|  | //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains a pass (at IR level) to replace atomic instructions with | 
|  | // __atomic_* library calls, or target specific instruction which implement the | 
|  | // same semantics in a way which better fits the target backend.  This can | 
|  | // include the use of (intrinsic-based) load-linked/store-conditional loops, | 
|  | // AtomicCmpXchg, or type coercions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/CodeGen/AtomicExpandUtils.h" | 
|  | #include "llvm/CodeGen/RuntimeLibcalls.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/TargetPassConfig.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/AtomicOrdering.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "atomic-expand" | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class AtomicExpand: public FunctionPass { | 
|  | const TargetLowering *TLI = nullptr; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  |  | 
|  | AtomicExpand() : FunctionPass(ID) { | 
|  | initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override; | 
|  |  | 
|  | private: | 
|  | bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); | 
|  | IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); | 
|  | LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); | 
|  | bool tryExpandAtomicLoad(LoadInst *LI); | 
|  | bool expandAtomicLoadToLL(LoadInst *LI); | 
|  | bool expandAtomicLoadToCmpXchg(LoadInst *LI); | 
|  | StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); | 
|  | bool expandAtomicStore(StoreInst *SI); | 
|  | bool tryExpandAtomicRMW(AtomicRMWInst *AI); | 
|  | Value * | 
|  | insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, | 
|  | AtomicOrdering MemOpOrder, | 
|  | function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); | 
|  | void expandAtomicOpToLLSC( | 
|  | Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder, | 
|  | function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); | 
|  | void expandPartwordAtomicRMW( | 
|  | AtomicRMWInst *I, | 
|  | TargetLoweringBase::AtomicExpansionKind ExpansionKind); | 
|  | AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); | 
|  | void expandPartwordCmpXchg(AtomicCmpXchgInst *I); | 
|  | void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); | 
|  | void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); | 
|  |  | 
|  | AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); | 
|  | static Value *insertRMWCmpXchgLoop( | 
|  | IRBuilder<> &Builder, Type *ResultType, Value *Addr, | 
|  | AtomicOrdering MemOpOrder, | 
|  | function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, | 
|  | CreateCmpXchgInstFun CreateCmpXchg); | 
|  | bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); | 
|  |  | 
|  | bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); | 
|  | bool isIdempotentRMW(AtomicRMWInst *RMWI); | 
|  | bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); | 
|  |  | 
|  | bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align, | 
|  | Value *PointerOperand, Value *ValueOperand, | 
|  | Value *CASExpected, AtomicOrdering Ordering, | 
|  | AtomicOrdering Ordering2, | 
|  | ArrayRef<RTLIB::Libcall> Libcalls); | 
|  | void expandAtomicLoadToLibcall(LoadInst *LI); | 
|  | void expandAtomicStoreToLibcall(StoreInst *LI); | 
|  | void expandAtomicRMWToLibcall(AtomicRMWInst *I); | 
|  | void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); | 
|  |  | 
|  | friend bool | 
|  | llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, | 
|  | CreateCmpXchgInstFun CreateCmpXchg); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char AtomicExpand::ID = 0; | 
|  |  | 
|  | char &llvm::AtomicExpandID = AtomicExpand::ID; | 
|  |  | 
|  | INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", | 
|  | false, false) | 
|  |  | 
|  | FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } | 
|  |  | 
|  | // Helper functions to retrieve the size of atomic instructions. | 
|  | static unsigned getAtomicOpSize(LoadInst *LI) { | 
|  | const DataLayout &DL = LI->getModule()->getDataLayout(); | 
|  | return DL.getTypeStoreSize(LI->getType()); | 
|  | } | 
|  |  | 
|  | static unsigned getAtomicOpSize(StoreInst *SI) { | 
|  | const DataLayout &DL = SI->getModule()->getDataLayout(); | 
|  | return DL.getTypeStoreSize(SI->getValueOperand()->getType()); | 
|  | } | 
|  |  | 
|  | static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { | 
|  | const DataLayout &DL = RMWI->getModule()->getDataLayout(); | 
|  | return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); | 
|  | } | 
|  |  | 
|  | static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { | 
|  | const DataLayout &DL = CASI->getModule()->getDataLayout(); | 
|  | return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); | 
|  | } | 
|  |  | 
|  | // Helper functions to retrieve the alignment of atomic instructions. | 
|  | static unsigned getAtomicOpAlign(LoadInst *LI) { | 
|  | unsigned Align = LI->getAlignment(); | 
|  | // In the future, if this IR restriction is relaxed, we should | 
|  | // return DataLayout::getABITypeAlignment when there's no align | 
|  | // value. | 
|  | assert(Align != 0 && "An atomic LoadInst always has an explicit alignment"); | 
|  | return Align; | 
|  | } | 
|  |  | 
|  | static unsigned getAtomicOpAlign(StoreInst *SI) { | 
|  | unsigned Align = SI->getAlignment(); | 
|  | // In the future, if this IR restriction is relaxed, we should | 
|  | // return DataLayout::getABITypeAlignment when there's no align | 
|  | // value. | 
|  | assert(Align != 0 && "An atomic StoreInst always has an explicit alignment"); | 
|  | return Align; | 
|  | } | 
|  |  | 
|  | static unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) { | 
|  | // TODO(PR27168): This instruction has no alignment attribute, but unlike the | 
|  | // default alignment for load/store, the default here is to assume | 
|  | // it has NATURAL alignment, not DataLayout-specified alignment. | 
|  | const DataLayout &DL = RMWI->getModule()->getDataLayout(); | 
|  | return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); | 
|  | } | 
|  |  | 
|  | static unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) { | 
|  | // TODO(PR27168): same comment as above. | 
|  | const DataLayout &DL = CASI->getModule()->getDataLayout(); | 
|  | return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); | 
|  | } | 
|  |  | 
|  | // Determine if a particular atomic operation has a supported size, | 
|  | // and is of appropriate alignment, to be passed through for target | 
|  | // lowering. (Versus turning into a __atomic libcall) | 
|  | template <typename Inst> | 
|  | static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { | 
|  | unsigned Size = getAtomicOpSize(I); | 
|  | unsigned Align = getAtomicOpAlign(I); | 
|  | return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::runOnFunction(Function &F) { | 
|  | auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); | 
|  | if (!TPC) | 
|  | return false; | 
|  |  | 
|  | auto &TM = TPC->getTM<TargetMachine>(); | 
|  | if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) | 
|  | return false; | 
|  | TLI = TM.getSubtargetImpl(F)->getTargetLowering(); | 
|  |  | 
|  | SmallVector<Instruction *, 1> AtomicInsts; | 
|  |  | 
|  | // Changing control-flow while iterating through it is a bad idea, so gather a | 
|  | // list of all atomic instructions before we start. | 
|  | for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { | 
|  | Instruction *I = &*II; | 
|  | if (I->isAtomic() && !isa<FenceInst>(I)) | 
|  | AtomicInsts.push_back(I); | 
|  | } | 
|  |  | 
|  | bool MadeChange = false; | 
|  | for (auto I : AtomicInsts) { | 
|  | auto LI = dyn_cast<LoadInst>(I); | 
|  | auto SI = dyn_cast<StoreInst>(I); | 
|  | auto RMWI = dyn_cast<AtomicRMWInst>(I); | 
|  | auto CASI = dyn_cast<AtomicCmpXchgInst>(I); | 
|  | assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); | 
|  |  | 
|  | // If the Size/Alignment is not supported, replace with a libcall. | 
|  | if (LI) { | 
|  | if (!atomicSizeSupported(TLI, LI)) { | 
|  | expandAtomicLoadToLibcall(LI); | 
|  | MadeChange = true; | 
|  | continue; | 
|  | } | 
|  | } else if (SI) { | 
|  | if (!atomicSizeSupported(TLI, SI)) { | 
|  | expandAtomicStoreToLibcall(SI); | 
|  | MadeChange = true; | 
|  | continue; | 
|  | } | 
|  | } else if (RMWI) { | 
|  | if (!atomicSizeSupported(TLI, RMWI)) { | 
|  | expandAtomicRMWToLibcall(RMWI); | 
|  | MadeChange = true; | 
|  | continue; | 
|  | } | 
|  | } else if (CASI) { | 
|  | if (!atomicSizeSupported(TLI, CASI)) { | 
|  | expandAtomicCASToLibcall(CASI); | 
|  | MadeChange = true; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TLI->shouldInsertFencesForAtomic(I)) { | 
|  | auto FenceOrdering = AtomicOrdering::Monotonic; | 
|  | if (LI && isAcquireOrStronger(LI->getOrdering())) { | 
|  | FenceOrdering = LI->getOrdering(); | 
|  | LI->setOrdering(AtomicOrdering::Monotonic); | 
|  | } else if (SI && isReleaseOrStronger(SI->getOrdering())) { | 
|  | FenceOrdering = SI->getOrdering(); | 
|  | SI->setOrdering(AtomicOrdering::Monotonic); | 
|  | } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || | 
|  | isAcquireOrStronger(RMWI->getOrdering()))) { | 
