|  | //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/CodeGen/BackendUtil.h" | 
|  | #include "clang/Basic/CodeGenOptions.h" | 
|  | #include "clang/Basic/Diagnostic.h" | 
|  | #include "clang/Basic/LangOptions.h" | 
|  | #include "clang/Basic/TargetOptions.h" | 
|  | #include "clang/Frontend/FrontendDiagnostic.h" | 
|  | #include "clang/Frontend/Utils.h" | 
|  | #include "clang/Lex/HeaderSearchOptions.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Bitcode/BitcodeReader.h" | 
|  | #include "llvm/Bitcode/BitcodeWriter.h" | 
|  | #include "llvm/Bitcode/BitcodeWriterPass.h" | 
|  | #include "llvm/CodeGen/RegAllocRegistry.h" | 
|  | #include "llvm/CodeGen/SchedulerRegistry.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/IRPrintingPasses.h" | 
|  | #include "llvm/IR/LegacyPassManager.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/ModuleSummaryIndex.h" | 
|  | #include "llvm/IR/Verifier.h" | 
|  | #include "llvm/LTO/LTOBackend.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/SubtargetFeature.h" | 
|  | #include "llvm/Passes/PassBuilder.h" | 
|  | #include "llvm/Passes/PassPlugin.h" | 
|  | #include "llvm/Passes/StandardInstrumentations.h" | 
|  | #include "llvm/Support/BuryPointer.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/MemoryBuffer.h" | 
|  | #include "llvm/Support/PrettyStackTrace.h" | 
|  | #include "llvm/Support/TargetRegistry.h" | 
|  | #include "llvm/Support/TimeProfiler.h" | 
|  | #include "llvm/Support/Timer.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Transforms/Coroutines.h" | 
|  | #include "llvm/Transforms/IPO.h" | 
|  | #include "llvm/Transforms/IPO/AlwaysInliner.h" | 
|  | #include "llvm/Transforms/IPO/PassManagerBuilder.h" | 
|  | #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" | 
|  | #include "llvm/Transforms/InstCombine/InstCombine.h" | 
|  | #include "llvm/Transforms/Instrumentation.h" | 
|  | #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" | 
|  | #include "llvm/Transforms/Instrumentation/BoundsChecking.h" | 
|  | #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" | 
|  | #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" | 
|  | #include "llvm/Transforms/Instrumentation/InstrProfiling.h" | 
|  | #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" | 
|  | #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" | 
|  | #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" | 
|  | #include "llvm/Transforms/ObjCARC.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Scalar/GVN.h" | 
|  | #include "llvm/Transforms/Utils.h" | 
|  | #include "llvm/Transforms/Utils/CanonicalizeAliases.h" | 
|  | #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" | 
|  | #include "llvm/Transforms/Utils/NameAnonGlobals.h" | 
|  | #include "llvm/Transforms/Utils/SymbolRewriter.h" | 
|  | #include <memory> | 
|  | using namespace clang; | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Default filename used for profile generation. | 
|  | static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; | 
|  |  | 
|  | class EmitAssemblyHelper { | 
|  | DiagnosticsEngine &Diags; | 
|  | const HeaderSearchOptions &HSOpts; | 
|  | const CodeGenOptions &CodeGenOpts; | 
|  | const clang::TargetOptions &TargetOpts; | 
|  | const LangOptions &LangOpts; | 
|  | Module *TheModule; | 
|  |  | 
|  | Timer CodeGenerationTime; | 
|  |  | 
|  | std::unique_ptr<raw_pwrite_stream> OS; | 
|  |  | 
|  | TargetIRAnalysis getTargetIRAnalysis() const { | 
|  | if (TM) | 
|  | return TM->getTargetIRAnalysis(); | 
|  |  | 
|  | return TargetIRAnalysis(); | 
|  | } | 
|  |  | 
|  | void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); | 
|  |  | 
|  | /// Generates the TargetMachine. | 
|  | /// Leaves TM unchanged if it is unable to create the target machine. | 
|  | /// Some of our clang tests specify triples which are not built | 
|  | /// into clang. This is okay because these tests check the generated | 
|  | /// IR, and they require DataLayout which depends on the triple. | 
|  | /// In this case, we allow this method to fail and not report an error. | 
|  | /// When MustCreateTM is used, we print an error if we are unable to load | 
|  | /// the requested target. | 
|  | void CreateTargetMachine(bool MustCreateTM); | 
|  |  | 
|  | /// Add passes necessary to emit assembly or LLVM IR. | 
|  | /// | 
|  | /// \return True on success. | 
|  | bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, | 
|  | raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); | 
|  |  | 
|  | std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { | 
|  | std::error_code EC; | 
|  | auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, | 
|  | llvm::sys::fs::OF_None); | 
|  | if (EC) { | 
|  | Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); | 
|  | F.reset(); | 
|  | } | 
|  | return F; | 
|  | } | 
|  |  | 
|  | public: | 
|  | EmitAssemblyHelper(DiagnosticsEngine &_Diags, | 
|  | const HeaderSearchOptions &HeaderSearchOpts, | 
|  | const CodeGenOptions &CGOpts, | 
|  | const clang::TargetOptions &TOpts, | 
|  | const LangOptions &LOpts, Module *M) | 
|  | : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), | 
|  | TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), | 
|  | CodeGenerationTime("codegen", "Code Generation Time") {} | 
|  |  | 
|  | ~EmitAssemblyHelper() { | 
|  | if (CodeGenOpts.DisableFree) | 
|  | BuryPointer(std::move(TM)); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<TargetMachine> TM; | 
|  |  | 
|  | void EmitAssembly(BackendAction Action, | 
|  | std::unique_ptr<raw_pwrite_stream> OS); | 
|  |  | 
|  | void EmitAssemblyWithNewPassManager(BackendAction Action, | 
|  | std::unique_ptr<raw_pwrite_stream> OS); | 
|  | }; | 
|  |  | 
|  | // We need this wrapper to access LangOpts and CGOpts from extension functions | 
|  | // that we add to the PassManagerBuilder. | 
|  | class PassManagerBuilderWrapper : public PassManagerBuilder { | 
|  | public: | 
|  | PassManagerBuilderWrapper(const Triple &TargetTriple, | 
|  | const CodeGenOptions &CGOpts, | 
|  | const LangOptions &LangOpts) | 
|  | : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), | 
|  | LangOpts(LangOpts) {} | 
|  | const Triple &getTargetTriple() const { return TargetTriple; } | 
|  | const CodeGenOptions &getCGOpts() const { return CGOpts; } | 
|  | const LangOptions &getLangOpts() const { return LangOpts; } | 
|  |  | 
|  | private: | 
|  | const Triple &TargetTriple; | 
|  | const CodeGenOptions &CGOpts; | 
|  | const LangOptions &LangOpts; | 
|  | }; | 
|  | } | 
|  |  | 
|  | static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { | 
|  | if (Builder.OptLevel > 0) | 
|  | PM.add(createObjCARCAPElimPass()); | 
|  | } | 
|  |  | 
|  | static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { | 
|  | if (Builder.OptLevel > 0) | 
|  | PM.add(createObjCARCExpandPass()); | 
|  | } | 
|  |  | 
|  | static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { | 
|  | if (Builder.OptLevel > 0) | 
|  | PM.add(createObjCARCOptPass()); | 
|  | } | 
|  |  | 
|  | static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, | 
|  | legacy::PassManagerBase &PM) { | 
|  | PM.add(createAddDiscriminatorsPass()); | 
|  | } | 
|  |  | 
|  | static void addBoundsCheckingPass(const PassManagerBuilder &Builder, | 
|  | legacy::PassManagerBase &PM) { | 
|  | PM.add(createBoundsCheckingLegacyPass()); | 
|  | } | 
|  |  | 
|  | static SanitizerCoverageOptions | 
|  | getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { | 
|  | SanitizerCoverageOptions Opts; | 
|  | Opts.CoverageType = | 
|  | static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); | 
|  | Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; | 
|  | Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; | 
|  | Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; | 
|  | Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; | 
|  | Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; | 
|  | Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; | 
|  | Opts.TracePC = CGOpts.SanitizeCoverageTracePC; | 
|  | Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; | 
|  | Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; | 
|  | Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; | 
|  | Opts.PCTable = CGOpts.SanitizeCoveragePCTable; | 
|  | Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; | 
