|  | //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the interfaces that X86 uses to lower LLVM code into a | 
|  | // selection DAG. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "x86-isel" | 
|  | #include "X86ISelLowering.h" | 
|  | #include "Utils/X86ShuffleDecode.h" | 
|  | #include "X86CallingConv.h" | 
|  | #include "X86InstrBuilder.h" | 
|  | #include "X86MachineFunctionInfo.h" | 
|  | #include "X86TargetMachine.h" | 
|  | #include "X86TargetObjectFile.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/VariadicFunction.h" | 
|  | #include "llvm/CodeGen/IntrinsicLowering.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCContext.h" | 
|  | #include "llvm/MC/MCExpr.h" | 
|  | #include "llvm/MC/MCSymbol.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include <bitset> | 
|  | #include <cctype> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumTailCalls, "Number of tail calls"); | 
|  |  | 
|  | // Forward declarations. | 
|  | static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1, | 
|  | SDValue V2); | 
|  |  | 
|  | static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal, | 
|  | SelectionDAG &DAG, SDLoc dl, | 
|  | unsigned vectorWidth) { | 
|  | assert((vectorWidth == 128 || vectorWidth == 256) && | 
|  | "Unsupported vector width"); | 
|  | EVT VT = Vec.getValueType(); | 
|  | EVT ElVT = VT.getVectorElementType(); | 
|  | unsigned Factor = VT.getSizeInBits()/vectorWidth; | 
|  | EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, | 
|  | VT.getVectorNumElements()/Factor); | 
|  |  | 
|  | // Extract from UNDEF is UNDEF. | 
|  | if (Vec.getOpcode() == ISD::UNDEF) | 
|  | return DAG.getUNDEF(ResultVT); | 
|  |  | 
|  | // Extract the relevant vectorWidth bits.  Generate an EXTRACT_SUBVECTOR | 
|  | unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits(); | 
|  |  | 
|  | // This is the index of the first element of the vectorWidth-bit chunk | 
|  | // we want. | 
|  | unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth) | 
|  | * ElemsPerChunk); | 
|  |  | 
|  | // If the input is a buildvector just emit a smaller one. | 
|  | if (Vec.getOpcode() == ISD::BUILD_VECTOR) | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT, | 
|  | Vec->op_begin()+NormalizedIdxVal, ElemsPerChunk); | 
|  |  | 
|  | SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal); | 
|  | SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, | 
|  | VecIdx); | 
|  |  | 
|  | return Result; | 
|  |  | 
|  | } | 
|  | /// Generate a DAG to grab 128-bits from a vector > 128 bits.  This | 
|  | /// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128 | 
|  | /// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4 | 
|  | /// instructions or a simple subregister reference. Idx is an index in the | 
|  | /// 128 bits we want.  It need not be aligned to a 128-bit bounday.  That makes | 
|  | /// lowering EXTRACT_VECTOR_ELT operations easier. | 
|  | static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal, | 
|  | SelectionDAG &DAG, SDLoc dl) { | 
|  | assert((Vec.getValueType().is256BitVector() || | 
|  | Vec.getValueType().is512BitVector()) && "Unexpected vector size!"); | 
|  | return ExtractSubVector(Vec, IdxVal, DAG, dl, 128); | 
|  | } | 
|  |  | 
|  | /// Generate a DAG to grab 256-bits from a 512-bit vector. | 
|  | static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal, | 
|  | SelectionDAG &DAG, SDLoc dl) { | 
|  | assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!"); | 
|  | return ExtractSubVector(Vec, IdxVal, DAG, dl, 256); | 
|  | } | 
|  |  | 
|  | static SDValue InsertSubVector(SDValue Result, SDValue Vec, | 
|  | unsigned IdxVal, SelectionDAG &DAG, | 
|  | SDLoc dl, unsigned vectorWidth) { | 
|  | assert((vectorWidth == 128 || vectorWidth == 256) && | 
|  | "Unsupported vector width"); | 
|  | // Inserting UNDEF is Result | 
|  | if (Vec.getOpcode() == ISD::UNDEF) | 
|  | return Result; | 
|  | EVT VT = Vec.getValueType(); | 
|  | EVT ElVT = VT.getVectorElementType(); | 
|  | EVT ResultVT = Result.getValueType(); | 
|  |  | 
|  | // Insert the relevant vectorWidth bits. | 
|  | unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits(); | 
|  |  | 
|  | // This is the index of the first element of the vectorWidth-bit chunk | 
|  | // we want. | 
|  | unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth) | 
|  | * ElemsPerChunk); | 
|  |  | 
|  | SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal); | 
|  | return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, | 
|  | VecIdx); | 
|  | } | 
|  | /// Generate a DAG to put 128-bits into a vector > 128 bits.  This | 
|  | /// sets things up to match to an AVX VINSERTF128/VINSERTI128 or | 
|  | /// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a | 
|  | /// simple superregister reference.  Idx is an index in the 128 bits | 
|  | /// we want.  It need not be aligned to a 128-bit bounday.  That makes | 
|  | /// lowering INSERT_VECTOR_ELT operations easier. | 
|  | static SDValue Insert128BitVector(SDValue Result, SDValue Vec, | 
|  | unsigned IdxVal, SelectionDAG &DAG, | 
|  | SDLoc dl) { | 
|  | assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!"); | 
|  | return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128); | 
|  | } | 
|  |  | 
|  | static SDValue Insert256BitVector(SDValue Result, SDValue Vec, | 
|  | unsigned IdxVal, SelectionDAG &DAG, | 
|  | SDLoc dl) { | 
|  | assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!"); | 
|  | return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256); | 
|  | } | 
|  |  | 
|  | /// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128 | 
|  | /// instructions. This is used because creating CONCAT_VECTOR nodes of | 
|  | /// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower | 
|  | /// large BUILD_VECTORS. | 
|  | static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT, | 
|  | unsigned NumElems, SelectionDAG &DAG, | 
|  | SDLoc dl) { | 
|  | SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl); | 
|  | return Insert128BitVector(V, V2, NumElems/2, DAG, dl); | 
|  | } | 
|  |  | 
|  | static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT, | 
|  | unsigned NumElems, SelectionDAG &DAG, | 
|  | SDLoc dl) { | 
|  | SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl); | 
|  | return Insert256BitVector(V, V2, NumElems/2, DAG, dl); | 
|  | } | 
|  |  | 
|  | static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) { | 
|  | const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>(); | 
|  | bool is64Bit = Subtarget->is64Bit(); | 
|  |  | 
|  | if (Subtarget->isTargetMacho()) { | 
|  | if (is64Bit) | 
|  | return new X86_64MachoTargetObjectFile(); | 
|  | return new TargetLoweringObjectFileMachO(); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isTargetLinux()) | 
|  | return new X86LinuxTargetObjectFile(); | 
|  | if (Subtarget->isTargetELF()) | 
|  | return new TargetLoweringObjectFileELF(); | 
|  | if (Subtarget->isTargetKnownWindowsMSVC()) | 
|  | return new X86WindowsTargetObjectFile(); | 
|  | if (Subtarget->isTargetCOFF()) | 
|  | return new TargetLoweringObjectFileCOFF(); | 
|  | llvm_unreachable("unknown subtarget type"); | 
|  | } | 
|  |  | 
|  | X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) | 
|  | : TargetLowering(TM, createTLOF(TM)) { | 
|  | Subtarget = &TM.getSubtarget<X86Subtarget>(); | 
|  | X86ScalarSSEf64 = Subtarget->hasSSE2(); | 
|  | X86ScalarSSEf32 = Subtarget->hasSSE1(); | 
|  | TD = getDataLayout(); | 
|  |  | 
|  | resetOperationActions(); | 
|  | } | 
|  |  | 
|  | void X86TargetLowering::resetOperationActions() { | 
|  | const TargetMachine &TM = getTargetMachine(); | 
|  | static bool FirstTimeThrough = true; | 
|  |  | 
|  | // If none of the target options have changed, then we don't need to reset the | 
|  | // operation actions. | 
|  | if (!FirstTimeThrough && TO == TM.Options) return; | 
|  |  | 
|  | if (!FirstTimeThrough) { | 
|  | // Reinitialize the actions. | 
|  | initActions(); | 
|  | FirstTimeThrough = false; | 
|  | } | 
|  |  | 
|  | TO = TM.Options; | 
|  |  | 
|  | // Set up the TargetLowering object. | 
|  | static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }; | 
|  |  | 
|  | // X86 is weird, it always uses i8 for shift amounts and setcc results. | 
|  | setBooleanContents(ZeroOrOneBooleanContent); | 
|  | // X86-SSE is even stranger. It uses -1 or 0 for vector masks. | 
|  | setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); | 
|  |  | 
|  | // For 64-bit since we have so many registers use the ILP scheduler, for | 
|  | // 32-bit code use the register pressure specific scheduling. | 
|  | // For Atom, always use ILP scheduling. | 
|  | if (Subtarget->isAtom()) | 
|  | setSchedulingPreference(Sched::ILP); | 
|  | else if (Subtarget->is64Bit()) | 
|  | setSchedulingPreference(Sched::ILP); | 
|  | else | 
|  | setSchedulingPreference(Sched::RegPressure); | 
|  | const X86RegisterInfo *RegInfo = | 
|  | static_cast<const X86RegisterInfo*>(TM.getRegisterInfo()); | 
|  | setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister()); | 
|  |  | 
|  | // Bypass expensive divides on Atom when compiling with O2 | 
|  | if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) { | 
|  | addBypassSlowDiv(32, 8); | 
|  | if (Subtarget->is64Bit()) | 
|  | addBypassSlowDiv(64, 16); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isTargetKnownWindowsMSVC()) { | 
|  | // Setup Windows compiler runtime calls. | 
|  | setLibcallName(RTLIB::SDIV_I64, "_alldiv"); | 
|  | setLibcallName(RTLIB::UDIV_I64, "_aulldiv"); | 
|  | setLibcallName(RTLIB::SREM_I64, "_allrem"); | 
|  | setLibcallName(RTLIB::UREM_I64, "_aullrem"); | 
|  | setLibcallName(RTLIB::MUL_I64, "_allmul"); | 
|  | setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall); | 
|  | setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall); | 
|  | setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall); | 
|  | setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall); | 
|  | setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall); | 
|  |  | 
|  | // The _ftol2 runtime function has an unusual calling conv, which | 
|  | // is modeled by a special pseudo-instruction. | 
|  | setLibcallName(RTLIB::FPTOUINT_F64_I64, 0); | 
|  | setLibcallName(RTLIB::FPTOUINT_F32_I64, 0); | 
|  | setLibcallName(RTLIB::FPTOUINT_F64_I32, 0); | 
|  | setLibcallName(RTLIB::FPTOUINT_F32_I32, 0); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isTargetDarwin()) { | 
|  | // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. | 
|  | setUseUnderscoreSetJmp(false); | 
|  | setUseUnderscoreLongJmp(false); | 
|  | } else if (Subtarget->isTargetWindowsGNU()) { | 
|  | // MS runtime is weird: it exports _setjmp, but longjmp! | 
|  | setUseUnderscoreSetJmp(true); | 
|  | setUseUnderscoreLongJmp(false); | 
|  | } else { | 
|  | setUseUnderscoreSetJmp(true); | 
|  | setUseUnderscoreLongJmp(true); | 
|  | } | 
|  |  | 
|  | // Set up the register classes. | 
|  | addRegisterClass(MVT::i8, &X86::GR8RegClass); | 
|  | addRegisterClass(MVT::i16, &X86::GR16RegClass); | 
|  | addRegisterClass(MVT::i32, &X86::GR32RegClass); | 
|  | if (Subtarget->is64Bit()) | 
|  | addRegisterClass(MVT::i64, &X86::GR64RegClass); | 
|  |  | 
|  | setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); | 
|  |  | 
|  | // We don't accept any truncstore of integer registers. | 
|  | setTruncStoreAction(MVT::i64, MVT::i32, Expand); | 
|  | setTruncStoreAction(MVT::i64, MVT::i16, Expand); | 
|  | setTruncStoreAction(MVT::i64, MVT::i8 , Expand); | 
|  | setTruncStoreAction(MVT::i32, MVT::i16, Expand); | 
|  | setTruncStoreAction(MVT::i32, MVT::i8 , Expand); | 
|  | setTruncStoreAction(MVT::i16, MVT::i8,  Expand); | 
|  |  | 
|  | // SETOEQ and SETUNE require checking two conditions. | 
|  | setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand); | 
|  | setCondCodeAction(ISD::SETUNE, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETUNE, MVT::f80, Expand); | 
|  |  | 
|  | // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this | 
|  | // operation. | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom); | 
|  | } else if (!TM.Options.UseSoftFloat) { | 
|  | // We have an algorithm for SSE2->double, and we turn this into a | 
|  | // 64-bit FILD followed by conditional FADD for other targets. | 
|  | setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom); | 
|  | // We have an algorithm for SSE2, and we turn this into a 64-bit | 
|  | // FILD for other targets. | 
|  | setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom); | 
|  | } | 
|  |  | 
|  | // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have | 
|  | // this operation. | 
|  | setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote); | 
|  |  | 
|  | if (!TM.Options.UseSoftFloat) { | 
|  | // SSE has no i16 to fp conversion, only i32 | 
|  | if (X86ScalarSSEf32) { | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote); | 
|  | // f32 and f64 cases are Legal, f80 case is not | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom); | 
|  | } else { | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom); | 
|  | } | 
|  | } else { | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote); | 
|  | } | 
|  |  | 
|  | // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64 | 
|  | // are Legal, f80 is custom lowered. | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom); | 
|  |  | 
|  | // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have | 
|  | // this operation. | 
|  | setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote); | 
|  |  | 
|  | if (X86ScalarSSEf32) { | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote); | 
|  | // f32 and f64 cases are Legal, f80 case is not | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom); | 
|  | } else { | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom); | 
|  | } | 
|  |  | 
|  | // Handle FP_TO_UINT by promoting the destination to a larger signed | 
|  | // conversion. | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand); | 
|  | setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote); | 
|  | } else if (!TM.Options.UseSoftFloat) { | 
|  | // Since AVX is a superset of SSE3, only check for SSE here. | 
|  | if (Subtarget->hasSSE1() && !Subtarget->hasSSE3()) | 
|  | // Expand FP_TO_UINT into a select. | 
|  | // FIXME: We would like to use a Custom expander here eventually to do | 
|  | // the optimal thing for SSE vs. the default expansion in the legalizer. | 
|  | setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand); | 
|  | else | 
|  | // With SSE3 we can use fisttpll to convert to a signed i64; without | 
|  | // SSE, we're stuck with a fistpll. | 
|  | setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom); | 
|  | } | 
|  |  | 
|  | if (isTargetFTOL()) { | 
|  | // Use the _ftol2 runtime function, which has a pseudo-instruction | 
|  | // to handle its weird calling convention. | 
|  | setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom); | 
|  | } | 
|  |  | 
|  | // TODO: when we have SSE, these could be more efficient, by using movd/movq. | 
|  | if (!X86ScalarSSEf64) { | 
|  | setOperationAction(ISD::BITCAST        , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::BITCAST        , MVT::i32  , Expand); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::BITCAST      , MVT::f64  , Expand); | 
|  | // Without SSE, i64->f64 goes through memory. | 
|  | setOperationAction(ISD::BITCAST      , MVT::i64  , Expand); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Scalar integer divide and remainder are lowered to use operations that | 
|  | // produce two results, to match the available instructions. This exposes | 
|  | // the two-result form to trivial CSE, which is able to combine x/y and x%y | 
|  | // into a single instruction. | 
|  | // | 
|  | // Scalar integer multiply-high is also lowered to use two-result | 
|  | // operations, to match the available instructions. However, plain multiply | 
|  | // (low) operations are left as Legal, as there are single-result | 
|  | // instructions for this in x86. Using the two-result multiply instructions | 
|  | // when both high and low results are needed must be arranged by dagcombine. | 
|  | for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) { | 
|  | MVT VT = IntVTs[i]; | 
|  | setOperationAction(ISD::MULHS, VT, Expand); | 
|  | setOperationAction(ISD::MULHU, VT, Expand); | 
|  | setOperationAction(ISD::SDIV, VT, Expand); | 
|  | setOperationAction(ISD::UDIV, VT, Expand); | 
|  | setOperationAction(ISD::SREM, VT, Expand); | 
|  | setOperationAction(ISD::UREM, VT, Expand); | 
|  |  | 
|  | // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences. | 
|  | setOperationAction(ISD::ADDC, VT, Custom); | 
|  | setOperationAction(ISD::ADDE, VT, Custom); | 
|  | setOperationAction(ISD::SUBC, VT, Custom); | 
|  | setOperationAction(ISD::SUBE, VT, Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::BR_JT            , MVT::Other, Expand); | 
|  | setOperationAction(ISD::BRCOND           , MVT::Other, Custom); | 
|  | setOperationAction(ISD::BR_CC            , MVT::f32,   Expand); | 
|  | setOperationAction(ISD::BR_CC            , MVT::f64,   Expand); | 
|  | setOperationAction(ISD::BR_CC            , MVT::f80,   Expand); | 
|  | setOperationAction(ISD::BR_CC            , MVT::i8,    Expand); | 
|  | setOperationAction(ISD::BR_CC            , MVT::i16,   Expand); | 
|  | setOperationAction(ISD::BR_CC            , MVT::i32,   Expand); | 
|  | setOperationAction(ISD::BR_CC            , MVT::i64,   Expand); | 
|  | setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand); | 
|  | setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::FREM             , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::FREM             , MVT::f64  , Expand); | 
|  | setOperationAction(ISD::FREM             , MVT::f80  , Expand); | 
|  | setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom); | 
|  |  | 
|  | // Promote the i8 variants and force them on up to i32 which has a shorter | 
|  | // encoding. | 
|  | setOperationAction(ISD::CTTZ             , MVT::i8   , Promote); | 
|  | AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote); | 
|  | AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32); | 
|  | if (Subtarget->hasBMI()) { | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); | 
|  | } else { | 
|  | setOperationAction(ISD::CTTZ           , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::CTTZ           , MVT::i32  , Custom); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::CTTZ         , MVT::i64  , Custom); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasLZCNT()) { | 
|  | // When promoting the i8 variants, force them to i32 for a shorter | 
|  | // encoding. | 
|  | setOperationAction(ISD::CTLZ           , MVT::i8   , Promote); | 
|  | AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote); | 
|  | AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); | 
|  | } else { | 
|  | setOperationAction(ISD::CTLZ           , MVT::i8   , Custom); | 
|  | setOperationAction(ISD::CTLZ           , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::CTLZ           , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::CTLZ         , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasPOPCNT()) { | 
|  | setOperationAction(ISD::CTPOP          , MVT::i8   , Promote); | 
|  | } else { | 
|  | setOperationAction(ISD::CTPOP          , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::CTPOP          , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::CTPOP          , MVT::i32  , Expand); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::CTPOP        , MVT::i64  , Expand); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom); | 
|  |  | 
|  | if (!Subtarget->hasMOVBE()) | 
|  | setOperationAction(ISD::BSWAP          , MVT::i16  , Expand); | 
|  |  | 
|  | // These should be promoted to a larger select which is supported. | 
|  | setOperationAction(ISD::SELECT          , MVT::i1   , Promote); | 
|  | // X86 wants to expand cmov itself. | 
|  | setOperationAction(ISD::SELECT          , MVT::i8   , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::f32  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::f64  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::f80  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::i8   , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::f32  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::f64  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::f80  , Custom); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::SELECT        , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::SETCC         , MVT::i64  , Custom); | 
|  | } | 
|  | setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom); | 
|  | // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support | 
|  | // SjLj exception handling but a light-weight setjmp/longjmp replacement to | 
|  | // support continuation, user-level threading, and etc.. As a result, no | 
|  | // other SjLj exception interfaces are implemented and please don't build | 
|  | // your own exception handling based on them. | 
|  | // LLVM/Clang supports zero-cost DWARF exception handling. | 
|  | setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); | 
|  | setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); | 
|  |  | 
|  | // Darwin ABI issue. | 
|  | setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::JumpTable       , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom); | 
|  | if (Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::JumpTable     , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom); | 
|  | setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom); | 
|  | } | 
|  | // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) | 
|  | setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasSSE1()) | 
|  | setOperationAction(ISD::PREFETCH      , MVT::Other, Legal); | 
|  |  | 
|  | setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom); | 
|  |  | 
|  | // Expand certain atomics | 
|  | for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) { | 
|  | MVT VT = IntVTs[i]; | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); | 
|  | setOperationAction(ISD::ATOMIC_STORE, VT, Custom); | 
|  | } | 
|  |  | 
|  | if (!Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom); | 
|  | setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasCmpxchg16b()) { | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom); | 
|  | } | 
|  |  | 
|  | // FIXME - use subtarget debug flags | 
|  | if (!Subtarget->isTargetDarwin() && | 
|  | !Subtarget->isTargetELF() && | 
|  | !Subtarget->isTargetCygMing()) { | 
|  | setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); | 
|  | } | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | setExceptionPointerRegister(X86::RAX); | 
|  | setExceptionSelectorRegister(X86::RDX); | 
|  | } else { | 
|  | setExceptionPointerRegister(X86::EAX); | 
|  | setExceptionSelectorRegister(X86::EDX); | 
|  | } | 
|  | setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); | 
|  | setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); | 
|  | setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); | 
|  |  | 
|  | setOperationAction(ISD::TRAP, MVT::Other, Legal); | 
|  | setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); | 
|  |  | 
|  | // VASTART needs to be custom lowered to use the VarArgsFrameIndex | 
|  | setOperationAction(ISD::VASTART           , MVT::Other, Custom); | 
|  | setOperationAction(ISD::VAEND             , MVT::Other, Expand); | 
|  | if (Subtarget->is64Bit() && !Subtarget->isTargetWin64()) { | 
|  | // TargetInfo::X86_64ABIBuiltinVaList | 
|  | setOperationAction(ISD::VAARG           , MVT::Other, Custom); | 
|  | setOperationAction(ISD::VACOPY          , MVT::Other, Custom); | 
|  | } else { | 
|  | // TargetInfo::CharPtrBuiltinVaList | 
|  | setOperationAction(ISD::VAARG           , MVT::Other, Expand); | 
|  | setOperationAction(ISD::VACOPY          , MVT::Other, Expand); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand); | 
|  |  | 
|  | if (Subtarget->isOSWindows() && !Subtarget->isTargetMacho()) | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ? | 
|  | MVT::i64 : MVT::i32, Custom); | 
|  | else if (TM.Options.EnableSegmentedStacks) | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ? | 
|  | MVT::i64 : MVT::i32, Custom); | 
|  | else | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ? | 
|  | MVT::i64 : MVT::i32, Expand); | 
|  |  | 
|  | if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) { | 
|  | // f32 and f64 use SSE. | 
|  | // Set up the FP register classes. | 
|  | addRegisterClass(MVT::f32, &X86::FR32RegClass); | 
|  | addRegisterClass(MVT::f64, &X86::FR64RegClass); | 
|  |  | 
|  | // Use ANDPD to simulate FABS. | 
|  | setOperationAction(ISD::FABS , MVT::f64, Custom); | 
|  | setOperationAction(ISD::FABS , MVT::f32, Custom); | 
|  |  | 
|  | // Use XORP to simulate FNEG. | 
|  | setOperationAction(ISD::FNEG , MVT::f64, Custom); | 
|  | setOperationAction(ISD::FNEG , MVT::f32, Custom); | 
|  |  | 
|  | // Use ANDPD and ORPD to simulate FCOPYSIGN. | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); | 
|  |  | 
|  | // Lower this to FGETSIGNx86 plus an AND. | 
|  | setOperationAction(ISD::FGETSIGN, MVT::i64, Custom); | 
|  | setOperationAction(ISD::FGETSIGN, MVT::i32, Custom); | 
|  |  | 
|  | // We don't support sin/cos/fmod | 
|  | setOperationAction(ISD::FSIN   , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOS   , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSIN   , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS   , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f32, Expand); | 
|  |  | 
|  | // Expand FP immediates into loads from the stack, except for the special | 
|  | // cases we handle. | 
|  | addLegalFPImmediate(APFloat(+0.0)); // xorpd | 
|  | addLegalFPImmediate(APFloat(+0.0f)); // xorps | 
|  | } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) { | 
|  | // Use SSE for f32, x87 for f64. | 
|  | // Set up the FP register classes. | 
|  | addRegisterClass(MVT::f32, &X86::FR32RegClass); | 
|  | addRegisterClass(MVT::f64, &X86::RFP64RegClass); | 
|  |  | 
|  | // Use ANDPS to simulate FABS. | 
|  | setOperationAction(ISD::FABS , MVT::f32, Custom); | 
|  |  | 
|  | // Use XORP to simulate FNEG. | 
|  | setOperationAction(ISD::FNEG , MVT::f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::UNDEF,     MVT::f64, Expand); | 
|  |  | 
|  | // Use ANDPS and ORPS to simulate FCOPYSIGN. | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); | 
|  |  | 
|  | // We don't support sin/cos/fmod | 
|  | setOperationAction(ISD::FSIN   , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS   , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f32, Expand); | 
|  |  | 
|  | // Special cases we handle for FP constants. | 
|  | addLegalFPImmediate(APFloat(+0.0f)); // xorps | 
|  | addLegalFPImmediate(APFloat(+0.0)); // FLD0 | 
|  | addLegalFPImmediate(APFloat(+1.0)); // FLD1 | 
|  | addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS | 
|  | addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS | 
|  |  | 
|  | if (!TM.Options.UnsafeFPMath) { | 
|  | setOperationAction(ISD::FSIN   , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOS   , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f64, Expand); | 
|  | } | 
|  | } else if (!TM.Options.UseSoftFloat) { | 
|  | // f32 and f64 in x87. | 
|  | // Set up the FP register classes. | 
|  | addRegisterClass(MVT::f64, &X86::RFP64RegClass); | 
|  | addRegisterClass(MVT::f32, &X86::RFP32RegClass); | 
|  |  | 
|  | setOperationAction(ISD::UNDEF,     MVT::f64, Expand); | 
|  | setOperationAction(ISD::UNDEF,     MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); | 
|  |  | 
|  | if (!TM.Options.UnsafeFPMath) { | 
|  | setOperationAction(ISD::FSIN   , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSIN   , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS   , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOS   , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f32, Expand); | 
|  | } | 
|  | addLegalFPImmediate(APFloat(+0.0)); // FLD0 | 
|  | addLegalFPImmediate(APFloat(+1.0)); // FLD1 | 
|  | addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS | 
|  | addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS | 
|  | addLegalFPImmediate(APFloat(+0.0f)); // FLD0 | 
|  | addLegalFPImmediate(APFloat(+1.0f)); // FLD1 | 
|  | addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS | 
|  | addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS | 
|  | } | 
|  |  | 
|  | // We don't support FMA. | 
|  | setOperationAction(ISD::FMA, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FMA, MVT::f32, Expand); | 
|  |  | 
|  | // Long double always uses X87. | 
|  | if (!TM.Options.UseSoftFloat) { | 
|  | addRegisterClass(MVT::f80, &X86::RFP80RegClass); | 
|  | setOperationAction(ISD::UNDEF,     MVT::f80, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); | 
|  | { | 
|  | APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended); | 
|  | addLegalFPImmediate(TmpFlt);  // FLD0 | 
|  | TmpFlt.changeSign(); | 
|  | addLegalFPImmediate(TmpFlt);  // FLD0/FCHS | 
|  |  | 
|  | bool ignored; | 
|  | APFloat TmpFlt2(+1.0); | 
|  | TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, | 
|  | &ignored); | 
|  | addLegalFPImmediate(TmpFlt2);  // FLD1 | 
|  | TmpFlt2.changeSign(); | 
|  | addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS | 
|  | } | 
|  |  | 
|  | if (!TM.Options.UnsafeFPMath) { | 
|  | setOperationAction(ISD::FSIN   , MVT::f80, Expand); | 
|  | setOperationAction(ISD::FCOS   , MVT::f80, Expand); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f80, Expand); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::FFLOOR, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FCEIL,  MVT::f80, Expand); | 
|  | setOperationAction(ISD::FTRUNC, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FRINT,  MVT::f80, Expand); | 
|  | setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FMA, MVT::f80, Expand); | 
|  | } | 
|  |  | 
|  | // Always use a library call for pow. | 
|  | setOperationAction(ISD::FPOW             , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::FPOW             , MVT::f64  , Expand); | 
|  | setOperationAction(ISD::FPOW             , MVT::f80  , Expand); | 
|  |  | 
|  | setOperationAction(ISD::FLOG, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FLOG2, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FLOG10, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FEXP, MVT::f80, Expand); | 
|  | setOperationAction(ISD::FEXP2, MVT::f80, Expand); | 
|  |  | 
|  | // First set operation action for all vector types to either promote | 
|  | // (for widening) or expand (for scalarization). Then we will selectively | 
|  | // turn on ones that can be effectively codegen'd. | 
|  | for (int i = MVT::FIRST_VECTOR_VALUETYPE; | 
|  | i <= MVT::LAST_VECTOR_VALUETYPE; ++i) { | 
|  | MVT VT = (MVT::SimpleValueType)i; | 
|  | setOperationAction(ISD::ADD , VT, Expand); | 
|  | setOperationAction(ISD::SUB , VT, Expand); | 
|  | setOperationAction(ISD::FADD, VT, Expand); | 
|  | setOperationAction(ISD::FNEG, VT, Expand); | 
|  | setOperationAction(ISD::FSUB, VT, Expand); | 
|  | setOperationAction(ISD::MUL , VT, Expand); | 
|  | setOperationAction(ISD::FMUL, VT, Expand); | 
|  | setOperationAction(ISD::SDIV, VT, Expand); | 
|  | setOperationAction(ISD::UDIV, VT, Expand); | 
|  | setOperationAction(ISD::FDIV, VT, Expand); | 
|  | setOperationAction(ISD::SREM, VT, Expand); | 
|  | setOperationAction(ISD::UREM, VT, Expand); | 
|  | setOperationAction(ISD::LOAD, VT, Expand); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand); | 
|  | setOperationAction(ISD::FABS, VT, Expand); | 
|  | setOperationAction(ISD::FSIN, VT, Expand); | 
|  | setOperationAction(ISD::FSINCOS, VT, Expand); | 
|  | setOperationAction(ISD::FCOS, VT, Expand); | 
|  | setOperationAction(ISD::FSINCOS, VT, Expand); | 
|  | setOperationAction(ISD::FREM, VT, Expand); | 
|  | setOperationAction(ISD::FMA,  VT, Expand); | 
|  | setOperationAction(ISD::FPOWI, VT, Expand); | 
|  | setOperationAction(ISD::FSQRT, VT, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, VT, Expand); | 
|  | setOperationAction(ISD::FFLOOR, VT, Expand); | 
|  | setOperationAction(ISD::FCEIL, VT, Expand); | 
|  | setOperationAction(ISD::FTRUNC, VT, Expand); | 
|  | setOperationAction(ISD::FRINT, VT, Expand); | 
|  | setOperationAction(ISD::FNEARBYINT, VT, Expand); | 
|  | setOperationAction(ISD::SMUL_LOHI, VT, Expand); | 
|  | setOperationAction(ISD::UMUL_LOHI, VT, Expand); | 
|  | setOperationAction(ISD::SDIVREM, VT, Expand); | 
|  | setOperationAction(ISD::UDIVREM, VT, Expand); | 
|  | setOperationAction(ISD::FPOW, VT, Expand); | 
|  | setOperationAction(ISD::CTPOP, VT, Expand); | 
|  | setOperationAction(ISD::CTTZ, VT, Expand); | 
|  | setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); | 
|  | setOperationAction(ISD::CTLZ, VT, Expand); | 
|  | setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); | 
|  | setOperationAction(ISD::SHL, VT, Expand); | 
|  | setOperationAction(ISD::SRA, VT, Expand); | 
|  | setOperationAction(ISD::SRL, VT, Expand); | 
|  | setOperationAction(ISD::ROTL, VT, Expand); | 
|  | setOperationAction(ISD::ROTR, VT, Expand); | 
|  | setOperationAction(ISD::BSWAP, VT, Expand); | 
|  | setOperationAction(ISD::SETCC, VT, Expand); | 
|  | setOperationAction(ISD::FLOG, VT, Expand); | 
|  | setOperationAction(ISD::FLOG2, VT, Expand); | 
|  | setOperationAction(ISD::FLOG10, VT, Expand); | 
|  | setOperationAction(ISD::FEXP, VT, Expand); | 
|  | setOperationAction(ISD::FEXP2, VT, Expand); | 
|  | setOperationAction(ISD::FP_TO_UINT, VT, Expand); | 
|  | setOperationAction(ISD::FP_TO_SINT, VT, Expand); | 
|  | setOperationAction(ISD::UINT_TO_FP, VT, Expand); | 
|  | setOperationAction(ISD::SINT_TO_FP, VT, Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand); | 
|  | setOperationAction(ISD::TRUNCATE, VT, Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND, VT, Expand); | 
|  | setOperationAction(ISD::ZERO_EXTEND, VT, Expand); | 
|  | setOperationAction(ISD::ANY_EXTEND, VT, Expand); | 
|  | setOperationAction(ISD::VSELECT, VT, Expand); | 
|  | for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE; | 
|  | InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) | 
|  | setTruncStoreAction(VT, | 
|  | (MVT::SimpleValueType)InnerVT, Expand); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, Expand); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, Expand); | 
|  | } | 
|  |  | 
|  | // FIXME: In order to prevent SSE instructions being expanded to MMX ones | 
|  | // with -msoft-float, disable use of MMX as well. | 
|  | if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) { | 
|  | addRegisterClass(MVT::x86mmx, &X86::VR64RegClass); | 
|  | // No operations on x86mmx supported, everything uses intrinsics. | 
|  | } | 
|  |  | 
|  | // MMX-sized vectors (other than x86mmx) are expected to be expanded | 
|  | // into smaller operations. | 
|  | setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand); | 
|  | setOperationAction(ISD::MULHS,              MVT::v4i16, Expand); | 
|  | setOperationAction(ISD::MULHS,              MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::MULHS,              MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::AND,                MVT::v8i8,  Expand); | 
|  | setOperationAction(ISD::AND,                MVT::v4i16, Expand); | 
|  | setOperationAction(ISD::AND,                MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::AND,                MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::OR,                 MVT::v8i8,  Expand); | 
|  | setOperationAction(ISD::OR,                 MVT::v4i16, Expand); | 
|  | setOperationAction(ISD::OR,                 MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::OR,                 MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::XOR,                MVT::v8i8,  Expand); | 
|  | setOperationAction(ISD::XOR,                MVT::v4i16, Expand); | 
|  | setOperationAction(ISD::XOR,                MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::XOR,                MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand); | 
|  | setOperationAction(ISD::SELECT,             MVT::v4i16, Expand); | 
|  | setOperationAction(ISD::SELECT,             MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::SELECT,             MVT::v1i64, Expand); | 
|  | setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand); | 
