" | 
|  | " fuse, but the X86 backend currently can't"), | 
|  | cl::Hidden); | 
|  | static cl::opt<bool> | 
|  | ReMatPICStubLoad("remat-pic-stub-load", | 
|  | cl::desc("Re-materialize load from stub in PIC mode"), | 
|  | cl::init(false), cl::Hidden); | 
|  |  | 
|  | enum { | 
|  | // Select which memory operand is being unfolded. | 
|  | // (stored in bits 0 - 3) | 
|  | TB_INDEX_0    = 0, | 
|  | TB_INDEX_1    = 1, | 
|  | TB_INDEX_2    = 2, | 
|  | TB_INDEX_3    = 3, | 
|  | TB_INDEX_4    = 4, | 
|  | TB_INDEX_MASK = 0xf, | 
|  |  | 
|  | // Do not insert the reverse map (MemOp -> RegOp) into the table. | 
|  | // This may be needed because there is a many -> one mapping. | 
|  | TB_NO_REVERSE   = 1 << 4, | 
|  |  | 
|  | // Do not insert the forward map (RegOp -> MemOp) into the table. | 
|  | // This is needed for Native Client, which prohibits branch | 
|  | // instructions from using a memory operand. | 
|  | TB_NO_FORWARD   = 1 << 5, | 
|  |  | 
|  | TB_FOLDED_LOAD  = 1 << 6, | 
|  | TB_FOLDED_STORE = 1 << 7, | 
|  |  | 
|  | // Minimum alignment required for load/store. | 
|  | // Used for RegOp->MemOp conversion. | 
|  | // (stored in bits 8 - 15) | 
|  | TB_ALIGN_SHIFT = 8, | 
|  | TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT, | 
|  | TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT, | 
|  | TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT, | 
|  | TB_ALIGN_64    =   64 << TB_ALIGN_SHIFT, | 
|  | TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT | 
|  | }; | 
|  |  | 
|  | struct X86MemoryFoldTableEntry { | 
|  | uint16_t RegOp; | 
|  | uint16_t MemOp; | 
|  | uint16_t Flags; | 
|  | }; | 
|  |  | 
|  | // Pin the vtable to this file. | 
|  | void X86InstrInfo::anchor() {} | 
|  |  | 
|  | X86InstrInfo::X86InstrInfo(X86Subtarget &STI) | 
|  | : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 | 
|  | : X86::ADJCALLSTACKDOWN32), | 
|  | (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 | 
|  | : X86::ADJCALLSTACKUP32), | 
|  | X86::CATCHRET), | 
|  | Subtarget(STI), RI(STI.getTargetTriple()) { | 
|  |  | 
|  | static const X86MemoryFoldTableEntry MemoryFoldTable2Addr[] = { | 
|  | { X86::ADC32ri,     X86::ADC32mi,    0 }, | 
|  | { X86::ADC32ri8,    X86::ADC32mi8,   0 }, | 
|  | { X86::ADC32rr,     X86::ADC32mr,    0 }, | 
|  | { X86::ADC64ri32,   X86::ADC64mi32,  0 }, | 
|  | { X86::ADC64ri8,    X86::ADC64mi8,   0 }, | 
|  | { X86::ADC64rr,     X86::ADC64mr,    0 }, | 
|  | { X86::ADD16ri,     X86::ADD16mi,    0 }, | 
|  | { X86::ADD16ri8,    X86::ADD16mi8,   0 }, | 
|  | { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE }, | 
|  | { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE }, | 
|  | { X86::ADD16rr,     X86::ADD16mr,    0 }, | 
|  | { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE }, | 
|  | { X86::ADD32ri,     X86::ADD32mi,    0 }, | 
|  | { X86::ADD32ri8,    X86::ADD32mi8,   0 }, | 
|  | { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE }, | 
|  | { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE }, | 
|  | { X86::ADD32rr,     X86::ADD32mr,    0 }, | 
|  | { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE }, | 
|  | { X86::ADD64ri32,   X86::ADD64mi32,  0 }, | 
|  | { X86::ADD64ri8,    X86::ADD64mi8,   0 }, | 
|  | { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE }, | 
|  | { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE }, | 
|  | { X86::ADD64rr,     X86::ADD64mr,    0 }, | 
|  | { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE }, | 
|  | { X86::ADD8ri,      X86::ADD8mi,     0 }, | 
|  | { X86::ADD8rr,      X86::ADD8mr,     0 }, | 
|  | { X86::AND16ri,     X86::AND16mi,    0 }, | 
|  | { X86::AND16ri8,    X86::AND16mi8,   0 }, | 
|  | { X86::AND16rr,     X86::AND16mr,    0 }, | 
|  | { X86::AND32ri,     X86::AND32mi,    0 }, | 
|  | { X86::AND32ri8,    X86::AND32mi8,   0 }, | 
|  | { X86::AND32rr,     X86::AND32mr,    0 }, | 
|  | { X86::AND64ri32,   X86::AND64mi32,  0 }, | 
|  | { X86::AND64ri8,    X86::AND64mi8,   0 }, | 
|  | { X86::AND64rr,     X86::AND64mr,    0 }, | 
|  | { X86::AND8ri,      X86::AND8mi,     0 }, | 
|  | { X86::AND8rr,      X86::AND8mr,     0 }, | 
|  | { X86::DEC16r,      X86::DEC16m,     0 }, | 
|  | { X86::DEC32r,      X86::DEC32m,     0 }, | 
|  | { X86::DEC64r,      X86::DEC64m,     0 }, | 
|  | { X86::DEC8r,       X86::DEC8m,      0 }, | 
|  | { X86::INC16r,      X86::INC16m,     0 }, | 
|  | { X86::INC32r,      X86::INC32m,     0 }, | 
|  | { X86::INC64r,      X86::INC64m,     0 }, | 
|  | { X86::INC8r,       X86::INC8m,      0 }, | 
|  | { X86::NEG16r,      X86::NEG16m,     0 }, | 
|  | { X86::NEG32r,      X86::NEG32m,     0 }, | 
|  | { X86::NEG64r,      X86::NEG64m,     0 }, | 
|  | { X86::NEG8r,       X86::NEG8m,      0 }, | 
|  | { X86::NOT16r,      X86::NOT16m,     0 }, | 
|  | { X86::NOT32r,      X86::NOT32m,     0 }, | 
|  | { X86::NOT64r,      X86::NOT64m,     0 }, | 
|  | { X86::NOT8r,       X86::NOT8m,      0 }, | 
|  | { X86::OR16ri,      X86::OR16mi,     0 }, | 
|  | { X86::OR16ri8,     X86::OR16mi8,    0 }, | 
|  | { X86::OR16rr,      X86::OR16mr,     0 }, | 
|  | { X86::OR32ri,      X86::OR32mi,     0 }, | 
|  | { X86::OR32ri8,     X86::OR32mi8,    0 }, | 
|  | { X86::OR32rr,      X86::OR32mr,     0 }, | 
|  | { X86::OR64ri32,    X86::OR64mi32,   0 }, | 
|  | { X86::OR64ri8,     X86::OR64mi8,    0 }, | 
|  | { X86::OR64rr,      X86::OR64mr,     0 }, | 
|  | { X86::OR8ri,       X86::OR8mi,      0 }, | 
|  | { X86::OR8rr,       X86::OR8mr,      0 }, | 
|  | { X86::ROL16r1,     X86::ROL16m1,    0 }, | 
|  | { X86::ROL16rCL,    X86::ROL16mCL,   0 }, | 
|  | { X86::ROL16ri,     X86::ROL16mi,    0 }, | 
|  | { X86::ROL32r1,     X86::ROL32m1,    0 }, | 
|  | { X86::ROL32rCL,    X86::ROL32mCL,   0 }, | 
|  | { X86::ROL32ri,     X86::ROL32mi,    0 }, | 
|  | { X86::ROL64r1,     X86::ROL64m1,    0 }, | 
|  | { X86::ROL64rCL,    X86::ROL64mCL,   0 }, | 
|  | { X86::ROL64ri,     X86::ROL64mi,    0 }, | 
|  | { X86::ROL8r1,      X86::ROL8m1,     0 }, | 
|  | { X86::ROL8rCL,     X86::ROL8mCL,    0 }, | 
|  | { X86::ROL8ri,      X86::ROL8mi,     0 }, | 
|  | { X86::ROR16r1,     X86::ROR16m1,    0 }, | 
|  | { X86::ROR16rCL,    X86::ROR16mCL,   0 }, | 
|  | { X86::ROR16ri,     X86::ROR16mi,    0 }, | 
|  | { X86::ROR32r1,     X86::ROR32m1,    0 }, | 
|  | { X86::ROR32rCL,    X86::ROR32mCL,   0 }, | 
|  | { X86::ROR32ri,     X86::ROR32mi,    0 }, | 
|  | { X86::ROR64r1,     X86::ROR64m1,    0 }, | 
|  | { X86::ROR64rCL,    X86::ROR64mCL,   0 }, | 
|  | { X86::ROR64ri,     X86::ROR64mi,    0 }, | 
|  | { X86::ROR8r1,      X86::ROR8m1,     0 }, | 
|  | { X86::ROR8rCL,     X86::ROR8mCL,    0 }, | 
|  | { X86::ROR8ri,      X86::ROR8mi,     0 }, | 
|  | { X86::SAR16r1,     X86::SAR16m1,    0 }, | 
|  | { X86::SAR16rCL,    X86::SAR16mCL,   0 }, | 
|  | { X86::SAR16ri,     X86::SAR16mi,    0 }, | 
|  | { X86::SAR32r1,     X86::SAR32m1,    0 }, | 
|  | { X86::SAR32rCL,    X86::SAR32mCL,   0 }, | 
|  | { X86::SAR32ri,     X86::SAR32mi,    0 }, | 
|  | { X86::SAR64r1,     X86::SAR64m1,    0 }, | 
|  | { X86::SAR64rCL,    X86::SAR64mCL,   0 }, | 
|  | { X86::SAR64ri,     X86::SAR64mi,    0 }, | 
|  | { X86::SAR8r1,      X86::SAR8m1,     0 }, | 
|  | { X86::SAR8rCL,     X86::SAR8mCL,    0 }, | 
|  | { X86::SAR8ri,      X86::SAR8mi,     0 }, | 
|  | { X86::SBB32ri,     X86::SBB32mi,    0 }, | 
|  | { X86::SBB32ri8,    X86::SBB32mi8,   0 }, | 
|  | { X86::SBB32rr,     X86::SBB32mr,    0 }, | 
|  | { X86::SBB64ri32,   X86::SBB64mi32,  0 }, | 
|  | { X86::SBB64ri8,    X86::SBB64mi8,   0 }, | 
|  | { X86::SBB64rr,     X86::SBB64mr,    0 }, | 
|  | { X86::SHL16rCL,    X86::SHL16mCL,   0 }, | 
|  | { X86::SHL16ri,     X86::SHL16mi,    0 }, | 
|  | { X86::SHL32rCL,    X86::SHL32mCL,   0 }, | 
|  | { X86::SHL32ri,     X86::SHL32mi,    0 }, | 
|  | { X86::SHL64rCL,    X86::SHL64mCL,   0 }, | 
|  | { X86::SHL64ri,     X86::SHL64mi,    0 }, | 
|  | { X86::SHL8rCL,     X86::SHL8mCL,    0 }, | 
|  | { X86::SHL8ri,      X86::SHL8mi,     0 }, | 
|  | { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 }, | 
|  | { X86::SHLD16rri8,  X86::SHLD16mri8, 0 }, | 
|  | { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 }, | 
|  | { X86::SHLD32rri8,  X86::SHLD32mri8, 0 }, | 
|  | { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 }, | 
|  | { X86::SHLD64rri8,  X86::SHLD64mri8, 0 }, | 
|  | { X86::SHR16r1,     X86::SHR16m1,    0 }, | 
|  | { X86::SHR16rCL,    X86::SHR16mCL,   0 }, | 
|  | { X86::SHR16ri,     X86::SHR16mi,    0 }, | 
|  | { X86::SHR32r1,     X86::SHR32m1,    0 }, | 
|  | { X86::SHR32rCL,    X86::SHR32mCL,   0 }, | 
|  | { X86::SHR32ri,     X86::SHR32mi,    0 }, | 
|  | { X86::SHR64r1,     X86::SHR64m1,    0 }, | 
|  | { X86::SHR64rCL,    X86::SHR64mCL,   0 }, | 
|  | { X86::SHR64ri,     X86::SHR64mi,    0 }, | 
|  | { X86::SHR8r1,      X86::SHR8m1,     0 }, | 
|  | { X86::SHR8rCL,     X86::SHR8mCL,    0 }, | 
|  | { X86::SHR8ri,      X86::SHR8mi,     0 }, | 
|  | { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 }, | 
|  | { X86::SHRD16rri8,  X86::SHRD16mri8, 0 }, | 
|  | { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 }, | 
|  | { X86::SHRD32rri8,  X86::SHRD32mri8, 0 }, | 
|  | { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 }, | 
|  | { X86::SHRD64rri8,  X86::SHRD64mri8, 0 }, | 
|  | { X86::SUB16ri,     X86::SUB16mi,    0 }, | 
|  | { X86::SUB16ri8,    X86::SUB16mi8,   0 }, | 
|  | { X86::SUB16rr,     X86::SUB16mr,    0 }, | 
|  | { X86::SUB32ri,     X86::SUB32mi,    0 }, | 
|  | { X86::SUB32ri8,    X86::SUB32mi8,   0 }, | 
|  | { X86::SUB32rr,     X86::SUB32mr,    0 }, | 
|  | { X86::SUB64ri32,   X86::SUB64mi32,  0 }, | 
|  | { X86::SUB64ri8,    X86::SUB64mi8,   0 }, | 
|  | { X86::SUB64rr,     X86::SUB64mr,    0 }, | 
|  | { X86::SUB8ri,      X86::SUB8mi,     0 }, | 
|  | { X86::SUB8rr,      X86::SUB8mr,     0 }, | 
|  | { X86::XOR16ri,     X86::XOR16mi,    0 }, | 
|  | { X86::XOR16ri8,    X86::XOR16mi8,   0 }, | 
|  | { X86::XOR16rr,     X86::XOR16mr,    0 }, | 
|  | { X86::XOR32ri,     X86::XOR32mi,    0 }, | 
|  | { X86::XOR32ri8,    X86::XOR32mi8,   0 }, | 
|  | { X86::XOR32rr,     X86::XOR32mr,    0 }, | 
|  | { X86::XOR64ri32,   X86::XOR64mi32,  0 }, | 
|  | { X86::XOR64ri8,    X86::XOR64mi8,   0 }, | 
|  | { X86::XOR64rr,     X86::XOR64mr,    0 }, | 
|  | { X86::XOR8ri,      X86::XOR8mi,     0 }, | 
|  | { X86::XOR8rr,      X86::XOR8mr,     0 } | 
|  | }; | 
|  |  | 
|  | for (X86MemoryFoldTableEntry Entry : MemoryFoldTable2Addr) { | 
|  | AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable, | 
|  | Entry.RegOp, Entry.MemOp, | 
|  | // Index 0, folded load and store, no alignment requirement. | 
|  | Entry.Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE); | 
|  | } | 
|  |  | 
|  | static const X86MemoryFoldTableEntry MemoryFoldTable0[] = { | 
|  | { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD }, | 
|  | { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD }, | 
|  | { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD }, | 
|  | { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD }, | 
|  | { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD }, | 
|  | { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD }, | 
|  | { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD }, | 
|  | { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD }, | 
|  | { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD }, | 
|  | { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD }, | 
|  | { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD }, | 
|  | { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD }, | 
|  | { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD }, | 
|  | { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD }, | 
|  | { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD }, | 
|  | { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD }, | 
|  | { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD }, | 
|  | { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD }, | 
|  | { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD }, | 
|  | { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD }, | 
|  | { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE }, | 
|  | { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD }, | 
|  | { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD }, | 
|  | { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD }, | 
|  | { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD }, | 
|  | { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD }, | 
|  | { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD }, | 
|  | { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD }, | 
|  | { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD }, | 
|  | { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD }, | 
|  | { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD }, | 
|  | { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE }, | 
|  | { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE }, | 
|  | { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE }, | 
|  | { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE }, | 
|  | { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE }, | 
|  | { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE }, | 
|  | { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE }, | 
|  | { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE }, | 
|  | { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE }, | 
|  | { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 }, | 
|  | { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 }, | 
|  | { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 }, | 
|  | { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE }, | 
|  | { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE }, | 
|  | { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE }, | 
|  | { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE }, | 
|  | { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE }, | 
|  | { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE }, | 
|  | { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD }, | 
|  | { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD }, | 
|  | { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD }, | 
|  | { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD }, | 
|  | { X86::PEXTRDrr,    X86::PEXTRDmr,      TB_FOLDED_STORE }, | 
|  | { X86::PEXTRQrr,    X86::PEXTRQmr,      TB_FOLDED_STORE }, | 
|  | { X86::PUSH16r,     X86::PUSH16rmm,     TB_FOLDED_LOAD }, | 
|  | { X86::PUSH32r,     X86::PUSH32rmm,     TB_FOLDED_LOAD }, | 
|  | { X86::PUSH64r,     X86::PUSH64rmm,     TB_FOLDED_LOAD }, | 
|  | { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE }, | 
|  | { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE }, | 
|  | { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE }, | 
|  | { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE }, | 
|  | { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE }, | 
|  | { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE }, | 
|  | { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE }, | 
|  | { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE }, | 
|  | { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE }, | 
|  | { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE }, | 
|  | { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE }, | 
|  | { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE }, | 
|  | { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE }, | 
|  | { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE }, | 
|  | { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE }, | 
|  | { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE }, | 
|  | { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD }, | 
|  | { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD }, | 
|  | { X86::TAILJMPr64_REX, X86::TAILJMPm64_REX, TB_FOLDED_LOAD }, | 
|  | { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD }, | 
|  | { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD }, | 
|  | { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD }, | 
|  | { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD }, | 
|  |  | 
|  | // AVX 128-bit versions of foldable instructions | 
|  | { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE  }, | 
|  | { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, | 
|  | { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 }, | 
|  | { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 }, | 
|  | { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 }, | 
|  | { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE }, | 
|  | { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE }, | 
|  | { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE }, | 
|  | { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE }, | 
|  | { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE }, | 
|  | { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE }, | 
|  | { X86::VPEXTRDrr,   X86::VPEXTRDmr,     TB_FOLDED_STORE }, | 
|  | { X86::VPEXTRQrr,   X86::VPEXTRQmr,     TB_FOLDED_STORE }, | 
|  |  | 
|  | // AVX 256-bit foldable instructions | 
|  | { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, | 
|  | { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 }, | 
|  | { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 }, | 
|  | { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 }, | 
|  | { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE }, | 
|  | { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE }, | 
|  |  | 
|  | // AVX-512 foldable instructions | 
|  | { X86::VMOVPDI2DIZrr,   X86::VMOVPDI2DIZmr, TB_FOLDED_STORE }, | 
|  | { X86::VMOVAPDZrr,      X86::VMOVAPDZmr,    TB_FOLDED_STORE | TB_ALIGN_64 }, | 
|  | { X86::VMOVAPSZrr,      X86::VMOVAPSZmr,    TB_FOLDED_STORE | TB_ALIGN_64 }, | 
|  | { X86::VMOVDQA32Zrr,    X86::VMOVDQA32Zmr,  TB_FOLDED_STORE | TB_ALIGN_64 }, | 
|  | { X86::VMOVDQA64Zrr,    X86::VMOVDQA64Zmr,  TB_FOLDED_STORE | TB_ALIGN_64 }, | 
|  | { X86::VMOVUPDZrr,      X86::VMOVUPDZmr,    TB_FOLDED_STORE }, | 
|  | { X86::VMOVUPSZrr,      X86::VMOVUPSZmr,    TB_FOLDED_STORE }, | 
|  | { X86::VMOVDQU8Zrr,     X86::VMOVDQU8Zmr,   TB_FOLDED_STORE }, | 
|  | { X86::VMOVDQU16Zrr,    X86::VMOVDQU16Zmr,  TB_FOLDED_STORE }, | 
|  | { X86::VMOVDQU32Zrr,    X86::VMOVDQU32Zmr,  TB_FOLDED_STORE }, | 
|  | { X86::VMOVDQU64Zrr,    X86::VMOVDQU64Zmr,  TB_FOLDED_STORE }, | 
|  |  | 
|  | // AVX-512 foldable instructions (256-bit versions) | 
|  | { X86::VMOVAPDZ256rr,      X86::VMOVAPDZ256mr,    TB_FOLDED_STORE | TB_ALIGN_32 }, | 
|  | { X86::VMOVAPSZ256rr,      X86::VMOVAPSZ256mr,    TB_FOLDED_STORE | TB_ALIGN_32 }, | 
|  | { X86::VMOVDQA32Z256rr,    X86::VMOVDQA32Z256mr,  TB_FOLDED_STORE | TB_ALIGN_32 }, | 
|  | { X86::VMOVDQA64Z256rr,    X86::VMOVDQA64Z256mr,  TB_FOLDED_STORE | TB_ALIGN_32 }, | 
|  | { X86::VMOVUPDZ256rr,      X86::VMOVUPDZ256mr,    TB_FOLDED_STORE }, | 
|  | { X86::VMOVUPSZ256rr,      X86::VMOVUPSZ256mr,    TB_FOLDED_STORE }, | 
|  | { X86::VMOVDQU8Z256rr,     X86::VMOVDQU8Z256mr,   TB_FOLDED_STORE }, | 
|  | { X86::VMOVDQU16Z256rr,    X86::VMOVDQU16Z256mr,  TB_FOLDED_STORE }, | 
|  | { X86::VMOVDQU32Z256rr,    X86::VMOVDQU32Z256mr,  TB_FOLDED_STORE }, | 
|  | { X86::VMOVDQU64Z256rr,    X86::VMOVDQU64Z256mr,  TB_FOLDED_STORE }, | 
|  |  | 
|  | // AVX-512 foldable instructions (128-bit versions) | 
|  | { X86::VMOVAPDZ128rr,      X86::VMOVAPDZ128mr,    TB_FOLDED_STORE | TB_ALIGN_16 }, | 
|  | { X86::VMOVAPSZ128rr,      X86::VMOVAPSZ128mr,    TB_FOLDED_STORE | TB_ALIGN_16 }, | 
|  | { X86::VMOVDQA32Z128rr,    X86::VMOVDQA32Z128mr,  TB_FOLDED_STORE | TB_ALIGN_16 }, | 
|  | { X86::VMOVDQA64Z128rr,    X86::VMOVDQA64Z128mr,  TB_FOLDED_STORE | TB_ALIGN_16 }, | 
|  | { X86::VMOVUPDZ128rr,      X86::VMOVUPDZ128mr,    TB_FOLDED_STORE }, | 
|  | { X86::VMOVUPSZ128rr,      X86::VMOVUPSZ128mr,    TB_FOLDED_STORE }, | 
|  | { X86::VMOVDQU8Z128rr,     X86::VMOVDQU8Z128mr,   TB_FOLDED_STORE }, | 
|  | { X86::VMOVDQU16Z128rr,    X86::VMOVDQU16Z128mr,  TB_FOLDED_STORE }, | 
|  | { X86::VMOVDQU32Z128rr,    X86::VMOVDQU32Z128mr,  TB_FOLDED_STORE }, | 
|  | { X86::VMOVDQU64Z128rr,    X86::VMOVDQU64Z128mr,  TB_FOLDED_STORE }, | 
|  |  | 
|  | // F16C foldable instructions | 
|  | { X86::VCVTPS2PHrr,        X86::VCVTPS2PHmr,      TB_FOLDED_STORE }, | 
|  | { X86::VCVTPS2PHYrr,       X86::VCVTPS2PHYmr,     TB_FOLDED_STORE } | 
|  | }; | 
|  |  | 
|  | for (X86MemoryFoldTableEntry Entry : MemoryFoldTable0) { | 
|  | AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable, | 
|  | Entry.RegOp, Entry.MemOp, TB_INDEX_0 | Entry.Flags); | 
|  | } | 
|  |  | 
|  | static const X86MemoryFoldTableEntry MemoryFoldTable1[] = { | 
|  | { X86::BSF16rr,         X86::BSF16rm,             0 }, | 
|  | { X86::BSF32rr,         X86::BSF32rm,             0 }, | 
|  | { X86::BSF64rr,         X86::BSF64rm,             0 }, | 
|  | { X86::BSR16rr,         X86::BSR16rm,             0 }, | 
|  | { X86::BSR32rr,         X86::BSR32rm,             0 }, | 
|  | { X86::BSR64rr,         X86::BSR64rm,             0 }, | 
|  | { X86::CMP16rr,         X86::CMP16rm,             0 }, | 
|  | { X86::CMP32rr,         X86::CMP32rm,             0 }, | 
|  | { X86::CMP64rr,         X86::CMP64rm,             0 }, | 
|  | { X86::CMP8rr,          X86::CMP8rm,              0 }, | 
|  | { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 }, | 
|  | { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm,        0 }, | 
|  | { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 }, | 
|  | { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm,        0 }, | 
|  | { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 }, | 
|  | { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 }, | 
|  | { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 }, | 
|  | { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 }, | 
|  | { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 }, | 
|  | { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 }, | 
|  | { X86::IMUL16rri,       X86::IMUL16rmi,           0 }, | 
|  | { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 }, | 
|  | { X86::IMUL32rri,       X86::IMUL32rmi,           0 }, | 
|  | { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 }, | 
|  | { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 }, | 
|  | { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 }, | 
|  | { X86::Int_COMISDrr,    X86::Int_COMISDrm,        0 }, | 
|  | { X86::Int_COMISSrr,    X86::Int_COMISSrm,        0 }, | 
|  | { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm,        0 }, | 
|  | { X86::CVTSD2SIrr,      X86::CVTSD2SIrm,          0 }, | 
|  | { X86::CVTSS2SI64rr,    X86::CVTSS2SI64rm,        0 }, | 
|  | { X86::CVTSS2SIrr,      X86::CVTSS2SIrm,          0 }, | 
|  | { X86::CVTDQ2PDrr,      X86::CVTDQ2PDrm,          TB_ALIGN_16 }, | 
|  | { X86::CVTDQ2PSrr,      X86::CVTDQ2PSrm,          TB_ALIGN_16 }, | 
|  | { X86::CVTPD2DQrr,      X86::CVTPD2DQrm,          TB_ALIGN_16 }, | 
|  | { X86::CVTPD2PSrr,      X86::CVTPD2PSrm,          TB_ALIGN_16 }, | 
|  | { X86::CVTPS2DQrr,      X86::CVTPS2DQrm,          TB_ALIGN_16 }, | 
|  | { X86::CVTPS2PDrr,      X86::CVTPS2PDrm,          TB_ALIGN_16 }, | 
|  | { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 }, | 
|  | { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 }, | 
|  | { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm,  0 }, | 
|  | { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm,     0 }, | 
|  | { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm,  0 }, | 
|  | { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm,     0 }, | 
|  | { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       0 }, | 
|  | { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       0 }, | 
|  | { X86::MOV16rr,         X86::MOV16rm,             0 }, | 
|  | { X86::MOV32rr,         X86::MOV32rm,             0 }, | 
|  | { X86::MOV64rr,         X86::MOV64rm,             0 }, | 
|  | { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 }, | 
|  | { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 }, | 
|  | { X86::MOV8rr,          X86::MOV8rm,              0 }, | 
|  | { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 }, | 
|  | { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 }, | 
|  | { X86::MOVDDUPrr,       X86::MOVDDUPrm,           0 }, | 
|  | { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 }, | 
|  | { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 }, | 
|  | { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 }, | 
|  | { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 }, | 
|  | { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 }, | 
|  | { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 }, | 
|  | { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 }, | 
|  | { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 }, | 
|  | { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 }, | 
|  | { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 }, | 
|  | { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 }, | 
|  | { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 }, | 
|  | { X86::MOVUPSrr,        X86::MOVUPSrm,            0 }, | 
|  | { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 }, | 
|  | { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 }, | 
|  | { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 }, | 
|  | { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 }, | 
|  | { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 }, | 
|  | { X86::PABSBrr128,      X86::PABSBrm128,          TB_ALIGN_16 }, | 
|  | { X86::PABSDrr128,      X86::PABSDrm128,          TB_ALIGN_16 }, | 
|  | { X86::PABSWrr128,      X86::PABSWrm128,          TB_ALIGN_16 }, | 
|  | { X86::PCMPESTRIrr,     X86::PCMPESTRIrm,         TB_ALIGN_16 }, | 
|  | { X86::PCMPESTRM128rr,  X86::PCMPESTRM128rm,      TB_ALIGN_16 }, | 
|  | { X86::PCMPISTRIrr,     X86::PCMPISTRIrm,         TB_ALIGN_16 }, | 
|  | { X86::PCMPISTRM128rr,  X86::PCMPISTRM128rm,      TB_ALIGN_16 }, | 
|  | { X86::PHMINPOSUWrr128, X86::PHMINPOSUWrm128,     TB_ALIGN_16 }, | 
|  | { X86::PMOVSXBDrr,      X86::PMOVSXBDrm,          TB_ALIGN_16 }, | 
|  | { X86::PMOVSXBQrr,      X86::PMOVSXBQrm,          TB_ALIGN_16 }, | 
|  | { X86::PMOVSXBWrr,      X86::PMOVSXBWrm,          TB_ALIGN_16 }, | 
|  | { X86::PMOVSXDQrr,      X86::PMOVSXDQrm,          TB_ALIGN_16 }, | 
|  | { X86::PMOVSXWDrr,      X86::PMOVSXWDrm,          TB_ALIGN_16 }, | 
|  | { X86::PMOVSXWQrr,      X86::PMOVSXWQrm,          TB_ALIGN_16 }, | 
|  | { X86::PMOVZXBDrr,      X86::PMOVZXBDrm,          TB_ALIGN_16 }, | 
|  | { X86::PMOVZXBQrr,      X86::PMOVZXBQrm,          TB_ALIGN_16 }, | 
|  | { X86::PMOVZXBWrr,      X86::PMOVZXBWrm,          TB_ALIGN_16 }, | 
|  | { X86::PMOVZXDQrr,      X86::PMOVZXDQrm,          TB_ALIGN_16 }, | 
|  | { X86::PMOVZXWDrr,      X86::PMOVZXWDrm,          TB_ALIGN_16 }, | 
|  | { X86::PMOVZXWQrr,      X86::PMOVZXWQrm,          TB_ALIGN_16 }, | 
|  | { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 }, | 
|  | { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 }, | 
|  | { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 }, | 
|  | { X86::PTESTrr,         X86::PTESTrm,             TB_ALIGN_16 }, | 
|  | { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 }, | 
|  | { X86::RCPSSr,          X86::RCPSSm,              0 }, | 
|  | { X86::RCPSSr_Int,      X86::RCPSSm_Int,          0 }, | 
|  | { X86::ROUNDPDr,        X86::ROUNDPDm,            TB_ALIGN_16 }, | 
|  | { X86::ROUNDPSr,        X86::ROUNDPSm,            TB_ALIGN_16 }, | 
|  | { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 }, | 
|  | { X86::RSQRTSSr,        X86::RSQRTSSm,            0 }, | 
|  | { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 }, | 
|  | { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 }, | 
|  | { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 }, | 
|  | { X86::SQRTSDr,         X86::SQRTSDm,             0 }, | 
|  | { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 }, | 
|  | { X86::SQRTSSr,         X86::SQRTSSm,             0 }, | 
|  | { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         0 }, | 
|  | { X86::TEST16rr,        X86::TEST16rm,            0 }, | 
|  | { X86::TEST32rr,        X86::TEST32rm,            0 }, | 
|  | { X86::TEST64rr,        X86::TEST64rm,            0 }, | 
|  | { X86::TEST8rr,         X86::TEST8rm,             0 }, | 
|  | // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 | 
|  | { X86::UCOMISDrr,       X86::UCOMISDrm,           0 }, | 
|  | { X86::UCOMISSrr,       X86::UCOMISSrm,           0 }, | 
|  |  | 
|  | // MMX version of foldable instructions | 
|  | { X86::MMX_CVTPD2PIirr,   X86::MMX_CVTPD2PIirm,   0 }, | 
|  | { X86::MMX_CVTPI2PDirr,   X86::MMX_CVTPI2PDirm,   0 }, | 
|  | { X86::MMX_CVTPS2PIirr,   X86::MMX_CVTPS2PIirm,   0 }, | 
|  | { X86::MMX_CVTTPD2PIirr,  X86::MMX_CVTTPD2PIirm,  0 }, | 
|  | { X86::MMX_CVTTPS2PIirr,  X86::MMX_CVTTPS2PIirm,  0 }, | 
|  | { X86::MMX_MOVD64to64rr,  X86::MMX_MOVQ64rm,      0 }, | 
|  | { X86::MMX_PABSBrr64,     X86::MMX_PABSBrm64,     0 }, | 
|  | { X86::MMX_PABSDrr64,     X86::MMX_PABSDrm64,     0 }, | 
|  | { X86::MMX_PABSWrr64,     X86::MMX_PABSWrm64,     0 }, | 
|  | { X86::MMX_PSHUFWri,      X86::MMX_PSHUFWmi,      0 }, | 
|  |  | 
|  | // 3DNow! version of foldable instructions | 
|  | { X86::PF2IDrr,         X86::PF2IDrm,             0 }, | 
|  | { X86::PF2IWrr,         X86::PF2IWrm,             0 }, | 
|  | { X86::PFRCPrr,         X86::PFRCPrm,             0 }, | 
|  | { X86::PFRSQRTrr,       X86::PFRSQRTrm,           0 }, | 
|  | { X86::PI2FDrr,         X86::PI2FDrm,             0 }, | 
|  | { X86::PI2FWrr,         X86::PI2FWrm,             0 }, | 
|  | { X86::PSWAPDrr,        X86::PSWAPDrm,            0 }, | 
|  |  | 
|  | // AVX 128-bit versions of foldable instructions | 
|  | { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       0 }, | 
|  | { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       0 }, | 
|  | { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      0 }, | 
|  | { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      0 }, | 
|  | { X86::VCVTTSD2SI64rr,  X86::VCVTTSD2SI64rm,      0 }, | 
|  | { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 }, | 
|  | { X86::VCVTTSD2SIrr,    X86::VCVTTSD2SIrm,        0 }, | 
|  | { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm,    0 }, | 
|  | { X86::VCVTTSS2SI64rr,  X86::VCVTTSS2SI64rm,      0 }, | 
|  | { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 }, | 
|  | { X86::VCVTTSS2SIrr,    X86::VCVTTSS2SIrm,        0 }, | 
|  | { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm,    0 }, | 
|  | { X86::VCVTSD2SI64rr,   X86::VCVTSD2SI64rm,       0 }, | 
|  | { X86::VCVTSD2SIrr,     X86::VCVTSD2SIrm,         0 }, | 
|  | { X86::VCVTSS2SI64rr,   X86::VCVTSS2SI64rm,       0 }, | 
|  | { X86::VCVTSS2SIrr,     X86::VCVTSS2SIrm,         0 }, | 
|  | { X86::VCVTDQ2PDrr,     X86::VCVTDQ2PDrm,         0 }, | 
|  | { X86::VCVTDQ2PSrr,     X86::VCVTDQ2PSrm,         0 }, | 
|  | { X86::VCVTPD2DQrr,     X86::VCVTPD2DQXrm,        0 }, | 
|  | { X86::VCVTPD2PSrr,     X86::VCVTPD2PSXrm,        0 }, | 
|  | { X86::VCVTPS2DQrr,     X86::VCVTPS2DQrm,         0 }, | 
|  | { X86::VCVTPS2PDrr,     X86::VCVTPS2PDrm,         0 }, | 
|  | { X86::VCVTTPD2DQrr,    X86::VCVTTPD2DQXrm,       0 }, | 
|  | { X86::VCVTTPS2DQrr,    X86::VCVTTPS2DQrm,        0 }, | 
|  | { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 }, | 
|  | { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 }, | 
|  | { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 }, | 
|  | { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 }, | 
|  | { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          0 }, | 
|  | { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 }, | 
|  | { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 }, | 
|  | { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 }, | 
|  | { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         0 }, | 
|  | { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         0 }, | 
|  | { X86::VMOVUPDrr,       X86::VMOVUPDrm,           0 }, | 
|  | { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 }, | 
|  | { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 }, | 
|  | { X86::VPABSBrr128,     X86::VPABSBrm128,         0 }, | 
|  | { X86::VPABSDrr128,     X86::VPABSDrm128,         0 }, | 
|  | { X86::VPABSWrr128,     X86::VPABSWrm128,         0 }, | 
|  | { X86::VPCMPESTRIrr,    X86::VPCMPESTRIrm,        0 }, | 
|  | { X86::VPCMPESTRM128rr, X86::VPCMPESTRM128rm,     0 }, | 
|  | { X86::VPCMPISTRIrr,    X86::VPCMPISTRIrm,        0 }, | 
|  | { X86::VPCMPISTRM128rr, X86::VPCMPISTRM128rm,     0 }, | 
|  | { X86::VPHMINPOSUWrr128, X86::VPHMINPOSUWrm128,   0 }, | 
|  | { X86::VPERMILPDri,     X86::VPERMILPDmi,         0 }, | 
|  | { X86::VPERMILPSri,     X86::VPERMILPSmi,         0 }, | 
|  | { X86::VPMOVSXBDrr,     X86::VPMOVSXBDrm,         0 }, | 
|  | { X86::VPMOVSXBQrr,     X86::VPMOVSXBQrm,         0 }, | 
|  | { X86::VPMOVSXBWrr,     X86::VPMOVSXBWrm,         0 }, | 
|  | { X86::VPMOVSXDQrr,     X86::VPMOVSXDQrm,         0 }, | 
|  | { X86::VPMOVSXWDrr,     X86::VPMOVSXWDrm,         0 }, | 
|  | { X86::VPMOVSXWQrr,     X86::VPMOVSXWQrm,         0 }, | 
|  | { X86::VPMOVZXBDrr,     X86::VPMOVZXBDrm,         0 }, | 
|  | { X86::VPMOVZXBQrr,     X86::VPMOVZXBQrm,         0 }, | 
|  | { X86::VPMOVZXBWrr,     X86::VPMOVZXBWrm,         0 }, | 
|  | { X86::VPMOVZXDQrr,     X86::VPMOVZXDQrm,         0 }, | 
|  | { X86::VPMOVZXWDrr,     X86::VPMOVZXWDrm,         0 }, | 
|  | { X86::VPMOVZXWQrr,     X86::VPMOVZXWQrm,         0 }, | 
|  | { X86::VPSHUFDri,       X86::VPSHUFDmi,           0 }, | 
|  | { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          0 }, | 
|  | { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          0 }, | 
|  | { X86::VPTESTrr,        X86::VPTESTrm,            0 }, | 
|  | { X86::VRCPPSr,         X86::VRCPPSm,             0 }, | 
|  | { X86::VROUNDPDr,       X86::VROUNDPDm,           0 }, | 
|  | { X86::VROUNDPSr,       X86::VROUNDPSm,           0 }, | 
|  | { X86::VRSQRTPSr,       X86::VRSQRTPSm,           0 }, | 
|  | { X86::VSQRTPDr,        X86::VSQRTPDm,            0 }, | 
|  | { X86::VSQRTPSr,        X86::VSQRTPSm,            0 }, | 
|  | { X86::VTESTPDrr,       X86::VTESTPDrm,           0 }, | 
|  | { X86::VTESTPSrr,       X86::VTESTPSrm,           0 }, | 
|  | { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 }, | 
|  | { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 }, | 
|  |  | 
|  | // AVX 256-bit foldable instructions | 
|  | { X86::VCVTDQ2PDYrr,    X86::VCVTDQ2PDYrm,        0 }, | 
|  | { X86::VCVTDQ2PSYrr,    X86::VCVTDQ2PSYrm,        0 }, | 
|  | { X86::VCVTPD2DQYrr,    X86::VCVTPD2DQYrm,        0 }, | 
|  | { X86::VCVTPD2PSYrr,    X86::VCVTPD2PSYrm,        0 }, | 
|  | { X86::VCVTPS2DQYrr,    X86::VCVTPS2DQYrm,        0 }, | 
|  | { X86::VCVTPS2PDYrr,    X86::VCVTPS2PDYrm,        0 }, | 
|  | { X86::VCVTTPD2DQYrr,   X86::VCVTTPD2DQYrm,       0 }, | 
|  | { X86::VCVTTPS2DQYrr,   X86::VCVTTPS2DQYrm,       0 }, | 
|  | { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 }, | 
|  | { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 }, | 
|  | { X86::VMOVDDUPYrr,     X86::VMOVDDUPYrm,         0 }, | 
|  | { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_32 }, | 
|  | { X86::VMOVSLDUPYrr,    X86::VMOVSLDUPYrm,        0 }, | 
|  | { X86::VMOVSHDUPYrr,    X86::VMOVSHDUPYrm,        0 }, | 
|  | { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 }, | 
|  | { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 }, | 
|  | { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        0 }, | 
|  | { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        0 }, | 
|  | { X86::VPTESTYrr,       X86::VPTESTYrm,           0 }, | 
|  | { X86::VRCPPSYr,        X86::VRCPPSYm,            0 }, | 
|  | { X86::VROUNDYPDr,      X86::VROUNDYPDm,          0 }, | 
|  | { X86::VROUNDYPSr,      X86::VROUNDYPSm,          0 }, | 
|  | { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          0 }, | 
|  | { X86::VSQRTPDYr,       X86::VSQRTPDYm,           0 }, | 
|  | { X86::VSQRTPSYr,       X86::VSQRTPSYm,           0 }, | 
|  | { X86::VTESTPDYrr,      X86::VTESTPDYrm,          0 }, | 
|  | { X86::VTESTPSYrr,      X86::VTESTPSYrm,          0 }, | 
|  |  | 
|  | // AVX2 foldable instructions | 
|  |  | 
|  | // VBROADCASTS{SD}rr register instructions were an AVX2 addition while the | 
|  | // VBROADCASTS{SD}rm memory instructions were available from AVX1. | 
|  | // TB_NO_REVERSE prevents unfolding from introducing an illegal instruction | 
|  | // on AVX1 targets. The VPBROADCAST instructions are all AVX2 instructions | 
|  | // so they don't need an equivalent limitation. | 
|  | { X86::VBROADCASTSSrr,  X86::VBROADCASTSSrm,      TB_NO_REVERSE }, | 
|  | { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm,     TB_NO_REVERSE }, | 
|  | { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm,     TB_NO_REVERSE }, | 
|  | { X86::VPABSBrr256,     X86::VPABSBrm256,         0 }, | 
|  | { X86::VPABSDrr256,     X86::VPABSDrm256,         0 }, | 
|  | { X86::VPABSWrr256,     X86::VPABSWrm256,         0 }, | 
|  | { X86::VPBROADCASTBrr,  X86::VPBROADCASTBrm,      0 }, | 
|  | { X86::VPBROADCASTBYrr, X86::VPBROADCASTBYrm,     0 }, | 
|  | { X86::VPBROADCASTDrr,  X86::VPBROADCASTDrm,      0 }, | 
|  | { X86::VPBROADCASTDYrr, X86::VPBROADCASTDYrm,     0 }, | 
|  | { X86::VPBROADCASTQrr,  X86::VPBROADCASTQrm,      0 }, | 
|  | { X86::VPBROADCASTQYrr, X86::VPBROADCASTQYrm,     0 }, | 
|  | { X86::VPBROADCASTWrr,  X86::VPBROADCASTWrm,      0 }, | 
|  | { X86::VPBROADCASTWYrr, X86::VPBROADCASTWYrm,     0 }, | 
|  | { X86::VPERMPDYri,      X86::VPERMPDYmi,          0 }, | 
|  | { X86::VPERMQYri,       X86::VPERMQYmi,           0 }, | 
|  | { X86::VPMOVSXBDYrr,    X86::VPMOVSXBDYrm,        0 }, | 
|  | { X86::VPMOVSXBQYrr,    X86::VPMOVSXBQYrm,        0 }, | 
|  | { X86::VPMOVSXBWYrr,    X86::VPMOVSXBWYrm,        0 }, | 
|  | { X86::VPMOVSXDQYrr,    X86::VPMOVSXDQYrm,        0 }, | 
|  | { X86::VPMOVSXWDYrr,    X86::VPMOVSXWDYrm,        0 }, | 
|  | { X86::VPMOVSXWQYrr,    X86::VPMOVSXWQYrm,        0 }, | 
|  | { X86::VPMOVZXBDYrr,    X86::VPMOVZXBDYrm,        0 }, | 
|  | { X86::VPMOVZXBQYrr,    X86::VPMOVZXBQYrm,        0 }, | 
|  | { X86::VPMOVZXBWYrr,    X86::VPMOVZXBWYrm,        0 }, | 
|  | { X86::VPMOVZXDQYrr,    X86::VPMOVZXDQYrm,        0 }, | 
|  | { X86::VPMOVZXWDYrr,    X86::VPMOVZXWDYrm,        0 }, | 
|  | { X86::VPMOVZXWQYrr,    X86::VPMOVZXWQYrm,        0 }, | 
|  | { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          0 }, | 
|  | { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         0 }, | 
|  | { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         0 }, | 
|  |  | 
|  | // XOP foldable instructions | 
|  | { X86::VFRCZPDrr,          X86::VFRCZPDrm,        0 }, | 
|  | { X86::VFRCZPDrrY,         X86::VFRCZPDrmY,       0 }, | 
|  | { X86::VFRCZPSrr,          X86::VFRCZPSrm,        0 }, | 
|  | { X86::VFRCZPSrrY,         X86::VFRCZPSrmY,       0 }, | 
|  | { X86::VFRCZSDrr,          X86::VFRCZSDrm,        0 }, | 
|  | { X86::VFRCZSSrr,          X86::VFRCZSSrm,        0 }, | 
|  | { X86::VPHADDBDrr,         X86::VPHADDBDrm,       0 }, | 
|  | { X86::VPHADDBQrr,         X86::VPHADDBQrm,       0 }, | 
|  | { X86::VPHADDBWrr,         X86::VPHADDBWrm,       0 }, | 
|  | { X86::VPHADDDQrr,         X86::VPHADDDQrm,       0 }, | 
|  | { X86::VPHADDWDrr,         X86::VPHADDWDrm,       0 }, | 
|  | { X86::VPHADDWQrr,         X86::VPHADDWQrm,       0 }, | 
|  | { X86::VPHADDUBDrr,        X86::VPHADDUBDrm,      0 }, | 
|  | { X86::VPHADDUBQrr,        X86::VPHADDUBQrm,      0 }, | 
|  | { X86::VPHADDUBWrr,        X86::VPHADDUBWrm,      0 }, | 
|  | { X86::VPHADDUDQrr,        X86::VPHADDUDQrm,      0 }, | 
|  | { X86::VPHADDUWDrr,        X86::VPHADDUWDrm,      0 }, | 
|  | { X86::VPHADDUWQrr,        X86::VPHADDUWQrm,      0 }, | 
|  | { X86::VPHSUBBWrr,         X86::VPHSUBBWrm,       0 }, | 
|  | { X86::VPHSUBDQrr,         X86::VPHSUBDQrm,       0 }, | 
|  | { X86::VPHSUBWDrr,         X86::VPHSUBWDrm,       0 }, | 
|  | { X86::VPROTBri,           X86::VPROTBmi,         0 }, | 
|  | { X86::VPROTBrr,           X86::VPROTBmr,         0 }, | 
|  | { X86::VPROTDri,           X86::VPROTDmi,         0 }, | 
|  | { X86::VPROTDrr,           X86::VPROTDmr,         0 }, | 
|  | { X86::VPROTQri,           X86::VPROTQmi,         0 }, | 
|  | { X86::VPROTQrr,           X86::VPROTQmr,         0 }, | 
|  | { X86::VPROTWri,           X86::VPROTWmi,         0 }, | 
|  | { X86::VPROTWrr,           X86::VPROTWmr,         0 }, | 
|  | { X86::VPSHABrr,           X86::VPSHABmr,         0 }, | 
|  | { X86::VPSHADrr,           X86::VPSHADmr,         0 }, | 
|  | { X86::VPSHAQrr,           X86::VPSHAQmr,         0 }, | 
|  | { X86::VPSHAWrr,           X86::VPSHAWmr,         0 }, | 
|  | { X86::VPSHLBrr,           X86::VPSHLBmr,         0 }, | 