|  | FenceOrdering = RMWI->getOrdering(); | 
|  | RMWI->setOrdering(AtomicOrdering::Monotonic); | 
|  | } else if (CASI && | 
|  | TLI->shouldExpandAtomicCmpXchgInIR(CASI) == | 
|  | TargetLoweringBase::AtomicExpansionKind::None && | 
|  | (isReleaseOrStronger(CASI->getSuccessOrdering()) || | 
|  | isAcquireOrStronger(CASI->getSuccessOrdering()))) { | 
|  | // If a compare and swap is lowered to LL/SC, we can do smarter fence | 
|  | // insertion, with a stronger one on the success path than on the | 
|  | // failure path. As a result, fence insertion is directly done by | 
|  | // expandAtomicCmpXchg in that case. | 
|  | FenceOrdering = CASI->getSuccessOrdering(); | 
|  | CASI->setSuccessOrdering(AtomicOrdering::Monotonic); | 
|  | CASI->setFailureOrdering(AtomicOrdering::Monotonic); | 
|  | } | 
|  |  | 
|  | if (FenceOrdering != AtomicOrdering::Monotonic) { | 
|  | MadeChange |= bracketInstWithFences(I, FenceOrdering); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LI) { | 
|  | if (LI->getType()->isFloatingPointTy()) { | 
|  | // TODO: add a TLI hook to control this so that each target can | 
|  | // convert to lowering the original type one at a time. | 
|  | LI = convertAtomicLoadToIntegerType(LI); | 
|  | assert(LI->getType()->isIntegerTy() && "invariant broken"); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | MadeChange |= tryExpandAtomicLoad(LI); | 
|  | } else if (SI) { | 
|  | if (SI->getValueOperand()->getType()->isFloatingPointTy()) { | 
|  | // TODO: add a TLI hook to control this so that each target can | 
|  | // convert to lowering the original type one at a time. | 
|  | SI = convertAtomicStoreToIntegerType(SI); | 
|  | assert(SI->getValueOperand()->getType()->isIntegerTy() && | 
|  | "invariant broken"); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | if (TLI->shouldExpandAtomicStoreInIR(SI)) | 
|  | MadeChange |= expandAtomicStore(SI); | 
|  | } else if (RMWI) { | 
|  | // There are two different ways of expanding RMW instructions: | 
|  | // - into a load if it is idempotent | 
|  | // - into a Cmpxchg/LL-SC loop otherwise | 
|  | // we try them in that order. | 
|  |  | 
|  | if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { | 
|  | MadeChange = true; | 
|  | } else { | 
|  | unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; | 
|  | unsigned ValueSize = getAtomicOpSize(RMWI); | 
|  | AtomicRMWInst::BinOp Op = RMWI->getOperation(); | 
|  | if (ValueSize < MinCASSize && | 
|  | (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || | 
|  | Op == AtomicRMWInst::And)) { | 
|  | RMWI = widenPartwordAtomicRMW(RMWI); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | MadeChange |= tryExpandAtomicRMW(RMWI); | 
|  | } | 
|  | } else if (CASI) { | 
|  | // TODO: when we're ready to make the change at the IR level, we can | 
|  | // extend convertCmpXchgToInteger for floating point too. | 
|  | assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && | 
|  | "unimplemented - floating point not legal at IR level"); | 
|  | if (CASI->getCompareOperand()->getType()->isPointerTy() ) { | 
|  | // TODO: add a TLI hook to control this so that each target can | 
|  | // convert to lowering the original type one at a time. | 
|  | CASI = convertCmpXchgToIntegerType(CASI); | 
|  | assert(CASI->getCompareOperand()->getType()->isIntegerTy() && | 
|  | "invariant broken"); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | MadeChange |= tryExpandAtomicCmpXchg(CASI); | 
|  | } | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { | 
|  | IRBuilder<> Builder(I); | 
|  |  | 
|  | auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); | 
|  |  | 
|  | auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); | 
|  | // We have a guard here because not every atomic operation generates a | 
|  | // trailing fence. | 
|  | if (TrailingFence) | 
|  | TrailingFence->moveAfter(I); | 
|  |  | 
|  | return (LeadingFence || TrailingFence); | 
|  | } | 
|  |  | 
|  | /// Get the iX type with the same bitwidth as T. | 
|  | IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, | 
|  | const DataLayout &DL) { | 
|  | EVT VT = TLI->getValueType(DL, T); | 
|  | unsigned BitWidth = VT.getStoreSizeInBits(); | 
|  | assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); | 
|  | return IntegerType::get(T->getContext(), BitWidth); | 
|  | } | 
|  |  | 
|  | /// Convert an atomic load of a non-integral type to an integer load of the | 
|  | /// equivalent bitwidth.  See the function comment on | 
|  | /// convertAtomicStoreToIntegerType for background. | 
|  | LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { | 
|  | auto *M = LI->getModule(); | 
|  | Type *NewTy = getCorrespondingIntegerType(LI->getType(), | 
|  | M->getDataLayout()); | 
|  |  | 
|  | IRBuilder<> Builder(LI); | 
|  |  | 
|  | Value *Addr = LI->getPointerOperand(); | 
|  | Type *PT = PointerType::get(NewTy, | 
|  | Addr->getType()->getPointerAddressSpace()); | 
|  | Value *NewAddr = Builder.CreateBitCast(Addr, PT); | 
|  |  | 
|  | auto *NewLI = Builder.CreateLoad(NewAddr); | 
|  | NewLI->setAlignment(LI->getAlignment()); | 
|  | NewLI->setVolatile(LI->isVolatile()); | 
|  | NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); | 
|  | LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); | 
|  |  | 
|  | Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); | 
|  | LI->replaceAllUsesWith(NewVal); | 
|  | LI->eraseFromParent(); | 
|  | return NewLI; | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { | 
|  | switch (TLI->shouldExpandAtomicLoadInIR(LI)) { | 
|  | case TargetLoweringBase::AtomicExpansionKind::None: | 
|  | return false; | 
|  | case TargetLoweringBase::AtomicExpansionKind::LLSC: | 
|  | expandAtomicOpToLLSC( | 
|  | LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(), | 
|  | [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); | 
|  | return true; | 
|  | case TargetLoweringBase::AtomicExpansionKind::LLOnly: | 
|  | return expandAtomicLoadToLL(LI); | 
|  | case TargetLoweringBase::AtomicExpansionKind::CmpXChg: | 
|  | return expandAtomicLoadToCmpXchg(LI); | 
|  | default: | 
|  | llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { | 
|  | IRBuilder<> Builder(LI); | 
|  |  | 
|  | // On some architectures, load-linked instructions are atomic for larger | 
|  | // sizes than normal loads. For example, the only 64-bit load guaranteed | 
|  | // to be single-copy atomic by ARM is an ldrexd (A3.5.3). | 
|  | Value *Val = | 
|  | TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); | 
|  | TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); | 
|  |  | 
|  | LI->replaceAllUsesWith(Val); | 
|  | LI->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { | 
|  | IRBuilder<> Builder(LI); | 
|  | AtomicOrdering Order = LI->getOrdering(); | 
|  | Value *Addr = LI->getPointerOperand(); | 
|  | Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); | 
|  | Constant *DummyVal = Constant::getNullValue(Ty); | 
|  |  | 
|  | Value *Pair = Builder.CreateAtomicCmpXchg( | 
|  | Addr, DummyVal, DummyVal, Order, | 
|  | AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); | 
|  | Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); | 
|  |  | 
|  | LI->replaceAllUsesWith(Loaded); | 
|  | LI->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Convert an atomic store of a non-integral type to an integer store of the | 
|  | /// equivalent bitwidth.  We used to not support floating point or vector | 
|  | /// atomics in the IR at all.  The backends learned to deal with the bitcast | 
|  | /// idiom because that was the only way of expressing the notion of a atomic | 
|  | /// float or vector store.  The long term plan is to teach each backend to | 
|  | /// instruction select from the original atomic store, but as a migration | 
|  | /// mechanism, we convert back to the old format which the backends understand. | 
|  | /// Each backend will need individual work to recognize the new format. | 
|  | StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { | 
|  | IRBuilder<> Builder(SI); | 
|  | auto *M = SI->getModule(); | 
|  | Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), | 
|  | M->getDataLayout()); | 
|  | Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); | 
|  |  | 
|  | Value *Addr = SI->getPointerOperand(); | 
|  | Type *PT = PointerType::get(NewTy, | 
|  | Addr->getType()->getPointerAddressSpace()); | 
|  | Value *NewAddr = Builder.CreateBitCast(Addr, PT); | 
|  |  | 
|  | StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); | 
|  | NewSI->setAlignment(SI->getAlignment()); | 
|  | NewSI->setVolatile(SI->isVolatile()); | 
|  | NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); | 
|  | LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); | 
|  | SI->eraseFromParent(); | 
|  | return NewSI; | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::expandAtomicStore(StoreInst *SI) { | 
|  | // This function is only called on atomic stores that are too large to be | 
|  | // atomic if implemented as a native store. So we replace them by an | 
|  | // atomic swap, that can be implemented for example as a ldrex/strex on ARM | 
|  | // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. | 
|  | // It is the responsibility of the target to only signal expansion via | 