|  | setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand); | 
|  | setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand); | 
|  | setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand); | 
|  |  | 
|  | if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) { | 
|  | addRegisterClass(MVT::v4f32, &X86::VR128RegClass); | 
|  |  | 
|  | setOperationAction(ISD::FADD,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::FABS,               MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::LOAD,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v4f32, Custom); | 
|  | } | 
|  |  | 
|  | if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) { | 
|  | addRegisterClass(MVT::v2f64, &X86::VR128RegClass); | 
|  |  | 
|  | // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM | 
|  | // registers cannot be used even for integer operations. | 
|  | addRegisterClass(MVT::v16i8, &X86::VR128RegClass); | 
|  | addRegisterClass(MVT::v8i16, &X86::VR128RegClass); | 
|  | addRegisterClass(MVT::v4i32, &X86::VR128RegClass); | 
|  | addRegisterClass(MVT::v2i64, &X86::VR128RegClass); | 
|  |  | 
|  | setOperationAction(ISD::ADD,                MVT::v16i8, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::MUL,                MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::MUL,                MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::SUB,                MVT::v16i8, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::MUL,                MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::FADD,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::FABS,               MVT::v2f64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SETCC,              MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::SETCC,              MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::SETCC,              MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::SETCC,              MVT::v4i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom); | 
|  |  | 
|  | // Custom lower build_vector, vector_shuffle, and extract_vector_elt. | 
|  | for (int i = MVT::v16i8; i != MVT::v2i64; ++i) { | 
|  | MVT VT = (MVT::SimpleValueType)i; | 
|  | // Do not attempt to custom lower non-power-of-2 vectors | 
|  | if (!isPowerOf2_32(VT.getVectorNumElements())) | 
|  | continue; | 
|  | // Do not attempt to custom lower non-128-bit vectors | 
|  | if (!VT.is128BitVector()) | 
|  | continue; | 
|  | setOperationAction(ISD::BUILD_VECTOR,       VT, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); | 
|  | } | 
|  |  | 
|  | // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. | 
|  | for (int i = MVT::v16i8; i != MVT::v2i64; ++i) { | 
|  | MVT VT = (MVT::SimpleValueType)i; | 
|  |  | 
|  | // Do not attempt to promote non-128-bit vectors | 
|  | if (!VT.is128BitVector()) | 
|  | continue; | 
|  |  | 
|  | setOperationAction(ISD::AND,    VT, Promote); | 
|  | AddPromotedToType (ISD::AND,    VT, MVT::v2i64); | 
|  | setOperationAction(ISD::OR,     VT, Promote); | 
|  | AddPromotedToType (ISD::OR,     VT, MVT::v2i64); | 
|  | setOperationAction(ISD::XOR,    VT, Promote); | 
|  | AddPromotedToType (ISD::XOR,    VT, MVT::v2i64); | 
|  | setOperationAction(ISD::LOAD,   VT, Promote); | 
|  | AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64); | 
|  | setOperationAction(ISD::SELECT, VT, Promote); | 
|  | AddPromotedToType (ISD::SELECT, VT, MVT::v2i64); | 
|  | } | 
|  |  | 
|  | setTruncStoreAction(MVT::f64, MVT::f32, Expand); | 
|  |  | 
|  | // Custom lower v2i64 and v2f64 selects. | 
|  | setOperationAction(ISD::LOAD,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::SELECT,             MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v2i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom); | 
|  | // As there is no 64-bit GPR available, we need build a special custom | 
|  | // sequence to convert from v2i32 to v2f32. | 
|  | if (!Subtarget->is64Bit()) | 
|  | setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom); | 
|  | setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom); | 
|  |  | 
|  | setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal); | 
|  | } | 
|  |  | 
|  | if (!TM.Options.UseSoftFloat && Subtarget->hasSSE41()) { | 
|  | setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal); | 
|  | setOperationAction(ISD::FCEIL,              MVT::f32,   Legal); | 
|  | setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal); | 
|  | setOperationAction(ISD::FRINT,              MVT::f32,   Legal); | 
|  | setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal); | 
|  | setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal); | 
|  | setOperationAction(ISD::FCEIL,              MVT::f64,   Legal); | 
|  | setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal); | 
|  | setOperationAction(ISD::FRINT,              MVT::f64,   Legal); | 
|  | setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal); | 
|  |  | 
|  | setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FRINT,              MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FRINT,              MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal); | 
|  |  | 
|  | // FIXME: Do we need to handle scalar-to-vector here? | 
|  | setOperationAction(ISD::MUL,                MVT::v4i32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal); | 
|  | setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal); | 
|  |  | 
|  | // i8 and i16 vectors are custom , because the source register and source | 
|  | // source memory operand types are not the same width.  f32 vectors are | 
|  | // custom since the immediate controlling the insert encodes additional | 
|  | // information. | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); | 
|  |  | 
|  | // FIXME: these should be Legal but thats only for the case where | 
|  | // the index is constant.  For now custom expand to deal with that. | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasSSE2()) { | 
|  | setOperationAction(ISD::SRL,               MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::SRL,               MVT::v16i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SHL,               MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::SHL,               MVT::v16i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SRA,               MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::SRA,               MVT::v16i8, Custom); | 
|  |  | 
|  | // In the customized shift lowering, the legal cases in AVX2 will be | 
|  | // recognized. | 
|  | setOperationAction(ISD::SRL,               MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::SRL,               MVT::v4i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SHL,               MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::SHL,               MVT::v4i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SRA,               MVT::v4i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SDIV,              MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::SDIV,              MVT::v4i32, Custom); | 
|  | } | 
|  |  | 
|  | if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) { | 
|  | addRegisterClass(MVT::v32i8,  &X86::VR256RegClass); | 
|  | addRegisterClass(MVT::v16i16, &X86::VR256RegClass); | 
|  | addRegisterClass(MVT::v8i32,  &X86::VR256RegClass); | 
|  | addRegisterClass(MVT::v8f32,  &X86::VR256RegClass); | 
|  | addRegisterClass(MVT::v4i64,  &X86::VR256RegClass); | 
|  | addRegisterClass(MVT::v4f64,  &X86::VR256RegClass); | 
|  |  | 
|  | setOperationAction(ISD::LOAD,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v4i64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FADD,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FRINT,              MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v8f32, Custom); | 
|  | setOperationAction(ISD::FABS,               MVT::v8f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FADD,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FRINT,              MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v4f64, Custom); | 
|  | setOperationAction(ISD::FABS,               MVT::v4f64, Custom); | 
|  |  | 
|  | // (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted | 
|  | // even though v8i16 is a legal type. | 
|  | setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT,         MVT::v8i16, Promote); | 
|  | setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SINT_TO_FP,         MVT::v8i16, Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom); | 
|  |  | 
|  | setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SRL,               MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::SRL,               MVT::v32i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SHL,               MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::SHL,               MVT::v32i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SRA,               MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::SRA,               MVT::v32i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SDIV,              MVT::v16i16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SETCC,             MVT::v32i8, Custom); | 
|  | setOperationAction(ISD::SETCC,             MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::SETCC,             MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::SETCC,             MVT::v4i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SELECT,            MVT::v4f64, Custom); | 
|  | setOperationAction(ISD::SELECT,            MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::SELECT,            MVT::v8f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal); | 
|  | setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,       MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::ZERO_EXTEND,       MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::ANY_EXTEND,        MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,          MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,          MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,          MVT::v4i32, Custom); | 
|  |  | 
|  | if (Subtarget->hasFMA() || Subtarget->hasFMA4()) { | 
|  | setOperationAction(ISD::FMA,             MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FMA,             MVT::v4f64, Legal); | 
|  | setOperationAction(ISD::FMA,             MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::FMA,             MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::FMA,             MVT::f32, Legal); | 
|  | setOperationAction(ISD::FMA,             MVT::f64, Legal); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasInt256()) { | 
|  | setOperationAction(ISD::ADD,             MVT::v4i64, Legal); | 
|  | setOperationAction(ISD::ADD,             MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::ADD,             MVT::v16i16, Legal); | 
|  | setOperationAction(ISD::ADD,             MVT::v32i8, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SUB,             MVT::v4i64, Legal); | 
|  | setOperationAction(ISD::SUB,             MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::SUB,             MVT::v16i16, Legal); | 
|  | setOperationAction(ISD::SUB,             MVT::v32i8, Legal); | 
|  |  | 
|  | setOperationAction(ISD::MUL,             MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::MUL,             MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::MUL,             MVT::v16i16, Legal); | 
|  | // Don't lower v32i8 because there is no 128-bit byte mul | 
|  |  | 
|  | setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SDIV,            MVT::v8i32, Custom); | 
|  | } else { | 
|  | setOperationAction(ISD::ADD,             MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::ADD,             MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::ADD,             MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::ADD,             MVT::v32i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SUB,             MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::SUB,             MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::SUB,             MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::SUB,             MVT::v32i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::MUL,             MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::MUL,             MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::MUL,             MVT::v16i16, Custom); | 
|  | // Don't lower v32i8 because there is no 128-bit byte mul | 
|  | } | 
|  |  | 
|  | // In the customized shift lowering, the legal cases in AVX2 will be | 
|  | // recognized. | 
|  | setOperationAction(ISD::SRL,               MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::SRL,               MVT::v8i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SHL,               MVT::v4i64, Custom); | 
|  | setOperationAction(ISD::SHL,               MVT::v8i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SRA,               MVT::v8i32, Custom); | 
|  |  | 
|  | // Custom lower several nodes for 256-bit types. | 
|  | for (int i = MVT::FIRST_VECTOR_VALUETYPE; | 
|  | i <= MVT::LAST_VECTOR_VALUETYPE; ++i) { | 
|  | MVT VT = (MVT::SimpleValueType)i; | 
|  |  | 
|  | // Extract subvector is special because the value type | 
|  | // (result) is 128-bit but the source is 256-bit wide. | 
|  | if (VT.is128BitVector()) | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); | 
|  |  | 
|  | // Do not attempt to custom lower other non-256-bit vectors | 
|  | if (!VT.is256BitVector()) | 
|  | continue; | 
|  |  | 
|  | setOperationAction(ISD::BUILD_VECTOR,       VT, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom); | 
|  | } | 
|  |  | 
|  | // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64. | 
|  | for (int i = MVT::v32i8; i != MVT::v4i64; ++i) { | 
|  | MVT VT = (MVT::SimpleValueType)i; | 
|  |  | 
|  | // Do not attempt to promote non-256-bit vectors | 
|  | if (!VT.is256BitVector()) | 
|  | continue; | 
|  |  | 
|  | setOperationAction(ISD::AND,    VT, Promote); | 
|  | AddPromotedToType (ISD::AND,    VT, MVT::v4i64); | 
|  | setOperationAction(ISD::OR,     VT, Promote); | 
|  | AddPromotedToType (ISD::OR,     VT, MVT::v4i64); | 
|  | setOperationAction(ISD::XOR,    VT, Promote); | 
|  | AddPromotedToType (ISD::XOR,    VT, MVT::v4i64); | 
|  | setOperationAction(ISD::LOAD,   VT, Promote); | 
|  | AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64); | 
|  | setOperationAction(ISD::SELECT, VT, Promote); | 
|  | AddPromotedToType (ISD::SELECT, VT, MVT::v4i64); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512()) { | 
|  | addRegisterClass(MVT::v16i32, &X86::VR512RegClass); | 
|  | addRegisterClass(MVT::v16f32, &X86::VR512RegClass); | 
|  | addRegisterClass(MVT::v8i64,  &X86::VR512RegClass); | 
|  | addRegisterClass(MVT::v8f64,  &X86::VR512RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::i1,     &X86::VK1RegClass); | 
|  | addRegisterClass(MVT::v8i1,   &X86::VK8RegClass); | 
|  | addRegisterClass(MVT::v16i1,  &X86::VK16RegClass); | 
|  |  | 
|  | setOperationAction(ISD::BR_CC,              MVT::i1,    Expand); | 
|  | setOperationAction(ISD::SETCC,              MVT::i1,    Custom); | 
|  | setOperationAction(ISD::XOR,                MVT::i1,    Legal); | 
|  | setOperationAction(ISD::OR,                 MVT::i1,    Legal); | 
|  | setOperationAction(ISD::AND,                MVT::i1,    Legal); | 
|  | setLoadExtAction(ISD::EXTLOAD,              MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v16f32, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v8f64, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v16i1, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FADD,               MVT::v16f32, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v16f32, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v16f32, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v16f32, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v16f32, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v16f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FADD,               MVT::v8f64, Legal); | 
|  | setOperationAction(ISD::FSUB,               MVT::v8f64, Legal); | 
|  | setOperationAction(ISD::FMUL,               MVT::v8f64, Legal); | 
|  | setOperationAction(ISD::FDIV,               MVT::v8f64, Legal); | 
|  | setOperationAction(ISD::FSQRT,              MVT::v8f64, Legal); | 
|  | setOperationAction(ISD::FNEG,               MVT::v8f64, Custom); | 
|  | setOperationAction(ISD::FMA,                MVT::v8f64, Legal); | 
|  | setOperationAction(ISD::FMA,                MVT::v16f32, Legal); | 
|  | setOperationAction(ISD::SDIV,               MVT::v16i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FP_TO_SINT,         MVT::i32, Legal); | 
|  | setOperationAction(ISD::FP_TO_UINT,         MVT::i32, Legal); | 
|  | setOperationAction(ISD::SINT_TO_FP,         MVT::i32, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP,         MVT::i32, Legal); | 
|  | if (Subtarget->is64Bit()) { | 
|  | setOperationAction(ISD::FP_TO_UINT,       MVT::i64, Legal); | 
|  | setOperationAction(ISD::FP_TO_SINT,       MVT::i64, Legal); | 
|  | setOperationAction(ISD::SINT_TO_FP,       MVT::i64, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP,       MVT::i64, Legal); | 
|  | } | 
|  | setOperationAction(ISD::FP_TO_SINT,         MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::FP_TO_UINT,         MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::FP_TO_UINT,         MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::SINT_TO_FP,         MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP,         MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP,         MVT::v8i32, Legal); | 
|  | setOperationAction(ISD::FP_ROUND,           MVT::v8f32, Legal); | 
|  | setOperationAction(ISD::FP_EXTEND,          MVT::v8f32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::TRUNCATE,           MVT::i1, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,           MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,           MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,           MVT::v8i1, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,           MVT::v16i1, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,           MVT::v16i16, Custom); | 
|  | setOperationAction(ISD::ZERO_EXTEND,        MVT::v16i32, Custom); | 
|  | setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i64, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i32, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i64, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f64,  Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i64,  Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16f32,  Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i32,  Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i1,    Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i1, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SETCC,              MVT::v16i1, Custom); | 
|  | setOperationAction(ISD::SETCC,              MVT::v8i1, Custom); | 
|  |  | 
|  | setOperationAction(ISD::MUL,              MVT::v8i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i1,  Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i1, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i1, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v16i1, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v8f64, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v8i64, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v16f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::ADD,                MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v16i32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SUB,                MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v16i32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::MUL,                MVT::v16i32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SRL,                MVT::v8i64, Custom); | 
|  | setOperationAction(ISD::SRL,                MVT::v16i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SHL,                MVT::v8i64, Custom); | 
|  | setOperationAction(ISD::SHL,                MVT::v16i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SRA,                MVT::v8i64, Custom); | 
|  | setOperationAction(ISD::SRA,                MVT::v16i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::AND,                MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::OR,                 MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::XOR,                MVT::v8i64, Legal); | 
|  | setOperationAction(ISD::AND,                MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::OR,                 MVT::v16i32, Legal); | 
|  | setOperationAction(ISD::XOR,                MVT::v16i32, Legal); | 
|  |  | 
|  | // Custom lower several nodes. | 
|  | for (int i = MVT::FIRST_VECTOR_VALUETYPE; | 
|  | i <= MVT::LAST_VECTOR_VALUETYPE; ++i) { | 
|  | MVT VT = (MVT::SimpleValueType)i; | 
|  |  | 
|  | unsigned EltSize = VT.getVectorElementType().getSizeInBits(); | 
|  | // Extract subvector is special because the value type | 
|  | // (result) is 256/128-bit but the source is 512-bit wide. | 
|  | if (VT.is128BitVector() || VT.is256BitVector()) | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); | 
|  |  | 
|  | if (VT.getVectorElementType() == MVT::i1) | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); | 
|  |  | 
|  | // Do not attempt to custom lower other non-512-bit vectors | 
|  | if (!VT.is512BitVector()) | 
|  | continue; | 
|  |  | 
|  | if ( EltSize >= 32) { | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,      VT, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,   VT, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR,        VT, Custom); | 
|  | setOperationAction(ISD::VSELECT,             VT, Legal); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT,  VT, Custom); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,    VT, Custom); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR,    VT, Custom); | 
|  | } | 
|  | } | 
|  | for (int i = MVT::v32i8; i != MVT::v8i64; ++i) { | 
|  | MVT VT = (MVT::SimpleValueType)i; | 
|  |  | 
|  | // Do not attempt to promote non-256-bit vectors | 
|  | if (!VT.is512BitVector()) | 
|  | continue; | 
|  |  | 
|  | setOperationAction(ISD::SELECT, VT, Promote); | 
|  | AddPromotedToType (ISD::SELECT, VT, MVT::v8i64); | 
|  | } | 
|  | }// has  AVX-512 | 
|  |  | 
|  | // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion | 
|  | // of this type with custom code. | 
|  | for (int VT = MVT::FIRST_VECTOR_VALUETYPE; | 
|  | VT != MVT::LAST_VECTOR_VALUETYPE; VT++) { | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, | 
|  | Custom); | 
|  | } | 
|  |  | 
|  | // We want to custom lower some of our intrinsics. | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); | 
|  |  | 
|  | // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't | 
|  | // handle type legalization for these operations here. | 
|  | // | 
|  | // FIXME: We really should do custom legalization for addition and | 
|  | // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better | 
|  | // than generic legalization for 64-bit multiplication-with-overflow, though. | 
|  | for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) { | 
|  | // Add/Sub/Mul with overflow operations are custom lowered. | 
|  | MVT VT = IntVTs[i]; | 
|  | setOperationAction(ISD::SADDO, VT, Custom); | 
|  | setOperationAction(ISD::UADDO, VT, Custom); | 
|  | setOperationAction(ISD::SSUBO, VT, Custom); | 
|  | setOperationAction(ISD::USUBO, VT, Custom); | 
|  | setOperationAction(ISD::SMULO, VT, Custom); | 
|  | setOperationAction(ISD::UMULO, VT, Custom); | 
|  | } | 
|  |  | 
|  | // There are no 8-bit 3-address imul/mul instructions | 
|  | setOperationAction(ISD::SMULO, MVT::i8, Expand); | 
|  | setOperationAction(ISD::UMULO, MVT::i8, Expand); | 
|  |  | 
|  | if (!Subtarget->is64Bit()) { | 
|  | // These libcalls are not available in 32-bit. | 
|  | setLibcallName(RTLIB::SHL_I128, 0); | 
|  | setLibcallName(RTLIB::SRL_I128, 0); | 
|  | setLibcallName(RTLIB::SRA_I128, 0); | 
|  | } | 
|  |  | 
|  | // Combine sin / cos into one node or libcall if possible. | 
|  | if (Subtarget->hasSinCos()) { | 
|  | setLibcallName(RTLIB::SINCOS_F32, "sincosf"); | 
|  | setLibcallName(RTLIB::SINCOS_F64, "sincos"); | 
|  | if (Subtarget->isTargetDarwin()) { | 
|  | // For MacOSX, we don't want to the normal expansion of a libcall to | 
|  | // sincos. We want to issue a libcall to __sincos_stret to avoid memory | 
|  | // traffic. | 
|  | setOperationAction(ISD::FSINCOS, MVT::f64, Custom); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f32, Custom); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We have target-specific dag combine patterns for the following nodes: | 
|  | setTargetDAGCombine(ISD::VECTOR_SHUFFLE); | 
|  | setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); | 
|  | setTargetDAGCombine(ISD::VSELECT); | 
|  | setTargetDAGCombine(ISD::SELECT); | 
|  | setTargetDAGCombine(ISD::SHL); | 
|  | setTargetDAGCombine(ISD::SRA); | 
|  | setTargetDAGCombine(ISD::SRL); | 
|  | setTargetDAGCombine(ISD::OR); | 
|  | setTargetDAGCombine(ISD::AND); | 
|  | setTargetDAGCombine(ISD::ADD); | 
|  | setTargetDAGCombine(ISD::FADD); | 
|  | setTargetDAGCombine(ISD::FSUB); | 
|  | setTargetDAGCombine(ISD::FMA); | 
|  | setTargetDAGCombine(ISD::SUB); | 
|  | setTargetDAGCombine(ISD::LOAD); | 
|  | setTargetDAGCombine(ISD::STORE); | 
|  | setTargetDAGCombine(ISD::ZERO_EXTEND); | 
|  | setTargetDAGCombine(ISD::ANY_EXTEND); | 
|  | setTargetDAGCombine(ISD::SIGN_EXTEND); | 
|  | setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); | 
|  | setTargetDAGCombine(ISD::TRUNCATE); | 
|  | setTargetDAGCombine(ISD::SINT_TO_FP); | 
|  | setTargetDAGCombine(ISD::SETCC); | 
|  | if (Subtarget->is64Bit()) | 
|  | setTargetDAGCombine(ISD::MUL); | 
|  | setTargetDAGCombine(ISD::XOR); | 
|  |  | 
|  | computeRegisterProperties(); | 
|  |  | 
|  | // On Darwin, -Os means optimize for size without hurting performance, | 
|  | // do not reduce the limit. | 
|  | MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores | 
|  | MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8; | 
|  | MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores | 
|  | MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4; | 
|  | MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores | 
|  | MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4; | 
|  | setPrefLoopAlignment(4); // 2^4 bytes. | 
|  |  | 
|  | // Predictable cmov don't hurt on atom because it's in-order. | 
|  | PredictableSelectIsExpensive = !Subtarget->isAtom(); | 
|  |  | 
|  | setPrefFunctionAlignment(4); // 2^4 bytes. | 
|  | } | 
|  |  | 
|  | EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { | 
|  | if (!VT.isVector()) | 
|  | return Subtarget->hasAVX512() ? MVT::i1: MVT::i8; | 
|  |  | 
|  | if (Subtarget->hasAVX512()) | 
|  | switch(VT.getVectorNumElements()) { | 
|  | case  8: return MVT::v8i1; | 
|  | case 16: return MVT::v16i1; | 
|  | } | 
|  |  | 
|  | return VT.changeVectorElementTypeToInteger(); | 
|  | } | 
|  |  | 
|  | /// getMaxByValAlign - Helper for getByValTypeAlignment to determine | 
|  | /// the desired ByVal argument alignment. | 
|  | static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) { | 
|  | if (MaxAlign == 16) | 
|  | return; | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { | 
|  | if (VTy->getBitWidth() == 128) | 
|  | MaxAlign = 16; | 
|  | } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | unsigned EltAlign = 0; | 
|  | getMaxByValAlign(ATy->getElementType(), EltAlign); | 
|  | if (EltAlign > MaxAlign) | 
|  | MaxAlign = EltAlign; | 
|  | } else if (StructType *STy = dyn_cast<StructType>(Ty)) { | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
|  | unsigned EltAlign = 0; | 
|  | getMaxByValAlign(STy->getElementType(i), EltAlign); | 
|  | if (EltAlign > MaxAlign) | 
|  | MaxAlign = EltAlign; | 
|  | if (MaxAlign == 16) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate | 
|  | /// function arguments in the caller parameter area. For X86, aggregates | 
|  | /// that contain SSE vectors are placed at 16-byte boundaries while the rest | 
|  | /// are at 4-byte boundaries. | 
|  | unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const { | 
|  | if (Subtarget->is64Bit()) { | 
|  | // Max of 8 and alignment of type. | 
|  | unsigned TyAlign = TD->getABITypeAlignment(Ty); | 
|  | if (TyAlign > 8) | 
|  | return TyAlign; | 
|  | return 8; | 
|  | } | 
|  |  | 
|  | unsigned Align = 4; | 
|  | if (Subtarget->hasSSE1()) | 
|  | getMaxByValAlign(Ty, Align); | 
|  | return Align; | 
|  | } | 
|  |  | 
|  | /// getOptimalMemOpType - Returns the target specific optimal type for load | 
|  | /// and store operations as a result of memset, memcpy, and memmove | 
|  | /// lowering. If DstAlign is zero that means it's safe to destination | 
|  | /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it | 
|  | /// means there isn't a need to check it against alignment requirement, | 
|  | /// probably because the source does not need to be loaded. If 'IsMemset' is | 
|  | /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that | 
|  | /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy | 
|  | /// source is constant so it does not need to be loaded. | 
|  | /// It returns EVT::Other if the type should be determined using generic | 
|  | /// target-independent logic. | 
|  | EVT | 
|  | X86TargetLowering::getOptimalMemOpType(uint64_t Size, | 
|  | unsigned DstAlign, unsigned SrcAlign, | 
|  | bool IsMemset, bool ZeroMemset, | 
|  | bool MemcpyStrSrc, | 
|  | MachineFunction &MF) const { | 
|  | const Function *F = MF.getFunction(); | 
|  | if ((!IsMemset || ZeroMemset) && | 
|  | !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, | 
|  | Attribute::NoImplicitFloat)) { | 
|  | if (Size >= 16 && | 
|  | (Subtarget->isUnalignedMemAccessFast() || | 
|  | ((DstAlign == 0 || DstAlign >= 16) && | 
|  | (SrcAlign == 0 || SrcAlign >= 16)))) { | 
|  | if (Size >= 32) { | 
|  | if (Subtarget->hasInt256()) | 
|  | return MVT::v8i32; | 
|  | if (Subtarget->hasFp256()) | 
|  | return MVT::v8f32; | 
|  | } | 
|  | if (Subtarget->hasSSE2()) | 
|  | return MVT::v4i32; | 
|  | if (Subtarget->hasSSE1()) | 
|  | return MVT::v4f32; | 
|  | } else if (!MemcpyStrSrc && Size >= 8 && | 
|  | !Subtarget->is64Bit() && | 
|  | Subtarget->hasSSE2()) { | 
|  | // Do not use f64 to lower memcpy if source is string constant. It's | 
|  | // better to use i32 to avoid the loads. | 
|  | return MVT::f64; | 
|  | } | 
|  | } | 
|  | if (Subtarget->is64Bit() && Size >= 8) | 
|  | return MVT::i64; | 
|  | return MVT::i32; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isSafeMemOpType(MVT VT) const { | 
|  | if (VT == MVT::f32) | 
|  | return X86ScalarSSEf32; | 
|  | else if (VT == MVT::f64) | 
|  | return X86ScalarSSEf64; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, | 
|  | unsigned, | 
|  | bool *Fast) const { | 
|  | if (Fast) | 
|  | *Fast = Subtarget->isUnalignedMemAccessFast(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getJumpTableEncoding - Return the entry encoding for a jump table in the | 
|  | /// current function.  The returned value is a member of the | 
|  | /// MachineJumpTableInfo::JTEntryKind enum. | 
|  | unsigned X86TargetLowering::getJumpTableEncoding() const { | 
|  | // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF | 
|  | // symbol. | 
|  | if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && | 
|  | Subtarget->isPICStyleGOT()) | 
|  | return MachineJumpTableInfo::EK_Custom32; | 
|  |  | 
|  | // Otherwise, use the normal jump table encoding heuristics. | 
|  | return TargetLowering::getJumpTableEncoding(); | 
|  | } | 
|  |  | 
|  | const MCExpr * | 
|  | X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, | 
|  | const MachineBasicBlock *MBB, | 
|  | unsigned uid,MCContext &Ctx) const{ | 
|  | assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ && | 
|  | Subtarget->isPICStyleGOT()); | 
|  | // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF | 
|  | // entries. | 
|  | return MCSymbolRefExpr::Create(MBB->getSymbol(), | 
|  | MCSymbolRefExpr::VK_GOTOFF, Ctx); | 
|  | } | 
|  |  | 
|  | /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC | 
|  | /// jumptable. | 
|  | SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, | 
|  | SelectionDAG &DAG) const { | 
|  | if (!Subtarget->is64Bit()) | 
|  | // This doesn't have SDLoc associated with it, but is not really the | 
|  | // same as a Register. | 
|  | return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy()); | 
|  | return Table; | 
|  | } | 
|  |  | 
|  | /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the | 
|  | /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an | 
|  | /// MCExpr. | 
|  | const MCExpr *X86TargetLowering:: | 
|  | getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, | 
|  | MCContext &Ctx) const { | 
|  | // X86-64 uses RIP relative addressing based on the jump table label. | 
|  | if (Subtarget->isPICStyleRIPRel()) | 
|  | return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); | 
|  |  | 
|  | // Otherwise, the reference is relative to the PIC base. | 
|  | return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx); | 
|  | } | 
|  |  | 
|  | // FIXME: Why this routine is here? Move to RegInfo! | 
|  | std::pair<const TargetRegisterClass*, uint8_t> | 
|  | X86TargetLowering::findRepresentativeClass(MVT VT) const{ | 
|  | const TargetRegisterClass *RRC = 0; | 
|  | uint8_t Cost = 1; | 
|  | switch (VT.SimpleTy) { | 
|  | default: | 
|  | return TargetLowering::findRepresentativeClass(VT); | 
|  | case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: | 
|  | RRC = Subtarget->is64Bit() ? | 
|  | (const TargetRegisterClass*)&X86::GR64RegClass : | 
|  | (const TargetRegisterClass*)&X86::GR32RegClass; | 
|  | break; | 
|  | case MVT::x86mmx: | 
|  | RRC = &X86::VR64RegClass; | 
|  | break; | 
|  | case MVT::f32: case MVT::f64: | 
|  | case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: | 
|  | case MVT::v4f32: case MVT::v2f64: | 
|  | case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32: | 
|  | case MVT::v4f64: | 
|  | RRC = &X86::VR128RegClass; | 
|  | break; | 
|  | } | 
|  | return std::make_pair(RRC, Cost); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace, | 
|  | unsigned &Offset) const { | 
|  | if (!Subtarget->isTargetLinux()) | 
|  | return false; | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs: | 
|  | Offset = 0x28; | 
|  | if (getTargetMachine().getCodeModel() == CodeModel::Kernel) | 
|  | AddressSpace = 256; | 
|  | else | 
|  | AddressSpace = 257; | 
|  | } else { | 
|  | // %gs:0x14 on i386 | 
|  | Offset = 0x14; | 
|  | AddressSpace = 256; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS, | 
|  | unsigned DestAS) const { | 
|  | assert(SrcAS != DestAS && "Expected different address spaces!"); | 
|  |  | 
|  | return SrcAS < 256 && DestAS < 256; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //               Return Value Calling Convention Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86GenCallingConv.inc" | 
|  |  | 
|  | bool | 
|  | X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, | 
|  | MachineFunction &MF, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | LLVMContext &Context) const { | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), | 
|  | RVLocs, Context); | 
|  | return CCInfo.CheckReturn(Outs, RetCC_X86); | 
|  | } | 
|  |  | 
|  | const uint16_t *X86TargetLowering::getScratchRegisters(CallingConv::ID) const { | 
|  | static const uint16_t ScratchRegs[] = { X86::R11, 0 }; | 
|  | return ScratchRegs; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerReturn(SDValue Chain, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | SDLoc dl, SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  |  | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), | 
|  | RVLocs, *DAG.getContext()); | 
|  | CCInfo.AnalyzeReturn(Outs, RetCC_X86); | 
|  |  | 
|  | SDValue Flag; | 
|  | SmallVector<SDValue, 6> RetOps; | 
|  | RetOps.push_back(Chain); // Operand #0 = Chain (updated below) | 
|  | // Operand #1 = Bytes To Pop | 
|  | RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), | 
|  | MVT::i16)); | 
|  |  | 
|  | // Copy the result values into the output registers. | 
|  | for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | assert(VA.isRegLoc() && "Can only return in registers!"); | 
|  | SDValue ValToCopy = OutVals[i]; | 