|  | { X86::VPSHLDrr,           X86::VPSHLDmr,         0 }, | 
|  | { X86::VPSHLQrr,           X86::VPSHLQmr,         0 }, | 
|  | { X86::VPSHLWrr,           X86::VPSHLWmr,         0 }, | 
|  |  | 
|  | // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions | 
|  | { X86::BEXTR32rr,       X86::BEXTR32rm,           0 }, | 
|  | { X86::BEXTR64rr,       X86::BEXTR64rm,           0 }, | 
|  | { X86::BEXTRI32ri,      X86::BEXTRI32mi,          0 }, | 
|  | { X86::BEXTRI64ri,      X86::BEXTRI64mi,          0 }, | 
|  | { X86::BLCFILL32rr,     X86::BLCFILL32rm,         0 }, | 
|  | { X86::BLCFILL64rr,     X86::BLCFILL64rm,         0 }, | 
|  | { X86::BLCI32rr,        X86::BLCI32rm,            0 }, | 
|  | { X86::BLCI64rr,        X86::BLCI64rm,            0 }, | 
|  | { X86::BLCIC32rr,       X86::BLCIC32rm,           0 }, | 
|  | { X86::BLCIC64rr,       X86::BLCIC64rm,           0 }, | 
|  | { X86::BLCMSK32rr,      X86::BLCMSK32rm,          0 }, | 
|  | { X86::BLCMSK64rr,      X86::BLCMSK64rm,          0 }, | 
|  | { X86::BLCS32rr,        X86::BLCS32rm,            0 }, | 
|  | { X86::BLCS64rr,        X86::BLCS64rm,            0 }, | 
|  | { X86::BLSFILL32rr,     X86::BLSFILL32rm,         0 }, | 
|  | { X86::BLSFILL64rr,     X86::BLSFILL64rm,         0 }, | 
|  | { X86::BLSI32rr,        X86::BLSI32rm,            0 }, | 
|  | { X86::BLSI64rr,        X86::BLSI64rm,            0 }, | 
|  | { X86::BLSIC32rr,       X86::BLSIC32rm,           0 }, | 
|  | { X86::BLSIC64rr,       X86::BLSIC64rm,           0 }, | 
|  | { X86::BLSMSK32rr,      X86::BLSMSK32rm,          0 }, | 
|  | { X86::BLSMSK64rr,      X86::BLSMSK64rm,          0 }, | 
|  | { X86::BLSR32rr,        X86::BLSR32rm,            0 }, | 
|  | { X86::BLSR64rr,        X86::BLSR64rm,            0 }, | 
|  | { X86::BZHI32rr,        X86::BZHI32rm,            0 }, | 
|  | { X86::BZHI64rr,        X86::BZHI64rm,            0 }, | 
|  | { X86::LZCNT16rr,       X86::LZCNT16rm,           0 }, | 
|  | { X86::LZCNT32rr,       X86::LZCNT32rm,           0 }, | 
|  | { X86::LZCNT64rr,       X86::LZCNT64rm,           0 }, | 
|  | { X86::POPCNT16rr,      X86::POPCNT16rm,          0 }, | 
|  | { X86::POPCNT32rr,      X86::POPCNT32rm,          0 }, | 
|  | { X86::POPCNT64rr,      X86::POPCNT64rm,          0 }, | 
|  | { X86::RORX32ri,        X86::RORX32mi,            0 }, | 
|  | { X86::RORX64ri,        X86::RORX64mi,            0 }, | 
|  | { X86::SARX32rr,        X86::SARX32rm,            0 }, | 
|  | { X86::SARX64rr,        X86::SARX64rm,            0 }, | 
|  | { X86::SHRX32rr,        X86::SHRX32rm,            0 }, | 
|  | { X86::SHRX64rr,        X86::SHRX64rm,            0 }, | 
|  | { X86::SHLX32rr,        X86::SHLX32rm,            0 }, | 
|  | { X86::SHLX64rr,        X86::SHLX64rm,            0 }, | 
|  | { X86::T1MSKC32rr,      X86::T1MSKC32rm,          0 }, | 
|  | { X86::T1MSKC64rr,      X86::T1MSKC64rm,          0 }, | 
|  | { X86::TZCNT16rr,       X86::TZCNT16rm,           0 }, | 
|  | { X86::TZCNT32rr,       X86::TZCNT32rm,           0 }, | 
|  | { X86::TZCNT64rr,       X86::TZCNT64rm,           0 }, | 
|  | { X86::TZMSK32rr,       X86::TZMSK32rm,           0 }, | 
|  | { X86::TZMSK64rr,       X86::TZMSK64rm,           0 }, | 
|  |  | 
|  | // AVX-512 foldable instructions | 
|  | { X86::VMOV64toPQIZrr,  X86::VMOVQI2PQIZrm,       0 }, | 
|  | { X86::VMOVDI2SSZrr,    X86::VMOVDI2SSZrm,        0 }, | 
|  | { X86::VMOVAPDZrr,      X86::VMOVAPDZrm,          TB_ALIGN_64 }, | 
|  | { X86::VMOVAPSZrr,      X86::VMOVAPSZrm,          TB_ALIGN_64 }, | 
|  | { X86::VMOVDQA32Zrr,    X86::VMOVDQA32Zrm,        TB_ALIGN_64 }, | 
|  | { X86::VMOVDQA64Zrr,    X86::VMOVDQA64Zrm,        TB_ALIGN_64 }, | 
|  | { X86::VMOVDQU8Zrr,     X86::VMOVDQU8Zrm,         0 }, | 
|  | { X86::VMOVDQU16Zrr,    X86::VMOVDQU16Zrm,        0 }, | 
|  | { X86::VMOVDQU32Zrr,    X86::VMOVDQU32Zrm,        0 }, | 
|  | { X86::VMOVDQU64Zrr,    X86::VMOVDQU64Zrm,        0 }, | 
|  | { X86::VMOVUPDZrr,      X86::VMOVUPDZrm,          0 }, | 
|  | { X86::VMOVUPSZrr,      X86::VMOVUPSZrm,          0 }, | 
|  | { X86::VPABSDZrr,       X86::VPABSDZrm,           0 }, | 
|  | { X86::VPABSQZrr,       X86::VPABSQZrm,           0 }, | 
|  | { X86::VBROADCASTSSZr,  X86::VBROADCASTSSZm,      TB_NO_REVERSE }, | 
|  | { X86::VBROADCASTSDZr,  X86::VBROADCASTSDZm,      TB_NO_REVERSE }, | 
|  |  | 
|  | // AVX-512 foldable instructions (256-bit versions) | 
|  | { X86::VMOVAPDZ256rr,      X86::VMOVAPDZ256rm,          TB_ALIGN_32 }, | 
|  | { X86::VMOVAPSZ256rr,      X86::VMOVAPSZ256rm,          TB_ALIGN_32 }, | 
|  | { X86::VMOVDQA32Z256rr,    X86::VMOVDQA32Z256rm,        TB_ALIGN_32 }, | 
|  | { X86::VMOVDQA64Z256rr,    X86::VMOVDQA64Z256rm,        TB_ALIGN_32 }, | 
|  | { X86::VMOVDQU8Z256rr,     X86::VMOVDQU8Z256rm,         0 }, | 
|  | { X86::VMOVDQU16Z256rr,    X86::VMOVDQU16Z256rm,        0 }, | 
|  | { X86::VMOVDQU32Z256rr,    X86::VMOVDQU32Z256rm,        0 }, | 
|  | { X86::VMOVDQU64Z256rr,    X86::VMOVDQU64Z256rm,        0 }, | 
|  | { X86::VMOVUPDZ256rr,      X86::VMOVUPDZ256rm,          0 }, | 
|  | { X86::VMOVUPSZ256rr,      X86::VMOVUPSZ256rm,          0 }, | 
|  | { X86::VBROADCASTSSZ256r,  X86::VBROADCASTSSZ256m,      TB_NO_REVERSE }, | 
|  | { X86::VBROADCASTSDZ256r,  X86::VBROADCASTSDZ256m,      TB_NO_REVERSE }, | 
|  |  | 
|  | // AVX-512 foldable instructions (256-bit versions) | 
|  | { X86::VMOVAPDZ128rr,      X86::VMOVAPDZ128rm,          TB_ALIGN_16 }, | 
|  | { X86::VMOVAPSZ128rr,      X86::VMOVAPSZ128rm,          TB_ALIGN_16 }, | 
|  | { X86::VMOVDQA32Z128rr,    X86::VMOVDQA32Z128rm,        TB_ALIGN_16 }, | 
|  | { X86::VMOVDQA64Z128rr,    X86::VMOVDQA64Z128rm,        TB_ALIGN_16 }, | 
|  | { X86::VMOVDQU8Z128rr,     X86::VMOVDQU8Z128rm,         0 }, | 
|  | { X86::VMOVDQU16Z128rr,    X86::VMOVDQU16Z128rm,        0 }, | 
|  | { X86::VMOVDQU32Z128rr,    X86::VMOVDQU32Z128rm,        0 }, | 
|  | { X86::VMOVDQU64Z128rr,    X86::VMOVDQU64Z128rm,        0 }, | 
|  | { X86::VMOVUPDZ128rr,      X86::VMOVUPDZ128rm,          0 }, | 
|  | { X86::VMOVUPSZ128rr,      X86::VMOVUPSZ128rm,          0 }, | 
|  | { X86::VBROADCASTSSZ128r,  X86::VBROADCASTSSZ128m,      TB_NO_REVERSE }, | 
|  |  | 
|  | // F16C foldable instructions | 
|  | { X86::VCVTPH2PSrr,        X86::VCVTPH2PSrm,            0 }, | 
|  | { X86::VCVTPH2PSYrr,       X86::VCVTPH2PSYrm,           0 }, | 
|  |  | 
|  | // AES foldable instructions | 
|  | { X86::AESIMCrr,              X86::AESIMCrm,              TB_ALIGN_16 }, | 
|  | { X86::AESKEYGENASSIST128rr,  X86::AESKEYGENASSIST128rm,  TB_ALIGN_16 }, | 
|  | { X86::VAESIMCrr,             X86::VAESIMCrm,             0 }, | 
|  | { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, 0 } | 
|  | }; | 
|  |  | 
|  | for (X86MemoryFoldTableEntry Entry : MemoryFoldTable1) { | 
|  | AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable, | 
|  | Entry.RegOp, Entry.MemOp, | 
|  | // Index 1, folded load | 
|  | Entry.Flags | TB_INDEX_1 | TB_FOLDED_LOAD); | 
|  | } | 
|  |  | 
|  | static const X86MemoryFoldTableEntry MemoryFoldTable2[] = { | 
|  | { X86::ADC32rr,         X86::ADC32rm,       0 }, | 
|  | { X86::ADC64rr,         X86::ADC64rm,       0 }, | 
|  | { X86::ADD16rr,         X86::ADD16rm,       0 }, | 
|  | { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE }, | 
|  | { X86::ADD32rr,         X86::ADD32rm,       0 }, | 
|  | { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE }, | 
|  | { X86::ADD64rr,         X86::ADD64rm,       0 }, | 
|  | { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE }, | 
|  | { X86::ADD8rr,          X86::ADD8rm,        0 }, | 
|  | { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 }, | 
|  | { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 }, | 
|  | { X86::ADDSDrr,         X86::ADDSDrm,       0 }, | 
|  | { X86::ADDSDrr_Int,     X86::ADDSDrm_Int,   0 }, | 
|  | { X86::ADDSSrr,         X86::ADDSSrm,       0 }, | 
|  | { X86::ADDSSrr_Int,     X86::ADDSSrm_Int,   0 }, | 
|  | { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 }, | 
|  | { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 }, | 
|  | { X86::AND16rr,         X86::AND16rm,       0 }, | 
|  | { X86::AND32rr,         X86::AND32rm,       0 }, | 
|  | { X86::AND64rr,         X86::AND64rm,       0 }, | 
|  | { X86::AND8rr,          X86::AND8rm,        0 }, | 
|  | { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 }, | 
|  | { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 }, | 
|  | { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 }, | 
|  | { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 }, | 
|  | { X86::BLENDPDrri,      X86::BLENDPDrmi,    TB_ALIGN_16 }, | 
|  | { X86::BLENDPSrri,      X86::BLENDPSrmi,    TB_ALIGN_16 }, | 
|  | { X86::BLENDVPDrr0,     X86::BLENDVPDrm0,   TB_ALIGN_16 }, | 
|  | { X86::BLENDVPSrr0,     X86::BLENDVPSrm0,   TB_ALIGN_16 }, | 
|  | { X86::CMOVA16rr,       X86::CMOVA16rm,     0 }, | 
|  | { X86::CMOVA32rr,       X86::CMOVA32rm,     0 }, | 
|  | { X86::CMOVA64rr,       X86::CMOVA64rm,     0 }, | 
|  | { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 }, | 
|  | { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 }, | 
|  | { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 }, | 
|  | { X86::CMOVB16rr,       X86::CMOVB16rm,     0 }, | 
|  | { X86::CMOVB32rr,       X86::CMOVB32rm,     0 }, | 
|  | { X86::CMOVB64rr,       X86::CMOVB64rm,     0 }, | 
|  | { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 }, | 
|  | { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 }, | 
|  | { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 }, | 
|  | { X86::CMOVE16rr,       X86::CMOVE16rm,     0 }, | 
|  | { X86::CMOVE32rr,       X86::CMOVE32rm,     0 }, | 
|  | { X86::CMOVE64rr,       X86::CMOVE64rm,     0 }, | 
|  | { X86::CMOVG16rr,       X86::CMOVG16rm,     0 }, | 
|  | { X86::CMOVG32rr,       X86::CMOVG32rm,     0 }, | 
|  | { X86::CMOVG64rr,       X86::CMOVG64rm,     0 }, | 
|  | { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 }, | 
|  | { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 }, | 
|  | { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 }, | 
|  | { X86::CMOVL16rr,       X86::CMOVL16rm,     0 }, | 
|  | { X86::CMOVL32rr,       X86::CMOVL32rm,     0 }, | 
|  | { X86::CMOVL64rr,       X86::CMOVL64rm,     0 }, | 
|  | { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 }, | 
|  | { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 }, | 
|  | { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 }, | 
|  | { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 }, | 
|  | { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 }, | 
|  | { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 }, | 
|  | { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 }, | 
|  | { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 }, | 
|  | { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 }, | 
|  | { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 }, | 
|  | { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 }, | 
|  | { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 }, | 
|  | { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 }, | 
|  | { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 }, | 
|  | { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 }, | 
|  | { X86::CMOVO16rr,       X86::CMOVO16rm,     0 }, | 
|  | { X86::CMOVO32rr,       X86::CMOVO32rm,     0 }, | 
|  | { X86::CMOVO64rr,       X86::CMOVO64rm,     0 }, | 
|  | { X86::CMOVP16rr,       X86::CMOVP16rm,     0 }, | 
|  | { X86::CMOVP32rr,       X86::CMOVP32rm,     0 }, | 
|  | { X86::CMOVP64rr,       X86::CMOVP64rm,     0 }, | 
|  | { X86::CMOVS16rr,       X86::CMOVS16rm,     0 }, | 
|  | { X86::CMOVS32rr,       X86::CMOVS32rm,     0 }, | 
|  | { X86::CMOVS64rr,       X86::CMOVS64rm,     0 }, | 
|  | { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 }, | 
|  | { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 }, | 
|  | { X86::CMPSDrr,         X86::CMPSDrm,       0 }, | 
|  | { X86::CMPSSrr,         X86::CMPSSrm,       0 }, | 
|  | { X86::CRC32r32r32,     X86::CRC32r32m32,   0 }, | 
|  | { X86::CRC32r64r64,     X86::CRC32r64m64,   0 }, | 
|  | { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 }, | 
|  | { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 }, | 
|  | { X86::DIVSDrr,         X86::DIVSDrm,       0 }, | 
|  | { X86::DIVSDrr_Int,     X86::DIVSDrm_Int,   0 }, | 
|  | { X86::DIVSSrr,         X86::DIVSSrm,       0 }, | 
|  | { X86::DIVSSrr_Int,     X86::DIVSSrm_Int,   0 }, | 
|  | { X86::DPPDrri,         X86::DPPDrmi,       TB_ALIGN_16 }, | 
|  | { X86::DPPSrri,         X86::DPPSrmi,       TB_ALIGN_16 }, | 
|  |  | 
|  | // Do not fold Fs* scalar logical op loads because there are no scalar | 
|  | // load variants for these instructions. When folded, the load is required | 
|  | // to be 128-bits, so the load size would not match. | 
|  |  | 
|  | { X86::FvANDNPDrr,      X86::FvANDNPDrm,    TB_ALIGN_16 }, | 
|  | { X86::FvANDNPSrr,      X86::FvANDNPSrm,    TB_ALIGN_16 }, | 
|  | { X86::FvANDPDrr,       X86::FvANDPDrm,     TB_ALIGN_16 }, | 
|  | { X86::FvANDPSrr,       X86::FvANDPSrm,     TB_ALIGN_16 }, | 
|  | { X86::FvORPDrr,        X86::FvORPDrm,      TB_ALIGN_16 }, | 
|  | { X86::FvORPSrr,        X86::FvORPSrm,      TB_ALIGN_16 }, | 
|  | { X86::FvXORPDrr,       X86::FvXORPDrm,     TB_ALIGN_16 }, | 
|  | { X86::FvXORPSrr,       X86::FvXORPSrm,     TB_ALIGN_16 }, | 
|  | { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 }, | 
|  | { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 }, | 
|  | { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 }, | 
|  | { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 }, | 
|  | { X86::IMUL16rr,        X86::IMUL16rm,      0 }, | 
|  | { X86::IMUL32rr,        X86::IMUL32rm,      0 }, | 
|  | { X86::IMUL64rr,        X86::IMUL64rm,      0 }, | 
|  | { X86::Int_CMPSDrr,     X86::Int_CMPSDrm,   0 }, | 
|  | { X86::Int_CMPSSrr,     X86::Int_CMPSSrm,   0 }, | 
|  | { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm,      0 }, | 
|  | { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm,    0 }, | 
|  | { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm,      0 }, | 
|  | { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm,    0 }, | 
|  | { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 }, | 
|  | { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 }, | 
|  | { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 }, | 
|  | { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 }, | 
|  | { X86::MAXSDrr,         X86::MAXSDrm,       0 }, | 
|  | { X86::MAXSDrr_Int,     X86::MAXSDrm_Int,   0 }, | 
|  | { X86::MAXSSrr,         X86::MAXSSrm,       0 }, | 
|  | { X86::MAXSSrr_Int,     X86::MAXSSrm_Int,   0 }, | 
|  | { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 }, | 
|  | { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 }, | 
|  | { X86::MINSDrr,         X86::MINSDrm,       0 }, | 
|  | { X86::MINSDrr_Int,     X86::MINSDrm_Int,   0 }, | 
|  | { X86::MINSSrr,         X86::MINSSrm,       0 }, | 
|  | { X86::MINSSrr_Int,     X86::MINSSrm_Int,   0 }, | 
|  | { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 }, | 
|  | { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 }, | 
|  | { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 }, | 
|  | { X86::MULSDrr,         X86::MULSDrm,       0 }, | 
|  | { X86::MULSDrr_Int,     X86::MULSDrm_Int,   0 }, | 
|  | { X86::MULSSrr,         X86::MULSSrm,       0 }, | 
|  | { X86::MULSSrr_Int,     X86::MULSSrm_Int,   0 }, | 
|  | { X86::OR16rr,          X86::OR16rm,        0 }, | 
|  | { X86::OR32rr,          X86::OR32rm,        0 }, | 
|  | { X86::OR64rr,          X86::OR64rm,        0 }, | 
|  | { X86::OR8rr,           X86::OR8rm,         0 }, | 
|  | { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 }, | 
|  | { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 }, | 
|  | { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 }, | 
|  | { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 }, | 
|  | { X86::PACKUSDWrr,      X86::PACKUSDWrm,    TB_ALIGN_16 }, | 
|  | { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 }, | 
|  | { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 }, | 
|  | { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 }, | 
|  | { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 }, | 
|  | { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 }, | 
|  | { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 }, | 
|  | { X86::PADDUSBrr,       X86::PADDUSBrm,     TB_ALIGN_16 }, | 
|  | { X86::PADDUSWrr,       X86::PADDUSWrm,     TB_ALIGN_16 }, | 
|  | { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 }, | 
|  | { X86::PALIGNR128rr,    X86::PALIGNR128rm,  TB_ALIGN_16 }, | 
|  | { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 }, | 
|  | { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 }, | 
|  | { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 }, | 
|  | { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 }, | 
|  | { X86::PBLENDVBrr0,     X86::PBLENDVBrm0,   TB_ALIGN_16 }, | 
|  | { X86::PBLENDWrri,      X86::PBLENDWrmi,    TB_ALIGN_16 }, | 
|  | { X86::PCLMULQDQrr,     X86::PCLMULQDQrm,   TB_ALIGN_16 }, | 
|  | { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 }, | 
|  | { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 }, | 
|  | { X86::PCMPEQQrr,       X86::PCMPEQQrm,     TB_ALIGN_16 }, | 
|  | { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 }, | 
|  | { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 }, | 
|  | { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 }, | 
|  | { X86::PCMPGTQrr,       X86::PCMPGTQrm,     TB_ALIGN_16 }, | 
|  | { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 }, | 
|  | { X86::PHADDDrr,        X86::PHADDDrm,      TB_ALIGN_16 }, | 
|  | { X86::PHADDWrr,        X86::PHADDWrm,      TB_ALIGN_16 }, | 
|  | { X86::PHADDSWrr128,    X86::PHADDSWrm128,  TB_ALIGN_16 }, | 
|  | { X86::PHSUBDrr,        X86::PHSUBDrm,      TB_ALIGN_16 }, | 
|  | { X86::PHSUBSWrr128,    X86::PHSUBSWrm128,  TB_ALIGN_16 }, | 
|  | { X86::PHSUBWrr,        X86::PHSUBWrm,      TB_ALIGN_16 }, | 
|  | { X86::PINSRBrr,        X86::PINSRBrm,      0 }, | 
|  | { X86::PINSRDrr,        X86::PINSRDrm,      0 }, | 
|  | { X86::PINSRQrr,        X86::PINSRQrm,      0 }, | 
|  | { X86::PINSRWrri,       X86::PINSRWrmi,     0 }, | 
|  | { X86::PMADDUBSWrr128,  X86::PMADDUBSWrm128, TB_ALIGN_16 }, | 
|  | { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 }, | 
|  | { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 }, | 
|  | { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 }, | 
|  | { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 }, | 
|  | { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 }, | 
|  | { X86::PMINSBrr,        X86::PMINSBrm,      TB_ALIGN_16 }, | 
|  | { X86::PMINSDrr,        X86::PMINSDrm,      TB_ALIGN_16 }, | 
|  | { X86::PMINUDrr,        X86::PMINUDrm,      TB_ALIGN_16 }, | 
|  | { X86::PMINUWrr,        X86::PMINUWrm,      TB_ALIGN_16 }, | 
|  | { X86::PMAXSBrr,        X86::PMAXSBrm,      TB_ALIGN_16 }, | 
|  | { X86::PMAXSDrr,        X86::PMAXSDrm,      TB_ALIGN_16 }, | 
|  | { X86::PMAXUDrr,        X86::PMAXUDrm,      TB_ALIGN_16 }, | 
|  | { X86::PMAXUWrr,        X86::PMAXUWrm,      TB_ALIGN_16 }, | 
|  | { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 }, | 
|  | { X86::PMULHRSWrr128,   X86::PMULHRSWrm128, TB_ALIGN_16 }, | 
|  | { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 }, | 
|  | { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 }, | 
|  | { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 }, | 
|  | { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 }, | 
|  | { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 }, | 
|  | { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 }, | 
|  | { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 }, | 
|  | { X86::PSHUFBrr,        X86::PSHUFBrm,      TB_ALIGN_16 }, | 
|  | { X86::PSIGNBrr,        X86::PSIGNBrm,      TB_ALIGN_16 }, | 
|  | { X86::PSIGNWrr,        X86::PSIGNWrm,      TB_ALIGN_16 }, | 
|  | { X86::PSIGNDrr,        X86::PSIGNDrm,      TB_ALIGN_16 }, | 
|  | { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 }, | 
|  | { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 }, | 
|  | { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 }, | 
|  | { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 }, | 
|  | { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 }, | 
|  | { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 }, | 
|  | { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 }, | 
|  | { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 }, | 
|  | { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 }, | 
|  | { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 }, | 
|  | { X86::PSUBQrr,         X86::PSUBQrm,       TB_ALIGN_16 }, | 
|  | { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 }, | 
|  | { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 }, | 
|  | { X86::PSUBUSBrr,       X86::PSUBUSBrm,     TB_ALIGN_16 }, | 
|  | { X86::PSUBUSWrr,       X86::PSUBUSWrm,     TB_ALIGN_16 }, | 
|  | { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 }, | 
|  | { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 }, | 
|  | { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 }, | 
|  | { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 }, | 
|  | { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 }, | 
|  | { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 }, | 
|  | { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 }, | 
|  | { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 }, | 
|  | { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 }, | 
|  | { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 }, | 
|  | { X86::ROUNDSDr,        X86::ROUNDSDm,      0 }, | 
|  | { X86::ROUNDSSr,        X86::ROUNDSSm,      0 }, | 
|  | { X86::SBB32rr,         X86::SBB32rm,       0 }, | 
|  | { X86::SBB64rr,         X86::SBB64rm,       0 }, | 
|  | { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 }, | 
|  | { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 }, | 
|  | { X86::SUB16rr,         X86::SUB16rm,       0 }, | 
|  | { X86::SUB32rr,         X86::SUB32rm,       0 }, | 
|  | { X86::SUB64rr,         X86::SUB64rm,       0 }, | 
|  | { X86::SUB8rr,          X86::SUB8rm,        0 }, | 
|  | { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 }, | 
|  | { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 }, | 
|  | { X86::SUBSDrr,         X86::SUBSDrm,       0 }, | 
|  | { X86::SUBSDrr_Int,     X86::SUBSDrm_Int,   0 }, | 
|  | { X86::SUBSSrr,         X86::SUBSSrm,       0 }, | 
|  | { X86::SUBSSrr_Int,     X86::SUBSSrm_Int,   0 }, | 
|  | // FIXME: TEST*rr -> swapped operand of TEST*mr. | 
|  | { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 }, | 
|  | { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 }, | 
|  | { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 }, | 
|  | { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 }, | 
|  | { X86::XOR16rr,         X86::XOR16rm,       0 }, | 
|  | { X86::XOR32rr,         X86::XOR32rm,       0 }, | 
|  | { X86::XOR64rr,         X86::XOR64rm,       0 }, | 
|  | { X86::XOR8rr,          X86::XOR8rm,        0 }, | 
|  | { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 }, | 
|  | { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 }, | 
|  |  | 
|  | // MMX version of foldable instructions | 
|  | { X86::MMX_CVTPI2PSirr,   X86::MMX_CVTPI2PSirm,   0 }, | 
|  | { X86::MMX_PACKSSDWirr,   X86::MMX_PACKSSDWirm,   0 }, | 
|  | { X86::MMX_PACKSSWBirr,   X86::MMX_PACKSSWBirm,   0 }, | 
|  | { X86::MMX_PACKUSWBirr,   X86::MMX_PACKUSWBirm,   0 }, | 
|  | { X86::MMX_PADDBirr,      X86::MMX_PADDBirm,      0 }, | 
|  | { X86::MMX_PADDDirr,      X86::MMX_PADDDirm,      0 }, | 
|  | { X86::MMX_PADDQirr,      X86::MMX_PADDQirm,      0 }, | 
|  | { X86::MMX_PADDSBirr,     X86::MMX_PADDSBirm,     0 }, | 
|  | { X86::MMX_PADDSWirr,     X86::MMX_PADDSWirm,     0 }, | 
|  | { X86::MMX_PADDUSBirr,    X86::MMX_PADDUSBirm,    0 }, | 
|  | { X86::MMX_PADDUSWirr,    X86::MMX_PADDUSWirm,    0 }, | 
|  | { X86::MMX_PADDWirr,      X86::MMX_PADDWirm,      0 }, | 
|  | { X86::MMX_PALIGNR64irr,  X86::MMX_PALIGNR64irm,  0 }, | 
|  | { X86::MMX_PANDNirr,      X86::MMX_PANDNirm,      0 }, | 
|  | { X86::MMX_PANDirr,       X86::MMX_PANDirm,       0 }, | 
|  | { X86::MMX_PAVGBirr,      X86::MMX_PAVGBirm,      0 }, | 
|  | { X86::MMX_PAVGWirr,      X86::MMX_PAVGWirm,      0 }, | 
|  | { X86::MMX_PCMPEQBirr,    X86::MMX_PCMPEQBirm,    0 }, | 
|  | { X86::MMX_PCMPEQDirr,    X86::MMX_PCMPEQDirm,    0 }, | 
|  | { X86::MMX_PCMPEQWirr,    X86::MMX_PCMPEQWirm,    0 }, | 
|  | { X86::MMX_PCMPGTBirr,    X86::MMX_PCMPGTBirm,    0 }, | 
|  | { X86::MMX_PCMPGTDirr,    X86::MMX_PCMPGTDirm,    0 }, | 
|  | { X86::MMX_PCMPGTWirr,    X86::MMX_PCMPGTWirm,    0 }, | 
|  | { X86::MMX_PHADDSWrr64,   X86::MMX_PHADDSWrm64,   0 }, | 
|  | { X86::MMX_PHADDWrr64,    X86::MMX_PHADDWrm64,    0 }, | 
|  | { X86::MMX_PHADDrr64,     X86::MMX_PHADDrm64,     0 }, | 
|  | { X86::MMX_PHSUBDrr64,    X86::MMX_PHSUBDrm64,    0 }, | 
|  | { X86::MMX_PHSUBSWrr64,   X86::MMX_PHSUBSWrm64,   0 }, | 
|  | { X86::MMX_PHSUBWrr64,    X86::MMX_PHSUBWrm64,    0 }, | 
|  | { X86::MMX_PINSRWirri,    X86::MMX_PINSRWirmi,    0 }, | 
|  | { X86::MMX_PMADDUBSWrr64, X86::MMX_PMADDUBSWrm64, 0 }, | 
|  | { X86::MMX_PMADDWDirr,    X86::MMX_PMADDWDirm,    0 }, | 
|  | { X86::MMX_PMAXSWirr,     X86::MMX_PMAXSWirm,     0 }, | 
|  | { X86::MMX_PMAXUBirr,     X86::MMX_PMAXUBirm,     0 }, | 
|  | { X86::MMX_PMINSWirr,     X86::MMX_PMINSWirm,     0 }, | 
|  | { X86::MMX_PMINUBirr,     X86::MMX_PMINUBirm,     0 }, | 
|  | { X86::MMX_PMULHRSWrr64,  X86::MMX_PMULHRSWrm64,  0 }, | 
|  | { X86::MMX_PMULHUWirr,    X86::MMX_PMULHUWirm,    0 }, | 
|  | { X86::MMX_PMULHWirr,     X86::MMX_PMULHWirm,     0 }, | 
|  | { X86::MMX_PMULLWirr,     X86::MMX_PMULLWirm,     0 }, | 
|  | { X86::MMX_PMULUDQirr,    X86::MMX_PMULUDQirm,    0 }, | 
|  | { X86::MMX_PORirr,        X86::MMX_PORirm,        0 }, | 
|  | { X86::MMX_PSADBWirr,     X86::MMX_PSADBWirm,     0 }, | 
|  | { X86::MMX_PSHUFBrr64,    X86::MMX_PSHUFBrm64,    0 }, | 
|  | { X86::MMX_PSIGNBrr64,    X86::MMX_PSIGNBrm64,    0 }, | 
|  | { X86::MMX_PSIGNDrr64,    X86::MMX_PSIGNDrm64,    0 }, | 
|  | { X86::MMX_PSIGNWrr64,    X86::MMX_PSIGNWrm64,    0 }, | 
|  | { X86::MMX_PSLLDrr,       X86::MMX_PSLLDrm,       0 }, | 
|  | { X86::MMX_PSLLQrr,       X86::MMX_PSLLQrm,       0 }, | 
|  | { X86::MMX_PSLLWrr,       X86::MMX_PSLLWrm,       0 }, | 
|  | { X86::MMX_PSRADrr,       X86::MMX_PSRADrm,       0 }, | 
|  | { X86::MMX_PSRAWrr,       X86::MMX_PSRAWrm,       0 }, | 
|  | { X86::MMX_PSRLDrr,       X86::MMX_PSRLDrm,       0 }, | 
|  | { X86::MMX_PSRLQrr,       X86::MMX_PSRLQrm,       0 }, | 
|  | { X86::MMX_PSRLWrr,       X86::MMX_PSRLWrm,       0 }, | 
|  | { X86::MMX_PSUBBirr,      X86::MMX_PSUBBirm,      0 }, | 
|  | { X86::MMX_PSUBDirr,      X86::MMX_PSUBDirm,      0 }, | 
|  | { X86::MMX_PSUBQirr,      X86::MMX_PSUBQirm,      0 }, | 
|  | { X86::MMX_PSUBSBirr,     X86::MMX_PSUBSBirm,     0 }, | 
|  | { X86::MMX_PSUBSWirr,     X86::MMX_PSUBSWirm,     0 }, | 
|  | { X86::MMX_PSUBUSBirr,    X86::MMX_PSUBUSBirm,    0 }, | 
|  | { X86::MMX_PSUBUSWirr,    X86::MMX_PSUBUSWirm,    0 }, | 
|  | { X86::MMX_PSUBWirr,      X86::MMX_PSUBWirm,      0 }, | 
|  | { X86::MMX_PUNPCKHBWirr,  X86::MMX_PUNPCKHBWirm,  0 }, | 
|  | { X86::MMX_PUNPCKHDQirr,  X86::MMX_PUNPCKHDQirm,  0 }, | 
|  | { X86::MMX_PUNPCKHWDirr,  X86::MMX_PUNPCKHWDirm,  0 }, | 
|  | { X86::MMX_PUNPCKLBWirr,  X86::MMX_PUNPCKLBWirm,  0 }, | 
|  | { X86::MMX_PUNPCKLDQirr,  X86::MMX_PUNPCKLDQirm,  0 }, | 
|  | { X86::MMX_PUNPCKLWDirr,  X86::MMX_PUNPCKLWDirm,  0 }, | 
|  | { X86::MMX_PXORirr,       X86::MMX_PXORirm,       0 }, | 
|  |  | 
|  | // 3DNow! version of foldable instructions | 
|  | { X86::PAVGUSBrr,         X86::PAVGUSBrm,         0 }, | 
|  | { X86::PFACCrr,           X86::PFACCrm,           0 }, | 
|  | { X86::PFADDrr,           X86::PFADDrm,           0 }, | 
|  | { X86::PFCMPEQrr,         X86::PFCMPEQrm,         0 }, | 
|  | { X86::PFCMPGErr,         X86::PFCMPGErm,         0 }, | 
|  | { X86::PFCMPGTrr,         X86::PFCMPGTrm,         0 }, | 
|  | { X86::PFMAXrr,           X86::PFMAXrm,           0 }, | 
|  | { X86::PFMINrr,           X86::PFMINrm,           0 }, | 
|  | { X86::PFMULrr,           X86::PFMULrm,           0 }, | 
|  | { X86::PFNACCrr,          X86::PFNACCrm,          0 }, | 
|  | { X86::PFPNACCrr,         X86::PFPNACCrm,         0 }, | 
|  | { X86::PFRCPIT1rr,        X86::PFRCPIT1rm,        0 }, | 
|  | { X86::PFRCPIT2rr,        X86::PFRCPIT2rm,        0 }, | 
|  | { X86::PFRSQIT1rr,        X86::PFRSQIT1rm,        0 }, | 
|  | { X86::PFSUBrr,           X86::PFSUBrm,           0 }, | 
|  | { X86::PFSUBRrr,          X86::PFSUBRrm,          0 }, | 
|  | { X86::PMULHRWrr,         X86::PMULHRWrm,         0 }, | 
|  |  | 
|  | // AVX 128-bit versions of foldable instructions | 
|  | { X86::VCVTSD2SSrr,       X86::VCVTSD2SSrm,        0 }, | 
|  | { X86::Int_VCVTSD2SSrr,   X86::Int_VCVTSD2SSrm,    0 }, | 
|  | { X86::VCVTSI2SD64rr,     X86::VCVTSI2SD64rm,      0 }, | 
|  | { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm,  0 }, | 
|  | { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 }, | 
|  | { X86::Int_VCVTSI2SDrr,   X86::Int_VCVTSI2SDrm,    0 }, | 
|  | { X86::VCVTSI2SS64rr,     X86::VCVTSI2SS64rm,      0 }, | 
|  | { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm,  0 }, | 
|  | { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 }, | 
|  | { X86::Int_VCVTSI2SSrr,   X86::Int_VCVTSI2SSrm,    0 }, | 
|  | { X86::VCVTSS2SDrr,       X86::VCVTSS2SDrm,        0 }, | 
|  | { X86::Int_VCVTSS2SDrr,   X86::Int_VCVTSS2SDrm,    0 }, | 
|  | { X86::VRCPSSr,           X86::VRCPSSm,            0 }, | 
|  | { X86::VRCPSSr_Int,       X86::VRCPSSm_Int,        0 }, | 
|  | { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 }, | 
|  | { X86::VRSQRTSSr_Int,     X86::VRSQRTSSm_Int,      0 }, | 
|  | { X86::VSQRTSDr,          X86::VSQRTSDm,           0 }, | 
|  | { X86::VSQRTSDr_Int,      X86::VSQRTSDm_Int,       0 }, | 
|  | { X86::VSQRTSSr,          X86::VSQRTSSm,           0 }, | 
|  | { X86::VSQRTSSr_Int,      X86::VSQRTSSm_Int,       0 }, | 
|  | { X86::VADDPDrr,          X86::VADDPDrm,           0 }, | 
|  | { X86::VADDPSrr,          X86::VADDPSrm,           0 }, | 
|  | { X86::VADDSDrr,          X86::VADDSDrm,           0 }, | 
|  | { X86::VADDSDrr_Int,      X86::VADDSDrm_Int,       0 }, | 
|  | { X86::VADDSSrr,          X86::VADDSSrm,           0 }, | 
|  | { X86::VADDSSrr_Int,      X86::VADDSSrm_Int,       0 }, | 
|  | { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        0 }, | 
|  | { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        0 }, | 
|  | { X86::VANDNPDrr,         X86::VANDNPDrm,          0 }, | 
|  | { X86::VANDNPSrr,         X86::VANDNPSrm,          0 }, | 
|  | { X86::VANDPDrr,          X86::VANDPDrm,           0 }, | 
|  | { X86::VANDPSrr,          X86::VANDPSrm,           0 }, | 
|  | { X86::VBLENDPDrri,       X86::VBLENDPDrmi,        0 }, | 
|  | { X86::VBLENDPSrri,       X86::VBLENDPSrmi,        0 }, | 
|  | { X86::VBLENDVPDrr,       X86::VBLENDVPDrm,        0 }, | 
|  | { X86::VBLENDVPSrr,       X86::VBLENDVPSrm,        0 }, | 
|  | { X86::VCMPPDrri,         X86::VCMPPDrmi,          0 }, | 
|  | { X86::VCMPPSrri,         X86::VCMPPSrmi,          0 }, | 
|  | { X86::VCMPSDrr,          X86::VCMPSDrm,           0 }, | 
|  | { X86::VCMPSSrr,          X86::VCMPSSrm,           0 }, | 
|  | { X86::VDIVPDrr,          X86::VDIVPDrm,           0 }, | 
|  | { X86::VDIVPSrr,          X86::VDIVPSrm,           0 }, | 
|  | { X86::VDIVSDrr,          X86::VDIVSDrm,           0 }, | 
|  | { X86::VDIVSDrr_Int,      X86::VDIVSDrm_Int,       0 }, | 
|  | { X86::VDIVSSrr,          X86::VDIVSSrm,           0 }, | 
|  | { X86::VDIVSSrr_Int,      X86::VDIVSSrm_Int,       0 }, | 
|  | { X86::VDPPDrri,          X86::VDPPDrmi,           0 }, | 
|  | { X86::VDPPSrri,          X86::VDPPSrmi,           0 }, | 
|  | // Do not fold VFs* loads because there are no scalar load variants for | 
|  | // these instructions. When folded, the load is required to be 128-bits, so | 
|  | // the load size would not match. | 
|  | { X86::VFvANDNPDrr,       X86::VFvANDNPDrm,        0 }, | 
|  | { X86::VFvANDNPSrr,       X86::VFvANDNPSrm,        0 }, | 
|  | { X86::VFvANDPDrr,        X86::VFvANDPDrm,         0 }, | 
|  | { X86::VFvANDPSrr,        X86::VFvANDPSrm,         0 }, | 
|  | { X86::VFvORPDrr,         X86::VFvORPDrm,          0 }, | 
|  | { X86::VFvORPSrr,         X86::VFvORPSrm,          0 }, | 
|  | { X86::VFvXORPDrr,        X86::VFvXORPDrm,         0 }, | 
|  | { X86::VFvXORPSrr,        X86::VFvXORPSrm,         0 }, | 
|  | { X86::VHADDPDrr,         X86::VHADDPDrm,          0 }, | 
|  | { X86::VHADDPSrr,         X86::VHADDPSrm,          0 }, | 
|  | { X86::VHSUBPDrr,         X86::VHSUBPDrm,          0 }, | 
|  | { X86::VHSUBPSrr,         X86::VHSUBPSrm,          0 }, | 
|  | { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 }, | 
|  | { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 }, | 
|  | { X86::VMAXPDrr,          X86::VMAXPDrm,           0 }, | 
|  | { X86::VMAXPSrr,          X86::VMAXPSrm,           0 }, | 
|  | { X86::VMAXSDrr,          X86::VMAXSDrm,           0 }, | 
|  | { X86::VMAXSDrr_Int,      X86::VMAXSDrm_Int,       0 }, | 
|  | { X86::VMAXSSrr,          X86::VMAXSSrm,           0 }, | 
|  | { X86::VMAXSSrr_Int,      X86::VMAXSSrm_Int,       0 }, | 
|  | { X86::VMINPDrr,          X86::VMINPDrm,           0 }, | 
|  | { X86::VMINPSrr,          X86::VMINPSrm,           0 }, | 
|  | { X86::VMINSDrr,          X86::VMINSDrm,           0 }, | 
|  | { X86::VMINSDrr_Int,      X86::VMINSDrm_Int,       0 }, | 
|  | { X86::VMINSSrr,          X86::VMINSSrm,           0 }, | 
|  | { X86::VMINSSrr_Int,      X86::VMINSSrm_Int,       0 }, | 
|  | { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        0 }, | 
|  | { X86::VMULPDrr,          X86::VMULPDrm,           0 }, | 
|  | { X86::VMULPSrr,          X86::VMULPSrm,           0 }, | 
|  | { X86::VMULSDrr,          X86::VMULSDrm,           0 }, | 
|  | { X86::VMULSDrr_Int,      X86::VMULSDrm_Int,       0 }, | 
|  | { X86::VMULSSrr,          X86::VMULSSrm,           0 }, | 
|  | { X86::VMULSSrr_Int,      X86::VMULSSrm_Int,       0 }, | 
|  | { X86::VORPDrr,           X86::VORPDrm,            0 }, | 
|  | { X86::VORPSrr,           X86::VORPSrm,            0 }, | 
|  | { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        0 }, | 
|  | { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        0 }, | 
|  | { X86::VPACKUSDWrr,       X86::VPACKUSDWrm,        0 }, | 
|  | { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        0 }, | 
|  | { X86::VPADDBrr,          X86::VPADDBrm,           0 }, | 
|  | { X86::VPADDDrr,          X86::VPADDDrm,           0 }, | 
|  | { X86::VPADDQrr,          X86::VPADDQrm,           0 }, | 
|  | { X86::VPADDSBrr,         X86::VPADDSBrm,          0 }, | 
|  | { X86::VPADDSWrr,         X86::VPADDSWrm,          0 }, | 
|  | { X86::VPADDUSBrr,        X86::VPADDUSBrm,         0 }, | 
|  | { X86::VPADDUSWrr,        X86::VPADDUSWrm,         0 }, | 
|  | { X86::VPADDWrr,          X86::VPADDWrm,           0 }, | 
|  | { X86::VPALIGNR128rr,     X86::VPALIGNR128rm,      0 }, | 
|  | { X86::VPANDNrr,          X86::VPANDNrm,           0 }, | 
|  | { X86::VPANDrr,           X86::VPANDrm,            0 }, | 
|  | { X86::VPAVGBrr,          X86::VPAVGBrm,           0 }, | 
|  | { X86::VPAVGWrr,          X86::VPAVGWrm,           0 }, | 
|  | { X86::VPBLENDVBrr,       X86::VPBLENDVBrm,        0 }, | 
|  | { X86::VPBLENDWrri,       X86::VPBLENDWrmi,        0 }, | 
|  | { X86::VPCLMULQDQrr,      X86::VPCLMULQDQrm,       0 }, | 
|  | { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         0 }, | 
|  | { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         0 }, | 
|  | { X86::VPCMPEQQrr,        X86::VPCMPEQQrm,         0 }, | 
|  | { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         0 }, | 
|  | { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         0 }, | 
|  | { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         0 }, | 
|  | { X86::VPCMPGTQrr,        X86::VPCMPGTQrm,         0 }, | 
|  | { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         0 }, | 
|  | { X86::VPHADDDrr,         X86::VPHADDDrm,          0 }, | 
|  | { X86::VPHADDSWrr128,     X86::VPHADDSWrm128,      0 }, | 
|  | { X86::VPHADDWrr,         X86::VPHADDWrm,          0 }, | 
|  | { X86::VPHSUBDrr,         X86::VPHSUBDrm,          0 }, | 
|  | { X86::VPHSUBSWrr128,     X86::VPHSUBSWrm128,      0 }, | 
|  | { X86::VPHSUBWrr,         X86::VPHSUBWrm,          0 }, | 
|  | { X86::VPERMILPDrr,       X86::VPERMILPDrm,        0 }, | 
|  | { X86::VPERMILPSrr,       X86::VPERMILPSrm,        0 }, | 
|  | { X86::VPINSRBrr,         X86::VPINSRBrm,          0 }, | 
|  | { X86::VPINSRDrr,         X86::VPINSRDrm,          0 }, | 
|  | { X86::VPINSRQrr,         X86::VPINSRQrm,          0 }, | 
|  | { X86::VPINSRWrri,        X86::VPINSRWrmi,         0 }, | 
|  | { X86::VPMADDUBSWrr128,   X86::VPMADDUBSWrm128,    0 }, | 
|  | { X86::VPMADDWDrr,        X86::VPMADDWDrm,         0 }, | 
|  | { X86::VPMAXSWrr,         X86::VPMAXSWrm,          0 }, | 
|  | { X86::VPMAXUBrr,         X86::VPMAXUBrm,          0 }, | 
|  | { X86::VPMINSWrr,         X86::VPMINSWrm,          0 }, | 
|  | { X86::VPMINUBrr,         X86::VPMINUBrm,          0 }, | 
|  | { X86::VPMINSBrr,         X86::VPMINSBrm,          0 }, | 
|  | { X86::VPMINSDrr,         X86::VPMINSDrm,          0 }, | 
|  | { X86::VPMINUDrr,         X86::VPMINUDrm,          0 }, | 
|  | { X86::VPMINUWrr,         X86::VPMINUWrm,          0 }, | 
|  | { X86::VPMAXSBrr,         X86::VPMAXSBrm,          0 }, | 
|  | { X86::VPMAXSDrr,         X86::VPMAXSDrm,          0 }, | 
|  | { X86::VPMAXUDrr,         X86::VPMAXUDrm,          0 }, | 
|  | { X86::VPMAXUWrr,         X86::VPMAXUWrm,          0 }, | 
|  | { X86::VPMULDQrr,         X86::VPMULDQrm,          0 }, | 
|  | { X86::VPMULHRSWrr128,    X86::VPMULHRSWrm128,     0 }, | 
|  | { X86::VPMULHUWrr,        X86::VPMULHUWrm,         0 }, | 
|  | { X86::VPMULHWrr,         X86::VPMULHWrm,          0 }, | 
|  | { X86::VPMULLDrr,         X86::VPMULLDrm,          0 }, | 
|  | { X86::VPMULLWrr,         X86::VPMULLWrm,          0 }, | 
|  | { X86::VPMULUDQrr,        X86::VPMULUDQrm,         0 }, | 
|  | { X86::VPORrr,            X86::VPORrm,             0 }, | 
|  | { X86::VPSADBWrr,         X86::VPSADBWrm,          0 }, | 
|  | { X86::VPSHUFBrr,         X86::VPSHUFBrm,          0 }, | 
|  | { X86::VPSIGNBrr,         X86::VPSIGNBrm,          0 }, | 
|  | { X86::VPSIGNWrr,         X86::VPSIGNWrm,          0 }, | 
|  | { X86::VPSIGNDrr,         X86::VPSIGNDrm,          0 }, | 
|  | { X86::VPSLLDrr,          X86::VPSLLDrm,           0 }, | 
|  | { X86::VPSLLQrr,          X86::VPSLLQrm,           0 }, | 
|  | { X86::VPSLLWrr,          X86::VPSLLWrm,           0 }, | 
|  | { X86::VPSRADrr,          X86::VPSRADrm,           0 }, | 
|  | { X86::VPSRAWrr,          X86::VPSRAWrm,           0 }, | 
|  | { X86::VPSRLDrr,          X86::VPSRLDrm,           0 }, | 
|  | { X86::VPSRLQrr,          X86::VPSRLQrm,           0 }, | 
|  | { X86::VPSRLWrr,          X86::VPSRLWrm,           0 }, | 
|  | { X86::VPSUBBrr,          X86::VPSUBBrm,           0 }, | 
|  | { X86::VPSUBDrr,          X86::VPSUBDrm,           0 }, | 
|  | { X86::VPSUBQrr,          X86::VPSUBQrm,           0 }, | 
|  | { X86::VPSUBSBrr,         X86::VPSUBSBrm,          0 }, | 
|  | { X86::VPSUBSWrr,         X86::VPSUBSWrm,          0 }, | 
|  | { X86::VPSUBUSBrr,        X86::VPSUBUSBrm,         0 }, | 
|  | { X86::VPSUBUSWrr,        X86::VPSUBUSWrm,         0 }, | 
|  | { X86::VPSUBWrr,          X86::VPSUBWrm,           0 }, | 
|  | { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       0 }, | 
|  | { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       0 }, | 
|  | { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      0 }, | 
|  | { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       0 }, | 
|  | { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       0 }, | 
|  | { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       0 }, | 
|  | { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      0 }, | 
|  | { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       0 }, | 
|  | { X86::VPXORrr,           X86::VPXORrm,            0 }, | 
|  | { X86::VROUNDSDr,         X86::VROUNDSDm,          0 }, | 
|  | { X86::VROUNDSSr,         X86::VROUNDSSm,          0 }, | 
|  | { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         0 }, | 
|  | { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         0 }, | 
|  | { X86::VSUBPDrr,          X86::VSUBPDrm,           0 }, | 
|  | { X86::VSUBPSrr,          X86::VSUBPSrm,           0 }, | 
|  | { X86::VSUBSDrr,          X86::VSUBSDrm,           0 }, | 