|  | // shouldExpandAtomicRMW in cases where this is required and possible. | 
|  | IRBuilder<> Builder(SI); | 
|  | AtomicRMWInst *AI = | 
|  | Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), | 
|  | SI->getValueOperand(), SI->getOrdering()); | 
|  | SI->eraseFromParent(); | 
|  |  | 
|  | // Now we have an appropriate swap instruction, lower it as usual. | 
|  | return tryExpandAtomicRMW(AI); | 
|  | } | 
|  |  | 
|  | static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, | 
|  | Value *Loaded, Value *NewVal, | 
|  | AtomicOrdering MemOpOrder, | 
|  | Value *&Success, Value *&NewLoaded) { | 
|  | Type *OrigTy = NewVal->getType(); | 
|  |  | 
|  | // This code can go away when cmpxchg supports FP types. | 
|  | bool NeedBitcast = OrigTy->isFloatingPointTy(); | 
|  | if (NeedBitcast) { | 
|  | IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); | 
|  | unsigned AS = Addr->getType()->getPointerAddressSpace(); | 
|  | Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS)); | 
|  | NewVal = Builder.CreateBitCast(NewVal, IntTy); | 
|  | Loaded = Builder.CreateBitCast(Loaded, IntTy); | 
|  | } | 
|  |  | 
|  | Value* Pair = Builder.CreateAtomicCmpXchg( | 
|  | Addr, Loaded, NewVal, MemOpOrder, | 
|  | AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); | 
|  | Success = Builder.CreateExtractValue(Pair, 1, "success"); | 
|  | NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); | 
|  |  | 
|  | if (NeedBitcast) | 
|  | NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); | 
|  | } | 
|  |  | 
|  | /// Emit IR to implement the given atomicrmw operation on values in registers, | 
|  | /// returning the new value. | 
|  | static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, | 
|  | Value *Loaded, Value *Inc) { | 
|  | Value *NewVal; | 
|  | switch (Op) { | 
|  | case AtomicRMWInst::Xchg: | 
|  | return Inc; | 
|  | case AtomicRMWInst::Add: | 
|  | return Builder.CreateAdd(Loaded, Inc, "new"); | 
|  | case AtomicRMWInst::Sub: | 
|  | return Builder.CreateSub(Loaded, Inc, "new"); | 
|  | case AtomicRMWInst::And: | 
|  | return Builder.CreateAnd(Loaded, Inc, "new"); | 
|  | case AtomicRMWInst::Nand: | 
|  | return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); | 
|  | case AtomicRMWInst::Or: | 
|  | return Builder.CreateOr(Loaded, Inc, "new"); | 
|  | case AtomicRMWInst::Xor: | 
|  | return Builder.CreateXor(Loaded, Inc, "new"); | 
|  | case AtomicRMWInst::Max: | 
|  | NewVal = Builder.CreateICmpSGT(Loaded, Inc); | 
|  | return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); | 
|  | case AtomicRMWInst::Min: | 
|  | NewVal = Builder.CreateICmpSLE(Loaded, Inc); | 
|  | return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); | 
|  | case AtomicRMWInst::UMax: | 
|  | NewVal = Builder.CreateICmpUGT(Loaded, Inc); | 
|  | return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); | 
|  | case AtomicRMWInst::UMin: | 
|  | NewVal = Builder.CreateICmpULE(Loaded, Inc); | 
|  | return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); | 
|  | default: | 
|  | llvm_unreachable("Unknown atomic op"); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { | 
|  | switch (TLI->shouldExpandAtomicRMWInIR(AI)) { | 
|  | case TargetLoweringBase::AtomicExpansionKind::None: | 
|  | return false; | 
|  | case TargetLoweringBase::AtomicExpansionKind::LLSC: { | 
|  | unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; | 
|  | unsigned ValueSize = getAtomicOpSize(AI); | 
|  | if (ValueSize < MinCASSize) { | 
|  | llvm_unreachable( | 
|  | "MinCmpXchgSizeInBits not yet supported for LL/SC architectures."); | 
|  | } else { | 
|  | auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { | 
|  | return performAtomicOp(AI->getOperation(), Builder, Loaded, | 
|  | AI->getValOperand()); | 
|  | }; | 
|  | expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), | 
|  | AI->getOrdering(), PerformOp); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { | 
|  | unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; | 
|  | unsigned ValueSize = getAtomicOpSize(AI); | 
|  | if (ValueSize < MinCASSize) { | 
|  | expandPartwordAtomicRMW(AI, | 
|  | TargetLoweringBase::AtomicExpansionKind::CmpXChg); | 
|  | } else { | 
|  | expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { | 
|  | expandAtomicRMWToMaskedIntrinsic(AI); | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Result values from createMaskInstrs helper. | 
|  | struct PartwordMaskValues { | 
|  | Type *WordType; | 
|  | Type *ValueType; | 
|  | Value *AlignedAddr; | 
|  | Value *ShiftAmt; | 
|  | Value *Mask; | 
|  | Value *Inv_Mask; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// This is a helper function which builds instructions to provide | 
|  | /// values necessary for partword atomic operations. It takes an | 
|  | /// incoming address, Addr, and ValueType, and constructs the address, | 
|  | /// shift-amounts and masks needed to work with a larger value of size | 
|  | /// WordSize. | 
|  | /// | 
|  | /// AlignedAddr: Addr rounded down to a multiple of WordSize | 
|  | /// | 
|  | /// ShiftAmt: Number of bits to right-shift a WordSize value loaded | 
|  | ///           from AlignAddr for it to have the same value as if | 
|  | ///           ValueType was loaded from Addr. | 
|  | /// | 
|  | /// Mask: Value to mask with the value loaded from AlignAddr to | 
|  | ///       include only the part that would've been loaded from Addr. | 
|  | /// | 
|  | /// Inv_Mask: The inverse of Mask. | 
|  | static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, | 
|  | Type *ValueType, Value *Addr, | 
|  | unsigned WordSize) { | 
|  | PartwordMaskValues Ret; | 
|  |  | 
|  | BasicBlock *BB = I->getParent(); | 
|  | Function *F = BB->getParent(); | 
|  | Module *M = I->getModule(); | 
|  |  | 
|  | LLVMContext &Ctx = F->getContext(); | 
|  | const DataLayout &DL = M->getDataLayout(); | 
|  |  | 
|  | unsigned ValueSize = DL.getTypeStoreSize(ValueType); | 
|  |  | 
|  | assert(ValueSize < WordSize); | 
|  |  | 
|  | Ret.ValueType = ValueType; | 
|  | Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8); | 
|  |  | 
|  | Type *WordPtrType = | 
|  | Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); | 
|  |  | 
|  | Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); | 
|  | Ret.AlignedAddr = Builder.CreateIntToPtr( | 
|  | Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType, | 
|  | "AlignedAddr"); | 
|  |  | 
|  | Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB"); | 
|  | if (DL.isLittleEndian()) { | 
|  | // turn bytes into bits | 
|  | Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3); | 
|  | } else { | 
|  | // turn bytes into bits, and count from the other side. | 
|  | Ret.ShiftAmt = | 
|  | Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3); | 
|  | } | 
|  |  | 
|  | Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt"); | 
|  | Ret.Mask = Builder.CreateShl( | 
|  | ConstantInt::get(Ret.WordType, (1 << ValueSize * 8) - 1), Ret.ShiftAmt, | 
|  | "Mask"); | 
|  | Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask"); | 
|  |  | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | /// Emit IR to implement a masked version of a given atomicrmw | 
|  | /// operation. (That is, only the bits under the Mask should be | 
|  | /// affected by the operation) | 
|  | static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, | 
|  | IRBuilder<> &Builder, Value *Loaded, | 
|  | Value *Shifted_Inc, Value *Inc, | 
|  | const PartwordMaskValues &PMV) { | 
|  | // TODO: update to use | 
|  | // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order | 
|  | // to merge bits from two values without requiring PMV.Inv_Mask. | 
|  | switch (Op) { | 
|  | case AtomicRMWInst::Xchg: { | 
|  | Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); | 
|  | Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); | 
|  | return FinalVal; | 
|  | } | 
|  | case AtomicRMWInst::Or: | 
|  | case AtomicRMWInst::Xor: | 
|  | case AtomicRMWInst::And: | 
|  | llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); | 
|  | case AtomicRMWInst::Add: | 
|  | case AtomicRMWInst::Sub: | 
|  | case AtomicRMWInst::Nand: { | 
|  | // The other arithmetic ops need to be masked into place. | 
|  | Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); | 
|  | Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); | 
|  | Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); | 
|  | Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); | 
|  | return FinalVal; | 
|  | } | 
|  | case AtomicRMWInst::Max: | 
|  | case AtomicRMWInst::Min: | 
|  | case AtomicRMWInst::UMax: | 
|  | case AtomicRMWInst::UMin: { | 
|  | // Finally, comparison ops will operate on the full value, so | 
|  | // truncate down to the original size, and expand out again after | 
|  | // doing the operation. | 
|  | Value *Loaded_Shiftdown = Builder.CreateTrunc( | 
|  | Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType); | 
|  | Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc); | 
|  | Value *NewVal_Shiftup = Builder.CreateShl( | 
|  | Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); | 
|  | Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); | 
|  | Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup); | 