|  | return Opts; | 
|  | } | 
|  |  | 
|  | static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, | 
|  | legacy::PassManagerBase &PM) { | 
|  | const PassManagerBuilderWrapper &BuilderWrapper = | 
|  | static_cast<const PassManagerBuilderWrapper &>(Builder); | 
|  | const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); | 
|  | auto Opts = getSancovOptsFromCGOpts(CGOpts); | 
|  | PM.add(createModuleSanitizerCoverageLegacyPassPass(Opts)); | 
|  | } | 
|  |  | 
|  | // Check if ASan should use GC-friendly instrumentation for globals. | 
|  | // First of all, there is no point if -fdata-sections is off (expect for MachO, | 
|  | // where this is not a factor). Also, on ELF this feature requires an assembler | 
|  | // extension that only works with -integrated-as at the moment. | 
|  | static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { | 
|  | if (!CGOpts.SanitizeAddressGlobalsDeadStripping) | 
|  | return false; | 
|  | switch (T.getObjectFormat()) { | 
|  | case Triple::MachO: | 
|  | case Triple::COFF: | 
|  | return true; | 
|  | case Triple::ELF: | 
|  | return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; | 
|  | case Triple::XCOFF: | 
|  | llvm::report_fatal_error("ASan not implemented for XCOFF."); | 
|  | case Triple::Wasm: | 
|  | case Triple::UnknownObjectFormat: | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, | 
|  | legacy::PassManagerBase &PM) { | 
|  | const PassManagerBuilderWrapper &BuilderWrapper = | 
|  | static_cast<const PassManagerBuilderWrapper&>(Builder); | 
|  | const Triple &T = BuilderWrapper.getTargetTriple(); | 
|  | const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); | 
|  | bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); | 
|  | bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; | 
|  | bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; | 
|  | bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); | 
|  | PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, | 
|  | UseAfterScope)); | 
|  | PM.add(createModuleAddressSanitizerLegacyPassPass( | 
|  | /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); | 
|  | } | 
|  |  | 
|  | static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, | 
|  | legacy::PassManagerBase &PM) { | 
|  | PM.add(createAddressSanitizerFunctionPass( | 
|  | /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); | 
|  | PM.add(createModuleAddressSanitizerLegacyPassPass( | 
|  | /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, | 
|  | /*UseOdrIndicator*/ false)); | 
|  | } | 
|  |  | 
|  | static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, | 
|  | legacy::PassManagerBase &PM) { | 
|  | const PassManagerBuilderWrapper &BuilderWrapper = | 
|  | static_cast<const PassManagerBuilderWrapper &>(Builder); | 
|  | const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); | 
|  | bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); | 
|  | PM.add( | 
|  | createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); | 
|  | } | 
|  |  | 
|  | static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, | 
|  | legacy::PassManagerBase &PM) { | 
|  | PM.add(createHWAddressSanitizerLegacyPassPass( | 
|  | /*CompileKernel*/ true, /*Recover*/ true)); | 
|  | } | 
|  |  | 
|  | static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, | 
|  | legacy::PassManagerBase &PM, | 
|  | bool CompileKernel) { | 
|  | const PassManagerBuilderWrapper &BuilderWrapper = | 
|  | static_cast<const PassManagerBuilderWrapper&>(Builder); | 
|  | const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); | 
|  | int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; | 
|  | bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); | 
|  | PM.add(createMemorySanitizerLegacyPassPass( | 
|  | MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); | 
|  |  | 
|  | // MemorySanitizer inserts complex instrumentation that mostly follows | 
|  | // the logic of the original code, but operates on "shadow" values. | 
|  | // It can benefit from re-running some general purpose optimization passes. | 
|  | if (Builder.OptLevel > 0) { | 
|  | PM.add(createEarlyCSEPass()); | 
|  | PM.add(createReassociatePass()); | 
|  | PM.add(createLICMPass()); | 
|  | PM.add(createGVNPass()); | 
|  | PM.add(createInstructionCombiningPass()); | 
|  | PM.add(createDeadStoreEliminationPass()); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void addMemorySanitizerPass(const PassManagerBuilder &Builder, | 
|  | legacy::PassManagerBase &PM) { | 
|  | addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); | 
|  | } | 
|  |  | 
|  | static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, | 
|  | legacy::PassManagerBase &PM) { | 
|  | addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); | 
|  | } | 
|  |  | 
|  | static void addThreadSanitizerPass(const PassManagerBuilder &Builder, | 
|  | legacy::PassManagerBase &PM) { | 
|  | PM.add(createThreadSanitizerLegacyPassPass()); | 
|  | } | 
|  |  | 
|  | static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, | 
|  | legacy::PassManagerBase &PM) { | 
|  | const PassManagerBuilderWrapper &BuilderWrapper = | 
|  | static_cast<const PassManagerBuilderWrapper&>(Builder); | 
|  | const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); | 
|  | PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); | 
|  | } | 
|  |  | 
|  | static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, | 
|  | const CodeGenOptions &CodeGenOpts) { | 
|  | TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); | 
|  | if (!CodeGenOpts.SimplifyLibCalls) | 
|  | TLII->disableAllFunctions(); | 
|  | else { | 
|  | // Disable individual libc/libm calls in TargetLibraryInfo. | 
|  | LibFunc F; | 
|  | for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) | 
|  | if (TLII->getLibFunc(FuncName, F)) | 
|  | TLII->setUnavailable(F); | 
|  | } | 
|  |  | 
|  | switch (CodeGenOpts.getVecLib()) { | 
|  | case CodeGenOptions::Accelerate: | 
|  | TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); | 
|  | break; | 
|  | case CodeGenOptions::MASSV: | 
|  | TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); | 
|  | break; | 
|  | case CodeGenOptions::SVML: | 
|  | TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return TLII; | 
|  | } | 
|  |  | 
|  | static void addSymbolRewriterPass(const CodeGenOptions &Opts, | 
|  | legacy::PassManager *MPM) { | 
|  | llvm::SymbolRewriter::RewriteDescriptorList DL; | 
|  |  | 
|  | llvm::SymbolRewriter::RewriteMapParser MapParser; | 
|  | for (const auto &MapFile : Opts.RewriteMapFiles) | 
|  | MapParser.parse(MapFile, &DL); | 
|  |  | 
|  | MPM->add(createRewriteSymbolsPass(DL)); | 
|  | } | 
|  |  | 
|  | static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { | 
|  | switch (CodeGenOpts.OptimizationLevel) { | 
|  | default: | 
|  | llvm_unreachable("Invalid optimization level!"); | 
|  | case 0: | 
|  | return CodeGenOpt::None; | 
|  | case 1: | 
|  | return CodeGenOpt::Less; | 
|  | case 2: | 
|  | return CodeGenOpt::Default; // O2/Os/Oz | 
|  | case 3: | 
|  | return CodeGenOpt::Aggressive; | 
|  | } | 
|  | } | 
|  |  | 
|  | static Optional<llvm::CodeModel::Model> | 
|  | getCodeModel(const CodeGenOptions &CodeGenOpts) { | 
|  | unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) | 
|  | .Case("tiny", llvm::CodeModel::Tiny) | 
|  | .Case("small", llvm::CodeModel::Small) | 
|  | .Case("kernel", llvm::CodeModel::Kernel) | 
|  | .Case("medium", llvm::CodeModel::Medium) | 
|  | .Case("large", llvm::CodeModel::Large) | 
|  | .Case("default", ~1u) | 
|  | .Default(~0u); | 
|  | assert(CodeModel != ~0u && "invalid code model!"); | 
|  | if (CodeModel == ~1u) | 
|  | return None; | 
|  | return static_cast<llvm::CodeModel::Model>(CodeModel); | 
|  | } | 
|  |  | 
|  | static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { | 
|  | if (Action == Backend_EmitObj) | 
|  | return TargetMachine::CGFT_ObjectFile; | 
|  | else if (Action == Backend_EmitMCNull) | 
|  | return TargetMachine::CGFT_Null; | 
|  | else { | 
|  | assert(Action == Backend_EmitAssembly && "Invalid action!"); | 
|  | return TargetMachine::CGFT_AssemblyFile; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void initTargetOptions(llvm::TargetOptions &Options, | 
|  | const CodeGenOptions &CodeGenOpts, | 
|  | const clang::TargetOptions &TargetOpts, | 