|  | EVT ValVT = ValToCopy.getValueType(); | 
|  |  | 
|  | // Promote values to the appropriate types | 
|  | if (VA.getLocInfo() == CCValAssign::SExt) | 
|  | ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy); | 
|  | else if (VA.getLocInfo() == CCValAssign::ZExt) | 
|  | ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy); | 
|  | else if (VA.getLocInfo() == CCValAssign::AExt) | 
|  | ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy); | 
|  | else if (VA.getLocInfo() == CCValAssign::BCvt) | 
|  | ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy); | 
|  |  | 
|  | assert(VA.getLocInfo() != CCValAssign::FPExt && | 
|  | "Unexpected FP-extend for return value."); | 
|  |  | 
|  | // If this is x86-64, and we disabled SSE, we can't return FP values, | 
|  | // or SSE or MMX vectors. | 
|  | if ((ValVT == MVT::f32 || ValVT == MVT::f64 || | 
|  | VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) && | 
|  | (Subtarget->is64Bit() && !Subtarget->hasSSE1())) { | 
|  | report_fatal_error("SSE register return with SSE disabled"); | 
|  | } | 
|  | // Likewise we can't return F64 values with SSE1 only.  gcc does so, but | 
|  | // llvm-gcc has never done it right and no one has noticed, so this | 
|  | // should be OK for now. | 
|  | if (ValVT == MVT::f64 && | 
|  | (Subtarget->is64Bit() && !Subtarget->hasSSE2())) | 
|  | report_fatal_error("SSE2 register return with SSE2 disabled"); | 
|  |  | 
|  | // Returns in ST0/ST1 are handled specially: these are pushed as operands to | 
|  | // the RET instruction and handled by the FP Stackifier. | 
|  | if (VA.getLocReg() == X86::ST0 || | 
|  | VA.getLocReg() == X86::ST1) { | 
|  | // If this is a copy from an xmm register to ST(0), use an FPExtend to | 
|  | // change the value to the FP stack register class. | 
|  | if (isScalarFPTypeInSSEReg(VA.getValVT())) | 
|  | ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy); | 
|  | RetOps.push_back(ValToCopy); | 
|  | // Don't emit a copytoreg. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64 | 
|  | // which is returned in RAX / RDX. | 
|  | if (Subtarget->is64Bit()) { | 
|  | if (ValVT == MVT::x86mmx) { | 
|  | if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { | 
|  | ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy); | 
|  | ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, | 
|  | ValToCopy); | 
|  | // If we don't have SSE2 available, convert to v4f32 so the generated | 
|  | // register is legal. | 
|  | if (!Subtarget->hasSSE2()) | 
|  | ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  | RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); | 
|  | } | 
|  |  | 
|  | // The x86-64 ABIs require that for returning structs by value we copy | 
|  | // the sret argument into %rax/%eax (depending on ABI) for the return. | 
|  | // Win32 requires us to put the sret argument to %eax as well. | 
|  | // We saved the argument into a virtual register in the entry block, | 
|  | // so now we copy the value out and into %rax/%eax. | 
|  | if (DAG.getMachineFunction().getFunction()->hasStructRetAttr() && | 
|  | (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | unsigned Reg = FuncInfo->getSRetReturnReg(); | 
|  | assert(Reg && | 
|  | "SRetReturnReg should have been set in LowerFormalArguments()."); | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy()); | 
|  |  | 
|  | unsigned RetValReg | 
|  | = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ? | 
|  | X86::RAX : X86::EAX; | 
|  | Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  |  | 
|  | // RAX/EAX now acts like a return value. | 
|  | RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy())); | 
|  | } | 
|  |  | 
|  | RetOps[0] = Chain;  // Update chain. | 
|  |  | 
|  | // Add the flag if we have it. | 
|  | if (Flag.getNode()) | 
|  | RetOps.push_back(Flag); | 
|  |  | 
|  | return DAG.getNode(X86ISD::RET_FLAG, dl, | 
|  | MVT::Other, &RetOps[0], RetOps.size()); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { | 
|  | if (N->getNumValues() != 1) | 
|  | return false; | 
|  | if (!N->hasNUsesOfValue(1, 0)) | 
|  | return false; | 
|  |  | 
|  | SDValue TCChain = Chain; | 
|  | SDNode *Copy = *N->use_begin(); | 
|  | if (Copy->getOpcode() == ISD::CopyToReg) { | 
|  | // If the copy has a glue operand, we conservatively assume it isn't safe to | 
|  | // perform a tail call. | 
|  | if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) | 
|  | return false; | 
|  | TCChain = Copy->getOperand(0); | 
|  | } else if (Copy->getOpcode() != ISD::FP_EXTEND) | 
|  | return false; | 
|  |  | 
|  | bool HasRet = false; | 
|  | for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | if (UI->getOpcode() != X86ISD::RET_FLAG) | 
|  | return false; | 
|  | HasRet = true; | 
|  | } | 
|  |  | 
|  | if (!HasRet) | 
|  | return false; | 
|  |  | 
|  | Chain = TCChain; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MVT | 
|  | X86TargetLowering::getTypeForExtArgOrReturn(MVT VT, | 
|  | ISD::NodeType ExtendKind) const { | 
|  | MVT ReturnMVT; | 
|  | // TODO: Is this also valid on 32-bit? | 
|  | if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND) | 
|  | ReturnMVT = MVT::i8; | 
|  | else | 
|  | ReturnMVT = MVT::i32; | 
|  |  | 
|  | MVT MinVT = getRegisterType(ReturnMVT); | 
|  | return VT.bitsLT(MinVT) ? MinVT : VT; | 
|  | } | 
|  |  | 
|  | /// LowerCallResult - Lower the result values of a call into the | 
|  | /// appropriate copies out of appropriate physical registers. | 
|  | /// | 
|  | SDValue | 
|  | X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SDLoc dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  |  | 
|  | // Assign locations to each value returned by this call. | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | bool Is64Bit = Subtarget->is64Bit(); | 
|  | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), | 
|  | getTargetMachine(), RVLocs, *DAG.getContext()); | 
|  | CCInfo.AnalyzeCallResult(Ins, RetCC_X86); | 
|  |  | 
|  | // Copy all of the result registers out of their specified physreg. | 
|  | for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | EVT CopyVT = VA.getValVT(); | 
|  |  | 
|  | // If this is x86-64, and we disabled SSE, we can't return FP values | 
|  | if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && | 
|  | ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { | 
|  | report_fatal_error("SSE register return with SSE disabled"); | 
|  | } | 
|  |  | 
|  | SDValue Val; | 
|  |  | 
|  | // If this is a call to a function that returns an fp value on the floating | 
|  | // point stack, we must guarantee the value is popped from the stack, so | 
|  | // a CopyFromReg is not good enough - the copy instruction may be eliminated | 
|  | // if the return value is not used. We use the FpPOP_RETVAL instruction | 
|  | // instead. | 
|  | if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) { | 
|  | // If we prefer to use the value in xmm registers, copy it out as f80 and | 
|  | // use a truncate to move it from fp stack reg to xmm reg. | 
|  | if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80; | 
|  | SDValue Ops[] = { Chain, InFlag }; | 
|  | Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT, | 
|  | MVT::Other, MVT::Glue, Ops), 1); | 
|  | Val = Chain.getValue(0); | 
|  |  | 
|  | // Round the f80 to the right size, which also moves it to the appropriate | 
|  | // xmm register. | 
|  | if (CopyVT != VA.getValVT()) | 
|  | Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val, | 
|  | // This truncation won't change the value. | 
|  | DAG.getIntPtrConstant(1)); | 
|  | } else { | 
|  | Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), | 
|  | CopyVT, InFlag).getValue(1); | 
|  | Val = Chain.getValue(0); | 
|  | } | 
|  | InFlag = Chain.getValue(2); | 
|  | InVals.push_back(Val); | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                C & StdCall & Fast Calling Convention implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  StdCall calling convention seems to be standard for many Windows' API | 
|  | //  routines and around. It differs from C calling convention just a little: | 
|  | //  callee should clean up the stack, not caller. Symbols should be also | 
|  | //  decorated in some fancy way :) It doesn't support any vector arguments. | 
|  | //  For info on fast calling convention see Fast Calling Convention (tail call) | 
|  | //  implementation LowerX86_32FastCCCallTo. | 
|  |  | 
|  | /// CallIsStructReturn - Determines whether a call uses struct return | 
|  | /// semantics. | 
|  | enum StructReturnType { | 
|  | NotStructReturn, | 
|  | RegStructReturn, | 
|  | StackStructReturn | 
|  | }; | 
|  | static StructReturnType | 
|  | callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) { | 
|  | if (Outs.empty()) | 
|  | return NotStructReturn; | 
|  |  | 
|  | const ISD::ArgFlagsTy &Flags = Outs[0].Flags; | 
|  | if (!Flags.isSRet()) | 
|  | return NotStructReturn; | 
|  | if (Flags.isInReg()) | 
|  | return RegStructReturn; | 
|  | return StackStructReturn; | 
|  | } | 
|  |  | 
|  | /// ArgsAreStructReturn - Determines whether a function uses struct | 
|  | /// return semantics. | 
|  | static StructReturnType | 
|  | argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) { | 
|  | if (Ins.empty()) | 
|  | return NotStructReturn; | 
|  |  | 
|  | const ISD::ArgFlagsTy &Flags = Ins[0].Flags; | 
|  | if (!Flags.isSRet()) | 
|  | return NotStructReturn; | 
|  | if (Flags.isInReg()) | 
|  | return RegStructReturn; | 
|  | return StackStructReturn; | 
|  | } | 
|  |  | 
|  | /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified | 
|  | /// by "Src" to address "Dst" with size and alignment information specified by | 
|  | /// the specific parameter attribute. The copy will be passed as a byval | 
|  | /// function parameter. | 
|  | static SDValue | 
|  | CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, | 
|  | ISD::ArgFlagsTy Flags, SelectionDAG &DAG, | 
|  | SDLoc dl) { | 
|  | SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); | 
|  |  | 
|  | return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), | 
|  | /*isVolatile*/false, /*AlwaysInline=*/true, | 
|  | MachinePointerInfo(), MachinePointerInfo()); | 
|  | } | 
|  |  | 
|  | /// IsTailCallConvention - Return true if the calling convention is one that | 
|  | /// supports tail call optimization. | 
|  | static bool IsTailCallConvention(CallingConv::ID CC) { | 
|  | return (CC == CallingConv::Fast || CC == CallingConv::GHC || | 
|  | CC == CallingConv::HiPE); | 
|  | } | 
|  |  | 
|  | /// \brief Return true if the calling convention is a C calling convention. | 
|  | static bool IsCCallConvention(CallingConv::ID CC) { | 
|  | return (CC == CallingConv::C || CC == CallingConv::X86_64_Win64 || | 
|  | CC == CallingConv::X86_64_SysV); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { | 
|  | if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls) | 
|  | return false; | 
|  |  | 
|  | CallSite CS(CI); | 
|  | CallingConv::ID CalleeCC = CS.getCallingConv(); | 
|  | if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// FuncIsMadeTailCallSafe - Return true if the function is being made into | 
|  | /// a tailcall target by changing its ABI. | 
|  | static bool FuncIsMadeTailCallSafe(CallingConv::ID CC, | 
|  | bool GuaranteedTailCallOpt) { | 
|  | return GuaranteedTailCallOpt && IsTailCallConvention(CC); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerMemArgument(SDValue Chain, | 
|  | CallingConv::ID CallConv, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SDLoc dl, SelectionDAG &DAG, | 
|  | const CCValAssign &VA, | 
|  | MachineFrameInfo *MFI, | 
|  | unsigned i) const { | 
|  | // Create the nodes corresponding to a load from this parameter slot. | 
|  | ISD::ArgFlagsTy Flags = Ins[i].Flags; | 
|  | bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv, | 
|  | getTargetMachine().Options.GuaranteedTailCallOpt); | 
|  | bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); | 
|  | EVT ValVT; | 
|  |  | 
|  | // If value is passed by pointer we have address passed instead of the value | 
|  | // itself. | 
|  | if (VA.getLocInfo() == CCValAssign::Indirect) | 
|  | ValVT = VA.getLocVT(); | 
|  | else | 
|  | ValVT = VA.getValVT(); | 
|  |  | 
|  | // FIXME: For now, all byval parameter objects are marked mutable. This can be | 
|  | // changed with more analysis. | 
|  | // In case of tail call optimization mark all arguments mutable. Since they | 
|  | // could be overwritten by lowering of arguments in case of a tail call. | 
|  | if (Flags.isByVal()) { | 
|  | unsigned Bytes = Flags.getByValSize(); | 
|  | if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects. | 
|  | int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable); | 
|  | return DAG.getFrameIndex(FI, getPointerTy()); | 
|  | } else { | 
|  | int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, | 
|  | VA.getLocMemOffset(), isImmutable); | 
|  | SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); | 
|  | return DAG.getLoad(ValVT, dl, Chain, FIN, | 
|  | MachinePointerInfo::getFixedStack(FI), | 
|  | false, false, false, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerFormalArguments(SDValue Chain, | 
|  | CallingConv::ID CallConv, | 
|  | bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SDLoc dl, | 
|  | SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) | 
|  | const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  |  | 
|  | const Function* Fn = MF.getFunction(); | 
|  | if (Fn->hasExternalLinkage() && | 
|  | Subtarget->isTargetCygMing() && | 
|  | Fn->getName() == "main") | 
|  | FuncInfo->setForceFramePointer(true); | 
|  |  | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | bool Is64Bit = Subtarget->is64Bit(); | 
|  | bool IsWin64 = Subtarget->isCallingConvWin64(CallConv); | 
|  |  | 
|  | assert(!(isVarArg && IsTailCallConvention(CallConv)) && | 
|  | "Var args not supported with calling convention fastcc, ghc or hipe"); | 
|  |  | 
|  | // Assign locations to all of the incoming arguments. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), | 
|  | ArgLocs, *DAG.getContext()); | 
|  |  | 
|  | // Allocate shadow area for Win64 | 
|  | if (IsWin64) | 
|  | CCInfo.AllocateStack(32, 8); | 
|  |  | 
|  | CCInfo.AnalyzeFormalArguments(Ins, CC_X86); | 
|  |  | 
|  | unsigned LastVal = ~0U; | 
|  | SDValue ArgValue; | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | // TODO: If an arg is passed in two places (e.g. reg and stack), skip later | 
|  | // places. | 
|  | assert(VA.getValNo() != LastVal && | 
|  | "Don't support value assigned to multiple locs yet"); | 
|  | (void)LastVal; | 
|  | LastVal = VA.getValNo(); | 
|  |  | 
|  | if (VA.isRegLoc()) { | 
|  | EVT RegVT = VA.getLocVT(); | 
|  | const TargetRegisterClass *RC; | 
|  | if (RegVT == MVT::i32) | 
|  | RC = &X86::GR32RegClass; | 
|  | else if (Is64Bit && RegVT == MVT::i64) | 
|  | RC = &X86::GR64RegClass; | 
|  | else if (RegVT == MVT::f32) | 
|  | RC = &X86::FR32RegClass; | 
|  | else if (RegVT == MVT::f64) | 
|  | RC = &X86::FR64RegClass; | 
|  | else if (RegVT.is512BitVector()) | 
|  | RC = &X86::VR512RegClass; | 
|  | else if (RegVT.is256BitVector()) | 
|  | RC = &X86::VR256RegClass; | 
|  | else if (RegVT.is128BitVector()) | 
|  | RC = &X86::VR128RegClass; | 
|  | else if (RegVT == MVT::x86mmx) | 
|  | RC = &X86::VR64RegClass; | 
|  | else if (RegVT == MVT::i1) | 
|  | RC = &X86::VK1RegClass; | 
|  | else if (RegVT == MVT::v8i1) | 
|  | RC = &X86::VK8RegClass; | 
|  | else if (RegVT == MVT::v16i1) | 
|  | RC = &X86::VK16RegClass; | 
|  | else | 
|  | llvm_unreachable("Unknown argument type!"); | 
|  |  | 
|  | unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); | 
|  | ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); | 
|  |  | 
|  | // If this is an 8 or 16-bit value, it is really passed promoted to 32 | 
|  | // bits.  Insert an assert[sz]ext to capture this, then truncate to the | 
|  | // right size. | 
|  | if (VA.getLocInfo() == CCValAssign::SExt) | 
|  | ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  | else if (VA.getLocInfo() == CCValAssign::ZExt) | 
|  | ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, | 
|  | DAG.getValueType(VA.getValVT())); | 
|  | else if (VA.getLocInfo() == CCValAssign::BCvt) | 
|  | ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); | 
|  |  | 
|  | if (VA.isExtInLoc()) { | 
|  | // Handle MMX values passed in XMM regs. | 
|  | if (RegVT.isVector()) | 
|  | ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue); | 
|  | else | 
|  | ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); | 
|  | } | 
|  | } else { | 
|  | assert(VA.isMemLoc()); | 
|  | ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i); | 
|  | } | 
|  |  | 
|  | // If value is passed via pointer - do a load. | 
|  | if (VA.getLocInfo() == CCValAssign::Indirect) | 
|  | ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, | 
|  | MachinePointerInfo(), false, false, false, 0); | 
|  |  | 
|  | InVals.push_back(ArgValue); | 
|  | } | 
|  |  | 
|  | // The x86-64 ABIs require that for returning structs by value we copy | 
|  | // the sret argument into %rax/%eax (depending on ABI) for the return. | 
|  | // Win32 requires us to put the sret argument to %eax as well. | 
|  | // Save the argument into a virtual register so that we can access it | 
|  | // from the return points. | 
|  | if (MF.getFunction()->hasStructRetAttr() && | 
|  | (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) { | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | unsigned Reg = FuncInfo->getSRetReturnReg(); | 
|  | if (!Reg) { | 
|  | MVT PtrTy = getPointerTy(); | 
|  | Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy)); | 
|  | FuncInfo->setSRetReturnReg(Reg); | 
|  | } | 
|  | SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); | 
|  | } | 
|  |  | 
|  | unsigned StackSize = CCInfo.getNextStackOffset(); | 
|  | // Align stack specially for tail calls. | 
|  | if (FuncIsMadeTailCallSafe(CallConv, | 
|  | MF.getTarget().Options.GuaranteedTailCallOpt)) | 
|  | StackSize = GetAlignedArgumentStackSize(StackSize, DAG); | 
|  |  | 
|  | // If the function takes variable number of arguments, make a frame index for | 
|  | // the start of the first vararg value... for expansion of llvm.va_start. | 
|  | if (isVarArg) { | 
|  | if (Is64Bit || (CallConv != CallingConv::X86_FastCall && | 
|  | CallConv != CallingConv::X86_ThisCall)) { | 
|  | FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true)); | 
|  | } | 
|  | if (Is64Bit) { | 
|  | unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0; | 
|  |  | 
|  | // FIXME: We should really autogenerate these arrays | 
|  | static const uint16_t GPR64ArgRegsWin64[] = { | 
|  | X86::RCX, X86::RDX, X86::R8,  X86::R9 | 
|  | }; | 
|  | static const uint16_t GPR64ArgRegs64Bit[] = { | 
|  | X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 | 
|  | }; | 
|  | static const uint16_t XMMArgRegs64Bit[] = { | 
|  | X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, | 
|  | X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 | 
|  | }; | 
|  | const uint16_t *GPR64ArgRegs; | 
|  | unsigned NumXMMRegs = 0; | 
|  |  | 
|  | if (IsWin64) { | 
|  | // The XMM registers which might contain var arg parameters are shadowed | 
|  | // in their paired GPR.  So we only need to save the GPR to their home | 
|  | // slots. | 
|  | TotalNumIntRegs = 4; | 
|  | GPR64ArgRegs = GPR64ArgRegsWin64; | 
|  | } else { | 
|  | TotalNumIntRegs = 6; TotalNumXMMRegs = 8; | 
|  | GPR64ArgRegs = GPR64ArgRegs64Bit; | 
|  |  | 
|  | NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, | 
|  | TotalNumXMMRegs); | 
|  | } | 
|  | unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, | 
|  | TotalNumIntRegs); | 
|  |  | 
|  | bool NoImplicitFloatOps = Fn->getAttributes(). | 
|  | hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat); | 
|  | assert(!(NumXMMRegs && !Subtarget->hasSSE1()) && | 
|  | "SSE register cannot be used when SSE is disabled!"); | 
|  | assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat && | 
|  | NoImplicitFloatOps) && | 
|  | "SSE register cannot be used when SSE is disabled!"); | 
|  | if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps || | 
|  | !Subtarget->hasSSE1()) | 
|  | // Kernel mode asks for SSE to be disabled, so don't push them | 
|  | // on the stack. | 
|  | TotalNumXMMRegs = 0; | 
|  |  | 
|  | if (IsWin64) { | 
|  | const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering(); | 
|  | // Get to the caller-allocated home save location.  Add 8 to account | 
|  | // for the return address. | 
|  | int HomeOffset = TFI.getOffsetOfLocalArea() + 8; | 
|  | FuncInfo->setRegSaveFrameIndex( | 
|  | MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false)); | 
|  | // Fixup to set vararg frame on shadow area (4 x i64). | 
|  | if (NumIntRegs < 4) | 
|  | FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex()); | 
|  | } else { | 
|  | // For X86-64, if there are vararg parameters that are passed via | 
|  | // registers, then we must store them to their spots on the stack so | 
|  | // they may be loaded by deferencing the result of va_next. | 
|  | FuncInfo->setVarArgsGPOffset(NumIntRegs * 8); | 
|  | FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16); | 
|  | FuncInfo->setRegSaveFrameIndex( | 
|  | MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16, | 
|  | false)); | 
|  | } | 
|  |  | 
|  | // Store the integer parameter registers. | 
|  | SmallVector<SDValue, 8> MemOps; | 
|  | SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), | 
|  | getPointerTy()); | 
|  | unsigned Offset = FuncInfo->getVarArgsGPOffset(); | 
|  | for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) { | 
|  | SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN, | 
|  | DAG.getIntPtrConstant(Offset)); | 
|  | unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs], | 
|  | &X86::GR64RegClass); | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); | 
|  | SDValue Store = | 
|  | DAG.getStore(Val.getValue(1), dl, Val, FIN, | 
|  | MachinePointerInfo::getFixedStack( | 
|  | FuncInfo->getRegSaveFrameIndex(), Offset), | 
|  | false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  | Offset += 8; | 
|  | } | 
|  |  | 
|  | if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) { | 
|  | // Now store the XMM (fp + vector) parameter registers. | 
|  | SmallVector<SDValue, 11> SaveXMMOps; | 
|  | SaveXMMOps.push_back(Chain); | 
|  |  | 
|  | unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass); | 
|  | SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8); | 
|  | SaveXMMOps.push_back(ALVal); | 
|  |  | 
|  | SaveXMMOps.push_back(DAG.getIntPtrConstant( | 
|  | FuncInfo->getRegSaveFrameIndex())); | 
|  | SaveXMMOps.push_back(DAG.getIntPtrConstant( | 
|  | FuncInfo->getVarArgsFPOffset())); | 
|  |  | 
|  | for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) { | 
|  | unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs], | 
|  | &X86::VR128RegClass); | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32); | 
|  | SaveXMMOps.push_back(Val); | 
|  | } | 
|  | MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl, | 
|  | MVT::Other, | 
|  | &SaveXMMOps[0], SaveXMMOps.size())); | 
|  | } | 
|  |  | 
|  | if (!MemOps.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | &MemOps[0], MemOps.size()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Some CCs need callee pop. | 
|  | if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, | 
|  | MF.getTarget().Options.GuaranteedTailCallOpt)) { | 
|  | FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything. | 
|  | } else { | 
|  | FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing. | 
|  | // If this is an sret function, the return should pop the hidden pointer. | 
|  | if (!Is64Bit && !IsTailCallConvention(CallConv) && | 
|  | !Subtarget->getTargetTriple().isOSMSVCRT() && | 
|  | argsAreStructReturn(Ins) == StackStructReturn) | 
|  | FuncInfo->setBytesToPopOnReturn(4); | 
|  | } | 
|  |  | 
|  | if (!Is64Bit) { | 
|  | // RegSaveFrameIndex is X86-64 only. | 
|  | FuncInfo->setRegSaveFrameIndex(0xAAAAAAA); | 
|  | if (CallConv == CallingConv::X86_FastCall || | 
|  | CallConv == CallingConv::X86_ThisCall) | 
|  | // fastcc functions can't have varargs. | 
|  | FuncInfo->setVarArgsFrameIndex(0xAAAAAAA); | 
|  | } | 
|  |  | 
|  | FuncInfo->setArgumentStackSize(StackSize); | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerMemOpCallTo(SDValue Chain, | 
|  | SDValue StackPtr, SDValue Arg, | 
|  | SDLoc dl, SelectionDAG &DAG, | 
|  | const CCValAssign &VA, | 
|  | ISD::ArgFlagsTy Flags) const { | 
|  | unsigned LocMemOffset = VA.getLocMemOffset(); | 
|  | SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); | 
|  | PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); | 
|  | if (Flags.isByVal()) | 
|  | return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); | 
|  |  | 
|  | return DAG.getStore(Chain, dl, Arg, PtrOff, | 
|  | MachinePointerInfo::getStack(LocMemOffset), | 
|  | false, false, 0); | 
|  | } | 
|  |  | 
|  | /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call | 
|  | /// optimization is performed and it is required. | 
|  | SDValue | 
|  | X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, | 
|  | SDValue &OutRetAddr, SDValue Chain, | 
|  | bool IsTailCall, bool Is64Bit, | 
|  | int FPDiff, SDLoc dl) const { | 
|  | // Adjust the Return address stack slot. | 
|  | EVT VT = getPointerTy(); | 
|  | OutRetAddr = getReturnAddressFrameIndex(DAG); | 
|  |  | 
|  | // Load the "old" Return address. | 
|  | OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | return SDValue(OutRetAddr.getNode(), 1); | 
|  | } | 
|  |  | 
|  | /// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call | 
|  | /// optimization is performed and it is required (FPDiff!=0). | 
|  | static SDValue | 
|  | EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF, | 
|  | SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT, | 
|  | unsigned SlotSize, int FPDiff, SDLoc dl) { | 
|  | // Store the return address to the appropriate stack slot. | 
|  | if (!FPDiff) return Chain; | 
|  | // Calculate the new stack slot for the return address. | 
|  | int NewReturnAddrFI = | 
|  | MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize, | 
|  | false); | 
|  | SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT); | 
|  | Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx, | 
|  | MachinePointerInfo::getFixedStack(NewReturnAddrFI), | 
|  | false, false, 0); | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | SelectionDAG &DAG                     = CLI.DAG; | 
|  | SDLoc &dl                             = CLI.DL; | 
|  | SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; | 
|  | SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals; | 
|  | SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins; | 
|  | SDValue Chain                         = CLI.Chain; | 
|  | SDValue Callee                        = CLI.Callee; | 
|  | CallingConv::ID CallConv              = CLI.CallConv; | 
|  | bool &isTailCall                      = CLI.IsTailCall; | 
|  | bool isVarArg                         = CLI.IsVarArg; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | bool Is64Bit        = Subtarget->is64Bit(); | 
|  | bool IsWin64        = Subtarget->isCallingConvWin64(CallConv); | 
|  | StructReturnType SR = callIsStructReturn(Outs); | 
|  | bool IsSibcall      = false; | 
|  |  | 
|  | if (MF.getTarget().Options.DisableTailCalls) | 
|  | isTailCall = false; | 
|  |  | 
|  | if (isTailCall) { | 
|  | // Check if it's really possible to do a tail call. | 
|  | isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, | 
|  | isVarArg, SR != NotStructReturn, | 
|  | MF.getFunction()->hasStructRetAttr(), CLI.RetTy, | 
|  | Outs, OutVals, Ins, DAG); | 
|  |  | 
|  | // Sibcalls are automatically detected tailcalls which do not require | 
|  | // ABI changes. | 
|  | if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall) | 
|  | IsSibcall = true; | 
|  |  | 
|  | if (isTailCall) | 
|  | ++NumTailCalls; | 
|  | } | 
|  |  | 
|  | assert(!(isVarArg && IsTailCallConvention(CallConv)) && | 
|  | "Var args not supported with calling convention fastcc, ghc or hipe"); | 
|  |  | 
|  | // Analyze operands of the call, assigning locations to each operand. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), | 
|  | ArgLocs, *DAG.getContext()); | 
|  |  | 
|  | // Allocate shadow area for Win64 | 
|  | if (IsWin64) | 
|  | CCInfo.AllocateStack(32, 8); | 
|  |  | 
|  | CCInfo.AnalyzeCallOperands(Outs, CC_X86); | 
|  |  | 
|  | // Get a count of how many bytes are to be pushed on the stack. | 
|  | unsigned NumBytes = CCInfo.getNextStackOffset(); | 
|  | if (IsSibcall) | 
|  | // This is a sibcall. The memory operands are available in caller's | 
|  | // own caller's stack. | 
|  | NumBytes = 0; | 
|  | else if (getTargetMachine().Options.GuaranteedTailCallOpt && | 
|  | IsTailCallConvention(CallConv)) | 
|  | NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); | 
|  |  | 
|  | int FPDiff = 0; | 
|  | if (isTailCall && !IsSibcall) { | 
|  | // Lower arguments at fp - stackoffset + fpdiff. | 
|  | X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn(); | 
|  |  | 
|  | FPDiff = NumBytesCallerPushed - NumBytes; | 
|  |  | 
|  | // Set the delta of movement of the returnaddr stackslot. | 
|  | // But only set if delta is greater than previous delta. | 
|  | if (FPDiff < X86Info->getTCReturnAddrDelta()) | 
|  | X86Info->setTCReturnAddrDelta(FPDiff); | 
|  | } | 
|  |  | 
|  | unsigned NumBytesToPush = NumBytes; | 
|  | unsigned NumBytesToPop = NumBytes; | 
|  |  | 
|  | // If we have an inalloca argument, all stack space has already been allocated | 
|  | // for us and be right at the top of the stack.  We don't support multiple | 
|  | // arguments passed in memory when using inalloca. | 
|  | if (!Outs.empty() && Outs.back().Flags.isInAlloca()) { | 
|  | NumBytesToPush = 0; | 
|  | assert(ArgLocs.back().getLocMemOffset() == 0 && | 
|  | "an inalloca argument must be the only memory argument"); | 
|  | } | 
|  |  | 
|  | if (!IsSibcall) | 
|  | Chain = DAG.getCALLSEQ_START( | 
|  | Chain, DAG.getIntPtrConstant(NumBytesToPush, true), dl); | 
|  |  | 
|  | SDValue RetAddrFrIdx; | 
|  | // Load return address for tail calls. | 
|  | if (isTailCall && FPDiff) | 
|  | Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, | 
|  | Is64Bit, FPDiff, dl); | 
|  |  | 
|  | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; | 
|  | SmallVector<SDValue, 8> MemOpChains; | 
|  | SDValue StackPtr; | 
|  |  | 
|  | // Walk the register/memloc assignments, inserting copies/loads.  In the case | 
|  | // of tail call optimization arguments are handle later. | 
|  | const X86RegisterInfo *RegInfo = | 
|  | static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo()); | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | // Skip inalloca arguments, they have already been written. | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  | if (Flags.isInAlloca()) | 
|  | continue; | 
|  |  | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | EVT RegVT = VA.getLocVT(); | 
|  | SDValue Arg = OutVals[i]; | 
|  | bool isByVal = Flags.isByVal(); | 
|  |  | 
|  | // Promote the value if needed. | 
|  | switch (VA.getLocInfo()) { | 
|  | default: llvm_unreachable("Unknown loc info!"); | 
|  | case CCValAssign::Full: break; | 
|  | case CCValAssign::SExt: | 
|  | Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); | 
|  | break; | 
|  | case CCValAssign::ZExt: | 
|  | Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); | 
|  | break; | 
|  | case CCValAssign::AExt: | 
|  | if (RegVT.is128BitVector()) { | 
|  | // Special case: passing MMX values in XMM registers. | 
|  | Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); | 
|  | Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg); | 
|  | Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg); | 
|  | } else | 
|  | Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg); | 
|  | break; | 
|  | case CCValAssign::BCvt: | 
|  | Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg); | 
|  | break; | 
|  | case CCValAssign::Indirect: { | 
|  | // Store the argument. | 
|  | SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); | 
|  | int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); | 
|  | Chain = DAG.getStore(Chain, dl, Arg, SpillSlot, | 
|  | MachinePointerInfo::getFixedStack(FI), | 
|  | false, false, 0); | 
|  | Arg = SpillSlot; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VA.isRegLoc()) { | 
|  | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); | 
|  | if (isVarArg && IsWin64) { | 
|  | // Win64 ABI requires argument XMM reg to be copied to the corresponding | 
|  | // shadow reg if callee is a varargs function. | 
|  | unsigned ShadowReg = 0; | 
|  | switch (VA.getLocReg()) { | 
|  | case X86::XMM0: ShadowReg = X86::RCX; break; | 
|  | case X86::XMM1: ShadowReg = X86::RDX; break; | 
|  | case X86::XMM2: ShadowReg = X86::R8; break; | 
|  | case X86::XMM3: ShadowReg = X86::R9; break; | 
|  | } | 
|  | if (ShadowReg) | 
|  | RegsToPass.push_back(std::make_pair(ShadowReg, Arg)); | 
|  | } | 
|  | } else if (!IsSibcall && (!isTailCall || isByVal)) { | 
|  | assert(VA.isMemLoc()); | 
|  | if (StackPtr.getNode() == 0) | 
|  | StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(), | 
|  | getPointerTy()); | 
|  | MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, | 
|  | dl, DAG, VA, Flags)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOpChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | &MemOpChains[0], MemOpChains.size()); | 
|  |  | 
|  | if (Subtarget->isPICStyleGOT()) { | 
|  | // ELF / PIC requires GOT in the EBX register before function calls via PLT | 
|  | // GOT pointer. | 
|  | if (!isTailCall) { | 
|  | RegsToPass.push_back(std::make_pair(unsigned(X86::EBX), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy()))); | 
|  | } else { | 
|  | // If we are tail calling and generating PIC/GOT style code load the | 
|  | // address of the callee into ECX. The value in ecx is used as target of | 
|  | // the tail jump. This is done to circumvent the ebx/callee-saved problem | 
|  | // for tail calls on PIC/GOT architectures. Normally we would just put the | 
|  | // address of GOT into ebx and then call target@PLT. But for tail calls | 
|  | // ebx would be restored (since ebx is callee saved) before jumping to the | 
|  | // target@PLT. | 
|  |  | 
|  | // Note: The actual moving to ECX is done further down. | 
|  | GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); | 
|  | if (G && !G->getGlobal()->hasHiddenVisibility() && | 
|  | !G->getGlobal()->hasProtectedVisibility()) | 
|  | Callee = LowerGlobalAddress(Callee, DAG); | 
|  | else if (isa<ExternalSymbolSDNode>(Callee)) | 
|  | Callee = LowerExternalSymbol(Callee, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Is64Bit && isVarArg && !IsWin64) { | 
|  | // From AMD64 ABI document: | 
|  | // For calls that may call functions that use varargs or stdargs | 
|  | // (prototype-less calls or calls to functions containing ellipsis (...) in | 
|  | // the declaration) %al is used as hidden argument to specify the number | 
|  | // of SSE registers used. The contents of %al do not need to match exactly | 
|  | // the number of registers, but must be an ubound on the number of SSE | 
|  | // registers used and is in the range 0 - 8 inclusive. | 
|  |  | 
|  | // Count the number of XMM registers allocated. | 
|  | static const uint16_t XMMArgRegs[] = { | 
|  | X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, | 
|  | X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 | 
|  | }; | 
|  | unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); | 
|  | assert((Subtarget->hasSSE1() || !NumXMMRegs) | 
|  | && "SSE registers cannot be used when SSE is disabled"); | 
|  |  | 
|  | RegsToPass.push_back(std::make_pair(unsigned(X86::AL), | 
|  | DAG.getConstant(NumXMMRegs, MVT::i8))); | 
|  | } | 
|  |  | 
|  | // For tail calls lower the arguments to the 'real' stack slot. | 
|  | if (isTailCall) { | 
|  | // Force all the incoming stack arguments to be loaded from the stack | 
|  | // before any new outgoing arguments are stored to the stack, because the | 
|  | // outgoing stack slots may alias the incoming argument stack slots, and | 
|  | // the alias isn't otherwise explicit. This is slightly more conservative | 
|  | // than necessary, because it means that each store effectively depends | 
|  | // on every argument instead of just those arguments it would clobber. | 