|  | return FinalVal; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("Unknown atomic op"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Expand a sub-word atomicrmw operation into an appropriate | 
|  | /// word-sized operation. | 
|  | /// | 
|  | /// It will create an LL/SC or cmpxchg loop, as appropriate, the same | 
|  | /// way as a typical atomicrmw expansion. The only difference here is | 
|  | /// that the operation inside of the loop must operate only upon a | 
|  | /// part of the value. | 
|  | void AtomicExpand::expandPartwordAtomicRMW( | 
|  | AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { | 
|  | assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg); | 
|  |  | 
|  | AtomicOrdering MemOpOrder = AI->getOrdering(); | 
|  |  | 
|  | IRBuilder<> Builder(AI); | 
|  |  | 
|  | PartwordMaskValues PMV = | 
|  | createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), | 
|  | TLI->getMinCmpXchgSizeInBits() / 8); | 
|  |  | 
|  | Value *ValOperand_Shifted = | 
|  | Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), | 
|  | PMV.ShiftAmt, "ValOperand_Shifted"); | 
|  |  | 
|  | auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { | 
|  | return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, | 
|  | ValOperand_Shifted, AI->getValOperand(), PMV); | 
|  | }; | 
|  |  | 
|  | // TODO: When we're ready to support LLSC conversions too, use | 
|  | // insertRMWLLSCLoop here for ExpansionKind==LLSC. | 
|  | Value *OldResult = | 
|  | insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder, | 
|  | PerformPartwordOp, createCmpXchgInstFun); | 
|  | Value *FinalOldResult = Builder.CreateTrunc( | 
|  | Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType); | 
|  | AI->replaceAllUsesWith(FinalOldResult); | 
|  | AI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. | 
|  | AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { | 
|  | IRBuilder<> Builder(AI); | 
|  | AtomicRMWInst::BinOp Op = AI->getOperation(); | 
|  |  | 
|  | assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || | 
|  | Op == AtomicRMWInst::And) && | 
|  | "Unable to widen operation"); | 
|  |  | 
|  | PartwordMaskValues PMV = | 
|  | createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), | 
|  | TLI->getMinCmpXchgSizeInBits() / 8); | 
|  |  | 
|  | Value *ValOperand_Shifted = | 
|  | Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), | 
|  | PMV.ShiftAmt, "ValOperand_Shifted"); | 
|  |  | 
|  | Value *NewOperand; | 
|  |  | 
|  | if (Op == AtomicRMWInst::And) | 
|  | NewOperand = | 
|  | Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); | 
|  | else | 
|  | NewOperand = ValOperand_Shifted; | 
|  |  | 
|  | AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, | 
|  | NewOperand, AI->getOrdering()); | 
|  |  | 
|  | Value *FinalOldResult = Builder.CreateTrunc( | 
|  | Builder.CreateLShr(NewAI, PMV.ShiftAmt), PMV.ValueType); | 
|  | AI->replaceAllUsesWith(FinalOldResult); | 
|  | AI->eraseFromParent(); | 
|  | return NewAI; | 
|  | } | 
|  |  | 
|  | void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { | 
|  | // The basic idea here is that we're expanding a cmpxchg of a | 
|  | // smaller memory size up to a word-sized cmpxchg. To do this, we | 
|  | // need to add a retry-loop for strong cmpxchg, so that | 
|  | // modifications to other parts of the word don't cause a spurious | 
|  | // failure. | 
|  |  | 
|  | // This generates code like the following: | 
|  | //     [[Setup mask values PMV.*]] | 
|  | //     %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt | 
|  | //     %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt | 
|  | //     %InitLoaded = load i32* %addr | 
|  | //     %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask | 
|  | //     br partword.cmpxchg.loop | 
|  | // partword.cmpxchg.loop: | 
|  | //     %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], | 
|  | //        [ %OldVal_MaskOut, %partword.cmpxchg.failure ] | 
|  | //     %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted | 
|  | //     %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted | 
|  | //     %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, | 
|  | //        i32 %FullWord_NewVal success_ordering failure_ordering | 
|  | //     %OldVal = extractvalue { i32, i1 } %NewCI, 0 | 
|  | //     %Success = extractvalue { i32, i1 } %NewCI, 1 | 
|  | //     br i1 %Success, label %partword.cmpxchg.end, | 
|  | //        label %partword.cmpxchg.failure | 
|  | // partword.cmpxchg.failure: | 
|  | //     %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask | 
|  | //     %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut | 
|  | //     br i1 %ShouldContinue, label %partword.cmpxchg.loop, | 
|  | //         label %partword.cmpxchg.end | 
|  | // partword.cmpxchg.end: | 
|  | //    %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt | 
|  | //    %FinalOldVal = trunc i32 %tmp1 to i8 | 
|  | //    %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 | 
|  | //    %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 | 
|  |  | 
|  | Value *Addr = CI->getPointerOperand(); | 
|  | Value *Cmp = CI->getCompareOperand(); | 
|  | Value *NewVal = CI->getNewValOperand(); | 
|  |  | 
|  | BasicBlock *BB = CI->getParent(); | 
|  | Function *F = BB->getParent(); | 
|  | IRBuilder<> Builder(CI); | 
|  | LLVMContext &Ctx = Builder.getContext(); | 
|  |  | 
|  | const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8; | 
|  |  | 
|  | BasicBlock *EndBB = | 
|  | BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); | 
|  | auto FailureBB = | 
|  | BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); | 
|  | auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); | 
|  |  | 
|  | // The split call above "helpfully" added a branch at the end of BB | 
|  | // (to the wrong place). | 
|  | std::prev(BB->end())->eraseFromParent(); | 
|  | Builder.SetInsertPoint(BB); | 
|  |  | 
|  | PartwordMaskValues PMV = createMaskInstrs( | 
|  | Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize); | 
|  |  | 
|  | // Shift the incoming values over, into the right location in the word. | 
|  | Value *NewVal_Shifted = | 
|  | Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); | 
|  | Value *Cmp_Shifted = | 
|  | Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); | 
|  |  | 
|  | // Load the entire current word, and mask into place the expected and new | 
|  | // values | 
|  | LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); | 
|  | InitLoaded->setVolatile(CI->isVolatile()); | 
|  | Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); | 
|  | Builder.CreateBr(LoopBB); | 
|  |  | 
|  | // partword.cmpxchg.loop: | 
|  | Builder.SetInsertPoint(LoopBB); | 
|  | PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); | 
|  | Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); | 
|  |  | 
|  | // Mask/Or the expected and new values into place in the loaded word. | 
|  | Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); | 
|  | Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); | 
|  | AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( | 
|  | PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(), | 
|  | CI->getFailureOrdering(), CI->getSyncScopeID()); | 
|  | NewCI->setVolatile(CI->isVolatile()); | 
|  | // When we're building a strong cmpxchg, we need a loop, so you | 
|  | // might think we could use a weak cmpxchg inside. But, using strong | 
|  | // allows the below comparison for ShouldContinue, and we're | 
|  | // expecting the underlying cmpxchg to be a machine instruction, | 
|  | // which is strong anyways. | 
|  | NewCI->setWeak(CI->isWeak()); | 
|  |  | 
|  | Value *OldVal = Builder.CreateExtractValue(NewCI, 0); | 
|  | Value *Success = Builder.CreateExtractValue(NewCI, 1); | 
|  |  | 
|  | if (CI->isWeak()) | 
|  | Builder.CreateBr(EndBB); | 
|  | else | 
|  | Builder.CreateCondBr(Success, EndBB, FailureBB); | 
|  |  | 
|  | // partword.cmpxchg.failure: | 
|  | Builder.SetInsertPoint(FailureBB); | 
|  | // Upon failure, verify that the masked-out part of the loaded value | 
|  | // has been modified.  If it didn't, abort the cmpxchg, since the | 
|  | // masked-in part must've. | 
|  | Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); | 
|  | Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); | 
|  | Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); | 
|  |  | 
|  | // Add the second value to the phi from above | 
|  | Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); | 
|  |  | 
|  | // partword.cmpxchg.end: | 
|  | Builder.SetInsertPoint(CI); | 
|  |  | 
|  | Value *FinalOldVal = Builder.CreateTrunc( | 
|  | Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType); | 
|  | Value *Res = UndefValue::get(CI->getType()); | 
|  | Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); | 
|  | Res = Builder.CreateInsertValue(Res, Success, 1); | 
|  |  | 
|  | CI->replaceAllUsesWith(Res); | 
|  | CI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | void AtomicExpand::expandAtomicOpToLLSC( | 
|  | Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder, | 
|  | function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { | 
|  | IRBuilder<> Builder(I); | 
|  | Value *Loaded = | 