|  | const LangOptions &LangOpts, | 
|  | const HeaderSearchOptions &HSOpts) { | 
|  | Options.ThreadModel = | 
|  | llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) | 
|  | .Case("posix", llvm::ThreadModel::POSIX) | 
|  | .Case("single", llvm::ThreadModel::Single); | 
|  |  | 
|  | // Set float ABI type. | 
|  | assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || | 
|  | CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && | 
|  | "Invalid Floating Point ABI!"); | 
|  | Options.FloatABIType = | 
|  | llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) | 
|  | .Case("soft", llvm::FloatABI::Soft) | 
|  | .Case("softfp", llvm::FloatABI::Soft) | 
|  | .Case("hard", llvm::FloatABI::Hard) | 
|  | .Default(llvm::FloatABI::Default); | 
|  |  | 
|  | // Set FP fusion mode. | 
|  | switch (LangOpts.getDefaultFPContractMode()) { | 
|  | case LangOptions::FPC_Off: | 
|  | // Preserve any contraction performed by the front-end.  (Strict performs | 
|  | // splitting of the muladd intrinsic in the backend.) | 
|  | Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; | 
|  | break; | 
|  | case LangOptions::FPC_On: | 
|  | Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; | 
|  | break; | 
|  | case LangOptions::FPC_Fast: | 
|  | Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Options.UseInitArray = CodeGenOpts.UseInitArray; | 
|  | Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; | 
|  | Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); | 
|  | Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; | 
|  |  | 
|  | // Set EABI version. | 
|  | Options.EABIVersion = TargetOpts.EABIVersion; | 
|  |  | 
|  | if (LangOpts.SjLjExceptions) | 
|  | Options.ExceptionModel = llvm::ExceptionHandling::SjLj; | 
|  | if (LangOpts.SEHExceptions) | 
|  | Options.ExceptionModel = llvm::ExceptionHandling::WinEH; | 
|  | if (LangOpts.DWARFExceptions) | 
|  | Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; | 
|  |  | 
|  | Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; | 
|  | Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; | 
|  | Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; | 
|  | Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; | 
|  | Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; | 
|  | Options.FunctionSections = CodeGenOpts.FunctionSections; | 
|  | Options.DataSections = CodeGenOpts.DataSections; | 
|  | Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; | 
|  | Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; | 
|  | Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; | 
|  | Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); | 
|  | Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; | 
|  | Options.EmitAddrsig = CodeGenOpts.Addrsig; | 
|  | Options.EnableDebugEntryValues = CodeGenOpts.EnableDebugEntryValues; | 
|  |  | 
|  | Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; | 
|  | Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; | 
|  | Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; | 
|  | Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; | 
|  | Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; | 
|  | Options.MCOptions.MCIncrementalLinkerCompatible = | 
|  | CodeGenOpts.IncrementalLinkerCompatible; | 
|  | Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; | 
|  | Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; | 
|  | Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; | 
|  | Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; | 
|  | Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; | 
|  | Options.MCOptions.ABIName = TargetOpts.ABI; | 
|  | for (const auto &Entry : HSOpts.UserEntries) | 
|  | if (!Entry.IsFramework && | 
|  | (Entry.Group == frontend::IncludeDirGroup::Quoted || | 
|  | Entry.Group == frontend::IncludeDirGroup::Angled || | 
|  | Entry.Group == frontend::IncludeDirGroup::System)) | 
|  | Options.MCOptions.IASSearchPaths.push_back( | 
|  | Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); | 
|  | } | 
|  | static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { | 
|  | if (CodeGenOpts.DisableGCov) | 
|  | return None; | 
|  | if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) | 
|  | return None; | 
|  | // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if | 
|  | // LLVM's -default-gcov-version flag is set to something invalid. | 
|  | GCOVOptions Options; | 
|  | Options.EmitNotes = CodeGenOpts.EmitGcovNotes; | 
|  | Options.EmitData = CodeGenOpts.EmitGcovArcs; | 
|  | llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); | 
|  | Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; | 
|  | Options.NoRedZone = CodeGenOpts.DisableRedZone; | 
|  | Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; | 
|  | Options.Filter = CodeGenOpts.ProfileFilterFiles; | 
|  | Options.Exclude = CodeGenOpts.ProfileExcludeFiles; | 
|  | Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; | 
|  | return Options; | 
|  | } | 
|  |  | 
|  | static Optional<InstrProfOptions> | 
|  | getInstrProfOptions(const CodeGenOptions &CodeGenOpts, | 
|  | const LangOptions &LangOpts) { | 
|  | if (!CodeGenOpts.hasProfileClangInstr()) | 
|  | return None; | 
|  | InstrProfOptions Options; | 
|  | Options.NoRedZone = CodeGenOpts.DisableRedZone; | 
|  | Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; | 
|  |  | 
|  | // TODO: Surface the option to emit atomic profile counter increments at | 
|  | // the driver level. | 
|  | Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); | 
|  | return Options; | 
|  | } | 
|  |  | 
|  | void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, | 
|  | legacy::FunctionPassManager &FPM) { | 
|  | // Handle disabling of all LLVM passes, where we want to preserve the | 
|  | // internal module before any optimization. | 
|  | if (CodeGenOpts.DisableLLVMPasses) | 
|  | return; | 
|  |  | 
|  | // Figure out TargetLibraryInfo.  This needs to be added to MPM and FPM | 
|  | // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) | 
|  | // are inserted before PMBuilder ones - they'd get the default-constructed | 
|  | // TLI with an unknown target otherwise. | 
|  | Triple TargetTriple(TheModule->getTargetTriple()); | 
|  | std::unique_ptr<TargetLibraryInfoImpl> TLII( | 
|  | createTLII(TargetTriple, CodeGenOpts)); | 
|  |  | 
|  | PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); | 
|  |  | 
|  | // At O0 and O1 we only run the always inliner which is more efficient. At | 
|  | // higher optimization levels we run the normal inliner. | 
|  | if (CodeGenOpts.OptimizationLevel <= 1) { | 
|  | bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && | 
|  | !CodeGenOpts.DisableLifetimeMarkers); | 
|  | PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); | 
|  | } else { | 
|  | // We do not want to inline hot callsites for SamplePGO module-summary build | 
|  | // because profile annotation will happen again in ThinLTO backend, and we | 
|  | // want the IR of the hot path to match the profile. | 
|  | PMBuilder.Inliner = createFunctionInliningPass( | 
|  | CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, | 
|  | (!CodeGenOpts.SampleProfileFile.empty() && | 
|  | CodeGenOpts.PrepareForThinLTO)); | 
|  | } | 
|  |  | 
|  | PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; | 
|  | PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; | 
|  | PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; | 
|  | PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; | 
|  |  | 
|  | PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; | 
|  | // Loop interleaving in the loop vectorizer has historically been set to be | 
|  | // enabled when loop unrolling is enabled. | 
|  | PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; | 
|  | PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; | 
|  | PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; | 
|  | PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; | 
|  | PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; | 
|  |  | 
|  | MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); | 
|  |  | 
|  | if (TM) | 
|  | TM->adjustPassManager(PMBuilder); | 
|  |  | 
|  | if (CodeGenOpts.DebugInfoForProfiling || | 
|  | !CodeGenOpts.SampleProfileFile.empty()) | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, | 
|  | addAddDiscriminatorsPass); | 
|  |  | 