|  | SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain); | 
|  |  | 
|  | SmallVector<SDValue, 8> MemOpChains2; | 
|  | SDValue FIN; | 
|  | int FI = 0; | 
|  | if (getTargetMachine().Options.GuaranteedTailCallOpt) { | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | if (VA.isRegLoc()) | 
|  | continue; | 
|  | assert(VA.isMemLoc()); | 
|  | SDValue Arg = OutVals[i]; | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  | // Create frame index. | 
|  | int32_t Offset = VA.getLocMemOffset()+FPDiff; | 
|  | uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; | 
|  | FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); | 
|  | FIN = DAG.getFrameIndex(FI, getPointerTy()); | 
|  |  | 
|  | if (Flags.isByVal()) { | 
|  | // Copy relative to framepointer. | 
|  | SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset()); | 
|  | if (StackPtr.getNode() == 0) | 
|  | StackPtr = DAG.getCopyFromReg(Chain, dl, | 
|  | RegInfo->getStackRegister(), | 
|  | getPointerTy()); | 
|  | Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source); | 
|  |  | 
|  | MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, | 
|  | ArgChain, | 
|  | Flags, DAG, dl)); | 
|  | } else { | 
|  | // Store relative to framepointer. | 
|  | MemOpChains2.push_back( | 
|  | DAG.getStore(ArgChain, dl, Arg, FIN, | 
|  | MachinePointerInfo::getFixedStack(FI), | 
|  | false, false, 0)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MemOpChains2.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | &MemOpChains2[0], MemOpChains2.size()); | 
|  |  | 
|  | // Store the return address to the appropriate stack slot. | 
|  | Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, | 
|  | getPointerTy(), RegInfo->getSlotSize(), | 
|  | FPDiff, dl); | 
|  | } | 
|  |  | 
|  | // Build a sequence of copy-to-reg nodes chained together with token chain | 
|  | // and flag operands which copy the outgoing args into registers. | 
|  | SDValue InFlag; | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | 
|  | Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, | 
|  | RegsToPass[i].second, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | if (getTargetMachine().getCodeModel() == CodeModel::Large) { | 
|  | assert(Is64Bit && "Large code model is only legal in 64-bit mode."); | 
|  | // In the 64-bit large code model, we have to make all calls | 
|  | // through a register, since the call instruction's 32-bit | 
|  | // pc-relative offset may not be large enough to hold the whole | 
|  | // address. | 
|  | } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { | 
|  | // If the callee is a GlobalAddress node (quite common, every direct call | 
|  | // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack | 
|  | // it. | 
|  |  | 
|  | // We should use extra load for direct calls to dllimported functions in | 
|  | // non-JIT mode. | 
|  | const GlobalValue *GV = G->getGlobal(); | 
|  | if (!GV->hasDLLImportStorageClass()) { | 
|  | unsigned char OpFlags = 0; | 
|  | bool ExtraLoad = false; | 
|  | unsigned WrapperKind = ISD::DELETED_NODE; | 
|  |  | 
|  | // On ELF targets, in both X86-64 and X86-32 mode, direct calls to | 
|  | // external symbols most go through the PLT in PIC mode.  If the symbol | 
|  | // has hidden or protected visibility, or if it is static or local, then | 
|  | // we don't need to use the PLT - we can directly call it. | 
|  | if (Subtarget->isTargetELF() && | 
|  | getTargetMachine().getRelocationModel() == Reloc::PIC_ && | 
|  | GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { | 
|  | OpFlags = X86II::MO_PLT; | 
|  | } else if (Subtarget->isPICStyleStubAny() && | 
|  | (GV->isDeclaration() || GV->isWeakForLinker()) && | 
|  | (!Subtarget->getTargetTriple().isMacOSX() || | 
|  | Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { | 
|  | // PC-relative references to external symbols should go through $stub, | 
|  | // unless we're building with the leopard linker or later, which | 
|  | // automatically synthesizes these stubs. | 
|  | OpFlags = X86II::MO_DARWIN_STUB; | 
|  | } else if (Subtarget->isPICStyleRIPRel() && | 
|  | isa<Function>(GV) && | 
|  | cast<Function>(GV)->getAttributes(). | 
|  | hasAttribute(AttributeSet::FunctionIndex, | 
|  | Attribute::NonLazyBind)) { | 
|  | // If the function is marked as non-lazy, generate an indirect call | 
|  | // which loads from the GOT directly. This avoids runtime overhead | 
|  | // at the cost of eager binding (and one extra byte of encoding). | 
|  | OpFlags = X86II::MO_GOTPCREL; | 
|  | WrapperKind = X86ISD::WrapperRIP; | 
|  | ExtraLoad = true; | 
|  | } | 
|  |  | 
|  | Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), | 
|  | G->getOffset(), OpFlags); | 
|  |  | 
|  | // Add a wrapper if needed. | 
|  | if (WrapperKind != ISD::DELETED_NODE) | 
|  | Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee); | 
|  | // Add extra indirection if needed. | 
|  | if (ExtraLoad) | 
|  | Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee, | 
|  | MachinePointerInfo::getGOT(), | 
|  | false, false, false, 0); | 
|  | } | 
|  | } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { | 
|  | unsigned char OpFlags = 0; | 
|  |  | 
|  | // On ELF targets, in either X86-64 or X86-32 mode, direct calls to | 
|  | // external symbols should go through the PLT. | 
|  | if (Subtarget->isTargetELF() && | 
|  | getTargetMachine().getRelocationModel() == Reloc::PIC_) { | 
|  | OpFlags = X86II::MO_PLT; | 
|  | } else if (Subtarget->isPICStyleStubAny() && | 
|  | (!Subtarget->getTargetTriple().isMacOSX() || | 
|  | Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { | 
|  | // PC-relative references to external symbols should go through $stub, | 
|  | // unless we're building with the leopard linker or later, which | 
|  | // automatically synthesizes these stubs. | 
|  | OpFlags = X86II::MO_DARWIN_STUB; | 
|  | } | 
|  |  | 
|  | Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(), | 
|  | OpFlags); | 
|  | } | 
|  |  | 
|  | // Returns a chain & a flag for retval copy to use. | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  |  | 
|  | if (!IsSibcall && isTailCall) { | 
|  | Chain = DAG.getCALLSEQ_END(Chain, | 
|  | DAG.getIntPtrConstant(NumBytesToPop, true), | 
|  | DAG.getIntPtrConstant(0, true), InFlag, dl); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  |  | 
|  | if (isTailCall) | 
|  | Ops.push_back(DAG.getConstant(FPDiff, MVT::i32)); | 
|  |  | 
|  | // Add argument registers to the end of the list so that they are known live | 
|  | // into the call. | 
|  | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) | 
|  | Ops.push_back(DAG.getRegister(RegsToPass[i].first, | 
|  | RegsToPass[i].second.getValueType())); | 
|  |  | 
|  | // Add a register mask operand representing the call-preserved registers. | 
|  | const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); | 
|  | const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); | 
|  | assert(Mask && "Missing call preserved mask for calling convention"); | 
|  | Ops.push_back(DAG.getRegisterMask(Mask)); | 
|  |  | 
|  | if (InFlag.getNode()) | 
|  | Ops.push_back(InFlag); | 
|  |  | 
|  | if (isTailCall) { | 
|  | // We used to do: | 
|  | //// If this is the first return lowered for this function, add the regs | 
|  | //// to the liveout set for the function. | 
|  | // This isn't right, although it's probably harmless on x86; liveouts | 
|  | // should be computed from returns not tail calls.  Consider a void | 
|  | // function making a tail call to a function returning int. | 
|  | return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size()); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | // Create the CALLSEQ_END node. | 
|  | unsigned NumBytesForCalleeToPop; | 
|  | if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, | 
|  | getTargetMachine().Options.GuaranteedTailCallOpt)) | 
|  | NumBytesForCalleeToPop = NumBytes;    // Callee pops everything | 
|  | else if (!Is64Bit && !IsTailCallConvention(CallConv) && | 
|  | !Subtarget->getTargetTriple().isOSMSVCRT() && | 
|  | SR == StackStructReturn) | 
|  | // If this is a call to a struct-return function, the callee | 
|  | // pops the hidden struct pointer, so we have to push it back. | 
|  | // This is common for Darwin/X86, Linux & Mingw32 targets. | 
|  | // For MSVC Win32 targets, the caller pops the hidden struct pointer. | 
|  | NumBytesForCalleeToPop = 4; | 
|  | else | 
|  | NumBytesForCalleeToPop = 0;  // Callee pops nothing. | 
|  |  | 
|  | // Returns a flag for retval copy to use. | 
|  | if (!IsSibcall) { | 
|  | Chain = DAG.getCALLSEQ_END(Chain, | 
|  | DAG.getIntPtrConstant(NumBytesToPop, true), | 
|  | DAG.getIntPtrConstant(NumBytesForCalleeToPop, | 
|  | true), | 
|  | InFlag, dl); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | // Handle result values, copying them out of physregs into vregs that we | 
|  | // return. | 
|  | return LowerCallResult(Chain, InFlag, CallConv, isVarArg, | 
|  | Ins, dl, DAG, InVals); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                Fast Calling Convention (tail call) implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | //  Like std call, callee cleans arguments, convention except that ECX is | 
|  | //  reserved for storing the tail called function address. Only 2 registers are | 
|  | //  free for argument passing (inreg). Tail call optimization is performed | 
|  | //  provided: | 
|  | //                * tailcallopt is enabled | 
|  | //                * caller/callee are fastcc | 
|  | //  On X86_64 architecture with GOT-style position independent code only local | 
|  | //  (within module) calls are supported at the moment. | 
|  | //  To keep the stack aligned according to platform abi the function | 
|  | //  GetAlignedArgumentStackSize ensures that argument delta is always multiples | 
|  | //  of stack alignment. (Dynamic linkers need this - darwin's dyld for example) | 
|  | //  If a tail called function callee has more arguments than the caller the | 
|  | //  caller needs to make sure that there is room to move the RETADDR to. This is | 
|  | //  achieved by reserving an area the size of the argument delta right after the | 
|  | //  original REtADDR, but before the saved framepointer or the spilled registers | 
|  | //  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) | 
|  | //  stack layout: | 
|  | //    arg1 | 
|  | //    arg2 | 
|  | //    RETADDR | 
|  | //    [ new RETADDR | 
|  | //      move area ] | 
|  | //    (possible EBP) | 
|  | //    ESI | 
|  | //    EDI | 
|  | //    local1 .. | 
|  |  | 
|  | /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned | 
|  | /// for a 16 byte align requirement. | 
|  | unsigned | 
|  | X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, | 
|  | SelectionDAG& DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const TargetMachine &TM = MF.getTarget(); | 
|  | const X86RegisterInfo *RegInfo = | 
|  | static_cast<const X86RegisterInfo*>(TM.getRegisterInfo()); | 
|  | const TargetFrameLowering &TFI = *TM.getFrameLowering(); | 
|  | unsigned StackAlignment = TFI.getStackAlignment(); | 
|  | uint64_t AlignMask = StackAlignment - 1; | 
|  | int64_t Offset = StackSize; | 
|  | unsigned SlotSize = RegInfo->getSlotSize(); | 
|  | if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { | 
|  | // Number smaller than 12 so just add the difference. | 
|  | Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); | 
|  | } else { | 
|  | // Mask out lower bits, add stackalignment once plus the 12 bytes. | 
|  | Offset = ((~AlignMask) & Offset) + StackAlignment + | 
|  | (StackAlignment-SlotSize); | 
|  | } | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | /// MatchingStackOffset - Return true if the given stack call argument is | 
|  | /// already available in the same position (relatively) of the caller's | 
|  | /// incoming argument stack. | 
|  | static | 
|  | bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, | 
|  | MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, | 
|  | const X86InstrInfo *TII) { | 
|  | unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; | 
|  | int FI = INT_MAX; | 
|  | if (Arg.getOpcode() == ISD::CopyFromReg) { | 
|  | unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(VR)) | 
|  | return false; | 
|  | MachineInstr *Def = MRI->getVRegDef(VR); | 
|  | if (!Def) | 
|  | return false; | 
|  | if (!Flags.isByVal()) { | 
|  | if (!TII->isLoadFromStackSlot(Def, FI)) | 
|  | return false; | 
|  | } else { | 
|  | unsigned Opcode = Def->getOpcode(); | 
|  | if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) && | 
|  | Def->getOperand(1).isFI()) { | 
|  | FI = Def->getOperand(1).getIndex(); | 
|  | Bytes = Flags.getByValSize(); | 
|  | } else | 
|  | return false; | 
|  | } | 
|  | } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { | 
|  | if (Flags.isByVal()) | 
|  | // ByVal argument is passed in as a pointer but it's now being | 
|  | // dereferenced. e.g. | 
|  | // define @foo(%struct.X* %A) { | 
|  | //   tail call @bar(%struct.X* byval %A) | 
|  | // } | 
|  | return false; | 
|  | SDValue Ptr = Ld->getBasePtr(); | 
|  | FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); | 
|  | if (!FINode) | 
|  | return false; | 
|  | FI = FINode->getIndex(); | 
|  | } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) { | 
|  | FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg); | 
|  | FI = FINode->getIndex(); | 
|  | Bytes = Flags.getByValSize(); | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | assert(FI != INT_MAX); | 
|  | if (!MFI->isFixedObjectIndex(FI)) | 
|  | return false; | 
|  | return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); | 
|  | } | 
|  |  | 
|  | /// IsEligibleForTailCallOptimization - Check whether the call is eligible | 
|  | /// for tail call optimization. Targets which want to do tail call | 
|  | /// optimization should implement this function. | 
|  | bool | 
|  | X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, | 
|  | CallingConv::ID CalleeCC, | 
|  | bool isVarArg, | 
|  | bool isCalleeStructRet, | 
|  | bool isCallerStructRet, | 
|  | Type *RetTy, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SelectionDAG &DAG) const { | 
|  | if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC)) | 
|  | return false; | 
|  |  | 
|  | // If -tailcallopt is specified, make fastcc functions tail-callable. | 
|  | const MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const Function *CallerF = MF.getFunction(); | 
|  |  | 
|  | // If the function return type is x86_fp80 and the callee return type is not, | 
|  | // then the FP_EXTEND of the call result is not a nop. It's not safe to | 
|  | // perform a tailcall optimization here. | 
|  | if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty()) | 
|  | return false; | 
|  |  | 
|  | CallingConv::ID CallerCC = CallerF->getCallingConv(); | 
|  | bool CCMatch = CallerCC == CalleeCC; | 
|  | bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC); | 
|  | bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC); | 
|  |  | 
|  | if (getTargetMachine().Options.GuaranteedTailCallOpt) { | 
|  | if (IsTailCallConvention(CalleeCC) && CCMatch) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Look for obvious safe cases to perform tail call optimization that do not | 
|  | // require ABI changes. This is what gcc calls sibcall. | 
|  |  | 
|  | // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to | 
|  | // emit a special epilogue. | 
|  | const X86RegisterInfo *RegInfo = | 
|  | static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo()); | 
|  | if (RegInfo->needsStackRealignment(MF)) | 
|  | return false; | 
|  |  | 
|  | // Also avoid sibcall optimization if either caller or callee uses struct | 
|  | // return semantics. | 
|  | if (isCalleeStructRet || isCallerStructRet) | 
|  | return false; | 
|  |  | 
|  | // An stdcall/thiscall caller is expected to clean up its arguments; the | 
|  | // callee isn't going to do that. | 
|  | // FIXME: this is more restrictive than needed. We could produce a tailcall | 
|  | // when the stack adjustment matches. For example, with a thiscall that takes | 
|  | // only one argument. | 
|  | if (!CCMatch && (CallerCC == CallingConv::X86_StdCall || | 
|  | CallerCC == CallingConv::X86_ThisCall)) | 
|  | return false; | 
|  |  | 
|  | // Do not sibcall optimize vararg calls unless all arguments are passed via | 
|  | // registers. | 
|  | if (isVarArg && !Outs.empty()) { | 
|  |  | 
|  | // Optimizing for varargs on Win64 is unlikely to be safe without | 
|  | // additional testing. | 
|  | if (IsCalleeWin64 || IsCallerWin64) | 
|  | return false; | 
|  |  | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), | 
|  | getTargetMachine(), ArgLocs, *DAG.getContext()); | 
|  |  | 
|  | CCInfo.AnalyzeCallOperands(Outs, CC_X86); | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) | 
|  | if (!ArgLocs[i].isRegLoc()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the call result is in ST0 / ST1, it needs to be popped off the x87 | 
|  | // stack.  Therefore, if it's not used by the call it is not safe to optimize | 
|  | // this into a sibcall. | 
|  | bool Unused = false; | 
|  | for (unsigned i = 0, e = Ins.size(); i != e; ++i) { | 
|  | if (!Ins[i].Used) { | 
|  | Unused = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (Unused) { | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(), | 
|  | getTargetMachine(), RVLocs, *DAG.getContext()); | 
|  | CCInfo.AnalyzeCallResult(Ins, RetCC_X86); | 
|  | for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = RVLocs[i]; | 
|  | if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the calling conventions do not match, then we'd better make sure the | 
|  | // results are returned in the same way as what the caller expects. | 
|  | if (!CCMatch) { | 
|  | SmallVector<CCValAssign, 16> RVLocs1; | 
|  | CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), | 
|  | getTargetMachine(), RVLocs1, *DAG.getContext()); | 
|  | CCInfo1.AnalyzeCallResult(Ins, RetCC_X86); | 
|  |  | 
|  | SmallVector<CCValAssign, 16> RVLocs2; | 
|  | CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), | 
|  | getTargetMachine(), RVLocs2, *DAG.getContext()); | 
|  | CCInfo2.AnalyzeCallResult(Ins, RetCC_X86); | 
|  |  | 
|  | if (RVLocs1.size() != RVLocs2.size()) | 
|  | return false; | 
|  | for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { | 
|  | if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) | 
|  | return false; | 
|  | if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) | 
|  | return false; | 
|  | if (RVLocs1[i].isRegLoc()) { | 
|  | if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) | 
|  | return false; | 
|  | } else { | 
|  | if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the callee takes no arguments then go on to check the results of the | 
|  | // call. | 
|  | if (!Outs.empty()) { | 
|  | // Check if stack adjustment is needed. For now, do not do this if any | 
|  | // argument is passed on the stack. | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), | 
|  | getTargetMachine(), ArgLocs, *DAG.getContext()); | 
|  |  | 
|  | // Allocate shadow area for Win64 | 
|  | if (IsCalleeWin64) | 
|  | CCInfo.AllocateStack(32, 8); | 
|  |  | 
|  | CCInfo.AnalyzeCallOperands(Outs, CC_X86); | 
|  | if (CCInfo.getNextStackOffset()) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) | 
|  | return false; | 
|  |  | 
|  | // Check if the arguments are already laid out in the right way as | 
|  | // the caller's fixed stack objects. | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | const MachineRegisterInfo *MRI = &MF.getRegInfo(); | 
|  | const X86InstrInfo *TII = | 
|  | ((const X86TargetMachine&)getTargetMachine()).getInstrInfo(); | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | SDValue Arg = OutVals[i]; | 
|  | ISD::ArgFlagsTy Flags = Outs[i].Flags; | 
|  | if (VA.getLocInfo() == CCValAssign::Indirect) | 
|  | return false; | 
|  | if (!VA.isRegLoc()) { | 
|  | if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, | 
|  | MFI, MRI, TII)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the tailcall address may be in a register, then make sure it's | 
|  | // possible to register allocate for it. In 32-bit, the call address can | 
|  | // only target EAX, EDX, or ECX since the tail call must be scheduled after | 
|  | // callee-saved registers are restored. These happen to be the same | 
|  | // registers used to pass 'inreg' arguments so watch out for those. | 
|  | if (!Subtarget->is64Bit() && | 
|  | ((!isa<GlobalAddressSDNode>(Callee) && | 
|  | !isa<ExternalSymbolSDNode>(Callee)) || | 
|  | getTargetMachine().getRelocationModel() == Reloc::PIC_)) { | 
|  | unsigned NumInRegs = 0; | 
|  | // In PIC we need an extra register to formulate the address computation | 
|  | // for the callee. | 
|  | unsigned MaxInRegs = | 
|  | (getTargetMachine().getRelocationModel() == Reloc::PIC_) ? 2 : 3; | 
|  |  | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | if (!VA.isRegLoc()) | 
|  | continue; | 
|  | unsigned Reg = VA.getLocReg(); | 
|  | switch (Reg) { | 
|  | default: break; | 
|  | case X86::EAX: case X86::EDX: case X86::ECX: | 
|  | if (++NumInRegs == MaxInRegs) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | FastISel * | 
|  | X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, | 
|  | const TargetLibraryInfo *libInfo) const { | 
|  | return X86::createFastISel(funcInfo, libInfo); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           Other Lowering Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static bool MayFoldLoad(SDValue Op) { | 
|  | return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode()); | 
|  | } | 
|  |  | 
|  | static bool MayFoldIntoStore(SDValue Op) { | 
|  | return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin()); | 
|  | } | 
|  |  | 
|  | static bool isTargetShuffle(unsigned Opcode) { | 
|  | switch(Opcode) { | 
|  | default: return false; | 
|  | case X86ISD::PSHUFD: | 
|  | case X86ISD::PSHUFHW: | 
|  | case X86ISD::PSHUFLW: | 
|  | case X86ISD::SHUFP: | 
|  | case X86ISD::PALIGNR: | 
|  | case X86ISD::MOVLHPS: | 
|  | case X86ISD::MOVLHPD: | 
|  | case X86ISD::MOVHLPS: | 
|  | case X86ISD::MOVLPS: | 
|  | case X86ISD::MOVLPD: | 
|  | case X86ISD::MOVSHDUP: | 
|  | case X86ISD::MOVSLDUP: | 
|  | case X86ISD::MOVDDUP: | 
|  | case X86ISD::MOVSS: | 
|  | case X86ISD::MOVSD: | 
|  | case X86ISD::UNPCKL: | 
|  | case X86ISD::UNPCKH: | 
|  | case X86ISD::VPERMILP: | 
|  | case X86ISD::VPERM2X128: | 
|  | case X86ISD::VPERMI: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT, | 
|  | SDValue V1, SelectionDAG &DAG) { | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("Unknown x86 shuffle node"); | 
|  | case X86ISD::MOVSHDUP: | 
|  | case X86ISD::MOVSLDUP: | 
|  | case X86ISD::MOVDDUP: | 
|  | return DAG.getNode(Opc, dl, VT, V1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT, | 
|  | SDValue V1, unsigned TargetMask, | 
|  | SelectionDAG &DAG) { | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("Unknown x86 shuffle node"); | 
|  | case X86ISD::PSHUFD: | 
|  | case X86ISD::PSHUFHW: | 
|  | case X86ISD::PSHUFLW: | 
|  | case X86ISD::VPERMILP: | 
|  | case X86ISD::VPERMI: | 
|  | return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT, | 
|  | SDValue V1, SDValue V2, unsigned TargetMask, | 
|  | SelectionDAG &DAG) { | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("Unknown x86 shuffle node"); | 
|  | case X86ISD::PALIGNR: | 
|  | case X86ISD::SHUFP: | 
|  | case X86ISD::VPERM2X128: | 
|  | return DAG.getNode(Opc, dl, VT, V1, V2, | 
|  | DAG.getConstant(TargetMask, MVT::i8)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT, | 
|  | SDValue V1, SDValue V2, SelectionDAG &DAG) { | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable("Unknown x86 shuffle node"); | 
|  | case X86ISD::MOVLHPS: | 
|  | case X86ISD::MOVLHPD: | 
|  | case X86ISD::MOVHLPS: | 
|  | case X86ISD::MOVLPS: | 
|  | case X86ISD::MOVLPD: | 
|  | case X86ISD::MOVSS: | 
|  | case X86ISD::MOVSD: | 
|  | case X86ISD::UNPCKL: | 
|  | case X86ISD::UNPCKH: | 
|  | return DAG.getNode(Opc, dl, VT, V1, V2); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const X86RegisterInfo *RegInfo = | 
|  | static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo()); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | int ReturnAddrIndex = FuncInfo->getRAIndex(); | 
|  |  | 
|  | if (ReturnAddrIndex == 0) { | 
|  | // Set up a frame object for the return address. | 
|  | unsigned SlotSize = RegInfo->getSlotSize(); | 
|  | ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, | 
|  | -(int64_t)SlotSize, | 
|  | false); | 
|  | FuncInfo->setRAIndex(ReturnAddrIndex); | 
|  | } | 
|  |  | 
|  | return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); | 
|  | } | 
|  |  | 
|  | bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, | 
|  | bool hasSymbolicDisplacement) { | 
|  | // Offset should fit into 32 bit immediate field. | 
|  | if (!isInt<32>(Offset)) | 
|  | return false; | 
|  |  | 
|  | // If we don't have a symbolic displacement - we don't have any extra | 
|  | // restrictions. | 
|  | if (!hasSymbolicDisplacement) | 
|  | return true; | 
|  |  | 
|  | // FIXME: Some tweaks might be needed for medium code model. | 
|  | if (M != CodeModel::Small && M != CodeModel::Kernel) | 
|  | return false; | 
|  |  | 
|  | // For small code model we assume that latest object is 16MB before end of 31 | 
|  | // bits boundary. We may also accept pretty large negative constants knowing | 
|  | // that all objects are in the positive half of address space. | 
|  | if (M == CodeModel::Small && Offset < 16*1024*1024) | 
|  | return true; | 
|  |  | 
|  | // For kernel code model we know that all object resist in the negative half | 
|  | // of 32bits address space. We may not accept negative offsets, since they may | 
|  | // be just off and we may accept pretty large positive ones. | 
|  | if (M == CodeModel::Kernel && Offset > 0) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isCalleePop - Determines whether the callee is required to pop its | 
|  | /// own arguments. Callee pop is necessary to support tail calls. | 
|  | bool X86::isCalleePop(CallingConv::ID CallingConv, | 
|  | bool is64Bit, bool IsVarArg, bool TailCallOpt) { | 
|  | if (IsVarArg) | 
|  | return false; | 
|  |  | 
|  | switch (CallingConv) { | 
|  | default: | 
|  | return false; | 
|  | case CallingConv::X86_StdCall: | 
|  | return !is64Bit; | 
|  | case CallingConv::X86_FastCall: | 
|  | return !is64Bit; | 
|  | case CallingConv::X86_ThisCall: | 
|  | return !is64Bit; | 
|  | case CallingConv::Fast: | 
|  | return TailCallOpt; | 
|  | case CallingConv::GHC: | 
|  | return TailCallOpt; | 
|  | case CallingConv::HiPE: | 
|  | return TailCallOpt; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Return true if the condition is an unsigned comparison operation. | 
|  | static bool isX86CCUnsigned(unsigned X86CC) { | 
|  | switch (X86CC) { | 
|  | default: llvm_unreachable("Invalid integer condition!"); | 
|  | case X86::COND_E:     return true; | 
|  | case X86::COND_G:     return false; | 
|  | case X86::COND_GE:    return false; | 
|  | case X86::COND_L:     return false; | 
|  | case X86::COND_LE:    return false; | 
|  | case X86::COND_NE:    return true; | 
|  | case X86::COND_B:     return true; | 
|  | case X86::COND_A:     return true; | 
|  | case X86::COND_BE:    return true; | 
|  | case X86::COND_AE:    return true; | 
|  | } | 
|  | llvm_unreachable("covered switch fell through?!"); | 
|  | } | 
|  |  | 
|  | /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86 | 
|  | /// specific condition code, returning the condition code and the LHS/RHS of the | 
|  | /// comparison to make. | 
|  | static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP, | 
|  | SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) { | 
|  | if (!isFP) { | 
|  | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { | 
|  | if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { | 
|  | // X > -1   -> X == 0, jump !sign. | 
|  | RHS = DAG.getConstant(0, RHS.getValueType()); | 
|  | return X86::COND_NS; | 
|  | } | 
|  | if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { | 
|  | // X < 0   -> X == 0, jump on sign. | 
|  | return X86::COND_S; | 
|  | } | 
|  | if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { | 
|  | // X < 1   -> X <= 0 | 
|  | RHS = DAG.getConstant(0, RHS.getValueType()); | 
|  | return X86::COND_LE; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (SetCCOpcode) { | 
|  | default: llvm_unreachable("Invalid integer condition!"); | 
|  | case ISD::SETEQ:  return X86::COND_E; | 
|  | case ISD::SETGT:  return X86::COND_G; | 
|  | case ISD::SETGE:  return X86::COND_GE; | 
|  | case ISD::SETLT:  return X86::COND_L; | 
|  | case ISD::SETLE:  return X86::COND_LE; | 
|  | case ISD::SETNE:  return X86::COND_NE; | 
|  | case ISD::SETULT: return X86::COND_B; | 
|  | case ISD::SETUGT: return X86::COND_A; | 
|  | case ISD::SETULE: return X86::COND_BE; | 
|  | case ISD::SETUGE: return X86::COND_AE; | 
|  | } | 
|  | } | 
|  |  | 
|  | // First determine if it is required or is profitable to flip the operands. | 
|  |  | 
|  | // If LHS is a foldable load, but RHS is not, flip the condition. | 
|  | if (ISD::isNON_EXTLoad(LHS.getNode()) && | 
|  | !ISD::isNON_EXTLoad(RHS.getNode())) { | 
|  | SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  |  | 
|  | switch (SetCCOpcode) { | 
|  | default: break; | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: | 
|  | std::swap(LHS, RHS); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // On a floating point condition, the flags are set as follows: | 
|  | // ZF  PF  CF   op | 
|  | //  0 | 0 | 0 | X > Y | 
|  | //  0 | 0 | 1 | X < Y | 
|  | //  1 | 0 | 0 | X == Y | 
|  | //  1 | 1 | 1 | unordered | 
|  | switch (SetCCOpcode) { | 
|  | default: llvm_unreachable("Condcode should be pre-legalized away"); | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETEQ:   return X86::COND_E; | 
|  | case ISD::SETOLT:              // flipped | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT:   return X86::COND_A; | 
|  | case ISD::SETOLE:              // flipped | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE:   return X86::COND_AE; | 
|  | case ISD::SETUGT:              // flipped | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT:   return X86::COND_B; | 
|  | case ISD::SETUGE:              // flipped | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE:   return X86::COND_BE; | 
|  | case ISD::SETONE: | 
|  | case ISD::SETNE:   return X86::COND_NE; | 
|  | case ISD::SETUO:   return X86::COND_P; | 
|  | case ISD::SETO:    return X86::COND_NP; | 
|  | case ISD::SETOEQ: | 
|  | case ISD::SETUNE:  return X86::COND_INVALID; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// hasFPCMov - is there a floating point cmov for the specific X86 condition | 
|  | /// code. Current x86 isa includes the following FP cmov instructions: | 
|  | /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. | 
|  | static bool hasFPCMov(unsigned X86CC) { | 
|  | switch (X86CC) { | 
|  | default: | 
|  | return false; | 
|  | case X86::COND_B: | 
|  | case X86::COND_BE: | 
|  | case X86::COND_E: | 
|  | case X86::COND_P: | 
|  | case X86::COND_A: | 
|  | case X86::COND_AE: | 
|  | case X86::COND_NE: | 
|  | case X86::COND_NP: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isFPImmLegal - Returns true if the target can instruction select the | 
|  | /// specified FP immediate natively. If false, the legalizer will | 
|  | /// materialize the FP immediate as a load from a constant pool. | 
|  | bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { | 
|  | for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) { | 
|  | if (Imm.bitwiseIsEqual(LegalFPImmediates[i])) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Returns true if it is beneficial to convert a load of a constant | 
|  | /// to just the constant itself. | 
|  | bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, | 
|  | Type *Ty) const { | 
|  | assert(Ty->isIntegerTy()); | 
|  |  | 
|  | unsigned BitSize = Ty->getPrimitiveSizeInBits(); | 
|  | if (BitSize == 0 || BitSize > 64) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isUndefOrInRange - Return true if Val is undef or if its value falls within | 
|  | /// the specified range (L, H]. | 
|  | static bool isUndefOrInRange(int Val, int Low, int Hi) { | 
|  | return (Val < 0) || (Val >= Low && Val < Hi); | 
|  | } | 
|  |  | 
|  | /// isUndefOrEqual - Val is either less than zero (undef) or equal to the | 
|  | /// specified value. | 
|  | static bool isUndefOrEqual(int Val, int CmpVal) { | 
|  | return (Val < 0 || Val == CmpVal); | 
|  | } | 
|  |  | 
|  | /// isSequentialOrUndefInRange - Return true if every element in Mask, beginning | 
|  | /// from position Pos and ending in Pos+Size, falls within the specified | 
|  | /// sequential range (L, L+Pos]. or is undef. | 
|  | static bool isSequentialOrUndefInRange(ArrayRef<int> Mask, | 
|  | unsigned Pos, unsigned Size, int Low) { | 
|  | for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) | 
|  | if (!isUndefOrEqual(Mask[i], Low)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that | 
|  | /// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference | 
|  | /// the second operand. | 
|  | static bool isPSHUFDMask(ArrayRef<int> Mask, MVT VT) { | 
|  | if (VT == MVT::v4f32 || VT == MVT::v4i32 ) | 
|  | return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4); | 
|  | if (VT == MVT::v2f64 || VT == MVT::v2i64) | 
|  | return (Mask[0] < 2 && Mask[1] < 2); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that | 
|  | /// is suitable for input to PSHUFHW. | 
|  | static bool isPSHUFHWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) { | 
|  | if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16)) | 
|  | return false; | 
|  |  | 
|  | // Lower quadword copied in order or undef. | 
|  | if (!isSequentialOrUndefInRange(Mask, 0, 4, 0)) | 
|  | return false; | 
|  |  | 
|  | // Upper quadword shuffled. | 
|  | for (unsigned i = 4; i != 8; ++i) | 
|  | if (!isUndefOrInRange(Mask[i], 4, 8)) | 
|  | return false; | 
|  |  | 
|  | if (VT == MVT::v16i16) { | 
|  | // Lower quadword copied in order or undef. | 
|  | if (!isSequentialOrUndefInRange(Mask, 8, 4, 8)) | 
|  | return false; | 
|  |  | 
|  | // Upper quadword shuffled. | 
|  | for (unsigned i = 12; i != 16; ++i) | 
|  | if (!isUndefOrInRange(Mask[i], 12, 16)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that | 
|  | /// is suitable for input to PSHUFLW. | 
|  | static bool isPSHUFLWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) { | 
|  | if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16)) | 
|  | return false; | 
|  |  | 
|  | // Upper quadword copied in order. | 
|  | if (!isSequentialOrUndefInRange(Mask, 4, 4, 4)) | 
|  | return false; | 
|  |  | 
|  | // Lower quadword shuffled. | 
|  | for (unsigned i = 0; i != 4; ++i) | 
|  | if (!isUndefOrInRange(Mask[i], 0, 4)) | 
|  | return false; | 
|  |  | 
|  | if (VT == MVT::v16i16) { | 
|  | // Upper quadword copied in order. | 
|  | if (!isSequentialOrUndefInRange(Mask, 12, 4, 12)) | 
|  | return false; | 
|  |  | 
|  | // Lower quadword shuffled. | 
|  | for (unsigned i = 8; i != 12; ++i) | 
|  | if (!isUndefOrInRange(Mask[i], 8, 12)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that | 
|  | /// is suitable for input to PALIGNR. | 
|  | static bool isPALIGNRMask(ArrayRef<int> Mask, MVT VT, | 
|  | const X86Subtarget *Subtarget) { | 
|  | if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) || | 
|  | (VT.is256BitVector() && !Subtarget->hasInt256())) | 
|  | return false; | 
|  |  | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | unsigned NumLanes = VT.is512BitVector() ? 1: VT.getSizeInBits()/128; | 
|  | unsigned NumLaneElts = NumElts/NumLanes; | 
|  |  | 
|  | // Do not handle 64-bit element shuffles with palignr. | 
|  | if (NumLaneElts == 2) | 
|  | return false; | 
|  |  | 
|  | for (unsigned l = 0; l != NumElts; l+=NumLaneElts) { | 
|  | unsigned i; | 
|  | for (i = 0; i != NumLaneElts; ++i) { | 
|  | if (Mask[i+l] >= 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Lane is all undef, go to next lane | 
|  | if (i == NumLaneElts) | 
|  | continue; | 
|  |  | 
|  | int Start = Mask[i+l]; | 
|  |  | 
|  | // Make sure its in this lane in one of the sources | 
|  | if (!isUndefOrInRange(Start, l, l+NumLaneElts) && | 
|  | !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts)) | 
|  | return false; | 
|  |  | 