|  | insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp); | 
|  |  | 
|  | I->replaceAllUsesWith(Loaded); | 
|  | I->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { | 
|  | IRBuilder<> Builder(AI); | 
|  |  | 
|  | PartwordMaskValues PMV = | 
|  | createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), | 
|  | TLI->getMinCmpXchgSizeInBits() / 8); | 
|  |  | 
|  | // The value operand must be sign-extended for signed min/max so that the | 
|  | // target's signed comparison instructions can be used. Otherwise, just | 
|  | // zero-ext. | 
|  | Instruction::CastOps CastOp = Instruction::ZExt; | 
|  | AtomicRMWInst::BinOp RMWOp = AI->getOperation(); | 
|  | if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) | 
|  | CastOp = Instruction::SExt; | 
|  |  | 
|  | Value *ValOperand_Shifted = Builder.CreateShl( | 
|  | Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), | 
|  | PMV.ShiftAmt, "ValOperand_Shifted"); | 
|  | Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( | 
|  | Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, | 
|  | AI->getOrdering()); | 
|  | Value *FinalOldResult = Builder.CreateTrunc( | 
|  | Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType); | 
|  | AI->replaceAllUsesWith(FinalOldResult); | 
|  | AI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { | 
|  | IRBuilder<> Builder(CI); | 
|  |  | 
|  | PartwordMaskValues PMV = createMaskInstrs( | 
|  | Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), | 
|  | TLI->getMinCmpXchgSizeInBits() / 8); | 
|  |  | 
|  | Value *CmpVal_Shifted = Builder.CreateShl( | 
|  | Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, | 
|  | "CmpVal_Shifted"); | 
|  | Value *NewVal_Shifted = Builder.CreateShl( | 
|  | Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, | 
|  | "NewVal_Shifted"); | 
|  | Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( | 
|  | Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, | 
|  | CI->getSuccessOrdering()); | 
|  | Value *FinalOldVal = Builder.CreateTrunc( | 
|  | Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType); | 
|  |  | 
|  | Value *Res = UndefValue::get(CI->getType()); | 
|  | Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); | 
|  | Value *Success = Builder.CreateICmpEQ( | 
|  | CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); | 
|  | Res = Builder.CreateInsertValue(Res, Success, 1); | 
|  |  | 
|  | CI->replaceAllUsesWith(Res); | 
|  | CI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | Value *AtomicExpand::insertRMWLLSCLoop( | 
|  | IRBuilder<> &Builder, Type *ResultTy, Value *Addr, | 
|  | AtomicOrdering MemOpOrder, | 
|  | function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { | 
|  | LLVMContext &Ctx = Builder.getContext(); | 
|  | BasicBlock *BB = Builder.GetInsertBlock(); | 
|  | Function *F = BB->getParent(); | 
|  |  | 
|  | // Given: atomicrmw some_op iN* %addr, iN %incr ordering | 
|  | // | 
|  | // The standard expansion we produce is: | 
|  | //     [...] | 
|  | // atomicrmw.start: | 
|  | //     %loaded = @load.linked(%addr) | 
|  | //     %new = some_op iN %loaded, %incr | 
|  | //     %stored = @store_conditional(%new, %addr) | 
|  | //     %try_again = icmp i32 ne %stored, 0 | 
|  | //     br i1 %try_again, label %loop, label %atomicrmw.end | 
|  | // atomicrmw.end: | 
|  | //     [...] | 
|  | BasicBlock *ExitBB = | 
|  | BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); | 
|  | BasicBlock *LoopBB =  BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); | 
|  |  | 
|  | // The split call above "helpfully" added a branch at the end of BB (to the | 
|  | // wrong place). | 
|  | std::prev(BB->end())->eraseFromParent(); | 
|  | Builder.SetInsertPoint(BB); | 
|  | Builder.CreateBr(LoopBB); | 
|  |  | 
|  | // Start the main loop block now that we've taken care of the preliminaries. | 
|  | Builder.SetInsertPoint(LoopBB); | 
|  | Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); | 
|  |  | 
|  | Value *NewVal = PerformOp(Builder, Loaded); | 
|  |  | 
|  | Value *StoreSuccess = | 
|  | TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); | 
|  | Value *TryAgain = Builder.CreateICmpNE( | 
|  | StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); | 
|  | Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); | 
|  |  | 
|  | Builder.SetInsertPoint(ExitBB, ExitBB->begin()); | 
|  | return Loaded; | 
|  | } | 
|  |  | 
|  | /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of | 
|  | /// the equivalent bitwidth.  We used to not support pointer cmpxchg in the | 
|  | /// IR.  As a migration step, we convert back to what use to be the standard | 
|  | /// way to represent a pointer cmpxchg so that we can update backends one by | 
|  | /// one. | 
|  | AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { | 
|  | auto *M = CI->getModule(); | 
|  | Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), | 
|  | M->getDataLayout()); | 
|  |  | 
|  | IRBuilder<> Builder(CI); | 
|  |  | 
|  | Value *Addr = CI->getPointerOperand(); | 
|  | Type *PT = PointerType::get(NewTy, | 
|  | Addr->getType()->getPointerAddressSpace()); | 
|  | Value *NewAddr = Builder.CreateBitCast(Addr, PT); | 
|  |  | 
|  | Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); | 
|  | Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); | 
|  |  | 
|  |  | 
|  | auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal, | 
|  | CI->getSuccessOrdering(), | 
|  | CI->getFailureOrdering(), | 
|  | CI->getSyncScopeID()); | 
|  | NewCI->setVolatile(CI->isVolatile()); | 
|  | NewCI->setWeak(CI->isWeak()); | 
|  | LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); | 
|  |  | 
|  | Value *OldVal = Builder.CreateExtractValue(NewCI, 0); | 
|  | Value *Succ = Builder.CreateExtractValue(NewCI, 1); | 
|  |  | 
|  | OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); | 
|  |  | 
|  | Value *Res = UndefValue::get(CI->getType()); | 
|  | Res = Builder.CreateInsertValue(Res, OldVal, 0); | 
|  | Res = Builder.CreateInsertValue(Res, Succ, 1); | 
|  |  | 
|  | CI->replaceAllUsesWith(Res); | 
|  | CI->eraseFromParent(); | 
|  | return NewCI; | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { | 
|  | AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); | 
|  | AtomicOrdering FailureOrder = CI->getFailureOrdering(); | 
|  | Value *Addr = CI->getPointerOperand(); | 
|  | BasicBlock *BB = CI->getParent(); | 
|  | Function *F = BB->getParent(); | 
|  | LLVMContext &Ctx = F->getContext(); | 
|  | // If shouldInsertFencesForAtomic() returns true, then the target does not | 
|  | // want to deal with memory orders, and emitLeading/TrailingFence should take | 
|  | // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we | 
|  | // should preserve the ordering. | 
|  | bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); | 
|  | AtomicOrdering MemOpOrder = | 
|  | ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder; | 
|  |  | 
|  | // In implementations which use a barrier to achieve release semantics, we can | 
|  | // delay emitting this barrier until we know a store is actually going to be | 
|  | // attempted. The cost of this delay is that we need 2 copies of the block | 
|  | // emitting the load-linked, affecting code size. | 
|  | // | 
|  | // Ideally, this logic would be unconditional except for the minsize check | 
|  | // since in other cases the extra blocks naturally collapse down to the | 
|  | // minimal loop. Unfortunately, this puts too much stress on later | 
|  | // optimisations so we avoid emitting the extra logic in those cases too. | 
|  | bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && | 
|  | SuccessOrder != AtomicOrdering::Monotonic && | 
|  | SuccessOrder != AtomicOrdering::Acquire && | 
|  | !F->optForMinSize(); | 
|  |  | 
|  | // There's no overhead for sinking the release barrier in a weak cmpxchg, so | 
|  | // do it even on minsize. | 
|  | bool UseUnconditionalReleaseBarrier = F->optForMinSize() && !CI->isWeak(); | 
|  |  | 
|  | // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord | 
|  | // | 
|  | // The full expansion we produce is: | 
|  | //     [...] | 
|  | // cmpxchg.start: | 
|  | //     %unreleasedload = @load.linked(%addr) | 
|  | //     %should_store = icmp eq %unreleasedload, %desired | 
|  | //     br i1 %should_store, label %cmpxchg.fencedstore, | 
|  | //                          label %cmpxchg.nostore | 
|  | // cmpxchg.releasingstore: | 
|  | //     fence? | 
|  | //     br label cmpxchg.trystore | 
|  | // cmpxchg.trystore: | 
|  | //     %loaded.trystore = phi [%unreleasedload, %releasingstore], | 
|  | //                            [%releasedload, %cmpxchg.releasedload] | 
|  | //     %stored = @store_conditional(%new, %addr) | 
|  | //     %success = icmp eq i32 %stored, 0 | 
|  | //     br i1 %success, label %cmpxchg.success, | 
|  | //                     label %cmpxchg.releasedload/%cmpxchg.failure | 
|  | // cmpxchg.releasedload: | 
|  | //     %releasedload = @load.linked(%addr) | 
|  | //     %should_store = icmp eq %releasedload, %desired | 
|  | //     br i1 %should_store, label %cmpxchg.trystore, | 
|  | //                          label %cmpxchg.failure | 
|  | // cmpxchg.success: | 
|  | //     fence? | 
|  | //     br label %cmpxchg.end | 