|  | // In ObjC ARC mode, add the main ARC optimization passes. | 
|  | if (LangOpts.ObjCAutoRefCount) { | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, | 
|  | addObjCARCExpandPass); | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, | 
|  | addObjCARCAPElimPass); | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, | 
|  | addObjCARCOptPass); | 
|  | } | 
|  |  | 
|  | if (LangOpts.Coroutines) | 
|  | addCoroutinePassesToExtensionPoints(PMBuilder); | 
|  |  | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, | 
|  | addBoundsCheckingPass); | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, | 
|  | addBoundsCheckingPass); | 
|  | } | 
|  |  | 
|  | if (CodeGenOpts.SanitizeCoverageType || | 
|  | CodeGenOpts.SanitizeCoverageIndirectCalls || | 
|  | CodeGenOpts.SanitizeCoverageTraceCmp) { | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, | 
|  | addSanitizerCoveragePass); | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, | 
|  | addSanitizerCoveragePass); | 
|  | } | 
|  |  | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::Address)) { | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, | 
|  | addAddressSanitizerPasses); | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, | 
|  | addAddressSanitizerPasses); | 
|  | } | 
|  |  | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, | 
|  | addKernelAddressSanitizerPasses); | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, | 
|  | addKernelAddressSanitizerPasses); | 
|  | } | 
|  |  | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, | 
|  | addHWAddressSanitizerPasses); | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, | 
|  | addHWAddressSanitizerPasses); | 
|  | } | 
|  |  | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, | 
|  | addKernelHWAddressSanitizerPasses); | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, | 
|  | addKernelHWAddressSanitizerPasses); | 
|  | } | 
|  |  | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, | 
|  | addMemorySanitizerPass); | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, | 
|  | addMemorySanitizerPass); | 
|  | } | 
|  |  | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, | 
|  | addKernelMemorySanitizerPass); | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, | 
|  | addKernelMemorySanitizerPass); | 
|  | } | 
|  |  | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, | 
|  | addThreadSanitizerPass); | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, | 
|  | addThreadSanitizerPass); | 
|  | } | 
|  |  | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, | 
|  | addDataFlowSanitizerPass); | 
|  | PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, | 
|  | addDataFlowSanitizerPass); | 
|  | } | 
|  |  | 
|  | // Set up the per-function pass manager. | 
|  | FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); | 
|  | if (CodeGenOpts.VerifyModule) | 
|  | FPM.add(createVerifierPass()); | 
|  |  | 
|  | // Set up the per-module pass manager. | 
|  | if (!CodeGenOpts.RewriteMapFiles.empty()) | 
|  | addSymbolRewriterPass(CodeGenOpts, &MPM); | 
|  |  | 
|  | if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { | 
|  | MPM.add(createGCOVProfilerPass(*Options)); | 
|  | if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) | 
|  | MPM.add(createStripSymbolsPass(true)); | 
|  | } | 
|  |  | 
|  | if (Optional<InstrProfOptions> Options = | 
|  | getInstrProfOptions(CodeGenOpts, LangOpts)) | 
|  | MPM.add(createInstrProfilingLegacyPass(*Options, false)); | 
|  |  | 
|  | bool hasIRInstr = false; | 
|  | if (CodeGenOpts.hasProfileIRInstr()) { | 
|  | PMBuilder.EnablePGOInstrGen = true; | 
|  | hasIRInstr = true; | 
|  | } | 
|  | if (CodeGenOpts.hasProfileCSIRInstr()) { | 
|  | assert(!CodeGenOpts.hasProfileCSIRUse() && | 
|  | "Cannot have both CSProfileUse pass and CSProfileGen pass at the " | 
|  | "same time"); | 
|  | assert(!hasIRInstr && | 
|  | "Cannot have both ProfileGen pass and CSProfileGen pass at the " | 
|  | "same time"); | 
|  | PMBuilder.EnablePGOCSInstrGen = true; | 
|  | hasIRInstr = true; | 
|  | } | 
|  | if (hasIRInstr) { | 
|  | if (!CodeGenOpts.InstrProfileOutput.empty()) | 
|  | PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; | 
|  | else | 
|  | PMBuilder.PGOInstrGen = DefaultProfileGenName; | 
|  | } | 
|  | if (CodeGenOpts.hasProfileIRUse()) { | 
|  | PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; | 
|  | PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); | 
|  | } | 
|  |  | 
|  | if (!CodeGenOpts.SampleProfileFile.empty()) | 
|  | PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; | 
|  |  | 
|  | PMBuilder.populateFunctionPassManager(FPM); | 
|  | PMBuilder.populateModulePassManager(MPM); | 
|  | } | 
|  |  | 
|  | static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { | 
|  | SmallVector<const char *, 16> BackendArgs; | 
|  | BackendArgs.push_back("clang"); // Fake program name. | 
|  | if (!CodeGenOpts.DebugPass.empty()) { | 
|  | BackendArgs.push_back("-debug-pass"); | 
|  | BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); | 
|  | } | 
|  | if (!CodeGenOpts.LimitFloatPrecision.empty()) { | 
|  | BackendArgs.push_back("-limit-float-precision"); | 
|  | BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); | 
|  | } | 
|  | BackendArgs.push_back(nullptr); | 
|  | llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, | 
|  | BackendArgs.data()); | 
|  | } | 
|  |  | 
|  | void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { | 
|  | // Create the TargetMachine for generating code. | 
|  | std::string Error; | 
|  | std::string Triple = TheModule->getTargetTriple(); | 
|  | const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); | 
|  | if (!TheTarget) { | 
|  | if (MustCreateTM) | 
|  | Diags.Report(diag::err_fe_unable_to_create_target) << Error; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); | 
|  | std::string FeaturesStr = | 
|  | llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); | 
|  | llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; | 
|  | CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); | 
|  |  | 
|  | llvm::TargetOptions Options; | 
|  | initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); | 
|  | TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, | 
|  | Options, RM, CM, OptLevel)); | 
|  | } | 
|  |  | 
|  | bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, | 
|  | BackendAction Action, | 
|  | raw_pwrite_stream &OS, | 
|  | raw_pwrite_stream *DwoOS) { | 
|  | // Add LibraryInfo. | 
|  | llvm::Triple TargetTriple(TheModule->getTargetTriple()); | 
|  | std::unique_ptr<TargetLibraryInfoImpl> TLII( | 
|  | createTLII(TargetTriple, CodeGenOpts)); | 
|  | CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); | 
|  |  | 
|  | // Normal mode, emit a .s or .o file by running the code generator. Note, | 
|  | // this also adds codegenerator level optimization passes. | 
|  | TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); | 
|  |  | 
|  | // Add ObjC ARC final-cleanup optimizations. This is done as part of the | 
|  | // "codegen" passes so that it isn't run multiple times when there is | 
|  | // inlining happening. | 
|  | if (CodeGenOpts.OptimizationLevel > 0) | 
|  | CodeGenPasses.add(createObjCARCContractPass()); | 
|  |  | 
|  | if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, | 
|  | /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { | 
|  | Diags.Report(diag::err_fe_unable_to_interface_with_target); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void EmitAssemblyHelper::EmitAssembly(BackendAction Action, | 
|  | std::unique_ptr<raw_pwrite_stream> OS) { | 
|  | TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); | 
|  |  | 
|  | setCommandLineOpts(CodeGenOpts); | 
|  |  | 
|  | bool UsesCodeGen = (Action != Backend_EmitNothing && | 
|  | Action != Backend_EmitBC && | 
|  | Action != Backend_EmitLL); | 
|  | CreateTargetMachine(UsesCodeGen); | 
|  |  | 
|  | if (UsesCodeGen && !TM) | 
|  | return; | 
|  | if (TM) | 
|  | TheModule->setDataLayout(TM->createDataLayout()); | 
|  |  | 
|  | legacy::PassManager PerModulePasses; | 
|  | PerModulePasses.add( | 
|  | createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); | 
|  |  | 
|  | legacy::FunctionPassManager PerFunctionPasses(TheModule); | 
|  | PerFunctionPasses.add( | 