|  | // If not lane 0, then we must match lane 0 | 
|  | if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l)) | 
|  | return false; | 
|  |  | 
|  | // Correct second source to be contiguous with first source | 
|  | if (Start >= (int)NumElts) | 
|  | Start -= NumElts - NumLaneElts; | 
|  |  | 
|  | // Make sure we're shifting in the right direction. | 
|  | if (Start <= (int)(i+l)) | 
|  | return false; | 
|  |  | 
|  | Start -= i; | 
|  |  | 
|  | // Check the rest of the elements to see if they are consecutive. | 
|  | for (++i; i != NumLaneElts; ++i) { | 
|  | int Idx = Mask[i+l]; | 
|  |  | 
|  | // Make sure its in this lane | 
|  | if (!isUndefOrInRange(Idx, l, l+NumLaneElts) && | 
|  | !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts)) | 
|  | return false; | 
|  |  | 
|  | // If not lane 0, then we must match lane 0 | 
|  | if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l)) | 
|  | return false; | 
|  |  | 
|  | if (Idx >= (int)NumElts) | 
|  | Idx -= NumElts - NumLaneElts; | 
|  |  | 
|  | if (!isUndefOrEqual(Idx, Start+i)) | 
|  | return false; | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming | 
|  | /// the two vector operands have swapped position. | 
|  | static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, | 
|  | unsigned NumElems) { | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | int idx = Mask[i]; | 
|  | if (idx < 0) | 
|  | continue; | 
|  | else if (idx < (int)NumElems) | 
|  | Mask[i] = idx + NumElems; | 
|  | else | 
|  | Mask[i] = idx - NumElems; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to 128/256-bit | 
|  | /// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be | 
|  | /// reverse of what x86 shuffles want. | 
|  | static bool isSHUFPMask(ArrayRef<int> Mask, MVT VT, bool Commuted = false) { | 
|  |  | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | unsigned NumLanes = VT.getSizeInBits()/128; | 
|  | unsigned NumLaneElems = NumElems/NumLanes; | 
|  |  | 
|  | if (NumLaneElems != 2 && NumLaneElems != 4) | 
|  | return false; | 
|  |  | 
|  | unsigned EltSize = VT.getVectorElementType().getSizeInBits(); | 
|  | bool symetricMaskRequired = | 
|  | (VT.getSizeInBits() >= 256) && (EltSize == 32); | 
|  |  | 
|  | // VSHUFPSY divides the resulting vector into 4 chunks. | 
|  | // The sources are also splitted into 4 chunks, and each destination | 
|  | // chunk must come from a different source chunk. | 
|  | // | 
|  | //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0 | 
|  | //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9 | 
|  | // | 
|  | //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4, | 
|  | //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0 | 
|  | // | 
|  | // VSHUFPDY divides the resulting vector into 4 chunks. | 
|  | // The sources are also splitted into 4 chunks, and each destination | 
|  | // chunk must come from a different source chunk. | 
|  | // | 
|  | //  SRC1 =>      X3       X2       X1       X0 | 
|  | //  SRC2 =>      Y3       Y2       Y1       Y0 | 
|  | // | 
|  | //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0 | 
|  | // | 
|  | SmallVector<int, 4> MaskVal(NumLaneElems, -1); | 
|  | unsigned HalfLaneElems = NumLaneElems/2; | 
|  | for (unsigned l = 0; l != NumElems; l += NumLaneElems) { | 
|  | for (unsigned i = 0; i != NumLaneElems; ++i) { | 
|  | int Idx = Mask[i+l]; | 
|  | unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0); | 
|  | if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems)) | 
|  | return false; | 
|  | // For VSHUFPSY, the mask of the second half must be the same as the | 
|  | // first but with the appropriate offsets. This works in the same way as | 
|  | // VPERMILPS works with masks. | 
|  | if (!symetricMaskRequired || Idx < 0) | 
|  | continue; | 
|  | if (MaskVal[i] < 0) { | 
|  | MaskVal[i] = Idx - l; | 
|  | continue; | 
|  | } | 
|  | if ((signed)(Idx - l) != MaskVal[i]) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVHLPS. | 
|  | static bool isMOVHLPSMask(ArrayRef<int> Mask, MVT VT) { | 
|  | if (!VT.is128BitVector()) | 
|  | return false; | 
|  |  | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | if (NumElems != 4) | 
|  | return false; | 
|  |  | 
|  | // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 | 
|  | return isUndefOrEqual(Mask[0], 6) && | 
|  | isUndefOrEqual(Mask[1], 7) && | 
|  | isUndefOrEqual(Mask[2], 2) && | 
|  | isUndefOrEqual(Mask[3], 3); | 
|  | } | 
|  |  | 
|  | /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form | 
|  | /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, | 
|  | /// <2, 3, 2, 3> | 
|  | static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, MVT VT) { | 
|  | if (!VT.is128BitVector()) | 
|  | return false; | 
|  |  | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | if (NumElems != 4) | 
|  | return false; | 
|  |  | 
|  | return isUndefOrEqual(Mask[0], 2) && | 
|  | isUndefOrEqual(Mask[1], 3) && | 
|  | isUndefOrEqual(Mask[2], 2) && | 
|  | isUndefOrEqual(Mask[3], 3); | 
|  | } | 
|  |  | 
|  | /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. | 
|  | static bool isMOVLPMask(ArrayRef<int> Mask, MVT VT) { | 
|  | if (!VT.is128BitVector()) | 
|  | return false; | 
|  |  | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | if (NumElems != 2 && NumElems != 4) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0, e = NumElems/2; i != e; ++i) | 
|  | if (!isUndefOrEqual(Mask[i], i + NumElems)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = NumElems/2, e = NumElems; i != e; ++i) | 
|  | if (!isUndefOrEqual(Mask[i], i)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVLHPS. | 
|  | static bool isMOVLHPSMask(ArrayRef<int> Mask, MVT VT) { | 
|  | if (!VT.is128BitVector()) | 
|  | return false; | 
|  |  | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | if (NumElems != 2 && NumElems != 4) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0, e = NumElems/2; i != e; ++i) | 
|  | if (!isUndefOrEqual(Mask[i], i)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0, e = NumElems/2; i != e; ++i) | 
|  | if (!isUndefOrEqual(Mask[i + e], i + NumElems)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // | 
|  | // Some special combinations that can be optimized. | 
|  | // | 
|  | static | 
|  | SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = SVOp->getSimpleValueType(0); | 
|  | SDLoc dl(SVOp); | 
|  |  | 
|  | if (VT != MVT::v8i32 && VT != MVT::v8f32) | 
|  | return SDValue(); | 
|  |  | 
|  | ArrayRef<int> Mask = SVOp->getMask(); | 
|  |  | 
|  | // These are the special masks that may be optimized. | 
|  | static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14}; | 
|  | static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15}; | 
|  | bool MatchEvenMask = true; | 
|  | bool MatchOddMask  = true; | 
|  | for (int i=0; i<8; ++i) { | 
|  | if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i])) | 
|  | MatchEvenMask = false; | 
|  | if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i])) | 
|  | MatchOddMask = false; | 
|  | } | 
|  |  | 
|  | if (!MatchEvenMask && !MatchOddMask) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT); | 
|  |  | 
|  | SDValue Op0 = SVOp->getOperand(0); | 
|  | SDValue Op1 = SVOp->getOperand(1); | 
|  |  | 
|  | if (MatchEvenMask) { | 
|  | // Shift the second operand right to 32 bits. | 
|  | static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 }; | 
|  | Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask); | 
|  | } else { | 
|  | // Shift the first operand left to 32 bits. | 
|  | static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 }; | 
|  | Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask); | 
|  | } | 
|  | static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15}; | 
|  | return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask); | 
|  | } | 
|  |  | 
|  | /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to UNPCKL. | 
|  | static bool isUNPCKLMask(ArrayRef<int> Mask, MVT VT, | 
|  | bool HasInt256, bool V2IsSplat = false) { | 
|  |  | 
|  | assert(VT.getSizeInBits() >= 128 && | 
|  | "Unsupported vector type for unpckl"); | 
|  |  | 
|  | // AVX defines UNPCK* to operate independently on 128-bit lanes. | 
|  | unsigned NumLanes; | 
|  | unsigned NumOf256BitLanes; | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | if (VT.is256BitVector()) { | 
|  | if (NumElts != 4 && NumElts != 8 && | 
|  | (!HasInt256 || (NumElts != 16 && NumElts != 32))) | 
|  | return false; | 
|  | NumLanes = 2; | 
|  | NumOf256BitLanes = 1; | 
|  | } else if (VT.is512BitVector()) { | 
|  | assert(VT.getScalarType().getSizeInBits() >= 32 && | 
|  | "Unsupported vector type for unpckh"); | 
|  | NumLanes = 2; | 
|  | NumOf256BitLanes = 2; | 
|  | } else { | 
|  | NumLanes = 1; | 
|  | NumOf256BitLanes = 1; | 
|  | } | 
|  |  | 
|  | unsigned NumEltsInStride = NumElts/NumOf256BitLanes; | 
|  | unsigned NumLaneElts = NumEltsInStride/NumLanes; | 
|  |  | 
|  | for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) { | 
|  | for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) { | 
|  | for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) { | 
|  | int BitI  = Mask[l256*NumEltsInStride+l+i]; | 
|  | int BitI1 = Mask[l256*NumEltsInStride+l+i+1]; | 
|  | if (!isUndefOrEqual(BitI, j+l256*NumElts)) | 
|  | return false; | 
|  | if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts)) | 
|  | return false; | 
|  | if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to UNPCKH. | 
|  | static bool isUNPCKHMask(ArrayRef<int> Mask, MVT VT, | 
|  | bool HasInt256, bool V2IsSplat = false) { | 
|  | assert(VT.getSizeInBits() >= 128 && | 
|  | "Unsupported vector type for unpckh"); | 
|  |  | 
|  | // AVX defines UNPCK* to operate independently on 128-bit lanes. | 
|  | unsigned NumLanes; | 
|  | unsigned NumOf256BitLanes; | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | if (VT.is256BitVector()) { | 
|  | if (NumElts != 4 && NumElts != 8 && | 
|  | (!HasInt256 || (NumElts != 16 && NumElts != 32))) | 
|  | return false; | 
|  | NumLanes = 2; | 
|  | NumOf256BitLanes = 1; | 
|  | } else if (VT.is512BitVector()) { | 
|  | assert(VT.getScalarType().getSizeInBits() >= 32 && | 
|  | "Unsupported vector type for unpckh"); | 
|  | NumLanes = 2; | 
|  | NumOf256BitLanes = 2; | 
|  | } else { | 
|  | NumLanes = 1; | 
|  | NumOf256BitLanes = 1; | 
|  | } | 
|  |  | 
|  | unsigned NumEltsInStride = NumElts/NumOf256BitLanes; | 
|  | unsigned NumLaneElts = NumEltsInStride/NumLanes; | 
|  |  | 
|  | for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) { | 
|  | for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) { | 
|  | for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) { | 
|  | int BitI  = Mask[l256*NumEltsInStride+l+i]; | 
|  | int BitI1 = Mask[l256*NumEltsInStride+l+i+1]; | 
|  | if (!isUndefOrEqual(BitI, j+l256*NumElts)) | 
|  | return false; | 
|  | if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts)) | 
|  | return false; | 
|  | if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form | 
|  | /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, | 
|  | /// <0, 0, 1, 1> | 
|  | static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | bool Is256BitVec = VT.is256BitVector(); | 
|  |  | 
|  | if (VT.is512BitVector()) | 
|  | return false; | 
|  | assert((VT.is128BitVector() || VT.is256BitVector()) && | 
|  | "Unsupported vector type for unpckh"); | 
|  |  | 
|  | if (Is256BitVec && NumElts != 4 && NumElts != 8 && | 
|  | (!HasInt256 || (NumElts != 16 && NumElts != 32))) | 
|  | return false; | 
|  |  | 
|  | // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern | 
|  | // FIXME: Need a better way to get rid of this, there's no latency difference | 
|  | // between UNPCKLPD and MOVDDUP, the later should always be checked first and | 
|  | // the former later. We should also remove the "_undef" special mask. | 
|  | if (NumElts == 4 && Is256BitVec) | 
|  | return false; | 
|  |  | 
|  | // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate | 
|  | // independently on 128-bit lanes. | 
|  | unsigned NumLanes = VT.getSizeInBits()/128; | 
|  | unsigned NumLaneElts = NumElts/NumLanes; | 
|  |  | 
|  | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { | 
|  | for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) { | 
|  | int BitI  = Mask[l+i]; | 
|  | int BitI1 = Mask[l+i+1]; | 
|  |  | 
|  | if (!isUndefOrEqual(BitI, j)) | 
|  | return false; | 
|  | if (!isUndefOrEqual(BitI1, j)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form | 
|  | /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, | 
|  | /// <2, 2, 3, 3> | 
|  | static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | if (VT.is512BitVector()) | 
|  | return false; | 
|  |  | 
|  | assert((VT.is128BitVector() || VT.is256BitVector()) && | 
|  | "Unsupported vector type for unpckh"); | 
|  |  | 
|  | if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 && | 
|  | (!HasInt256 || (NumElts != 16 && NumElts != 32))) | 
|  | return false; | 
|  |  | 
|  | // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate | 
|  | // independently on 128-bit lanes. | 
|  | unsigned NumLanes = VT.getSizeInBits()/128; | 
|  | unsigned NumLaneElts = NumElts/NumLanes; | 
|  |  | 
|  | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { | 
|  | for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) { | 
|  | int BitI  = Mask[l+i]; | 
|  | int BitI1 = Mask[l+i+1]; | 
|  | if (!isUndefOrEqual(BitI, j)) | 
|  | return false; | 
|  | if (!isUndefOrEqual(BitI1, j)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVSS, | 
|  | /// MOVSD, and MOVD, i.e. setting the lowest element. | 
|  | static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) { | 
|  | if (VT.getVectorElementType().getSizeInBits() < 32) | 
|  | return false; | 
|  | if (!VT.is128BitVector()) | 
|  | return false; | 
|  |  | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | if (!isUndefOrEqual(Mask[0], NumElts)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 1; i != NumElts; ++i) | 
|  | if (!isUndefOrEqual(Mask[i], i)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered | 
|  | /// as permutations between 128-bit chunks or halves. As an example: this | 
|  | /// shuffle bellow: | 
|  | ///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15> | 
|  | /// The first half comes from the second half of V1 and the second half from the | 
|  | /// the second half of V2. | 
|  | static bool isVPERM2X128Mask(ArrayRef<int> Mask, MVT VT, bool HasFp256) { | 
|  | if (!HasFp256 || !VT.is256BitVector()) | 
|  | return false; | 
|  |  | 
|  | // The shuffle result is divided into half A and half B. In total the two | 
|  | // sources have 4 halves, namely: C, D, E, F. The final values of A and | 
|  | // B must come from C, D, E or F. | 
|  | unsigned HalfSize = VT.getVectorNumElements()/2; | 
|  | bool MatchA = false, MatchB = false; | 
|  |  | 
|  | // Check if A comes from one of C, D, E, F. | 
|  | for (unsigned Half = 0; Half != 4; ++Half) { | 
|  | if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) { | 
|  | MatchA = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if B comes from one of C, D, E, F. | 
|  | for (unsigned Half = 0; Half != 4; ++Half) { | 
|  | if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) { | 
|  | MatchB = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return MatchA && MatchB; | 
|  | } | 
|  |  | 
|  | /// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle | 
|  | /// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions. | 
|  | static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) { | 
|  | MVT VT = SVOp->getSimpleValueType(0); | 
|  |  | 
|  | unsigned HalfSize = VT.getVectorNumElements()/2; | 
|  |  | 
|  | unsigned FstHalf = 0, SndHalf = 0; | 
|  | for (unsigned i = 0; i < HalfSize; ++i) { | 
|  | if (SVOp->getMaskElt(i) > 0) { | 
|  | FstHalf = SVOp->getMaskElt(i)/HalfSize; | 
|  | break; | 
|  | } | 
|  | } | 
|  | for (unsigned i = HalfSize; i < HalfSize*2; ++i) { | 
|  | if (SVOp->getMaskElt(i) > 0) { | 
|  | SndHalf = SVOp->getMaskElt(i)/HalfSize; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return (FstHalf | (SndHalf << 4)); | 
|  | } | 
|  |  | 
|  | // Symetric in-lane mask. Each lane has 4 elements (for imm8) | 
|  | static bool isPermImmMask(ArrayRef<int> Mask, MVT VT, unsigned& Imm8) { | 
|  | unsigned EltSize = VT.getVectorElementType().getSizeInBits(); | 
|  | if (EltSize < 32) | 
|  | return false; | 
|  |  | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | Imm8 = 0; | 
|  | if (VT.is128BitVector() || (VT.is256BitVector() && EltSize == 64)) { | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (Mask[i] < 0) | 
|  | continue; | 
|  | Imm8 |= Mask[i] << (i*2); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned LaneSize = 4; | 
|  | SmallVector<int, 4> MaskVal(LaneSize, -1); | 
|  |  | 
|  | for (unsigned l = 0; l != NumElts; l += LaneSize) { | 
|  | for (unsigned i = 0; i != LaneSize; ++i) { | 
|  | if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize)) | 
|  | return false; | 
|  | if (Mask[i+l] < 0) | 
|  | continue; | 
|  | if (MaskVal[i] < 0) { | 
|  | MaskVal[i] = Mask[i+l] - l; | 
|  | Imm8 |= MaskVal[i] << (i*2); | 
|  | continue; | 
|  | } | 
|  | if (Mask[i+l] != (signed)(MaskVal[i]+l)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to VPERMILPD*. | 
|  | /// Note that VPERMIL mask matching is different depending whether theunderlying | 
|  | /// type is 32 or 64. In the VPERMILPS the high half of the mask should point | 
|  | /// to the same elements of the low, but to the higher half of the source. | 
|  | /// In VPERMILPD the two lanes could be shuffled independently of each other | 
|  | /// with the same restriction that lanes can't be crossed. Also handles PSHUFDY. | 
|  | static bool isVPERMILPMask(ArrayRef<int> Mask, MVT VT) { | 
|  | unsigned EltSize = VT.getVectorElementType().getSizeInBits(); | 
|  | if (VT.getSizeInBits() < 256 || EltSize < 32) | 
|  | return false; | 
|  | bool symetricMaskRequired = (EltSize == 32); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | unsigned NumLanes = VT.getSizeInBits()/128; | 
|  | unsigned LaneSize = NumElts/NumLanes; | 
|  | // 2 or 4 elements in one lane | 
|  |  | 
|  | SmallVector<int, 4> ExpectedMaskVal(LaneSize, -1); | 
|  | for (unsigned l = 0; l != NumElts; l += LaneSize) { | 
|  | for (unsigned i = 0; i != LaneSize; ++i) { | 
|  | if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize)) | 
|  | return false; | 
|  | if (symetricMaskRequired) { | 
|  | if (ExpectedMaskVal[i] < 0 && Mask[i+l] >= 0) { | 
|  | ExpectedMaskVal[i] = Mask[i+l] - l; | 
|  | continue; | 
|  | } | 
|  | if (!isUndefOrEqual(Mask[i+l], ExpectedMaskVal[i]+l)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse | 
|  | /// of what x86 movss want. X86 movs requires the lowest  element to be lowest | 
|  | /// element of vector 2 and the other elements to come from vector 1 in order. | 
|  | static bool isCommutedMOVLMask(ArrayRef<int> Mask, MVT VT, | 
|  | bool V2IsSplat = false, bool V2IsUndef = false) { | 
|  | if (!VT.is128BitVector()) | 
|  | return false; | 
|  |  | 
|  | unsigned NumOps = VT.getVectorNumElements(); | 
|  | if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16) | 
|  | return false; | 
|  |  | 
|  | if (!isUndefOrEqual(Mask[0], 0)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 1; i != NumOps; ++i) | 
|  | if (!(isUndefOrEqual(Mask[i], i+NumOps) || | 
|  | (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) || | 
|  | (V2IsSplat && isUndefOrEqual(Mask[i], NumOps)))) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. | 
|  | /// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7> | 
|  | static bool isMOVSHDUPMask(ArrayRef<int> Mask, MVT VT, | 
|  | const X86Subtarget *Subtarget) { | 
|  | if (!Subtarget->hasSSE3()) | 
|  | return false; | 
|  |  | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | if ((VT.is128BitVector() && NumElems != 4) || | 
|  | (VT.is256BitVector() && NumElems != 8) || | 
|  | (VT.is512BitVector() && NumElems != 16)) | 
|  | return false; | 
|  |  | 
|  | // "i+1" is the value the indexed mask element must have | 
|  | for (unsigned i = 0; i != NumElems; i += 2) | 
|  | if (!isUndefOrEqual(Mask[i], i+1) || | 
|  | !isUndefOrEqual(Mask[i+1], i+1)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. | 
|  | /// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6> | 
|  | static bool isMOVSLDUPMask(ArrayRef<int> Mask, MVT VT, | 
|  | const X86Subtarget *Subtarget) { | 
|  | if (!Subtarget->hasSSE3()) | 
|  | return false; | 
|  |  | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | if ((VT.is128BitVector() && NumElems != 4) || | 
|  | (VT.is256BitVector() && NumElems != 8) || | 
|  | (VT.is512BitVector() && NumElems != 16)) | 
|  | return false; | 
|  |  | 
|  | // "i" is the value the indexed mask element must have | 
|  | for (unsigned i = 0; i != NumElems; i += 2) | 
|  | if (!isUndefOrEqual(Mask[i], i) || | 
|  | !isUndefOrEqual(Mask[i+1], i)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to 256-bit | 
|  | /// version of MOVDDUP. | 
|  | static bool isMOVDDUPYMask(ArrayRef<int> Mask, MVT VT, bool HasFp256) { | 
|  | if (!HasFp256 || !VT.is256BitVector()) | 
|  | return false; | 
|  |  | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | if (NumElts != 4) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i != NumElts/2; ++i) | 
|  | if (!isUndefOrEqual(Mask[i], 0)) | 
|  | return false; | 
|  | for (unsigned i = NumElts/2; i != NumElts; ++i) | 
|  | if (!isUndefOrEqual(Mask[i], NumElts/2)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to 128-bit | 
|  | /// version of MOVDDUP. | 
|  | static bool isMOVDDUPMask(ArrayRef<int> Mask, MVT VT) { | 
|  | if (!VT.is128BitVector()) | 
|  | return false; | 
|  |  | 
|  | unsigned e = VT.getVectorNumElements() / 2; | 
|  | for (unsigned i = 0; i != e; ++i) | 
|  | if (!isUndefOrEqual(Mask[i], i)) | 
|  | return false; | 
|  | for (unsigned i = 0; i != e; ++i) | 
|  | if (!isUndefOrEqual(Mask[e+i], i)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVEXTRACTIndex - Return true if the specified | 
|  | /// EXTRACT_SUBVECTOR operand specifies a vector extract that is | 
|  | /// suitable for instruction that extract 128 or 256 bit vectors | 
|  | static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) { | 
|  | assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width"); | 
|  | if (!isa<ConstantSDNode>(N->getOperand(1).getNode())) | 
|  | return false; | 
|  |  | 
|  | // The index should be aligned on a vecWidth-bit boundary. | 
|  | uint64_t Index = | 
|  | cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue(); | 
|  |  | 
|  | MVT VT = N->getSimpleValueType(0); | 
|  | unsigned ElSize = VT.getVectorElementType().getSizeInBits(); | 
|  | bool Result = (Index * ElSize) % vecWidth == 0; | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// isVINSERTIndex - Return true if the specified INSERT_SUBVECTOR | 
|  | /// operand specifies a subvector insert that is suitable for input to | 
|  | /// insertion of 128 or 256-bit subvectors | 
|  | static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) { | 
|  | assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width"); | 
|  | if (!isa<ConstantSDNode>(N->getOperand(2).getNode())) | 
|  | return false; | 
|  | // The index should be aligned on a vecWidth-bit boundary. | 
|  | uint64_t Index = | 
|  | cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue(); | 
|  |  | 
|  | MVT VT = N->getSimpleValueType(0); | 
|  | unsigned ElSize = VT.getVectorElementType().getSizeInBits(); | 
|  | bool Result = (Index * ElSize) % vecWidth == 0; | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | bool X86::isVINSERT128Index(SDNode *N) { | 
|  | return isVINSERTIndex(N, 128); | 
|  | } | 
|  |  | 
|  | bool X86::isVINSERT256Index(SDNode *N) { | 
|  | return isVINSERTIndex(N, 256); | 
|  | } | 
|  |  | 
|  | bool X86::isVEXTRACT128Index(SDNode *N) { | 
|  | return isVEXTRACTIndex(N, 128); | 
|  | } | 
|  |  | 
|  | bool X86::isVEXTRACT256Index(SDNode *N) { | 
|  | return isVEXTRACTIndex(N, 256); | 
|  | } | 
|  |  | 
|  | /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle | 
|  | /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions. | 
|  | /// Handles 128-bit and 256-bit. | 
|  | static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) { | 
|  | MVT VT = N->getSimpleValueType(0); | 
|  |  | 
|  | assert((VT.getSizeInBits() >= 128) && | 
|  | "Unsupported vector type for PSHUF/SHUFP"); | 
|  |  | 
|  | // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate | 
|  | // independently on 128-bit lanes. | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | unsigned NumLanes = VT.getSizeInBits()/128; | 
|  | unsigned NumLaneElts = NumElts/NumLanes; | 
|  |  | 
|  | assert((NumLaneElts == 2 || NumLaneElts == 4 || NumLaneElts == 8) && | 
|  | "Only supports 2, 4 or 8 elements per lane"); | 
|  |  | 
|  | unsigned Shift = (NumLaneElts >= 4) ? 1 : 0; | 
|  | unsigned Mask = 0; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | int Elt = N->getMaskElt(i); | 
|  | if (Elt < 0) continue; | 
|  | Elt &= NumLaneElts - 1; | 
|  | unsigned ShAmt = (i << Shift) % 8; | 
|  | Mask |= Elt << ShAmt; | 
|  | } | 
|  |  | 
|  | return Mask; | 
|  | } | 
|  |  | 
|  | /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle | 
|  | /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction. | 
|  | static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) { | 
|  | MVT VT = N->getSimpleValueType(0); | 
|  |  | 
|  | assert((VT == MVT::v8i16 || VT == MVT::v16i16) && | 
|  | "Unsupported vector type for PSHUFHW"); | 
|  |  | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | unsigned Mask = 0; | 
|  | for (unsigned l = 0; l != NumElts; l += 8) { | 
|  | // 8 nodes per lane, but we only care about the last 4. | 
|  | for (unsigned i = 0; i < 4; ++i) { | 
|  | int Elt = N->getMaskElt(l+i+4); | 
|  | if (Elt < 0) continue; | 
|  | Elt &= 0x3; // only 2-bits. | 
|  | Mask |= Elt << (i * 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Mask; | 
|  | } | 
|  |  | 
|  | /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle | 
|  | /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction. | 
|  | static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) { | 
|  | MVT VT = N->getSimpleValueType(0); | 
|  |  | 
|  | assert((VT == MVT::v8i16 || VT == MVT::v16i16) && | 
|  | "Unsupported vector type for PSHUFHW"); | 
|  |  | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | unsigned Mask = 0; | 
|  | for (unsigned l = 0; l != NumElts; l += 8) { | 
|  | // 8 nodes per lane, but we only care about the first 4. | 
|  | for (unsigned i = 0; i < 4; ++i) { | 
|  | int Elt = N->getMaskElt(l+i); | 
|  | if (Elt < 0) continue; | 
|  | Elt &= 0x3; // only 2-bits | 
|  | Mask |= Elt << (i * 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Mask; | 
|  | } | 
|  |  | 
|  | /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle | 
|  | /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction. | 
|  | static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) { | 
|  | MVT VT = SVOp->getSimpleValueType(0); | 
|  | unsigned EltSize = VT.is512BitVector() ? 1 : | 
|  | VT.getVectorElementType().getSizeInBits() >> 3; | 
|  |  | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | unsigned NumLanes = VT.is512BitVector() ? 1 : VT.getSizeInBits()/128; | 
|  | unsigned NumLaneElts = NumElts/NumLanes; | 
|  |  | 
|  | int Val = 0; | 
|  | unsigned i; | 
|  | for (i = 0; i != NumElts; ++i) { | 
|  | Val = SVOp->getMaskElt(i); | 
|  | if (Val >= 0) | 
|  | break; | 
|  | } | 
|  | if (Val >= (int)NumElts) | 
|  | Val -= NumElts - NumLaneElts; | 
|  |  | 
|  | assert(Val - i > 0 && "PALIGNR imm should be positive"); | 
|  | return (Val - i) * EltSize; | 
|  | } | 
|  |  | 
|  | static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) { | 
|  | assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width"); | 
|  | if (!isa<ConstantSDNode>(N->getOperand(1).getNode())) | 
|  | llvm_unreachable("Illegal extract subvector for VEXTRACT"); | 
|  |  | 
|  | uint64_t Index = | 
|  | cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue(); | 
|  |  | 
|  | MVT VecVT = N->getOperand(0).getSimpleValueType(); | 
|  | MVT ElVT = VecVT.getVectorElementType(); | 
|  |  | 
|  | unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits(); | 
|  | return Index / NumElemsPerChunk; | 
|  | } | 
|  |  | 
|  | static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) { | 
|  | assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width"); | 
|  | if (!isa<ConstantSDNode>(N->getOperand(2).getNode())) | 
|  | llvm_unreachable("Illegal insert subvector for VINSERT"); | 
|  |  | 
|  | uint64_t Index = | 
|  | cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue(); | 
|  |  | 
|  | MVT VecVT = N->getSimpleValueType(0); | 
|  | MVT ElVT = VecVT.getVectorElementType(); | 
|  |  | 
|  | unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits(); | 
|  | return Index / NumElemsPerChunk; | 
|  | } | 
|  |  | 
|  | /// getExtractVEXTRACT128Immediate - Return the appropriate immediate | 
|  | /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128 | 
|  | /// and VINSERTI128 instructions. | 
|  | unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) { | 
|  | return getExtractVEXTRACTImmediate(N, 128); | 
|  | } | 
|  |  | 
|  | /// getExtractVEXTRACT256Immediate - Return the appropriate immediate | 
|  | /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF64x4 | 
|  | /// and VINSERTI64x4 instructions. | 
|  | unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) { | 
|  | return getExtractVEXTRACTImmediate(N, 256); | 
|  | } | 
|  |  | 
|  | /// getInsertVINSERT128Immediate - Return the appropriate immediate | 
|  | /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128 | 
|  | /// and VINSERTI128 instructions. | 
|  | unsigned X86::getInsertVINSERT128Immediate(SDNode *N) { | 
|  | return getInsertVINSERTImmediate(N, 128); | 
|  | } | 
|  |  | 
|  | /// getInsertVINSERT256Immediate - Return the appropriate immediate | 
|  | /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF46x4 | 
|  | /// and VINSERTI64x4 instructions. | 
|  | unsigned X86::getInsertVINSERT256Immediate(SDNode *N) { | 
|  | return getInsertVINSERTImmediate(N, 256); | 
|  | } | 
|  |  | 
|  | /// isZeroNode - Returns true if Elt is a constant zero or a floating point | 
|  | /// constant +0.0. | 
|  | bool X86::isZeroNode(SDValue Elt) { | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Elt)) | 
|  | return CN->isNullValue(); | 
|  | if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt)) | 
|  | return CFP->getValueAPF().isPosZero(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in | 
|  | /// their permute mask. | 
|  | static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = SVOp->getSimpleValueType(0); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<int, 8> MaskVec; | 
|  |  | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | int Idx = SVOp->getMaskElt(i); | 
|  | if (Idx >= 0) { | 
|  | if (Idx < (int)NumElems) | 
|  | Idx += NumElems; | 
|  | else | 
|  | Idx -= NumElems; | 
|  | } | 
|  | MaskVec.push_back(Idx); | 
|  | } | 
|  | return DAG.getVectorShuffle(VT, SDLoc(SVOp), SVOp->getOperand(1), | 
|  | SVOp->getOperand(0), &MaskVec[0]); | 
|  | } | 
|  |  | 
|  | /// ShouldXformToMOVHLPS - Return true if the node should be transformed to | 
|  | /// match movhlps. The lower half elements should come from upper half of | 
|  | /// V1 (and in order), and the upper half elements should come from the upper | 
|  | /// half of V2 (and in order). | 
|  | static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, MVT VT) { | 
|  | if (!VT.is128BitVector()) | 
|  | return false; | 
|  | if (VT.getVectorNumElements() != 4) | 
|  | return false; | 
|  | for (unsigned i = 0, e = 2; i != e; ++i) | 
|  | if (!isUndefOrEqual(Mask[i], i+2)) | 
|  | return false; | 
|  | for (unsigned i = 2; i != 4; ++i) | 
|  | if (!isUndefOrEqual(Mask[i], i+4)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isScalarLoadToVector - Returns true if the node is a scalar load that | 
|  | /// is promoted to a vector. It also returns the LoadSDNode by reference if | 
|  | /// required. | 
|  | static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) { | 
|  | if (N->getOpcode() != ISD::SCALAR_TO_VECTOR) | 
|  | return false; | 
|  | N = N->getOperand(0).getNode(); | 
|  | if (!ISD::isNON_EXTLoad(N)) | 
|  | return false; | 
|  | if (LD) | 
|  | *LD = cast<LoadSDNode>(N); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Test whether the given value is a vector value which will be legalized | 
|  | // into a load. | 
|  | static bool WillBeConstantPoolLoad(SDNode *N) { | 
|  | if (N->getOpcode() != ISD::BUILD_VECTOR) | 
|  | return false; | 
|  |  | 
|  | // Check for any non-constant elements. | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | 
|  | switch (N->getOperand(i).getNode()->getOpcode()) { | 
|  | case ISD::UNDEF: | 
|  | case ISD::ConstantFP: | 
|  | case ISD::Constant: | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Vectors of all-zeros and all-ones are materialized with special | 
|  | // instructions rather than being loaded. | 
|  | return !ISD::isBuildVectorAllZeros(N) && | 
|  | !ISD::isBuildVectorAllOnes(N); | 
|  | } | 
|  |  | 
|  | /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to | 
|  | /// match movlp{s|d}. The lower half elements should come from lower half of | 
|  | /// V1 (and in order), and the upper half elements should come from the upper | 
|  | /// half of V2 (and in order). And since V1 will become the source of the | 
|  | /// MOVLP, it must be either a vector load or a scalar load to vector. | 
|  | static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, | 
|  | ArrayRef<int> Mask, MVT VT) { | 
|  | if (!VT.is128BitVector()) | 
|  | return false; | 
|  |  | 
|  | if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) | 
|  | return false; | 
|  | // Is V2 is a vector load, don't do this transformation. We will try to use | 
|  | // load folding shufps op. | 
|  | if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2)) | 
|  | return false; | 
|  |  | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | if (NumElems != 2 && NumElems != 4) | 
|  | return false; | 
|  | for (unsigned i = 0, e = NumElems/2; i != e; ++i) | 
|  | if (!isUndefOrEqual(Mask[i], i)) | 
|  | return false; | 
|  | for (unsigned i = NumElems/2, e = NumElems; i != e; ++i) | 
|  | if (!isUndefOrEqual(Mask[i], i+NumElems)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are | 
|  | /// all the same. | 
|  | static bool isSplatVector(SDNode *N) { | 
|  | if (N->getOpcode() != ISD::BUILD_VECTOR) | 
|  | return false; | 
|  |  | 
|  | SDValue SplatValue = N->getOperand(0); | 
|  | for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) | 
|  | if (N->getOperand(i) != SplatValue) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved | 
|  | /// to an zero vector. | 
|  | /// FIXME: move to dag combiner / method on ShuffleVectorSDNode | 
|  | static bool isZeroShuffle(ShuffleVectorSDNode *N) { | 
|  | SDValue V1 = N->getOperand(0); | 
|  | SDValue V2 = N->getOperand(1); | 
|  | unsigned NumElems = N->getValueType(0).getVectorNumElements(); | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | int Idx = N->getMaskElt(i); | 
|  | if (Idx >= (int)NumElems) { | 
|  | unsigned Opc = V2.getOpcode(); | 
|  | if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode())) | 
|  | continue; | 
|  | if (Opc != ISD::BUILD_VECTOR || | 
|  | !X86::isZeroNode(V2.getOperand(Idx-NumElems))) | 
|  | return false; | 
|  | } else if (Idx >= 0) { | 
|  | unsigned Opc = V1.getOpcode(); | 
|  | if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode())) | 
|  | continue; | 
|  | if (Opc != ISD::BUILD_VECTOR || | 
|  | !X86::isZeroNode(V1.getOperand(Idx))) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getZeroVector - Returns a vector of specified type with all zero elements. | 
|  | /// | 
|  | static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG, SDLoc dl) { | 
|  | assert(VT.isVector() && "Expected a vector type"); | 
|  |  | 
|  | // Always build SSE zero vectors as <4 x i32> bitcasted | 
|  | // to their dest type. This ensures they get CSE'd. | 
|  | SDValue Vec; | 
|  | if (VT.is128BitVector()) {  // SSE | 
|  | if (Subtarget->hasSSE2()) {  // SSE2 | 
|  | SDValue Cst = DAG.getTargetConstant(0, MVT::i32); | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); | 
|  | } else { // SSE1 | 
|  | SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst); | 
|  | } | 