|  | // cmpxchg.nostore: | 
|  | //     %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], | 
|  | //                           [%releasedload, | 
|  | //                               %cmpxchg.releasedload/%cmpxchg.trystore] | 
|  | //     @load_linked_fail_balance()? | 
|  | //     br label %cmpxchg.failure | 
|  | // cmpxchg.failure: | 
|  | //     fence? | 
|  | //     br label %cmpxchg.end | 
|  | // cmpxchg.end: | 
|  | //     %loaded = phi [%loaded.nostore, %cmpxchg.failure], | 
|  | //                   [%loaded.trystore, %cmpxchg.trystore] | 
|  | //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] | 
|  | //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 | 
|  | //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 | 
|  | //     [...] | 
|  | BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); | 
|  | auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); | 
|  | auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); | 
|  | auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); | 
|  | auto ReleasedLoadBB = | 
|  | BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); | 
|  | auto TryStoreBB = | 
|  | BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); | 
|  | auto ReleasingStoreBB = | 
|  | BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); | 
|  | auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); | 
|  |  | 
|  | // This grabs the DebugLoc from CI | 
|  | IRBuilder<> Builder(CI); | 
|  |  | 
|  | // The split call above "helpfully" added a branch at the end of BB (to the | 
|  | // wrong place), but we might want a fence too. It's easiest to just remove | 
|  | // the branch entirely. | 
|  | std::prev(BB->end())->eraseFromParent(); | 
|  | Builder.SetInsertPoint(BB); | 
|  | if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) | 
|  | TLI->emitLeadingFence(Builder, CI, SuccessOrder); | 
|  | Builder.CreateBr(StartBB); | 
|  |  | 
|  | // Start the main loop block now that we've taken care of the preliminaries. | 
|  | Builder.SetInsertPoint(StartBB); | 
|  | Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); | 
|  | Value *ShouldStore = Builder.CreateICmpEQ( | 
|  | UnreleasedLoad, CI->getCompareOperand(), "should_store"); | 
|  |  | 
|  | // If the cmpxchg doesn't actually need any ordering when it fails, we can | 
|  | // jump straight past that fence instruction (if it exists). | 
|  | Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); | 
|  |  | 
|  | Builder.SetInsertPoint(ReleasingStoreBB); | 
|  | if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) | 
|  | TLI->emitLeadingFence(Builder, CI, SuccessOrder); | 
|  | Builder.CreateBr(TryStoreBB); | 
|  |  | 
|  | Builder.SetInsertPoint(TryStoreBB); | 
|  | Value *StoreSuccess = TLI->emitStoreConditional( | 
|  | Builder, CI->getNewValOperand(), Addr, MemOpOrder); | 
|  | StoreSuccess = Builder.CreateICmpEQ( | 
|  | StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); | 
|  | BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; | 
|  | Builder.CreateCondBr(StoreSuccess, SuccessBB, | 
|  | CI->isWeak() ? FailureBB : RetryBB); | 
|  |  | 
|  | Builder.SetInsertPoint(ReleasedLoadBB); | 
|  | Value *SecondLoad; | 
|  | if (HasReleasedLoadBB) { | 
|  | SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); | 
|  | ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(), | 
|  | "should_store"); | 
|  |  | 
|  | // If the cmpxchg doesn't actually need any ordering when it fails, we can | 
|  | // jump straight past that fence instruction (if it exists). | 
|  | Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); | 
|  | } else | 
|  | Builder.CreateUnreachable(); | 
|  |  | 
|  | // Make sure later instructions don't get reordered with a fence if | 
|  | // necessary. | 
|  | Builder.SetInsertPoint(SuccessBB); | 
|  | if (ShouldInsertFencesForAtomic) | 
|  | TLI->emitTrailingFence(Builder, CI, SuccessOrder); | 
|  | Builder.CreateBr(ExitBB); | 
|  |  | 
|  | Builder.SetInsertPoint(NoStoreBB); | 
|  | // In the failing case, where we don't execute the store-conditional, the | 
|  | // target might want to balance out the load-linked with a dedicated | 
|  | // instruction (e.g., on ARM, clearing the exclusive monitor). | 
|  | TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); | 
|  | Builder.CreateBr(FailureBB); | 
|  |  | 
|  | Builder.SetInsertPoint(FailureBB); | 
|  | if (ShouldInsertFencesForAtomic) | 
|  | TLI->emitTrailingFence(Builder, CI, FailureOrder); | 
|  | Builder.CreateBr(ExitBB); | 
|  |  | 
|  | // Finally, we have control-flow based knowledge of whether the cmpxchg | 
|  | // succeeded or not. We expose this to later passes by converting any | 
|  | // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate | 
|  | // PHI. | 
|  | Builder.SetInsertPoint(ExitBB, ExitBB->begin()); | 
|  | PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); | 
|  | Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); | 
|  | Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); | 
|  |  | 
|  | // Setup the builder so we can create any PHIs we need. | 
|  | Value *Loaded; | 
|  | if (!HasReleasedLoadBB) | 
|  | Loaded = UnreleasedLoad; | 
|  | else { | 
|  | Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin()); | 
|  | PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); | 
|  | TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB); | 
|  | TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); | 
|  |  | 
|  | Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin()); | 
|  | PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); | 
|  | NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB); | 
|  | NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); | 
|  |  | 
|  | Builder.SetInsertPoint(ExitBB, ++ExitBB->begin()); | 
|  | PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); | 
|  | ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB); | 
|  | ExitLoaded->addIncoming(NoStoreLoaded, FailureBB); | 
|  |  | 
|  | Loaded = ExitLoaded; | 
|  | } | 
|  |  | 
|  | // Look for any users of the cmpxchg that are just comparing the loaded value | 
|  | // against the desired one, and replace them with the CFG-derived version. | 
|  | SmallVector<ExtractValueInst *, 2> PrunedInsts; | 
|  | for (auto User : CI->users()) { | 
|  | ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); | 
|  | if (!EV) | 
|  | continue; | 
|  |  | 
|  | assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && | 
|  | "weird extraction from { iN, i1 }"); | 
|  |  | 
|  | if (EV->getIndices()[0] == 0) | 
|  | EV->replaceAllUsesWith(Loaded); | 
|  | else | 
|  | EV->replaceAllUsesWith(Success); | 
|  |  | 
|  | PrunedInsts.push_back(EV); | 
|  | } | 
|  |  | 
|  | // We can remove the instructions now we're no longer iterating through them. | 
|  | for (auto EV : PrunedInsts) | 
|  | EV->eraseFromParent(); | 
|  |  | 
|  | if (!CI->use_empty()) { | 
|  | // Some use of the full struct return that we don't understand has happened, | 
|  | // so we've got to reconstruct it properly. | 
|  | Value *Res; | 
|  | Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); | 
|  | Res = Builder.CreateInsertValue(Res, Success, 1); | 
|  |  | 
|  | CI->replaceAllUsesWith(Res); | 
|  | } | 
|  |  | 
|  | CI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { | 
|  | auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); | 
|  | if(!C) | 
|  | return false; | 
|  |  | 
|  | AtomicRMWInst::BinOp Op = RMWI->getOperation(); | 
|  | switch(Op) { | 
|  | case AtomicRMWInst::Add: | 
|  | case AtomicRMWInst::Sub: | 
|  | case AtomicRMWInst::Or: | 
|  | case AtomicRMWInst::Xor: | 
|  | return C->isZero(); | 
|  | case AtomicRMWInst::And: | 
|  | return C->isMinusOne(); | 
|  | // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { | 
|  | if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { | 
|  | tryExpandAtomicLoad(ResultingLoad); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Value *AtomicExpand::insertRMWCmpXchgLoop( | 
|  | IRBuilder<> &Builder, Type *ResultTy, Value *Addr, | 
|  | AtomicOrdering MemOpOrder, | 
|  | function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, | 
|  | CreateCmpXchgInstFun CreateCmpXchg) { | 
|  | LLVMContext &Ctx = Builder.getContext(); | 
|  | BasicBlock *BB = Builder.GetInsertBlock(); | 
|  | Function *F = BB->getParent(); | 
|  |  | 
|  | // Given: atomicrmw some_op iN* %addr, iN %incr ordering | 
|  | // | 
|  | // The standard expansion we produce is: | 
|  | //     [...] | 
|  | //     %init_loaded = load atomic iN* %addr | 
|  | //     br label %loop | 
|  | // loop: | 
|  | //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] | 
|  | //     %new = some_op iN %loaded, %incr | 
|  | //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new | 
|  | //     %new_loaded = extractvalue { iN, i1 } %pair, 0 | 
|  | //     %success = extractvalue { iN, i1 } %pair, 1 | 
|  | //     br i1 %success, label %atomicrmw.end, label %loop | 
|  | // atomicrmw.end: | 
|  | //     [...] | 
|  | BasicBlock *ExitBB = | 
|  | BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); | 
|  | BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); | 
|  |  | 
|  | // The split call above "helpfully" added a branch at the end of BB (to the | 