|  | createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); | 
|  |  | 
|  | CreatePasses(PerModulePasses, PerFunctionPasses); | 
|  |  | 
|  | legacy::PassManager CodeGenPasses; | 
|  | CodeGenPasses.add( | 
|  | createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); | 
|  |  | 
|  | std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; | 
|  |  | 
|  | switch (Action) { | 
|  | case Backend_EmitNothing: | 
|  | break; | 
|  |  | 
|  | case Backend_EmitBC: | 
|  | if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { | 
|  | if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { | 
|  | ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); | 
|  | if (!ThinLinkOS) | 
|  | return; | 
|  | } | 
|  | TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", | 
|  | CodeGenOpts.EnableSplitLTOUnit); | 
|  | PerModulePasses.add(createWriteThinLTOBitcodePass( | 
|  | *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); | 
|  | } else { | 
|  | // Emit a module summary by default for Regular LTO except for ld64 | 
|  | // targets | 
|  | bool EmitLTOSummary = | 
|  | (CodeGenOpts.PrepareForLTO && | 
|  | !CodeGenOpts.DisableLLVMPasses && | 
|  | llvm::Triple(TheModule->getTargetTriple()).getVendor() != | 
|  | llvm::Triple::Apple); | 
|  | if (EmitLTOSummary) { | 
|  | if (!TheModule->getModuleFlag("ThinLTO")) | 
|  | TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); | 
|  | TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", | 
|  | uint32_t(1)); | 
|  | } | 
|  |  | 
|  | PerModulePasses.add(createBitcodeWriterPass( | 
|  | *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Backend_EmitLL: | 
|  | PerModulePasses.add( | 
|  | createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | if (!CodeGenOpts.SplitDwarfOutput.empty()) { | 
|  | DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); | 
|  | if (!DwoOS) | 
|  | return; | 
|  | } | 
|  | if (!AddEmitPasses(CodeGenPasses, Action, *OS, | 
|  | DwoOS ? &DwoOS->os() : nullptr)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Before executing passes, print the final values of the LLVM options. | 
|  | cl::PrintOptionValues(); | 
|  |  | 
|  | // Run passes. For now we do all passes at once, but eventually we | 
|  | // would like to have the option of streaming code generation. | 
|  |  | 
|  | { | 
|  | PrettyStackTraceString CrashInfo("Per-function optimization"); | 
|  |  | 
|  | PerFunctionPasses.doInitialization(); | 
|  | for (Function &F : *TheModule) | 
|  | if (!F.isDeclaration()) | 
|  | PerFunctionPasses.run(F); | 
|  | PerFunctionPasses.doFinalization(); | 
|  | } | 
|  |  | 
|  | { | 
|  | PrettyStackTraceString CrashInfo("Per-module optimization passes"); | 
|  | PerModulePasses.run(*TheModule); | 
|  | } | 
|  |  | 
|  | { | 
|  | PrettyStackTraceString CrashInfo("Code generation"); | 
|  | CodeGenPasses.run(*TheModule); | 
|  | } | 
|  |  | 
|  | if (ThinLinkOS) | 
|  | ThinLinkOS->keep(); | 
|  | if (DwoOS) | 
|  | DwoOS->keep(); | 
|  | } | 
|  |  | 
|  | static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { | 
|  | switch (Opts.OptimizationLevel) { | 
|  | default: | 
|  | llvm_unreachable("Invalid optimization level!"); | 
|  |  | 
|  | case 1: | 
|  | return PassBuilder::O1; | 
|  |  | 
|  | case 2: | 
|  | switch (Opts.OptimizeSize) { | 
|  | default: | 
|  | llvm_unreachable("Invalid optimization level for size!"); | 
|  |  | 
|  | case 0: | 
|  | return PassBuilder::O2; | 
|  |  | 
|  | case 1: | 
|  | return PassBuilder::Os; | 
|  |  | 
|  | case 2: | 
|  | return PassBuilder::Oz; | 
|  | } | 
|  |  | 
|  | case 3: | 
|  | return PassBuilder::O3; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void addSanitizersAtO0(ModulePassManager &MPM, | 
|  | const Triple &TargetTriple, | 
|  | const LangOptions &LangOpts, | 
|  | const CodeGenOptions &CodeGenOpts) { | 
|  | auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { | 
|  | MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); | 
|  | bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); | 
|  | MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( | 
|  | CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); | 
|  | bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); | 
|  | MPM.addPass( | 
|  | ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, | 
|  | CodeGenOpts.SanitizeAddressUseOdrIndicator)); | 
|  | }; | 
|  |  | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::Address)) { | 
|  | ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); | 
|  | } | 
|  |  | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { | 
|  | ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); | 
|  | } | 
|  |  | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { | 
|  | MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass({}))); | 
|  | } | 
|  |  | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { | 
|  | MPM.addPass(createModuleToFunctionPassAdaptor( | 
|  | MemorySanitizerPass({0, false, /*Kernel=*/true}))); | 
|  | } | 
|  |  | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { | 
|  | MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// A clean version of `EmitAssembly` that uses the new pass manager. | 
|  | /// | 
|  | /// Not all features are currently supported in this system, but where | 
|  | /// necessary it falls back to the legacy pass manager to at least provide | 
|  | /// basic functionality. | 
|  | /// | 
|  | /// This API is planned to have its functionality finished and then to replace | 
|  | /// `EmitAssembly` at some point in the future when the default switches. | 
|  | void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( | 
|  | BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { | 
|  | TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); | 
|  | setCommandLineOpts(CodeGenOpts); | 
|  |  | 
|  | bool RequiresCodeGen = (Action != Backend_EmitNothing && | 
|  | Action != Backend_EmitBC && | 
|  | Action != Backend_EmitLL); | 
|  | CreateTargetMachine(RequiresCodeGen); | 
|  |  | 
|  | if (RequiresCodeGen && !TM) | 
|  | return; | 
|  | if (TM) | 
|  | TheModule->setDataLayout(TM->createDataLayout()); | 
|  |  | 
|  | Optional<PGOOptions> PGOOpt; | 
|  |  | 
|  | if (CodeGenOpts.hasProfileIRInstr()) | 
|  | // -fprofile-generate. | 
|  | PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() | 
|  | ? DefaultProfileGenName | 
|  | : CodeGenOpts.InstrProfileOutput, | 
|  | "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, | 
|  | CodeGenOpts.DebugInfoForProfiling); | 
|  | else if (CodeGenOpts.hasProfileIRUse()) { | 
|  | // -fprofile-use. | 
|  | auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse | 
|  | : PGOOptions::NoCSAction; | 
|  | PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", | 
|  | CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, | 
|  | CSAction, CodeGenOpts.DebugInfoForProfiling); | 
|  | } else if (!CodeGenOpts.SampleProfileFile.empty()) | 
|  | // -fprofile-sample-use | 
|  | PGOOpt = | 
|  | PGOOptions(CodeGenOpts.SampleProfileFile, "", | 
|  | CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, | 
|  | PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); | 
|  | else if (CodeGenOpts.DebugInfoForProfiling) | 
|  | // -fdebug-info-for-profiling | 
|  | PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, | 
|  | PGOOptions::NoCSAction, true); | 
|  |  | 
|  | // Check to see if we want to generate a CS profile. | 
|  | if (CodeGenOpts.hasProfileCSIRInstr()) { | 
|  | assert(!CodeGenOpts.hasProfileCSIRUse() && | 
|  | "Cannot have both CSProfileUse pass and CSProfileGen pass at " | 
|  | "the same time"); | 
|  | if (PGOOpt.hasValue()) { | 
|  | assert(PGOOpt->Action != PGOOptions::IRInstr && | 
|  | PGOOpt->Action != PGOOptions::SampleUse && | 
|  | "Cannot run CSProfileGen pass with ProfileGen or SampleUse " | 
|  | " pass"); | 
|  | PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() | 
|  | ? DefaultProfileGenName | 
|  | : CodeGenOpts.InstrProfileOutput; | 
|  | PGOOpt->CSAction = PGOOptions::CSIRInstr; | 
|  | } else | 
|  | PGOOpt = PGOOptions("", | 
|  | CodeGenOpts.InstrProfileOutput.empty() | 
|  | ? DefaultProfileGenName | 
|  | : CodeGenOpts.InstrProfileOutput, | 
|  | "", PGOOptions::NoAction, PGOOptions::CSIRInstr, | 
|  | CodeGenOpts.DebugInfoForProfiling); | 
|  | } | 
|  |  | 
|  | PipelineTuningOptions PTO; | 