|  | { X86::VSUBSDrr_Int,      X86::VSUBSDrm_Int,       0 }, | 
|  | { X86::VSUBSSrr,          X86::VSUBSSrm,           0 }, | 
|  | { X86::VSUBSSrr_Int,      X86::VSUBSSrm_Int,       0 }, | 
|  | { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        0 }, | 
|  | { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        0 }, | 
|  | { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        0 }, | 
|  | { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        0 }, | 
|  | { X86::VXORPDrr,          X86::VXORPDrm,           0 }, | 
|  | { X86::VXORPSrr,          X86::VXORPSrm,           0 }, | 
|  |  | 
|  | // AVX 256-bit foldable instructions | 
|  | { X86::VADDPDYrr,         X86::VADDPDYrm,          0 }, | 
|  | { X86::VADDPSYrr,         X86::VADDPSYrm,          0 }, | 
|  | { X86::VADDSUBPDYrr,      X86::VADDSUBPDYrm,       0 }, | 
|  | { X86::VADDSUBPSYrr,      X86::VADDSUBPSYrm,       0 }, | 
|  | { X86::VANDNPDYrr,        X86::VANDNPDYrm,         0 }, | 
|  | { X86::VANDNPSYrr,        X86::VANDNPSYrm,         0 }, | 
|  | { X86::VANDPDYrr,         X86::VANDPDYrm,          0 }, | 
|  | { X86::VANDPSYrr,         X86::VANDPSYrm,          0 }, | 
|  | { X86::VBLENDPDYrri,      X86::VBLENDPDYrmi,       0 }, | 
|  | { X86::VBLENDPSYrri,      X86::VBLENDPSYrmi,       0 }, | 
|  | { X86::VBLENDVPDYrr,      X86::VBLENDVPDYrm,       0 }, | 
|  | { X86::VBLENDVPSYrr,      X86::VBLENDVPSYrm,       0 }, | 
|  | { X86::VCMPPDYrri,        X86::VCMPPDYrmi,         0 }, | 
|  | { X86::VCMPPSYrri,        X86::VCMPPSYrmi,         0 }, | 
|  | { X86::VDIVPDYrr,         X86::VDIVPDYrm,          0 }, | 
|  | { X86::VDIVPSYrr,         X86::VDIVPSYrm,          0 }, | 
|  | { X86::VDPPSYrri,         X86::VDPPSYrmi,          0 }, | 
|  | { X86::VHADDPDYrr,        X86::VHADDPDYrm,         0 }, | 
|  | { X86::VHADDPSYrr,        X86::VHADDPSYrm,         0 }, | 
|  | { X86::VHSUBPDYrr,        X86::VHSUBPDYrm,         0 }, | 
|  | { X86::VHSUBPSYrr,        X86::VHSUBPSYrm,         0 }, | 
|  | { X86::VINSERTF128rr,     X86::VINSERTF128rm,      0 }, | 
|  | { X86::VMAXPDYrr,         X86::VMAXPDYrm,          0 }, | 
|  | { X86::VMAXPSYrr,         X86::VMAXPSYrm,          0 }, | 
|  | { X86::VMINPDYrr,         X86::VMINPDYrm,          0 }, | 
|  | { X86::VMINPSYrr,         X86::VMINPSYrm,          0 }, | 
|  | { X86::VMULPDYrr,         X86::VMULPDYrm,          0 }, | 
|  | { X86::VMULPSYrr,         X86::VMULPSYrm,          0 }, | 
|  | { X86::VORPDYrr,          X86::VORPDYrm,           0 }, | 
|  | { X86::VORPSYrr,          X86::VORPSYrm,           0 }, | 
|  | { X86::VPERM2F128rr,      X86::VPERM2F128rm,       0 }, | 
|  | { X86::VPERMILPDYrr,      X86::VPERMILPDYrm,       0 }, | 
|  | { X86::VPERMILPSYrr,      X86::VPERMILPSYrm,       0 }, | 
|  | { X86::VSHUFPDYrri,       X86::VSHUFPDYrmi,        0 }, | 
|  | { X86::VSHUFPSYrri,       X86::VSHUFPSYrmi,        0 }, | 
|  | { X86::VSUBPDYrr,         X86::VSUBPDYrm,          0 }, | 
|  | { X86::VSUBPSYrr,         X86::VSUBPSYrm,          0 }, | 
|  | { X86::VUNPCKHPDYrr,      X86::VUNPCKHPDYrm,       0 }, | 
|  | { X86::VUNPCKHPSYrr,      X86::VUNPCKHPSYrm,       0 }, | 
|  | { X86::VUNPCKLPDYrr,      X86::VUNPCKLPDYrm,       0 }, | 
|  | { X86::VUNPCKLPSYrr,      X86::VUNPCKLPSYrm,       0 }, | 
|  | { X86::VXORPDYrr,         X86::VXORPDYrm,          0 }, | 
|  | { X86::VXORPSYrr,         X86::VXORPSYrm,          0 }, | 
|  |  | 
|  | // AVX2 foldable instructions | 
|  | { X86::VINSERTI128rr,     X86::VINSERTI128rm,      0 }, | 
|  | { X86::VPACKSSDWYrr,      X86::VPACKSSDWYrm,       0 }, | 
|  | { X86::VPACKSSWBYrr,      X86::VPACKSSWBYrm,       0 }, | 
|  | { X86::VPACKUSDWYrr,      X86::VPACKUSDWYrm,       0 }, | 
|  | { X86::VPACKUSWBYrr,      X86::VPACKUSWBYrm,       0 }, | 
|  | { X86::VPADDBYrr,         X86::VPADDBYrm,          0 }, | 
|  | { X86::VPADDDYrr,         X86::VPADDDYrm,          0 }, | 
|  | { X86::VPADDQYrr,         X86::VPADDQYrm,          0 }, | 
|  | { X86::VPADDSBYrr,        X86::VPADDSBYrm,         0 }, | 
|  | { X86::VPADDSWYrr,        X86::VPADDSWYrm,         0 }, | 
|  | { X86::VPADDUSBYrr,       X86::VPADDUSBYrm,        0 }, | 
|  | { X86::VPADDUSWYrr,       X86::VPADDUSWYrm,        0 }, | 
|  | { X86::VPADDWYrr,         X86::VPADDWYrm,          0 }, | 
|  | { X86::VPALIGNR256rr,     X86::VPALIGNR256rm,      0 }, | 
|  | { X86::VPANDNYrr,         X86::VPANDNYrm,          0 }, | 
|  | { X86::VPANDYrr,          X86::VPANDYrm,           0 }, | 
|  | { X86::VPAVGBYrr,         X86::VPAVGBYrm,          0 }, | 
|  | { X86::VPAVGWYrr,         X86::VPAVGWYrm,          0 }, | 
|  | { X86::VPBLENDDrri,       X86::VPBLENDDrmi,        0 }, | 
|  | { X86::VPBLENDDYrri,      X86::VPBLENDDYrmi,       0 }, | 
|  | { X86::VPBLENDVBYrr,      X86::VPBLENDVBYrm,       0 }, | 
|  | { X86::VPBLENDWYrri,      X86::VPBLENDWYrmi,       0 }, | 
|  | { X86::VPCMPEQBYrr,       X86::VPCMPEQBYrm,        0 }, | 
|  | { X86::VPCMPEQDYrr,       X86::VPCMPEQDYrm,        0 }, | 
|  | { X86::VPCMPEQQYrr,       X86::VPCMPEQQYrm,        0 }, | 
|  | { X86::VPCMPEQWYrr,       X86::VPCMPEQWYrm,        0 }, | 
|  | { X86::VPCMPGTBYrr,       X86::VPCMPGTBYrm,        0 }, | 
|  | { X86::VPCMPGTDYrr,       X86::VPCMPGTDYrm,        0 }, | 
|  | { X86::VPCMPGTQYrr,       X86::VPCMPGTQYrm,        0 }, | 
|  | { X86::VPCMPGTWYrr,       X86::VPCMPGTWYrm,        0 }, | 
|  | { X86::VPERM2I128rr,      X86::VPERM2I128rm,       0 }, | 
|  | { X86::VPERMDYrr,         X86::VPERMDYrm,          0 }, | 
|  | { X86::VPERMPSYrr,        X86::VPERMPSYrm,         0 }, | 
|  | { X86::VPHADDDYrr,        X86::VPHADDDYrm,         0 }, | 
|  | { X86::VPHADDSWrr256,     X86::VPHADDSWrm256,      0 }, | 
|  | { X86::VPHADDWYrr,        X86::VPHADDWYrm,         0 }, | 
|  | { X86::VPHSUBDYrr,        X86::VPHSUBDYrm,         0 }, | 
|  | { X86::VPHSUBSWrr256,     X86::VPHSUBSWrm256,      0 }, | 
|  | { X86::VPHSUBWYrr,        X86::VPHSUBWYrm,         0 }, | 
|  | { X86::VPMADDUBSWrr256,   X86::VPMADDUBSWrm256,    0 }, | 
|  | { X86::VPMADDWDYrr,       X86::VPMADDWDYrm,        0 }, | 
|  | { X86::VPMAXSWYrr,        X86::VPMAXSWYrm,         0 }, | 
|  | { X86::VPMAXUBYrr,        X86::VPMAXUBYrm,         0 }, | 
|  | { X86::VPMINSWYrr,        X86::VPMINSWYrm,         0 }, | 
|  | { X86::VPMINUBYrr,        X86::VPMINUBYrm,         0 }, | 
|  | { X86::VPMINSBYrr,        X86::VPMINSBYrm,         0 }, | 
|  | { X86::VPMINSDYrr,        X86::VPMINSDYrm,         0 }, | 
|  | { X86::VPMINUDYrr,        X86::VPMINUDYrm,         0 }, | 
|  | { X86::VPMINUWYrr,        X86::VPMINUWYrm,         0 }, | 
|  | { X86::VPMAXSBYrr,        X86::VPMAXSBYrm,         0 }, | 
|  | { X86::VPMAXSDYrr,        X86::VPMAXSDYrm,         0 }, | 
|  | { X86::VPMAXUDYrr,        X86::VPMAXUDYrm,         0 }, | 
|  | { X86::VPMAXUWYrr,        X86::VPMAXUWYrm,         0 }, | 
|  | { X86::VMPSADBWYrri,      X86::VMPSADBWYrmi,       0 }, | 
|  | { X86::VPMULDQYrr,        X86::VPMULDQYrm,         0 }, | 
|  | { X86::VPMULHRSWrr256,    X86::VPMULHRSWrm256,     0 }, | 
|  | { X86::VPMULHUWYrr,       X86::VPMULHUWYrm,        0 }, | 
|  | { X86::VPMULHWYrr,        X86::VPMULHWYrm,         0 }, | 
|  | { X86::VPMULLDYrr,        X86::VPMULLDYrm,         0 }, | 
|  | { X86::VPMULLWYrr,        X86::VPMULLWYrm,         0 }, | 
|  | { X86::VPMULUDQYrr,       X86::VPMULUDQYrm,        0 }, | 
|  | { X86::VPORYrr,           X86::VPORYrm,            0 }, | 
|  | { X86::VPSADBWYrr,        X86::VPSADBWYrm,         0 }, | 
|  | { X86::VPSHUFBYrr,        X86::VPSHUFBYrm,         0 }, | 
|  | { X86::VPSIGNBYrr,        X86::VPSIGNBYrm,         0 }, | 
|  | { X86::VPSIGNWYrr,        X86::VPSIGNWYrm,         0 }, | 
|  | { X86::VPSIGNDYrr,        X86::VPSIGNDYrm,         0 }, | 
|  | { X86::VPSLLDYrr,         X86::VPSLLDYrm,          0 }, | 
|  | { X86::VPSLLQYrr,         X86::VPSLLQYrm,          0 }, | 
|  | { X86::VPSLLWYrr,         X86::VPSLLWYrm,          0 }, | 
|  | { X86::VPSLLVDrr,         X86::VPSLLVDrm,          0 }, | 
|  | { X86::VPSLLVDYrr,        X86::VPSLLVDYrm,         0 }, | 
|  | { X86::VPSLLVQrr,         X86::VPSLLVQrm,          0 }, | 
|  | { X86::VPSLLVQYrr,        X86::VPSLLVQYrm,         0 }, | 
|  | { X86::VPSRADYrr,         X86::VPSRADYrm,          0 }, | 
|  | { X86::VPSRAWYrr,         X86::VPSRAWYrm,          0 }, | 
|  | { X86::VPSRAVDrr,         X86::VPSRAVDrm,          0 }, | 
|  | { X86::VPSRAVDYrr,        X86::VPSRAVDYrm,         0 }, | 
|  | { X86::VPSRLDYrr,         X86::VPSRLDYrm,          0 }, | 
|  | { X86::VPSRLQYrr,         X86::VPSRLQYrm,          0 }, | 
|  | { X86::VPSRLWYrr,         X86::VPSRLWYrm,          0 }, | 
|  | { X86::VPSRLVDrr,         X86::VPSRLVDrm,          0 }, | 
|  | { X86::VPSRLVDYrr,        X86::VPSRLVDYrm,         0 }, | 
|  | { X86::VPSRLVQrr,         X86::VPSRLVQrm,          0 }, | 
|  | { X86::VPSRLVQYrr,        X86::VPSRLVQYrm,         0 }, | 
|  | { X86::VPSUBBYrr,         X86::VPSUBBYrm,          0 }, | 
|  | { X86::VPSUBDYrr,         X86::VPSUBDYrm,          0 }, | 
|  | { X86::VPSUBQYrr,         X86::VPSUBQYrm,          0 }, | 
|  | { X86::VPSUBSBYrr,        X86::VPSUBSBYrm,         0 }, | 
|  | { X86::VPSUBSWYrr,        X86::VPSUBSWYrm,         0 }, | 
|  | { X86::VPSUBUSBYrr,       X86::VPSUBUSBYrm,        0 }, | 
|  | { X86::VPSUBUSWYrr,       X86::VPSUBUSWYrm,        0 }, | 
|  | { X86::VPSUBWYrr,         X86::VPSUBWYrm,          0 }, | 
|  | { X86::VPUNPCKHBWYrr,     X86::VPUNPCKHBWYrm,      0 }, | 
|  | { X86::VPUNPCKHDQYrr,     X86::VPUNPCKHDQYrm,      0 }, | 
|  | { X86::VPUNPCKHQDQYrr,    X86::VPUNPCKHQDQYrm,     0 }, | 
|  | { X86::VPUNPCKHWDYrr,     X86::VPUNPCKHWDYrm,      0 }, | 
|  | { X86::VPUNPCKLBWYrr,     X86::VPUNPCKLBWYrm,      0 }, | 
|  | { X86::VPUNPCKLDQYrr,     X86::VPUNPCKLDQYrm,      0 }, | 
|  | { X86::VPUNPCKLQDQYrr,    X86::VPUNPCKLQDQYrm,     0 }, | 
|  | { X86::VPUNPCKLWDYrr,     X86::VPUNPCKLWDYrm,      0 }, | 
|  | { X86::VPXORYrr,          X86::VPXORYrm,           0 }, | 
|  |  | 
|  | // FMA4 foldable patterns | 
|  | { X86::VFMADDSS4rr,       X86::VFMADDSS4mr,        TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSD4rr,       X86::VFMADDSD4mr,        TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPS4rr,       X86::VFMADDPS4mr,        TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPD4rr,       X86::VFMADDPD4mr,        TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPS4rrY,      X86::VFMADDPS4mrY,       TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPD4rrY,      X86::VFMADDPD4mrY,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDSS4rr,      X86::VFNMADDSS4mr,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDSD4rr,      X86::VFNMADDSD4mr,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPS4rr,      X86::VFNMADDPS4mr,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPD4rr,      X86::VFNMADDPD4mr,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPS4rrY,     X86::VFNMADDPS4mrY,      TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPD4rrY,     X86::VFNMADDPD4mrY,      TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBSS4rr,       X86::VFMSUBSS4mr,        TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBSD4rr,       X86::VFMSUBSD4mr,        TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPS4rr,       X86::VFMSUBPS4mr,        TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPD4rr,       X86::VFMSUBPD4mr,        TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPS4rrY,      X86::VFMSUBPS4mrY,       TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPD4rrY,      X86::VFMSUBPD4mrY,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBSS4rr,      X86::VFNMSUBSS4mr,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBSD4rr,      X86::VFNMSUBSD4mr,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPS4rr,      X86::VFNMSUBPS4mr,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPD4rr,      X86::VFNMSUBPD4mr,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPS4rrY,     X86::VFNMSUBPS4mrY,      TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPD4rrY,     X86::VFNMSUBPD4mrY,      TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPS4rr,    X86::VFMADDSUBPS4mr,     TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPD4rr,    X86::VFMADDSUBPD4mr,     TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPS4rrY,   X86::VFMADDSUBPS4mrY,    TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPD4rrY,   X86::VFMADDSUBPD4mrY,    TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPS4rr,    X86::VFMSUBADDPS4mr,     TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPD4rr,    X86::VFMSUBADDPD4mr,     TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPS4rrY,   X86::VFMSUBADDPS4mrY,    TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPD4rrY,   X86::VFMSUBADDPD4mrY,    TB_ALIGN_NONE }, | 
|  |  | 
|  | // XOP foldable instructions | 
|  | { X86::VPCMOVrr,          X86::VPCMOVmr,            0 }, | 
|  | { X86::VPCMOVrrY,         X86::VPCMOVmrY,           0 }, | 
|  | { X86::VPCOMBri,          X86::VPCOMBmi,            0 }, | 
|  | { X86::VPCOMDri,          X86::VPCOMDmi,            0 }, | 
|  | { X86::VPCOMQri,          X86::VPCOMQmi,            0 }, | 
|  | { X86::VPCOMWri,          X86::VPCOMWmi,            0 }, | 
|  | { X86::VPCOMUBri,         X86::VPCOMUBmi,           0 }, | 
|  | { X86::VPCOMUDri,         X86::VPCOMUDmi,           0 }, | 
|  | { X86::VPCOMUQri,         X86::VPCOMUQmi,           0 }, | 
|  | { X86::VPCOMUWri,         X86::VPCOMUWmi,           0 }, | 
|  | { X86::VPERMIL2PDrr,      X86::VPERMIL2PDmr,        0 }, | 
|  | { X86::VPERMIL2PDrrY,     X86::VPERMIL2PDmrY,       0 }, | 
|  | { X86::VPERMIL2PSrr,      X86::VPERMIL2PSmr,        0 }, | 
|  | { X86::VPERMIL2PSrrY,     X86::VPERMIL2PSmrY,       0 }, | 
|  | { X86::VPMACSDDrr,        X86::VPMACSDDrm,          0 }, | 
|  | { X86::VPMACSDQHrr,       X86::VPMACSDQHrm,         0 }, | 
|  | { X86::VPMACSDQLrr,       X86::VPMACSDQLrm,         0 }, | 
|  | { X86::VPMACSSDDrr,       X86::VPMACSSDDrm,         0 }, | 
|  | { X86::VPMACSSDQHrr,      X86::VPMACSSDQHrm,        0 }, | 
|  | { X86::VPMACSSDQLrr,      X86::VPMACSSDQLrm,        0 }, | 
|  | { X86::VPMACSSWDrr,       X86::VPMACSSWDrm,         0 }, | 
|  | { X86::VPMACSSWWrr,       X86::VPMACSSWWrm,         0 }, | 
|  | { X86::VPMACSWDrr,        X86::VPMACSWDrm,          0 }, | 
|  | { X86::VPMACSWWrr,        X86::VPMACSWWrm,          0 }, | 
|  | { X86::VPMADCSSWDrr,      X86::VPMADCSSWDrm,        0 }, | 
|  | { X86::VPMADCSWDrr,       X86::VPMADCSWDrm,         0 }, | 
|  | { X86::VPPERMrr,          X86::VPPERMmr,            0 }, | 
|  | { X86::VPROTBrr,          X86::VPROTBrm,            0 }, | 
|  | { X86::VPROTDrr,          X86::VPROTDrm,            0 }, | 
|  | { X86::VPROTQrr,          X86::VPROTQrm,            0 }, | 
|  | { X86::VPROTWrr,          X86::VPROTWrm,            0 }, | 
|  | { X86::VPSHABrr,          X86::VPSHABrm,            0 }, | 
|  | { X86::VPSHADrr,          X86::VPSHADrm,            0 }, | 
|  | { X86::VPSHAQrr,          X86::VPSHAQrm,            0 }, | 
|  | { X86::VPSHAWrr,          X86::VPSHAWrm,            0 }, | 
|  | { X86::VPSHLBrr,          X86::VPSHLBrm,            0 }, | 
|  | { X86::VPSHLDrr,          X86::VPSHLDrm,            0 }, | 
|  | { X86::VPSHLQrr,          X86::VPSHLQrm,            0 }, | 
|  | { X86::VPSHLWrr,          X86::VPSHLWrm,            0 }, | 
|  |  | 
|  | // BMI/BMI2 foldable instructions | 
|  | { X86::ANDN32rr,          X86::ANDN32rm,            0 }, | 
|  | { X86::ANDN64rr,          X86::ANDN64rm,            0 }, | 
|  | { X86::MULX32rr,          X86::MULX32rm,            0 }, | 
|  | { X86::MULX64rr,          X86::MULX64rm,            0 }, | 
|  | { X86::PDEP32rr,          X86::PDEP32rm,            0 }, | 
|  | { X86::PDEP64rr,          X86::PDEP64rm,            0 }, | 
|  | { X86::PEXT32rr,          X86::PEXT32rm,            0 }, | 
|  | { X86::PEXT64rr,          X86::PEXT64rm,            0 }, | 
|  |  | 
|  | // AVX-512 foldable instructions | 
|  | { X86::VADDPSZrr,         X86::VADDPSZrm,           0 }, | 
|  | { X86::VADDPDZrr,         X86::VADDPDZrm,           0 }, | 
|  | { X86::VSUBPSZrr,         X86::VSUBPSZrm,           0 }, | 
|  | { X86::VSUBPDZrr,         X86::VSUBPDZrm,           0 }, | 
|  | { X86::VMULPSZrr,         X86::VMULPSZrm,           0 }, | 
|  | { X86::VMULPDZrr,         X86::VMULPDZrm,           0 }, | 
|  | { X86::VDIVPSZrr,         X86::VDIVPSZrm,           0 }, | 
|  | { X86::VDIVPDZrr,         X86::VDIVPDZrm,           0 }, | 
|  | { X86::VMINPSZrr,         X86::VMINPSZrm,           0 }, | 
|  | { X86::VMINPDZrr,         X86::VMINPDZrm,           0 }, | 
|  | { X86::VMAXPSZrr,         X86::VMAXPSZrm,           0 }, | 
|  | { X86::VMAXPDZrr,         X86::VMAXPDZrm,           0 }, | 
|  | { X86::VPADDDZrr,         X86::VPADDDZrm,           0 }, | 
|  | { X86::VPADDQZrr,         X86::VPADDQZrm,           0 }, | 
|  | { X86::VPERMPDZri,        X86::VPERMPDZmi,          0 }, | 
|  | { X86::VPERMPSZrr,        X86::VPERMPSZrm,          0 }, | 
|  | { X86::VPMAXSDZrr,        X86::VPMAXSDZrm,          0 }, | 
|  | { X86::VPMAXSQZrr,        X86::VPMAXSQZrm,          0 }, | 
|  | { X86::VPMAXUDZrr,        X86::VPMAXUDZrm,          0 }, | 
|  | { X86::VPMAXUQZrr,        X86::VPMAXUQZrm,          0 }, | 
|  | { X86::VPMINSDZrr,        X86::VPMINSDZrm,          0 }, | 
|  | { X86::VPMINSQZrr,        X86::VPMINSQZrm,          0 }, | 
|  | { X86::VPMINUDZrr,        X86::VPMINUDZrm,          0 }, | 
|  | { X86::VPMINUQZrr,        X86::VPMINUQZrm,          0 }, | 
|  | { X86::VPMULDQZrr,        X86::VPMULDQZrm,          0 }, | 
|  | { X86::VPSLLVDZrr,        X86::VPSLLVDZrm,          0 }, | 
|  | { X86::VPSLLVQZrr,        X86::VPSLLVQZrm,          0 }, | 
|  | { X86::VPSRAVDZrr,        X86::VPSRAVDZrm,          0 }, | 
|  | { X86::VPSRLVDZrr,        X86::VPSRLVDZrm,          0 }, | 
|  | { X86::VPSRLVQZrr,        X86::VPSRLVQZrm,          0 }, | 
|  | { X86::VPSUBDZrr,         X86::VPSUBDZrm,           0 }, | 
|  | { X86::VPSUBQZrr,         X86::VPSUBQZrm,           0 }, | 
|  | { X86::VSHUFPDZrri,       X86::VSHUFPDZrmi,         0 }, | 
|  | { X86::VSHUFPSZrri,       X86::VSHUFPSZrmi,         0 }, | 
|  | { X86::VALIGNQZrri,       X86::VALIGNQZrmi,         0 }, | 
|  | { X86::VALIGNDZrri,       X86::VALIGNDZrmi,         0 }, | 
|  | { X86::VPMULUDQZrr,       X86::VPMULUDQZrm,         0 }, | 
|  | { X86::VBROADCASTSSZrkz,  X86::VBROADCASTSSZmkz,    TB_NO_REVERSE }, | 
|  | { X86::VBROADCASTSDZrkz,  X86::VBROADCASTSDZmkz,    TB_NO_REVERSE }, | 
|  |  | 
|  | // AVX-512{F,VL} foldable instructions | 
|  | { X86::VBROADCASTSSZ256rkz,  X86::VBROADCASTSSZ256mkz,      TB_NO_REVERSE }, | 
|  | { X86::VBROADCASTSDZ256rkz,  X86::VBROADCASTSDZ256mkz,      TB_NO_REVERSE }, | 
|  | { X86::VBROADCASTSSZ128rkz,  X86::VBROADCASTSSZ128mkz,      TB_NO_REVERSE }, | 
|  |  | 
|  | // AVX-512{F,VL} foldable instructions | 
|  | { X86::VADDPDZ128rr,      X86::VADDPDZ128rm,        0 }, | 
|  | { X86::VADDPDZ256rr,      X86::VADDPDZ256rm,        0 }, | 
|  | { X86::VADDPSZ128rr,      X86::VADDPSZ128rm,        0 }, | 
|  | { X86::VADDPSZ256rr,      X86::VADDPSZ256rm,        0 }, | 
|  |  | 
|  | // AES foldable instructions | 
|  | { X86::AESDECLASTrr,      X86::AESDECLASTrm,        TB_ALIGN_16 }, | 
|  | { X86::AESDECrr,          X86::AESDECrm,            TB_ALIGN_16 }, | 
|  | { X86::AESENCLASTrr,      X86::AESENCLASTrm,        TB_ALIGN_16 }, | 
|  | { X86::AESENCrr,          X86::AESENCrm,            TB_ALIGN_16 }, | 
|  | { X86::VAESDECLASTrr,     X86::VAESDECLASTrm,       0 }, | 
|  | { X86::VAESDECrr,         X86::VAESDECrm,           0 }, | 
|  | { X86::VAESENCLASTrr,     X86::VAESENCLASTrm,       0 }, | 
|  | { X86::VAESENCrr,         X86::VAESENCrm,           0 }, | 
|  |  | 
|  | // SHA foldable instructions | 
|  | { X86::SHA1MSG1rr,        X86::SHA1MSG1rm,          TB_ALIGN_16 }, | 
|  | { X86::SHA1MSG2rr,        X86::SHA1MSG2rm,          TB_ALIGN_16 }, | 
|  | { X86::SHA1NEXTErr,       X86::SHA1NEXTErm,         TB_ALIGN_16 }, | 
|  | { X86::SHA1RNDS4rri,      X86::SHA1RNDS4rmi,        TB_ALIGN_16 }, | 
|  | { X86::SHA256MSG1rr,      X86::SHA256MSG1rm,        TB_ALIGN_16 }, | 
|  | { X86::SHA256MSG2rr,      X86::SHA256MSG2rm,        TB_ALIGN_16 }, | 
|  | { X86::SHA256RNDS2rr,     X86::SHA256RNDS2rm,       TB_ALIGN_16 } | 
|  | }; | 
|  |  | 
|  | for (X86MemoryFoldTableEntry Entry : MemoryFoldTable2) { | 
|  | AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable, | 
|  | Entry.RegOp, Entry.MemOp, | 
|  | // Index 2, folded load | 
|  | Entry.Flags | TB_INDEX_2 | TB_FOLDED_LOAD); | 
|  | } | 
|  |  | 
|  | static const X86MemoryFoldTableEntry MemoryFoldTable3[] = { | 
|  | // FMA foldable instructions | 
|  | { X86::VFMADDSSr231r,         X86::VFMADDSSr231m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSSr231r_Int,     X86::VFMADDSSr231m_Int,     TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSDr231r,         X86::VFMADDSDr231m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSDr231r_Int,     X86::VFMADDSDr231m_Int,     TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSSr132r,         X86::VFMADDSSr132m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSSr132r_Int,     X86::VFMADDSSr132m_Int,     TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSDr132r,         X86::VFMADDSDr132m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSDr132r_Int,     X86::VFMADDSDr132m_Int,     TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSSr213r,         X86::VFMADDSSr213m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSSr213r_Int,     X86::VFMADDSSr213m_Int,     TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSDr213r,         X86::VFMADDSDr213m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSDr213r_Int,     X86::VFMADDSDr213m_Int,     TB_ALIGN_NONE }, | 
|  |  | 
|  | { X86::VFMADDPSr231r,         X86::VFMADDPSr231m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPDr231r,         X86::VFMADDPDr231m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPSr132r,         X86::VFMADDPSr132m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPDr132r,         X86::VFMADDPDr132m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPSr213r,         X86::VFMADDPSr213m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPDr213r,         X86::VFMADDPDr213m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPSr231rY,        X86::VFMADDPSr231mY,        TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPDr231rY,        X86::VFMADDPDr231mY,        TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPSr132rY,        X86::VFMADDPSr132mY,        TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPDr132rY,        X86::VFMADDPDr132mY,        TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPSr213rY,        X86::VFMADDPSr213mY,        TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPDr213rY,        X86::VFMADDPDr213mY,        TB_ALIGN_NONE }, | 
|  |  | 
|  | { X86::VFNMADDSSr231r,        X86::VFNMADDSSr231m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDSSr231r_Int,    X86::VFNMADDSSr231m_Int,    TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDSDr231r,        X86::VFNMADDSDr231m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDSDr231r_Int,    X86::VFNMADDSDr231m_Int,    TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDSSr132r,        X86::VFNMADDSSr132m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDSSr132r_Int,    X86::VFNMADDSSr132m_Int,    TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDSDr132r,        X86::VFNMADDSDr132m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDSDr132r_Int,    X86::VFNMADDSDr132m_Int,    TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDSSr213r,        X86::VFNMADDSSr213m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDSSr213r_Int,    X86::VFNMADDSSr213m_Int,    TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDSDr213r,        X86::VFNMADDSDr213m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDSDr213r_Int,    X86::VFNMADDSDr213m_Int,    TB_ALIGN_NONE }, | 
|  |  | 
|  | { X86::VFNMADDPSr231r,        X86::VFNMADDPSr231m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPDr231r,        X86::VFNMADDPDr231m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPSr132r,        X86::VFNMADDPSr132m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPDr132r,        X86::VFNMADDPDr132m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPSr213r,        X86::VFNMADDPSr213m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPDr213r,        X86::VFNMADDPDr213m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPSr231rY,       X86::VFNMADDPSr231mY,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPDr231rY,       X86::VFNMADDPDr231mY,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPSr132rY,       X86::VFNMADDPSr132mY,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPDr132rY,       X86::VFNMADDPDr132mY,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPSr213rY,       X86::VFNMADDPSr213mY,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPDr213rY,       X86::VFNMADDPDr213mY,       TB_ALIGN_NONE }, | 
|  |  | 
|  | { X86::VFMSUBSSr231r,         X86::VFMSUBSSr231m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBSSr231r_Int,     X86::VFMSUBSSr231m_Int,     TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBSDr231r,         X86::VFMSUBSDr231m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBSDr231r_Int,     X86::VFMSUBSDr231m_Int,     TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBSSr132r,         X86::VFMSUBSSr132m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBSSr132r_Int,     X86::VFMSUBSSr132m_Int,     TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBSDr132r,         X86::VFMSUBSDr132m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBSDr132r_Int,     X86::VFMSUBSDr132m_Int,     TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBSSr213r,         X86::VFMSUBSSr213m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBSSr213r_Int,     X86::VFMSUBSSr213m_Int,     TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBSDr213r,         X86::VFMSUBSDr213m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBSDr213r_Int,     X86::VFMSUBSDr213m_Int,     TB_ALIGN_NONE }, | 
|  |  | 
|  | { X86::VFMSUBPSr231r,         X86::VFMSUBPSr231m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPDr231r,         X86::VFMSUBPDr231m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPSr132r,         X86::VFMSUBPSr132m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPDr132r,         X86::VFMSUBPDr132m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPSr213r,         X86::VFMSUBPSr213m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPDr213r,         X86::VFMSUBPDr213m,         TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPSr231rY,        X86::VFMSUBPSr231mY,        TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPDr231rY,        X86::VFMSUBPDr231mY,        TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPSr132rY,        X86::VFMSUBPSr132mY,        TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPDr132rY,        X86::VFMSUBPDr132mY,        TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPSr213rY,        X86::VFMSUBPSr213mY,        TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPDr213rY,        X86::VFMSUBPDr213mY,        TB_ALIGN_NONE }, | 
|  |  | 
|  | { X86::VFNMSUBSSr231r,        X86::VFNMSUBSSr231m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBSSr231r_Int,    X86::VFNMSUBSSr231m_Int,    TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBSDr231r,        X86::VFNMSUBSDr231m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBSDr231r_Int,    X86::VFNMSUBSDr231m_Int,    TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBSSr132r,        X86::VFNMSUBSSr132m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBSSr132r_Int,    X86::VFNMSUBSSr132m_Int,    TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBSDr132r,        X86::VFNMSUBSDr132m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBSDr132r_Int,    X86::VFNMSUBSDr132m_Int,    TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBSSr213r,        X86::VFNMSUBSSr213m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBSSr213r_Int,    X86::VFNMSUBSSr213m_Int,    TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBSDr213r,        X86::VFNMSUBSDr213m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBSDr213r_Int,    X86::VFNMSUBSDr213m_Int,    TB_ALIGN_NONE }, | 
|  |  | 
|  | { X86::VFNMSUBPSr231r,        X86::VFNMSUBPSr231m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPDr231r,        X86::VFNMSUBPDr231m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPSr132r,        X86::VFNMSUBPSr132m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPDr132r,        X86::VFNMSUBPDr132m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPSr213r,        X86::VFNMSUBPSr213m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPDr213r,        X86::VFNMSUBPDr213m,        TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPSr231rY,       X86::VFNMSUBPSr231mY,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPDr231rY,       X86::VFNMSUBPDr231mY,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPSr132rY,       X86::VFNMSUBPSr132mY,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPDr132rY,       X86::VFNMSUBPDr132mY,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPSr213rY,       X86::VFNMSUBPSr213mY,       TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPDr213rY,       X86::VFNMSUBPDr213mY,       TB_ALIGN_NONE }, | 
|  |  | 
|  | { X86::VFMADDSUBPSr231r,      X86::VFMADDSUBPSr231m,      TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPDr231r,      X86::VFMADDSUBPDr231m,      TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPSr132r,      X86::VFMADDSUBPSr132m,      TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPDr132r,      X86::VFMADDSUBPDr132m,      TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPSr213r,      X86::VFMADDSUBPSr213m,      TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPDr213r,      X86::VFMADDSUBPDr213m,      TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPSr231rY,     X86::VFMADDSUBPSr231mY,     TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPDr231rY,     X86::VFMADDSUBPDr231mY,     TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPSr132rY,     X86::VFMADDSUBPSr132mY,     TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPDr132rY,     X86::VFMADDSUBPDr132mY,     TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPSr213rY,     X86::VFMADDSUBPSr213mY,     TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPDr213rY,     X86::VFMADDSUBPDr213mY,     TB_ALIGN_NONE }, | 
|  |  | 
|  | { X86::VFMSUBADDPSr231r,      X86::VFMSUBADDPSr231m,      TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPDr231r,      X86::VFMSUBADDPDr231m,      TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPSr132r,      X86::VFMSUBADDPSr132m,      TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPDr132r,      X86::VFMSUBADDPDr132m,      TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPSr213r,      X86::VFMSUBADDPSr213m,      TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPDr213r,      X86::VFMSUBADDPDr213m,      TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPSr231rY,     X86::VFMSUBADDPSr231mY,     TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPDr231rY,     X86::VFMSUBADDPDr231mY,     TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPSr132rY,     X86::VFMSUBADDPSr132mY,     TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPDr132rY,     X86::VFMSUBADDPDr132mY,     TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPSr213rY,     X86::VFMSUBADDPSr213mY,     TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPDr213rY,     X86::VFMSUBADDPDr213mY,     TB_ALIGN_NONE }, | 
|  |  | 
|  | // FMA4 foldable patterns | 
|  | { X86::VFMADDSS4rr,           X86::VFMADDSS4rm,           TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSD4rr,           X86::VFMADDSD4rm,           TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPS4rr,           X86::VFMADDPS4rm,           TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPD4rr,           X86::VFMADDPD4rm,           TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPS4rrY,          X86::VFMADDPS4rmY,          TB_ALIGN_NONE }, | 
|  | { X86::VFMADDPD4rrY,          X86::VFMADDPD4rmY,          TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDSS4rr,          X86::VFNMADDSS4rm,          TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDSD4rr,          X86::VFNMADDSD4rm,          TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPS4rr,          X86::VFNMADDPS4rm,          TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPD4rr,          X86::VFNMADDPD4rm,          TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPS4rrY,         X86::VFNMADDPS4rmY,         TB_ALIGN_NONE }, | 
|  | { X86::VFNMADDPD4rrY,         X86::VFNMADDPD4rmY,         TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBSS4rr,           X86::VFMSUBSS4rm,           TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBSD4rr,           X86::VFMSUBSD4rm,           TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPS4rr,           X86::VFMSUBPS4rm,           TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPD4rr,           X86::VFMSUBPD4rm,           TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPS4rrY,          X86::VFMSUBPS4rmY,          TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBPD4rrY,          X86::VFMSUBPD4rmY,          TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBSS4rr,          X86::VFNMSUBSS4rm,          TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBSD4rr,          X86::VFNMSUBSD4rm,          TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPS4rr,          X86::VFNMSUBPS4rm,          TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPD4rr,          X86::VFNMSUBPD4rm,          TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPS4rrY,         X86::VFNMSUBPS4rmY,         TB_ALIGN_NONE }, | 
|  | { X86::VFNMSUBPD4rrY,         X86::VFNMSUBPD4rmY,         TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPS4rr,        X86::VFMADDSUBPS4rm,        TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPD4rr,        X86::VFMADDSUBPD4rm,        TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPS4rrY,       X86::VFMADDSUBPS4rmY,       TB_ALIGN_NONE }, | 
|  | { X86::VFMADDSUBPD4rrY,       X86::VFMADDSUBPD4rmY,       TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPS4rr,        X86::VFMSUBADDPS4rm,        TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPD4rr,        X86::VFMSUBADDPD4rm,        TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPS4rrY,       X86::VFMSUBADDPS4rmY,       TB_ALIGN_NONE }, | 
|  | { X86::VFMSUBADDPD4rrY,       X86::VFMSUBADDPD4rmY,       TB_ALIGN_NONE }, | 
|  |  | 
|  | // XOP foldable instructions | 
|  | { X86::VPCMOVrr,              X86::VPCMOVrm,              0 }, | 
|  | { X86::VPCMOVrrY,             X86::VPCMOVrmY,             0 }, | 
|  | { X86::VPERMIL2PDrr,          X86::VPERMIL2PDrm,          0 }, | 
|  | { X86::VPERMIL2PDrrY,         X86::VPERMIL2PDrmY,         0 }, | 
|  | { X86::VPERMIL2PSrr,          X86::VPERMIL2PSrm,          0 }, | 
|  | { X86::VPERMIL2PSrrY,         X86::VPERMIL2PSrmY,         0 }, | 
|  | { X86::VPPERMrr,              X86::VPPERMrm,              0 }, | 
|  |  | 
|  | // AVX-512 VPERMI instructions with 3 source operands. | 
|  | { X86::VPERMI2Drr,            X86::VPERMI2Drm,            0 }, | 
|  | { X86::VPERMI2Qrr,            X86::VPERMI2Qrm,            0 }, | 
|  | { X86::VPERMI2PSrr,           X86::VPERMI2PSrm,           0 }, | 
|  | { X86::VPERMI2PDrr,           X86::VPERMI2PDrm,           0 }, | 
|  | { X86::VBLENDMPDZrr,          X86::VBLENDMPDZrm,          0 }, | 
|  | { X86::VBLENDMPSZrr,          X86::VBLENDMPSZrm,          0 }, | 
|  | { X86::VPBLENDMDZrr,          X86::VPBLENDMDZrm,          0 }, | 
|  | { X86::VPBLENDMQZrr,          X86::VPBLENDMQZrm,          0 }, | 
|  | { X86::VBROADCASTSSZrk,       X86::VBROADCASTSSZmk,       TB_NO_REVERSE }, | 
|  | { X86::VBROADCASTSDZrk,       X86::VBROADCASTSDZmk,       TB_NO_REVERSE }, | 
|  | { X86::VBROADCASTSSZ256rk,    X86::VBROADCASTSSZ256mk,    TB_NO_REVERSE }, | 
|  | { X86::VBROADCASTSDZ256rk,    X86::VBROADCASTSDZ256mk,    TB_NO_REVERSE }, | 
|  | { X86::VBROADCASTSSZ128rk,    X86::VBROADCASTSSZ128mk,    TB_NO_REVERSE }, | 
|  | // AVX-512 arithmetic instructions | 
|  | { X86::VADDPSZrrkz,           X86::VADDPSZrmkz,           0 }, | 
|  | { X86::VADDPDZrrkz,           X86::VADDPDZrmkz,           0 }, | 
|  | { X86::VSUBPSZrrkz,           X86::VSUBPSZrmkz,           0 }, | 
|  | { X86::VSUBPDZrrkz,           X86::VSUBPDZrmkz,           0 }, | 
|  | { X86::VMULPSZrrkz,           X86::VMULPSZrmkz,           0 }, | 
|  | { X86::VMULPDZrrkz,           X86::VMULPDZrmkz,           0 }, | 
|  | { X86::VDIVPSZrrkz,           X86::VDIVPSZrmkz,           0 }, | 
|  | { X86::VDIVPDZrrkz,           X86::VDIVPDZrmkz,           0 }, | 
|  | { X86::VMINPSZrrkz,           X86::VMINPSZrmkz,           0 }, | 
|  | { X86::VMINPDZrrkz,           X86::VMINPDZrmkz,           0 }, | 
|  | { X86::VMAXPSZrrkz,           X86::VMAXPSZrmkz,           0 }, | 
|  | { X86::VMAXPDZrrkz,           X86::VMAXPDZrmkz,           0 }, | 
|  | // AVX-512{F,VL} arithmetic instructions 256-bit | 
|  | { X86::VADDPSZ256rrkz,        X86::VADDPSZ256rmkz,        0 }, | 
|  | { X86::VADDPDZ256rrkz,        X86::VADDPDZ256rmkz,        0 }, | 
|  | { X86::VSUBPSZ256rrkz,        X86::VSUBPSZ256rmkz,        0 }, | 
|  | { X86::VSUBPDZ256rrkz,        X86::VSUBPDZ256rmkz,        0 }, | 
|  | { X86::VMULPSZ256rrkz,        X86::VMULPSZ256rmkz,        0 }, | 
|  | { X86::VMULPDZ256rrkz,        X86::VMULPDZ256rmkz,        0 }, | 
|  | { X86::VDIVPSZ256rrkz,        X86::VDIVPSZ256rmkz,        0 }, | 
|  | { X86::VDIVPDZ256rrkz,        X86::VDIVPDZ256rmkz,        0 }, | 
|  | { X86::VMINPSZ256rrkz,        X86::VMINPSZ256rmkz,        0 }, | 
|  | { X86::VMINPDZ256rrkz,        X86::VMINPDZ256rmkz,        0 }, | 
|  | { X86::VMAXPSZ256rrkz,        X86::VMAXPSZ256rmkz,        0 }, | 
|  | { X86::VMAXPDZ256rrkz,        X86::VMAXPDZ256rmkz,        0 }, | 
|  | // AVX-512{F,VL} arithmetic instructions 128-bit | 
|  | { X86::VADDPSZ128rrkz,        X86::VADDPSZ128rmkz,        0 }, | 
|  | { X86::VADDPDZ128rrkz,        X86::VADDPDZ128rmkz,        0 }, | 
|  | { X86::VSUBPSZ128rrkz,        X86::VSUBPSZ128rmkz,        0 }, | 
|  | { X86::VSUBPDZ128rrkz,        X86::VSUBPDZ128rmkz,        0 }, | 
|  | { X86::VMULPSZ128rrkz,        X86::VMULPSZ128rmkz,        0 }, | 
|  | { X86::VMULPDZ128rrkz,        X86::VMULPDZ128rmkz,        0 }, | 
|  | { X86::VDIVPSZ128rrkz,        X86::VDIVPSZ128rmkz,        0 }, | 
|  | { X86::VDIVPDZ128rrkz,        X86::VDIVPDZ128rmkz,        0 }, | 
|  | { X86::VMINPSZ128rrkz,        X86::VMINPSZ128rmkz,        0 }, | 
|  | { X86::VMINPDZ128rrkz,        X86::VMINPDZ128rmkz,        0 }, | 
|  | { X86::VMAXPSZ128rrkz,        X86::VMAXPSZ128rmkz,        0 }, | 
|  | { X86::VMAXPDZ128rrkz,        X86::VMAXPDZ128rmkz,        0 } | 
|  | }; | 
|  |  | 
|  | for (X86MemoryFoldTableEntry Entry : MemoryFoldTable3) { | 
|  | AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable, | 
|  | Entry.RegOp, Entry.MemOp, | 
|  | // Index 3, folded load | 
|  | Entry.Flags | TB_INDEX_3 | TB_FOLDED_LOAD); | 
|  | } | 
|  |  | 
|  | static const X86MemoryFoldTableEntry MemoryFoldTable4[] = { | 
|  | // AVX-512 foldable instructions | 
|  | { X86::VADDPSZrrk,         X86::VADDPSZrmk,           0 }, | 
|  | { X86::VADDPDZrrk,         X86::VADDPDZrmk,           0 }, | 
|  | { X86::VSUBPSZrrk,         X86::VSUBPSZrmk,           0 }, | 
|  | { X86::VSUBPDZrrk,         X86::VSUBPDZrmk,           0 }, | 
|  | { X86::VMULPSZrrk,         X86::VMULPSZrmk,           0 }, | 
|  | { X86::VMULPDZrrk,         X86::VMULPDZrmk,           0 }, | 
|  | { X86::VDIVPSZrrk,         X86::VDIVPSZrmk,           0 }, | 
|  | { X86::VDIVPDZrrk,         X86::VDIVPDZrmk,           0 }, | 
|  | { X86::VMINPSZrrk,         X86::VMINPSZrmk,           0 }, | 
|  | { X86::VMINPDZrrk,         X86::VMINPDZrmk,           0 }, | 
|  | { X86::VMAXPSZrrk,         X86::VMAXPSZrmk,           0 }, | 
|  | { X86::VMAXPDZrrk,         X86::VMAXPDZrmk,           0 }, | 
|  | // AVX-512{F,VL} foldable instructions 256-bit | 
|  | { X86::VADDPSZ256rrk,      X86::VADDPSZ256rmk,        0 }, | 
|  | { X86::VADDPDZ256rrk,      X86::VADDPDZ256rmk,        0 }, | 
|  | { X86::VSUBPSZ256rrk,      X86::VSUBPSZ256rmk,        0 }, | 
|  | { X86::VSUBPDZ256rrk,      X86::VSUBPDZ256rmk,        0 }, | 
|  | { X86::VMULPSZ256rrk,      X86::VMULPSZ256rmk,        0 }, | 
|  | { X86::VMULPDZ256rrk,      X86::VMULPDZ256rmk,        0 }, | 
|  | { X86::VDIVPSZ256rrk,      X86::VDIVPSZ256rmk,        0 }, | 
|  | { X86::VDIVPDZ256rrk,      X86::VDIVPDZ256rmk,        0 }, | 
|  | { X86::VMINPSZ256rrk,      X86::VMINPSZ256rmk,        0 }, | 
|  | { X86::VMINPDZ256rrk,      X86::VMINPDZ256rmk,        0 }, | 