|  | } else if (VT.is256BitVector()) { // AVX | 
|  | if (Subtarget->hasInt256()) { // AVX2 | 
|  | SDValue Cst = DAG.getTargetConstant(0, MVT::i32); | 
|  | SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, | 
|  | array_lengthof(Ops)); | 
|  | } else { | 
|  | // 256-bit logic and arithmetic instructions in AVX are all | 
|  | // floating-point, no support for integer ops. Emit fp zeroed vectors. | 
|  | SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); | 
|  | SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, | 
|  | array_lengthof(Ops)); | 
|  | } | 
|  | } else if (VT.is512BitVector()) { // AVX-512 | 
|  | SDValue Cst = DAG.getTargetConstant(0, MVT::i32); | 
|  | SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, | 
|  | Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops, 16); | 
|  | } else if (VT.getScalarType() == MVT::i1) { | 
|  | assert(VT.getVectorNumElements() <= 16 && "Unexpected vector type"); | 
|  | SDValue Cst = DAG.getTargetConstant(0, MVT::i1); | 
|  | SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, | 
|  | Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, | 
|  | Ops, VT.getVectorNumElements()); | 
|  | } else | 
|  | llvm_unreachable("Unexpected vector type"); | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, Vec); | 
|  | } | 
|  |  | 
|  | /// getOnesVector - Returns a vector of specified type with all bits set. | 
|  | /// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with | 
|  | /// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately. | 
|  | /// Then bitcast to their original type, ensuring they get CSE'd. | 
|  | static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG, | 
|  | SDLoc dl) { | 
|  | assert(VT.isVector() && "Expected a vector type"); | 
|  |  | 
|  | SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32); | 
|  | SDValue Vec; | 
|  | if (VT.is256BitVector()) { | 
|  | if (HasInt256) { // AVX2 | 
|  | SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, | 
|  | array_lengthof(Ops)); | 
|  | } else { // AVX | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); | 
|  | Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl); | 
|  | } | 
|  | } else if (VT.is128BitVector()) { | 
|  | Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); | 
|  | } else | 
|  | llvm_unreachable("Unexpected vector type"); | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, Vec); | 
|  | } | 
|  |  | 
|  | /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements | 
|  | /// that point to V2 points to its first element. | 
|  | static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) { | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | if (Mask[i] > (int)NumElems) { | 
|  | Mask[i] = NumElems; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd | 
|  | /// operation of specified width. | 
|  | static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1, | 
|  | SDValue V2) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<int, 8> Mask; | 
|  | Mask.push_back(NumElems); | 
|  | for (unsigned i = 1; i != NumElems; ++i) | 
|  | Mask.push_back(i); | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); | 
|  | } | 
|  |  | 
|  | /// getUnpackl - Returns a vector_shuffle node for an unpackl operation. | 
|  | static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1, | 
|  | SDValue V2) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<int, 8> Mask; | 
|  | for (unsigned i = 0, e = NumElems/2; i != e; ++i) { | 
|  | Mask.push_back(i); | 
|  | Mask.push_back(i + NumElems); | 
|  | } | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); | 
|  | } | 
|  |  | 
|  | /// getUnpackh - Returns a vector_shuffle node for an unpackh operation. | 
|  | static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1, | 
|  | SDValue V2) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<int, 8> Mask; | 
|  | for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) { | 
|  | Mask.push_back(i + Half); | 
|  | Mask.push_back(i + NumElems + Half); | 
|  | } | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); | 
|  | } | 
|  |  | 
|  | // PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by | 
|  | // a generic shuffle instruction because the target has no such instructions. | 
|  | // Generate shuffles which repeat i16 and i8 several times until they can be | 
|  | // represented by v4f32 and then be manipulated by target suported shuffles. | 
|  | static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) { | 
|  | MVT VT = V.getSimpleValueType(); | 
|  | int NumElems = VT.getVectorNumElements(); | 
|  | SDLoc dl(V); | 
|  |  | 
|  | while (NumElems > 4) { | 
|  | if (EltNo < NumElems/2) { | 
|  | V = getUnpackl(DAG, dl, VT, V, V); | 
|  | } else { | 
|  | V = getUnpackh(DAG, dl, VT, V, V); | 
|  | EltNo -= NumElems/2; | 
|  | } | 
|  | NumElems >>= 1; | 
|  | } | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// getLegalSplat - Generate a legal splat with supported x86 shuffles | 
|  | static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) { | 
|  | MVT VT = V.getSimpleValueType(); | 
|  | SDLoc dl(V); | 
|  |  | 
|  | if (VT.is128BitVector()) { | 
|  | V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V); | 
|  | int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo }; | 
|  | V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32), | 
|  | &SplatMask[0]); | 
|  | } else if (VT.is256BitVector()) { | 
|  | // To use VPERMILPS to splat scalars, the second half of indicies must | 
|  | // refer to the higher part, which is a duplication of the lower one, | 
|  | // because VPERMILPS can only handle in-lane permutations. | 
|  | int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo, | 
|  | EltNo+4, EltNo+4, EltNo+4, EltNo+4 }; | 
|  |  | 
|  | V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V); | 
|  | V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32), | 
|  | &SplatMask[0]); | 
|  | } else | 
|  | llvm_unreachable("Vector size not supported"); | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, V); | 
|  | } | 
|  |  | 
|  | /// PromoteSplat - Splat is promoted to target supported vector shuffles. | 
|  | static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) { | 
|  | MVT SrcVT = SV->getSimpleValueType(0); | 
|  | SDValue V1 = SV->getOperand(0); | 
|  | SDLoc dl(SV); | 
|  |  | 
|  | int EltNo = SV->getSplatIndex(); | 
|  | int NumElems = SrcVT.getVectorNumElements(); | 
|  | bool Is256BitVec = SrcVT.is256BitVector(); | 
|  |  | 
|  | assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) && | 
|  | "Unknown how to promote splat for type"); | 
|  |  | 
|  | // Extract the 128-bit part containing the splat element and update | 
|  | // the splat element index when it refers to the higher register. | 
|  | if (Is256BitVec) { | 
|  | V1 = Extract128BitVector(V1, EltNo, DAG, dl); | 
|  | if (EltNo >= NumElems/2) | 
|  | EltNo -= NumElems/2; | 
|  | } | 
|  |  | 
|  | // All i16 and i8 vector types can't be used directly by a generic shuffle | 
|  | // instruction because the target has no such instruction. Generate shuffles | 
|  | // which repeat i16 and i8 several times until they fit in i32, and then can | 
|  | // be manipulated by target suported shuffles. | 
|  | MVT EltVT = SrcVT.getVectorElementType(); | 
|  | if (EltVT == MVT::i8 || EltVT == MVT::i16) | 
|  | V1 = PromoteSplati8i16(V1, DAG, EltNo); | 
|  |  | 
|  | // Recreate the 256-bit vector and place the same 128-bit vector | 
|  | // into the low and high part. This is necessary because we want | 
|  | // to use VPERM* to shuffle the vectors | 
|  | if (Is256BitVec) { | 
|  | V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1); | 
|  | } | 
|  |  | 
|  | return getLegalSplat(DAG, V1, EltNo); | 
|  | } | 
|  |  | 
|  | /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified | 
|  | /// vector of zero or undef vector.  This produces a shuffle where the low | 
|  | /// element of V2 is swizzled into the zero/undef vector, landing at element | 
|  | /// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3). | 
|  | static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx, | 
|  | bool IsZero, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = V2.getSimpleValueType(); | 
|  | SDValue V1 = IsZero | 
|  | ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SmallVector<int, 16> MaskVec; | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | // If this is the insertion idx, put the low elt of V2 here. | 
|  | MaskVec.push_back(i == Idx ? NumElems : i); | 
|  | return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]); | 
|  | } | 
|  |  | 
|  | /// getTargetShuffleMask - Calculates the shuffle mask corresponding to the | 
|  | /// target specific opcode. Returns true if the Mask could be calculated. | 
|  | /// Sets IsUnary to true if only uses one source. | 
|  | static bool getTargetShuffleMask(SDNode *N, MVT VT, | 
|  | SmallVectorImpl<int> &Mask, bool &IsUnary) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SDValue ImmN; | 
|  |  | 
|  | IsUnary = false; | 
|  | switch(N->getOpcode()) { | 
|  | case X86ISD::SHUFP: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); | 
|  | break; | 
|  | case X86ISD::UNPCKH: | 
|  | DecodeUNPCKHMask(VT, Mask); | 
|  | break; | 
|  | case X86ISD::UNPCKL: | 
|  | DecodeUNPCKLMask(VT, Mask); | 
|  | break; | 
|  | case X86ISD::MOVHLPS: | 
|  | DecodeMOVHLPSMask(NumElems, Mask); | 
|  | break; | 
|  | case X86ISD::MOVLHPS: | 
|  | DecodeMOVLHPSMask(NumElems, Mask); | 
|  | break; | 
|  | case X86ISD::PALIGNR: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); | 
|  | break; | 
|  | case X86ISD::PSHUFD: | 
|  | case X86ISD::VPERMILP: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); | 
|  | IsUnary = true; | 
|  | break; | 
|  | case X86ISD::PSHUFHW: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); | 
|  | IsUnary = true; | 
|  | break; | 
|  | case X86ISD::PSHUFLW: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); | 
|  | IsUnary = true; | 
|  | break; | 
|  | case X86ISD::VPERMI: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); | 
|  | IsUnary = true; | 
|  | break; | 
|  | case X86ISD::MOVSS: | 
|  | case X86ISD::MOVSD: { | 
|  | // The index 0 always comes from the first element of the second source, | 
|  | // this is why MOVSS and MOVSD are used in the first place. The other | 
|  | // elements come from the other positions of the first source vector | 
|  | Mask.push_back(NumElems); | 
|  | for (unsigned i = 1; i != NumElems; ++i) { | 
|  | Mask.push_back(i); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case X86ISD::VPERM2X128: | 
|  | ImmN = N->getOperand(N->getNumOperands()-1); | 
|  | DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); | 
|  | if (Mask.empty()) return false; | 
|  | break; | 
|  | case X86ISD::MOVDDUP: | 
|  | case X86ISD::MOVLHPD: | 
|  | case X86ISD::MOVLPD: | 
|  | case X86ISD::MOVLPS: | 
|  | case X86ISD::MOVSHDUP: | 
|  | case X86ISD::MOVSLDUP: | 
|  | // Not yet implemented | 
|  | return false; | 
|  | default: llvm_unreachable("unknown target shuffle node"); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getShuffleScalarElt - Returns the scalar element that will make up the ith | 
|  | /// element of the result of the vector shuffle. | 
|  | static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG, | 
|  | unsigned Depth) { | 
|  | if (Depth == 6) | 
|  | return SDValue();  // Limit search depth. | 
|  |  | 
|  | SDValue V = SDValue(N, 0); | 
|  | EVT VT = V.getValueType(); | 
|  | unsigned Opcode = V.getOpcode(); | 
|  |  | 
|  | // Recurse into ISD::VECTOR_SHUFFLE node to find scalars. | 
|  | if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) { | 
|  | int Elt = SV->getMaskElt(Index); | 
|  |  | 
|  | if (Elt < 0) | 
|  | return DAG.getUNDEF(VT.getVectorElementType()); | 
|  |  | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0) | 
|  | : SV->getOperand(1); | 
|  | return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1); | 
|  | } | 
|  |  | 
|  | // Recurse into target specific vector shuffles to find scalars. | 
|  | if (isTargetShuffle(Opcode)) { | 
|  | MVT ShufVT = V.getSimpleValueType(); | 
|  | unsigned NumElems = ShufVT.getVectorNumElements(); | 
|  | SmallVector<int, 16> ShuffleMask; | 
|  | bool IsUnary; | 
|  |  | 
|  | if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary)) | 
|  | return SDValue(); | 
|  |  | 
|  | int Elt = ShuffleMask[Index]; | 
|  | if (Elt < 0) | 
|  | return DAG.getUNDEF(ShufVT.getVectorElementType()); | 
|  |  | 
|  | SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0) | 
|  | : N->getOperand(1); | 
|  | return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, | 
|  | Depth+1); | 
|  | } | 
|  |  | 
|  | // Actual nodes that may contain scalar elements | 
|  | if (Opcode == ISD::BITCAST) { | 
|  | V = V.getOperand(0); | 
|  | EVT SrcVT = V.getValueType(); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) | 
|  | return (Index == 0) ? V.getOperand(0) | 
|  | : DAG.getUNDEF(VT.getVectorElementType()); | 
|  |  | 
|  | if (V.getOpcode() == ISD::BUILD_VECTOR) | 
|  | return V.getOperand(Index); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// getNumOfConsecutiveZeros - Return the number of elements of a vector | 
|  | /// shuffle operation which come from a consecutively from a zero. The | 
|  | /// search can start in two different directions, from left or right. | 
|  | /// We count undefs as zeros until PreferredNum is reached. | 
|  | static unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, | 
|  | unsigned NumElems, bool ZerosFromLeft, | 
|  | SelectionDAG &DAG, | 
|  | unsigned PreferredNum = -1U) { | 
|  | unsigned NumZeros = 0; | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | unsigned Index = ZerosFromLeft ? i : NumElems - i - 1; | 
|  | SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0); | 
|  | if (!Elt.getNode()) | 
|  | break; | 
|  |  | 
|  | if (X86::isZeroNode(Elt)) | 
|  | ++NumZeros; | 
|  | else if (Elt.getOpcode() == ISD::UNDEF) // Undef as zero up to PreferredNum. | 
|  | NumZeros = std::min(NumZeros + 1, PreferredNum); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NumZeros; | 
|  | } | 
|  |  | 
|  | /// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE) | 
|  | /// correspond consecutively to elements from one of the vector operands, | 
|  | /// starting from its index OpIdx. Also tell OpNum which source vector operand. | 
|  | static | 
|  | bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, | 
|  | unsigned MaskI, unsigned MaskE, unsigned OpIdx, | 
|  | unsigned NumElems, unsigned &OpNum) { | 
|  | bool SeenV1 = false; | 
|  | bool SeenV2 = false; | 
|  |  | 
|  | for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) { | 
|  | int Idx = SVOp->getMaskElt(i); | 
|  | // Ignore undef indicies | 
|  | if (Idx < 0) | 
|  | continue; | 
|  |  | 
|  | if (Idx < (int)NumElems) | 
|  | SeenV1 = true; | 
|  | else | 
|  | SeenV2 = true; | 
|  |  | 
|  | // Only accept consecutive elements from the same vector | 
|  | if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | OpNum = SeenV1 ? 0 : 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVectorShiftRight - Returns true if the shuffle can be implemented as a | 
|  | /// logical left shift of a vector. | 
|  | static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, | 
|  | bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { | 
|  | unsigned NumElems = | 
|  | SVOp->getSimpleValueType(0).getVectorNumElements(); | 
|  | unsigned NumZeros = getNumOfConsecutiveZeros( | 
|  | SVOp, NumElems, false /* check zeros from right */, DAG, | 
|  | SVOp->getMaskElt(0)); | 
|  | unsigned OpSrc; | 
|  |  | 
|  | if (!NumZeros) | 
|  | return false; | 
|  |  | 
|  | // Considering the elements in the mask that are not consecutive zeros, | 
|  | // check if they consecutively come from only one of the source vectors. | 
|  | // | 
|  | //               V1 = {X, A, B, C}     0 | 
|  | //                         \  \  \    / | 
|  | //   vector_shuffle V1, V2 <1, 2, 3, X> | 
|  | // | 
|  | if (!isShuffleMaskConsecutive(SVOp, | 
|  | 0,                   // Mask Start Index | 
|  | NumElems-NumZeros,   // Mask End Index(exclusive) | 
|  | NumZeros,            // Where to start looking in the src vector | 
|  | NumElems,            // Number of elements in vector | 
|  | OpSrc))              // Which source operand ? | 
|  | return false; | 
|  |  | 
|  | isLeft = false; | 
|  | ShAmt = NumZeros; | 
|  | ShVal = SVOp->getOperand(OpSrc); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a | 
|  | /// logical left shift of a vector. | 
|  | static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, | 
|  | bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { | 
|  | unsigned NumElems = | 
|  | SVOp->getSimpleValueType(0).getVectorNumElements(); | 
|  | unsigned NumZeros = getNumOfConsecutiveZeros( | 
|  | SVOp, NumElems, true /* check zeros from left */, DAG, | 
|  | NumElems - SVOp->getMaskElt(NumElems - 1) - 1); | 
|  | unsigned OpSrc; | 
|  |  | 
|  | if (!NumZeros) | 
|  | return false; | 
|  |  | 
|  | // Considering the elements in the mask that are not consecutive zeros, | 
|  | // check if they consecutively come from only one of the source vectors. | 
|  | // | 
|  | //                           0    { A, B, X, X } = V2 | 
|  | //                          / \    /  / | 
|  | //   vector_shuffle V1, V2 <X, X, 4, 5> | 
|  | // | 
|  | if (!isShuffleMaskConsecutive(SVOp, | 
|  | NumZeros,     // Mask Start Index | 
|  | NumElems,     // Mask End Index(exclusive) | 
|  | 0,            // Where to start looking in the src vector | 
|  | NumElems,     // Number of elements in vector | 
|  | OpSrc))       // Which source operand ? | 
|  | return false; | 
|  |  | 
|  | isLeft = true; | 
|  | ShAmt = NumZeros; | 
|  | ShVal = SVOp->getOperand(OpSrc); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isVectorShift - Returns true if the shuffle can be implemented as a | 
|  | /// logical left or right shift of a vector. | 
|  | static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, | 
|  | bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { | 
|  | // Although the logic below support any bitwidth size, there are no | 
|  | // shift instructions which handle more than 128-bit vectors. | 
|  | if (!SVOp->getSimpleValueType(0).is128BitVector()) | 
|  | return false; | 
|  |  | 
|  | if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) || | 
|  | isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. | 
|  | /// | 
|  | static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros, | 
|  | unsigned NumNonZero, unsigned NumZero, | 
|  | SelectionDAG &DAG, | 
|  | const X86Subtarget* Subtarget, | 
|  | const TargetLowering &TLI) { | 
|  | if (NumNonZero > 8) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | SDValue V(0, 0); | 
|  | bool First = true; | 
|  | for (unsigned i = 0; i < 16; ++i) { | 
|  | bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; | 
|  | if (ThisIsNonZero && First) { | 
|  | if (NumZero) | 
|  | V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl); | 
|  | else | 
|  | V = DAG.getUNDEF(MVT::v8i16); | 
|  | First = false; | 
|  | } | 
|  |  | 
|  | if ((i & 1) != 0) { | 
|  | SDValue ThisElt(0, 0), LastElt(0, 0); | 
|  | bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; | 
|  | if (LastIsNonZero) { | 
|  | LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl, | 
|  | MVT::i16, Op.getOperand(i-1)); | 
|  | } | 
|  | if (ThisIsNonZero) { | 
|  | ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i)); | 
|  | ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16, | 
|  | ThisElt, DAG.getConstant(8, MVT::i8)); | 
|  | if (LastIsNonZero) | 
|  | ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt); | 
|  | } else | 
|  | ThisElt = LastElt; | 
|  |  | 
|  | if (ThisElt.getNode()) | 
|  | V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt, | 
|  | DAG.getIntPtrConstant(i/2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V); | 
|  | } | 
|  |  | 
|  | /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16. | 
|  | /// | 
|  | static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, | 
|  | unsigned NumNonZero, unsigned NumZero, | 
|  | SelectionDAG &DAG, | 
|  | const X86Subtarget* Subtarget, | 
|  | const TargetLowering &TLI) { | 
|  | if (NumNonZero > 4) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | SDValue V(0, 0); | 
|  | bool First = true; | 
|  | for (unsigned i = 0; i < 8; ++i) { | 
|  | bool isNonZero = (NonZeros & (1 << i)) != 0; | 
|  | if (isNonZero) { | 
|  | if (First) { | 
|  | if (NumZero) | 
|  | V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl); | 
|  | else | 
|  | V = DAG.getUNDEF(MVT::v8i16); | 
|  | First = false; | 
|  | } | 
|  | V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, | 
|  | MVT::v8i16, V, Op.getOperand(i), | 
|  | DAG.getIntPtrConstant(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// getVShift - Return a vector logical shift node. | 
|  | /// | 
|  | static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, | 
|  | unsigned NumBits, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI, SDLoc dl) { | 
|  | assert(VT.is128BitVector() && "Unknown type for VShift"); | 
|  | EVT ShVT = MVT::v2i64; | 
|  | unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ; | 
|  | SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp); | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, | 
|  | DAG.getNode(Opc, dl, ShVT, SrcOp, | 
|  | DAG.getConstant(NumBits, | 
|  | TLI.getScalarShiftAmountTy(SrcOp.getValueType())))); | 
|  | } | 
|  |  | 
|  | static SDValue | 
|  | LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) { | 
|  |  | 
|  | // Check if the scalar load can be widened into a vector load. And if | 
|  | // the address is "base + cst" see if the cst can be "absorbed" into | 
|  | // the shuffle mask. | 
|  | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) { | 
|  | SDValue Ptr = LD->getBasePtr(); | 
|  | if (!ISD::isNormalLoad(LD) || LD->isVolatile()) | 
|  | return SDValue(); | 
|  | EVT PVT = LD->getValueType(0); | 
|  | if (PVT != MVT::i32 && PVT != MVT::f32) | 
|  | return SDValue(); | 
|  |  | 
|  | int FI = -1; | 
|  | int64_t Offset = 0; | 
|  | if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) { | 
|  | FI = FINode->getIndex(); | 
|  | Offset = 0; | 
|  | } else if (DAG.isBaseWithConstantOffset(Ptr) && | 
|  | isa<FrameIndexSDNode>(Ptr.getOperand(0))) { | 
|  | FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); | 
|  | Offset = Ptr.getConstantOperandVal(1); | 
|  | Ptr = Ptr.getOperand(0); | 
|  | } else { | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // FIXME: 256-bit vector instructions don't require a strict alignment, | 
|  | // improve this code to support it better. | 
|  | unsigned RequiredAlign = VT.getSizeInBits()/8; | 
|  | SDValue Chain = LD->getChain(); | 
|  | // Make sure the stack object alignment is at least 16 or 32. | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) { | 
|  | if (MFI->isFixedObjectIndex(FI)) { | 
|  | // Can't change the alignment. FIXME: It's possible to compute | 
|  | // the exact stack offset and reference FI + adjust offset instead. | 
|  | // If someone *really* cares about this. That's the way to implement it. | 
|  | return SDValue(); | 
|  | } else { | 
|  | MFI->setObjectAlignment(FI, RequiredAlign); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (Offset % 16 or 32) must be multiple of 4. Then address is then | 
|  | // Ptr + (Offset & ~15). | 
|  | if (Offset < 0) | 
|  | return SDValue(); | 
|  | if ((Offset % RequiredAlign) & 3) | 
|  | return SDValue(); | 
|  | int64_t StartOffset = Offset & ~(RequiredAlign-1); | 
|  | if (StartOffset) | 
|  | Ptr = DAG.getNode(ISD::ADD, SDLoc(Ptr), Ptr.getValueType(), | 
|  | Ptr,DAG.getConstant(StartOffset, Ptr.getValueType())); | 
|  |  | 
|  | int EltNo = (Offset - StartOffset) >> 2; | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems); | 
|  | SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr, | 
|  | LD->getPointerInfo().getWithOffset(StartOffset), | 
|  | false, false, false, 0); | 
|  |  | 
|  | SmallVector<int, 8> Mask; | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | Mask.push_back(EltNo); | 
|  |  | 
|  | return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a | 
|  | /// vector of type 'VT', see if the elements can be replaced by a single large | 
|  | /// load which has the same value as a build_vector whose operands are 'elts'. | 
|  | /// | 
|  | /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a | 
|  | /// | 
|  | /// FIXME: we'd also like to handle the case where the last elements are zero | 
|  | /// rather than undef via VZEXT_LOAD, but we do not detect that case today. | 
|  | /// There's even a handy isZeroNode for that purpose. | 
|  | static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts, | 
|  | SDLoc &DL, SelectionDAG &DAG, | 
|  | bool isAfterLegalize) { | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | unsigned NumElems = Elts.size(); | 
|  |  | 
|  | LoadSDNode *LDBase = NULL; | 
|  | unsigned LastLoadedElt = -1U; | 
|  |  | 
|  | // For each element in the initializer, see if we've found a load or an undef. | 
|  | // If we don't find an initial load element, or later load elements are | 
|  | // non-consecutive, bail out. | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SDValue Elt = Elts[i]; | 
|  |  | 
|  | if (!Elt.getNode() || | 
|  | (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode()))) | 
|  | return SDValue(); | 
|  | if (!LDBase) { | 
|  | if (Elt.getNode()->getOpcode() == ISD::UNDEF) | 
|  | return SDValue(); | 
|  | LDBase = cast<LoadSDNode>(Elt.getNode()); | 
|  | LastLoadedElt = i; | 
|  | continue; | 
|  | } | 
|  | if (Elt.getOpcode() == ISD::UNDEF) | 
|  | continue; | 
|  |  | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Elt); | 
|  | if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i)) | 
|  | return SDValue(); | 
|  | LastLoadedElt = i; | 
|  | } | 
|  |  | 
|  | // If we have found an entire vector of loads and undefs, then return a large | 
|  | // load of the entire vector width starting at the base pointer.  If we found | 
|  | // consecutive loads for the low half, generate a vzext_load node. | 
|  | if (LastLoadedElt == NumElems - 1) { | 
|  |  | 
|  | if (isAfterLegalize && | 
|  | !DAG.getTargetLoweringInfo().isOperationLegal(ISD::LOAD, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue NewLd = SDValue(); | 
|  |  | 
|  | if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16) | 
|  | NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(), | 
|  | LDBase->getPointerInfo(), | 
|  | LDBase->isVolatile(), LDBase->isNonTemporal(), | 
|  | LDBase->isInvariant(), 0); | 
|  | NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(), | 
|  | LDBase->getPointerInfo(), | 
|  | LDBase->isVolatile(), LDBase->isNonTemporal(), | 
|  | LDBase->isInvariant(), LDBase->getAlignment()); | 
|  |  | 
|  | if (LDBase->hasAnyUseOfValue(1)) { | 
|  | SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, | 
|  | SDValue(LDBase, 1), | 
|  | SDValue(NewLd.getNode(), 1)); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain); | 
|  | DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1), | 
|  | SDValue(NewLd.getNode(), 1)); | 
|  | } | 
|  |  | 
|  | return NewLd; | 
|  | } | 
|  | if (NumElems == 4 && LastLoadedElt == 1 && | 
|  | DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) { | 
|  | SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other); | 
|  | SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() }; | 
|  | SDValue ResNode = | 
|  | DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, | 
|  | array_lengthof(Ops), MVT::i64, | 
|  | LDBase->getPointerInfo(), | 
|  | LDBase->getAlignment(), | 
|  | false/*isVolatile*/, true/*ReadMem*/, | 
|  | false/*WriteMem*/); | 
|  |  | 
|  | // Make sure the newly-created LOAD is in the same position as LDBase in | 
|  | // terms of dependency. We create a TokenFactor for LDBase and ResNode, and | 
|  | // update uses of LDBase's output chain to use the TokenFactor. | 
|  | if (LDBase->hasAnyUseOfValue(1)) { | 
|  | SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, | 
|  | SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1)); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain); | 
|  | DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1), | 
|  | SDValue(ResNode.getNode(), 1)); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, ResNode); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// LowerVectorBroadcast - Attempt to use the vbroadcast instruction | 
|  | /// to generate a splat value for the following cases: | 
|  | /// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant. | 
|  | /// 2. A splat shuffle which uses a scalar_to_vector node which comes from | 
|  | /// a scalar load, or a constant. | 
|  | /// The VBROADCAST node is returned when a pattern is found, | 
|  | /// or SDValue() otherwise. | 
|  | static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | if (!Subtarget->hasFp256()) | 
|  | return SDValue(); | 
|  |  | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) && | 
|  | "Unsupported vector type for broadcast."); | 
|  |  | 
|  | SDValue Ld; | 
|  | bool ConstSplatVal; | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | // Unknown pattern found. | 
|  | return SDValue(); | 
|  |  | 
|  | case ISD::BUILD_VECTOR: { | 
|  | // The BUILD_VECTOR node must be a splat. | 
|  | if (!isSplatVector(Op.getNode())) | 
|  | return SDValue(); | 
|  |  | 
|  | Ld = Op.getOperand(0); | 
|  | ConstSplatVal = (Ld.getOpcode() == ISD::Constant || | 
|  | Ld.getOpcode() == ISD::ConstantFP); | 
|  |  | 
|  | // The suspected load node has several users. Make sure that all | 
|  | // of its users are from the BUILD_VECTOR node. | 
|  | // Constants may have multiple users. | 
|  | if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0)) | 
|  | return SDValue(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::VECTOR_SHUFFLE: { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  |  | 
|  | // Shuffles must have a splat mask where the first element is | 
|  | // broadcasted. | 
|  | if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Sc = Op.getOperand(0); | 
|  | if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR && | 
|  | Sc.getOpcode() != ISD::BUILD_VECTOR) { | 
|  |  | 
|  | if (!Subtarget->hasInt256()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Use the register form of the broadcast instruction available on AVX2. | 
|  | if (VT.getSizeInBits() >= 256) | 
|  | Sc = Extract128BitVector(Sc, 0, DAG, dl); | 
|  | return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc); | 
|  | } | 
|  |  | 
|  | Ld = Sc.getOperand(0); | 
|  | ConstSplatVal = (Ld.getOpcode() == ISD::Constant || | 
|  | Ld.getOpcode() == ISD::ConstantFP); | 
|  |  | 
|  | // The scalar_to_vector node and the suspected | 
|  | // load node must have exactly one user. | 
|  | // Constants may have multiple users. | 
|  |  | 
|  | // AVX-512 has register version of the broadcast | 
|  | bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() && | 
|  | Ld.getValueType().getSizeInBits() >= 32; | 
|  | if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) && | 
|  | !hasRegVer)) | 
|  | return SDValue(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool IsGE256 = (VT.getSizeInBits() >= 256); | 
|  |  | 
|  | // Handle the broadcasting a single constant scalar from the constant pool | 
|  | // into a vector. On Sandybridge it is still better to load a constant vector | 
|  | // from the constant pool and not to broadcast it from a scalar. | 
|  | if (ConstSplatVal && Subtarget->hasInt256()) { | 
|  | EVT CVT = Ld.getValueType(); | 
|  | assert(!CVT.isVector() && "Must not broadcast a vector type"); | 
|  | unsigned ScalarSize = CVT.getSizeInBits(); | 
|  |  | 
|  | if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)) { | 
|  | const Constant *C = 0; | 
|  | if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld)) | 
|  | C = CI->getConstantIntValue(); | 
|  | else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld)) | 
|  | C = CF->getConstantFPValue(); | 
|  |  | 
|  | assert(C && "Invalid constant type"); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy()); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment(); | 
|  | Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, false, Alignment); | 
|  |  | 
|  | return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool IsLoad = ISD::isNormalLoad(Ld.getNode()); | 
|  | unsigned ScalarSize = Ld.getValueType().getSizeInBits(); | 
|  |  | 
|  | // Handle AVX2 in-register broadcasts. | 
|  | if (!IsLoad && Subtarget->hasInt256() && | 
|  | (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))) | 
|  | return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); | 
|  |  | 
|  | // The scalar source must be a normal load. | 
|  | if (!IsLoad) | 
|  | return SDValue(); | 
|  |  | 
|  | if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)) | 
|  | return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); | 
|  |  | 
|  | // The integer check is needed for the 64-bit into 128-bit so it doesn't match | 
|  | // double since there is no vbroadcastsd xmm | 
|  | if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) { | 
|  | if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64) | 
|  | return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); | 
|  | } | 
|  |  | 
|  | // Unsupported broadcast. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | // Skip if insert_vec_elt is not supported. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | unsigned NumElems = Op.getNumOperands(); | 
|  |  | 
|  | SDValue VecIn1; | 
|  | SDValue VecIn2; | 
|  | SmallVector<unsigned, 4> InsertIndices; | 
|  | SmallVector<int, 8> Mask(NumElems, -1); | 
|  |  | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | unsigned Opc = Op.getOperand(i).getOpcode(); | 
|  |  | 
|  | if (Opc == ISD::UNDEF) | 
|  | continue; | 
|  |  | 
|  | if (Opc != ISD::EXTRACT_VECTOR_ELT) { | 
|  | // Quit if more than 1 elements need inserting. | 
|  | if (InsertIndices.size() > 1) | 
|  | return SDValue(); | 
|  |  | 
|  | InsertIndices.push_back(i); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0); | 
|  | SDValue ExtIdx = Op.getOperand(i).getOperand(1); | 
|  |  | 
|  | // Quit if extracted from vector of different type. | 
|  | if (ExtractedFromVec.getValueType() != VT) | 
|  | return SDValue(); | 
|  |  | 
|  | // Quit if non-constant index. | 
|  | if (!isa<ConstantSDNode>(ExtIdx)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (VecIn1.getNode() == 0) | 
|  | VecIn1 = ExtractedFromVec; | 
|  | else if (VecIn1 != ExtractedFromVec) { | 
|  | if (VecIn2.getNode() == 0) | 
|  | VecIn2 = ExtractedFromVec; | 
|  | else if (VecIn2 != ExtractedFromVec) | 
|  | // Quit if more than 2 vectors to shuffle | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue(); | 
|  |  | 
|  | if (ExtractedFromVec == VecIn1) | 
|  | Mask[i] = Idx; | 
|  | else if (ExtractedFromVec == VecIn2) | 
|  | Mask[i] = Idx + NumElems; | 
|  | } | 
|  |  | 
|  | if (VecIn1.getNode() == 0) | 
|  | return SDValue(); | 
|  |  | 
|  | VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); | 
|  | SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]); | 
|  | for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) { | 
|  | unsigned Idx = InsertIndices[i]; | 
|  | NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx), | 
|  | DAG.getIntPtrConstant(Idx)); | 
|  | } | 
|  |  | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | // Lower BUILD_VECTOR operation for v8i1 and v16i1 types. | 
|  | SDValue | 
|  | X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const { | 
|  |  | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | assert((VT.getVectorElementType() == MVT::i1) && (VT.getSizeInBits() <= 16) && | 
|  | "Unexpected type in LowerBUILD_VECTORvXi1!"); | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | if (ISD::isBuildVectorAllZeros(Op.getNode())) { | 
|  | SDValue Cst = DAG.getTargetConstant(0, MVT::i1); | 
|  | SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, | 
|  | Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, | 
|  | Ops, VT.getVectorNumElements()); | 
|  | } | 
|  |  | 
|  | if (ISD::isBuildVectorAllOnes(Op.getNode())) { | 
|  | SDValue Cst = DAG.getTargetConstant(1, MVT::i1); | 
|  | SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, | 
|  | Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, | 
|  | Ops, VT.getVectorNumElements()); | 
|  | } | 
|  |  | 