|  | PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; | 
|  | // For historical reasons, loop interleaving is set to mirror setting for loop | 
|  | // unrolling. | 
|  | PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; | 
|  | PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; | 
|  | PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; | 
|  |  | 
|  | PassInstrumentationCallbacks PIC; | 
|  | StandardInstrumentations SI; | 
|  | SI.registerCallbacks(PIC); | 
|  | PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); | 
|  |  | 
|  | // Attempt to load pass plugins and register their callbacks with PB. | 
|  | for (auto &PluginFN : CodeGenOpts.PassPlugins) { | 
|  | auto PassPlugin = PassPlugin::Load(PluginFN); | 
|  | if (PassPlugin) { | 
|  | PassPlugin->registerPassBuilderCallbacks(PB); | 
|  | } else { | 
|  | Diags.Report(diag::err_fe_unable_to_load_plugin) | 
|  | << PluginFN << toString(PassPlugin.takeError()); | 
|  | } | 
|  | } | 
|  |  | 
|  | LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); | 
|  | FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); | 
|  | CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); | 
|  | ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); | 
|  |  | 
|  | // Register the AA manager first so that our version is the one used. | 
|  | FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); | 
|  |  | 
|  | // Register the target library analysis directly and give it a customized | 
|  | // preset TLI. | 
|  | Triple TargetTriple(TheModule->getTargetTriple()); | 
|  | std::unique_ptr<TargetLibraryInfoImpl> TLII( | 
|  | createTLII(TargetTriple, CodeGenOpts)); | 
|  | FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); | 
|  | MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); | 
|  |  | 
|  | // Register all the basic analyses with the managers. | 
|  | PB.registerModuleAnalyses(MAM); | 
|  | PB.registerCGSCCAnalyses(CGAM); | 
|  | PB.registerFunctionAnalyses(FAM); | 
|  | PB.registerLoopAnalyses(LAM); | 
|  | PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); | 
|  |  | 
|  | ModulePassManager MPM(CodeGenOpts.DebugPassManager); | 
|  |  | 
|  | if (!CodeGenOpts.DisableLLVMPasses) { | 
|  | bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; | 
|  | bool IsLTO = CodeGenOpts.PrepareForLTO; | 
|  |  | 
|  | if (CodeGenOpts.OptimizationLevel == 0) { | 
|  | if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) | 
|  | MPM.addPass(GCOVProfilerPass(*Options)); | 
|  | if (Optional<InstrProfOptions> Options = | 
|  | getInstrProfOptions(CodeGenOpts, LangOpts)) | 
|  | MPM.addPass(InstrProfiling(*Options, false)); | 
|  |  | 
|  | // Build a minimal pipeline based on the semantics required by Clang, | 
|  | // which is just that always inlining occurs. Further, disable generating | 
|  | // lifetime intrinsics to avoid enabling further optimizations during | 
|  | // code generation. | 
|  | MPM.addPass(AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/false)); | 
|  |  | 
|  | // At -O0, we can still do PGO. Add all the requested passes for | 
|  | // instrumentation PGO, if requested. | 
|  | if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || | 
|  | PGOOpt->Action == PGOOptions::IRUse)) | 
|  | PB.addPGOInstrPassesForO0( | 
|  | MPM, CodeGenOpts.DebugPassManager, | 
|  | /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), | 
|  | /* IsCS */ false, PGOOpt->ProfileFile, | 
|  | PGOOpt->ProfileRemappingFile); | 
|  |  | 
|  | // At -O0 we directly run necessary sanitizer passes. | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) | 
|  | MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); | 
|  |  | 
|  | // Lastly, add semantically necessary passes for LTO. | 
|  | if (IsLTO || IsThinLTO) { | 
|  | MPM.addPass(CanonicalizeAliasesPass()); | 
|  | MPM.addPass(NameAnonGlobalPass()); | 
|  | } | 
|  | } else { | 
|  | // Map our optimization levels into one of the distinct levels used to | 
|  | // configure the pipeline. | 
|  | PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); | 
|  |  | 
|  | PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { | 
|  | MPM.addPass(createModuleToFunctionPassAdaptor( | 
|  | EntryExitInstrumenterPass(/*PostInlining=*/false))); | 
|  | }); | 
|  |  | 
|  | if (CodeGenOpts.SanitizeCoverageType || | 
|  | CodeGenOpts.SanitizeCoverageIndirectCalls || | 
|  | CodeGenOpts.SanitizeCoverageTraceCmp) { | 
|  | auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); | 
|  | PB.registerPipelineStartEPCallback( | 
|  | [SancovOpts](ModulePassManager &MPM) { | 
|  | MPM.addPass(ModuleSanitizerCoveragePass(SancovOpts)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Register callbacks to schedule sanitizer passes at the appropriate part of | 
|  | // the pipeline. | 
|  | // FIXME: either handle asan/the remaining sanitizers or error out | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) | 
|  | PB.registerScalarOptimizerLateEPCallback( | 
|  | [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { | 
|  | FPM.addPass(BoundsCheckingPass()); | 
|  | }); | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::Memory)) | 
|  | PB.registerOptimizerLastEPCallback( | 
|  | [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { | 
|  | FPM.addPass(MemorySanitizerPass({})); | 
|  | }); | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::Thread)) | 
|  | PB.registerOptimizerLastEPCallback( | 
|  | [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { | 
|  | FPM.addPass(ThreadSanitizerPass()); | 
|  | }); | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::Address)) { | 
|  | PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { | 
|  | MPM.addPass( | 
|  | RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); | 
|  | }); | 
|  | bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); | 
|  | bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; | 
|  | PB.registerOptimizerLastEPCallback( | 
|  | [Recover, UseAfterScope](FunctionPassManager &FPM, | 
|  | PassBuilder::OptimizationLevel Level) { | 
|  | FPM.addPass(AddressSanitizerPass( | 
|  | /*CompileKernel=*/false, Recover, UseAfterScope)); | 
|  | }); | 
|  | bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); | 
|  | bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; | 
|  | PB.registerPipelineStartEPCallback( | 
|  | [Recover, ModuleUseAfterScope, | 
|  | UseOdrIndicator](ModulePassManager &MPM) { | 
|  | MPM.addPass(ModuleAddressSanitizerPass( | 
|  | /*CompileKernel=*/false, Recover, ModuleUseAfterScope, | 
|  | UseOdrIndicator)); | 
|  | }); | 
|  | } | 
|  | if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) | 
|  | PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { | 
|  | MPM.addPass(GCOVProfilerPass(*Options)); | 
|  | }); | 
|  | if (Optional<InstrProfOptions> Options = | 
|  | getInstrProfOptions(CodeGenOpts, LangOpts)) | 
|  | PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { | 
|  | MPM.addPass(InstrProfiling(*Options, false)); | 
|  | }); | 
|  |  | 
|  | if (IsThinLTO) { | 
|  | MPM = PB.buildThinLTOPreLinkDefaultPipeline( | 
|  | Level, CodeGenOpts.DebugPassManager); | 
|  | MPM.addPass(CanonicalizeAliasesPass()); | 
|  | MPM.addPass(NameAnonGlobalPass()); | 
|  | } else if (IsLTO) { | 
|  | MPM = PB.buildLTOPreLinkDefaultPipeline(Level, | 
|  | CodeGenOpts.DebugPassManager); | 
|  | MPM.addPass(CanonicalizeAliasesPass()); | 
|  | MPM.addPass(NameAnonGlobalPass()); | 
|  | } else { | 
|  | MPM = PB.buildPerModuleDefaultPipeline(Level, | 
|  | CodeGenOpts.DebugPassManager); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { | 
|  | bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); | 
|  | MPM.addPass(HWAddressSanitizerPass( | 
|  | /*CompileKernel=*/false, Recover)); | 
|  | } | 
|  | if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { | 
|  | MPM.addPass(HWAddressSanitizerPass( | 
|  | /*CompileKernel=*/true, /*Recover=*/true)); | 
|  | } | 
|  |  | 
|  | if (CodeGenOpts.OptimizationLevel == 0) { | 
|  | if (CodeGenOpts.SanitizeCoverageType || | 
|  | CodeGenOpts.SanitizeCoverageIndirectCalls || | 
|  | CodeGenOpts.SanitizeCoverageTraceCmp) { | 
|  | auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); | 
|  | MPM.addPass(ModuleSanitizerCoveragePass(SancovOpts)); | 
|  | } | 
|  |  | 