|  | { X86::VMAXPSZ256rrk,      X86::VMAXPSZ256rmk,        0 }, | 
|  | { X86::VMAXPDZ256rrk,      X86::VMAXPDZ256rmk,        0 }, | 
|  | // AVX-512{F,VL} foldable instructions 128-bit | 
|  | { X86::VADDPSZ128rrk,      X86::VADDPSZ128rmk,        0 }, | 
|  | { X86::VADDPDZ128rrk,      X86::VADDPDZ128rmk,        0 }, | 
|  | { X86::VSUBPSZ128rrk,      X86::VSUBPSZ128rmk,        0 }, | 
|  | { X86::VSUBPDZ128rrk,      X86::VSUBPDZ128rmk,        0 }, | 
|  | { X86::VMULPSZ128rrk,      X86::VMULPSZ128rmk,        0 }, | 
|  | { X86::VMULPDZ128rrk,      X86::VMULPDZ128rmk,        0 }, | 
|  | { X86::VDIVPSZ128rrk,      X86::VDIVPSZ128rmk,        0 }, | 
|  | { X86::VDIVPDZ128rrk,      X86::VDIVPDZ128rmk,        0 }, | 
|  | { X86::VMINPSZ128rrk,      X86::VMINPSZ128rmk,        0 }, | 
|  | { X86::VMINPDZ128rrk,      X86::VMINPDZ128rmk,        0 }, | 
|  | { X86::VMAXPSZ128rrk,      X86::VMAXPSZ128rmk,        0 }, | 
|  | { X86::VMAXPDZ128rrk,      X86::VMAXPDZ128rmk,        0 } | 
|  | }; | 
|  |  | 
|  | for (X86MemoryFoldTableEntry Entry : MemoryFoldTable4) { | 
|  | AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable, | 
|  | Entry.RegOp, Entry.MemOp, | 
|  | // Index 4, folded load | 
|  | Entry.Flags | TB_INDEX_4 | TB_FOLDED_LOAD); | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable, | 
|  | MemOp2RegOpTableType &M2RTable, | 
|  | unsigned RegOp, unsigned MemOp, unsigned Flags) { | 
|  | if ((Flags & TB_NO_FORWARD) == 0) { | 
|  | assert(!R2MTable.count(RegOp) && "Duplicate entry!"); | 
|  | R2MTable[RegOp] = std::make_pair(MemOp, Flags); | 
|  | } | 
|  | if ((Flags & TB_NO_REVERSE) == 0) { | 
|  | assert(!M2RTable.count(MemOp) && | 
|  | "Duplicated entries in unfolding maps?"); | 
|  | M2RTable[MemOp] = std::make_pair(RegOp, Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, | 
|  | unsigned &SrcReg, unsigned &DstReg, | 
|  | unsigned &SubIdx) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: break; | 
|  | case X86::MOVSX16rr8: | 
|  | case X86::MOVZX16rr8: | 
|  | case X86::MOVSX32rr8: | 
|  | case X86::MOVZX32rr8: | 
|  | case X86::MOVSX64rr8: | 
|  | if (!Subtarget.is64Bit()) | 
|  | // It's not always legal to reference the low 8-bit of the larger | 
|  | // register in 32-bit mode. | 
|  | return false; | 
|  | case X86::MOVSX32rr16: | 
|  | case X86::MOVZX32rr16: | 
|  | case X86::MOVSX64rr16: | 
|  | case X86::MOVSX64rr32: { | 
|  | if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) | 
|  | // Be conservative. | 
|  | return false; | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | switch (MI.getOpcode()) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::MOVSX16rr8: | 
|  | case X86::MOVZX16rr8: | 
|  | case X86::MOVSX32rr8: | 
|  | case X86::MOVZX32rr8: | 
|  | case X86::MOVSX64rr8: | 
|  | SubIdx = X86::sub_8bit; | 
|  | break; | 
|  | case X86::MOVSX32rr16: | 
|  | case X86::MOVZX32rr16: | 
|  | case X86::MOVSX64rr16: | 
|  | SubIdx = X86::sub_16bit; | 
|  | break; | 
|  | case X86::MOVSX64rr32: | 
|  | SubIdx = X86::sub_32bit; | 
|  | break; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int X86InstrInfo::getSPAdjust(const MachineInstr *MI) const { | 
|  | const MachineFunction *MF = MI->getParent()->getParent(); | 
|  | const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); | 
|  |  | 
|  | if (MI->getOpcode() == getCallFrameSetupOpcode() || | 
|  | MI->getOpcode() == getCallFrameDestroyOpcode()) { | 
|  | unsigned StackAlign = TFI->getStackAlignment(); | 
|  | int SPAdj = (MI->getOperand(0).getImm() + StackAlign - 1) / StackAlign * | 
|  | StackAlign; | 
|  |  | 
|  | SPAdj -= MI->getOperand(1).getImm(); | 
|  |  | 
|  | if (MI->getOpcode() == getCallFrameSetupOpcode()) | 
|  | return SPAdj; | 
|  | else | 
|  | return -SPAdj; | 
|  | } | 
|  |  | 
|  | // To know whether a call adjusts the stack, we need information | 
|  | // that is bound to the following ADJCALLSTACKUP pseudo. | 
|  | // Look for the next ADJCALLSTACKUP that follows the call. | 
|  | if (MI->isCall()) { | 
|  | const MachineBasicBlock* MBB = MI->getParent(); | 
|  | auto I = ++MachineBasicBlock::const_iterator(MI); | 
|  | for (auto E = MBB->end(); I != E; ++I) { | 
|  | if (I->getOpcode() == getCallFrameDestroyOpcode() || | 
|  | I->isCall()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we could not find a frame destroy opcode, then it has already | 
|  | // been simplified, so we don't care. | 
|  | if (I->getOpcode() != getCallFrameDestroyOpcode()) | 
|  | return 0; | 
|  |  | 
|  | return -(I->getOperand(1).getImm()); | 
|  | } | 
|  |  | 
|  | // Currently handle only PUSHes we can reasonably expect to see | 
|  | // in call sequences | 
|  | switch (MI->getOpcode()) { | 
|  | default: | 
|  | return 0; | 
|  | case X86::PUSH32i8: | 
|  | case X86::PUSH32r: | 
|  | case X86::PUSH32rmm: | 
|  | case X86::PUSH32rmr: | 
|  | case X86::PUSHi32: | 
|  | return 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true and the FrameIndex if the specified | 
|  | /// operand and follow operands form a reference to the stack frame. | 
|  | bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op, | 
|  | int &FrameIndex) const { | 
|  | if (MI->getOperand(Op+X86::AddrBaseReg).isFI() && | 
|  | MI->getOperand(Op+X86::AddrScaleAmt).isImm() && | 
|  | MI->getOperand(Op+X86::AddrIndexReg).isReg() && | 
|  | MI->getOperand(Op+X86::AddrDisp).isImm() && | 
|  | MI->getOperand(Op+X86::AddrScaleAmt).getImm() == 1 && | 
|  | MI->getOperand(Op+X86::AddrIndexReg).getReg() == 0 && | 
|  | MI->getOperand(Op+X86::AddrDisp).getImm() == 0) { | 
|  | FrameIndex = MI->getOperand(Op+X86::AddrBaseReg).getIndex(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isFrameLoadOpcode(int Opcode) { | 
|  | switch (Opcode) { | 
|  | default: | 
|  | return false; | 
|  | case X86::MOV8rm: | 
|  | case X86::MOV16rm: | 
|  | case X86::MOV32rm: | 
|  | case X86::MOV64rm: | 
|  | case X86::LD_Fp64m: | 
|  | case X86::MOVSSrm: | 
|  | case X86::MOVSDrm: | 
|  | case X86::MOVAPSrm: | 
|  | case X86::MOVAPDrm: | 
|  | case X86::MOVDQArm: | 
|  | case X86::VMOVSSrm: | 
|  | case X86::VMOVSDrm: | 
|  | case X86::VMOVAPSrm: | 
|  | case X86::VMOVAPDrm: | 
|  | case X86::VMOVDQArm: | 
|  | case X86::VMOVUPSYrm: | 
|  | case X86::VMOVAPSYrm: | 
|  | case X86::VMOVUPDYrm: | 
|  | case X86::VMOVAPDYrm: | 
|  | case X86::VMOVDQUYrm: | 
|  | case X86::VMOVDQAYrm: | 
|  | case X86::MMX_MOVD64rm: | 
|  | case X86::MMX_MOVQ64rm: | 
|  | case X86::VMOVAPSZrm: | 
|  | case X86::VMOVUPSZrm: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isFrameStoreOpcode(int Opcode) { | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case X86::MOV8mr: | 
|  | case X86::MOV16mr: | 
|  | case X86::MOV32mr: | 
|  | case X86::MOV64mr: | 
|  | case X86::ST_FpP64m: | 
|  | case X86::MOVSSmr: | 
|  | case X86::MOVSDmr: | 
|  | case X86::MOVAPSmr: | 
|  | case X86::MOVAPDmr: | 
|  | case X86::MOVDQAmr: | 
|  | case X86::VMOVSSmr: | 
|  | case X86::VMOVSDmr: | 
|  | case X86::VMOVAPSmr: | 
|  | case X86::VMOVAPDmr: | 
|  | case X86::VMOVDQAmr: | 
|  | case X86::VMOVUPSYmr: | 
|  | case X86::VMOVAPSYmr: | 
|  | case X86::VMOVUPDYmr: | 
|  | case X86::VMOVAPDYmr: | 
|  | case X86::VMOVDQUYmr: | 
|  | case X86::VMOVDQAYmr: | 
|  | case X86::VMOVUPSZmr: | 
|  | case X86::VMOVAPSZmr: | 
|  | case X86::MMX_MOVD64mr: | 
|  | case X86::MMX_MOVQ64mr: | 
|  | case X86::MMX_MOVNTQmr: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI, | 
|  | int &FrameIndex) const { | 
|  | if (isFrameLoadOpcode(MI->getOpcode())) | 
|  | if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) | 
|  | return MI->getOperand(0).getReg(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, | 
|  | int &FrameIndex) const { | 
|  | if (isFrameLoadOpcode(MI->getOpcode())) { | 
|  | unsigned Reg; | 
|  | if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) | 
|  | return Reg; | 
|  | // Check for post-frame index elimination operations | 
|  | const MachineMemOperand *Dummy; | 
|  | return hasLoadFromStackSlot(MI, Dummy, FrameIndex); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI, | 
|  | int &FrameIndex) const { | 
|  | if (isFrameStoreOpcode(MI->getOpcode())) | 
|  | if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 && | 
|  | isFrameOperand(MI, 0, FrameIndex)) | 
|  | return MI->getOperand(X86::AddrNumOperands).getReg(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, | 
|  | int &FrameIndex) const { | 
|  | if (isFrameStoreOpcode(MI->getOpcode())) { | 
|  | unsigned Reg; | 
|  | if ((Reg = isStoreToStackSlot(MI, FrameIndex))) | 
|  | return Reg; | 
|  | // Check for post-frame index elimination operations | 
|  | const MachineMemOperand *Dummy; | 
|  | return hasStoreToStackSlot(MI, Dummy, FrameIndex); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r. | 
|  | static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { | 
|  | // Don't waste compile time scanning use-def chains of physregs. | 
|  | if (!TargetRegisterInfo::isVirtualRegister(BaseReg)) | 
|  | return false; | 
|  | bool isPICBase = false; | 
|  | for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg), | 
|  | E = MRI.def_instr_end(); I != E; ++I) { | 
|  | MachineInstr *DefMI = &*I; | 
|  | if (DefMI->getOpcode() != X86::MOVPC32r) | 
|  | return false; | 
|  | assert(!isPICBase && "More than one PIC base?"); | 
|  | isPICBase = true; | 
|  | } | 
|  | return isPICBase; | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, | 
|  | AliasAnalysis *AA) const { | 
|  | switch (MI->getOpcode()) { | 
|  | default: break; | 
|  | case X86::MOV8rm: | 
|  | case X86::MOV16rm: | 
|  | case X86::MOV32rm: | 
|  | case X86::MOV64rm: | 
|  | case X86::LD_Fp64m: | 
|  | case X86::MOVSSrm: | 
|  | case X86::MOVSDrm: | 
|  | case X86::MOVAPSrm: | 
|  | case X86::MOVUPSrm: | 
|  | case X86::MOVAPDrm: | 
|  | case X86::MOVDQArm: | 
|  | case X86::MOVDQUrm: | 
|  | case X86::VMOVSSrm: | 
|  | case X86::VMOVSDrm: | 
|  | case X86::VMOVAPSrm: | 
|  | case X86::VMOVUPSrm: | 
|  | case X86::VMOVAPDrm: | 
|  | case X86::VMOVDQArm: | 
|  | case X86::VMOVDQUrm: | 
|  | case X86::VMOVAPSYrm: | 
|  | case X86::VMOVUPSYrm: | 
|  | case X86::VMOVAPDYrm: | 
|  | case X86::VMOVDQAYrm: | 
|  | case X86::VMOVDQUYrm: | 
|  | case X86::MMX_MOVD64rm: | 
|  | case X86::MMX_MOVQ64rm: | 
|  | case X86::FsVMOVAPSrm: | 
|  | case X86::FsVMOVAPDrm: | 
|  | case X86::FsMOVAPSrm: | 
|  | case X86::FsMOVAPDrm: | 
|  | // AVX-512 | 
|  | case X86::VMOVAPDZ128rm: | 
|  | case X86::VMOVAPDZ256rm: | 
|  | case X86::VMOVAPDZrm: | 
|  | case X86::VMOVAPSZ128rm: | 
|  | case X86::VMOVAPSZ256rm: | 
|  | case X86::VMOVAPSZrm: | 
|  | case X86::VMOVDQA32Z128rm: | 
|  | case X86::VMOVDQA32Z256rm: | 
|  | case X86::VMOVDQA32Zrm: | 
|  | case X86::VMOVDQA64Z128rm: | 
|  | case X86::VMOVDQA64Z256rm: | 
|  | case X86::VMOVDQA64Zrm: | 
|  | case X86::VMOVDQU16Z128rm: | 
|  | case X86::VMOVDQU16Z256rm: | 
|  | case X86::VMOVDQU16Zrm: | 
|  | case X86::VMOVDQU32Z128rm: | 
|  | case X86::VMOVDQU32Z256rm: | 
|  | case X86::VMOVDQU32Zrm: | 
|  | case X86::VMOVDQU64Z128rm: | 
|  | case X86::VMOVDQU64Z256rm: | 
|  | case X86::VMOVDQU64Zrm: | 
|  | case X86::VMOVDQU8Z128rm: | 
|  | case X86::VMOVDQU8Z256rm: | 
|  | case X86::VMOVDQU8Zrm: | 
|  | case X86::VMOVUPSZ128rm: | 
|  | case X86::VMOVUPSZ256rm: | 
|  | case X86::VMOVUPSZrm: { | 
|  | // Loads from constant pools are trivially rematerializable. | 
|  | if (MI->getOperand(1+X86::AddrBaseReg).isReg() && | 
|  | MI->getOperand(1+X86::AddrScaleAmt).isImm() && | 
|  | MI->getOperand(1+X86::AddrIndexReg).isReg() && | 
|  | MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 && | 
|  | MI->isInvariantLoad(AA)) { | 
|  | unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg(); | 
|  | if (BaseReg == 0 || BaseReg == X86::RIP) | 
|  | return true; | 
|  | // Allow re-materialization of PIC load. | 
|  | if (!ReMatPICStubLoad && MI->getOperand(1+X86::AddrDisp).isGlobal()) | 
|  | return false; | 
|  | const MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | return regIsPICBase(BaseReg, MRI); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case X86::LEA32r: | 
|  | case X86::LEA64r: { | 
|  | if (MI->getOperand(1+X86::AddrScaleAmt).isImm() && | 
|  | MI->getOperand(1+X86::AddrIndexReg).isReg() && | 
|  | MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 && | 
|  | !MI->getOperand(1+X86::AddrDisp).isReg()) { | 
|  | // lea fi#, lea GV, etc. are all rematerializable. | 
|  | if (!MI->getOperand(1+X86::AddrBaseReg).isReg()) | 
|  | return true; | 
|  | unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg(); | 
|  | if (BaseReg == 0) | 
|  | return true; | 
|  | // Allow re-materialization of lea PICBase + x. | 
|  | const MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | return regIsPICBase(BaseReg, MRI); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // All other instructions marked M_REMATERIALIZABLE are always trivially | 
|  | // rematerializable. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I) const { | 
|  | MachineBasicBlock::iterator E = MBB.end(); | 
|  |  | 
|  | // For compile time consideration, if we are not able to determine the | 
|  | // safety after visiting 4 instructions in each direction, we will assume | 
|  | // it's not safe. | 
|  | MachineBasicBlock::iterator Iter = I; | 
|  | for (unsigned i = 0; Iter != E && i < 4; ++i) { | 
|  | bool SeenDef = false; | 
|  | for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { | 
|  | MachineOperand &MO = Iter->getOperand(j); | 
|  | if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) | 
|  | SeenDef = true; | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | if (MO.getReg() == X86::EFLAGS) { | 
|  | if (MO.isUse()) | 
|  | return false; | 
|  | SeenDef = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SeenDef) | 
|  | // This instruction defines EFLAGS, no need to look any further. | 
|  | return true; | 
|  | ++Iter; | 
|  | // Skip over DBG_VALUE. | 
|  | while (Iter != E && Iter->isDebugValue()) | 
|  | ++Iter; | 
|  | } | 
|  |  | 
|  | // It is safe to clobber EFLAGS at the end of a block of no successor has it | 
|  | // live in. | 
|  | if (Iter == E) { | 
|  | for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(), | 
|  | SE = MBB.succ_end(); SI != SE; ++SI) | 
|  | if ((*SI)->isLiveIn(X86::EFLAGS)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator B = MBB.begin(); | 
|  | Iter = I; | 
|  | for (unsigned i = 0; i < 4; ++i) { | 
|  | // If we make it to the beginning of the block, it's safe to clobber | 
|  | // EFLAGS iff EFLAGS is not live-in. | 
|  | if (Iter == B) | 
|  | return !MBB.isLiveIn(X86::EFLAGS); | 
|  |  | 
|  | --Iter; | 
|  | // Skip over DBG_VALUE. | 
|  | while (Iter != B && Iter->isDebugValue()) | 
|  | --Iter; | 
|  |  | 
|  | bool SawKill = false; | 
|  | for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { | 
|  | MachineOperand &MO = Iter->getOperand(j); | 
|  | // A register mask may clobber EFLAGS, but we should still look for a | 
|  | // live EFLAGS def. | 
|  | if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) | 
|  | SawKill = true; | 
|  | if (MO.isReg() && MO.getReg() == X86::EFLAGS) { | 
|  | if (MO.isDef()) return MO.isDead(); | 
|  | if (MO.isKill()) SawKill = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SawKill) | 
|  | // This instruction kills EFLAGS and doesn't redefine it, so | 
|  | // there's no need to look further. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Conservative answer. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | unsigned DestReg, unsigned SubIdx, | 
|  | const MachineInstr *Orig, | 
|  | const TargetRegisterInfo &TRI) const { | 
|  | // MOV32r0 is implemented with a xor which clobbers condition code. | 
|  | // Re-materialize it as movri instructions to avoid side effects. | 
|  | unsigned Opc = Orig->getOpcode(); | 
|  | if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) { | 
|  | DebugLoc DL = Orig->getDebugLoc(); | 
|  | BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0)) | 
|  | .addImm(0); | 
|  | } else { | 
|  | MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); | 
|  | MBB.insert(I, MI); | 
|  | } | 
|  |  | 
|  | MachineInstr *NewMI = std::prev(I); | 
|  | NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); | 
|  | } | 
|  |  | 
|  | /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead. | 
|  | bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr *MI) const { | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (MO.isReg() && MO.isDef() && | 
|  | MO.getReg() == X86::EFLAGS && !MO.isDead()) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check whether the shift count for a machine operand is non-zero. | 
|  | inline static unsigned getTruncatedShiftCount(MachineInstr *MI, | 
|  | unsigned ShiftAmtOperandIdx) { | 
|  | // The shift count is six bits with the REX.W prefix and five bits without. | 
|  | unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31; | 
|  | unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm(); | 
|  | return Imm & ShiftCountMask; | 
|  | } | 
|  |  | 
|  | /// Check whether the given shift count is appropriate | 
|  | /// can be represented by a LEA instruction. | 
|  | inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { | 
|  | // Left shift instructions can be transformed into load-effective-address | 
|  | // instructions if we can encode them appropriately. | 
|  | // A LEA instruction utilizes a SIB byte to encode its scale factor. | 
|  | // The SIB.scale field is two bits wide which means that we can encode any | 
|  | // shift amount less than 4. | 
|  | return ShAmt < 4 && ShAmt > 0; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src, | 
|  | unsigned Opc, bool AllowSP, | 
|  | unsigned &NewSrc, bool &isKill, bool &isUndef, | 
|  | MachineOperand &ImplicitOp) const { | 
|  | MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | const TargetRegisterClass *RC; | 
|  | if (AllowSP) { | 
|  | RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass; | 
|  | } else { | 
|  | RC = Opc != X86::LEA32r ? | 
|  | &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass; | 
|  | } | 
|  | unsigned SrcReg = Src.getReg(); | 
|  |  | 
|  | // For both LEA64 and LEA32 the register already has essentially the right | 
|  | // type (32-bit or 64-bit) we may just need to forbid SP. | 
|  | if (Opc != X86::LEA64_32r) { | 
|  | NewSrc = SrcReg; | 
|  | isKill = Src.isKill(); | 
|  | isUndef = Src.isUndef(); | 
|  |  | 
|  | if (TargetRegisterInfo::isVirtualRegister(NewSrc) && | 
|  | !MF.getRegInfo().constrainRegClass(NewSrc, RC)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This is for an LEA64_32r and incoming registers are 32-bit. One way or | 
|  | // another we need to add 64-bit registers to the final MI. | 
|  | if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) { | 
|  | ImplicitOp = Src; | 
|  | ImplicitOp.setImplicit(); | 
|  |  | 
|  | NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64); | 
|  | MachineBasicBlock::LivenessQueryResult LQR = | 
|  | MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI); | 
|  |  | 
|  | switch (LQR) { | 
|  | case MachineBasicBlock::LQR_Unknown: | 
|  | // We can't give sane liveness flags to the instruction, abandon LEA | 
|  | // formation. | 
|  | return false; | 
|  | case MachineBasicBlock::LQR_Live: | 
|  | isKill = MI->killsRegister(SrcReg); | 
|  | isUndef = false; | 
|  | break; | 
|  | default: | 
|  | // The physreg itself is dead, so we have to use it as an <undef>. | 
|  | isKill = false; | 
|  | isUndef = true; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | // Virtual register of the wrong class, we have to create a temporary 64-bit | 
|  | // vreg to feed into the LEA. | 
|  | NewSrc = MF.getRegInfo().createVirtualRegister(RC); | 
|  | BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), | 
|  | get(TargetOpcode::COPY)) | 
|  | .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit) | 
|  | .addOperand(Src); | 
|  |  | 
|  | // Which is obviously going to be dead after we're done with it. | 
|  | isKill = true; | 
|  | isUndef = false; | 
|  | } | 
|  |  | 
|  | // We've set all the parameters without issue. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit | 
|  | /// LEA to form 3-address code by promoting to a 32-bit superregister and then | 
|  | /// truncating back down to a 16-bit subregister. | 
|  | MachineInstr * | 
|  | X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, | 
|  | MachineFunction::iterator &MFI, | 
|  | MachineBasicBlock::iterator &MBBI, | 
|  | LiveVariables *LV) const { | 
|  | MachineInstr *MI = MBBI; | 
|  | unsigned Dest = MI->getOperand(0).getReg(); | 
|  | unsigned Src = MI->getOperand(1).getReg(); | 
|  | bool isDead = MI->getOperand(0).isDead(); | 
|  | bool isKill = MI->getOperand(1).isKill(); | 
|  |  | 
|  | MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); | 
|  | unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); | 
|  | unsigned Opc, leaInReg; | 
|  | if (Subtarget.is64Bit()) { | 
|  | Opc = X86::LEA64_32r; | 
|  | leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); | 
|  | } else { | 
|  | Opc = X86::LEA32r; | 
|  | leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); | 
|  | } | 
|  |  | 
|  | // Build and insert into an implicit UNDEF value. This is OK because | 
|  | // well be shifting and then extracting the lower 16-bits. | 
|  | // This has the potential to cause partial register stall. e.g. | 
|  | //   movw    (%rbp,%rcx,2), %dx | 
|  | //   leal    -65(%rdx), %esi | 
|  | // But testing has shown this *does* help performance in 64-bit mode (at | 
|  | // least on modern x86 machines). | 
|  | BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); | 
|  | MachineInstr *InsMI = | 
|  | BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) | 
|  | .addReg(leaInReg, RegState::Define, X86::sub_16bit) | 
|  | .addReg(Src, getKillRegState(isKill)); | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(), | 
|  | get(Opc), leaOutReg); | 
|  | switch (MIOpc) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::SHL16ri: { | 
|  | unsigned ShAmt = MI->getOperand(2).getImm(); | 
|  | MIB.addReg(0).addImm(1 << ShAmt) | 
|  | .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0); | 
|  | break; | 
|  | } | 
|  | case X86::INC16r: | 
|  | addRegOffset(MIB, leaInReg, true, 1); | 
|  | break; | 
|  | case X86::DEC16r: | 
|  | addRegOffset(MIB, leaInReg, true, -1); | 
|  | break; | 
|  | case X86::ADD16ri: | 
|  | case X86::ADD16ri8: | 
|  | case X86::ADD16ri_DB: | 
|  | case X86::ADD16ri8_DB: | 
|  | addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm()); | 
|  | break; | 
|  | case X86::ADD16rr: | 
|  | case X86::ADD16rr_DB: { | 
|  | unsigned Src2 = MI->getOperand(2).getReg(); | 
|  | bool isKill2 = MI->getOperand(2).isKill(); | 
|  | unsigned leaInReg2 = 0; | 
|  | MachineInstr *InsMI2 = nullptr; | 
|  | if (Src == Src2) { | 
|  | // ADD16rr %reg1028<kill>, %reg1028 | 
|  | // just a single insert_subreg. | 
|  | addRegReg(MIB, leaInReg, true, leaInReg, false); | 
|  | } else { | 
|  | if (Subtarget.is64Bit()) | 
|  | leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); | 
|  | else | 
|  | leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); | 
|  | // Build and insert into an implicit UNDEF value. This is OK because | 
|  | // well be shifting and then extracting the lower 16-bits. | 
|  | BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2); | 
|  | InsMI2 = | 
|  | BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY)) | 
|  | .addReg(leaInReg2, RegState::Define, X86::sub_16bit) | 
|  | .addReg(Src2, getKillRegState(isKill2)); | 
|  | addRegReg(MIB, leaInReg, true, leaInReg2, true); | 
|  | } | 
|  | if (LV && isKill2 && InsMI2) | 
|  | LV->replaceKillInstruction(Src2, MI, InsMI2); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineInstr *NewMI = MIB; | 
|  | MachineInstr *ExtMI = | 
|  | BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) | 
|  | .addReg(Dest, RegState::Define | getDeadRegState(isDead)) | 
|  | .addReg(leaOutReg, RegState::Kill, X86::sub_16bit); | 
|  |  | 
|  | if (LV) { | 
|  | // Update live variables | 
|  | LV->getVarInfo(leaInReg).Kills.push_back(NewMI); | 
|  | LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI); | 
|  | if (isKill) | 
|  | LV->replaceKillInstruction(Src, MI, InsMI); | 
|  | if (isDead) | 
|  | LV->replaceKillInstruction(Dest, MI, ExtMI); | 
|  | } | 
|  |  | 
|  | return ExtMI; | 
|  | } | 
|  |  | 
|  | /// This method must be implemented by targets that | 
|  | /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target | 
|  | /// may be able to convert a two-address instruction into a true | 
|  | /// three-address instruction on demand.  This allows the X86 target (for | 
|  | /// example) to convert ADD and SHL instructions into LEA instructions if they | 
|  | /// would require register copies due to two-addressness. | 
|  | /// | 
|  | /// This method returns a null pointer if the transformation cannot be | 
|  | /// performed, otherwise it returns the new instruction. | 
|  | /// | 
|  | MachineInstr * | 
|  | X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, | 
|  | MachineBasicBlock::iterator &MBBI, | 
|  | LiveVariables *LV) const { | 
|  | MachineInstr *MI = MBBI; | 
|  |  | 
|  | // The following opcodes also sets the condition code register(s). Only | 
|  | // convert them to equivalent lea if the condition code register def's | 
|  | // are dead! | 
|  | if (hasLiveCondCodeDef(MI)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | // All instructions input are two-addr instructions.  Get the known operands. | 
|  | const MachineOperand &Dest = MI->getOperand(0); | 
|  | const MachineOperand &Src = MI->getOperand(1); | 
|  |  | 
|  | MachineInstr *NewMI = nullptr; | 
|  | // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When | 
|  | // we have better subtarget support, enable the 16-bit LEA generation here. | 
|  | // 16-bit LEA is also slow on Core2. | 
|  | bool DisableLEA16 = true; | 
|  | bool is64Bit = Subtarget.is64Bit(); | 
|  |  | 
|  | unsigned MIOpc = MI->getOpcode(); | 
|  | switch (MIOpc) { | 
|  | default: return nullptr; | 
|  | case X86::SHL64ri: { | 
|  | assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); | 
|  | unsigned ShAmt = getTruncatedShiftCount(MI, 2); | 
|  | if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; | 
|  |  | 
|  | // LEA can't handle RSP. | 
|  | if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) && | 
|  | !MF.getRegInfo().constrainRegClass(Src.getReg(), | 
|  | &X86::GR64_NOSPRegClass)) | 
|  | return nullptr; | 
|  |  | 
|  | NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) | 
|  | .addOperand(Dest) | 
|  | .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0); | 
|  | break; | 
|  | } | 
|  | case X86::SHL32ri: { | 
|  | assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); | 
|  | unsigned ShAmt = getTruncatedShiftCount(MI, 2); | 
|  | if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; | 
|  |  | 
|  | unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; | 
|  |  | 
|  | // LEA can't handle ESP. | 
|  | bool isKill, isUndef; | 
|  | unsigned SrcReg; | 
|  | MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | 
|  | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, | 
|  | SrcReg, isKill, isUndef, ImplicitOp)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) | 
|  | .addOperand(Dest) | 
|  | .addReg(0).addImm(1 << ShAmt) | 
|  | .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)) | 
|  | .addImm(0).addReg(0); | 
|  | if (ImplicitOp.getReg() != 0) | 
|  | MIB.addOperand(ImplicitOp); | 
|  | NewMI = MIB; | 
|  |  | 
|  | break; | 
|  | } | 
|  | case X86::SHL16ri: { | 
|  | assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); | 
|  | unsigned ShAmt = getTruncatedShiftCount(MI, 2); | 
|  | if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; | 
|  |  | 
|  | if (DisableLEA16) | 
|  | return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : nullptr; | 
|  | NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | 
|  | .addOperand(Dest) | 
|  | .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0); | 
|  | break; | 
|  | } | 
|  | case X86::INC64r: | 
|  | case X86::INC32r: { | 
|  | assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); | 
|  | unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r | 
|  | : (is64Bit ? X86::LEA64_32r : X86::LEA32r); | 
|  | bool isKill, isUndef; | 
|  | unsigned SrcReg; | 
|  | MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | 
|  | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, | 
|  | SrcReg, isKill, isUndef, ImplicitOp)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) | 
|  | .addOperand(Dest) | 
|  | .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)); | 
|  | if (ImplicitOp.getReg() != 0) | 
|  | MIB.addOperand(ImplicitOp); | 
|  |  | 
|  | NewMI = addOffset(MIB, 1); | 
|  | break; | 
|  | } | 
|  | case X86::INC16r: | 
|  | if (DisableLEA16) | 
|  | return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) | 
|  | : nullptr; | 
|  | assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); | 
|  | NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | 
|  | .addOperand(Dest).addOperand(Src), 1); | 
|  | break; | 
|  | case X86::DEC64r: | 
|  | case X86::DEC32r: { | 
|  | assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); | 
|  | unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r | 
|  | : (is64Bit ? X86::LEA64_32r : X86::LEA32r); | 
|  |  | 
|  | bool isKill, isUndef; | 
|  | unsigned SrcReg; | 
|  | MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | 
|  | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, | 
|  | SrcReg, isKill, isUndef, ImplicitOp)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) | 
|  | .addOperand(Dest) | 
|  | .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill)); | 
|  | if (ImplicitOp.getReg() != 0) | 
|  | MIB.addOperand(ImplicitOp); | 
|  |  | 
|  | NewMI = addOffset(MIB, -1); | 
|  |  | 
|  | break; | 
|  | } | 
|  | case X86::DEC16r: | 
|  | if (DisableLEA16) | 
|  | return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) | 
|  | : nullptr; | 
|  | assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); | 
|  | NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | 
|  | .addOperand(Dest).addOperand(Src), -1); | 
|  | break; | 
|  | case X86::ADD64rr: | 
|  | case X86::ADD64rr_DB: | 
|  | case X86::ADD32rr: | 
|  | case X86::ADD32rr_DB: { | 
|  | assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | unsigned Opc; | 
|  | if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) | 
|  | Opc = X86::LEA64r; | 
|  | else | 
|  | Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; | 
|  |  | 
|  | bool isKill, isUndef; | 
|  | unsigned SrcReg; | 
|  | MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | 
|  | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, | 
|  | SrcReg, isKill, isUndef, ImplicitOp)) | 
|  | return nullptr; | 
|  |  | 
|  | const MachineOperand &Src2 = MI->getOperand(2); | 
|  | bool isKill2, isUndef2; | 
|  | unsigned SrcReg2; | 
|  | MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false); | 
|  | if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false, | 
|  | SrcReg2, isKill2, isUndef2, ImplicitOp2)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) | 
|  | .addOperand(Dest); | 
|  | if (ImplicitOp.getReg() != 0) | 
|  | MIB.addOperand(ImplicitOp); | 
|  | if (ImplicitOp2.getReg() != 0) | 
|  | MIB.addOperand(ImplicitOp2); | 
|  |  | 
|  | NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2); | 
|  |  | 
|  | // Preserve undefness of the operands. | 
|  | NewMI->getOperand(1).setIsUndef(isUndef); | 
|  | NewMI->getOperand(3).setIsUndef(isUndef2); | 
|  |  | 
|  | if (LV && Src2.isKill()) | 
|  | LV->replaceKillInstruction(SrcReg2, MI, NewMI); | 
|  | break; | 
|  | } | 
|  | case X86::ADD16rr: | 
|  | case X86::ADD16rr_DB: { | 
|  | if (DisableLEA16) | 
|  | return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) | 
|  | : nullptr; | 
|  | assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | unsigned Src2 = MI->getOperand(2).getReg(); | 
|  | bool isKill2 = MI->getOperand(2).isKill(); | 
|  | NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | 
|  | .addOperand(Dest), | 
|  | Src.getReg(), Src.isKill(), Src2, isKill2); | 
|  |  | 
|  | // Preserve undefness of the operands. | 
|  | bool isUndef = MI->getOperand(1).isUndef(); | 
|  | bool isUndef2 = MI->getOperand(2).isUndef(); | 
|  | NewMI->getOperand(1).setIsUndef(isUndef); | 
|  | NewMI->getOperand(3).setIsUndef(isUndef2); | 
|  |  | 
|  | if (LV && isKill2) | 
|  | LV->replaceKillInstruction(Src2, MI, NewMI); | 
|  | break; | 
|  | } | 
|  | case X86::ADD64ri32: | 
|  | case X86::ADD64ri8: | 
|  | case X86::ADD64ri32_DB: | 
|  | case X86::ADD64ri8_DB: | 
|  | assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) | 
|  | .addOperand(Dest).addOperand(Src), | 
|  | MI->getOperand(2).getImm()); | 
|  | break; | 
|  | case X86::ADD32ri: | 
|  | case X86::ADD32ri8: | 
|  | case X86::ADD32ri_DB: | 
|  | case X86::ADD32ri8_DB: { | 
|  | assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; | 
|  |  | 
|  | bool isKill, isUndef; | 
|  | unsigned SrcReg; | 
|  | MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | 
|  | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, | 
|  | SrcReg, isKill, isUndef, ImplicitOp)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) | 
|  | .addOperand(Dest) | 
|  | .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill)); | 
|  | if (ImplicitOp.getReg() != 0) | 
|  | MIB.addOperand(ImplicitOp); | 
|  |  | 
|  | NewMI = addOffset(MIB, MI->getOperand(2).getImm()); | 
|  | break; | 
|  | } | 
|  | case X86::ADD16ri: | 
|  | case X86::ADD16ri8: | 
|  | case X86::ADD16ri_DB: | 
|  | case X86::ADD16ri8_DB: | 
|  | if (DisableLEA16) | 
|  | return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) | 
|  | : nullptr; | 
|  | assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | 
|  | .addOperand(Dest).addOperand(Src), | 
|  | MI->getOperand(2).getImm()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!NewMI) return nullptr; | 
|  |  | 
|  | if (LV) {  // Update live variables | 
|  | if (Src.isKill()) | 
|  | LV->replaceKillInstruction(Src.getReg(), MI, NewMI); | 
|  | if (Dest.isDead()) | 
|  | LV->replaceKillInstruction(Dest.getReg(), MI, NewMI); | 
|  | } | 
|  |  | 
|  | MFI->insert(MBBI, NewMI);          // Insert the new inst | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | /// Returns true if the given instruction opcode is FMA3. | 
|  | /// Otherwise, returns false. | 
|  | /// The second parameter is optional and is used as the second return from | 
|  | /// the function. It is set to true if the given instruction has FMA3 opcode | 
|  | /// that is used for lowering of scalar FMA intrinsics, and it is set to false | 
|  | /// otherwise. | 
|  | static bool isFMA3(unsigned Opcode, bool *IsIntrinsic = nullptr) { | 
|  | if (IsIntrinsic) | 
|  | *IsIntrinsic = false; | 
|  |  | 
|  | switch (Opcode) { | 
|  | case X86::VFMADDSDr132r:      case X86::VFMADDSDr132m: | 
|  | case X86::VFMADDSSr132r:      case X86::VFMADDSSr132m: | 
|  | case X86::VFMSUBSDr132r:      case X86::VFMSUBSDr132m: | 
|  | case X86::VFMSUBSSr132r:      case X86::VFMSUBSSr132m: | 
|  | case X86::VFNMADDSDr132r:     case X86::VFNMADDSDr132m: | 
|  | case X86::VFNMADDSSr132r:     case X86::VFNMADDSSr132m: | 
|  | case X86::VFNMSUBSDr132r:     case X86::VFNMSUBSDr132m: | 
|  | case X86::VFNMSUBSSr132r:     case X86::VFNMSUBSSr132m: | 
|  |  | 
|  | case X86::VFMADDSDr213r:      case X86::VFMADDSDr213m: | 
|  | case X86::VFMADDSSr213r:      case X86::VFMADDSSr213m: | 
|  | case X86::VFMSUBSDr213r:      case X86::VFMSUBSDr213m: | 
|  | case X86::VFMSUBSSr213r:      case X86::VFMSUBSSr213m: | 
|  | case X86::VFNMADDSDr213r:     case X86::VFNMADDSDr213m: | 
|  | case X86::VFNMADDSSr213r:     case X86::VFNMADDSSr213m: | 
|  | case X86::VFNMSUBSDr213r:     case X86::VFNMSUBSDr213m: | 
|  | case X86::VFNMSUBSSr213r:     case X86::VFNMSUBSSr213m: | 
|  |  | 
|  | case X86::VFMADDSDr231r:      case X86::VFMADDSDr231m: | 
|  | case X86::VFMADDSSr231r:      case X86::VFMADDSSr231m: | 
|  | case X86::VFMSUBSDr231r:      case X86::VFMSUBSDr231m: | 
|  | case X86::VFMSUBSSr231r:      case X86::VFMSUBSSr231m: | 
|  | case X86::VFNMADDSDr231r:     case X86::VFNMADDSDr231m: | 
|  | case X86::VFNMADDSSr231r:     case X86::VFNMADDSSr231m: | 
|  | case X86::VFNMSUBSDr231r:     case X86::VFNMSUBSDr231m: | 
|  | case X86::VFNMSUBSSr231r:     case X86::VFNMSUBSSr231m: | 
|  |  | 
|  | case X86::VFMADDSUBPDr132r:   case X86::VFMADDSUBPDr132m: | 
|  | case X86::VFMADDSUBPSr132r:   case X86::VFMADDSUBPSr132m: | 
|  | case X86::VFMSUBADDPDr132r:   case X86::VFMSUBADDPDr132m: | 
|  | case X86::VFMSUBADDPSr132r:   case X86::VFMSUBADDPSr132m: | 
|  | case X86::VFMADDSUBPDr132rY:  case X86::VFMADDSUBPDr132mY: | 
|  | case X86::VFMADDSUBPSr132rY:  case X86::VFMADDSUBPSr132mY: | 
|  | case X86::VFMSUBADDPDr132rY:  case X86::VFMSUBADDPDr132mY: | 
|  | case X86::VFMSUBADDPSr132rY:  case X86::VFMSUBADDPSr132mY: | 
|  |  | 
|  | case X86::VFMADDPDr132r:      case X86::VFMADDPDr132m: | 
|  | case X86::VFMADDPSr132r:      case X86::VFMADDPSr132m: | 
|  | case X86::VFMSUBPDr132r:      case X86::VFMSUBPDr132m: | 
|  | case X86::VFMSUBPSr132r:      case X86::VFMSUBPSr132m: | 
|  | case X86::VFNMADDPDr132r:     case X86::VFNMADDPDr132m: | 
|  | case X86::VFNMADDPSr132r:     case X86::VFNMADDPSr132m: | 
|  | case X86::VFNMSUBPDr132r:     case X86::VFNMSUBPDr132m: | 
|  | case X86::VFNMSUBPSr132r:     case X86::VFNMSUBPSr132m: | 
|  | case X86::VFMADDPDr132rY:     case X86::VFMADDPDr132mY: | 
|  | case X86::VFMADDPSr132rY:     case X86::VFMADDPSr132mY: | 
|  | case X86::VFMSUBPDr132rY:     case X86::VFMSUBPDr132mY: | 
|  | case X86::VFMSUBPSr132rY:     case X86::VFMSUBPSr132mY: | 
|  | case X86::VFNMADDPDr132rY:    case X86::VFNMADDPDr132mY: | 
|  | case X86::VFNMADDPSr132rY:    case X86::VFNMADDPSr132mY: | 
|  | case X86::VFNMSUBPDr132rY:    case X86::VFNMSUBPDr132mY: | 
|  | case X86::VFNMSUBPSr132rY:    case X86::VFNMSUBPSr132mY: | 
|  |  | 
|  | case X86::VFMADDSUBPDr213r:   case X86::VFMADDSUBPDr213m: | 
|  | case X86::VFMADDSUBPSr213r:   case X86::VFMADDSUBPSr213m: | 
|  | case X86::VFMSUBADDPDr213r:   case X86::VFMSUBADDPDr213m: | 
|  | case X86::VFMSUBADDPSr213r:   case X86::VFMSUBADDPSr213m: | 
|  | case X86::VFMADDSUBPDr213rY:  case X86::VFMADDSUBPDr213mY: | 
|  | case X86::VFMADDSUBPSr213rY:  case X86::VFMADDSUBPSr213mY: | 
|  | case X86::VFMSUBADDPDr213rY:  case X86::VFMSUBADDPDr213mY: | 
|  | case X86::VFMSUBADDPSr213rY:  case X86::VFMSUBADDPSr213mY: | 
|  |  | 
|  | case X86::VFMADDPDr213r:      case X86::VFMADDPDr213m: | 
|  | case X86::VFMADDPSr213r:      case X86::VFMADDPSr213m: | 
|  | case X86::VFMSUBPDr213r:      case X86::VFMSUBPDr213m: | 
|  | case X86::VFMSUBPSr213r:      case X86::VFMSUBPSr213m: | 
|  | case X86::VFNMADDPDr213r:     case X86::VFNMADDPDr213m: | 
|  | case X86::VFNMADDPSr213r:     case X86::VFNMADDPSr213m: | 
|  | case X86::VFNMSUBPDr213r:     case X86::VFNMSUBPDr213m: | 
|  | case X86::VFNMSUBPSr213r:     case X86::VFNMSUBPSr213m: | 
|  | case X86::VFMADDPDr213rY:     case X86::VFMADDPDr213mY: | 
|  | case X86::VFMADDPSr213rY:     case X86::VFMADDPSr213mY: | 
|  | case X86::VFMSUBPDr213rY:     case X86::VFMSUBPDr213mY: | 
|  | case X86::VFMSUBPSr213rY:     case X86::VFMSUBPSr213mY: | 
|  | case X86::VFNMADDPDr213rY:    case X86::VFNMADDPDr213mY: | 
|  | case X86::VFNMADDPSr213rY:    case X86::VFNMADDPSr213mY: | 
|  | case X86::VFNMSUBPDr213rY:    case X86::VFNMSUBPDr213mY: | 
|  | case X86::VFNMSUBPSr213rY:    case X86::VFNMSUBPSr213mY: | 
|  |  | 
|  | case X86::VFMADDSUBPDr231r:   case X86::VFMADDSUBPDr231m: | 
|  | case X86::VFMADDSUBPSr231r:   case X86::VFMADDSUBPSr231m: | 
|  | case X86::VFMSUBADDPDr231r:   case X86::VFMSUBADDPDr231m: | 
|  | case X86::VFMSUBADDPSr231r:   case X86::VFMSUBADDPSr231m: | 
|  | case X86::VFMADDSUBPDr231rY:  case X86::VFMADDSUBPDr231mY: | 
|  | case X86::VFMADDSUBPSr231rY:  case X86::VFMADDSUBPSr231mY: | 
|  | case X86::VFMSUBADDPDr231rY:  case X86::VFMSUBADDPDr231mY: | 
|  | case X86::VFMSUBADDPSr231rY:  case X86::VFMSUBADDPSr231mY: | 
|  |  | 
|  | case X86::VFMADDPDr231r:      case X86::VFMADDPDr231m: | 
|  | case X86::VFMADDPSr231r:      case X86::VFMADDPSr231m: | 
|  | case X86::VFMSUBPDr231r:      case X86::VFMSUBPDr231m: | 
|  | case X86::VFMSUBPSr231r:      case X86::VFMSUBPSr231m: | 
|  | case X86::VFNMADDPDr231r:     case X86::VFNMADDPDr231m: | 
|  | case X86::VFNMADDPSr231r:     case X86::VFNMADDPSr231m: | 
|  | case X86::VFNMSUBPDr231r:     case X86::VFNMSUBPDr231m: | 
|  | case X86::VFNMSUBPSr231r:     case X86::VFNMSUBPSr231m: | 
|  | case X86::VFMADDPDr231rY:     case X86::VFMADDPDr231mY: | 
|  | case X86::VFMADDPSr231rY:     case X86::VFMADDPSr231mY: | 
|  | case X86::VFMSUBPDr231rY:     case X86::VFMSUBPDr231mY: | 
|  | case X86::VFMSUBPSr231rY:     case X86::VFMSUBPSr231mY: | 
|  | case X86::VFNMADDPDr231rY:    case X86::VFNMADDPDr231mY: | 
|  | case X86::VFNMADDPSr231rY:    case X86::VFNMADDPSr231mY: | 