|  | bool AllContants = true; | 
|  | uint64_t Immediate = 0; | 
|  | int NonConstIdx = -1; | 
|  | bool IsSplat = true; | 
|  | for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) { | 
|  | SDValue In = Op.getOperand(idx); | 
|  | if (In.getOpcode() == ISD::UNDEF) | 
|  | continue; | 
|  | if (!isa<ConstantSDNode>(In)) { | 
|  | AllContants = false; | 
|  | NonConstIdx = idx; | 
|  | } | 
|  | else if (cast<ConstantSDNode>(In)->getZExtValue()) | 
|  | Immediate |= (1ULL << idx); | 
|  | if (In != Op.getOperand(0)) | 
|  | IsSplat = false; | 
|  | } | 
|  |  | 
|  | if (AllContants) { | 
|  | SDValue FullMask = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, | 
|  | DAG.getConstant(Immediate, MVT::i16)); | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, FullMask, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } | 
|  |  | 
|  | if (!IsSplat && (NonConstIdx != 0)) | 
|  | llvm_unreachable("Unsupported BUILD_VECTOR operation"); | 
|  | MVT SelectVT = (VT == MVT::v16i1)? MVT::i16 : MVT::i8; | 
|  | SDValue Select; | 
|  | if (IsSplat) | 
|  | Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0), | 
|  | DAG.getConstant(-1, SelectVT), | 
|  | DAG.getConstant(0, SelectVT)); | 
|  | else | 
|  | Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0), | 
|  | DAG.getConstant((Immediate | 1), SelectVT), | 
|  | DAG.getConstant(Immediate, SelectVT)); | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, Select); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | MVT ExtVT = VT.getVectorElementType(); | 
|  | unsigned NumElems = Op.getNumOperands(); | 
|  |  | 
|  | // Generate vectors for predicate vectors. | 
|  | if (VT.getScalarType() == MVT::i1 && Subtarget->hasAVX512()) | 
|  | return LowerBUILD_VECTORvXi1(Op, DAG); | 
|  |  | 
|  | // Vectors containing all zeros can be matched by pxor and xorps later | 
|  | if (ISD::isBuildVectorAllZeros(Op.getNode())) { | 
|  | // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd | 
|  | // and 2) ensure that i64 scalars are eliminated on x86-32 hosts. | 
|  | if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32) | 
|  | return Op; | 
|  |  | 
|  | return getZeroVector(VT, Subtarget, DAG, dl); | 
|  | } | 
|  |  | 
|  | // Vectors containing all ones can be matched by pcmpeqd on 128-bit width | 
|  | // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use | 
|  | // vpcmpeqd on 256-bit vectors. | 
|  | if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) { | 
|  | if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256())) | 
|  | return Op; | 
|  |  | 
|  | if (!VT.is512BitVector()) | 
|  | return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl); | 
|  | } | 
|  |  | 
|  | SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG); | 
|  | if (Broadcast.getNode()) | 
|  | return Broadcast; | 
|  |  | 
|  | unsigned EVTBits = ExtVT.getSizeInBits(); | 
|  |  | 
|  | unsigned NumZero  = 0; | 
|  | unsigned NumNonZero = 0; | 
|  | unsigned NonZeros = 0; | 
|  | bool IsAllConstants = true; | 
|  | SmallSet<SDValue, 8> Values; | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SDValue Elt = Op.getOperand(i); | 
|  | if (Elt.getOpcode() == ISD::UNDEF) | 
|  | continue; | 
|  | Values.insert(Elt); | 
|  | if (Elt.getOpcode() != ISD::Constant && | 
|  | Elt.getOpcode() != ISD::ConstantFP) | 
|  | IsAllConstants = false; | 
|  | if (X86::isZeroNode(Elt)) | 
|  | NumZero++; | 
|  | else { | 
|  | NonZeros |= (1 << i); | 
|  | NumNonZero++; | 
|  | } | 
|  | } | 
|  |  | 
|  | // All undef vector. Return an UNDEF.  All zero vectors were handled above. | 
|  | if (NumNonZero == 0) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | // Special case for single non-zero, non-undef, element. | 
|  | if (NumNonZero == 1) { | 
|  | unsigned Idx = countTrailingZeros(NonZeros); | 
|  | SDValue Item = Op.getOperand(Idx); | 
|  |  | 
|  | // If this is an insertion of an i64 value on x86-32, and if the top bits of | 
|  | // the value are obviously zero, truncate the value to i32 and do the | 
|  | // insertion that way.  Only do this if the value is non-constant or if the | 
|  | // value is a constant being inserted into element 0.  It is cheaper to do | 
|  | // a constant pool load than it is to do a movd + shuffle. | 
|  | if (ExtVT == MVT::i64 && !Subtarget->is64Bit() && | 
|  | (!IsAllConstants || Idx == 0)) { | 
|  | if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) { | 
|  | // Handle SSE only. | 
|  | assert(VT == MVT::v2i64 && "Expected an SSE value type!"); | 
|  | EVT VecVT = MVT::v4i32; | 
|  | unsigned VecElts = 4; | 
|  |  | 
|  | // Truncate the value (which may itself be a constant) to i32, and | 
|  | // convert it to a vector with movd (S2V+shuffle to zero extend). | 
|  | Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item); | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item); | 
|  | Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); | 
|  |  | 
|  | // Now we have our 32-bit value zero extended in the low element of | 
|  | // a vector.  If Idx != 0, swizzle it into place. | 
|  | if (Idx != 0) { | 
|  | SmallVector<int, 4> Mask; | 
|  | Mask.push_back(Idx); | 
|  | for (unsigned i = 1; i != VecElts; ++i) | 
|  | Mask.push_back(i); | 
|  | Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT), | 
|  | &Mask[0]); | 
|  | } | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, Item); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have a constant or non-constant insertion into the low element of | 
|  | // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into | 
|  | // the rest of the elements.  This will be matched as movd/movq/movss/movsd | 
|  | // depending on what the source datatype is. | 
|  | if (Idx == 0) { | 
|  | if (NumZero == 0) | 
|  | return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); | 
|  |  | 
|  | if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 || | 
|  | (ExtVT == MVT::i64 && Subtarget->is64Bit())) { | 
|  | if (VT.is256BitVector() || VT.is512BitVector()) { | 
|  | SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl); | 
|  | return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec, | 
|  | Item, DAG.getIntPtrConstant(0)); | 
|  | } | 
|  | assert(VT.is128BitVector() && "Expected an SSE value type!"); | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); | 
|  | // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. | 
|  | return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); | 
|  | } | 
|  |  | 
|  | if (ExtVT == MVT::i16 || ExtVT == MVT::i8) { | 
|  | Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item); | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item); | 
|  | if (VT.is256BitVector()) { | 
|  | SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl); | 
|  | Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl); | 
|  | } else { | 
|  | assert(VT.is128BitVector() && "Expected an SSE value type!"); | 
|  | Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); | 
|  | } | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, Item); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Is it a vector logical left shift? | 
|  | if (NumElems == 2 && Idx == 1 && | 
|  | X86::isZeroNode(Op.getOperand(0)) && | 
|  | !X86::isZeroNode(Op.getOperand(1))) { | 
|  | unsigned NumBits = VT.getSizeInBits(); | 
|  | return getVShift(true, VT, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, | 
|  | VT, Op.getOperand(1)), | 
|  | NumBits/2, DAG, *this, dl); | 
|  | } | 
|  |  | 
|  | if (IsAllConstants) // Otherwise, it's better to do a constpool load. | 
|  | return SDValue(); | 
|  |  | 
|  | // Otherwise, if this is a vector with i32 or f32 elements, and the element | 
|  | // is a non-constant being inserted into an element other than the low one, | 
|  | // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka | 
|  | // movd/movss) to move this into the low element, then shuffle it into | 
|  | // place. | 
|  | if (EVTBits == 32) { | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); | 
|  |  | 
|  | // Turn it into a shuffle of zero and zero-extended scalar to vector. | 
|  | Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG); | 
|  | SmallVector<int, 8> MaskVec; | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | MaskVec.push_back(i == Idx ? 0 : 1); | 
|  | return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Splat is obviously ok. Let legalizer expand it to a shuffle. | 
|  | if (Values.size() == 1) { | 
|  | if (EVTBits == 32) { | 
|  | // Instead of a shuffle like this: | 
|  | // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0> | 
|  | // Check if it's possible to issue this instead. | 
|  | // shuffle (vload ptr)), undef, <1, 1, 1, 1> | 
|  | unsigned Idx = countTrailingZeros(NonZeros); | 
|  | SDValue Item = Op.getOperand(Idx); | 
|  | if (Op.getNode()->isOnlyUserOf(Item.getNode())) | 
|  | return LowerAsSplatVectorLoad(Item, VT, dl, DAG); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // A vector full of immediates; various special cases are already | 
|  | // handled, so this is best done with a single constant-pool load. | 
|  | if (IsAllConstants) | 
|  | return SDValue(); | 
|  |  | 
|  | // For AVX-length vectors, build the individual 128-bit pieces and use | 
|  | // shuffles to put them in place. | 
|  | if (VT.is256BitVector() || VT.is512BitVector()) { | 
|  | SmallVector<SDValue, 64> V; | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | V.push_back(Op.getOperand(i)); | 
|  |  | 
|  | EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2); | 
|  |  | 
|  | // Build both the lower and upper subvector. | 
|  | SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2); | 
|  | SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2], | 
|  | NumElems/2); | 
|  |  | 
|  | // Recreate the wider vector with the lower and upper part. | 
|  | if (VT.is256BitVector()) | 
|  | return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl); | 
|  | return Concat256BitVectors(Lower, Upper, VT, NumElems, DAG, dl); | 
|  | } | 
|  |  | 
|  | // Let legalizer expand 2-wide build_vectors. | 
|  | if (EVTBits == 64) { | 
|  | if (NumNonZero == 1) { | 
|  | // One half is zero or undef. | 
|  | unsigned Idx = countTrailingZeros(NonZeros); | 
|  | SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, | 
|  | Op.getOperand(Idx)); | 
|  | return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // If element VT is < 32 bits, convert it to inserts into a zero vector. | 
|  | if (EVTBits == 8 && NumElems == 16) { | 
|  | SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, | 
|  | Subtarget, *this); | 
|  | if (V.getNode()) return V; | 
|  | } | 
|  |  | 
|  | if (EVTBits == 16 && NumElems == 8) { | 
|  | SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, | 
|  | Subtarget, *this); | 
|  | if (V.getNode()) return V; | 
|  | } | 
|  |  | 
|  | // If element VT is == 32 bits, turn it into a number of shuffles. | 
|  | SmallVector<SDValue, 8> V(NumElems); | 
|  | if (NumElems == 4 && NumZero > 0) { | 
|  | for (unsigned i = 0; i < 4; ++i) { | 
|  | bool isZero = !(NonZeros & (1 << i)); | 
|  | if (isZero) | 
|  | V[i] = getZeroVector(VT, Subtarget, DAG, dl); | 
|  | else | 
|  | V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i < 2; ++i) { | 
|  | switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { | 
|  | default: break; | 
|  | case 0: | 
|  | V[i] = V[i*2];  // Must be a zero vector. | 
|  | break; | 
|  | case 1: | 
|  | V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]); | 
|  | break; | 
|  | case 2: | 
|  | V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]); | 
|  | break; | 
|  | case 3: | 
|  | V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Reverse1 = (NonZeros & 0x3) == 2; | 
|  | bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2; | 
|  | int MaskVec[] = { | 
|  | Reverse1 ? 1 : 0, | 
|  | Reverse1 ? 0 : 1, | 
|  | static_cast<int>(Reverse2 ? NumElems+1 : NumElems), | 
|  | static_cast<int>(Reverse2 ? NumElems   : NumElems+1) | 
|  | }; | 
|  | return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]); | 
|  | } | 
|  |  | 
|  | if (Values.size() > 1 && VT.is128BitVector()) { | 
|  | // Check for a build vector of consecutive loads. | 
|  | for (unsigned i = 0; i < NumElems; ++i) | 
|  | V[i] = Op.getOperand(i); | 
|  |  | 
|  | // Check for elements which are consecutive loads. | 
|  | SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false); | 
|  | if (LD.getNode()) | 
|  | return LD; | 
|  |  | 
|  | // Check for a build vector from mostly shuffle plus few inserting. | 
|  | SDValue Sh = buildFromShuffleMostly(Op, DAG); | 
|  | if (Sh.getNode()) | 
|  | return Sh; | 
|  |  | 
|  | // For SSE 4.1, use insertps to put the high elements into the low element. | 
|  | if (getSubtarget()->hasSSE41()) { | 
|  | SDValue Result; | 
|  | if (Op.getOperand(0).getOpcode() != ISD::UNDEF) | 
|  | Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0)); | 
|  | else | 
|  | Result = DAG.getUNDEF(VT); | 
|  |  | 
|  | for (unsigned i = 1; i < NumElems; ++i) { | 
|  | if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue; | 
|  | Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result, | 
|  | Op.getOperand(i), DAG.getIntPtrConstant(i)); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Otherwise, expand into a number of unpckl*, start by extending each of | 
|  | // our (non-undef) elements to the full vector width with the element in the | 
|  | // bottom slot of the vector (which generates no code for SSE). | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | if (Op.getOperand(i).getOpcode() != ISD::UNDEF) | 
|  | V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); | 
|  | else | 
|  | V[i] = DAG.getUNDEF(VT); | 
|  | } | 
|  |  | 
|  | // Next, we iteratively mix elements, e.g. for v4f32: | 
|  | //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> | 
|  | //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> | 
|  | //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0> | 
|  | unsigned EltStride = NumElems >> 1; | 
|  | while (EltStride != 0) { | 
|  | for (unsigned i = 0; i < EltStride; ++i) { | 
|  | // If V[i+EltStride] is undef and this is the first round of mixing, | 
|  | // then it is safe to just drop this shuffle: V[i] is already in the | 
|  | // right place, the one element (since it's the first round) being | 
|  | // inserted as undef can be dropped.  This isn't safe for successive | 
|  | // rounds because they will permute elements within both vectors. | 
|  | if (V[i+EltStride].getOpcode() == ISD::UNDEF && | 
|  | EltStride == NumElems/2) | 
|  | continue; | 
|  |  | 
|  | V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]); | 
|  | } | 
|  | EltStride >>= 1; | 
|  | } | 
|  | return V[0]; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction | 
|  | // to create 256-bit vectors from two other 128-bit ones. | 
|  | static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { | 
|  | SDLoc dl(Op); | 
|  | MVT ResVT = Op.getSimpleValueType(); | 
|  |  | 
|  | assert((ResVT.is256BitVector() || | 
|  | ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide"); | 
|  |  | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  | unsigned NumElems = ResVT.getVectorNumElements(); | 
|  | if(ResVT.is256BitVector()) | 
|  | return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl); | 
|  |  | 
|  | if (Op.getNumOperands() == 4) { | 
|  | MVT HalfVT = MVT::getVectorVT(ResVT.getScalarType(), | 
|  | ResVT.getVectorNumElements()/2); | 
|  | SDValue V3 = Op.getOperand(2); | 
|  | SDValue V4 = Op.getOperand(3); | 
|  | return Concat256BitVectors(Concat128BitVectors(V1, V2, HalfVT, NumElems/2, DAG, dl), | 
|  | Concat128BitVectors(V3, V4, HalfVT, NumElems/2, DAG, dl), ResVT, NumElems, DAG, dl); | 
|  | } | 
|  | return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl); | 
|  | } | 
|  |  | 
|  | static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT LLVM_ATTRIBUTE_UNUSED VT = Op.getSimpleValueType(); | 
|  | assert((VT.is256BitVector() && Op.getNumOperands() == 2) || | 
|  | (VT.is512BitVector() && (Op.getNumOperands() == 2 || | 
|  | Op.getNumOperands() == 4))); | 
|  |  | 
|  | // AVX can use the vinsertf128 instruction to create 256-bit vectors | 
|  | // from two other 128-bit ones. | 
|  |  | 
|  | // 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors | 
|  | return LowerAVXCONCAT_VECTORS(Op, DAG); | 
|  | } | 
|  |  | 
|  | // Try to lower a shuffle node into a simple blend instruction. | 
|  | static SDValue | 
|  | LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp, | 
|  | const X86Subtarget *Subtarget, SelectionDAG &DAG) { | 
|  | SDValue V1 = SVOp->getOperand(0); | 
|  | SDValue V2 = SVOp->getOperand(1); | 
|  | SDLoc dl(SVOp); | 
|  | MVT VT = SVOp->getSimpleValueType(0); | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | // There is no blend with immediate in AVX-512. | 
|  | if (VT.is512BitVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!Subtarget->hasSSE41() || EltVT == MVT::i8) | 
|  | return SDValue(); | 
|  | if (!Subtarget->hasInt256() && VT == MVT::v16i16) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check the mask for BLEND and build the value. | 
|  | unsigned MaskValue = 0; | 
|  | // There are 2 lanes if (NumElems > 8), and 1 lane otherwise. | 
|  | unsigned NumLanes = (NumElems-1)/8 + 1; | 
|  | unsigned NumElemsInLane = NumElems / NumLanes; | 
|  |  | 
|  | // Blend for v16i16 should be symetric for the both lanes. | 
|  | for (unsigned i = 0; i < NumElemsInLane; ++i) { | 
|  |  | 
|  | int SndLaneEltIdx = (NumLanes == 2) ? | 
|  | SVOp->getMaskElt(i + NumElemsInLane) : -1; | 
|  | int EltIdx = SVOp->getMaskElt(i); | 
|  |  | 
|  | if ((EltIdx < 0 || EltIdx == (int)i) && | 
|  | (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane))) | 
|  | continue; | 
|  |  | 
|  | if (((unsigned)EltIdx == (i + NumElems)) && | 
|  | (SndLaneEltIdx < 0 || | 
|  | (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane)) | 
|  | MaskValue |= (1<<i); | 
|  | else | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Convert i32 vectors to floating point if it is not AVX2. | 
|  | // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors. | 
|  | MVT BlendVT = VT; | 
|  | if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) { | 
|  | BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()), | 
|  | NumElems); | 
|  | V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1); | 
|  | V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2); | 
|  | } | 
|  |  | 
|  | SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2, | 
|  | DAG.getConstant(MaskValue, MVT::i32)); | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, Ret); | 
|  | } | 
|  |  | 
|  | /// In vector type \p VT, return true if the element at index \p InputIdx | 
|  | /// falls on a different 128-bit lane than \p OutputIdx. | 
|  | static bool ShuffleCrosses128bitLane(MVT VT, unsigned InputIdx, | 
|  | unsigned OutputIdx) { | 
|  | unsigned EltSize = VT.getVectorElementType().getSizeInBits(); | 
|  | return InputIdx * EltSize / 128 != OutputIdx * EltSize / 128; | 
|  | } | 
|  |  | 
|  | /// Generate a PSHUFB if possible.  Selects elements from \p V1 according to | 
|  | /// \p MaskVals.  MaskVals[OutputIdx] = InputIdx specifies that we want to | 
|  | /// shuffle the element at InputIdx in V1 to OutputIdx in the result.  If \p | 
|  | /// MaskVals refers to elements outside of \p V1 or is undef (-1), insert a | 
|  | /// zero. | 
|  | static SDValue getPSHUFB(ArrayRef<int> MaskVals, SDValue V1, SDLoc &dl, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = V1.getSimpleValueType(); | 
|  | assert(VT.is128BitVector() || VT.is256BitVector()); | 
|  |  | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | unsigned EltSizeInBytes = EltVT.getSizeInBits() / 8; | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | SmallVector<SDValue, 32> PshufbMask; | 
|  | for (unsigned OutputIdx = 0; OutputIdx < NumElts; ++OutputIdx) { | 
|  | int InputIdx = MaskVals[OutputIdx]; | 
|  | unsigned InputByteIdx; | 
|  |  | 
|  | if (InputIdx < 0 || NumElts <= (unsigned)InputIdx) | 
|  | InputByteIdx = 0x80; | 
|  | else { | 
|  | // Cross lane is not allowed. | 
|  | if (ShuffleCrosses128bitLane(VT, InputIdx, OutputIdx)) | 
|  | return SDValue(); | 
|  | InputByteIdx = InputIdx * EltSizeInBytes; | 
|  | // Index is an byte offset within the 128-bit lane. | 
|  | InputByteIdx &= 0xf; | 
|  | } | 
|  |  | 
|  | for (unsigned j = 0; j < EltSizeInBytes; ++j) { | 
|  | PshufbMask.push_back(DAG.getConstant(InputByteIdx, MVT::i8)); | 
|  | if (InputByteIdx != 0x80) | 
|  | ++InputByteIdx; | 
|  | } | 
|  | } | 
|  |  | 
|  | MVT ShufVT = MVT::getVectorVT(MVT::i8, PshufbMask.size()); | 
|  | if (ShufVT != VT) | 
|  | V1 = DAG.getNode(ISD::BITCAST, dl, ShufVT, V1); | 
|  | return DAG.getNode(X86ISD::PSHUFB, dl, ShufVT, V1, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, ShufVT, | 
|  | PshufbMask.data(), PshufbMask.size())); | 
|  | } | 
|  |  | 
|  | // v8i16 shuffles - Prefer shuffles in the following order: | 
|  | // 1. [all]   pshuflw, pshufhw, optional move | 
|  | // 2. [ssse3] 1 x pshufb | 
|  | // 3. [ssse3] 2 x pshufb + 1 x por | 
|  | // 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw) | 
|  | static SDValue | 
|  | LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | SDValue V1 = SVOp->getOperand(0); | 
|  | SDValue V2 = SVOp->getOperand(1); | 
|  | SDLoc dl(SVOp); | 
|  | SmallVector<int, 8> MaskVals; | 
|  |  | 
|  | // Determine if more than 1 of the words in each of the low and high quadwords | 
|  | // of the result come from the same quadword of one of the two inputs.  Undef | 
|  | // mask values count as coming from any quadword, for better codegen. | 
|  | // | 
|  | // Lo/HiQuad[i] = j indicates how many words from the ith quad of the input | 
|  | // feeds this quad.  For i, 0 and 1 refer to V1, 2 and 3 refer to V2. | 
|  | unsigned LoQuad[] = { 0, 0, 0, 0 }; | 
|  | unsigned HiQuad[] = { 0, 0, 0, 0 }; | 
|  | // Indices of quads used. | 
|  | std::bitset<4> InputQuads; | 
|  | for (unsigned i = 0; i < 8; ++i) { | 
|  | unsigned *Quad = i < 4 ? LoQuad : HiQuad; | 
|  | int EltIdx = SVOp->getMaskElt(i); | 
|  | MaskVals.push_back(EltIdx); | 
|  | if (EltIdx < 0) { | 
|  | ++Quad[0]; | 
|  | ++Quad[1]; | 
|  | ++Quad[2]; | 
|  | ++Quad[3]; | 
|  | continue; | 
|  | } | 
|  | ++Quad[EltIdx / 4]; | 
|  | InputQuads.set(EltIdx / 4); | 
|  | } | 
|  |  | 
|  | int BestLoQuad = -1; | 
|  | unsigned MaxQuad = 1; | 
|  | for (unsigned i = 0; i < 4; ++i) { | 
|  | if (LoQuad[i] > MaxQuad) { | 
|  | BestLoQuad = i; | 
|  | MaxQuad = LoQuad[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | int BestHiQuad = -1; | 
|  | MaxQuad = 1; | 
|  | for (unsigned i = 0; i < 4; ++i) { | 
|  | if (HiQuad[i] > MaxQuad) { | 
|  | BestHiQuad = i; | 
|  | MaxQuad = HiQuad[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // For SSSE3, If all 8 words of the result come from only 1 quadword of each | 
|  | // of the two input vectors, shuffle them into one input vector so only a | 
|  | // single pshufb instruction is necessary. If there are more than 2 input | 
|  | // quads, disable the next transformation since it does not help SSSE3. | 
|  | bool V1Used = InputQuads[0] || InputQuads[1]; | 
|  | bool V2Used = InputQuads[2] || InputQuads[3]; | 
|  | if (Subtarget->hasSSSE3()) { | 
|  | if (InputQuads.count() == 2 && V1Used && V2Used) { | 
|  | BestLoQuad = InputQuads[0] ? 0 : 1; | 
|  | BestHiQuad = InputQuads[2] ? 2 : 3; | 
|  | } | 
|  | if (InputQuads.count() > 2) { | 
|  | BestLoQuad = -1; | 
|  | BestHiQuad = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update | 
|  | // the shuffle mask.  If a quad is scored as -1, that means that it contains | 
|  | // words from all 4 input quadwords. | 
|  | SDValue NewV; | 
|  | if (BestLoQuad >= 0 || BestHiQuad >= 0) { | 
|  | int MaskV[] = { | 
|  | BestLoQuad < 0 ? 0 : BestLoQuad, | 
|  | BestHiQuad < 0 ? 1 : BestHiQuad | 
|  | }; | 
|  | NewV = DAG.getVectorShuffle(MVT::v2i64, dl, | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1), | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]); | 
|  | NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV); | 
|  |  | 
|  | // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the | 
|  | // source words for the shuffle, to aid later transformations. | 
|  | bool AllWordsInNewV = true; | 
|  | bool InOrder[2] = { true, true }; | 
|  | for (unsigned i = 0; i != 8; ++i) { | 
|  | int idx = MaskVals[i]; | 
|  | if (idx != (int)i) | 
|  | InOrder[i/4] = false; | 
|  | if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad) | 
|  | continue; | 
|  | AllWordsInNewV = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV; | 
|  | if (AllWordsInNewV) { | 
|  | for (int i = 0; i != 8; ++i) { | 
|  | int idx = MaskVals[i]; | 
|  | if (idx < 0) | 
|  | continue; | 
|  | idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4; | 
|  | if ((idx != i) && idx < 4) | 
|  | pshufhw = false; | 
|  | if ((idx != i) && idx > 3) | 
|  | pshuflw = false; | 
|  | } | 
|  | V1 = NewV; | 
|  | V2Used = false; | 
|  | BestLoQuad = 0; | 
|  | BestHiQuad = 1; | 
|  | } | 
|  |  | 
|  | // If we've eliminated the use of V2, and the new mask is a pshuflw or | 
|  | // pshufhw, that's as cheap as it gets.  Return the new shuffle. | 
|  | if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) { | 
|  | unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW; | 
|  | unsigned TargetMask = 0; | 
|  | NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, | 
|  | DAG.getUNDEF(MVT::v8i16), &MaskVals[0]); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode()); | 
|  | TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp): | 
|  | getShufflePSHUFLWImmediate(SVOp); | 
|  | V1 = NewV.getOperand(0); | 
|  | return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Promote splats to a larger type which usually leads to more efficient code. | 
|  | // FIXME: Is this true if pshufb is available? | 
|  | if (SVOp->isSplat()) | 
|  | return PromoteSplat(SVOp, DAG); | 
|  |  | 
|  | // If we have SSSE3, and all words of the result are from 1 input vector, | 
|  | // case 2 is generated, otherwise case 3 is generated.  If no SSSE3 | 
|  | // is present, fall back to case 4. | 
|  | if (Subtarget->hasSSSE3()) { | 
|  | SmallVector<SDValue,16> pshufbMask; | 
|  |  | 
|  | // If we have elements from both input vectors, set the high bit of the | 
|  | // shuffle mask element to zero out elements that come from V2 in the V1 | 
|  | // mask, and elements that come from V1 in the V2 mask, so that the two | 
|  | // results can be OR'd together. | 
|  | bool TwoInputs = V1Used && V2Used; | 
|  | V1 = getPSHUFB(MaskVals, V1, dl, DAG); | 
|  | if (!TwoInputs) | 
|  | return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); | 
|  |  | 
|  | // Calculate the shuffle mask for the second input, shuffle it, and | 
|  | // OR it with the first shuffled input. | 
|  | CommuteVectorShuffleMask(MaskVals, 8); | 
|  | V2 = getPSHUFB(MaskVals, V2, dl, DAG); | 
|  | V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); | 
|  | return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); | 
|  | } | 
|  |  | 
|  | // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order, | 
|  | // and update MaskVals with new element order. | 
|  | std::bitset<8> InOrder; | 
|  | if (BestLoQuad >= 0) { | 
|  | int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 }; | 
|  | for (int i = 0; i != 4; ++i) { | 
|  | int idx = MaskVals[i]; | 
|  | if (idx < 0) { | 
|  | InOrder.set(i); | 
|  | } else if ((idx / 4) == BestLoQuad) { | 
|  | MaskV[i] = idx & 3; | 
|  | InOrder.set(i); | 
|  | } | 
|  | } | 
|  | NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), | 
|  | &MaskV[0]); | 
|  |  | 
|  | if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode()); | 
|  | NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16, | 
|  | NewV.getOperand(0), | 
|  | getShufflePSHUFLWImmediate(SVOp), DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If BestHi >= 0, generate a pshufhw to put the high elements in order, | 
|  | // and update MaskVals with the new element order. | 
|  | if (BestHiQuad >= 0) { | 
|  | int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 }; | 
|  | for (unsigned i = 4; i != 8; ++i) { | 
|  | int idx = MaskVals[i]; | 
|  | if (idx < 0) { | 
|  | InOrder.set(i); | 
|  | } else if ((idx / 4) == BestHiQuad) { | 
|  | MaskV[i] = (idx & 3) + 4; | 
|  | InOrder.set(i); | 
|  | } | 
|  | } | 
|  | NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), | 
|  | &MaskV[0]); | 
|  |  | 
|  | if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode()); | 
|  | NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16, | 
|  | NewV.getOperand(0), | 
|  | getShufflePSHUFHWImmediate(SVOp), DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | // In case BestHi & BestLo were both -1, which means each quadword has a word | 
|  | // from each of the four input quadwords, calculate the InOrder bitvector now | 
|  | // before falling through to the insert/extract cleanup. | 
|  | if (BestLoQuad == -1 && BestHiQuad == -1) { | 
|  | NewV = V1; | 
|  | for (int i = 0; i != 8; ++i) | 
|  | if (MaskVals[i] < 0 || MaskVals[i] == i) | 
|  | InOrder.set(i); | 
|  | } | 
|  |  | 
|  | // The other elements are put in the right place using pextrw and pinsrw. | 
|  | for (unsigned i = 0; i != 8; ++i) { | 
|  | if (InOrder[i]) | 
|  | continue; | 
|  | int EltIdx = MaskVals[i]; | 
|  | if (EltIdx < 0) | 
|  | continue; | 
|  | SDValue ExtOp = (EltIdx < 8) ? | 
|  | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1, | 
|  | DAG.getIntPtrConstant(EltIdx)) : | 
|  | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2, | 
|  | DAG.getIntPtrConstant(EltIdx - 8)); | 
|  | NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp, | 
|  | DAG.getIntPtrConstant(i)); | 
|  | } | 
|  | return NewV; | 
|  | } | 
|  |  | 
|  | /// \brief v16i16 shuffles | 
|  | /// | 
|  | /// FIXME: We only support generation of a single pshufb currently.  We can | 
|  | /// generalize the other applicable cases from LowerVECTOR_SHUFFLEv8i16 as | 
|  | /// well (e.g 2 x pshufb + 1 x por). | 
|  | static SDValue | 
|  | LowerVECTOR_SHUFFLEv16i16(SDValue Op, SelectionDAG &DAG) { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | SDValue V1 = SVOp->getOperand(0); | 
|  | SDValue V2 = SVOp->getOperand(1); | 
|  | SDLoc dl(SVOp); | 
|  |  | 
|  | if (V2.getOpcode() != ISD::UNDEF) | 
|  | return SDValue(); | 
|  |  | 
|  | SmallVector<int, 16> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end()); | 
|  | return getPSHUFB(MaskVals, V1, dl, DAG); | 
|  | } | 
|  |  | 
|  | // v16i8 shuffles - Prefer shuffles in the following order: | 
|  | // 1. [ssse3] 1 x pshufb | 
|  | // 2. [ssse3] 2 x pshufb + 1 x por | 
|  | // 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw | 
|  | static SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp, | 
|  | const X86Subtarget* Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue V1 = SVOp->getOperand(0); | 
|  | SDValue V2 = SVOp->getOperand(1); | 
|  | SDLoc dl(SVOp); | 
|  | ArrayRef<int> MaskVals = SVOp->getMask(); | 
|  |  | 
|  | // Promote splats to a larger type which usually leads to more efficient code. | 
|  | // FIXME: Is this true if pshufb is available? | 
|  | if (SVOp->isSplat()) | 
|  | return PromoteSplat(SVOp, DAG); | 
|  |  | 
|  | // If we have SSSE3, case 1 is generated when all result bytes come from | 
|  | // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is | 
|  | // present, fall back to case 3. | 
|  |  | 
|  | // If SSSE3, use 1 pshufb instruction per vector with elements in the result. | 
|  | if (Subtarget->hasSSSE3()) { | 
|  | SmallVector<SDValue,16> pshufbMask; | 
|  |  | 
|  | // If all result elements are from one input vector, then only translate | 
|  | // undef mask values to 0x80 (zero out result) in the pshufb mask. | 
|  | // | 
|  | // Otherwise, we have elements from both input vectors, and must zero out | 
|  | // elements that come from V2 in the first mask, and V1 in the second mask | 
|  | // so that we can OR them together. | 
|  | for (unsigned i = 0; i != 16; ++i) { | 
|  | int EltIdx = MaskVals[i]; | 
|  | if (EltIdx < 0 || EltIdx >= 16) | 
|  | EltIdx = 0x80; | 
|  | pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); | 
|  | } | 
|  | V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, | 
|  | MVT::v16i8, &pshufbMask[0], 16)); | 
|  |  | 
|  | // As PSHUFB will zero elements with negative indices, it's safe to ignore | 
|  | // the 2nd operand if it's undefined or zero. | 
|  | if (V2.getOpcode() == ISD::UNDEF || | 
|  | ISD::isBuildVectorAllZeros(V2.getNode())) | 
|  | return V1; | 
|  |  | 
|  | // Calculate the shuffle mask for the second input, shuffle it, and | 
|  | // OR it with the first shuffled input. | 
|  | pshufbMask.clear(); | 
|  | for (unsigned i = 0; i != 16; ++i) { | 
|  | int EltIdx = MaskVals[i]; | 
|  | EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16; | 
|  | pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); | 
|  | } | 
|  | V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, | 
|  | MVT::v16i8, &pshufbMask[0], 16)); | 
|  | return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); | 
|  | } | 
|  |  | 
|  | // No SSSE3 - Calculate in place words and then fix all out of place words | 
|  | // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from | 
|  | // the 16 different words that comprise the two doublequadword input vectors. | 
|  | V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); | 
|  | V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); | 
|  | SDValue NewV = V1; | 
|  | for (int i = 0; i != 8; ++i) { | 
|  | int Elt0 = MaskVals[i*2]; | 
|  | int Elt1 = MaskVals[i*2+1]; | 
|  |  | 
|  | // This word of the result is all undef, skip it. | 
|  | if (Elt0 < 0 && Elt1 < 0) | 
|  | continue; | 
|  |  | 
|  | // This word of the result is already in the correct place, skip it. | 
|  | if ((Elt0 == i*2) && (Elt1 == i*2+1)) | 
|  | continue; | 
|  |  | 
|  | SDValue Elt0Src = Elt0 < 16 ? V1 : V2; | 
|  | SDValue Elt1Src = Elt1 < 16 ? V1 : V2; | 
|  | SDValue InsElt; | 
|  |  | 
|  | // If Elt0 and Elt1 are defined, are consecutive, and can be load | 
|  | // using a single extract together, load it and store it. | 
|  | if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) { | 
|  | InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, | 
|  | DAG.getIntPtrConstant(Elt1 / 2)); | 
|  | NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, | 
|  | DAG.getIntPtrConstant(i)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If Elt1 is defined, extract it from the appropriate source.  If the | 
|  | // source byte is not also odd, shift the extracted word left 8 bits | 
|  | // otherwise clear the bottom 8 bits if we need to do an or. | 
|  | if (Elt1 >= 0) { | 
|  | InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, | 
|  | DAG.getIntPtrConstant(Elt1 / 2)); | 
|  | if ((Elt1 & 1) == 0) | 
|  | InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt, | 
|  | DAG.getConstant(8, | 
|  | TLI.getShiftAmountTy(InsElt.getValueType()))); | 
|  | else if (Elt0 >= 0) | 
|  | InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt, | 
|  | DAG.getConstant(0xFF00, MVT::i16)); | 
|  | } | 
|  | // If Elt0 is defined, extract it from the appropriate source.  If the | 
|  | // source byte is not also even, shift the extracted word right 8 bits. If | 
|  | // Elt1 was also defined, OR the extracted values together before | 
|  | // inserting them in the result. | 
|  | if (Elt0 >= 0) { | 
|  | SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, | 
|  | Elt0Src, DAG.getIntPtrConstant(Elt0 / 2)); | 
|  | if ((Elt0 & 1) != 0) | 
|  | InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0, | 
|  | DAG.getConstant(8, | 
|  | TLI.getShiftAmountTy(InsElt0.getValueType()))); | 
|  | else if (Elt1 >= 0) | 
|  | InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0, | 
|  | DAG.getConstant(0x00FF, MVT::i16)); | 
|  | InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0) | 
|  | : InsElt0; | 
|  | } | 
|  | NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, | 
|  | DAG.getIntPtrConstant(i)); | 
|  | } | 
|  | return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV); | 
|  | } | 
|  |  | 
|  | // v32i8 shuffles - Translate to VPSHUFB if possible. | 
|  | static | 
|  | SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp, | 
|  | const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = SVOp->getSimpleValueType(0); | 
|  | SDValue V1 = SVOp->getOperand(0); | 
|  | SDValue V2 = SVOp->getOperand(1); | 