|  | addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: We still use the legacy pass manager to do code generation. We | 
|  | // create that pass manager here and use it as needed below. | 
|  | legacy::PassManager CodeGenPasses; | 
|  | bool NeedCodeGen = false; | 
|  | std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; | 
|  |  | 
|  | // Append any output we need to the pass manager. | 
|  | switch (Action) { | 
|  | case Backend_EmitNothing: | 
|  | break; | 
|  |  | 
|  | case Backend_EmitBC: | 
|  | if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { | 
|  | if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { | 
|  | ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); | 
|  | if (!ThinLinkOS) | 
|  | return; | 
|  | } | 
|  | TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", | 
|  | CodeGenOpts.EnableSplitLTOUnit); | 
|  | MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() | 
|  | : nullptr)); | 
|  | } else { | 
|  | // Emit a module summary by default for Regular LTO except for ld64 | 
|  | // targets | 
|  | bool EmitLTOSummary = | 
|  | (CodeGenOpts.PrepareForLTO && | 
|  | !CodeGenOpts.DisableLLVMPasses && | 
|  | llvm::Triple(TheModule->getTargetTriple()).getVendor() != | 
|  | llvm::Triple::Apple); | 
|  | if (EmitLTOSummary) { | 
|  | if (!TheModule->getModuleFlag("ThinLTO")) | 
|  | TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); | 
|  | TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", | 
|  | uint32_t(1)); | 
|  | } | 
|  | MPM.addPass( | 
|  | BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Backend_EmitLL: | 
|  | MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); | 
|  | break; | 
|  |  | 
|  | case Backend_EmitAssembly: | 
|  | case Backend_EmitMCNull: | 
|  | case Backend_EmitObj: | 
|  | NeedCodeGen = true; | 
|  | CodeGenPasses.add( | 
|  | createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); | 
|  | if (!CodeGenOpts.SplitDwarfOutput.empty()) { | 
|  | DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); | 
|  | if (!DwoOS) | 
|  | return; | 
|  | } | 
|  | if (!AddEmitPasses(CodeGenPasses, Action, *OS, | 
|  | DwoOS ? &DwoOS->os() : nullptr)) | 
|  | // FIXME: Should we handle this error differently? | 
|  | return; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Before executing passes, print the final values of the LLVM options. | 
|  | cl::PrintOptionValues(); | 
|  |  | 
|  | // Now that we have all of the passes ready, run them. | 
|  | { | 
|  | PrettyStackTraceString CrashInfo("Optimizer"); | 
|  | MPM.run(*TheModule, MAM); | 
|  | } | 
|  |  | 
|  | // Now if needed, run the legacy PM for codegen. | 
|  | if (NeedCodeGen) { | 
|  | PrettyStackTraceString CrashInfo("Code generation"); | 
|  | CodeGenPasses.run(*TheModule); | 
|  | } | 
|  |  | 
|  | if (ThinLinkOS) | 
|  | ThinLinkOS->keep(); | 
|  | if (DwoOS) | 
|  | DwoOS->keep(); | 
|  | } | 
|  |  | 
|  | Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { | 
|  | Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); | 
|  | if (!BMsOrErr) | 
|  | return BMsOrErr.takeError(); | 
|  |  | 
|  | // The bitcode file may contain multiple modules, we want the one that is | 
|  | // marked as being the ThinLTO module. | 
|  | if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) | 
|  | return *Bm; | 
|  |  | 
|  | return make_error<StringError>("Could not find module summary", | 
|  | inconvertibleErrorCode()); | 
|  | } | 
|  |  | 
|  | BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { | 
|  | for (BitcodeModule &BM : BMs) { | 
|  | Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); | 
|  | if (LTOInfo && LTOInfo->IsThinLTO) | 
|  | return &BM; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, | 
|  | const HeaderSearchOptions &HeaderOpts, | 
|  | const CodeGenOptions &CGOpts, | 
|  | const clang::TargetOptions &TOpts, | 
|  | const LangOptions &LOpts, | 
|  | std::unique_ptr<raw_pwrite_stream> OS, | 
|  | std::string SampleProfile, | 
|  | std::string ProfileRemapping, | 
|  | BackendAction Action) { | 
|  | StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> | 
|  | ModuleToDefinedGVSummaries; | 
|  | CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); | 
|  |  | 
|  | setCommandLineOpts(CGOpts); | 
|  |  | 
|  | // We can simply import the values mentioned in the combined index, since | 
|  | // we should only invoke this using the individual indexes written out | 
|  | // via a WriteIndexesThinBackend. | 
|  | FunctionImporter::ImportMapTy ImportList; | 
|  | for (auto &GlobalList : *CombinedIndex) { | 
|  | // Ignore entries for undefined references. | 
|  | if (GlobalList.second.SummaryList.empty()) | 
|  | continue; | 
|  |  | 
|  | auto GUID = GlobalList.first; | 
|  | for (auto &Summary : GlobalList.second.SummaryList) { | 
|  | // Skip the summaries for the importing module. These are included to | 
|  | // e.g. record required linkage changes. | 
|  | if (Summary->modulePath() == M->getModuleIdentifier()) | 
|  | continue; | 
|  | // Add an entry to provoke importing by thinBackend. | 
|  | ImportList[Summary->modulePath()].insert(GUID); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; | 
|  | MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; | 
|  |  | 
|  | for (auto &I : ImportList) { | 
|  | ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = | 
|  | llvm::MemoryBuffer::getFile(I.first()); | 
|  | if (!MBOrErr) { | 
|  | errs() << "Error loading imported file '" << I.first() | 
|  | << "': " << MBOrErr.getError().message() << "\n"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); | 
|  | if (!BMOrErr) { | 
|  | handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { | 
|  | errs() << "Error loading imported file '" << I.first() | 
|  | << "': " << EIB.message() << '\n'; | 
|  | }); | 
|  | return; | 
|  | } | 
|  | ModuleMap.insert({I.first(), *BMOrErr}); | 
|  |  | 
|  | OwnedImports.push_back(std::move(*MBOrErr)); | 
|  | } | 
|  | auto AddStream = [&](size_t Task) { | 
|  | return std::make_unique<lto::NativeObjectStream>(std::move(OS)); | 
|  | }; | 
|  | lto::Config Conf; | 
|  | if (CGOpts.SaveTempsFilePrefix != "") { | 
|  | if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", | 
|  | /* UseInputModulePath */ false)) { | 
|  | handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { | 
|  | errs() << "Error setting up ThinLTO save-temps: " << EIB.message() | 
|  | << '\n'; | 
|  | }); | 
|  | } | 
|  | } | 
|  | Conf.CPU = TOpts.CPU; | 
|  | Conf.CodeModel = getCodeModel(CGOpts); | 
|  | Conf.MAttrs = TOpts.Features; | 
|  | Conf.RelocModel = CGOpts.RelocationModel; | 
|  | Conf.CGOptLevel = getCGOptLevel(CGOpts); | 
|  | Conf.OptLevel = CGOpts.OptimizationLevel; | 
|  | initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); | 
|  | Conf.SampleProfile = std::move(SampleProfile); | 
|  |  | 
|  | // Context sensitive profile. | 
|  | if (CGOpts.hasProfileCSIRInstr()) { | 
|  | Conf.RunCSIRInstr = true; | 
|  | Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); | 
|  | } else if (CGOpts.hasProfileCSIRUse()) { | 
|  | Conf.RunCSIRInstr = false; | 
|  | Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); | 
|  | } | 
|  |  | 
|  | Conf.ProfileRemapping = std::move(ProfileRemapping); | 
|  | Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; | 
|  | Conf.DebugPassManager = CGOpts.DebugPassManager; | 
|  | Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; | 
|  | Conf.RemarksFilename = CGOpts.OptRecordFile; | 
|  | Conf.RemarksPasses = CGOpts.OptRecordPasses; | 
|  | Conf.RemarksFormat = CGOpts.OptRecordFormat; | 
|  | Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; | 
|  | Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; | 
|  | switch (Action) { | 
|  | case Backend_EmitNothing: | 
|  | Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { | 
|  | return false; | 
|  | }; | 
|  | break; | 
|  | case Backend_EmitLL: | 
|  | Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { | 
|  | M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); | 
|  | return false; | 
|  | }; | 
|  | break; | 
|  | case Backend_EmitBC: | 
|  | Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { | 
|  | WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); | 
|  | return false; | 
|  | }; | 
|  | break; | 
|  | default: | 
|  | Conf.CGFileType = getCodeGenFileType(Action); | 
|  | break; | 
|  | } | 
|  | if (Error E = thinBackend( | 