|  | case X86::VFNMSUBPDr231rY:    case X86::VFNMSUBPDr231mY: | 
|  | case X86::VFNMSUBPSr231rY:    case X86::VFNMSUBPSr231mY: | 
|  | return true; | 
|  |  | 
|  | case X86::VFMADDSDr132r_Int:  case X86::VFMADDSDr132m_Int: | 
|  | case X86::VFMADDSSr132r_Int:  case X86::VFMADDSSr132m_Int: | 
|  | case X86::VFMSUBSDr132r_Int:  case X86::VFMSUBSDr132m_Int: | 
|  | case X86::VFMSUBSSr132r_Int:  case X86::VFMSUBSSr132m_Int: | 
|  | case X86::VFNMADDSDr132r_Int: case X86::VFNMADDSDr132m_Int: | 
|  | case X86::VFNMADDSSr132r_Int: case X86::VFNMADDSSr132m_Int: | 
|  | case X86::VFNMSUBSDr132r_Int: case X86::VFNMSUBSDr132m_Int: | 
|  | case X86::VFNMSUBSSr132r_Int: case X86::VFNMSUBSSr132m_Int: | 
|  |  | 
|  | case X86::VFMADDSDr213r_Int:  case X86::VFMADDSDr213m_Int: | 
|  | case X86::VFMADDSSr213r_Int:  case X86::VFMADDSSr213m_Int: | 
|  | case X86::VFMSUBSDr213r_Int:  case X86::VFMSUBSDr213m_Int: | 
|  | case X86::VFMSUBSSr213r_Int:  case X86::VFMSUBSSr213m_Int: | 
|  | case X86::VFNMADDSDr213r_Int: case X86::VFNMADDSDr213m_Int: | 
|  | case X86::VFNMADDSSr213r_Int: case X86::VFNMADDSSr213m_Int: | 
|  | case X86::VFNMSUBSDr213r_Int: case X86::VFNMSUBSDr213m_Int: | 
|  | case X86::VFNMSUBSSr213r_Int: case X86::VFNMSUBSSr213m_Int: | 
|  |  | 
|  | case X86::VFMADDSDr231r_Int:  case X86::VFMADDSDr231m_Int: | 
|  | case X86::VFMADDSSr231r_Int:  case X86::VFMADDSSr231m_Int: | 
|  | case X86::VFMSUBSDr231r_Int:  case X86::VFMSUBSDr231m_Int: | 
|  | case X86::VFMSUBSSr231r_Int:  case X86::VFMSUBSSr231m_Int: | 
|  | case X86::VFNMADDSDr231r_Int: case X86::VFNMADDSDr231m_Int: | 
|  | case X86::VFNMADDSSr231r_Int: case X86::VFNMADDSSr231m_Int: | 
|  | case X86::VFNMSUBSDr231r_Int: case X86::VFNMSUBSDr231m_Int: | 
|  | case X86::VFNMSUBSSr231r_Int: case X86::VFNMSUBSSr231m_Int: | 
|  | if (IsIntrinsic) | 
|  | *IsIntrinsic = true; | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | llvm_unreachable("Opcode not handled by the switch"); | 
|  | } | 
|  |  | 
|  | MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr *MI, | 
|  | bool NewMI, | 
|  | unsigned OpIdx1, | 
|  | unsigned OpIdx2) const { | 
|  | switch (MI->getOpcode()) { | 
|  | case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) | 
|  | case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) | 
|  | case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) | 
|  | case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) | 
|  | case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) | 
|  | case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) | 
|  | unsigned Opc; | 
|  | unsigned Size; | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; | 
|  | case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; | 
|  | case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; | 
|  | case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; | 
|  | case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; | 
|  | case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; | 
|  | } | 
|  | unsigned Amt = MI->getOperand(3).getImm(); | 
|  | if (NewMI) { | 
|  | MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | MI = MF.CloneMachineInstr(MI); | 
|  | NewMI = false; | 
|  | } | 
|  | MI->setDesc(get(Opc)); | 
|  | MI->getOperand(3).setImm(Size-Amt); | 
|  | return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); | 
|  | } | 
|  | case X86::BLENDPDrri: | 
|  | case X86::BLENDPSrri: | 
|  | case X86::PBLENDWrri: | 
|  | case X86::VBLENDPDrri: | 
|  | case X86::VBLENDPSrri: | 
|  | case X86::VBLENDPDYrri: | 
|  | case X86::VBLENDPSYrri: | 
|  | case X86::VPBLENDDrri: | 
|  | case X86::VPBLENDWrri: | 
|  | case X86::VPBLENDDYrri: | 
|  | case X86::VPBLENDWYrri:{ | 
|  | unsigned Mask; | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::BLENDPDrri:    Mask = 0x03; break; | 
|  | case X86::BLENDPSrri:    Mask = 0x0F; break; | 
|  | case X86::PBLENDWrri:    Mask = 0xFF; break; | 
|  | case X86::VBLENDPDrri:   Mask = 0x03; break; | 
|  | case X86::VBLENDPSrri:   Mask = 0x0F; break; | 
|  | case X86::VBLENDPDYrri:  Mask = 0x0F; break; | 
|  | case X86::VBLENDPSYrri:  Mask = 0xFF; break; | 
|  | case X86::VPBLENDDrri:   Mask = 0x0F; break; | 
|  | case X86::VPBLENDWrri:   Mask = 0xFF; break; | 
|  | case X86::VPBLENDDYrri:  Mask = 0xFF; break; | 
|  | case X86::VPBLENDWYrri:  Mask = 0xFF; break; | 
|  | } | 
|  | // Only the least significant bits of Imm are used. | 
|  | unsigned Imm = MI->getOperand(3).getImm() & Mask; | 
|  | if (NewMI) { | 
|  | MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | MI = MF.CloneMachineInstr(MI); | 
|  | NewMI = false; | 
|  | } | 
|  | MI->getOperand(3).setImm(Mask ^ Imm); | 
|  | return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); | 
|  | } | 
|  | case X86::PCLMULQDQrr: | 
|  | case X86::VPCLMULQDQrr:{ | 
|  | // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0] | 
|  | // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0] | 
|  | unsigned Imm = MI->getOperand(3).getImm(); | 
|  | unsigned Src1Hi = Imm & 0x01; | 
|  | unsigned Src2Hi = Imm & 0x10; | 
|  | if (NewMI) { | 
|  | MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | MI = MF.CloneMachineInstr(MI); | 
|  | NewMI = false; | 
|  | } | 
|  | MI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4)); | 
|  | return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); | 
|  | } | 
|  | case X86::CMPPDrri: | 
|  | case X86::CMPPSrri: | 
|  | case X86::VCMPPDrri: | 
|  | case X86::VCMPPSrri: | 
|  | case X86::VCMPPDYrri: | 
|  | case X86::VCMPPSYrri: { | 
|  | // Float comparison can be safely commuted for | 
|  | // Ordered/Unordered/Equal/NotEqual tests | 
|  | unsigned Imm = MI->getOperand(3).getImm() & 0x7; | 
|  | switch (Imm) { | 
|  | case 0x00: // EQUAL | 
|  | case 0x03: // UNORDERED | 
|  | case 0x04: // NOT EQUAL | 
|  | case 0x07: // ORDERED | 
|  | if (NewMI) { | 
|  | MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | MI = MF.CloneMachineInstr(MI); | 
|  | NewMI = false; | 
|  | } | 
|  | return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | case X86::VPCOMBri: case X86::VPCOMUBri: | 
|  | case X86::VPCOMDri: case X86::VPCOMUDri: | 
|  | case X86::VPCOMQri: case X86::VPCOMUQri: | 
|  | case X86::VPCOMWri: case X86::VPCOMUWri: { | 
|  | // Flip comparison mode immediate (if necessary). | 
|  | unsigned Imm = MI->getOperand(3).getImm() & 0x7; | 
|  | switch (Imm) { | 
|  | case 0x00: Imm = 0x02; break; // LT -> GT | 
|  | case 0x01: Imm = 0x03; break; // LE -> GE | 
|  | case 0x02: Imm = 0x00; break; // GT -> LT | 
|  | case 0x03: Imm = 0x01; break; // GE -> LE | 
|  | case 0x04: // EQ | 
|  | case 0x05: // NE | 
|  | case 0x06: // FALSE | 
|  | case 0x07: // TRUE | 
|  | default: | 
|  | break; | 
|  | } | 
|  | if (NewMI) { | 
|  | MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | MI = MF.CloneMachineInstr(MI); | 
|  | NewMI = false; | 
|  | } | 
|  | MI->getOperand(3).setImm(Imm); | 
|  | return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); | 
|  | } | 
|  | case X86::CMOVB16rr:  case X86::CMOVB32rr:  case X86::CMOVB64rr: | 
|  | case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr: | 
|  | case X86::CMOVE16rr:  case X86::CMOVE32rr:  case X86::CMOVE64rr: | 
|  | case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr: | 
|  | case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr: | 
|  | case X86::CMOVA16rr:  case X86::CMOVA32rr:  case X86::CMOVA64rr: | 
|  | case X86::CMOVL16rr:  case X86::CMOVL32rr:  case X86::CMOVL64rr: | 
|  | case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr: | 
|  | case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr: | 
|  | case X86::CMOVG16rr:  case X86::CMOVG32rr:  case X86::CMOVG64rr: | 
|  | case X86::CMOVS16rr:  case X86::CMOVS32rr:  case X86::CMOVS64rr: | 
|  | case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr: | 
|  | case X86::CMOVP16rr:  case X86::CMOVP32rr:  case X86::CMOVP64rr: | 
|  | case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr: | 
|  | case X86::CMOVO16rr:  case X86::CMOVO32rr:  case X86::CMOVO64rr: | 
|  | case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: { | 
|  | unsigned Opc; | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break; | 
|  | case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break; | 
|  | case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break; | 
|  | case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break; | 
|  | case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break; | 
|  | case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break; | 
|  | case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break; | 
|  | case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break; | 
|  | case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break; | 
|  | case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break; | 
|  | case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break; | 
|  | case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break; | 
|  | case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break; | 
|  | case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break; | 
|  | case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break; | 
|  | case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break; | 
|  | case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break; | 
|  | case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break; | 
|  | case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break; | 
|  | case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break; | 
|  | case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break; | 
|  | case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break; | 
|  | case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break; | 
|  | case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break; | 
|  | case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break; | 
|  | case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break; | 
|  | case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break; | 
|  | case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break; | 
|  | case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break; | 
|  | case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break; | 
|  | case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break; | 
|  | case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break; | 
|  | case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break; | 
|  | case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break; | 
|  | case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break; | 
|  | case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break; | 
|  | case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break; | 
|  | case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break; | 
|  | case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break; | 
|  | case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break; | 
|  | case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break; | 
|  | case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break; | 
|  | case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break; | 
|  | case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break; | 
|  | case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break; | 
|  | case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break; | 
|  | case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break; | 
|  | case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break; | 
|  | } | 
|  | if (NewMI) { | 
|  | MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | MI = MF.CloneMachineInstr(MI); | 
|  | NewMI = false; | 
|  | } | 
|  | MI->setDesc(get(Opc)); | 
|  | // Fallthrough intended. | 
|  | } | 
|  | default: | 
|  | if (isFMA3(MI->getOpcode())) { | 
|  | unsigned Opc = getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2); | 
|  | if (Opc == 0) | 
|  | return nullptr; | 
|  | if (NewMI) { | 
|  | MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | MI = MF.CloneMachineInstr(MI); | 
|  | NewMI = false; | 
|  | } | 
|  | MI->setDesc(get(Opc)); | 
|  | } | 
|  | return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::findFMA3CommutedOpIndices(MachineInstr *MI, | 
|  | unsigned &SrcOpIdx1, | 
|  | unsigned &SrcOpIdx2) const { | 
|  |  | 
|  | unsigned RegOpsNum = isMem(MI, 3) ? 2 : 3; | 
|  |  | 
|  | // Only the first RegOpsNum operands are commutable. | 
|  | // Also, the value 'CommuteAnyOperandIndex' is valid here as it means | 
|  | // that the operand is not specified/fixed. | 
|  | if (SrcOpIdx1 != CommuteAnyOperandIndex && | 
|  | (SrcOpIdx1 < 1 || SrcOpIdx1 > RegOpsNum)) | 
|  | return false; | 
|  | if (SrcOpIdx2 != CommuteAnyOperandIndex && | 
|  | (SrcOpIdx2 < 1 || SrcOpIdx2 > RegOpsNum)) | 
|  | return false; | 
|  |  | 
|  | // Look for two different register operands assumed to be commutable | 
|  | // regardless of the FMA opcode. The FMA opcode is adjusted later. | 
|  | if (SrcOpIdx1 == CommuteAnyOperandIndex || | 
|  | SrcOpIdx2 == CommuteAnyOperandIndex) { | 
|  | unsigned CommutableOpIdx1 = SrcOpIdx1; | 
|  | unsigned CommutableOpIdx2 = SrcOpIdx2; | 
|  |  | 
|  | // At least one of operands to be commuted is not specified and | 
|  | // this method is free to choose appropriate commutable operands. | 
|  | if (SrcOpIdx1 == SrcOpIdx2) | 
|  | // Both of operands are not fixed. By default set one of commutable | 
|  | // operands to the last register operand of the instruction. | 
|  | CommutableOpIdx2 = RegOpsNum; | 
|  | else if (SrcOpIdx2 == CommuteAnyOperandIndex) | 
|  | // Only one of operands is not fixed. | 
|  | CommutableOpIdx2 = SrcOpIdx1; | 
|  |  | 
|  | // CommutableOpIdx2 is well defined now. Let's choose another commutable | 
|  | // operand and assign its index to CommutableOpIdx1. | 
|  | unsigned Op2Reg = MI->getOperand(CommutableOpIdx2).getReg(); | 
|  | for (CommutableOpIdx1 = RegOpsNum; CommutableOpIdx1 > 0; CommutableOpIdx1--) { | 
|  | // The commuted operands must have different registers. | 
|  | // Otherwise, the commute transformation does not change anything and | 
|  | // is useless then. | 
|  | if (Op2Reg != MI->getOperand(CommutableOpIdx1).getReg()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // No appropriate commutable operands were found. | 
|  | if (CommutableOpIdx1 == 0) | 
|  | return false; | 
|  |  | 
|  | // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2 | 
|  | // to return those values. | 
|  | if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, | 
|  | CommutableOpIdx1, CommutableOpIdx2)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check if we can adjust the opcode to preserve the semantics when | 
|  | // commute the register operands. | 
|  | return getFMA3OpcodeToCommuteOperands(MI, SrcOpIdx1, SrcOpIdx2) != 0; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(MachineInstr *MI, | 
|  | unsigned SrcOpIdx1, | 
|  | unsigned SrcOpIdx2) const { | 
|  | unsigned Opc = MI->getOpcode(); | 
|  |  | 
|  | // Define the array that holds FMA opcodes in groups | 
|  | // of 3 opcodes(132, 213, 231) in each group. | 
|  | static const unsigned RegularOpcodeGroups[][3] = { | 
|  | { X86::VFMADDSSr132r,   X86::VFMADDSSr213r,   X86::VFMADDSSr231r  }, | 
|  | { X86::VFMADDSDr132r,   X86::VFMADDSDr213r,   X86::VFMADDSDr231r  }, | 
|  | { X86::VFMADDPSr132r,   X86::VFMADDPSr213r,   X86::VFMADDPSr231r  }, | 
|  | { X86::VFMADDPDr132r,   X86::VFMADDPDr213r,   X86::VFMADDPDr231r  }, | 
|  | { X86::VFMADDPSr132rY,  X86::VFMADDPSr213rY,  X86::VFMADDPSr231rY }, | 
|  | { X86::VFMADDPDr132rY,  X86::VFMADDPDr213rY,  X86::VFMADDPDr231rY }, | 
|  | { X86::VFMADDSSr132m,   X86::VFMADDSSr213m,   X86::VFMADDSSr231m  }, | 
|  | { X86::VFMADDSDr132m,   X86::VFMADDSDr213m,   X86::VFMADDSDr231m  }, | 
|  | { X86::VFMADDPSr132m,   X86::VFMADDPSr213m,   X86::VFMADDPSr231m  }, | 
|  | { X86::VFMADDPDr132m,   X86::VFMADDPDr213m,   X86::VFMADDPDr231m  }, | 
|  | { X86::VFMADDPSr132mY,  X86::VFMADDPSr213mY,  X86::VFMADDPSr231mY }, | 
|  | { X86::VFMADDPDr132mY,  X86::VFMADDPDr213mY,  X86::VFMADDPDr231mY }, | 
|  |  | 
|  | { X86::VFMSUBSSr132r,   X86::VFMSUBSSr213r,   X86::VFMSUBSSr231r  }, | 
|  | { X86::VFMSUBSDr132r,   X86::VFMSUBSDr213r,   X86::VFMSUBSDr231r  }, | 
|  | { X86::VFMSUBPSr132r,   X86::VFMSUBPSr213r,   X86::VFMSUBPSr231r  }, | 
|  | { X86::VFMSUBPDr132r,   X86::VFMSUBPDr213r,   X86::VFMSUBPDr231r  }, | 
|  | { X86::VFMSUBPSr132rY,  X86::VFMSUBPSr213rY,  X86::VFMSUBPSr231rY }, | 
|  | { X86::VFMSUBPDr132rY,  X86::VFMSUBPDr213rY,  X86::VFMSUBPDr231rY }, | 
|  | { X86::VFMSUBSSr132m,   X86::VFMSUBSSr213m,   X86::VFMSUBSSr231m  }, | 
|  | { X86::VFMSUBSDr132m,   X86::VFMSUBSDr213m,   X86::VFMSUBSDr231m  }, | 
|  | { X86::VFMSUBPSr132m,   X86::VFMSUBPSr213m,   X86::VFMSUBPSr231m  }, | 
|  | { X86::VFMSUBPDr132m,   X86::VFMSUBPDr213m,   X86::VFMSUBPDr231m  }, | 
|  | { X86::VFMSUBPSr132mY,  X86::VFMSUBPSr213mY,  X86::VFMSUBPSr231mY }, | 
|  | { X86::VFMSUBPDr132mY,  X86::VFMSUBPDr213mY,  X86::VFMSUBPDr231mY }, | 
|  |  | 
|  | { X86::VFNMADDSSr132r,  X86::VFNMADDSSr213r,  X86::VFNMADDSSr231r  }, | 
|  | { X86::VFNMADDSDr132r,  X86::VFNMADDSDr213r,  X86::VFNMADDSDr231r  }, | 
|  | { X86::VFNMADDPSr132r,  X86::VFNMADDPSr213r,  X86::VFNMADDPSr231r  }, | 
|  | { X86::VFNMADDPDr132r,  X86::VFNMADDPDr213r,  X86::VFNMADDPDr231r  }, | 
|  | { X86::VFNMADDPSr132rY, X86::VFNMADDPSr213rY, X86::VFNMADDPSr231rY }, | 
|  | { X86::VFNMADDPDr132rY, X86::VFNMADDPDr213rY, X86::VFNMADDPDr231rY }, | 
|  | { X86::VFNMADDSSr132m,  X86::VFNMADDSSr213m,  X86::VFNMADDSSr231m  }, | 
|  | { X86::VFNMADDSDr132m,  X86::VFNMADDSDr213m,  X86::VFNMADDSDr231m  }, | 
|  | { X86::VFNMADDPSr132m,  X86::VFNMADDPSr213m,  X86::VFNMADDPSr231m  }, | 
|  | { X86::VFNMADDPDr132m,  X86::VFNMADDPDr213m,  X86::VFNMADDPDr231m  }, | 
|  | { X86::VFNMADDPSr132mY, X86::VFNMADDPSr213mY, X86::VFNMADDPSr231mY }, | 
|  | { X86::VFNMADDPDr132mY, X86::VFNMADDPDr213mY, X86::VFNMADDPDr231mY }, | 
|  |  | 
|  | { X86::VFNMSUBSSr132r,  X86::VFNMSUBSSr213r,  X86::VFNMSUBSSr231r  }, | 
|  | { X86::VFNMSUBSDr132r,  X86::VFNMSUBSDr213r,  X86::VFNMSUBSDr231r  }, | 
|  | { X86::VFNMSUBPSr132r,  X86::VFNMSUBPSr213r,  X86::VFNMSUBPSr231r  }, | 
|  | { X86::VFNMSUBPDr132r,  X86::VFNMSUBPDr213r,  X86::VFNMSUBPDr231r  }, | 
|  | { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr231rY }, | 
|  | { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr231rY }, | 
|  | { X86::VFNMSUBSSr132m,  X86::VFNMSUBSSr213m,  X86::VFNMSUBSSr231m  }, | 
|  | { X86::VFNMSUBSDr132m,  X86::VFNMSUBSDr213m,  X86::VFNMSUBSDr231m  }, | 
|  | { X86::VFNMSUBPSr132m,  X86::VFNMSUBPSr213m,  X86::VFNMSUBPSr231m  }, | 
|  | { X86::VFNMSUBPDr132m,  X86::VFNMSUBPDr213m,  X86::VFNMSUBPDr231m  }, | 
|  | { X86::VFNMSUBPSr132mY, X86::VFNMSUBPSr213mY, X86::VFNMSUBPSr231mY }, | 
|  | { X86::VFNMSUBPDr132mY, X86::VFNMSUBPDr213mY, X86::VFNMSUBPDr231mY }, | 
|  |  | 
|  | { X86::VFMADDSUBPSr132r,  X86::VFMADDSUBPSr213r,  X86::VFMADDSUBPSr231r  }, | 
|  | { X86::VFMADDSUBPDr132r,  X86::VFMADDSUBPDr213r,  X86::VFMADDSUBPDr231r  }, | 
|  | { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr231rY }, | 
|  | { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr231rY }, | 
|  | { X86::VFMADDSUBPSr132m,  X86::VFMADDSUBPSr213m,  X86::VFMADDSUBPSr231m  }, | 
|  | { X86::VFMADDSUBPDr132m,  X86::VFMADDSUBPDr213m,  X86::VFMADDSUBPDr231m  }, | 
|  | { X86::VFMADDSUBPSr132mY, X86::VFMADDSUBPSr213mY, X86::VFMADDSUBPSr231mY }, | 
|  | { X86::VFMADDSUBPDr132mY, X86::VFMADDSUBPDr213mY, X86::VFMADDSUBPDr231mY }, | 
|  |  | 
|  | { X86::VFMSUBADDPSr132r,  X86::VFMSUBADDPSr213r,  X86::VFMSUBADDPSr231r  }, | 
|  | { X86::VFMSUBADDPDr132r,  X86::VFMSUBADDPDr213r,  X86::VFMSUBADDPDr231r  }, | 
|  | { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr231rY }, | 
|  | { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr231rY }, | 
|  | { X86::VFMSUBADDPSr132m,  X86::VFMSUBADDPSr213m,  X86::VFMSUBADDPSr231m  }, | 
|  | { X86::VFMSUBADDPDr132m,  X86::VFMSUBADDPDr213m,  X86::VFMSUBADDPDr231m  }, | 
|  | { X86::VFMSUBADDPSr132mY, X86::VFMSUBADDPSr213mY, X86::VFMSUBADDPSr231mY }, | 
|  | { X86::VFMSUBADDPDr132mY, X86::VFMSUBADDPDr213mY, X86::VFMSUBADDPDr231mY } | 
|  | }; | 
|  |  | 
|  | // Define the array that holds FMA*_Int opcodes in groups | 
|  | // of 3 opcodes(132, 213, 231) in each group. | 
|  | static const unsigned IntrinOpcodeGroups[][3] = { | 
|  | { X86::VFMADDSSr132r_Int,  X86::VFMADDSSr213r_Int,  X86::VFMADDSSr231r_Int }, | 
|  | { X86::VFMADDSDr132r_Int,  X86::VFMADDSDr213r_Int,  X86::VFMADDSDr231r_Int }, | 
|  | { X86::VFMADDSSr132m_Int,  X86::VFMADDSSr213m_Int,  X86::VFMADDSSr231m_Int }, | 
|  | { X86::VFMADDSDr132m_Int,  X86::VFMADDSDr213m_Int,  X86::VFMADDSDr231m_Int }, | 
|  |  | 
|  | { X86::VFMSUBSSr132r_Int,  X86::VFMSUBSSr213r_Int,  X86::VFMSUBSSr231r_Int }, | 
|  | { X86::VFMSUBSDr132r_Int,  X86::VFMSUBSDr213r_Int,  X86::VFMSUBSDr231r_Int }, | 
|  | { X86::VFMSUBSSr132m_Int,  X86::VFMSUBSSr213m_Int,  X86::VFMSUBSSr231m_Int }, | 
|  | { X86::VFMSUBSDr132m_Int,  X86::VFMSUBSDr213m_Int,  X86::VFMSUBSDr231m_Int }, | 
|  |  | 
|  | { X86::VFNMADDSSr132r_Int, X86::VFNMADDSSr213r_Int, X86::VFNMADDSSr231r_Int }, | 
|  | { X86::VFNMADDSDr132r_Int, X86::VFNMADDSDr213r_Int, X86::VFNMADDSDr231r_Int }, | 
|  | { X86::VFNMADDSSr132m_Int, X86::VFNMADDSSr213m_Int, X86::VFNMADDSSr231m_Int }, | 
|  | { X86::VFNMADDSDr132m_Int, X86::VFNMADDSDr213m_Int, X86::VFNMADDSDr231m_Int }, | 
|  |  | 
|  | { X86::VFNMSUBSSr132r_Int, X86::VFNMSUBSSr213r_Int, X86::VFNMSUBSSr231r_Int }, | 
|  | { X86::VFNMSUBSDr132r_Int, X86::VFNMSUBSDr213r_Int, X86::VFNMSUBSDr231r_Int }, | 
|  | { X86::VFNMSUBSSr132m_Int, X86::VFNMSUBSSr213m_Int, X86::VFNMSUBSSr231m_Int }, | 
|  | { X86::VFNMSUBSDr132m_Int, X86::VFNMSUBSDr213m_Int, X86::VFNMSUBSDr231m_Int }, | 
|  | }; | 
|  |  | 
|  | const unsigned Form132Index = 0; | 
|  | const unsigned Form213Index = 1; | 
|  | const unsigned Form231Index = 2; | 
|  | const unsigned FormsNum = 3; | 
|  |  | 
|  | bool IsIntrinOpcode; | 
|  | isFMA3(Opc, &IsIntrinOpcode); | 
|  |  | 
|  | size_t GroupsNum; | 
|  | const unsigned (*OpcodeGroups)[3]; | 
|  | if (IsIntrinOpcode) { | 
|  | GroupsNum = array_lengthof(IntrinOpcodeGroups); | 
|  | OpcodeGroups = IntrinOpcodeGroups; | 
|  | } else { | 
|  | GroupsNum = array_lengthof(RegularOpcodeGroups); | 
|  | OpcodeGroups = RegularOpcodeGroups; | 
|  | } | 
|  |  | 
|  | const unsigned *FoundOpcodesGroup = nullptr; | 
|  | size_t FormIndex; | 
|  |  | 
|  | // Look for the input opcode in the corresponding opcodes table. | 
|  | for (size_t GroupIndex = 0; GroupIndex < GroupsNum && !FoundOpcodesGroup; | 
|  | ++GroupIndex) { | 
|  | for (FormIndex = 0; FormIndex < FormsNum; ++FormIndex) { | 
|  | if (OpcodeGroups[GroupIndex][FormIndex] == Opc) { | 
|  | FoundOpcodesGroup = OpcodeGroups[GroupIndex]; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The input opcode does not match with any of the opcodes from the tables. | 
|  | // The unsupported FMA opcode must be added to one of the two opcode groups | 
|  | // defined above. | 
|  | assert(FoundOpcodesGroup != nullptr && "Unexpected FMA3 opcode"); | 
|  |  | 
|  | // Put the lowest index to SrcOpIdx1 to simplify the checks below. | 
|  | if (SrcOpIdx1 > SrcOpIdx2) | 
|  | std::swap(SrcOpIdx1, SrcOpIdx2); | 
|  |  | 
|  | // TODO: Commuting the 1st operand of FMA*_Int requires some additional | 
|  | // analysis. The commute optimization is legal only if all users of FMA*_Int | 
|  | // use only the lowest element of the FMA*_Int instruction. Such analysis are | 
|  | // not implemented yet. So, just return 0 in that case. | 
|  | // When such analysis are available this place will be the right place for | 
|  | // calling it. | 
|  | if (IsIntrinOpcode && SrcOpIdx1 == 1) | 
|  | return 0; | 
|  |  | 
|  | unsigned Case; | 
|  | if (SrcOpIdx1 == 1 && SrcOpIdx2 == 2) | 
|  | Case = 0; | 
|  | else if (SrcOpIdx1 == 1 && SrcOpIdx2 == 3) | 
|  | Case = 1; | 
|  | else if (SrcOpIdx1 == 2 && SrcOpIdx2 == 3) | 
|  | Case = 2; | 
|  | else | 
|  | return 0; | 
|  |  | 
|  | // Define the FMA forms mapping array that helps to map input FMA form | 
|  | // to output FMA form to preserve the operation semantics after | 
|  | // commuting the operands. | 
|  | static const unsigned FormMapping[][3] = { | 
|  | // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2; | 
|  | // FMA132 A, C, b; ==> FMA231 C, A, b; | 
|  | // FMA213 B, A, c; ==> FMA213 A, B, c; | 
|  | // FMA231 C, A, b; ==> FMA132 A, C, b; | 
|  | { Form231Index, Form213Index, Form132Index }, | 
|  | // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3; | 
|  | // FMA132 A, c, B; ==> FMA132 B, c, A; | 
|  | // FMA213 B, a, C; ==> FMA231 C, a, B; | 
|  | // FMA231 C, a, B; ==> FMA213 B, a, C; | 
|  | { Form132Index, Form231Index, Form213Index }, | 
|  | // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3; | 
|  | // FMA132 a, C, B; ==> FMA213 a, B, C; | 
|  | // FMA213 b, A, C; ==> FMA132 b, C, A; | 
|  | // FMA231 c, A, B; ==> FMA231 c, B, A; | 
|  | { Form213Index, Form132Index, Form231Index } | 
|  | }; | 
|  |  | 
|  | // Everything is ready, just adjust the FMA opcode and return it. | 
|  | FormIndex = FormMapping[Case][FormIndex]; | 
|  | return FoundOpcodesGroup[FormIndex]; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI, | 
|  | unsigned &SrcOpIdx1, | 
|  | unsigned &SrcOpIdx2) const { | 
|  | switch (MI->getOpcode()) { | 
|  | case X86::CMPPDrri: | 
|  | case X86::CMPPSrri: | 
|  | case X86::VCMPPDrri: | 
|  | case X86::VCMPPSrri: | 
|  | case X86::VCMPPDYrri: | 
|  | case X86::VCMPPSYrri: { | 
|  | // Float comparison can be safely commuted for | 
|  | // Ordered/Unordered/Equal/NotEqual tests | 
|  | unsigned Imm = MI->getOperand(3).getImm() & 0x7; | 
|  | switch (Imm) { | 
|  | case 0x00: // EQUAL | 
|  | case 0x03: // UNORDERED | 
|  | case 0x04: // NOT EQUAL | 
|  | case 0x07: // ORDERED | 
|  | // The indices of the commutable operands are 1 and 2. | 
|  | // Assign them to the returned operand indices here. | 
|  | return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | default: | 
|  | if (isFMA3(MI->getOpcode())) | 
|  | return findFMA3CommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); | 
|  | return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) { | 
|  | switch (BrOpc) { | 
|  | default: return X86::COND_INVALID; | 
|  | case X86::JE_1:  return X86::COND_E; | 
|  | case X86::JNE_1: return X86::COND_NE; | 
|  | case X86::JL_1:  return X86::COND_L; | 
|  | case X86::JLE_1: return X86::COND_LE; | 
|  | case X86::JG_1:  return X86::COND_G; | 
|  | case X86::JGE_1: return X86::COND_GE; | 
|  | case X86::JB_1:  return X86::COND_B; | 
|  | case X86::JBE_1: return X86::COND_BE; | 
|  | case X86::JA_1:  return X86::COND_A; | 
|  | case X86::JAE_1: return X86::COND_AE; | 
|  | case X86::JS_1:  return X86::COND_S; | 
|  | case X86::JNS_1: return X86::COND_NS; | 
|  | case X86::JP_1:  return X86::COND_P; | 
|  | case X86::JNP_1: return X86::COND_NP; | 
|  | case X86::JO_1:  return X86::COND_O; | 
|  | case X86::JNO_1: return X86::COND_NO; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return condition code of a SET opcode. | 
|  | static X86::CondCode getCondFromSETOpc(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | default: return X86::COND_INVALID; | 
|  | case X86::SETAr:  case X86::SETAm:  return X86::COND_A; | 
|  | case X86::SETAEr: case X86::SETAEm: return X86::COND_AE; | 
|  | case X86::SETBr:  case X86::SETBm:  return X86::COND_B; | 
|  | case X86::SETBEr: case X86::SETBEm: return X86::COND_BE; | 
|  | case X86::SETEr:  case X86::SETEm:  return X86::COND_E; | 
|  | case X86::SETGr:  case X86::SETGm:  return X86::COND_G; | 
|  | case X86::SETGEr: case X86::SETGEm: return X86::COND_GE; | 
|  | case X86::SETLr:  case X86::SETLm:  return X86::COND_L; | 
|  | case X86::SETLEr: case X86::SETLEm: return X86::COND_LE; | 
|  | case X86::SETNEr: case X86::SETNEm: return X86::COND_NE; | 
|  | case X86::SETNOr: case X86::SETNOm: return X86::COND_NO; | 
|  | case X86::SETNPr: case X86::SETNPm: return X86::COND_NP; | 
|  | case X86::SETNSr: case X86::SETNSm: return X86::COND_NS; | 
|  | case X86::SETOr:  case X86::SETOm:  return X86::COND_O; | 
|  | case X86::SETPr:  case X86::SETPm:  return X86::COND_P; | 
|  | case X86::SETSr:  case X86::SETSm:  return X86::COND_S; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return condition code of a CMov opcode. | 
|  | X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | default: return X86::COND_INVALID; | 
|  | case X86::CMOVA16rm:  case X86::CMOVA16rr:  case X86::CMOVA32rm: | 
|  | case X86::CMOVA32rr:  case X86::CMOVA64rm:  case X86::CMOVA64rr: | 
|  | return X86::COND_A; | 
|  | case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm: | 
|  | case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr: | 
|  | return X86::COND_AE; | 
|  | case X86::CMOVB16rm:  case X86::CMOVB16rr:  case X86::CMOVB32rm: | 
|  | case X86::CMOVB32rr:  case X86::CMOVB64rm:  case X86::CMOVB64rr: | 
|  | return X86::COND_B; | 
|  | case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm: | 
|  | case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr: | 
|  | return X86::COND_BE; | 
|  | case X86::CMOVE16rm:  case X86::CMOVE16rr:  case X86::CMOVE32rm: | 
|  | case X86::CMOVE32rr:  case X86::CMOVE64rm:  case X86::CMOVE64rr: | 
|  | return X86::COND_E; | 
|  | case X86::CMOVG16rm:  case X86::CMOVG16rr:  case X86::CMOVG32rm: | 
|  | case X86::CMOVG32rr:  case X86::CMOVG64rm:  case X86::CMOVG64rr: | 
|  | return X86::COND_G; | 
|  | case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm: | 
|  | case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr: | 
|  | return X86::COND_GE; | 
|  | case X86::CMOVL16rm:  case X86::CMOVL16rr:  case X86::CMOVL32rm: | 
|  | case X86::CMOVL32rr:  case X86::CMOVL64rm:  case X86::CMOVL64rr: | 
|  | return X86::COND_L; | 
|  | case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm: | 
|  | case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr: | 
|  | return X86::COND_LE; | 
|  | case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm: | 
|  | case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr: | 
|  | return X86::COND_NE; | 
|  | case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm: | 
|  | case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr: | 
|  | return X86::COND_NO; | 
|  | case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm: | 
|  | case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr: | 
|  | return X86::COND_NP; | 
|  | case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm: | 
|  | case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr: | 
|  | return X86::COND_NS; | 
|  | case X86::CMOVO16rm:  case X86::CMOVO16rr:  case X86::CMOVO32rm: | 
|  | case X86::CMOVO32rr:  case X86::CMOVO64rm:  case X86::CMOVO64rr: | 
|  | return X86::COND_O; | 
|  | case X86::CMOVP16rm:  case X86::CMOVP16rr:  case X86::CMOVP32rm: | 
|  | case X86::CMOVP32rr:  case X86::CMOVP64rm:  case X86::CMOVP64rr: | 
|  | return X86::COND_P; | 
|  | case X86::CMOVS16rm:  case X86::CMOVS16rr:  case X86::CMOVS32rm: | 
|  | case X86::CMOVS32rr:  case X86::CMOVS64rm:  case X86::CMOVS64rr: | 
|  | return X86::COND_S; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { | 
|  | switch (CC) { | 
|  | default: llvm_unreachable("Illegal condition code!"); | 
|  | case X86::COND_E:  return X86::JE_1; | 
|  | case X86::COND_NE: return X86::JNE_1; | 
|  | case X86::COND_L:  return X86::JL_1; | 
|  | case X86::COND_LE: return X86::JLE_1; | 
|  | case X86::COND_G:  return X86::JG_1; | 
|  | case X86::COND_GE: return X86::JGE_1; | 
|  | case X86::COND_B:  return X86::JB_1; | 
|  | case X86::COND_BE: return X86::JBE_1; | 
|  | case X86::COND_A:  return X86::JA_1; | 
|  | case X86::COND_AE: return X86::JAE_1; | 
|  | case X86::COND_S:  return X86::JS_1; | 
|  | case X86::COND_NS: return X86::JNS_1; | 
|  | case X86::COND_P:  return X86::JP_1; | 
|  | case X86::COND_NP: return X86::JNP_1; | 
|  | case X86::COND_O:  return X86::JO_1; | 
|  | case X86::COND_NO: return X86::JNO_1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return the inverse of the specified condition, | 
|  | /// e.g. turning COND_E to COND_NE. | 
|  | X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { | 
|  | switch (CC) { | 
|  | default: llvm_unreachable("Illegal condition code!"); | 
|  | case X86::COND_E:  return X86::COND_NE; | 
|  | case X86::COND_NE: return X86::COND_E; | 
|  | case X86::COND_L:  return X86::COND_GE; | 
|  | case X86::COND_LE: return X86::COND_G; | 
|  | case X86::COND_G:  return X86::COND_LE; | 
|  | case X86::COND_GE: return X86::COND_L; | 
|  | case X86::COND_B:  return X86::COND_AE; | 
|  | case X86::COND_BE: return X86::COND_A; | 
|  | case X86::COND_A:  return X86::COND_BE; | 
|  | case X86::COND_AE: return X86::COND_B; | 
|  | case X86::COND_S:  return X86::COND_NS; | 
|  | case X86::COND_NS: return X86::COND_S; | 
|  | case X86::COND_P:  return X86::COND_NP; | 
|  | case X86::COND_NP: return X86::COND_P; | 
|  | case X86::COND_O:  return X86::COND_NO; | 
|  | case X86::COND_NO: return X86::COND_O; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Assuming the flags are set by MI(a,b), return the condition code if we | 
|  | /// modify the instructions such that flags are set by MI(b,a). | 
|  | static X86::CondCode getSwappedCondition(X86::CondCode CC) { | 
|  | switch (CC) { | 
|  | default: return X86::COND_INVALID; | 
|  | case X86::COND_E:  return X86::COND_E; | 
|  | case X86::COND_NE: return X86::COND_NE; | 
|  | case X86::COND_L:  return X86::COND_G; | 
|  | case X86::COND_LE: return X86::COND_GE; | 
|  | case X86::COND_G:  return X86::COND_L; | 
|  | case X86::COND_GE: return X86::COND_LE; | 
|  | case X86::COND_B:  return X86::COND_A; | 
|  | case X86::COND_BE: return X86::COND_AE; | 
|  | case X86::COND_A:  return X86::COND_B; | 
|  | case X86::COND_AE: return X86::COND_BE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return a set opcode for the given condition and | 
|  | /// whether it has memory operand. | 
|  | unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) { | 
|  | static const uint16_t Opc[16][2] = { | 
|  | { X86::SETAr,  X86::SETAm  }, | 
|  | { X86::SETAEr, X86::SETAEm }, | 
|  | { X86::SETBr,  X86::SETBm  }, | 
|  | { X86::SETBEr, X86::SETBEm }, | 
|  | { X86::SETEr,  X86::SETEm  }, | 
|  | { X86::SETGr,  X86::SETGm  }, | 
|  | { X86::SETGEr, X86::SETGEm }, | 
|  | { X86::SETLr,  X86::SETLm  }, | 
|  | { X86::SETLEr, X86::SETLEm }, | 
|  | { X86::SETNEr, X86::SETNEm }, | 
|  | { X86::SETNOr, X86::SETNOm }, | 
|  | { X86::SETNPr, X86::SETNPm }, | 
|  | { X86::SETNSr, X86::SETNSm }, | 
|  | { X86::SETOr,  X86::SETOm  }, | 
|  | { X86::SETPr,  X86::SETPm  }, | 
|  | { X86::SETSr,  X86::SETSm  } | 
|  | }; | 
|  |  | 
|  | assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes"); | 
|  | return Opc[CC][HasMemoryOperand ? 1 : 0]; | 
|  | } | 
|  |  | 
|  | /// Return a cmov opcode for the given condition, | 
|  | /// register size in bytes, and operand type. | 
|  | unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes, | 
|  | bool HasMemoryOperand) { | 
|  | static const uint16_t Opc[32][3] = { | 
|  | { X86::CMOVA16rr,  X86::CMOVA32rr,  X86::CMOVA64rr  }, | 
|  | { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr }, | 
|  | { X86::CMOVB16rr,  X86::CMOVB32rr,  X86::CMOVB64rr  }, | 
|  | { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr }, | 
|  | { X86::CMOVE16rr,  X86::CMOVE32rr,  X86::CMOVE64rr  }, | 
|  | { X86::CMOVG16rr,  X86::CMOVG32rr,  X86::CMOVG64rr  }, | 
|  | { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr }, | 
|  | { X86::CMOVL16rr,  X86::CMOVL32rr,  X86::CMOVL64rr  }, | 
|  | { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr }, | 
|  | { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr }, | 
|  | { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr }, | 
|  | { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr }, | 
|  | { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr }, | 
|  | { X86::CMOVO16rr,  X86::CMOVO32rr,  X86::CMOVO64rr  }, | 
|  | { X86::CMOVP16rr,  X86::CMOVP32rr,  X86::CMOVP64rr  }, | 
|  | { X86::CMOVS16rr,  X86::CMOVS32rr,  X86::CMOVS64rr  }, | 
|  | { X86::CMOVA16rm,  X86::CMOVA32rm,  X86::CMOVA64rm  }, | 
|  | { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm }, | 
|  | { X86::CMOVB16rm,  X86::CMOVB32rm,  X86::CMOVB64rm  }, | 
|  | { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm }, | 
|  | { X86::CMOVE16rm,  X86::CMOVE32rm,  X86::CMOVE64rm  }, | 
|  | { X86::CMOVG16rm,  X86::CMOVG32rm,  X86::CMOVG64rm  }, | 
|  | { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm }, | 
|  | { X86::CMOVL16rm,  X86::CMOVL32rm,  X86::CMOVL64rm  }, | 
|  | { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm }, | 
|  | { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm }, | 
|  | { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm }, | 
|  | { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm }, | 
|  | { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm }, | 
|  | { X86::CMOVO16rm,  X86::CMOVO32rm,  X86::CMOVO64rm  }, | 
|  | { X86::CMOVP16rm,  X86::CMOVP32rm,  X86::CMOVP64rm  }, | 
|  | { X86::CMOVS16rm,  X86::CMOVS32rm,  X86::CMOVS64rm  } | 
|  | }; | 
|  |  | 
|  | assert(CC < 16 && "Can only handle standard cond codes"); | 
|  | unsigned Idx = HasMemoryOperand ? 16+CC : CC; | 
|  | switch(RegBytes) { | 
|  | default: llvm_unreachable("Illegal register size!"); | 
|  | case 2: return Opc[Idx][0]; | 
|  | case 4: return Opc[Idx][1]; | 
|  | case 8: return Opc[Idx][2]; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { | 
|  | if (!MI->isTerminator()) return false; | 
|  |  | 
|  | // Conditional branch is a special case. | 
|  | if (MI->isBranch() && !MI->isBarrier()) | 
|  | return true; | 
|  | if (!MI->isPredicable()) | 
|  | return true; | 
|  | return !isPredicated(MI); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::AnalyzeBranchImpl( | 
|  | MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, | 
|  | SmallVectorImpl<MachineOperand> &Cond, | 
|  | SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const { | 
|  |  | 
|  | // Start from the bottom of the block and work up, examining the | 
|  | // terminator instructions. | 
|  | MachineBasicBlock::iterator I = MBB.end(); | 
|  | MachineBasicBlock::iterator UnCondBrIter = MBB.end(); | 
|  | while (I != MBB.begin()) { | 
|  | --I; | 
|  | if (I->isDebugValue()) | 
|  | continue; | 
|  |  | 
|  | // Working from the bottom, when we see a non-terminator instruction, we're | 
|  | // done. | 
|  | if (!isUnpredicatedTerminator(I)) | 
|  | break; | 
|  |  | 
|  | // A terminator that isn't a branch can't easily be handled by this | 
|  | // analysis. | 
|  | if (!I->isBranch()) | 
|  | return true; | 
|  |  | 
|  | // Handle unconditional branches. | 
|  | if (I->getOpcode() == X86::JMP_1) { | 
|  | UnCondBrIter = I; | 
|  |  | 
|  | if (!AllowModify) { | 
|  | TBB = I->getOperand(0).getMBB(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If the block has any instructions after a JMP, delete them. | 
|  | while (std::next(I) != MBB.end()) | 
|  | std::next(I)->eraseFromParent(); | 
|  |  | 
|  | Cond.clear(); | 
|  | FBB = nullptr; | 
|  |  | 
|  | // Delete the JMP if it's equivalent to a fall-through. | 
|  | if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { | 
|  | TBB = nullptr; | 
|  | I->eraseFromParent(); | 
|  | I = MBB.end(); | 
|  | UnCondBrIter = MBB.end(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // TBB is used to indicate the unconditional destination. | 
|  | TBB = I->getOperand(0).getMBB(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Handle conditional branches. | 
|  | X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode()); | 
|  | if (BranchCode == X86::COND_INVALID) | 
|  | return true;  // Can't handle indirect branch. | 
|  |  | 
|  | // Working from the bottom, handle the first conditional branch. | 
|  | if (Cond.empty()) { | 
|  | MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); | 
|  | if (AllowModify && UnCondBrIter != MBB.end() && | 
|  | MBB.isLayoutSuccessor(TargetBB)) { | 
|  | // If we can modify the code and it ends in something like: | 
|  | // | 
|  | //     jCC L1 | 
|  | //     jmp L2 | 
|  | //   L1: | 
|  | //     ... | 
|  | //   L2: | 
|  | // | 
|  | // Then we can change this to: | 
|  | // | 
|  | //     jnCC L2 | 
|  | //   L1: | 
|  | //     ... | 
|  | //   L2: | 
|  | // | 
|  | // Which is a bit more efficient. | 
|  | // We conditionally jump to the fall-through block. | 
|  | BranchCode = GetOppositeBranchCondition(BranchCode); | 
|  | unsigned JNCC = GetCondBranchFromCond(BranchCode); | 
|  | MachineBasicBlock::iterator OldInst = I; | 
|  |  | 
|  | BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC)) | 
|  | .addMBB(UnCondBrIter->getOperand(0).getMBB()); | 
|  | BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1)) | 
|  | .addMBB(TargetBB); | 
|  |  | 
|  | OldInst->eraseFromParent(); | 