|  | // wrong place), but we want a load. It's easiest to just remove | 
|  | // the branch entirely. | 
|  | std::prev(BB->end())->eraseFromParent(); | 
|  | Builder.SetInsertPoint(BB); | 
|  | LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr); | 
|  | // Atomics require at least natural alignment. | 
|  | InitLoaded->setAlignment(ResultTy->getPrimitiveSizeInBits() / 8); | 
|  | Builder.CreateBr(LoopBB); | 
|  |  | 
|  | // Start the main loop block now that we've taken care of the preliminaries. | 
|  | Builder.SetInsertPoint(LoopBB); | 
|  | PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); | 
|  | Loaded->addIncoming(InitLoaded, BB); | 
|  |  | 
|  | Value *NewVal = PerformOp(Builder, Loaded); | 
|  |  | 
|  | Value *NewLoaded = nullptr; | 
|  | Value *Success = nullptr; | 
|  |  | 
|  | CreateCmpXchg(Builder, Addr, Loaded, NewVal, | 
|  | MemOpOrder == AtomicOrdering::Unordered | 
|  | ? AtomicOrdering::Monotonic | 
|  | : MemOpOrder, | 
|  | Success, NewLoaded); | 
|  | assert(Success && NewLoaded); | 
|  |  | 
|  | Loaded->addIncoming(NewLoaded, LoopBB); | 
|  |  | 
|  | Builder.CreateCondBr(Success, ExitBB, LoopBB); | 
|  |  | 
|  | Builder.SetInsertPoint(ExitBB, ExitBB->begin()); | 
|  | return NewLoaded; | 
|  | } | 
|  |  | 
|  | bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { | 
|  | unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; | 
|  | unsigned ValueSize = getAtomicOpSize(CI); | 
|  |  | 
|  | switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { | 
|  | default: | 
|  | llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); | 
|  | case TargetLoweringBase::AtomicExpansionKind::None: | 
|  | if (ValueSize < MinCASSize) | 
|  | expandPartwordCmpXchg(CI); | 
|  | return false; | 
|  | case TargetLoweringBase::AtomicExpansionKind::LLSC: { | 
|  | assert(ValueSize >= MinCASSize && | 
|  | "MinCmpXchgSizeInBits not yet supported for LL/SC expansions."); | 
|  | return expandAtomicCmpXchg(CI); | 
|  | } | 
|  | case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: | 
|  | expandAtomicCmpXchgToMaskedIntrinsic(CI); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Note: This function is exposed externally by AtomicExpandUtils.h | 
|  | bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, | 
|  | CreateCmpXchgInstFun CreateCmpXchg) { | 
|  | IRBuilder<> Builder(AI); | 
|  | Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( | 
|  | Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(), | 
|  | [&](IRBuilder<> &Builder, Value *Loaded) { | 
|  | return performAtomicOp(AI->getOperation(), Builder, Loaded, | 
|  | AI->getValOperand()); | 
|  | }, | 
|  | CreateCmpXchg); | 
|  |  | 
|  | AI->replaceAllUsesWith(Loaded); | 
|  | AI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // In order to use one of the sized library calls such as | 
|  | // __atomic_fetch_add_4, the alignment must be sufficient, the size | 
|  | // must be one of the potentially-specialized sizes, and the value | 
|  | // type must actually exist in C on the target (otherwise, the | 
|  | // function wouldn't actually be defined.) | 
|  | static bool canUseSizedAtomicCall(unsigned Size, unsigned Align, | 
|  | const DataLayout &DL) { | 
|  | // TODO: "LargestSize" is an approximation for "largest type that | 
|  | // you can express in C". It seems to be the case that int128 is | 
|  | // supported on all 64-bit platforms, otherwise only up to 64-bit | 
|  | // integers are supported. If we get this wrong, then we'll try to | 
|  | // call a sized libcall that doesn't actually exist. There should | 
|  | // really be some more reliable way in LLVM of determining integer | 
|  | // sizes which are valid in the target's C ABI... | 
|  | unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; | 
|  | return Align >= Size && | 
|  | (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && | 
|  | Size <= LargestSize; | 
|  | } | 
|  |  | 
|  | void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { | 
|  | static const RTLIB::Libcall Libcalls[6] = { | 
|  | RTLIB::ATOMIC_LOAD,   RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, | 
|  | RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; | 
|  | unsigned Size = getAtomicOpSize(I); | 
|  | unsigned Align = getAtomicOpAlign(I); | 
|  |  | 
|  | bool expanded = expandAtomicOpToLibcall( | 
|  | I, Size, Align, I->getPointerOperand(), nullptr, nullptr, | 
|  | I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); | 
|  | (void)expanded; | 
|  | assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load"); | 
|  | } | 
|  |  | 
|  | void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { | 
|  | static const RTLIB::Libcall Libcalls[6] = { | 
|  | RTLIB::ATOMIC_STORE,   RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, | 
|  | RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; | 
|  | unsigned Size = getAtomicOpSize(I); | 
|  | unsigned Align = getAtomicOpAlign(I); | 
|  |  | 
|  | bool expanded = expandAtomicOpToLibcall( | 
|  | I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr, | 
|  | I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); | 
|  | (void)expanded; | 
|  | assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store"); | 
|  | } | 
|  |  | 
|  | void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { | 
|  | static const RTLIB::Libcall Libcalls[6] = { | 
|  | RTLIB::ATOMIC_COMPARE_EXCHANGE,   RTLIB::ATOMIC_COMPARE_EXCHANGE_1, | 
|  | RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, | 
|  | RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; | 
|  | unsigned Size = getAtomicOpSize(I); | 
|  | unsigned Align = getAtomicOpAlign(I); | 
|  |  | 
|  | bool expanded = expandAtomicOpToLibcall( | 
|  | I, Size, Align, I->getPointerOperand(), I->getNewValOperand(), | 
|  | I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), | 
|  | Libcalls); | 
|  | (void)expanded; | 
|  | assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS"); | 
|  | } | 
|  |  | 
|  | static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { | 
|  | static const RTLIB::Libcall LibcallsXchg[6] = { | 
|  | RTLIB::ATOMIC_EXCHANGE,   RTLIB::ATOMIC_EXCHANGE_1, | 
|  | RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, | 
|  | RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; | 
|  | static const RTLIB::Libcall LibcallsAdd[6] = { | 
|  | RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_ADD_1, | 
|  | RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, | 
|  | RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; | 
|  | static const RTLIB::Libcall LibcallsSub[6] = { | 
|  | RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_SUB_1, | 
|  | RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, | 
|  | RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; | 
|  | static const RTLIB::Libcall LibcallsAnd[6] = { | 
|  | RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_AND_1, | 
|  | RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, | 
|  | RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; | 
|  | static const RTLIB::Libcall LibcallsOr[6] = { | 
|  | RTLIB::UNKNOWN_LIBCALL,   RTLIB::ATOMIC_FETCH_OR_1, | 
|  | RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, | 
|  | RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; | 
|  | static const RTLIB::Libcall LibcallsXor[6] = { | 
|  | RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_XOR_1, | 
|  | RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, | 
|  | RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; | 
|  | static const RTLIB::Libcall LibcallsNand[6] = { | 
|  | RTLIB::UNKNOWN_LIBCALL,     RTLIB::ATOMIC_FETCH_NAND_1, | 
|  | RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, | 
|  | RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; | 
|  |  | 
|  | switch (Op) { | 
|  | case AtomicRMWInst::BAD_BINOP: | 
|  | llvm_unreachable("Should not have BAD_BINOP."); | 
|  | case AtomicRMWInst::Xchg: | 
|  | return makeArrayRef(LibcallsXchg); | 
|  | case AtomicRMWInst::Add: | 
|  | return makeArrayRef(LibcallsAdd); | 
|  | case AtomicRMWInst::Sub: | 
|  | return makeArrayRef(LibcallsSub); | 
|  | case AtomicRMWInst::And: | 
|  | return makeArrayRef(LibcallsAnd); | 
|  | case AtomicRMWInst::Or: | 
|  | return makeArrayRef(LibcallsOr); | 
|  | case AtomicRMWInst::Xor: | 
|  | return makeArrayRef(LibcallsXor); | 
|  | case AtomicRMWInst::Nand: | 
|  | return makeArrayRef(LibcallsNand); | 
|  | case AtomicRMWInst::Max: | 
|  | case AtomicRMWInst::Min: | 
|  | case AtomicRMWInst::UMax: | 
|  | case AtomicRMWInst::UMin: | 
|  | // No atomic libcalls are available for max/min/umax/umin. | 
|  | return {}; | 
|  | } | 
|  | llvm_unreachable("Unexpected AtomicRMW operation."); | 
|  | } | 
|  |  | 
|  | void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { | 
|  | ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); | 
|  |  | 
|  | unsigned Size = getAtomicOpSize(I); | 
|  | unsigned Align = getAtomicOpAlign(I); | 
|  |  | 
|  | bool Success = false; | 
|  | if (!Libcalls.empty()) | 
|  | Success = expandAtomicOpToLibcall( | 
|  | I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr, | 
|  | I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); | 
|  |  | 