|  | Conf, -1, AddStream, *M, *CombinedIndex, ImportList, | 
|  | ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { | 
|  | handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { | 
|  | errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | void clang::EmitBackendOutput(DiagnosticsEngine &Diags, | 
|  | const HeaderSearchOptions &HeaderOpts, | 
|  | const CodeGenOptions &CGOpts, | 
|  | const clang::TargetOptions &TOpts, | 
|  | const LangOptions &LOpts, | 
|  | const llvm::DataLayout &TDesc, Module *M, | 
|  | BackendAction Action, | 
|  | std::unique_ptr<raw_pwrite_stream> OS) { | 
|  |  | 
|  | llvm::TimeTraceScope TimeScope("Backend", StringRef("")); | 
|  |  | 
|  | std::unique_ptr<llvm::Module> EmptyModule; | 
|  | if (!CGOpts.ThinLTOIndexFile.empty()) { | 
|  | // If we are performing a ThinLTO importing compile, load the function index | 
|  | // into memory and pass it into runThinLTOBackend, which will run the | 
|  | // function importer and invoke LTO passes. | 
|  | Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = | 
|  | llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, | 
|  | /*IgnoreEmptyThinLTOIndexFile*/true); | 
|  | if (!IndexOrErr) { | 
|  | logAllUnhandledErrors(IndexOrErr.takeError(), errs(), | 
|  | "Error loading index file '" + | 
|  | CGOpts.ThinLTOIndexFile + "': "); | 
|  | return; | 
|  | } | 
|  | std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); | 
|  | // A null CombinedIndex means we should skip ThinLTO compilation | 
|  | // (LLVM will optionally ignore empty index files, returning null instead | 
|  | // of an error). | 
|  | if (CombinedIndex) { | 
|  | if (!CombinedIndex->skipModuleByDistributedBackend()) { | 
|  | runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, | 
|  | LOpts, std::move(OS), CGOpts.SampleProfileFile, | 
|  | CGOpts.ProfileRemappingFile, Action); | 
|  | return; | 
|  | } | 
|  | // Distributed indexing detected that nothing from the module is needed | 
|  | // for the final linking. So we can skip the compilation. We sill need to | 
|  | // output an empty object file to make sure that a linker does not fail | 
|  | // trying to read it. Also for some features, like CFI, we must skip | 
|  | // the compilation as CombinedIndex does not contain all required | 
|  | // information. | 
|  | EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); | 
|  | EmptyModule->setTargetTriple(M->getTargetTriple()); | 
|  | M = EmptyModule.get(); | 
|  | } | 
|  | } | 
|  |  | 
|  | EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); | 
|  |  | 
|  | if (CGOpts.ExperimentalNewPassManager) | 
|  | AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); | 
|  | else | 
|  | AsmHelper.EmitAssembly(Action, std::move(OS)); | 
|  |  | 
|  | // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's | 
|  | // DataLayout. | 
|  | if (AsmHelper.TM) { | 
|  | std::string DLDesc = M->getDataLayout().getStringRepresentation(); | 
|  | if (DLDesc != TDesc.getStringRepresentation()) { | 
|  | unsigned DiagID = Diags.getCustomDiagID( | 
|  | DiagnosticsEngine::Error, "backend data layout '%0' does not match " | 
|  | "expected target description '%1'"); | 
|  | Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static const char* getSectionNameForBitcode(const Triple &T) { | 
|  | switch (T.getObjectFormat()) { | 
|  | case Triple::MachO: | 
|  | return "__LLVM,__bitcode"; | 
|  | case Triple::COFF: | 
|  | case Triple::ELF: | 
|  | case Triple::Wasm: | 
|  | case Triple::UnknownObjectFormat: | 
|  | return ".llvmbc"; | 
|  | case Triple::XCOFF: | 
|  | llvm_unreachable("XCOFF is not yet implemented"); | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("Unimplemented ObjectFormatType"); | 
|  | } | 
|  |  | 
|  | static const char* getSectionNameForCommandline(const Triple &T) { | 
|  | switch (T.getObjectFormat()) { | 
|  | case Triple::MachO: | 
|  | return "__LLVM,__cmdline"; | 
|  | case Triple::COFF: | 
|  | case Triple::ELF: | 
|  | case Triple::Wasm: | 
|  | case Triple::UnknownObjectFormat: | 
|  | return ".llvmcmd"; | 
|  | case Triple::XCOFF: | 
|  | llvm_unreachable("XCOFF is not yet implemented"); | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("Unimplemented ObjectFormatType"); | 
|  | } | 
|  |  | 
|  | // With -fembed-bitcode, save a copy of the llvm IR as data in the | 
|  | // __LLVM,__bitcode section. | 
|  | void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, | 
|  | llvm::MemoryBufferRef Buf) { | 
|  | if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) | 
|  | return; | 
|  |  | 
|  | // Save llvm.compiler.used and remote it. | 
|  | SmallVector<Constant*, 2> UsedArray; | 
|  | SmallPtrSet<GlobalValue*, 4> UsedGlobals; | 
|  | Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); | 
|  | GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); | 
|  | for (auto *GV : UsedGlobals) { | 
|  | if (GV->getName() != "llvm.embedded.module" && | 
|  | GV->getName() != "llvm.cmdline") | 
|  | UsedArray.push_back( | 
|  | ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); | 
|  | } | 
|  | if (Used) | 
|  | Used->eraseFromParent(); | 
|  |  | 
|  | // Embed the bitcode for the llvm module. | 
|  | std::string Data; | 
|  | ArrayRef<uint8_t> ModuleData; | 
|  | Triple T(M->getTargetTriple()); | 
|  | // Create a constant that contains the bitcode. | 
|  | // In case of embedding a marker, ignore the input Buf and use the empty | 
|  | // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. | 
|  | if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { | 
|  | if (!isBitcode((const unsigned char *)Buf.getBufferStart(), | 
|  | (const unsigned char *)Buf.getBufferEnd())) { | 
|  | // If the input is LLVM Assembly, bitcode is produced by serializing | 
|  | // the module. Use-lists order need to be perserved in this case. | 
|  | llvm::raw_string_ostream OS(Data); | 
|  | llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); | 
|  | ModuleData = | 
|  | ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); | 
|  | } else | 
|  | // If the input is LLVM bitcode, write the input byte stream directly. | 
|  | ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), | 
|  | Buf.getBufferSize()); | 
|  | } | 
|  | llvm::Constant *ModuleConstant = | 
|  | llvm::ConstantDataArray::get(M->getContext(), ModuleData); | 
|  | llvm::GlobalVariable *GV = new llvm::GlobalVariable( | 
|  | *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, | 
|  | ModuleConstant); | 
|  | GV->setSection(getSectionNameForBitcode(T)); | 
|  | UsedArray.push_back( | 
|  | ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); | 
|  | if (llvm::GlobalVariable *Old = | 
|  | M->getGlobalVariable("llvm.embedded.module", true)) { | 
|  | assert(Old->hasOneUse() && | 
|  | "llvm.embedded.module can only be used once in llvm.compiler.used"); | 
|  | GV->takeName(Old); | 
|  | Old->eraseFromParent(); | 
|  | } else { | 
|  | GV->setName("llvm.embedded.module"); | 
|  | } | 
|  |  | 
|  | // Skip if only bitcode needs to be embedded. | 
|  | if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { | 
|  | // Embed command-line options. | 
|  | ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), | 
|  | CGOpts.CmdArgs.size()); | 
|  | llvm::Constant *CmdConstant = | 
|  | llvm::ConstantDataArray::get(M->getContext(), CmdData); | 
|  | GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, | 
|  | llvm::GlobalValue::PrivateLinkage, | 
|  | CmdConstant); | 
|  | GV->setSection(getSectionNameForCommandline(T)); | 
|  | UsedArray.push_back( | 
|  | ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); | 
|  | if (llvm::GlobalVariable *Old = | 
|  | M->getGlobalVariable("llvm.cmdline", true)) { | 
|  | assert(Old->hasOneUse() && | 
|  | "llvm.cmdline can only be used once in llvm.compiler.used"); | 
|  | GV->takeName(Old); | 
|  | Old->eraseFromParent(); | 
|  | } else { | 
|  | GV->setName("llvm.cmdline"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (UsedArray.empty()) | 
|  | return; | 
|  |  | 
|  | // Recreate llvm.compiler.used. | 
|  | ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); | 
|  | auto *NewUsed = new GlobalVariable( | 
|  | *M, ATy, false, llvm::GlobalValue::AppendingLinkage, | 
|  | llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); | 
|  | NewUsed->setSection("llvm.metadata"); | 
|  | } |