|  | UnCondBrIter->eraseFromParent(); | 
|  |  | 
|  | // Restart the analysis. | 
|  | UnCondBrIter = MBB.end(); | 
|  | I = MBB.end(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | FBB = TBB; | 
|  | TBB = I->getOperand(0).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(BranchCode)); | 
|  | CondBranches.push_back(I); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Handle subsequent conditional branches. Only handle the case where all | 
|  | // conditional branches branch to the same destination and their condition | 
|  | // opcodes fit one of the special multi-branch idioms. | 
|  | assert(Cond.size() == 1); | 
|  | assert(TBB); | 
|  |  | 
|  | // Only handle the case where all conditional branches branch to the same | 
|  | // destination. | 
|  | if (TBB != I->getOperand(0).getMBB()) | 
|  | return true; | 
|  |  | 
|  | // If the conditions are the same, we can leave them alone. | 
|  | X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); | 
|  | if (OldBranchCode == BranchCode) | 
|  | continue; | 
|  |  | 
|  | // If they differ, see if they fit one of the known patterns. Theoretically, | 
|  | // we could handle more patterns here, but we shouldn't expect to see them | 
|  | // if instruction selection has done a reasonable job. | 
|  | if ((OldBranchCode == X86::COND_NP && | 
|  | BranchCode == X86::COND_E) || | 
|  | (OldBranchCode == X86::COND_E && | 
|  | BranchCode == X86::COND_NP)) | 
|  | BranchCode = X86::COND_NP_OR_E; | 
|  | else if ((OldBranchCode == X86::COND_P && | 
|  | BranchCode == X86::COND_NE) || | 
|  | (OldBranchCode == X86::COND_NE && | 
|  | BranchCode == X86::COND_P)) | 
|  | BranchCode = X86::COND_NE_OR_P; | 
|  | else | 
|  | return true; | 
|  |  | 
|  | // Update the MachineOperand. | 
|  | Cond[0].setImm(BranchCode); | 
|  | CondBranches.push_back(I); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock *&TBB, | 
|  | MachineBasicBlock *&FBB, | 
|  | SmallVectorImpl<MachineOperand> &Cond, | 
|  | bool AllowModify) const { | 
|  | SmallVector<MachineInstr *, 4> CondBranches; | 
|  | return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::AnalyzeBranchPredicate(MachineBasicBlock &MBB, | 
|  | MachineBranchPredicate &MBP, | 
|  | bool AllowModify) const { | 
|  | using namespace std::placeholders; | 
|  |  | 
|  | SmallVector<MachineOperand, 4> Cond; | 
|  | SmallVector<MachineInstr *, 4> CondBranches; | 
|  | if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches, | 
|  | AllowModify)) | 
|  | return true; | 
|  |  | 
|  | if (Cond.size() != 1) | 
|  | return true; | 
|  |  | 
|  | assert(MBP.TrueDest && "expected!"); | 
|  |  | 
|  | if (!MBP.FalseDest) | 
|  | MBP.FalseDest = MBB.getNextNode(); | 
|  |  | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  |  | 
|  | MachineInstr *ConditionDef = nullptr; | 
|  | bool SingleUseCondition = true; | 
|  |  | 
|  | for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) { | 
|  | if (I->modifiesRegister(X86::EFLAGS, TRI)) { | 
|  | ConditionDef = &*I; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (I->readsRegister(X86::EFLAGS, TRI)) | 
|  | SingleUseCondition = false; | 
|  | } | 
|  |  | 
|  | if (!ConditionDef) | 
|  | return true; | 
|  |  | 
|  | if (SingleUseCondition) { | 
|  | for (auto *Succ : MBB.successors()) | 
|  | if (Succ->isLiveIn(X86::EFLAGS)) | 
|  | SingleUseCondition = false; | 
|  | } | 
|  |  | 
|  | MBP.ConditionDef = ConditionDef; | 
|  | MBP.SingleUseCondition = SingleUseCondition; | 
|  |  | 
|  | // Currently we only recognize the simple pattern: | 
|  | // | 
|  | //   test %reg, %reg | 
|  | //   je %label | 
|  | // | 
|  | const unsigned TestOpcode = | 
|  | Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr; | 
|  |  | 
|  | if (ConditionDef->getOpcode() == TestOpcode && | 
|  | ConditionDef->getNumOperands() == 3 && | 
|  | ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) && | 
|  | (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) { | 
|  | MBP.LHS = ConditionDef->getOperand(0); | 
|  | MBP.RHS = MachineOperand::CreateImm(0); | 
|  | MBP.Predicate = Cond[0].getImm() == X86::COND_NE | 
|  | ? MachineBranchPredicate::PRED_NE | 
|  | : MachineBranchPredicate::PRED_EQ; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { | 
|  | MachineBasicBlock::iterator I = MBB.end(); | 
|  | unsigned Count = 0; | 
|  |  | 
|  | while (I != MBB.begin()) { | 
|  | --I; | 
|  | if (I->isDebugValue()) | 
|  | continue; | 
|  | if (I->getOpcode() != X86::JMP_1 && | 
|  | getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) | 
|  | break; | 
|  | // Remove the branch. | 
|  | I->eraseFromParent(); | 
|  | I = MBB.end(); | 
|  | ++Count; | 
|  | } | 
|  |  | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond, | 
|  | DebugLoc DL) const { | 
|  | // Shouldn't be a fall through. | 
|  | assert(TBB && "InsertBranch must not be told to insert a fallthrough"); | 
|  | assert((Cond.size() == 1 || Cond.size() == 0) && | 
|  | "X86 branch conditions have one component!"); | 
|  |  | 
|  | if (Cond.empty()) { | 
|  | // Unconditional branch? | 
|  | assert(!FBB && "Unconditional branch with multiple successors!"); | 
|  | BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Conditional branch. | 
|  | unsigned Count = 0; | 
|  | X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); | 
|  | switch (CC) { | 
|  | case X86::COND_NP_OR_E: | 
|  | // Synthesize NP_OR_E with two branches. | 
|  | BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB); | 
|  | ++Count; | 
|  | BuildMI(&MBB, DL, get(X86::JE_1)).addMBB(TBB); | 
|  | ++Count; | 
|  | break; | 
|  | case X86::COND_NE_OR_P: | 
|  | // Synthesize NE_OR_P with two branches. | 
|  | BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB); | 
|  | ++Count; | 
|  | BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB); | 
|  | ++Count; | 
|  | break; | 
|  | default: { | 
|  | unsigned Opc = GetCondBranchFromCond(CC); | 
|  | BuildMI(&MBB, DL, get(Opc)).addMBB(TBB); | 
|  | ++Count; | 
|  | } | 
|  | } | 
|  | if (FBB) { | 
|  | // Two-way Conditional branch. Insert the second branch. | 
|  | BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB); | 
|  | ++Count; | 
|  | } | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo:: | 
|  | canInsertSelect(const MachineBasicBlock &MBB, | 
|  | ArrayRef<MachineOperand> Cond, | 
|  | unsigned TrueReg, unsigned FalseReg, | 
|  | int &CondCycles, int &TrueCycles, int &FalseCycles) const { | 
|  | // Not all subtargets have cmov instructions. | 
|  | if (!Subtarget.hasCMov()) | 
|  | return false; | 
|  | if (Cond.size() != 1) | 
|  | return false; | 
|  | // We cannot do the composite conditions, at least not in SSA form. | 
|  | if ((X86::CondCode)Cond[0].getImm() > X86::COND_S) | 
|  | return false; | 
|  |  | 
|  | // Check register classes. | 
|  | const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
|  | const TargetRegisterClass *RC = | 
|  | RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); | 
|  | if (!RC) | 
|  | return false; | 
|  |  | 
|  | // We have cmov instructions for 16, 32, and 64 bit general purpose registers. | 
|  | if (X86::GR16RegClass.hasSubClassEq(RC) || | 
|  | X86::GR32RegClass.hasSubClassEq(RC) || | 
|  | X86::GR64RegClass.hasSubClassEq(RC)) { | 
|  | // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy | 
|  | // Bridge. Probably Ivy Bridge as well. | 
|  | CondCycles = 2; | 
|  | TrueCycles = 2; | 
|  | FalseCycles = 2; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Can't do vectors. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, DebugLoc DL, | 
|  | unsigned DstReg, ArrayRef<MachineOperand> Cond, | 
|  | unsigned TrueReg, unsigned FalseReg) const { | 
|  | MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
|  | assert(Cond.size() == 1 && "Invalid Cond array"); | 
|  | unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(), | 
|  | MRI.getRegClass(DstReg)->getSize(), | 
|  | false/*HasMemoryOperand*/); | 
|  | BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg); | 
|  | } | 
|  |  | 
|  | /// Test if the given register is a physical h register. | 
|  | static bool isHReg(unsigned Reg) { | 
|  | return X86::GR8_ABCD_HRegClass.contains(Reg); | 
|  | } | 
|  |  | 
|  | // Try and copy between VR128/VR64 and GR64 registers. | 
|  | static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, | 
|  | const X86Subtarget &Subtarget) { | 
|  |  | 
|  | // SrcReg(VR128) -> DestReg(GR64) | 
|  | // SrcReg(VR64)  -> DestReg(GR64) | 
|  | // SrcReg(GR64)  -> DestReg(VR128) | 
|  | // SrcReg(GR64)  -> DestReg(VR64) | 
|  |  | 
|  | bool HasAVX = Subtarget.hasAVX(); | 
|  | bool HasAVX512 = Subtarget.hasAVX512(); | 
|  | if (X86::GR64RegClass.contains(DestReg)) { | 
|  | if (X86::VR128XRegClass.contains(SrcReg)) | 
|  | // Copy from a VR128 register to a GR64 register. | 
|  | return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr : | 
|  | X86::MOVPQIto64rr); | 
|  | if (X86::VR64RegClass.contains(SrcReg)) | 
|  | // Copy from a VR64 register to a GR64 register. | 
|  | return X86::MMX_MOVD64from64rr; | 
|  | } else if (X86::GR64RegClass.contains(SrcReg)) { | 
|  | // Copy from a GR64 register to a VR128 register. | 
|  | if (X86::VR128XRegClass.contains(DestReg)) | 
|  | return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr : | 
|  | X86::MOV64toPQIrr); | 
|  | // Copy from a GR64 register to a VR64 register. | 
|  | if (X86::VR64RegClass.contains(DestReg)) | 
|  | return X86::MMX_MOVD64to64rr; | 
|  | } | 
|  |  | 
|  | // SrcReg(FR32) -> DestReg(GR32) | 
|  | // SrcReg(GR32) -> DestReg(FR32) | 
|  |  | 
|  | if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg)) | 
|  | // Copy from a FR32 register to a GR32 register. | 
|  | return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr); | 
|  |  | 
|  | if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg)) | 
|  | // Copy from a GR32 register to a FR32 register. | 
|  | return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool MaskRegClassContains(unsigned Reg) { | 
|  | return X86::VK8RegClass.contains(Reg) || | 
|  | X86::VK16RegClass.contains(Reg) || | 
|  | X86::VK32RegClass.contains(Reg) || | 
|  | X86::VK64RegClass.contains(Reg) || | 
|  | X86::VK1RegClass.contains(Reg); | 
|  | } | 
|  |  | 
|  | static bool GRRegClassContains(unsigned Reg) { | 
|  | return X86::GR64RegClass.contains(Reg) || | 
|  | X86::GR32RegClass.contains(Reg) || | 
|  | X86::GR16RegClass.contains(Reg) || | 
|  | X86::GR8RegClass.contains(Reg); | 
|  | } | 
|  | static | 
|  | unsigned copyPhysRegOpcode_AVX512_DQ(unsigned& DestReg, unsigned& SrcReg) { | 
|  | if (MaskRegClassContains(SrcReg) && X86::GR8RegClass.contains(DestReg)) { | 
|  | DestReg = getX86SubSuperRegister(DestReg, MVT::i32); | 
|  | return X86::KMOVBrk; | 
|  | } | 
|  | if (MaskRegClassContains(DestReg) && X86::GR8RegClass.contains(SrcReg)) { | 
|  | SrcReg = getX86SubSuperRegister(SrcReg, MVT::i32); | 
|  | return X86::KMOVBkr; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static | 
|  | unsigned copyPhysRegOpcode_AVX512_BW(unsigned& DestReg, unsigned& SrcReg) { | 
|  | if (MaskRegClassContains(SrcReg) && MaskRegClassContains(DestReg)) | 
|  | return X86::KMOVQkk; | 
|  | if (MaskRegClassContains(SrcReg) && X86::GR32RegClass.contains(DestReg)) | 
|  | return X86::KMOVDrk; | 
|  | if (MaskRegClassContains(SrcReg) && X86::GR64RegClass.contains(DestReg)) | 
|  | return X86::KMOVQrk; | 
|  | if (MaskRegClassContains(DestReg) && X86::GR32RegClass.contains(SrcReg)) | 
|  | return X86::KMOVDkr; | 
|  | if (MaskRegClassContains(DestReg) && X86::GR64RegClass.contains(SrcReg)) | 
|  | return X86::KMOVQkr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static | 
|  | unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg, | 
|  | const X86Subtarget &Subtarget) | 
|  | { | 
|  | if (Subtarget.hasDQI()) | 
|  | if (auto Opc = copyPhysRegOpcode_AVX512_DQ(DestReg, SrcReg)) | 
|  | return Opc; | 
|  | if (Subtarget.hasBWI()) | 
|  | if (auto Opc = copyPhysRegOpcode_AVX512_BW(DestReg, SrcReg)) | 
|  | return Opc; | 
|  | if (X86::VR128XRegClass.contains(DestReg, SrcReg) || | 
|  | X86::VR256XRegClass.contains(DestReg, SrcReg) || | 
|  | X86::VR512RegClass.contains(DestReg, SrcReg)) { | 
|  | DestReg = get512BitSuperRegister(DestReg); | 
|  | SrcReg = get512BitSuperRegister(SrcReg); | 
|  | return X86::VMOVAPSZrr; | 
|  | } | 
|  | if (MaskRegClassContains(DestReg) && MaskRegClassContains(SrcReg)) | 
|  | return X86::KMOVWkk; | 
|  | if (MaskRegClassContains(DestReg) && GRRegClassContains(SrcReg)) { | 
|  | SrcReg = getX86SubSuperRegister(SrcReg, MVT::i32); | 
|  | return X86::KMOVWkr; | 
|  | } | 
|  | if (GRRegClassContains(DestReg) && MaskRegClassContains(SrcReg)) { | 
|  | DestReg = getX86SubSuperRegister(DestReg, MVT::i32); | 
|  | return X86::KMOVWrk; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, DebugLoc DL, | 
|  | unsigned DestReg, unsigned SrcReg, | 
|  | bool KillSrc) const { | 
|  | // First deal with the normal symmetric copies. | 
|  | bool HasAVX = Subtarget.hasAVX(); | 
|  | bool HasAVX512 = Subtarget.hasAVX512(); | 
|  | unsigned Opc = 0; | 
|  | if (X86::GR64RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = X86::MOV64rr; | 
|  | else if (X86::GR32RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = X86::MOV32rr; | 
|  | else if (X86::GR16RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = X86::MOV16rr; | 
|  | else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { | 
|  | // Copying to or from a physical H register on x86-64 requires a NOREX | 
|  | // move.  Otherwise use a normal move. | 
|  | if ((isHReg(DestReg) || isHReg(SrcReg)) && | 
|  | Subtarget.is64Bit()) { | 
|  | Opc = X86::MOV8rr_NOREX; | 
|  | // Both operands must be encodable without an REX prefix. | 
|  | assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && | 
|  | "8-bit H register can not be copied outside GR8_NOREX"); | 
|  | } else | 
|  | Opc = X86::MOV8rr; | 
|  | } | 
|  | else if (X86::VR64RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = X86::MMX_MOVQ64rr; | 
|  | else if (HasAVX512) | 
|  | Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg, Subtarget); | 
|  | else if (X86::VR128RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; | 
|  | else if (X86::VR256RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = X86::VMOVAPSYrr; | 
|  | if (!Opc) | 
|  | Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget); | 
|  |  | 
|  | if (Opc) { | 
|  | BuildMI(MBB, MI, DL, get(Opc), DestReg) | 
|  | .addReg(SrcReg, getKillRegState(KillSrc)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | bool FromEFLAGS = SrcReg == X86::EFLAGS; | 
|  | bool ToEFLAGS = DestReg == X86::EFLAGS; | 
|  | int Reg = FromEFLAGS ? DestReg : SrcReg; | 
|  | bool is32 = X86::GR32RegClass.contains(Reg); | 
|  | bool is64 = X86::GR64RegClass.contains(Reg); | 
|  | if ((FromEFLAGS || ToEFLAGS) && (is32 || is64)) { | 
|  | // The flags need to be saved, but saving EFLAGS with PUSHF/POPF is | 
|  | // inefficient. Instead: | 
|  | //   - Save the overflow flag OF into AL using SETO, and restore it using a | 
|  | //     signed 8-bit addition of AL and INT8_MAX. | 
|  | //   - Save/restore the bottom 8 EFLAGS bits (CF, PF, AF, ZF, SF) to/from AH | 
|  | //     using LAHF/SAHF. | 
|  | //   - When RAX/EAX is live and isn't the destination register, make sure it | 
|  | //     isn't clobbered by PUSH/POP'ing it before and after saving/restoring | 
|  | //     the flags. | 
|  | // This approach is ~2.25x faster than using PUSHF/POPF. | 
|  | // | 
|  | // This is still somewhat inefficient because we don't know which flags are | 
|  | // actually live inside EFLAGS. Were we able to do a single SETcc instead of | 
|  | // SETO+LAHF / ADDB+SAHF the code could be 1.02x faster. | 
|  | // | 
|  | // PUSHF/POPF is also potentially incorrect because it affects other flags | 
|  | // such as TF/IF/DF, which LLVM doesn't model. | 
|  | // | 
|  | // Notice that we have to adjust the stack if we don't want to clobber the | 
|  | // first frame index. See X86FrameLowering.cpp - clobbersTheStack. | 
|  |  | 
|  | int Mov = is64 ? X86::MOV64rr : X86::MOV32rr; | 
|  | int Push = is64 ? X86::PUSH64r : X86::PUSH32r; | 
|  | int Pop = is64 ? X86::POP64r : X86::POP32r; | 
|  | int AX = is64 ? X86::RAX : X86::EAX; | 
|  |  | 
|  | bool AXDead = (Reg == AX) || | 
|  | (MachineBasicBlock::LQR_Dead == | 
|  | MBB.computeRegisterLiveness(&getRegisterInfo(), AX, MI)); | 
|  |  | 
|  | if (!AXDead) | 
|  | BuildMI(MBB, MI, DL, get(Push)).addReg(AX, getKillRegState(true)); | 
|  | if (FromEFLAGS) { | 
|  | BuildMI(MBB, MI, DL, get(X86::SETOr), X86::AL); | 
|  | BuildMI(MBB, MI, DL, get(X86::LAHF)); | 
|  | BuildMI(MBB, MI, DL, get(Mov), Reg).addReg(AX); | 
|  | } | 
|  | if (ToEFLAGS) { | 
|  | BuildMI(MBB, MI, DL, get(Mov), AX).addReg(Reg, getKillRegState(KillSrc)); | 
|  | BuildMI(MBB, MI, DL, get(X86::ADD8ri), X86::AL) | 
|  | .addReg(X86::AL) | 
|  | .addImm(INT8_MAX); | 
|  | BuildMI(MBB, MI, DL, get(X86::SAHF)); | 
|  | } | 
|  | if (!AXDead) | 
|  | BuildMI(MBB, MI, DL, get(Pop), AX); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) | 
|  | << " to " << RI.getName(DestReg) << '\n'); | 
|  | llvm_unreachable("Cannot emit physreg copy instruction"); | 
|  | } | 
|  |  | 
|  | static unsigned getLoadStoreRegOpcode(unsigned Reg, | 
|  | const TargetRegisterClass *RC, | 
|  | bool isStackAligned, | 
|  | const X86Subtarget &STI, | 
|  | bool load) { | 
|  | if (STI.hasAVX512()) { | 
|  | if (X86::VK8RegClass.hasSubClassEq(RC)  || | 
|  | X86::VK16RegClass.hasSubClassEq(RC)) | 
|  | return load ? X86::KMOVWkm : X86::KMOVWmk; | 
|  | if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC)) | 
|  | return load ? X86::VMOVSSZrm : X86::VMOVSSZmr; | 
|  | if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC)) | 
|  | return load ? X86::VMOVSDZrm : X86::VMOVSDZmr; | 
|  | if (X86::VR512RegClass.hasSubClassEq(RC)) | 
|  | return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; | 
|  | } | 
|  |  | 
|  | bool HasAVX = STI.hasAVX(); | 
|  | switch (RC->getSize()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown spill size"); | 
|  | case 1: | 
|  | assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); | 
|  | if (STI.is64Bit()) | 
|  | // Copying to or from a physical H register on x86-64 requires a NOREX | 
|  | // move.  Otherwise use a normal move. | 
|  | if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) | 
|  | return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; | 
|  | return load ? X86::MOV8rm : X86::MOV8mr; | 
|  | case 2: | 
|  | assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); | 
|  | return load ? X86::MOV16rm : X86::MOV16mr; | 
|  | case 4: | 
|  | if (X86::GR32RegClass.hasSubClassEq(RC)) | 
|  | return load ? X86::MOV32rm : X86::MOV32mr; | 
|  | if (X86::FR32RegClass.hasSubClassEq(RC)) | 
|  | return load ? | 
|  | (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) : | 
|  | (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr); | 
|  | if (X86::RFP32RegClass.hasSubClassEq(RC)) | 
|  | return load ? X86::LD_Fp32m : X86::ST_Fp32m; | 
|  | llvm_unreachable("Unknown 4-byte regclass"); | 
|  | case 8: | 
|  | if (X86::GR64RegClass.hasSubClassEq(RC)) | 
|  | return load ? X86::MOV64rm : X86::MOV64mr; | 
|  | if (X86::FR64RegClass.hasSubClassEq(RC)) | 
|  | return load ? | 
|  | (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) : | 
|  | (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr); | 
|  | if (X86::VR64RegClass.hasSubClassEq(RC)) | 
|  | return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; | 
|  | if (X86::RFP64RegClass.hasSubClassEq(RC)) | 
|  | return load ? X86::LD_Fp64m : X86::ST_Fp64m; | 
|  | llvm_unreachable("Unknown 8-byte regclass"); | 
|  | case 10: | 
|  | assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); | 
|  | return load ? X86::LD_Fp80m : X86::ST_FpP80m; | 
|  | case 16: { | 
|  | assert((X86::VR128RegClass.hasSubClassEq(RC) || | 
|  | X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass"); | 
|  | // If stack is realigned we can use aligned stores. | 
|  | if (isStackAligned) | 
|  | return load ? | 
|  | (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) : | 
|  | (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr); | 
|  | else | 
|  | return load ? | 
|  | (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) : | 
|  | (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr); | 
|  | } | 
|  | case 32: | 
|  | assert((X86::VR256RegClass.hasSubClassEq(RC) || | 
|  | X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass"); | 
|  | // If stack is realigned we can use aligned stores. | 
|  | if (isStackAligned) | 
|  | return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr; | 
|  | else | 
|  | return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr; | 
|  | case 64: | 
|  | assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass"); | 
|  | if (isStackAligned) | 
|  | return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; | 
|  | else | 
|  | return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::getMemOpBaseRegImmOfs(MachineInstr *MemOp, unsigned &BaseReg, | 
|  | unsigned &Offset, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | const MCInstrDesc &Desc = MemOp->getDesc(); | 
|  | int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags, MemOp->getOpcode()); | 
|  | if (MemRefBegin < 0) | 
|  | return false; | 
|  |  | 
|  | MemRefBegin += X86II::getOperandBias(Desc); | 
|  |  | 
|  | BaseReg = MemOp->getOperand(MemRefBegin + X86::AddrBaseReg).getReg(); | 
|  | if (MemOp->getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1) | 
|  | return false; | 
|  |  | 
|  | if (MemOp->getOperand(MemRefBegin + X86::AddrIndexReg).getReg() != | 
|  | X86::NoRegister) | 
|  | return false; | 
|  |  | 
|  | const MachineOperand &DispMO = MemOp->getOperand(MemRefBegin + X86::AddrDisp); | 
|  |  | 
|  | // Displacement can be symbolic | 
|  | if (!DispMO.isImm()) | 
|  | return false; | 
|  |  | 
|  | Offset = DispMO.getImm(); | 
|  |  | 
|  | return (MemOp->getOperand(MemRefBegin + X86::AddrIndexReg).getReg() == | 
|  | X86::NoRegister); | 
|  | } | 
|  |  | 
|  | static unsigned getStoreRegOpcode(unsigned SrcReg, | 
|  | const TargetRegisterClass *RC, | 
|  | bool isStackAligned, | 
|  | const X86Subtarget &STI) { | 
|  | return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false); | 
|  | } | 
|  |  | 
|  |  | 
|  | static unsigned getLoadRegOpcode(unsigned DestReg, | 
|  | const TargetRegisterClass *RC, | 
|  | bool isStackAligned, | 
|  | const X86Subtarget &STI) { | 
|  | return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true); | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | unsigned SrcReg, bool isKill, int FrameIdx, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | const MachineFunction &MF = *MBB.getParent(); | 
|  | assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() && | 
|  | "Stack slot too small for store"); | 
|  | unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16); | 
|  | bool isAligned = | 
|  | (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) || | 
|  | RI.canRealignStack(MF); | 
|  | unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); | 
|  | DebugLoc DL = MBB.findDebugLoc(MI); | 
|  | addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx) | 
|  | .addReg(SrcReg, getKillRegState(isKill)); | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, | 
|  | bool isKill, | 
|  | SmallVectorImpl<MachineOperand> &Addr, | 
|  | const TargetRegisterClass *RC, | 
|  | MachineInstr::mmo_iterator MMOBegin, | 
|  | MachineInstr::mmo_iterator MMOEnd, | 
|  | SmallVectorImpl<MachineInstr*> &NewMIs) const { | 
|  | unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16); | 
|  | bool isAligned = MMOBegin != MMOEnd && | 
|  | (*MMOBegin)->getAlignment() >= Alignment; | 
|  | unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); | 
|  | DebugLoc DL; | 
|  | MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); | 
|  | for (unsigned i = 0, e = Addr.size(); i != e; ++i) | 
|  | MIB.addOperand(Addr[i]); | 
|  | MIB.addReg(SrcReg, getKillRegState(isKill)); | 
|  | (*MIB).setMemRefs(MMOBegin, MMOEnd); | 
|  | NewMIs.push_back(MIB); | 
|  | } | 
|  |  | 
|  |  | 
|  | void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | unsigned DestReg, int FrameIdx, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | const MachineFunction &MF = *MBB.getParent(); | 
|  | unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16); | 
|  | bool isAligned = | 
|  | (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) || | 
|  | RI.canRealignStack(MF); | 
|  | unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); | 
|  | DebugLoc DL = MBB.findDebugLoc(MI); | 
|  | addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx); | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, | 
|  | SmallVectorImpl<MachineOperand> &Addr, | 
|  | const TargetRegisterClass *RC, | 
|  | MachineInstr::mmo_iterator MMOBegin, | 
|  | MachineInstr::mmo_iterator MMOEnd, | 
|  | SmallVectorImpl<MachineInstr*> &NewMIs) const { | 
|  | unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16); | 
|  | bool isAligned = MMOBegin != MMOEnd && | 
|  | (*MMOBegin)->getAlignment() >= Alignment; | 
|  | unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); | 
|  | DebugLoc DL; | 
|  | MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); | 
|  | for (unsigned i = 0, e = Addr.size(); i != e; ++i) | 
|  | MIB.addOperand(Addr[i]); | 
|  | (*MIB).setMemRefs(MMOBegin, MMOEnd); | 
|  | NewMIs.push_back(MIB); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo:: | 
|  | analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2, | 
|  | int &CmpMask, int &CmpValue) const { | 
|  | switch (MI->getOpcode()) { | 
|  | default: break; | 
|  | case X86::CMP64ri32: | 
|  | case X86::CMP64ri8: | 
|  | case X86::CMP32ri: | 
|  | case X86::CMP32ri8: | 
|  | case X86::CMP16ri: | 
|  | case X86::CMP16ri8: | 
|  | case X86::CMP8ri: | 
|  | SrcReg = MI->getOperand(0).getReg(); | 
|  | SrcReg2 = 0; | 
|  | CmpMask = ~0; | 
|  | CmpValue = MI->getOperand(1).getImm(); | 
|  | return true; | 
|  | // A SUB can be used to perform comparison. | 
|  | case X86::SUB64rm: | 
|  | case X86::SUB32rm: | 
|  | case X86::SUB16rm: | 
|  | case X86::SUB8rm: | 
|  | SrcReg = MI->getOperand(1).getReg(); | 
|  | SrcReg2 = 0; | 
|  | CmpMask = ~0; | 
|  | CmpValue = 0; | 
|  | return true; | 
|  | case X86::SUB64rr: | 
|  | case X86::SUB32rr: | 
|  | case X86::SUB16rr: | 
|  | case X86::SUB8rr: | 
|  | SrcReg = MI->getOperand(1).getReg(); | 
|  | SrcReg2 = MI->getOperand(2).getReg(); | 
|  | CmpMask = ~0; | 
|  | CmpValue = 0; | 
|  | return true; | 
|  | case X86::SUB64ri32: | 
|  | case X86::SUB64ri8: | 
|  | case X86::SUB32ri: | 
|  | case X86::SUB32ri8: | 
|  | case X86::SUB16ri: | 
|  | case X86::SUB16ri8: | 
|  | case X86::SUB8ri: | 
|  | SrcReg = MI->getOperand(1).getReg(); | 
|  | SrcReg2 = 0; | 
|  | CmpMask = ~0; | 
|  | CmpValue = MI->getOperand(2).getImm(); | 
|  | return true; | 
|  | case X86::CMP64rr: | 
|  | case X86::CMP32rr: | 
|  | case X86::CMP16rr: | 
|  | case X86::CMP8rr: | 
|  | SrcReg = MI->getOperand(0).getReg(); | 
|  | SrcReg2 = MI->getOperand(1).getReg(); | 
|  | CmpMask = ~0; | 
|  | CmpValue = 0; | 
|  | return true; | 
|  | case X86::TEST8rr: | 
|  | case X86::TEST16rr: | 
|  | case X86::TEST32rr: | 
|  | case X86::TEST64rr: | 
|  | SrcReg = MI->getOperand(0).getReg(); | 
|  | if (MI->getOperand(1).getReg() != SrcReg) return false; | 
|  | // Compare against zero. | 
|  | SrcReg2 = 0; | 
|  | CmpMask = ~0; | 
|  | CmpValue = 0; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check whether the first instruction, whose only | 
|  | /// purpose is to update flags, can be made redundant. | 
|  | /// CMPrr can be made redundant by SUBrr if the operands are the same. | 
|  | /// This function can be extended later on. | 
|  | /// SrcReg, SrcRegs: register operands for FlagI. | 
|  | /// ImmValue: immediate for FlagI if it takes an immediate. | 
|  | inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg, | 
|  | unsigned SrcReg2, int ImmValue, | 
|  | MachineInstr *OI) { | 
|  | if (((FlagI->getOpcode() == X86::CMP64rr && | 
|  | OI->getOpcode() == X86::SUB64rr) || | 
|  | (FlagI->getOpcode() == X86::CMP32rr && | 
|  | OI->getOpcode() == X86::SUB32rr)|| | 
|  | (FlagI->getOpcode() == X86::CMP16rr && | 
|  | OI->getOpcode() == X86::SUB16rr)|| | 
|  | (FlagI->getOpcode() == X86::CMP8rr && | 
|  | OI->getOpcode() == X86::SUB8rr)) && | 
|  | ((OI->getOperand(1).getReg() == SrcReg && | 
|  | OI->getOperand(2).getReg() == SrcReg2) || | 
|  | (OI->getOperand(1).getReg() == SrcReg2 && | 
|  | OI->getOperand(2).getReg() == SrcReg))) | 
|  | return true; | 
|  |  | 
|  | if (((FlagI->getOpcode() == X86::CMP64ri32 && | 
|  | OI->getOpcode() == X86::SUB64ri32) || | 
|  | (FlagI->getOpcode() == X86::CMP64ri8 && | 
|  | OI->getOpcode() == X86::SUB64ri8) || | 
|  | (FlagI->getOpcode() == X86::CMP32ri && | 
|  | OI->getOpcode() == X86::SUB32ri) || | 
|  | (FlagI->getOpcode() == X86::CMP32ri8 && | 
|  | OI->getOpcode() == X86::SUB32ri8) || | 
|  | (FlagI->getOpcode() == X86::CMP16ri && | 
|  | OI->getOpcode() == X86::SUB16ri) || | 
|  | (FlagI->getOpcode() == X86::CMP16ri8 && | 
|  | OI->getOpcode() == X86::SUB16ri8) || | 
|  | (FlagI->getOpcode() == X86::CMP8ri && | 
|  | OI->getOpcode() == X86::SUB8ri)) && | 
|  | OI->getOperand(1).getReg() == SrcReg && | 
|  | OI->getOperand(2).getImm() == ImmValue) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check whether the definition can be converted | 
|  | /// to remove a comparison against zero. | 
|  | inline static bool isDefConvertible(MachineInstr *MI) { | 
|  | switch (MI->getOpcode()) { | 
|  | default: return false; | 
|  |  | 
|  | // The shift instructions only modify ZF if their shift count is non-zero. | 
|  | // N.B.: The processor truncates the shift count depending on the encoding. | 
|  | case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri: | 
|  | case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri: | 
|  | return getTruncatedShiftCount(MI, 2) != 0; | 
|  |  | 
|  | // Some left shift instructions can be turned into LEA instructions but only | 
|  | // if their flags aren't used. Avoid transforming such instructions. | 
|  | case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{ | 
|  | unsigned ShAmt = getTruncatedShiftCount(MI, 2); | 
|  | if (isTruncatedShiftCountForLEA(ShAmt)) return false; | 
|  | return ShAmt != 0; | 
|  | } | 
|  |  | 
|  | case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8: | 
|  | case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8: | 
|  | return getTruncatedShiftCount(MI, 3) != 0; | 
|  |  | 
|  | case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: | 
|  | case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8: | 
|  | case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr: | 
|  | case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm: | 
|  | case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm: | 
|  | case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r: | 
|  | case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri: | 
|  | case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8: | 
|  | case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr: | 
|  | case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm: | 
|  | case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm: | 
|  | case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r: | 
|  | case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri: | 
|  | case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8: | 
|  | case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr: | 
|  | case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm: | 
|  | case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm: | 
|  | case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri: | 
|  | case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8: | 
|  | case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr: | 
|  | case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm: | 
|  | case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm: | 
|  | case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri: | 
|  | case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8: | 
|  | case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr: | 
|  | case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm: | 
|  | case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm: | 
|  | case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r: | 
|  | case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1: | 
|  | case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1: | 
|  | case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1: | 
|  | case X86::ADC32ri:   case X86::ADC32ri8: | 
|  | case X86::ADC32rr:   case X86::ADC64ri32: | 
|  | case X86::ADC64ri8:  case X86::ADC64rr: | 
|  | case X86::SBB32ri:   case X86::SBB32ri8: | 
|  | case X86::SBB32rr:   case X86::SBB64ri32: | 
|  | case X86::SBB64ri8:  case X86::SBB64rr: | 
|  | case X86::ANDN32rr:  case X86::ANDN32rm: | 
|  | case X86::ANDN64rr:  case X86::ANDN64rm: | 
|  | case X86::BEXTR32rr: case X86::BEXTR64rr: | 
|  | case X86::BEXTR32rm: case X86::BEXTR64rm: | 
|  | case X86::BLSI32rr:  case X86::BLSI32rm: | 
|  | case X86::BLSI64rr:  case X86::BLSI64rm: | 
|  | case X86::BLSMSK32rr:case X86::BLSMSK32rm: | 
|  | case X86::BLSMSK64rr:case X86::BLSMSK64rm: | 
|  | case X86::BLSR32rr:  case X86::BLSR32rm: | 
|  | case X86::BLSR64rr:  case X86::BLSR64rm: | 
|  | case X86::BZHI32rr:  case X86::BZHI32rm: | 
|  | case X86::BZHI64rr:  case X86::BZHI64rm: | 
|  | case X86::LZCNT16rr: case X86::LZCNT16rm: | 
|  | case X86::LZCNT32rr: case X86::LZCNT32rm: | 
|  | case X86::LZCNT64rr: case X86::LZCNT64rm: | 
|  | case X86::POPCNT16rr:case X86::POPCNT16rm: | 
|  | case X86::POPCNT32rr:case X86::POPCNT32rm: | 
|  | case X86::POPCNT64rr:case X86::POPCNT64rm: | 
|  | case X86::TZCNT16rr: case X86::TZCNT16rm: | 
|  | case X86::TZCNT32rr: case X86::TZCNT32rm: | 
|  | case X86::TZCNT64rr: case X86::TZCNT64rm: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check whether the use can be converted to remove a comparison against zero. | 
|  | static X86::CondCode isUseDefConvertible(MachineInstr *MI) { | 
|  | switch (MI->getOpcode()) { | 
|  | default: return X86::COND_INVALID; | 
|  | case X86::LZCNT16rr: case X86::LZCNT16rm: | 
|  | case X86::LZCNT32rr: case X86::LZCNT32rm: | 
|  | case X86::LZCNT64rr: case X86::LZCNT64rm: | 
|  | return X86::COND_B; | 
|  | case X86::POPCNT16rr:case X86::POPCNT16rm: | 
|  | case X86::POPCNT32rr:case X86::POPCNT32rm: | 
|  | case X86::POPCNT64rr:case X86::POPCNT64rm: | 
|  | return X86::COND_E; | 
|  | case X86::TZCNT16rr: case X86::TZCNT16rm: | 
|  | case X86::TZCNT32rr: case X86::TZCNT32rm: | 
|  | case X86::TZCNT64rr: case X86::TZCNT64rm: | 
|  | return X86::COND_B; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check if there exists an earlier instruction that | 
|  | /// operates on the same source operands and sets flags in the same way as | 
|  | /// Compare; remove Compare if possible. | 
|  | bool X86InstrInfo:: | 
|  | optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, | 
|  | int CmpMask, int CmpValue, | 
|  | const MachineRegisterInfo *MRI) const { | 
|  | // Check whether we can replace SUB with CMP. | 
|  | unsigned NewOpcode = 0; | 
|  | switch (CmpInstr->getOpcode()) { | 
|  | default: break; | 
|  | case X86::SUB64ri32: | 
|  | case X86::SUB64ri8: | 
|  | case X86::SUB32ri: | 
|  | case X86::SUB32ri8: | 
|  | case X86::SUB16ri: | 
|  | case X86::SUB16ri8: | 
|  | case X86::SUB8ri: | 
|  | case X86::SUB64rm: | 
|  | case X86::SUB32rm: | 
|  | case X86::SUB16rm: | 
|  | case X86::SUB8rm: | 
|  | case X86::SUB64rr: | 
|  | case X86::SUB32rr: | 
|  | case X86::SUB16rr: | 
|  | case X86::SUB8rr: { | 
|  | if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg())) | 
|  | return false; | 
|  | // There is no use of the destination register, we can replace SUB with CMP. | 
|  | switch (CmpInstr->getOpcode()) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break; | 
|  | case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break; | 
|  | case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break; | 
|  | case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break; | 
|  | case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break; | 
|  | case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break; | 
|  | case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break; | 
|  | case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break; | 
|  | case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break; | 
|  | case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break; | 
|  | case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break; | 
|  | case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break; | 
|  | case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break; | 
|  | case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break; | 
|  | case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break; | 
|  | } | 
|  | CmpInstr->setDesc(get(NewOpcode)); | 
|  | CmpInstr->RemoveOperand(0); | 
|  | // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. | 
|  | if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || | 
|  | NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get the unique definition of SrcReg. | 
|  | MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); | 
|  | if (!MI) return false; | 
|  |  | 
|  | // CmpInstr is the first instruction of the BB. | 
|  | MachineBasicBlock::iterator I = CmpInstr, Def = MI; | 
|  |  | 
|  | // If we are comparing against zero, check whether we can use MI to update | 
|  | // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize. | 
|  | bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0); | 
|  | if (IsCmpZero && MI->getParent() != CmpInstr->getParent()) | 
|  | return false; | 
|  |  | 
|  | // If we have a use of the source register between the def and our compare | 
|  | // instruction we can eliminate the compare iff the use sets EFLAGS in the | 
|  | // right way. | 
|  | bool ShouldUpdateCC = false; | 
|  | X86::CondCode NewCC = X86::COND_INVALID; | 
|  | if (IsCmpZero && !isDefConvertible(MI)) { | 
|  | // Scan forward from the use until we hit the use we're looking for or the | 
|  | // compare instruction. | 
|  | for (MachineBasicBlock::iterator J = MI;; ++J) { | 
|  | // Do we have a convertible instruction? | 
|  | NewCC = isUseDefConvertible(J); | 
|  | if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() && | 
|  | J->getOperand(1).getReg() == SrcReg) { | 
|  | assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!"); | 
|  | ShouldUpdateCC = true; // Update CC later on. | 
|  | // This is not a def of SrcReg, but still a def of EFLAGS. Keep going | 
|  | // with the new def. | 
|  | MI = Def = J; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (J == I) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We are searching for an earlier instruction that can make CmpInstr | 
|  | // redundant and that instruction will be saved in Sub. | 
|  | MachineInstr *Sub = nullptr; | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  |  | 
|  | // We iterate backward, starting from the instruction before CmpInstr and | 
|  | // stop when reaching the definition of a source register or done with the BB. | 
|  | // RI points to the instruction before CmpInstr. | 
|  | // If the definition is in this basic block, RE points to the definition; | 
|  | // otherwise, RE is the rend of the basic block. | 
|  | MachineBasicBlock::reverse_iterator | 
|  | RI = MachineBasicBlock::reverse_iterator(I), | 
|  | RE = CmpInstr->getParent() == MI->getParent() ? | 
|  | MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ : | 
|  | CmpInstr->getParent()->rend(); | 
|  | MachineInstr *Movr0Inst = nullptr; | 
|  | for (; RI != RE; ++RI) { | 
|  | MachineInstr *Instr = &*RI; | 
|  | // Check whether CmpInstr can be made redundant by the current instruction. | 
|  | if (!IsCmpZero && | 
|  | isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) { | 
|  | Sub = Instr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Instr->modifiesRegister(X86::EFLAGS, TRI) || | 
|  | Instr->readsRegister(X86::EFLAGS, TRI)) { | 
|  | // This instruction modifies or uses EFLAGS. | 
|  |  | 
|  | // MOV32r0 etc. are implemented with xor which clobbers condition code. | 
|  | // They are safe to move up, if the definition to EFLAGS is dead and | 
|  | // earlier instructions do not read or write EFLAGS. | 
|  | if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 && | 
|  | Instr->registerDefIsDead(X86::EFLAGS, TRI)) { | 
|  | Movr0Inst = Instr; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We can't remove CmpInstr. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return false if no candidates exist. | 
|  | if (!IsCmpZero && !Sub) | 
|  | return false; | 
|  |  | 