|  | // The expansion failed: either there were no libcalls at all for | 
|  | // the operation (min/max), or there were only size-specialized | 
|  | // libcalls (add/sub/etc) and we needed a generic. So, expand to a | 
|  | // CAS libcall, via a CAS loop, instead. | 
|  | if (!Success) { | 
|  | expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr, | 
|  | Value *Loaded, Value *NewVal, | 
|  | AtomicOrdering MemOpOrder, | 
|  | Value *&Success, Value *&NewLoaded) { | 
|  | // Create the CAS instruction normally... | 
|  | AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( | 
|  | Addr, Loaded, NewVal, MemOpOrder, | 
|  | AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); | 
|  | Success = Builder.CreateExtractValue(Pair, 1, "success"); | 
|  | NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); | 
|  |  | 
|  | // ...and then expand the CAS into a libcall. | 
|  | expandAtomicCASToLibcall(Pair); | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | // A helper routine for the above expandAtomic*ToLibcall functions. | 
|  | // | 
|  | // 'Libcalls' contains an array of enum values for the particular | 
|  | // ATOMIC libcalls to be emitted. All of the other arguments besides | 
|  | // 'I' are extracted from the Instruction subclass by the | 
|  | // caller. Depending on the particular call, some will be null. | 
|  | bool AtomicExpand::expandAtomicOpToLibcall( | 
|  | Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand, | 
|  | Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, | 
|  | AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { | 
|  | assert(Libcalls.size() == 6); | 
|  |  | 
|  | LLVMContext &Ctx = I->getContext(); | 
|  | Module *M = I->getModule(); | 
|  | const DataLayout &DL = M->getDataLayout(); | 
|  | IRBuilder<> Builder(I); | 
|  | IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); | 
|  |  | 
|  | bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL); | 
|  | Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); | 
|  |  | 
|  | unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy); | 
|  |  | 
|  | // TODO: the "order" argument type is "int", not int32. So | 
|  | // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. | 
|  | ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); | 
|  | assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); | 
|  | Constant *OrderingVal = | 
|  | ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); | 
|  | Constant *Ordering2Val = nullptr; | 
|  | if (CASExpected) { | 
|  | assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); | 
|  | Ordering2Val = | 
|  | ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); | 
|  | } | 
|  | bool HasResult = I->getType() != Type::getVoidTy(Ctx); | 
|  |  | 
|  | RTLIB::Libcall RTLibType; | 
|  | if (UseSizedLibcall) { | 
|  | switch (Size) { | 
|  | case 1: RTLibType = Libcalls[1]; break; | 
|  | case 2: RTLibType = Libcalls[2]; break; | 
|  | case 4: RTLibType = Libcalls[3]; break; | 
|  | case 8: RTLibType = Libcalls[4]; break; | 
|  | case 16: RTLibType = Libcalls[5]; break; | 
|  | } | 
|  | } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { | 
|  | RTLibType = Libcalls[0]; | 
|  | } else { | 
|  | // Can't use sized function, and there's no generic for this | 
|  | // operation, so give up. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Build up the function call. There's two kinds. First, the sized | 
|  | // variants.  These calls are going to be one of the following (with | 
|  | // N=1,2,4,8,16): | 
|  | //  iN    __atomic_load_N(iN *ptr, int ordering) | 
|  | //  void  __atomic_store_N(iN *ptr, iN val, int ordering) | 
|  | //  iN    __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) | 
|  | //  bool  __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, | 
|  | //                                    int success_order, int failure_order) | 
|  | // | 
|  | // Note that these functions can be used for non-integer atomic | 
|  | // operations, the values just need to be bitcast to integers on the | 
|  | // way in and out. | 
|  | // | 
|  | // And, then, the generic variants. They look like the following: | 
|  | //  void  __atomic_load(size_t size, void *ptr, void *ret, int ordering) | 
|  | //  void  __atomic_store(size_t size, void *ptr, void *val, int ordering) | 
|  | //  void  __atomic_exchange(size_t size, void *ptr, void *val, void *ret, | 
|  | //                          int ordering) | 
|  | //  bool  __atomic_compare_exchange(size_t size, void *ptr, void *expected, | 
|  | //                                  void *desired, int success_order, | 
|  | //                                  int failure_order) | 
|  | // | 
|  | // The different signatures are built up depending on the | 
|  | // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' | 
|  | // variables. | 
|  |  | 
|  | AllocaInst *AllocaCASExpected = nullptr; | 
|  | Value *AllocaCASExpected_i8 = nullptr; | 
|  | AllocaInst *AllocaValue = nullptr; | 
|  | Value *AllocaValue_i8 = nullptr; | 
|  | AllocaInst *AllocaResult = nullptr; | 
|  | Value *AllocaResult_i8 = nullptr; | 
|  |  | 
|  | Type *ResultTy; | 
|  | SmallVector<Value *, 6> Args; | 
|  | AttributeList Attr; | 
|  |  | 
|  | // 'size' argument. | 
|  | if (!UseSizedLibcall) { | 
|  | // Note, getIntPtrType is assumed equivalent to size_t. | 
|  | Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); | 
|  | } | 
|  |  | 
|  | // 'ptr' argument. | 
|  | Value *PtrVal = | 
|  | Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx)); | 
|  | Args.push_back(PtrVal); | 
|  |  | 
|  | // 'expected' argument, if present. | 
|  | if (CASExpected) { | 
|  | AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); | 
|  | AllocaCASExpected->setAlignment(AllocaAlignment); | 
|  | AllocaCASExpected_i8 = | 
|  | Builder.CreateBitCast(AllocaCASExpected, Type::getInt8PtrTy(Ctx)); | 
|  | Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); | 
|  | Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); | 
|  | Args.push_back(AllocaCASExpected_i8); | 
|  | } | 
|  |  | 
|  | // 'val' argument ('desired' for cas), if present. | 
|  | if (ValueOperand) { | 
|  | if (UseSizedLibcall) { | 
|  | Value *IntValue = | 
|  | Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); | 
|  | Args.push_back(IntValue); | 
|  | } else { | 
|  | AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); | 
|  | AllocaValue->setAlignment(AllocaAlignment); | 
|  | AllocaValue_i8 = | 
|  | Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); | 
|  | Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); | 
|  | Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); | 
|  | Args.push_back(AllocaValue_i8); | 
|  | } | 
|  | } | 
|  |  | 
|  | // 'ret' argument. | 
|  | if (!CASExpected && HasResult && !UseSizedLibcall) { | 
|  | AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); | 
|  | AllocaResult->setAlignment(AllocaAlignment); | 
|  | AllocaResult_i8 = | 
|  | Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx)); | 
|  | Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); | 
|  | Args.push_back(AllocaResult_i8); | 
|  | } | 
|  |  | 
|  | // 'ordering' ('success_order' for cas) argument. | 
|  | Args.push_back(OrderingVal); | 
|  |  | 
|  | // 'failure_order' argument, if present. | 
|  | if (Ordering2Val) | 
|  | Args.push_back(Ordering2Val); | 
|  |  | 
|  | // Now, the return type. | 
|  | if (CASExpected) { | 
|  | ResultTy = Type::getInt1Ty(Ctx); | 
|  | Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt); | 
|  | } else if (HasResult && UseSizedLibcall) | 
|  | ResultTy = SizedIntTy; | 
|  | else | 
|  | ResultTy = Type::getVoidTy(Ctx); | 
|  |  | 
|  | // Done with setting up arguments and return types, create the call: | 
|  | SmallVector<Type *, 6> ArgTys; | 
|  | for (Value *Arg : Args) | 
|  | ArgTys.push_back(Arg->getType()); | 
|  | FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); | 
|  | Constant *LibcallFn = | 
|  | M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); | 
|  | CallInst *Call = Builder.CreateCall(LibcallFn, Args); | 
|  | Call->setAttributes(Attr); | 
|  | Value *Result = Call; | 
|  |  | 
|  | // And then, extract the results... | 
|  | if (ValueOperand && !UseSizedLibcall) | 
|  | Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); | 
|  |  | 
|  | if (CASExpected) { | 
|  | // The final result from the CAS is {load of 'expected' alloca, bool result | 
|  | // from call} | 
|  | Type *FinalResultTy = I->getType(); | 
|  | Value *V = UndefValue::get(FinalResultTy); | 
|  | Value *ExpectedOut = | 
|  | Builder.CreateAlignedLoad(AllocaCASExpected, AllocaAlignment); | 
|  | Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); | 
|  | V = Builder.CreateInsertValue(V, ExpectedOut, 0); | 
|  | V = Builder.CreateInsertValue(V, Result, 1); | 
|  | I->replaceAllUsesWith(V); | 
|  | } else if (HasResult) { | 
|  | Value *V; | 
|  | if (UseSizedLibcall) | 
|  | V = Builder.CreateBitOrPointerCast(Result, I->getType()); | 
|  | else { | 
|  | V = Builder.CreateAlignedLoad(AllocaResult, AllocaAlignment); | 
|  | Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); | 
|  | } | 
|  | I->replaceAllUsesWith(V); | 
|  | } | 
|  | I->eraseFromParent(); | 
|  | return true; | 
|  | } |