|  | bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && | 
|  | Sub->getOperand(2).getReg() == SrcReg); | 
|  |  | 
|  | // Scan forward from the instruction after CmpInstr for uses of EFLAGS. | 
|  | // It is safe to remove CmpInstr if EFLAGS is redefined or killed. | 
|  | // If we are done with the basic block, we need to check whether EFLAGS is | 
|  | // live-out. | 
|  | bool IsSafe = false; | 
|  | SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate; | 
|  | MachineBasicBlock::iterator E = CmpInstr->getParent()->end(); | 
|  | for (++I; I != E; ++I) { | 
|  | const MachineInstr &Instr = *I; | 
|  | bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI); | 
|  | bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI); | 
|  | // We should check the usage if this instruction uses and updates EFLAGS. | 
|  | if (!UseEFLAGS && ModifyEFLAGS) { | 
|  | // It is safe to remove CmpInstr if EFLAGS is updated again. | 
|  | IsSafe = true; | 
|  | break; | 
|  | } | 
|  | if (!UseEFLAGS && !ModifyEFLAGS) | 
|  | continue; | 
|  |  | 
|  | // EFLAGS is used by this instruction. | 
|  | X86::CondCode OldCC = X86::COND_INVALID; | 
|  | bool OpcIsSET = false; | 
|  | if (IsCmpZero || IsSwapped) { | 
|  | // We decode the condition code from opcode. | 
|  | if (Instr.isBranch()) | 
|  | OldCC = getCondFromBranchOpc(Instr.getOpcode()); | 
|  | else { | 
|  | OldCC = getCondFromSETOpc(Instr.getOpcode()); | 
|  | if (OldCC != X86::COND_INVALID) | 
|  | OpcIsSET = true; | 
|  | else | 
|  | OldCC = X86::getCondFromCMovOpc(Instr.getOpcode()); | 
|  | } | 
|  | if (OldCC == X86::COND_INVALID) return false; | 
|  | } | 
|  | if (IsCmpZero) { | 
|  | switch (OldCC) { | 
|  | default: break; | 
|  | case X86::COND_A: case X86::COND_AE: | 
|  | case X86::COND_B: case X86::COND_BE: | 
|  | case X86::COND_G: case X86::COND_GE: | 
|  | case X86::COND_L: case X86::COND_LE: | 
|  | case X86::COND_O: case X86::COND_NO: | 
|  | // CF and OF are used, we can't perform this optimization. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we're updating the condition code check if we have to reverse the | 
|  | // condition. | 
|  | if (ShouldUpdateCC) | 
|  | switch (OldCC) { | 
|  | default: | 
|  | return false; | 
|  | case X86::COND_E: | 
|  | break; | 
|  | case X86::COND_NE: | 
|  | NewCC = GetOppositeBranchCondition(NewCC); | 
|  | break; | 
|  | } | 
|  | } else if (IsSwapped) { | 
|  | // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs | 
|  | // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. | 
|  | // We swap the condition code and synthesize the new opcode. | 
|  | NewCC = getSwappedCondition(OldCC); | 
|  | if (NewCC == X86::COND_INVALID) return false; | 
|  | } | 
|  |  | 
|  | if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) { | 
|  | // Synthesize the new opcode. | 
|  | bool HasMemoryOperand = Instr.hasOneMemOperand(); | 
|  | unsigned NewOpc; | 
|  | if (Instr.isBranch()) | 
|  | NewOpc = GetCondBranchFromCond(NewCC); | 
|  | else if(OpcIsSET) | 
|  | NewOpc = getSETFromCond(NewCC, HasMemoryOperand); | 
|  | else { | 
|  | unsigned DstReg = Instr.getOperand(0).getReg(); | 
|  | NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(), | 
|  | HasMemoryOperand); | 
|  | } | 
|  |  | 
|  | // Push the MachineInstr to OpsToUpdate. | 
|  | // If it is safe to remove CmpInstr, the condition code of these | 
|  | // instructions will be modified. | 
|  | OpsToUpdate.push_back(std::make_pair(&*I, NewOpc)); | 
|  | } | 
|  | if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) { | 
|  | // It is safe to remove CmpInstr if EFLAGS is updated again or killed. | 
|  | IsSafe = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If EFLAGS is not killed nor re-defined, we should check whether it is | 
|  | // live-out. If it is live-out, do not optimize. | 
|  | if ((IsCmpZero || IsSwapped) && !IsSafe) { | 
|  | MachineBasicBlock *MBB = CmpInstr->getParent(); | 
|  | for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), | 
|  | SE = MBB->succ_end(); SI != SE; ++SI) | 
|  | if ((*SI)->isLiveIn(X86::EFLAGS)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The instruction to be updated is either Sub or MI. | 
|  | Sub = IsCmpZero ? MI : Sub; | 
|  | // Move Movr0Inst to the appropriate place before Sub. | 
|  | if (Movr0Inst) { | 
|  | // Look backwards until we find a def that doesn't use the current EFLAGS. | 
|  | Def = Sub; | 
|  | MachineBasicBlock::reverse_iterator | 
|  | InsertI = MachineBasicBlock::reverse_iterator(++Def), | 
|  | InsertE = Sub->getParent()->rend(); | 
|  | for (; InsertI != InsertE; ++InsertI) { | 
|  | MachineInstr *Instr = &*InsertI; | 
|  | if (!Instr->readsRegister(X86::EFLAGS, TRI) && | 
|  | Instr->modifiesRegister(X86::EFLAGS, TRI)) { | 
|  | Sub->getParent()->remove(Movr0Inst); | 
|  | Instr->getParent()->insert(MachineBasicBlock::iterator(Instr), | 
|  | Movr0Inst); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (InsertI == InsertE) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Make sure Sub instruction defines EFLAGS and mark the def live. | 
|  | unsigned i = 0, e = Sub->getNumOperands(); | 
|  | for (; i != e; ++i) { | 
|  | MachineOperand &MO = Sub->getOperand(i); | 
|  | if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) { | 
|  | MO.setIsDead(false); | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert(i != e && "Unable to locate a def EFLAGS operand"); | 
|  |  | 
|  | CmpInstr->eraseFromParent(); | 
|  |  | 
|  | // Modify the condition code of instructions in OpsToUpdate. | 
|  | for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++) | 
|  | OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Try to remove the load by folding it to a register | 
|  | /// operand at the use. We fold the load instructions if load defines a virtual | 
|  | /// register, the virtual register is used once in the same BB, and the | 
|  | /// instructions in-between do not load or store, and have no side effects. | 
|  | MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr *MI, | 
|  | const MachineRegisterInfo *MRI, | 
|  | unsigned &FoldAsLoadDefReg, | 
|  | MachineInstr *&DefMI) const { | 
|  | if (FoldAsLoadDefReg == 0) | 
|  | return nullptr; | 
|  | // To be conservative, if there exists another load, clear the load candidate. | 
|  | if (MI->mayLoad()) { | 
|  | FoldAsLoadDefReg = 0; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Check whether we can move DefMI here. | 
|  | DefMI = MRI->getVRegDef(FoldAsLoadDefReg); | 
|  | assert(DefMI); | 
|  | bool SawStore = false; | 
|  | if (!DefMI->isSafeToMove(nullptr, SawStore)) | 
|  | return nullptr; | 
|  |  | 
|  | // Collect information about virtual register operands of MI. | 
|  | unsigned SrcOperandId = 0; | 
|  | bool FoundSrcOperand = false; | 
|  | for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg != FoldAsLoadDefReg) | 
|  | continue; | 
|  | // Do not fold if we have a subreg use or a def or multiple uses. | 
|  | if (MO.getSubReg() || MO.isDef() || FoundSrcOperand) | 
|  | return nullptr; | 
|  |  | 
|  | SrcOperandId = i; | 
|  | FoundSrcOperand = true; | 
|  | } | 
|  | if (!FoundSrcOperand) | 
|  | return nullptr; | 
|  |  | 
|  | // Check whether we can fold the def into SrcOperandId. | 
|  | MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandId, DefMI); | 
|  | if (FoldMI) { | 
|  | FoldAsLoadDefReg = 0; | 
|  | return FoldMI; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Expand a single-def pseudo instruction to a two-addr | 
|  | /// instruction with two undef reads of the register being defined. | 
|  | /// This is used for mapping: | 
|  | ///   %xmm4 = V_SET0 | 
|  | /// to: | 
|  | ///   %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef> | 
|  | /// | 
|  | static bool Expand2AddrUndef(MachineInstrBuilder &MIB, | 
|  | const MCInstrDesc &Desc) { | 
|  | assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); | 
|  | unsigned Reg = MIB->getOperand(0).getReg(); | 
|  | MIB->setDesc(Desc); | 
|  |  | 
|  | // MachineInstr::addOperand() will insert explicit operands before any | 
|  | // implicit operands. | 
|  | MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); | 
|  | // But we don't trust that. | 
|  | assert(MIB->getOperand(1).getReg() == Reg && | 
|  | MIB->getOperand(2).getReg() == Reg && "Misplaced operand"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // LoadStackGuard has so far only been implemented for 64-bit MachO. Different | 
|  | // code sequence is needed for other targets. | 
|  | static void expandLoadStackGuard(MachineInstrBuilder &MIB, | 
|  | const TargetInstrInfo &TII) { | 
|  | MachineBasicBlock &MBB = *MIB->getParent(); | 
|  | DebugLoc DL = MIB->getDebugLoc(); | 
|  | unsigned Reg = MIB->getOperand(0).getReg(); | 
|  | const GlobalValue *GV = | 
|  | cast<GlobalValue>((*MIB->memoperands_begin())->getValue()); | 
|  | unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant; | 
|  | MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( | 
|  | MachinePointerInfo::getGOT(*MBB.getParent()), Flag, 8, 8); | 
|  | MachineBasicBlock::iterator I = MIB.getInstr(); | 
|  |  | 
|  | BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1) | 
|  | .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0) | 
|  | .addMemOperand(MMO); | 
|  | MIB->setDebugLoc(DL); | 
|  | MIB->setDesc(TII.get(X86::MOV64rm)); | 
|  | MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { | 
|  | bool HasAVX = Subtarget.hasAVX(); | 
|  | MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI); | 
|  | switch (MI->getOpcode()) { | 
|  | case X86::MOV32r0: | 
|  | return Expand2AddrUndef(MIB, get(X86::XOR32rr)); | 
|  | case X86::SETB_C8r: | 
|  | return Expand2AddrUndef(MIB, get(X86::SBB8rr)); | 
|  | case X86::SETB_C16r: | 
|  | return Expand2AddrUndef(MIB, get(X86::SBB16rr)); | 
|  | case X86::SETB_C32r: | 
|  | return Expand2AddrUndef(MIB, get(X86::SBB32rr)); | 
|  | case X86::SETB_C64r: | 
|  | return Expand2AddrUndef(MIB, get(X86::SBB64rr)); | 
|  | case X86::V_SET0: | 
|  | case X86::FsFLD0SS: | 
|  | case X86::FsFLD0SD: | 
|  | return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); | 
|  | case X86::AVX_SET0: | 
|  | assert(HasAVX && "AVX not supported"); | 
|  | return Expand2AddrUndef(MIB, get(X86::VXORPSYrr)); | 
|  | case X86::AVX512_512_SET0: | 
|  | return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); | 
|  | case X86::V_SETALLONES: | 
|  | return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); | 
|  | case X86::AVX2_SETALLONES: | 
|  | return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr)); | 
|  | case X86::TEST8ri_NOREX: | 
|  | MI->setDesc(get(X86::TEST8ri)); | 
|  | return true; | 
|  | case X86::KSET0B: | 
|  | case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr)); | 
|  | case X86::KSET0D: return Expand2AddrUndef(MIB, get(X86::KXORDrr)); | 
|  | case X86::KSET0Q: return Expand2AddrUndef(MIB, get(X86::KXORQrr)); | 
|  | case X86::KSET1B: | 
|  | case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr)); | 
|  | case X86::KSET1D: return Expand2AddrUndef(MIB, get(X86::KXNORDrr)); | 
|  | case X86::KSET1Q: return Expand2AddrUndef(MIB, get(X86::KXNORQrr)); | 
|  | case TargetOpcode::LOAD_STACK_GUARD: | 
|  | expandLoadStackGuard(MIB, *this); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs, | 
|  | int PtrOffset = 0) { | 
|  | unsigned NumAddrOps = MOs.size(); | 
|  |  | 
|  | if (NumAddrOps < 4) { | 
|  | // FrameIndex only - add an immediate offset (whether its zero or not). | 
|  | for (unsigned i = 0; i != NumAddrOps; ++i) | 
|  | MIB.addOperand(MOs[i]); | 
|  | addOffset(MIB, PtrOffset); | 
|  | } else { | 
|  | // General Memory Addressing - we need to add any offset to an existing | 
|  | // offset. | 
|  | assert(MOs.size() == 5 && "Unexpected memory operand list length"); | 
|  | for (unsigned i = 0; i != NumAddrOps; ++i) { | 
|  | const MachineOperand &MO = MOs[i]; | 
|  | if (i == 3 && PtrOffset != 0) { | 
|  | MIB.addDisp(MO, PtrOffset); | 
|  | } else { | 
|  | MIB.addOperand(MO); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, | 
|  | ArrayRef<MachineOperand> MOs, | 
|  | MachineBasicBlock::iterator InsertPt, | 
|  | MachineInstr *MI, | 
|  | const TargetInstrInfo &TII) { | 
|  | // Create the base instruction with the memory operand as the first part. | 
|  | // Omit the implicit operands, something BuildMI can't do. | 
|  | MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), | 
|  | MI->getDebugLoc(), true); | 
|  | MachineInstrBuilder MIB(MF, NewMI); | 
|  | addOperands(MIB, MOs); | 
|  |  | 
|  | // Loop over the rest of the ri operands, converting them over. | 
|  | unsigned NumOps = MI->getDesc().getNumOperands()-2; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i+2); | 
|  | MIB.addOperand(MO); | 
|  | } | 
|  | for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | MIB.addOperand(MO); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *MBB = InsertPt->getParent(); | 
|  | MBB->insert(InsertPt, NewMI); | 
|  |  | 
|  | return MIB; | 
|  | } | 
|  |  | 
|  | static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode, | 
|  | unsigned OpNo, ArrayRef<MachineOperand> MOs, | 
|  | MachineBasicBlock::iterator InsertPt, | 
|  | MachineInstr *MI, const TargetInstrInfo &TII, | 
|  | int PtrOffset = 0) { | 
|  | // Omit the implicit operands, something BuildMI can't do. | 
|  | MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), | 
|  | MI->getDebugLoc(), true); | 
|  | MachineInstrBuilder MIB(MF, NewMI); | 
|  |  | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (i == OpNo) { | 
|  | assert(MO.isReg() && "Expected to fold into reg operand!"); | 
|  | addOperands(MIB, MOs, PtrOffset); | 
|  | } else { | 
|  | MIB.addOperand(MO); | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *MBB = InsertPt->getParent(); | 
|  | MBB->insert(InsertPt, NewMI); | 
|  |  | 
|  | return MIB; | 
|  | } | 
|  |  | 
|  | static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, | 
|  | ArrayRef<MachineOperand> MOs, | 
|  | MachineBasicBlock::iterator InsertPt, | 
|  | MachineInstr *MI) { | 
|  | MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, | 
|  | MI->getDebugLoc(), TII.get(Opcode)); | 
|  | addOperands(MIB, MOs); | 
|  | return MIB.addImm(0); | 
|  | } | 
|  |  | 
|  | MachineInstr *X86InstrInfo::foldMemoryOperandCustom( | 
|  | MachineFunction &MF, MachineInstr *MI, unsigned OpNum, | 
|  | ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, | 
|  | unsigned Size, unsigned Align) const { | 
|  | switch (MI->getOpcode()) { | 
|  | case X86::INSERTPSrr: | 
|  | case X86::VINSERTPSrr: | 
|  | // Attempt to convert the load of inserted vector into a fold load | 
|  | // of a single float. | 
|  | if (OpNum == 2) { | 
|  | unsigned Imm = MI->getOperand(MI->getNumOperands() - 1).getImm(); | 
|  | unsigned ZMask = Imm & 15; | 
|  | unsigned DstIdx = (Imm >> 4) & 3; | 
|  | unsigned SrcIdx = (Imm >> 6) & 3; | 
|  |  | 
|  | unsigned RCSize = getRegClass(MI->getDesc(), OpNum, &RI, MF)->getSize(); | 
|  | if (Size <= RCSize && 4 <= Align) { | 
|  | int PtrOffset = SrcIdx * 4; | 
|  | unsigned NewImm = (DstIdx << 4) | ZMask; | 
|  | unsigned NewOpCode = | 
|  | (MI->getOpcode() == X86::VINSERTPSrr ? X86::VINSERTPSrm | 
|  | : X86::INSERTPSrm); | 
|  | MachineInstr *NewMI = | 
|  | FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset); | 
|  | NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm); | 
|  | return NewMI; | 
|  | } | 
|  | } | 
|  | break; | 
|  | }; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | MachineInstr *X86InstrInfo::foldMemoryOperandImpl( | 
|  | MachineFunction &MF, MachineInstr *MI, unsigned OpNum, | 
|  | ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, | 
|  | unsigned Size, unsigned Align, bool AllowCommute) const { | 
|  | const DenseMap<unsigned, | 
|  | std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr; | 
|  | bool isCallRegIndirect = Subtarget.callRegIndirect(); | 
|  | bool isTwoAddrFold = false; | 
|  |  | 
|  | // For CPUs that favor the register form of a call or push, | 
|  | // do not fold loads into calls or pushes, unless optimizing for size | 
|  | // aggressively. | 
|  | if (isCallRegIndirect && !MF.getFunction()->optForMinSize() && | 
|  | (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r || | 
|  | MI->getOpcode() == X86::PUSH16r || MI->getOpcode() == X86::PUSH32r || | 
|  | MI->getOpcode() == X86::PUSH64r)) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned NumOps = MI->getDesc().getNumOperands(); | 
|  | bool isTwoAddr = NumOps > 1 && | 
|  | MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; | 
|  |  | 
|  | // FIXME: AsmPrinter doesn't know how to handle | 
|  | // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. | 
|  | if (MI->getOpcode() == X86::ADD32ri && | 
|  | MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstr *NewMI = nullptr; | 
|  |  | 
|  | // Attempt to fold any custom cases we have. | 
|  | if (MachineInstr *CustomMI = | 
|  | foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align)) | 
|  | return CustomMI; | 
|  |  | 
|  | // Folding a memory location into the two-address part of a two-address | 
|  | // instruction is different than folding it other places.  It requires | 
|  | // replacing the *two* registers with the memory location. | 
|  | if (isTwoAddr && NumOps >= 2 && OpNum < 2 && | 
|  | MI->getOperand(0).isReg() && | 
|  | MI->getOperand(1).isReg() && | 
|  | MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { | 
|  | OpcodeTablePtr = &RegOp2MemOpTable2Addr; | 
|  | isTwoAddrFold = true; | 
|  | } else if (OpNum == 0) { | 
|  | if (MI->getOpcode() == X86::MOV32r0) { | 
|  | NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI); | 
|  | if (NewMI) | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | OpcodeTablePtr = &RegOp2MemOpTable0; | 
|  | } else if (OpNum == 1) { | 
|  | OpcodeTablePtr = &RegOp2MemOpTable1; | 
|  | } else if (OpNum == 2) { | 
|  | OpcodeTablePtr = &RegOp2MemOpTable2; | 
|  | } else if (OpNum == 3) { | 
|  | OpcodeTablePtr = &RegOp2MemOpTable3; | 
|  | } else if (OpNum == 4) { | 
|  | OpcodeTablePtr = &RegOp2MemOpTable4; | 
|  | } | 
|  |  | 
|  | // If table selected... | 
|  | if (OpcodeTablePtr) { | 
|  | // Find the Opcode to fuse | 
|  | DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = | 
|  | OpcodeTablePtr->find(MI->getOpcode()); | 
|  | if (I != OpcodeTablePtr->end()) { | 
|  | unsigned Opcode = I->second.first; | 
|  | unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT; | 
|  | if (Align < MinAlign) | 
|  | return nullptr; | 
|  | bool NarrowToMOV32rm = false; | 
|  | if (Size) { | 
|  | unsigned RCSize = getRegClass(MI->getDesc(), OpNum, &RI, MF)->getSize(); | 
|  | if (Size < RCSize) { | 
|  | // Check if it's safe to fold the load. If the size of the object is | 
|  | // narrower than the load width, then it's not. | 
|  | if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) | 
|  | return nullptr; | 
|  | // If this is a 64-bit load, but the spill slot is 32, then we can do | 
|  | // a 32-bit load which is implicitly zero-extended. This likely is | 
|  | // due to live interval analysis remat'ing a load from stack slot. | 
|  | if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg()) | 
|  | return nullptr; | 
|  | Opcode = X86::MOV32rm; | 
|  | NarrowToMOV32rm = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isTwoAddrFold) | 
|  | NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this); | 
|  | else | 
|  | NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this); | 
|  |  | 
|  | if (NarrowToMOV32rm) { | 
|  | // If this is the special case where we use a MOV32rm to load a 32-bit | 
|  | // value and zero-extend the top bits. Change the destination register | 
|  | // to a 32-bit one. | 
|  | unsigned DstReg = NewMI->getOperand(0).getReg(); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(DstReg)) | 
|  | NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit)); | 
|  | else | 
|  | NewMI->getOperand(0).setSubReg(X86::sub_32bit); | 
|  | } | 
|  | return NewMI; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the instruction and target operand are commutable, commute the | 
|  | // instruction and try again. | 
|  | if (AllowCommute) { | 
|  | unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex; | 
|  | if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) { | 
|  | bool HasDef = MI->getDesc().getNumDefs(); | 
|  | unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0; | 
|  | unsigned Reg1 = MI->getOperand(CommuteOpIdx1).getReg(); | 
|  | unsigned Reg2 = MI->getOperand(CommuteOpIdx2).getReg(); | 
|  | bool Tied1 = | 
|  | 0 == MI->getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO); | 
|  | bool Tied2 = | 
|  | 0 == MI->getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO); | 
|  |  | 
|  | // If either of the commutable operands are tied to the destination | 
|  | // then we can not commute + fold. | 
|  | if ((HasDef && Reg0 == Reg1 && Tied1) || | 
|  | (HasDef && Reg0 == Reg2 && Tied2)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstr *CommutedMI = | 
|  | commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); | 
|  | if (!CommutedMI) { | 
|  | // Unable to commute. | 
|  | return nullptr; | 
|  | } | 
|  | if (CommutedMI != MI) { | 
|  | // New instruction. We can't fold from this. | 
|  | CommutedMI->eraseFromParent(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Attempt to fold with the commuted version of the instruction. | 
|  | NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, | 
|  | Size, Align, /*AllowCommute=*/false); | 
|  | if (NewMI) | 
|  | return NewMI; | 
|  |  | 
|  | // Folding failed again - undo the commute before returning. | 
|  | MachineInstr *UncommutedMI = | 
|  | commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); | 
|  | if (!UncommutedMI) { | 
|  | // Unable to commute. | 
|  | return nullptr; | 
|  | } | 
|  | if (UncommutedMI != MI) { | 
|  | // New instruction. It doesn't need to be kept. | 
|  | UncommutedMI->eraseFromParent(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Return here to prevent duplicate fuse failure report. | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // No fusion | 
|  | if (PrintFailedFusing && !MI->isCopy()) | 
|  | dbgs() << "We failed to fuse operand " << OpNum << " in " << *MI; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Return true for all instructions that only update | 
|  | /// the first 32 or 64-bits of the destination register and leave the rest | 
|  | /// unmodified. This can be used to avoid folding loads if the instructions | 
|  | /// only update part of the destination register, and the non-updated part is | 
|  | /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these | 
|  | /// instructions breaks the partial register dependency and it can improve | 
|  | /// performance. e.g.: | 
|  | /// | 
|  | ///   movss (%rdi), %xmm0 | 
|  | ///   cvtss2sd %xmm0, %xmm0 | 
|  | /// | 
|  | /// Instead of | 
|  | ///   cvtss2sd (%rdi), %xmm0 | 
|  | /// | 
|  | /// FIXME: This should be turned into a TSFlags. | 
|  | /// | 
|  | static bool hasPartialRegUpdate(unsigned Opcode) { | 
|  | switch (Opcode) { | 
|  | case X86::CVTSI2SSrr: | 
|  | case X86::CVTSI2SSrm: | 
|  | case X86::CVTSI2SS64rr: | 
|  | case X86::CVTSI2SS64rm: | 
|  | case X86::CVTSI2SDrr: | 
|  | case X86::CVTSI2SDrm: | 
|  | case X86::CVTSI2SD64rr: | 
|  | case X86::CVTSI2SD64rm: | 
|  | case X86::CVTSD2SSrr: | 
|  | case X86::CVTSD2SSrm: | 
|  | case X86::Int_CVTSD2SSrr: | 
|  | case X86::Int_CVTSD2SSrm: | 
|  | case X86::CVTSS2SDrr: | 
|  | case X86::CVTSS2SDrm: | 
|  | case X86::Int_CVTSS2SDrr: | 
|  | case X86::Int_CVTSS2SDrm: | 
|  | case X86::RCPSSr: | 
|  | case X86::RCPSSm: | 
|  | case X86::RCPSSr_Int: | 
|  | case X86::RCPSSm_Int: | 
|  | case X86::ROUNDSDr: | 
|  | case X86::ROUNDSDm: | 
|  | case X86::ROUNDSDr_Int: | 
|  | case X86::ROUNDSSr: | 
|  | case X86::ROUNDSSm: | 
|  | case X86::ROUNDSSr_Int: | 
|  | case X86::RSQRTSSr: | 
|  | case X86::RSQRTSSm: | 
|  | case X86::RSQRTSSr_Int: | 
|  | case X86::RSQRTSSm_Int: | 
|  | case X86::SQRTSSr: | 
|  | case X86::SQRTSSm: | 
|  | case X86::SQRTSSr_Int: | 
|  | case X86::SQRTSSm_Int: | 
|  | case X86::SQRTSDr: | 
|  | case X86::SQRTSDm: | 
|  | case X86::SQRTSDr_Int: | 
|  | case X86::SQRTSDm_Int: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Inform the ExeDepsFix pass how many idle | 
|  | /// instructions we would like before a partial register update. | 
|  | unsigned X86InstrInfo:: | 
|  | getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode())) | 
|  | return 0; | 
|  |  | 
|  | // If MI is marked as reading Reg, the partial register update is wanted. | 
|  | const MachineOperand &MO = MI->getOperand(0); | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | if (MO.readsReg() || MI->readsVirtualRegister(Reg)) | 
|  | return 0; | 
|  | } else { | 
|  | if (MI->readsRegister(Reg, TRI)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If any of the preceding 16 instructions are reading Reg, insert a | 
|  | // dependency breaking instruction.  The magic number is based on a few | 
|  | // Nehalem experiments. | 
|  | return 16; | 
|  | } | 
|  |  | 
|  | // Return true for any instruction the copies the high bits of the first source | 
|  | // operand into the unused high bits of the destination operand. | 
|  | static bool hasUndefRegUpdate(unsigned Opcode) { | 
|  | switch (Opcode) { | 
|  | case X86::VCVTSI2SSrr: | 
|  | case X86::VCVTSI2SSrm: | 
|  | case X86::Int_VCVTSI2SSrr: | 
|  | case X86::Int_VCVTSI2SSrm: | 
|  | case X86::VCVTSI2SS64rr: | 
|  | case X86::VCVTSI2SS64rm: | 
|  | case X86::Int_VCVTSI2SS64rr: | 
|  | case X86::Int_VCVTSI2SS64rm: | 
|  | case X86::VCVTSI2SDrr: | 
|  | case X86::VCVTSI2SDrm: | 
|  | case X86::Int_VCVTSI2SDrr: | 
|  | case X86::Int_VCVTSI2SDrm: | 
|  | case X86::VCVTSI2SD64rr: | 
|  | case X86::VCVTSI2SD64rm: | 
|  | case X86::Int_VCVTSI2SD64rr: | 
|  | case X86::Int_VCVTSI2SD64rm: | 
|  | case X86::VCVTSD2SSrr: | 
|  | case X86::VCVTSD2SSrm: | 
|  | case X86::Int_VCVTSD2SSrr: | 
|  | case X86::Int_VCVTSD2SSrm: | 
|  | case X86::VCVTSS2SDrr: | 
|  | case X86::VCVTSS2SDrm: | 
|  | case X86::Int_VCVTSS2SDrr: | 
|  | case X86::Int_VCVTSS2SDrm: | 
|  | case X86::VRCPSSr: | 
|  | case X86::VRCPSSm: | 
|  | case X86::VRCPSSm_Int: | 
|  | case X86::VROUNDSDr: | 
|  | case X86::VROUNDSDm: | 
|  | case X86::VROUNDSDr_Int: | 
|  | case X86::VROUNDSSr: | 
|  | case X86::VROUNDSSm: | 
|  | case X86::VROUNDSSr_Int: | 
|  | case X86::VRSQRTSSr: | 
|  | case X86::VRSQRTSSm: | 
|  | case X86::VRSQRTSSm_Int: | 
|  | case X86::VSQRTSSr: | 
|  | case X86::VSQRTSSm: | 
|  | case X86::VSQRTSSm_Int: | 
|  | case X86::VSQRTSDr: | 
|  | case X86::VSQRTSDm: | 
|  | case X86::VSQRTSDm_Int: | 
|  | // AVX-512 | 
|  | case X86::VCVTSD2SSZrr: | 
|  | case X86::VCVTSD2SSZrm: | 
|  | case X86::VCVTSS2SDZrr: | 
|  | case X86::VCVTSS2SDZrm: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Inform the ExeDepsFix pass how many idle instructions we would like before | 
|  | /// certain undef register reads. | 
|  | /// | 
|  | /// This catches the VCVTSI2SD family of instructions: | 
|  | /// | 
|  | /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14 | 
|  | /// | 
|  | /// We should to be careful *not* to catch VXOR idioms which are presumably | 
|  | /// handled specially in the pipeline: | 
|  | /// | 
|  | /// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1 | 
|  | /// | 
|  | /// Like getPartialRegUpdateClearance, this makes a strong assumption that the | 
|  | /// high bits that are passed-through are not live. | 
|  | unsigned X86InstrInfo:: | 
|  | getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | if (!hasUndefRegUpdate(MI->getOpcode())) | 
|  | return 0; | 
|  |  | 
|  | // Set the OpNum parameter to the first source operand. | 
|  | OpNum = 1; | 
|  |  | 
|  | const MachineOperand &MO = MI->getOperand(OpNum); | 
|  | if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { | 
|  | // Use the same magic number as getPartialRegUpdateClearance. | 
|  | return 16; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo:: | 
|  | breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | unsigned Reg = MI->getOperand(OpNum).getReg(); | 
|  | // If MI kills this register, the false dependence is already broken. | 
|  | if (MI->killsRegister(Reg, TRI)) | 
|  | return; | 
|  | if (X86::VR128RegClass.contains(Reg)) { | 
|  | // These instructions are all floating point domain, so xorps is the best | 
|  | // choice. | 
|  | bool HasAVX = Subtarget.hasAVX(); | 
|  | unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr; | 
|  | BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg) | 
|  | .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); | 
|  | } else if (X86::VR256RegClass.contains(Reg)) { | 
|  | // Use vxorps to clear the full ymm register. | 
|  | // It wants to read and write the xmm sub-register. | 
|  | unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm); | 
|  | BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg) | 
|  | .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef) | 
|  | .addReg(Reg, RegState::ImplicitDefine); | 
|  | } else | 
|  | return; | 
|  | MI->addRegisterKilled(Reg, TRI, true); | 
|  | } | 
|  |  | 
|  | MachineInstr *X86InstrInfo::foldMemoryOperandImpl( | 
|  | MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops, | 
|  | MachineBasicBlock::iterator InsertPt, int FrameIndex) const { | 
|  | // Check switch flag | 
|  | if (NoFusing) return nullptr; | 
|  |  | 
|  | // Unless optimizing for size, don't fold to avoid partial | 
|  | // register update stalls | 
|  | if (!MF.getFunction()->optForSize() && hasPartialRegUpdate(MI->getOpcode())) | 
|  | return nullptr; | 
|  |  | 
|  | const MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | unsigned Size = MFI->getObjectSize(FrameIndex); | 
|  | unsigned Alignment = MFI->getObjectAlignment(FrameIndex); | 
|  | // If the function stack isn't realigned we don't want to fold instructions | 
|  | // that need increased alignment. | 
|  | if (!RI.needsStackRealignment(MF)) | 
|  | Alignment = | 
|  | std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment()); | 
|  | if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { | 
|  | unsigned NewOpc = 0; | 
|  | unsigned RCSize = 0; | 
|  | switch (MI->getOpcode()) { | 
|  | default: return nullptr; | 
|  | case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break; | 
|  | case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; | 
|  | case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; | 
|  | case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; | 
|  | } | 
|  | // Check if it's safe to fold the load. If the size of the object is | 
|  | // narrower than the load width, then it's not. | 
|  | if (Size < RCSize) | 
|  | return nullptr; | 
|  | // Change to CMPXXri r, 0 first. | 
|  | MI->setDesc(get(NewOpc)); | 
|  | MI->getOperand(1).ChangeToImmediate(0); | 
|  | } else if (Ops.size() != 1) | 
|  | return nullptr; | 
|  |  | 
|  | return foldMemoryOperandImpl(MF, MI, Ops[0], | 
|  | MachineOperand::CreateFI(FrameIndex), InsertPt, | 
|  | Size, Alignment, /*AllowCommute=*/true); | 
|  | } | 
|  |  | 
|  | /// Check if \p LoadMI is a partial register load that we can't fold into \p MI | 
|  | /// because the latter uses contents that wouldn't be defined in the folded | 
|  | /// version.  For instance, this transformation isn't legal: | 
|  | ///   movss (%rdi), %xmm0 | 
|  | ///   addps %xmm0, %xmm0 | 
|  | /// -> | 
|  | ///   addps (%rdi), %xmm0 | 
|  | /// | 
|  | /// But this one is: | 
|  | ///   movss (%rdi), %xmm0 | 
|  | ///   addss %xmm0, %xmm0 | 
|  | /// -> | 
|  | ///   addss (%rdi), %xmm0 | 
|  | /// | 
|  | static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, | 
|  | const MachineInstr &UserMI, | 
|  | const MachineFunction &MF) { | 
|  | unsigned Opc = LoadMI.getOpcode(); | 
|  | unsigned UserOpc = UserMI.getOpcode(); | 
|  | unsigned RegSize = | 
|  | MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize(); | 
|  |  | 
|  | if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm) && RegSize > 4) { | 
|  | // These instructions only load 32 bits, we can't fold them if the | 
|  | // destination register is wider than 32 bits (4 bytes), and its user | 
|  | // instruction isn't scalar (SS). | 
|  | switch (UserOpc) { | 
|  | case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: | 
|  | case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: | 
|  | case X86::MULSSrr_Int: case X86::VMULSSrr_Int: | 
|  | case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: | 
|  | case X86::VFMADDSSr132r_Int: case X86::VFNMADDSSr132r_Int: | 
|  | case X86::VFMADDSSr213r_Int: case X86::VFNMADDSSr213r_Int: | 
|  | case X86::VFMADDSSr231r_Int: case X86::VFNMADDSSr231r_Int: | 
|  | case X86::VFMSUBSSr132r_Int: case X86::VFNMSUBSSr132r_Int: | 
|  | case X86::VFMSUBSSr213r_Int: case X86::VFNMSUBSSr213r_Int: | 
|  | case X86::VFMSUBSSr231r_Int: case X86::VFNMSUBSSr231r_Int: | 
|  | return false; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm) && RegSize > 8) { | 
|  | // These instructions only load 64 bits, we can't fold them if the | 
|  | // destination register is wider than 64 bits (8 bytes), and its user | 
|  | // instruction isn't scalar (SD). | 
|  | switch (UserOpc) { | 
|  | case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: | 
|  | case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: | 
|  | case X86::MULSDrr_Int: case X86::VMULSDrr_Int: | 
|  | case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: | 
|  | case X86::VFMADDSDr132r_Int: case X86::VFNMADDSDr132r_Int: | 
|  | case X86::VFMADDSDr213r_Int: case X86::VFNMADDSDr213r_Int: | 
|  | case X86::VFMADDSDr231r_Int: case X86::VFNMADDSDr231r_Int: | 
|  | case X86::VFMSUBSDr132r_Int: case X86::VFNMSUBSDr132r_Int: | 
|  | case X86::VFMSUBSDr213r_Int: case X86::VFNMSUBSDr213r_Int: | 
|  | case X86::VFMSUBSDr231r_Int: case X86::VFNMSUBSDr231r_Int: | 
|  | return false; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineInstr *X86InstrInfo::foldMemoryOperandImpl( | 
|  | MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops, | 
|  | MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const { | 
|  | // If loading from a FrameIndex, fold directly from the FrameIndex. | 
|  | unsigned NumOps = LoadMI->getDesc().getNumOperands(); | 
|  | int FrameIndex; | 
|  | if (isLoadFromStackSlot(LoadMI, FrameIndex)) { | 
|  | if (isNonFoldablePartialRegisterLoad(*LoadMI, *MI, MF)) | 
|  | return nullptr; | 
|  | return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex); | 
|  | } | 
|  |  | 
|  | // Check switch flag | 
|  | if (NoFusing) return nullptr; | 
|  |  | 
|  | // Avoid partial register update stalls unless optimizing for size. | 
|  | if (!MF.getFunction()->optForSize() && hasPartialRegUpdate(MI->getOpcode())) | 
|  | return nullptr; | 
|  |  | 
|  | // Determine the alignment of the load. | 
|  | unsigned Alignment = 0; | 
|  | if (LoadMI->hasOneMemOperand()) | 
|  | Alignment = (*LoadMI->memoperands_begin())->getAlignment(); | 
|  | else | 
|  | switch (LoadMI->getOpcode()) { | 
|  | case X86::AVX2_SETALLONES: | 
|  | case X86::AVX_SET0: | 
|  | Alignment = 32; | 
|  | break; | 
|  | case X86::V_SET0: | 
|  | case X86::V_SETALLONES: | 
|  | Alignment = 16; | 
|  | break; | 
|  | case X86::FsFLD0SD: | 
|  | Alignment = 8; | 
|  | break; | 
|  | case X86::FsFLD0SS: | 
|  | Alignment = 4; | 
|  | break; | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { | 
|  | unsigned NewOpc = 0; | 
|  | switch (MI->getOpcode()) { | 
|  | default: return nullptr; | 
|  | case X86::TEST8rr:  NewOpc = X86::CMP8ri; break; | 
|  | case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; | 
|  | case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; | 
|  | case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; | 
|  | } | 
|  | // Change to CMPXXri r, 0 first. | 
|  | MI->setDesc(get(NewOpc)); | 
|  | MI->getOperand(1).ChangeToImmediate(0); | 
|  | } else if (Ops.size() != 1) | 
|  | return nullptr; | 
|  |  | 
|  | // Make sure the subregisters match. | 
|  | // Otherwise we risk changing the size of the load. | 
|  | if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg()) | 
|  | return nullptr; | 
|  |  | 
|  | SmallVector<MachineOperand,X86::AddrNumOperands> MOs; | 
|  | switch (LoadMI->getOpcode()) { | 
|  | case X86::V_SET0: | 
|  | case X86::V_SETALLONES: | 
|  | case X86::AVX2_SETALLONES: | 
|  | case X86::AVX_SET0: | 
|  | case X86::FsFLD0SD: | 
|  | case X86::FsFLD0SS: { | 
|  | // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. | 
|  | // Create a constant-pool entry and operands to load from it. | 
|  |  | 
|  | // Medium and large mode can't fold loads this way. | 
|  | if (MF.getTarget().getCodeModel() != CodeModel::Small && | 
|  | MF.getTarget().getCodeModel() != CodeModel::Kernel) | 
|  | return nullptr; | 
|  |  | 
|  | // x86-32 PIC requires a PIC base register for constant pools. | 
|  | unsigned PICBase = 0; | 
|  | if (MF.getTarget().getRelocationModel() == Reloc::PIC_) { | 
|  | if (Subtarget.is64Bit()) | 
|  | PICBase = X86::RIP; | 
|  | else | 
|  | // FIXME: PICBase = getGlobalBaseReg(&MF); | 
|  | // This doesn't work for several reasons. | 
|  | // 1. GlobalBaseReg may have been spilled. | 
|  | // 2. It may not be live at MI. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Create a constant-pool entry. | 
|  | MachineConstantPool &MCP = *MF.getConstantPool(); | 
|  | Type *Ty; | 
|  | unsigned Opc = LoadMI->getOpcode(); | 
|  | if (Opc == X86::FsFLD0SS) | 
|  | Ty = Type::getFloatTy(MF.getFunction()->getContext()); | 
|  | else if (Opc == X86::FsFLD0SD) | 
|  | Ty = Type::getDoubleTy(MF.getFunction()->getContext()); | 
|  | else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0) | 
|  | Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8); | 
|  | else | 
|  | Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4); | 
|  |  | 
|  | bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES); | 
|  | const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : | 
|  | Constant::getNullValue(Ty); | 
|  | unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); | 
|  |  | 
|  | // Create operands to load from the constant pool entry. | 
|  | MOs.push_back(MachineOperand::CreateReg(PICBase, false)); | 
|  | MOs.push_back(MachineOperand::CreateImm(1)); | 
|  | MOs.push_back(MachineOperand::CreateReg(0, false)); | 
|  | MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); | 
|  | MOs.push_back(MachineOperand::CreateReg(0, false)); | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | if (isNonFoldablePartialRegisterLoad(*LoadMI, *MI, MF)) | 
|  | return nullptr; | 
|  |  | 
|  | // Folding a normal load. Just copy the load's address operands. | 
|  | MOs.append(LoadMI->operands_begin() + NumOps - X86::AddrNumOperands, | 
|  | LoadMI->operands_begin() + NumOps); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt, | 
|  | /*Size=*/0, Alignment, /*AllowCommute=*/true); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, | 
|  | unsigned Reg, bool UnfoldLoad, bool UnfoldStore, | 
|  | SmallVectorImpl<MachineInstr*> &NewMIs) const { | 
|  | DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = | 
|  | MemOp2RegOpTable.find(MI->getOpcode()); | 
|  | if (I == MemOp2RegOpTable.end()) | 
|  | return false; | 
|  | unsigned Opc = I->second.first; | 
|  | unsigned Index = I->second.second & TB_INDEX_MASK; | 
|  | bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; | 
|  | bool FoldedStore = I->second.second & TB_FOLDED_STORE; | 
|  | if (UnfoldLoad && !FoldedLoad) | 
|  | return false; | 
|  | UnfoldLoad &= FoldedLoad; | 
|  | if (UnfoldStore && !FoldedStore) | 
|  | return false; | 
|  | UnfoldStore &= FoldedStore; | 
|  |  | 
|  | const MCInstrDesc &MCID = get(Opc); | 
|  | const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); | 
|  | // TODO: Check if 32-byte or greater accesses are slow too? | 
|  | if (!MI->hasOneMemOperand() && | 
|  | RC == &X86::VR128RegClass && | 
|  | Subtarget.isUnalignedMem16Slow()) | 
|  | // Without memoperands, loadRegFromAddr and storeRegToStackSlot will | 
|  | // conservatively assume the address is unaligned. That's bad for | 
|  | // performance. | 
|  | return false; | 
|  | SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; | 
|  | SmallVector<MachineOperand,2> BeforeOps; | 
|  | SmallVector<MachineOperand,2> AfterOps; | 
|  | SmallVector<MachineOperand,4> ImpOps; | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &Op = MI->getOperand(i); | 
|  | if (i >= Index && i < Index + X86::AddrNumOperands) | 
|  | AddrOps.push_back(Op); | 
|  | else if (Op.isReg() && Op.isImplicit()) | 
|  | ImpOps.push_back(Op); | 
|  | else if (i < Index) | 
|  | BeforeOps.push_back(Op); | 
|  | else if (i > Index) | 
|  | AfterOps.push_back(Op); | 
|  | } | 
|  |  | 
|  | // Emit the load instruction. | 
|  | if (UnfoldLoad) { | 
|  | std::pair<MachineInstr::mmo_iterator, | 
|  | MachineInstr::mmo_iterator> MMOs = | 
|  | MF.extractLoadMemRefs(MI->memoperands_begin(), | 
|  | MI->memoperands_end()); | 
|  | loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs); | 
|  | if (UnfoldStore) { | 
|  | // Address operands cannot be marked isKill. | 
|  | for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { | 
|  | MachineOperand &MO = NewMIs[0]->getOperand(i); | 
|  | if (MO.isReg()) | 
|  | MO.setIsKill(false); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit the data processing instruction. | 
|  | MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true); | 
|  | MachineInstrBuilder MIB(MF, DataMI); | 
|  |  | 
|  | if (FoldedStore) | 
|  | MIB.addReg(Reg, RegState::Define); | 
|  | for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i) | 
|  | MIB.addOperand(BeforeOps[i]); | 
|  | if (FoldedLoad) | 
|  | MIB.addReg(Reg); | 
|  | for (unsigned i = 0, e = AfterOps.size(); i != e; ++i) | 
|  | MIB.addOperand(AfterOps[i]); | 
|  | for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) { | 
|  | MachineOperand &MO = ImpOps[i]; | 
|  | MIB.addReg(MO.getReg(), | 
|  | getDefRegState(MO.isDef()) | | 
|  | RegState::Implicit | | 
|  | getKillRegState(MO.isKill()) | | 
|  | getDeadRegState(MO.isDead()) | | 
|  | getUndefRegState(MO.isUndef())); | 
|  | } | 
|  | // Change CMP32ri r, 0 back to TEST32rr r, r, etc. | 
|  | switch (DataMI->getOpcode()) { | 
|  | default: break; | 
|  | case X86::CMP64ri32: | 
|  | case X86::CMP64ri8: | 
|  | case X86::CMP32ri: | 
|  | case X86::CMP32ri8: | 
|  | case X86::CMP16ri: | 
|  | case X86::CMP16ri8: | 
|  | case X86::CMP8ri: { | 
|  | MachineOperand &MO0 = DataMI->getOperand(0); | 
|  | MachineOperand &MO1 = DataMI->getOperand(1); | 
|  | if (MO1.getImm() == 0) { | 
|  | unsigned NewOpc; | 
|  | switch (DataMI->getOpcode()) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::CMP64ri8: | 
|  | case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; | 
|  | case X86::CMP32ri8: | 
|  | case X86::CMP32ri:   NewOpc = X86::TEST32rr; break; | 
|  | case X86::CMP16ri8: | 
|  | case X86::CMP16ri:   NewOpc = X86::TEST16rr; break; | 
|  | case X86::CMP8ri:    NewOpc = X86::TEST8rr; break; | 
|  | } | 
|  | DataMI->setDesc(get(NewOpc)); | 
|  | MO1.ChangeToRegister(MO0.getReg(), false); | 
|  | } | 
|  | } | 
|  | } | 
|  | NewMIs.push_back(DataMI); | 
|  |  | 
|  | // Emit the store instruction. | 
|  | if (UnfoldStore) { | 
|  | const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF); | 
|  | std::pair<MachineInstr::mmo_iterator, | 
|  | MachineInstr::mmo_iterator> MMOs = | 
|  | MF.extractStoreMemRefs(MI->memoperands_begin(), | 
|  | MI->memoperands_end()); | 
|  | storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, | 
|  | SmallVectorImpl<SDNode*> &NewNodes) const { | 
|  | if (!N->isMachineOpcode()) | 
|  | return false; | 
|  |  | 
|  | DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = | 
|  | MemOp2RegOpTable.find(N->getMachineOpcode()); | 
|  | if (I == MemOp2RegOpTable.end()) | 
|  | return false; | 
|  | unsigned Opc = I->second.first; | 
|  | unsigned Index = I->second.second & TB_INDEX_MASK; | 
|  | bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; | 
|  | bool FoldedStore = I->second.second & TB_FOLDED_STORE; | 
|  | const MCInstrDesc &MCID = get(Opc); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); | 
|  | unsigned NumDefs = MCID.NumDefs; | 
|  | std::vector<SDValue> AddrOps; | 
|  | std::vector<SDValue> BeforeOps; | 
|  | std::vector<SDValue> AfterOps; | 
|  | SDLoc dl(N); | 
|  | unsigned NumOps = N->getNumOperands(); | 
|  | for (unsigned i = 0; i != NumOps-1; ++i) { | 
|  | SDValue Op = N->getOperand(i); | 
|  | if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) | 
|  | AddrOps.push_back(Op); | 
|  | else if (i < Index-NumDefs) | 
|  | BeforeOps.push_back(Op); | 
|  | else if (i > Index-NumDefs) | 
|  | AfterOps.push_back(Op); | 
|  | } | 
|  | SDValue Chain = N->getOperand(NumOps-1); | 
|  | AddrOps.push_back(Chain); | 
|  |  | 
|  | // Emit the load instruction. | 
|  | SDNode *Load = nullptr; | 
|  | if (FoldedLoad) { | 
|  | EVT VT = *RC->vt_begin(); | 
|  | std::pair<MachineInstr::mmo_iterator, | 
|  | MachineInstr::mmo_iterator> MMOs = | 
|  | MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), | 
|  | cast<MachineSDNode>(N)->memoperands_end()); | 
|  | if (!(*MMOs.first) && | 
|  | RC == &X86::VR128RegClass && | 
|  | Subtarget.isUnalignedMem16Slow()) | 
|  | // Do not introduce a slow unaligned load. | 
|  | return false; | 
|  | // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte | 
|  | // memory access is slow above. | 
|  | unsigned Alignment = RC->getSize() == 32 ? 32 : 16; | 
|  | bool isAligned = (*MMOs.first) && | 
|  | (*MMOs.first)->getAlignment() >= Alignment; | 
|  | Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl, | 
|  | VT, MVT::Other, AddrOps); | 
|  | NewNodes.push_back(Load); | 
|  |  | 
|  | // Preserve memory reference information. | 
|  | cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); | 
|  | } | 
|  |  | 
|  | // Emit the data processing instruction. | 
|  | std::vector<EVT> VTs; | 
|  | const TargetRegisterClass *DstRC = nullptr; | 
|  | if (MCID.getNumDefs() > 0) { | 
|  | DstRC = getRegClass(MCID, 0, &RI, MF); | 
|  | VTs.push_back(*DstRC->vt_begin()); | 
|  | } | 
|  | for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { | 
|  | EVT VT = N->getValueType(i); | 
|  | if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) | 
|  | VTs.push_back(VT); | 
|  | } | 
|  | if (Load) | 
|  | BeforeOps.push_back(SDValue(Load, 0)); | 
|  | BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end()); | 
|  | SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps); | 
|  | NewNodes.push_back(NewNode); | 
|  |  | 
|  | // Emit the store instruction. | 
|  | if (FoldedStore) { | 
|  | AddrOps.pop_back(); | 
|  | AddrOps.push_back(SDValue(NewNode, 0)); | 
|  | AddrOps.push_back(Chain); | 
|  | std::pair<MachineInstr::mmo_iterator, | 
|  | MachineInstr::mmo_iterator> MMOs = | 
|  | MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), | 
|  | cast<MachineSDNode>(N)->memoperands_end()); | 
|  | if (!(*MMOs.first) && | 
|  | RC == &X86::VR128RegClass && | 
|  | Subtarget.isUnalignedMem16Slow()) | 
|  | // Do not introduce a slow unaligned store. | 
|  | return false; | 
|  | // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte | 
|  | // memory access is slow above. | 
|  | unsigned Alignment = RC->getSize() == 32 ? 32 : 16; | 
|  | bool isAligned = (*MMOs.first) && | 
|  | (*MMOs.first)->getAlignment() >= Alignment; | 
|  | SDNode *Store = | 
|  | DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget), | 
|  | dl, MVT::Other, AddrOps); | 
|  | NewNodes.push_back(Store); | 
|  |  | 
|  | // Preserve memory reference information. | 
|  | cast<MachineSDNode>(Store)->setMemRefs(MMOs.first, MMOs.second); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, | 
|  | bool UnfoldLoad, bool UnfoldStore, | 
|  | unsigned *LoadRegIndex) const { | 
|  | DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = | 
|  | MemOp2RegOpTable.find(Opc); | 
|  | if (I == MemOp2RegOpTable.end()) | 
|  | return 0; | 
|  | bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; | 
|  | bool FoldedStore = I->second.second & TB_FOLDED_STORE; | 
|  | if (UnfoldLoad && !FoldedLoad) | 
|  | return 0; | 
|  | if (UnfoldStore && !FoldedStore) | 
|  | return 0; | 
|  | if (LoadRegIndex) | 
|  | *LoadRegIndex = I->second.second & TB_INDEX_MASK; | 
|  | return I->second.first; | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, | 
|  | int64_t &Offset1, int64_t &Offset2) const { | 
|  | if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) | 
|  | return false; | 
|  | unsigned Opc1 = Load1->getMachineOpcode(); | 
|  | unsigned Opc2 = Load2->getMachineOpcode(); | 
|  | switch (Opc1) { | 
|  | default: return false; | 
|  | case X86::MOV8rm: | 
|  | case X86::MOV16rm: | 
|  | case X86::MOV32rm: | 
|  | case X86::MOV64rm: | 
|  | case X86::LD_Fp32m: | 
|  | case X86::LD_Fp64m: | 
|  | case X86::LD_Fp80m: | 
|  | case X86::MOVSSrm: | 
|  | case X86::MOVSDrm: | 
|  | case X86::MMX_MOVD64rm: | 
|  | case X86::MMX_MOVQ64rm: | 
|  | case X86::FsMOVAPSrm: | 
|  | case X86::FsMOVAPDrm: | 
|  | case X86::MOVAPSrm: | 
|  | case X86::MOVUPSrm: | 
|  | case X86::MOVAPDrm: | 
|  | case X86::MOVDQArm: | 
|  | case X86::MOVDQUrm: | 
|  | // AVX load instructions | 
|  | case X86::VMOVSSrm: | 
|  | case X86::VMOVSDrm: | 
|  | case X86::FsVMOVAPSrm: | 
|  | case X86::FsVMOVAPDrm: | 
|  | case X86::VMOVAPSrm: | 
|  | case X86::VMOVUPSrm: | 
|  | case X86::VMOVAPDrm: | 
|  | case X86::VMOVDQArm: | 
|  | case X86::VMOVDQUrm: | 
|  | case X86::VMOVAPSYrm: | 
|  | case X86::VMOVUPSYrm: | 
|  | case X86::VMOVAPDYrm: | 
|  | case X86::VMOVDQAYrm: | 
|  | case X86::VMOVDQUYrm: | 
|  | break; | 
|  | } | 
|  | switch (Opc2) { | 
|  | default: return false; | 
|  | case X86::MOV8rm: | 
|  | case X86::MOV16rm: | 
|  | case X86::MOV32rm: | 
|  | case X86::MOV64rm: | 
|  | case X86::LD_Fp32m: | 
|  | case X86::LD_Fp64m: | 
|  | case X86::LD_Fp80m: | 
|  | case X86::MOVSSrm: | 
|  | case X86::MOVSDrm: | 
|  | case X86::MMX_MOVD64rm: | 
|  | case X86::MMX_MOVQ64rm: | 
|  | case X86::FsMOVAPSrm: | 
|  | case X86::FsMOVAPDrm: | 
|  | case X86::MOVAPSrm: | 
|  | case X86::MOVUPSrm: | 
|  | case X86::MOVAPDrm: | 
|  | case X86::MOVDQArm: | 
|  | case X86::MOVDQUrm: | 
|  | // AVX load instructions | 
|  | case X86::VMOVSSrm: | 
|  | case X86::VMOVSDrm: | 
|  | case X86::FsVMOVAPSrm: | 
|  | case X86::FsVMOVAPDrm: | 
|  | case X86::VMOVAPSrm: | 
|  | case X86::VMOVUPSrm: | 
|  | case X86::VMOVAPDrm: | 
|  | case X86::VMOVDQArm: | 
|  | case X86::VMOVDQUrm: | 
|  | case X86::VMOVAPSYrm: | 
|  | case X86::VMOVUPSYrm: | 
|  | case X86::VMOVAPDYrm: | 
|  | case X86::VMOVDQAYrm: | 
|  | case X86::VMOVDQUYrm: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check if chain operands and base addresses match. | 
|  | if (Load1->getOperand(0) != Load2->getOperand(0) || | 
|  | Load1->getOperand(5) != Load2->getOperand(5)) | 
|  | return false; | 
|  | // Segment operands should match as well. | 
|  | if (Load1->getOperand(4) != Load2->getOperand(4)) | 
|  | return false; | 
|  | // Scale should be 1, Index should be Reg0. | 
|  | if (Load1->getOperand(1) == Load2->getOperand(1) && | 
|  | Load1->getOperand(2) == Load2->getOperand(2)) { | 
|  | if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1) | 
|  | return false; | 
|  |  | 
|  | // Now let's examine the displacements. | 
|  | if (isa<ConstantSDNode>(Load1->getOperand(3)) && | 
|  | isa<ConstantSDNode>(Load2->getOperand(3))) { | 
|  | Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue(); | 
|  | Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, | 
|  | int64_t Offset1, int64_t Offset2, | 
|  | unsigned NumLoads) const { | 
|  | assert(Offset2 > Offset1); | 
|  | if ((Offset2 - Offset1) / 8 > 64) | 
|  | return false; | 
|  |  | 
|  | unsigned Opc1 = Load1->getMachineOpcode(); | 
|  | unsigned Opc2 = Load2->getMachineOpcode(); | 
|  | if (Opc1 != Opc2) | 
|  | return false;  // FIXME: overly conservative? | 
|  |  | 
|  | switch (Opc1) { | 
|  | default: break; | 
|  | case X86::LD_Fp32m: | 
|  | case X86::LD_Fp64m: | 
|  | case X86::LD_Fp80m: | 
|  | case X86::MMX_MOVD64rm: | 
|  | case X86::MMX_MOVQ64rm: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | EVT VT = Load1->getValueType(0); | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: | 
|  | // XMM registers. In 64-bit mode we can be a bit more aggressive since we | 
|  | // have 16 of them to play with. | 
|  | if (Subtarget.is64Bit()) { | 
|  | if (NumLoads >= 3) | 
|  | return false; | 
|  | } else if (NumLoads) { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | case MVT::i64: | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | if (NumLoads) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First, | 
|  | MachineInstr *Second) const { | 
|  | // Check if this processor supports macro-fusion. Since this is a minor | 
|  | // heuristic, we haven't specifically reserved a feature. hasAVX is a decent | 
|  | // proxy for SandyBridge+. | 
|  | if (!Subtarget.hasAVX()) | 
|  | return false; | 
|  |  | 
|  | enum { | 
|  | FuseTest, | 
|  | FuseCmp, | 
|  | FuseInc | 
|  | } FuseKind; | 
|  |  | 
|  | switch(Second->getOpcode()) { | 
|  | default: | 
|  | return false; | 
|  | case X86::JE_1: | 
|  | case X86::JNE_1: | 
|  | case X86::JL_1: | 
|  | case X86::JLE_1: | 
|  | case X86::JG_1: | 
|  | case X86::JGE_1: | 
|  | FuseKind = FuseInc; | 
|  | break; | 
|  | case X86::JB_1: | 
|  | case X86::JBE_1: | 
|  | case X86::JA_1: | 
|  | case X86::JAE_1: | 
|  | FuseKind = FuseCmp; | 
|  | break; | 
|  | case X86::JS_1: | 
|  | case X86::JNS_1: | 
|  | case X86::JP_1: | 
|  | case X86::JNP_1: | 
|  | case X86::JO_1: | 
|  | case X86::JNO_1: | 
|  | FuseKind = FuseTest; | 
|  | break; | 
|  | } | 
|  | switch (First->getOpcode()) { | 
|  | default: | 
|  | return false; | 
|  | case X86::TEST8rr: | 
|  | case X86::TEST16rr: | 
|  | case X86::TEST32rr: | 
|  | case X86::TEST64rr: | 
|  | case X86::TEST8ri: | 
|  | case X86::TEST16ri: | 
|  | case X86::TEST32ri: | 
|  | case X86::TEST32i32: | 
|  | case X86::TEST64i32: | 
|  | case X86::TEST64ri32: | 
|  | case X86::TEST8rm: | 
|  | case X86::TEST16rm: | 
|  | case X86::TEST32rm: | 
|  | case X86::TEST64rm: | 
|  | case X86::TEST8ri_NOREX: | 
|  | case X86::AND16i16: | 
|  | case X86::AND16ri: | 
|  | case X86::AND16ri8: | 
|  | case X86::AND16rm: | 
|  | case X86::AND16rr: | 
|  | case X86::AND32i32: | 
|  | case X86::AND32ri: | 
|  | case X86::AND32ri8: | 
|  | case X86::AND32rm: | 
|  | case X86::AND32rr: | 
|  | case X86::AND64i32: | 
|  | case X86::AND64ri32: | 
|  | case X86::AND64ri8: | 
|  | case X86::AND64rm: | 
|  | case X86::AND64rr: | 
|  | case X86::AND8i8: | 
|  | case X86::AND8ri: | 
|  | case X86::AND8rm: | 
|  | case X86::AND8rr: | 
|  | return true; | 
|  | case X86::CMP16i16: | 
|  | case X86::CMP16ri: | 
|  | case X86::CMP16ri8: | 
|  | case X86::CMP16rm: | 
|  | case X86::CMP16rr: | 
|  | case X86::CMP32i32: | 
|  | case X86::CMP32ri: | 
|  | case X86::CMP32ri8: | 
|  | case X86::CMP32rm: | 
|  | case X86::CMP32rr: | 
|  | case X86::CMP64i32: | 
|  | case X86::CMP64ri32: | 
|  | case X86::CMP64ri8: | 
|  | case X86::CMP64rm: | 
|  | case X86::CMP64rr: | 
|  | case X86::CMP8i8: | 
|  | case X86::CMP8ri: | 
|  | case X86::CMP8rm: | 
|  | case X86::CMP8rr: | 
|  | case X86::ADD16i16: | 
|  | case X86::ADD16ri: | 
|  | case X86::ADD16ri8: | 
|  | case X86::ADD16ri8_DB: | 
|  | case X86::ADD16ri_DB: | 
|  | case X86::ADD16rm: | 
|  | case X86::ADD16rr: | 
|  | case X86::ADD16rr_DB: | 
|  | case X86::ADD32i32: | 
|  | case X86::ADD32ri: | 
|  | case X86::ADD32ri8: | 
|  | case X86::ADD32ri8_DB: | 
|  | case X86::ADD32ri_DB: | 
|  | case X86::ADD32rm: | 
|  | case X86::ADD32rr: | 
|  | case X86::ADD32rr_DB: | 
|  | case X86::ADD64i32: | 
|  | case X86::ADD64ri32: | 
|  | case X86::ADD64ri32_DB: | 
|  | case X86::ADD64ri8: | 
|  | case X86::ADD64ri8_DB: | 
|  | case X86::ADD64rm: | 
|  | case X86::ADD64rr: | 
|  | case X86::ADD64rr_DB: | 
|  | case X86::ADD8i8: | 
|  | case X86::ADD8mi: | 
|  | case X86::ADD8mr: | 
|  | case X86::ADD8ri: | 
|  | case X86::ADD8rm: | 
|  | case X86::ADD8rr: | 
|  | case X86::SUB16i16: | 
|  | case X86::SUB16ri: | 
|  | case X86::SUB16ri8: | 
|  | case X86::SUB16rm: | 
|  | case X86::SUB16rr: | 
|  | case X86::SUB32i32: | 
|  | case X86::SUB32ri: | 
|  | case X86::SUB32ri8: | 
|  | case X86::SUB32rm: | 
|  | case X86::SUB32rr: | 
|  | case X86::SUB64i32: | 
|  | case X86::SUB64ri32: | 
|  | case X86::SUB64ri8: | 
|  | case X86::SUB64rm: | 
|  | case X86::SUB64rr: | 
|  | case X86::SUB8i8: | 
|  | case X86::SUB8ri: | 
|  | case X86::SUB8rm: | 
|  | case X86::SUB8rr: | 
|  | return FuseKind == FuseCmp || FuseKind == FuseInc; | 
|  | case X86::INC16r: | 
|  | case X86::INC32r: | 
|  | case X86::INC64r: | 
|  | case X86::INC8r: | 
|  | case X86::DEC16r: | 
|  | case X86::DEC32r: | 
|  | case X86::DEC64r: | 
|  | case X86::DEC8r: | 
|  | return FuseKind == FuseInc; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo:: | 
|  | ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { | 
|  | assert(Cond.size() == 1 && "Invalid X86 branch condition!"); | 
|  | X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); | 
|  | if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E) | 
|  | return true; | 
|  | Cond[0].setImm(GetOppositeBranchCondition(CC)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo:: | 
|  | isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { | 
|  | // FIXME: Return false for x87 stack register classes for now. We can't | 
|  | // allow any loads of these registers before FpGet_ST0_80. | 
|  | return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass || | 
|  | RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass); | 
|  | } | 
|  |  | 
|  | /// Return a virtual register initialized with the | 
|  | /// the global base register value. Output instructions required to | 
|  | /// initialize the register in the function entry block, if necessary. | 
|  | /// | 
|  | /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. | 
|  | /// | 
|  | unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { | 
|  | assert(!Subtarget.is64Bit() && | 
|  | "X86-64 PIC uses RIP relative addressing"); | 
|  |  | 
|  | X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); | 
|  | unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); | 
|  | if (GlobalBaseReg != 0) | 
|  | return GlobalBaseReg; | 
|  |  | 
|  | // Create the register. The code to initialize it is inserted | 
|  | // later, by the CGBR pass (below). | 
|  | MachineRegisterInfo &RegInfo = MF->getRegInfo(); | 
|  | GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); | 
|  | X86FI->setGlobalBaseReg(GlobalBaseReg); | 
|  | return GlobalBaseReg; | 
|  | } | 
|  |  | 
|  | // These are the replaceable SSE instructions. Some of these have Int variants | 
|  | // that we don't include here. We don't want to replace instructions selected | 
|  | // by intrinsics. | 
|  | static const uint16_t ReplaceableInstrs[][3] = { | 
|  | //PackedSingle     PackedDouble    PackedInt | 
|  | { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  }, | 
|  | { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  }, | 
|  | { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  }, | 
|  | { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  }, | 
|  | { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  }, | 
|  | { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr  }, | 
|  | { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr }, | 
|  | { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   }, | 
|  | { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   }, | 
|  | { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    }, | 
|  | { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    }, | 
|  | { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     }, | 
|  | { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     }, | 
|  | { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    }, | 
|  | { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    }, | 
|  | // AVX 128-bit support | 
|  | { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  }, | 
|  | { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  }, | 
|  | { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  }, | 
|  | { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  }, | 
|  | { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  }, | 
|  | { X86::VMOVLPSmr,  X86::VMOVLPDmr,  X86::VMOVPQI2QImr  }, | 
|  | { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, | 
|  | { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   }, | 
|  | { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   }, | 
|  | { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    }, | 
|  | { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    }, | 
|  | { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     }, | 
|  | { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     }, | 
|  | { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    }, | 
|  | { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    }, | 
|  | // AVX 256-bit support | 
|  | { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  }, | 
|  | { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  }, | 
|  | { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  }, | 
|  | { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  }, | 
|  | { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  }, | 
|  | { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr } | 
|  | }; | 
|  |  | 
|  | static const uint16_t ReplaceableInstrsAVX2[][3] = { | 
|  | //PackedSingle       PackedDouble       PackedInt | 
|  | { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   }, | 
|  | { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   }, | 
|  | { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    }, | 
|  | { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    }, | 
|  | { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     }, | 
|  | { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     }, | 
|  | { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    }, | 
|  | { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    }, | 
|  | { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr }, | 
|  | { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr }, | 
|  | { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm }, | 
|  | { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr }, | 
|  | { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm }, | 
|  | { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr }, | 
|  | { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm}, | 
|  | { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr}, | 
|  | { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr}, | 
|  | { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm}, | 
|  | { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr}, | 
|  | { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm} | 
|  | }; | 
|  |  | 
|  | // FIXME: Some shuffle and unpack instructions have equivalents in different | 
|  | // domains, but they require a bit more work than just switching opcodes. | 
|  |  | 
|  | static const uint16_t *lookup(unsigned opcode, unsigned domain) { | 
|  | for (const uint16_t (&Row)[3] : ReplaceableInstrs) | 
|  | if (Row[domain-1] == opcode) | 
|  | return Row; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) { | 
|  | for (const uint16_t (&Row)[3] : ReplaceableInstrsAVX2) | 
|  | if (Row[domain-1] == opcode) | 
|  | return Row; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | std::pair<uint16_t, uint16_t> | 
|  | X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const { | 
|  | uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; | 
|  | bool hasAVX2 = Subtarget.hasAVX2(); | 
|  | uint16_t validDomains = 0; | 
|  | if (domain && lookup(MI->getOpcode(), domain)) | 
|  | validDomains = 0xe; | 
|  | else if (domain && lookupAVX2(MI->getOpcode(), domain)) | 
|  | validDomains = hasAVX2 ? 0xe : 0x6; | 
|  | return std::make_pair(domain, validDomains); | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const { | 
|  | assert(Domain>0 && Domain<4 && "Invalid execution domain"); | 
|  | uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; | 
|  | assert(dom && "Not an SSE instruction"); | 
|  | const uint16_t *table = lookup(MI->getOpcode(), dom); | 
|  | if (!table) { // try the other table | 
|  | assert((Subtarget.hasAVX2() || Domain < 3) && | 
|  | "256-bit vector operations only available in AVX2"); | 
|  | table = lookupAVX2(MI->getOpcode(), dom); | 
|  | } | 
|  | assert(table && "Cannot change domain"); | 
|  | MI->setDesc(get(table[Domain-1])); | 
|  | } | 
|  |  | 
|  | /// Return the noop instruction to use for a noop. | 
|  | void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { | 
|  | NopInst.setOpcode(X86::NOOP); | 
|  | } | 
|  |  | 
|  | // This code must remain in sync with getJumpInstrTableEntryBound in this class! | 
|  | // In particular, getJumpInstrTableEntryBound must always return an upper bound | 
|  | // on the encoding lengths of the instructions generated by | 
|  | // getUnconditionalBranch and getTrap. | 
|  | void X86InstrInfo::getUnconditionalBranch( | 
|  | MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const { | 
|  | Branch.setOpcode(X86::JMP_1); | 
|  | Branch.addOperand(MCOperand::createExpr(BranchTarget)); | 
|  | } | 
|  |  | 
|  | // This code must remain in sync with getJumpInstrTableEntryBound in this class! | 
|  | // In particular, getJumpInstrTableEntryBound must always return an upper bound | 
|  | // on the encoding lengths of the instructions generated by | 
|  | // getUnconditionalBranch and getTrap. | 
|  | void X86InstrInfo::getTrap(MCInst &MI) const { | 
|  | MI.setOpcode(X86::TRAP); | 
|  | } | 
|  |  | 
|  | // See getTrap and getUnconditionalBranch for conditions on the value returned | 
|  | // by this function. | 
|  | unsigned X86InstrInfo::getJumpInstrTableEntryBound() const { | 
|  | // 5 bytes suffice: JMP_4 Symbol@PLT is uses 1 byte (E9) for the JMP_4 and 4 | 
|  | // bytes for the symbol offset. And TRAP is ud2, which is two bytes (0F 0B). | 
|  | return 5; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isHighLatencyDef(int opc) const { | 
|  | switch (opc) { | 
|  | default: return false; | 
|  | case X86::DIVSDrm: | 
|  | case X86::DIVSDrm_Int: | 
|  | case X86::DIVSDrr: | 
|  | case X86::DIVSDrr_Int: | 
|  | case X86::DIVSSrm: | 
|  | case X86::DIVSSrm_Int: | 
|  | case X86::DIVSSrr: | 
|  | case X86::DIVSSrr_Int: | 
|  | case X86::SQRTPDm: | 
|  | case X86::SQRTPDr: | 
|  | case X86::SQRTPSm: | 
|  | case X86::SQRTPSr: | 
|  | case X86::SQRTSDm: | 
|  | case X86::SQRTSDm_Int: | 
|  | case X86::SQRTSDr: | 
|  | case X86::SQRTSDr_Int: | 
|  | case X86::SQRTSSm: | 
|  | case X86::SQRTSSm_Int: | 
|  | case X86::SQRTSSr: | 
|  | case X86::SQRTSSr_Int: | 
|  | // AVX instructions with high latency | 
|  | case X86::VDIVSDrm: | 
|  | case X86::VDIVSDrm_Int: | 
|  | case X86::VDIVSDrr: | 
|  | case X86::VDIVSDrr_Int: | 
|  | case X86::VDIVSSrm: | 
|  | case X86::VDIVSSrm_Int: | 
|  | case X86::VDIVSSrr: | 
|  | case X86::VDIVSSrr_Int: | 
|  | case X86::VSQRTPDm: | 
|  | case X86::VSQRTPDr: | 
|  | case X86::VSQRTPSm: | 
|  | case X86::VSQRTPSr: | 
|  | case X86::VSQRTSDm: | 
|  | case X86::VSQRTSDm_Int: | 
|  | case X86::VSQRTSDr: | 
|  | case X86::VSQRTSSm: | 
|  | case X86::VSQRTSSm_Int: | 
|  | case X86::VSQRTSSr: | 
|  | case X86::VSQRTPDZm: | 
|  | case X86::VSQRTPDZr: | 
|  | case X86::VSQRTPSZm: | 
|  | case X86::VSQRTPSZr: | 
|  | case X86::VSQRTSDZm: | 
|  | case X86::VSQRTSDZm_Int: | 
|  | case X86::VSQRTSDZr: | 
|  | case X86::VSQRTSSZm_Int: | 
|  | case X86::VSQRTSSZr: | 
|  | case X86::VSQRTSSZm: | 
|  | case X86::VDIVSDZrm: | 
|  | case X86::VDIVSDZrr: | 
|  | case X86::VDIVSSZrm: | 
|  | case X86::VDIVSSZrr: | 
|  |  | 
|  | case X86::VGATHERQPSZrm: | 
|  | case X86::VGATHERQPDZrm: | 
|  | case X86::VGATHERDPDZrm: | 
|  | case X86::VGATHERDPSZrm: | 
|  | case X86::VPGATHERQDZrm: | 
|  | case X86::VPGATHERQQZrm: | 
|  | case X86::VPGATHERDDZrm: | 
|  | case X86::VPGATHERDQZrm: | 
|  | case X86::VSCATTERQPDZmr: | 
|  | case X86::VSCATTERQPSZmr: | 
|  | case X86::VSCATTERDPDZmr: | 
|  | case X86::VSCATTERDPSZmr: | 
|  | case X86::VPSCATTERQDZmr: | 
|  | case X86::VPSCATTERQQZmr: | 
|  | case X86::VPSCATTERDDZmr: | 
|  | case X86::VPSCATTERDQZmr: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo:: | 
|  | hasHighOperandLatency(const TargetSchedModel &SchedModel, | 
|  | const MachineRegisterInfo *MRI, | 
|  | const MachineInstr *DefMI, unsigned DefIdx, | 
|  | const MachineInstr *UseMI, unsigned UseIdx) const { | 
|  | return isHighLatencyDef(DefMI->getOpcode()); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst, | 
|  | const MachineBasicBlock *MBB) const { | 
|  | assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) && | 
|  | "Reassociation needs binary operators"); | 
|  |  | 
|  | // Integer binary math/logic instructions have a third source operand: | 
|  | // the EFLAGS register. That operand must be both defined here and never | 
|  | // used; ie, it must be dead. If the EFLAGS operand is live, then we can | 
|  | // not change anything because rearranging the operands could affect other | 
|  | // instructions that depend on the exact status flags (zero, sign, etc.) | 
|  | // that are set by using these particular operands with this operation. | 
|  | if (Inst.getNumOperands() == 4) { | 
|  | assert(Inst.getOperand(3).isReg() && | 
|  | Inst.getOperand(3).getReg() == X86::EFLAGS && | 
|  | "Unexpected operand in reassociable instruction"); | 
|  | if (!Inst.getOperand(3).isDead()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return TargetInstrInfo::hasReassociableOperands(Inst, MBB); | 
|  | } | 
|  |  | 
|  | // TODO: There are many more machine instruction opcodes to match: | 
|  | //       1. Other data types (integer, vectors) | 
|  | //       2. Other math / logic operations (xor, or) | 
|  | //       3. Other forms of the same operation (intrinsics and other variants) | 
|  | bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { | 
|  | switch (Inst.getOpcode()) { | 
|  | case X86::AND8rr: | 
|  | case X86::AND16rr: | 
|  | case X86::AND32rr: | 
|  | case X86::AND64rr: | 
|  | case X86::OR8rr: | 
|  | case X86::OR16rr: | 
|  | case X86::OR32rr: | 
|  | case X86::OR64rr: | 
|  | case X86::XOR8rr: | 
|  | case X86::XOR16rr: | 
|  | case X86::XOR32rr: | 
|  | case X86::XOR64rr: | 
|  | case X86::IMUL16rr: | 
|  | case X86::IMUL32rr: | 
|  | case X86::IMUL64rr: | 
|  | case X86::PANDrr: | 
|  | case X86::PORrr: | 
|  | case X86::PXORrr: | 
|  | case X86::VPANDrr: | 
|  | case X86::VPANDYrr: | 
|  | case X86::VPORrr: | 
|  | case X86::VPORYrr: | 
|  | case X86::VPXORrr: | 
|  | case X86::VPXORYrr: | 
|  | // Normal min/max instructions are not commutative because of NaN and signed | 
|  | // zero semantics, but these are. Thus, there's no need to check for global | 
|  | // relaxed math; the instructions themselves have the properties we need. | 
|  | case X86::MAXCPDrr: | 
|  | case X86::MAXCPSrr: | 
|  | case X86::MAXCSDrr: | 
|  | case X86::MAXCSSrr: | 
|  | case X86::MINCPDrr: | 
|  | case X86::MINCPSrr: | 
|  | case X86::MINCSDrr: | 
|  | case X86::MINCSSrr: | 
|  | case X86::VMAXCPDrr: | 
|  | case X86::VMAXCPSrr: | 
|  | case X86::VMAXCPDYrr: | 
|  | case X86::VMAXCPSYrr: | 
|  | case X86::VMAXCSDrr: | 
|  | case X86::VMAXCSSrr: | 
|  | case X86::VMINCPDrr: | 
|  | case X86::VMINCPSrr: | 
|  | case X86::VMINCPDYrr: | 
|  | case X86::VMINCPSYrr: | 
|  | case X86::VMINCSDrr: | 
|  | case X86::VMINCSSrr: | 
|  | return true; | 
|  | case X86::ADDPDrr: | 
|  | case X86::ADDPSrr: | 
|  | case X86::ADDSDrr: | 
|  | case X86::ADDSSrr: | 
|  | case X86::MULPDrr: | 
|  | case X86::MULPSrr: | 
|  | case X86::MULSDrr: | 
|  | case X86::MULSSrr: | 
|  | case X86::VADDPDrr: | 
|  | case X86::VADDPSrr: | 
|  | case X86::VADDPDYrr: | 
|  | case X86::VADDPSYrr: | 
|  | case X86::VADDSDrr: | 
|  | case X86::VADDSSrr: | 
|  | case X86::VMULPDrr: | 
|  | case X86::VMULPSrr: | 
|  | case X86::VMULPDYrr: | 
|  | case X86::VMULPSYrr: | 
|  | case X86::VMULSDrr: | 
|  | case X86::VMULSSrr: | 
|  | return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// This is an architecture-specific helper function of reassociateOps. | 
|  | /// Set special operand attributes for new instructions after reassociation. | 
|  | void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, | 
|  | MachineInstr &OldMI2, | 
|  | MachineInstr &NewMI1, | 
|  | MachineInstr &NewMI2) const { | 
|  | // Integer instructions define an implicit EFLAGS source register operand as | 
|  | // the third source (fourth total) operand. | 
|  | if (OldMI1.getNumOperands() != 4 || OldMI2.getNumOperands() != 4) | 
|  | return; | 
|  |  | 
|  | assert(NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 && | 
|  | "Unexpected instruction type for reassociation"); | 
|  |  | 
|  | MachineOperand &OldOp1 = OldMI1.getOperand(3); | 
|  | MachineOperand &OldOp2 = OldMI2.getOperand(3); | 
|  | MachineOperand &NewOp1 = NewMI1.getOperand(3); | 
|  | MachineOperand &NewOp2 = NewMI2.getOperand(3); | 
|  |  | 
|  | assert(OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() && | 
|  | "Must have dead EFLAGS operand in reassociable instruction"); | 
|  | assert(OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() && | 
|  | "Must have dead EFLAGS operand in reassociable instruction"); | 
|  |  | 
|  | (void)OldOp1; | 
|  | (void)OldOp2; | 
|  |  | 
|  | assert(NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS && | 
|  | "Unexpected operand in reassociable instruction"); | 
|  | assert(NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS && | 
|  | "Unexpected operand in reassociable instruction"); | 
|  |  | 
|  | // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations | 
|  | // of this pass or other passes. The EFLAGS operands must be dead in these new | 
|  | // instructions because the EFLAGS operands in the original instructions must | 
|  | // be dead in order for reassociation to occur. | 
|  | NewOp1.setIsDead(); | 
|  | NewOp2.setIsDead(); | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, unsigned> | 
|  | X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { | 
|  | return std::make_pair(TF, 0u); | 
|  | } | 
|  |  | 
|  | ArrayRef<std::pair<unsigned, const char *>> | 
|  | X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const { | 
|  | using namespace X86II; | 
|  | static const std::pair<unsigned, const char *> TargetFlags[] = { | 
|  | {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"}, | 
|  | {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"}, | 
|  | {MO_GOT, "x86-got"}, | 
|  | {MO_GOTOFF, "x86-gotoff"}, | 
|  | {MO_GOTPCREL, "x86-gotpcrel"}, | 
|  | {MO_PLT, "x86-plt"}, | 
|  | {MO_TLSGD, "x86-tlsgd"}, | 
|  | {MO_TLSLD, "x86-tlsld"}, | 
|  | {MO_TLSLDM, "x86-tlsldm"}, | 
|  | {MO_GOTTPOFF, "x86-gottpoff"}, | 
|  | {MO_INDNTPOFF, "x86-indntpoff"}, | 
|  | {MO_TPOFF, "x86-tpoff"}, | 
|  | {MO_DTPOFF, "x86-dtpoff"}, | 
|  | {MO_NTPOFF, "x86-ntpoff"}, | 
|  | {MO_GOTNTPOFF, "x86-gotntpoff"}, | 
|  | {MO_DLLIMPORT, "x86-dllimport"}, | 
|  | {MO_DARWIN_STUB, "x86-darwin-stub"}, | 
|  | {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"}, | 
|  | {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"}, | 
|  | {MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE, "x86-darwin-hidden-nonlazy-pic-base"}, | 
|  | {MO_TLVP, "x86-tlvp"}, | 
|  | {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"}, | 
|  | {MO_SECREL, "x86-secrel"}}; | 
|  | return makeArrayRef(TargetFlags); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Create Global Base Reg pass. This initializes the PIC | 
|  | /// global base register for x86-32. | 
|  | struct CGBR : public MachineFunctionPass { | 
|  | static char ID; | 
|  | CGBR() : MachineFunctionPass(ID) {} | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override { | 
|  | const X86TargetMachine *TM = | 
|  | static_cast<const X86TargetMachine *>(&MF.getTarget()); | 
|  | const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); | 
|  |  | 
|  | // Don't do anything if this is 64-bit as 64-bit PIC | 
|  | // uses RIP relative addressing. | 
|  | if (STI.is64Bit()) | 
|  | return false; | 
|  |  | 
|  | // Only emit a global base reg in PIC mode. | 
|  | if (TM->getRelocationModel() != Reloc::PIC_) | 
|  | return false; | 
|  |  | 
|  | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); | 
|  |  | 
|  | // If we didn't need a GlobalBaseReg, don't insert code. | 
|  | if (GlobalBaseReg == 0) | 
|  | return false; | 
|  |  | 
|  | // Insert the set of GlobalBaseReg into the first MBB of the function | 
|  | MachineBasicBlock &FirstMBB = MF.front(); | 
|  | MachineBasicBlock::iterator MBBI = FirstMBB.begin(); | 
|  | DebugLoc DL = FirstMBB.findDebugLoc(MBBI); | 
|  | MachineRegisterInfo &RegInfo = MF.getRegInfo(); | 
|  | const X86InstrInfo *TII = STI.getInstrInfo(); | 
|  |  | 
|  | unsigned PC; | 
|  | if (STI.isPICStyleGOT()) | 
|  | PC = RegInfo.createVirtualRegister(&X86::GR32RegClass); | 
|  | else | 
|  | PC = GlobalBaseReg; | 
|  |  | 
|  | // Operand of MovePCtoStack is completely ignored by asm printer. It's | 
|  | // only used in JIT code emission as displacement to pc. | 
|  | BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); | 
|  |  | 
|  | // If we're using vanilla 'GOT' PIC style, we should use relative addressing | 
|  | // not to pc, but to _GLOBAL_OFFSET_TABLE_ external. | 
|  | if (STI.isPICStyleGOT()) { | 
|  | // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register | 
|  | BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) | 
|  | .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", | 
|  | X86II::MO_GOT_ABSOLUTE_ADDRESS); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const char *getPassName() const override { | 
|  | return "X86 PIC Global Base Reg Initialization"; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | char CGBR::ID = 0; | 
|  | FunctionPass* | 
|  | llvm::createX86GlobalBaseRegPass() { return new CGBR(); } | 
|  |  | 
|  | namespace { | 
|  | struct LDTLSCleanup : public MachineFunctionPass { | 
|  | static char ID; | 
|  | LDTLSCleanup() : MachineFunctionPass(ID) {} | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override { | 
|  | X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | if (MFI->getNumLocalDynamicTLSAccesses() < 2) { | 
|  | // No point folding accesses if there isn't at least two. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); | 
|  | return VisitNode(DT->getRootNode(), 0); | 
|  | } | 
|  |  | 
|  | // Visit the dominator subtree rooted at Node in pre-order. | 
|  | // If TLSBaseAddrReg is non-null, then use that to replace any | 
|  | // TLS_base_addr instructions. Otherwise, create the register | 
|  | // when the first such instruction is seen, and then use it | 
|  | // as we encounter more instructions. | 
|  | bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { | 
|  | MachineBasicBlock *BB = Node->getBlock(); | 
|  | bool Changed = false; | 
|  |  | 
|  | // Traverse the current block. | 
|  | for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; | 
|  | ++I) { | 
|  | switch (I->getOpcode()) { | 
|  | case X86::TLS_base_addr32: | 
|  | case X86::TLS_base_addr64: | 
|  | if (TLSBaseAddrReg) | 
|  | I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg); | 
|  | else | 
|  | I = SetRegister(I, &TLSBaseAddrReg); | 
|  | Changed = true; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Visit the children of this block in the dominator tree. | 
|  | for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end(); | 
|  | I != E; ++I) { | 
|  | Changed |= VisitNode(*I, TLSBaseAddrReg); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // Replace the TLS_base_addr instruction I with a copy from | 
|  | // TLSBaseAddrReg, returning the new instruction. | 
|  | MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I, | 
|  | unsigned TLSBaseAddrReg) { | 
|  | MachineFunction *MF = I->getParent()->getParent(); | 
|  | const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); | 
|  | const bool is64Bit = STI.is64Bit(); | 
|  | const X86InstrInfo *TII = STI.getInstrInfo(); | 
|  |  | 
|  | // Insert a Copy from TLSBaseAddrReg to RAX/EAX. | 
|  | MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), | 
|  | is64Bit ? X86::RAX : X86::EAX) | 
|  | .addReg(TLSBaseAddrReg); | 
|  |  | 
|  | // Erase the TLS_base_addr instruction. | 
|  | I->eraseFromParent(); | 
|  |  | 
|  | return Copy; | 
|  | } | 
|  |  | 
|  | // Create a virtal register in *TLSBaseAddrReg, and populate it by | 
|  | // inserting a copy instruction after I. Returns the new instruction. | 
|  | MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) { | 
|  | MachineFunction *MF = I->getParent()->getParent(); | 
|  | const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); | 
|  | const bool is64Bit = STI.is64Bit(); | 
|  | const X86InstrInfo *TII = STI.getInstrInfo(); | 
|  |  | 
|  | // Create a virtual register for the TLS base address. | 
|  | MachineRegisterInfo &RegInfo = MF->getRegInfo(); | 
|  | *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit | 
|  | ? &X86::GR64RegClass | 
|  | : &X86::GR32RegClass); | 
|  |  | 
|  | // Insert a copy from RAX/EAX to TLSBaseAddrReg. | 
|  | MachineInstr *Next = I->getNextNode(); | 
|  | MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), | 
|  | *TLSBaseAddrReg) | 
|  | .addReg(is64Bit ? X86::RAX : X86::EAX); | 
|  |  | 
|  | return Copy; | 
|  | } | 
|  |  | 
|  | const char *getPassName() const override { | 
|  | return "Local Dynamic TLS Access Clean-up"; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | char LDTLSCleanup::ID = 0; | 
|  | FunctionPass* | 
|  | llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); } |