|  | SDLoc dl(SVOp); | 
|  | SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end()); | 
|  |  | 
|  | bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; | 
|  | bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode()); | 
|  | bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode()); | 
|  |  | 
|  | // VPSHUFB may be generated if | 
|  | // (1) one of input vector is undefined or zeroinitializer. | 
|  | // The mask value 0x80 puts 0 in the corresponding slot of the vector. | 
|  | // And (2) the mask indexes don't cross the 128-bit lane. | 
|  | if (VT != MVT::v32i8 || !Subtarget->hasInt256() || | 
|  | (!V2IsUndef && !V2IsAllZero && !V1IsAllZero)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (V1IsAllZero && !V2IsAllZero) { | 
|  | CommuteVectorShuffleMask(MaskVals, 32); | 
|  | V1 = V2; | 
|  | } | 
|  | return getPSHUFB(MaskVals, V1, dl, DAG); | 
|  | } | 
|  |  | 
|  | /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide | 
|  | /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be | 
|  | /// done when every pair / quad of shuffle mask elements point to elements in | 
|  | /// the right sequence. e.g. | 
|  | /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15> | 
|  | static | 
|  | SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = SVOp->getSimpleValueType(0); | 
|  | SDLoc dl(SVOp); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | MVT NewVT; | 
|  | unsigned Scale; | 
|  | switch (VT.SimpleTy) { | 
|  | default: llvm_unreachable("Unexpected!"); | 
|  | case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break; | 
|  | case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break; | 
|  | case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break; | 
|  | case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break; | 
|  | case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break; | 
|  | case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break; | 
|  | } | 
|  |  | 
|  | SmallVector<int, 8> MaskVec; | 
|  | for (unsigned i = 0; i != NumElems; i += Scale) { | 
|  | int StartIdx = -1; | 
|  | for (unsigned j = 0; j != Scale; ++j) { | 
|  | int EltIdx = SVOp->getMaskElt(i+j); | 
|  | if (EltIdx < 0) | 
|  | continue; | 
|  | if (StartIdx < 0) | 
|  | StartIdx = (EltIdx / Scale); | 
|  | if (EltIdx != (int)(StartIdx*Scale + j)) | 
|  | return SDValue(); | 
|  | } | 
|  | MaskVec.push_back(StartIdx); | 
|  | } | 
|  |  | 
|  | SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0)); | 
|  | SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1)); | 
|  | return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]); | 
|  | } | 
|  |  | 
|  | /// getVZextMovL - Return a zero-extending vector move low node. | 
|  | /// | 
|  | static SDValue getVZextMovL(MVT VT, MVT OpVT, | 
|  | SDValue SrcOp, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget, SDLoc dl) { | 
|  | if (VT == MVT::v2f64 || VT == MVT::v4f32) { | 
|  | LoadSDNode *LD = NULL; | 
|  | if (!isScalarLoadToVector(SrcOp.getNode(), &LD)) | 
|  | LD = dyn_cast<LoadSDNode>(SrcOp); | 
|  | if (!LD) { | 
|  | // movssrr and movsdrr do not clear top bits. Try to use movd, movq | 
|  | // instead. | 
|  | MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32; | 
|  | if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) && | 
|  | SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR && | 
|  | SrcOp.getOperand(0).getOpcode() == ISD::BITCAST && | 
|  | SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) { | 
|  | // PR2108 | 
|  | OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32; | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, | 
|  | DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, | 
|  | OpVT, | 
|  | SrcOp.getOperand(0) | 
|  | .getOperand(0)))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, | 
|  | DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, | 
|  | DAG.getNode(ISD::BITCAST, dl, | 
|  | OpVT, SrcOp))); | 
|  | } | 
|  |  | 
|  | /// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles | 
|  | /// which could not be matched by any known target speficic shuffle | 
|  | static SDValue | 
|  | LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { | 
|  |  | 
|  | SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG); | 
|  | if (NewOp.getNode()) | 
|  | return NewOp; | 
|  |  | 
|  | MVT VT = SVOp->getSimpleValueType(0); | 
|  |  | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | unsigned NumLaneElems = NumElems / 2; | 
|  |  | 
|  | SDLoc dl(SVOp); | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems); | 
|  | SDValue Output[2]; | 
|  |  | 
|  | SmallVector<int, 16> Mask; | 
|  | for (unsigned l = 0; l < 2; ++l) { | 
|  | // Build a shuffle mask for the output, discovering on the fly which | 
|  | // input vectors to use as shuffle operands (recorded in InputUsed). | 
|  | // If building a suitable shuffle vector proves too hard, then bail | 
|  | // out with UseBuildVector set. | 
|  | bool UseBuildVector = false; | 
|  | int InputUsed[2] = { -1, -1 }; // Not yet discovered. | 
|  | unsigned LaneStart = l * NumLaneElems; | 
|  | for (unsigned i = 0; i != NumLaneElems; ++i) { | 
|  | // The mask element.  This indexes into the input. | 
|  | int Idx = SVOp->getMaskElt(i+LaneStart); | 
|  | if (Idx < 0) { | 
|  | // the mask element does not index into any input vector. | 
|  | Mask.push_back(-1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // The input vector this mask element indexes into. | 
|  | int Input = Idx / NumLaneElems; | 
|  |  | 
|  | // Turn the index into an offset from the start of the input vector. | 
|  | Idx -= Input * NumLaneElems; | 
|  |  | 
|  | // Find or create a shuffle vector operand to hold this input. | 
|  | unsigned OpNo; | 
|  | for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { | 
|  | if (InputUsed[OpNo] == Input) | 
|  | // This input vector is already an operand. | 
|  | break; | 
|  | if (InputUsed[OpNo] < 0) { | 
|  | // Create a new operand for this input vector. | 
|  | InputUsed[OpNo] = Input; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (OpNo >= array_lengthof(InputUsed)) { | 
|  | // More than two input vectors used!  Give up on trying to create a | 
|  | // shuffle vector.  Insert all elements into a BUILD_VECTOR instead. | 
|  | UseBuildVector = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Add the mask index for the new shuffle vector. | 
|  | Mask.push_back(Idx + OpNo * NumLaneElems); | 
|  | } | 
|  |  | 
|  | if (UseBuildVector) { | 
|  | SmallVector<SDValue, 16> SVOps; | 
|  | for (unsigned i = 0; i != NumLaneElems; ++i) { | 
|  | // The mask element.  This indexes into the input. | 
|  | int Idx = SVOp->getMaskElt(i+LaneStart); | 
|  | if (Idx < 0) { | 
|  | SVOps.push_back(DAG.getUNDEF(EltVT)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // The input vector this mask element indexes into. | 
|  | int Input = Idx / NumElems; | 
|  |  | 
|  | // Turn the index into an offset from the start of the input vector. | 
|  | Idx -= Input * NumElems; | 
|  |  | 
|  | // Extract the vector element by hand. | 
|  | SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, | 
|  | SVOp->getOperand(Input), | 
|  | DAG.getIntPtrConstant(Idx))); | 
|  | } | 
|  |  | 
|  | // Construct the output using a BUILD_VECTOR. | 
|  | Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0], | 
|  | SVOps.size()); | 
|  | } else if (InputUsed[0] < 0) { | 
|  | // No input vectors were used! The result is undefined. | 
|  | Output[l] = DAG.getUNDEF(NVT); | 
|  | } else { | 
|  | SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2), | 
|  | (InputUsed[0] % 2) * NumLaneElems, | 
|  | DAG, dl); | 
|  | // If only one input was used, use an undefined vector for the other. | 
|  | SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) : | 
|  | Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2), | 
|  | (InputUsed[1] % 2) * NumLaneElems, DAG, dl); | 
|  | // At least one input vector was used. Create a new shuffle vector. | 
|  | Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]); | 
|  | } | 
|  |  | 
|  | Mask.clear(); | 
|  | } | 
|  |  | 
|  | // Concatenate the result back | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]); | 
|  | } | 
|  |  | 
|  | /// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with | 
|  | /// 4 elements, and match them with several different shuffle types. | 
|  | static SDValue | 
|  | LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { | 
|  | SDValue V1 = SVOp->getOperand(0); | 
|  | SDValue V2 = SVOp->getOperand(1); | 
|  | SDLoc dl(SVOp); | 
|  | MVT VT = SVOp->getSimpleValueType(0); | 
|  |  | 
|  | assert(VT.is128BitVector() && "Unsupported vector size"); | 
|  |  | 
|  | std::pair<int, int> Locs[4]; | 
|  | int Mask1[] = { -1, -1, -1, -1 }; | 
|  | SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end()); | 
|  |  | 
|  | unsigned NumHi = 0; | 
|  | unsigned NumLo = 0; | 
|  | for (unsigned i = 0; i != 4; ++i) { | 
|  | int Idx = PermMask[i]; | 
|  | if (Idx < 0) { | 
|  | Locs[i] = std::make_pair(-1, -1); | 
|  | } else { | 
|  | assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!"); | 
|  | if (Idx < 4) { | 
|  | Locs[i] = std::make_pair(0, NumLo); | 
|  | Mask1[NumLo] = Idx; | 
|  | NumLo++; | 
|  | } else { | 
|  | Locs[i] = std::make_pair(1, NumHi); | 
|  | if (2+NumHi < 4) | 
|  | Mask1[2+NumHi] = Idx; | 
|  | NumHi++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NumLo <= 2 && NumHi <= 2) { | 
|  | // If no more than two elements come from either vector. This can be | 
|  | // implemented with two shuffles. First shuffle gather the elements. | 
|  | // The second shuffle, which takes the first shuffle as both of its | 
|  | // vector operands, put the elements into the right order. | 
|  | V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); | 
|  |  | 
|  | int Mask2[] = { -1, -1, -1, -1 }; | 
|  |  | 
|  | for (unsigned i = 0; i != 4; ++i) | 
|  | if (Locs[i].first != -1) { | 
|  | unsigned Idx = (i < 2) ? 0 : 4; | 
|  | Idx += Locs[i].first * 2 + Locs[i].second; | 
|  | Mask2[i] = Idx; | 
|  | } | 
|  |  | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]); | 
|  | } | 
|  |  | 
|  | if (NumLo == 3 || NumHi == 3) { | 
|  | // Otherwise, we must have three elements from one vector, call it X, and | 
|  | // one element from the other, call it Y.  First, use a shufps to build an | 
|  | // intermediate vector with the one element from Y and the element from X | 
|  | // that will be in the same half in the final destination (the indexes don't | 
|  | // matter). Then, use a shufps to build the final vector, taking the half | 
|  | // containing the element from Y from the intermediate, and the other half | 
|  | // from X. | 
|  | if (NumHi == 3) { | 
|  | // Normalize it so the 3 elements come from V1. | 
|  | CommuteVectorShuffleMask(PermMask, 4); | 
|  | std::swap(V1, V2); | 
|  | } | 
|  |  | 
|  | // Find the element from V2. | 
|  | unsigned HiIndex; | 
|  | for (HiIndex = 0; HiIndex < 3; ++HiIndex) { | 
|  | int Val = PermMask[HiIndex]; | 
|  | if (Val < 0) | 
|  | continue; | 
|  | if (Val >= 4) | 
|  | break; | 
|  | } | 
|  |  | 
|  | Mask1[0] = PermMask[HiIndex]; | 
|  | Mask1[1] = -1; | 
|  | Mask1[2] = PermMask[HiIndex^1]; | 
|  | Mask1[3] = -1; | 
|  | V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); | 
|  |  | 
|  | if (HiIndex >= 2) { | 
|  | Mask1[0] = PermMask[0]; | 
|  | Mask1[1] = PermMask[1]; | 
|  | Mask1[2] = HiIndex & 1 ? 6 : 4; | 
|  | Mask1[3] = HiIndex & 1 ? 4 : 6; | 
|  | return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); | 
|  | } | 
|  |  | 
|  | Mask1[0] = HiIndex & 1 ? 2 : 0; | 
|  | Mask1[1] = HiIndex & 1 ? 0 : 2; | 
|  | Mask1[2] = PermMask[2]; | 
|  | Mask1[3] = PermMask[3]; | 
|  | if (Mask1[2] >= 0) | 
|  | Mask1[2] += 4; | 
|  | if (Mask1[3] >= 0) | 
|  | Mask1[3] += 4; | 
|  | return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]); | 
|  | } | 
|  |  | 
|  | // Break it into (shuffle shuffle_hi, shuffle_lo). | 
|  | int LoMask[] = { -1, -1, -1, -1 }; | 
|  | int HiMask[] = { -1, -1, -1, -1 }; | 
|  |  | 
|  | int *MaskPtr = LoMask; | 
|  | unsigned MaskIdx = 0; | 
|  | unsigned LoIdx = 0; | 
|  | unsigned HiIdx = 2; | 
|  | for (unsigned i = 0; i != 4; ++i) { | 
|  | if (i == 2) { | 
|  | MaskPtr = HiMask; | 
|  | MaskIdx = 1; | 
|  | LoIdx = 0; | 
|  | HiIdx = 2; | 
|  | } | 
|  | int Idx = PermMask[i]; | 
|  | if (Idx < 0) { | 
|  | Locs[i] = std::make_pair(-1, -1); | 
|  | } else if (Idx < 4) { | 
|  | Locs[i] = std::make_pair(MaskIdx, LoIdx); | 
|  | MaskPtr[LoIdx] = Idx; | 
|  | LoIdx++; | 
|  | } else { | 
|  | Locs[i] = std::make_pair(MaskIdx, HiIdx); | 
|  | MaskPtr[HiIdx] = Idx; | 
|  | HiIdx++; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]); | 
|  | SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]); | 
|  | int MaskOps[] = { -1, -1, -1, -1 }; | 
|  | for (unsigned i = 0; i != 4; ++i) | 
|  | if (Locs[i].first != -1) | 
|  | MaskOps[i] = Locs[i].first * 4 + Locs[i].second; | 
|  | return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]); | 
|  | } | 
|  |  | 
|  | static bool MayFoldVectorLoad(SDValue V) { | 
|  | while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST) | 
|  | V = V.getOperand(0); | 
|  |  | 
|  | if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR) | 
|  | V = V.getOperand(0); | 
|  | if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR && | 
|  | V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF) | 
|  | // BUILD_VECTOR (load), undef | 
|  | V = V.getOperand(0); | 
|  |  | 
|  | return MayFoldLoad(V); | 
|  | } | 
|  |  | 
|  | static | 
|  | SDValue getMOVDDup(SDValue &Op, SDLoc &dl, SDValue V1, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | // Canonizalize to v2f64. | 
|  | V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, | 
|  | getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64, | 
|  | V1, DAG)); | 
|  | } | 
|  |  | 
|  | static | 
|  | SDValue getMOVLowToHigh(SDValue &Op, SDLoc &dl, SelectionDAG &DAG, | 
|  | bool HasSSE2) { | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | assert(VT != MVT::v2i64 && "unsupported shuffle type"); | 
|  |  | 
|  | if (HasSSE2 && VT == MVT::v2f64) | 
|  | return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG); | 
|  |  | 
|  | // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1) | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, | 
|  | getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32, | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1), | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG)); | 
|  | } | 
|  |  | 
|  | static | 
|  | SDValue getMOVHighToLow(SDValue &Op, SDLoc &dl, SelectionDAG &DAG) { | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | assert((VT == MVT::v4i32 || VT == MVT::v4f32) && | 
|  | "unsupported shuffle type"); | 
|  |  | 
|  | if (V2.getOpcode() == ISD::UNDEF) | 
|  | V2 = V1; | 
|  |  | 
|  | // v4i32 or v4f32 | 
|  | return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG); | 
|  | } | 
|  |  | 
|  | static | 
|  | SDValue getMOVLP(SDValue &Op, SDLoc &dl, SelectionDAG &DAG, bool HasSSE2) { | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second | 
|  | // operand of these instructions is only memory, so check if there's a | 
|  | // potencial load folding here, otherwise use SHUFPS or MOVSD to match the | 
|  | // same masks. | 
|  | bool CanFoldLoad = false; | 
|  |  | 
|  | // Trivial case, when V2 comes from a load. | 
|  | if (MayFoldVectorLoad(V2)) | 
|  | CanFoldLoad = true; | 
|  |  | 
|  | // When V1 is a load, it can be folded later into a store in isel, example: | 
|  | //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1) | 
|  | //    turns into: | 
|  | //  (MOVLPSmr addr:$src1, VR128:$src2) | 
|  | // So, recognize this potential and also use MOVLPS or MOVLPD | 
|  | else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op)) | 
|  | CanFoldLoad = true; | 
|  |  | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | if (CanFoldLoad) { | 
|  | if (HasSSE2 && NumElems == 2) | 
|  | return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG); | 
|  |  | 
|  | if (NumElems == 4) | 
|  | // If we don't care about the second element, proceed to use movss. | 
|  | if (SVOp->getMaskElt(1) != -1) | 
|  | return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG); | 
|  | } | 
|  |  | 
|  | // movl and movlp will both match v2i64, but v2i64 is never matched by | 
|  | // movl earlier because we make it strict to avoid messing with the movlp load | 
|  | // folding logic (see the code above getMOVLP call). Match it here then, | 
|  | // this is horrible, but will stay like this until we move all shuffle | 
|  | // matching to x86 specific nodes. Note that for the 1st condition all | 
|  | // types are matched with movsd. | 
|  | if (HasSSE2) { | 
|  | // FIXME: isMOVLMask should be checked and matched before getMOVLP, | 
|  | // as to remove this logic from here, as much as possible | 
|  | if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT)) | 
|  | return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG); | 
|  | return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG); | 
|  | } | 
|  |  | 
|  | assert(VT != MVT::v4i32 && "unsupported shuffle type"); | 
|  |  | 
|  | // Invert the operand order and use SHUFPS to match it. | 
|  | return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1, | 
|  | getShuffleSHUFImmediate(SVOp), DAG); | 
|  | } | 
|  |  | 
|  | // Reduce a vector shuffle to zext. | 
|  | static SDValue LowerVectorIntExtend(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | // PMOVZX is only available from SSE41. | 
|  | if (!Subtarget->hasSSE41()) | 
|  | return SDValue(); | 
|  |  | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | // Only AVX2 support 256-bit vector integer extending. | 
|  | if (!Subtarget->hasInt256() && VT.is256BitVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | SDLoc DL(Op); | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | // Extending is an unary operation and the element type of the source vector | 
|  | // won't be equal to or larger than i64. | 
|  | if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() || | 
|  | VT.getVectorElementType() == MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4. | 
|  | unsigned Shift = 1; // Start from 2, i.e. 1 << 1. | 
|  | while ((1U << Shift) < NumElems) { | 
|  | if (SVOp->getMaskElt(1U << Shift) == 1) | 
|  | break; | 
|  | Shift += 1; | 
|  | // The maximal ratio is 8, i.e. from i8 to i64. | 
|  | if (Shift > 3) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Check the shuffle mask. | 
|  | unsigned Mask = (1U << Shift) - 1; | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | int EltIdx = SVOp->getMaskElt(i); | 
|  | if ((i & Mask) != 0 && EltIdx != -1) | 
|  | return SDValue(); | 
|  | if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift)) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift; | 
|  | MVT NeVT = MVT::getIntegerVT(NBits); | 
|  | MVT NVT = MVT::getVectorVT(NeVT, NumElems >> Shift); | 
|  |  | 
|  | if (!DAG.getTargetLoweringInfo().isTypeLegal(NVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Simplify the operand as it's prepared to be fed into shuffle. | 
|  | unsigned SignificantBits = NVT.getSizeInBits() >> Shift; | 
|  | if (V1.getOpcode() == ISD::BITCAST && | 
|  | V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && | 
|  | V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | V1.getOperand(0).getOperand(0) | 
|  | .getSimpleValueType().getSizeInBits() == SignificantBits) { | 
|  | // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x) | 
|  | SDValue V = V1.getOperand(0).getOperand(0).getOperand(0); | 
|  | ConstantSDNode *CIdx = | 
|  | dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1)); | 
|  | // If it's foldable, i.e. normal load with single use, we will let code | 
|  | // selection to fold it. Otherwise, we will short the conversion sequence. | 
|  | if (CIdx && CIdx->getZExtValue() == 0 && | 
|  | (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) { | 
|  | MVT FullVT = V.getSimpleValueType(); | 
|  | MVT V1VT = V1.getSimpleValueType(); | 
|  | if (FullVT.getSizeInBits() > V1VT.getSizeInBits()) { | 
|  | // The "ext_vec_elt" node is wider than the result node. | 
|  | // In this case we should extract subvector from V. | 
|  | // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)). | 
|  | unsigned Ratio = FullVT.getSizeInBits() / V1VT.getSizeInBits(); | 
|  | MVT SubVecVT = MVT::getVectorVT(FullVT.getVectorElementType(), | 
|  | FullVT.getVectorNumElements()/Ratio); | 
|  | V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } | 
|  | V1 = DAG.getNode(ISD::BITCAST, DL, V1VT, V); | 
|  | } | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, | 
|  | DAG.getNode(X86ISD::VZEXT, DL, NVT, V1)); | 
|  | } | 
|  |  | 
|  | static SDValue | 
|  | NormalizeVectorShuffle(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  |  | 
|  | if (isZeroShuffle(SVOp)) | 
|  | return getZeroVector(VT, Subtarget, DAG, dl); | 
|  |  | 
|  | // Handle splat operations | 
|  | if (SVOp->isSplat()) { | 
|  | // Use vbroadcast whenever the splat comes from a foldable load | 
|  | SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG); | 
|  | if (Broadcast.getNode()) | 
|  | return Broadcast; | 
|  | } | 
|  |  | 
|  | // Check integer expanding shuffles. | 
|  | SDValue NewOp = LowerVectorIntExtend(Op, Subtarget, DAG); | 
|  | if (NewOp.getNode()) | 
|  | return NewOp; | 
|  |  | 
|  | // If the shuffle can be profitably rewritten as a narrower shuffle, then | 
|  | // do it! | 
|  | if (VT == MVT::v8i16  || VT == MVT::v16i8 || | 
|  | VT == MVT::v16i16 || VT == MVT::v32i8) { | 
|  | SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG); | 
|  | if (NewOp.getNode()) | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, NewOp); | 
|  | } else if ((VT == MVT::v4i32 || | 
|  | (VT == MVT::v4f32 && Subtarget->hasSSE2()))) { | 
|  | // FIXME: Figure out a cleaner way to do this. | 
|  | // Try to make use of movq to zero out the top part. | 
|  | if (ISD::isBuildVectorAllZeros(V2.getNode())) { | 
|  | SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG); | 
|  | if (NewOp.getNode()) { | 
|  | MVT NewVT = NewOp.getSimpleValueType(); | 
|  | if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), | 
|  | NewVT, true, false)) | 
|  | return getVZextMovL(VT, NewVT, NewOp.getOperand(0), | 
|  | DAG, Subtarget, dl); | 
|  | } | 
|  | } else if (ISD::isBuildVectorAllZeros(V1.getNode())) { | 
|  | SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG); | 
|  | if (NewOp.getNode()) { | 
|  | MVT NewVT = NewOp.getSimpleValueType(); | 
|  | if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT)) | 
|  | return getVZextMovL(VT, NewVT, NewOp.getOperand(1), | 
|  | DAG, Subtarget, dl); | 
|  | } | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); | 
|  | SDValue V1 = Op.getOperand(0); | 
|  | SDValue V2 = Op.getOperand(1); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; | 
|  | bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; | 
|  | bool V1IsSplat = false; | 
|  | bool V2IsSplat = false; | 
|  | bool HasSSE2 = Subtarget->hasSSE2(); | 
|  | bool HasFp256    = Subtarget->hasFp256(); | 
|  | bool HasInt256   = Subtarget->hasInt256(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | bool OptForSize = MF.getFunction()->getAttributes(). | 
|  | hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); | 
|  |  | 
|  | assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles"); | 
|  |  | 
|  | if (V1IsUndef && V2IsUndef) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | // When we create a shuffle node we put the UNDEF node to second operand, | 
|  | // but in some cases the first operand may be transformed to UNDEF. | 
|  | // In this case we should just commute the node. | 
|  | if (V1IsUndef) | 
|  | return CommuteVectorShuffle(SVOp, DAG); | 
|  |  | 
|  | // Vector shuffle lowering takes 3 steps: | 
|  | // | 
|  | // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable | 
|  | //    narrowing and commutation of operands should be handled. | 
|  | // 2) Matching of shuffles with known shuffle masks to x86 target specific | 
|  | //    shuffle nodes. | 
|  | // 3) Rewriting of unmatched masks into new generic shuffle operations, | 
|  | //    so the shuffle can be broken into other shuffles and the legalizer can | 
|  | //    try the lowering again. | 
|  | // | 
|  | // The general idea is that no vector_shuffle operation should be left to | 
|  | // be matched during isel, all of them must be converted to a target specific | 
|  | // node here. | 
|  |  | 
|  | // Normalize the input vectors. Here splats, zeroed vectors, profitable | 
|  | // narrowing and commutation of operands should be handled. The actual code | 
|  | // doesn't include all of those, work in progress... | 
|  | SDValue NewOp = NormalizeVectorShuffle(Op, Subtarget, DAG); | 
|  | if (NewOp.getNode()) | 
|  | return NewOp; | 
|  |  | 
|  | SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end()); | 
|  |  | 
|  | // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and | 
|  | // unpckh_undef). Only use pshufd if speed is more important than size. | 
|  | if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256)) | 
|  | return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG); | 
|  | if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256)) | 
|  | return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG); | 
|  |  | 
|  | if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() && | 
|  | V2IsUndef && MayFoldVectorLoad(V1)) | 
|  | return getMOVDDup(Op, dl, V1, DAG); | 
|  |  | 
|  | if (isMOVHLPS_v_undef_Mask(M, VT)) | 
|  | return getMOVHighToLow(Op, dl, DAG); | 
|  |  | 
|  | // Use to match splats | 
|  | if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef && | 
|  | (VT == MVT::v2f64 || VT == MVT::v2i64)) | 
|  | return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG); | 
|  |  | 
|  | if (isPSHUFDMask(M, VT)) { | 
|  | // The actual implementation will match the mask in the if above and then | 
|  | // during isel it can match several different instructions, not only pshufd | 
|  | // as its name says, sad but true, emulate the behavior for now... | 
|  | if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64))) | 
|  | return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG); | 
|  |  | 
|  | unsigned TargetMask = getShuffleSHUFImmediate(SVOp); | 
|  |  | 
|  | if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32)) | 
|  | return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG); | 
|  |  | 
|  | if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64)) | 
|  | return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, | 
|  | DAG); | 
|  |  | 
|  | return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1, | 
|  | TargetMask, DAG); | 
|  | } | 
|  |  | 
|  | if (isPALIGNRMask(M, VT, Subtarget)) | 
|  | return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2, | 
|  | getShufflePALIGNRImmediate(SVOp), | 
|  | DAG); | 
|  |  | 
|  | // Check if this can be converted into a logical shift. | 
|  | bool isLeft = false; | 
|  | unsigned ShAmt = 0; | 
|  | SDValue ShVal; | 
|  | bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt); | 
|  | if (isShift && ShVal.hasOneUse()) { | 
|  | // If the shifted value has multiple uses, it may be cheaper to use | 
|  | // v_set0 + movlhps or movhlps, etc. | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | ShAmt *= EltVT.getSizeInBits(); | 
|  | return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); | 
|  | } | 
|  |  | 
|  | if (isMOVLMask(M, VT)) { | 
|  | if (ISD::isBuildVectorAllZeros(V1.getNode())) | 
|  | return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl); | 
|  | if (!isMOVLPMask(M, VT)) { | 
|  | if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64)) | 
|  | return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG); | 
|  |  | 
|  | if (VT == MVT::v4i32 || VT == MVT::v4f32) | 
|  | return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: fold these into legal mask. | 
|  | if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256)) | 
|  | return getMOVLowToHigh(Op, dl, DAG, HasSSE2); | 
|  |  | 
|  | if (isMOVHLPSMask(M, VT)) | 
|  | return getMOVHighToLow(Op, dl, DAG); | 
|  |  | 
|  | if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget)) | 
|  | return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG); | 
|  |  | 
|  | if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget)) | 
|  | return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG); | 
|  |  | 
|  | if (isMOVLPMask(M, VT)) | 
|  | return getMOVLP(Op, dl, DAG, HasSSE2); | 
|  |  | 
|  | if (ShouldXformToMOVHLPS(M, VT) || | 
|  | ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT)) | 
|  | return CommuteVectorShuffle(SVOp, DAG); | 
|  |  | 
|  | if (isShift) { | 
|  | // No better options. Use a vshldq / vsrldq. | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | ShAmt *= EltVT.getSizeInBits(); | 
|  | return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); | 
|  | } | 
|  |  | 
|  | bool Commuted = false; | 
|  | // FIXME: This should also accept a bitcast of a splat?  Be careful, not | 
|  | // 1,1,1,1 -> v8i16 though. | 
|  | V1IsSplat = isSplatVector(V1.getNode()); | 
|  | V2IsSplat = isSplatVector(V2.getNode()); | 
|  |  | 
|  | // Canonicalize the splat or undef, if present, to be on the RHS. | 
|  | if (!V2IsUndef && V1IsSplat && !V2IsSplat) { | 
|  | CommuteVectorShuffleMask(M, NumElems); | 
|  | std::swap(V1, V2); | 
|  | std::swap(V1IsSplat, V2IsSplat); | 
|  | Commuted = true; | 
|  | } | 
|  |  | 
|  | if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) { | 
|  | // Shuffling low element of v1 into undef, just return v1. | 
|  | if (V2IsUndef) | 
|  | return V1; | 
|  | // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which | 
|  | // the instruction selector will not match, so get a canonical MOVL with | 
|  | // swapped operands to undo the commute. | 
|  | return getMOVL(DAG, dl, VT, V2, V1); | 
|  | } | 
|  |  | 
|  | if (isUNPCKLMask(M, VT, HasInt256)) | 
|  | return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG); | 
|  |  | 
|  | if (isUNPCKHMask(M, VT, HasInt256)) | 
|  | return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG); | 
|  |  | 
|  | if (V2IsSplat) { | 
|  | // Normalize mask so all entries that point to V2 points to its first | 
|  | // element then try to match unpck{h|l} again. If match, return a | 
|  | // new vector_shuffle with the corrected mask.p | 
|  | SmallVector<int, 8> NewMask(M.begin(), M.end()); | 
|  | NormalizeMask(NewMask, NumElems); | 
|  | if (isUNPCKLMask(NewMask, VT, HasInt256, true)) | 
|  | return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG); | 
|  | if (isUNPCKHMask(NewMask, VT, HasInt256, true)) | 
|  | return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG); | 
|  | } | 
|  |  | 
|  | if (Commuted) { | 
|  | // Commute is back and try unpck* again. | 
|  | // FIXME: this seems wrong. | 
|  | CommuteVectorShuffleMask(M, NumElems); | 
|  | std::swap(V1, V2); | 
|  | std::swap(V1IsSplat, V2IsSplat); | 
|  |  | 
|  | if (isUNPCKLMask(M, VT, HasInt256)) | 
|  | return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG); | 
|  |  | 
|  | if (isUNPCKHMask(M, VT, HasInt256)) | 
|  | return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG); | 
|  | } | 
|  |  | 
|  | // Normalize the node to match x86 shuffle ops if needed | 
|  | if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true))) | 
|  | return CommuteVectorShuffle(SVOp, DAG); | 
|  |  | 
|  | // The checks below are all present in isShuffleMaskLegal, but they are | 
|  | // inlined here right now to enable us to directly emit target specific | 
|  | // nodes, and remove one by one until they don't return Op anymore. | 
|  |  | 
|  | if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) && | 
|  | SVOp->getSplatIndex() == 0 && V2IsUndef) { | 
|  | if (VT == MVT::v2f64 || VT == MVT::v2i64) | 
|  | return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG); | 
|  | } | 
|  |  | 
|  | if (isPSHUFHWMask(M, VT, HasInt256)) | 
|  | return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1, | 
|  | getShufflePSHUFHWImmediate(SVOp), | 
|  | DAG); | 
|  |  | 
|  | if (isPSHUFLWMask(M, VT, HasInt256)) | 
|  | return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1, | 
|  | getShufflePSHUFLWImmediate(SVOp), | 
|  | DAG); | 
|  |  | 
|  | if (isSHUFPMask(M, VT)) | 
|  | return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2, | 
|  | getShuffleSHUFImmediate(SVOp), DAG); | 
|  |  | 
|  | if (isUNPCKL_v_undef_Mask(M, VT, HasInt256)) | 
|  | return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG); | 
|  | if (isUNPCKH_v_undef_Mask(M, VT, HasInt256)) | 
|  | return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // Generate target specific nodes for 128 or 256-bit shuffles only | 
|  | // supported in the AVX instruction set. | 
|  | // | 
|  |  | 
|  | // Handle VMOVDDUPY permutations | 
|  | if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256)) | 
|  | return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG); | 
|  |  | 
|  | // Handle VPERMILPS/D* permutations | 
|  | if (isVPERMILPMask(M, VT)) { | 
|  | if ((HasInt256 && VT == MVT::v8i32) || VT == MVT::v16i32) | 
|  | return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, | 
|  | getShuffleSHUFImmediate(SVOp), DAG); | 
|  | return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, | 
|  | getShuffleSHUFImmediate(SVOp), DAG); | 
|  | } | 
|  |  | 
|  | // Handle VPERM2F128/VPERM2I128 permutations | 
|  | if (isVPERM2X128Mask(M, VT, HasFp256)) | 
|  | return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1, | 
|  | V2, getShuffleVPERM2X128Immediate(SVOp), DAG); | 
|  |  | 
|  | SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG); | 
|  | if (BlendOp.getNode()) | 
|  | return BlendOp; | 
|  |  | 
|  | unsigned Imm8; | 
|  | if (V2IsUndef && HasInt256 && isPermImmMask(M, VT, Imm8)) | 
|  | return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1, Imm8, DAG); | 
|  |  | 
|  | if ((V2IsUndef && HasInt256 && VT.is256BitVector() && NumElems == 8) || | 
|  | VT.is512BitVector()) { | 
|  | MVT MaskEltVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits()); | 
|  | MVT MaskVectorVT = MVT::getVectorVT(MaskEltVT, NumElems); | 
|  | SmallVector<SDValue, 16> permclMask; | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MaskEltVT)); | 
|  | } | 
|  |  | 
|  | SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVectorVT, | 
|  | &permclMask[0], NumElems); | 
|  | if (V2IsUndef) | 
|  | // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32 | 
|  | return DAG.getNode(X86ISD::VPERMV, dl, VT, | 
|  | DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1); | 
|  | return DAG.getNode(X86ISD::VPERMV3, dl, VT, V1, | 
|  | DAG.getNode(ISD::BITCAST, dl, VT, Mask), V2); | 
|  | } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // Since no target specific shuffle was selected for this generic one, | 
|  | // lower it into other known shuffles. FIXME: this isn't true yet, but | 
|  | // this is the plan. | 
|  | // | 
|  |  | 
|  | // Handle v8i16 specifically since SSE can do byte extraction and insertion. | 
|  | if (VT == MVT::v8i16) { | 
|  | SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG); | 
|  | if (NewOp.getNode()) | 
|  | return NewOp; | 
|  | } | 
|  |  | 
|  | if (VT == MVT::v16i16 && Subtarget->hasInt256()) { | 
|  | SDValue NewOp = LowerVECTOR_SHUFFLEv16i16(Op, DAG); | 
|  | if (NewOp.getNode()) | 
|  | return NewOp; | 
|  | } | 
|  |  | 
|  | if (VT == MVT::v16i8) { | 
|  | SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, Subtarget, DAG); | 
|  | if (NewOp.getNode()) | 
|  | return NewOp; | 
|  | } | 
|  |  | 
|  | if (VT == MVT::v32i8) { | 
|  | SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG); | 
|  | if (NewOp.getNode()) | 
|  | return NewOp; | 
|  | } | 
|  |  | 
|  | // Handle all 128-bit wide vectors with 4 elements, and match them with | 
|  | // several different shuffle types. | 
|  | if (NumElems == 4 && VT.is128BitVector()) | 
|  | return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG); | 
|  |  | 
|  | // Handle general 256-bit shuffles | 
|  | if (VT.is256BitVector()) | 
|  | return LowerVECTOR_SHUFFLE_256(SVOp, DAG); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | if (!Op.getOperand(0).getSimpleValueType().is128BitVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (VT.getSizeInBits() == 8) { | 
|  | SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, | 
|  | DAG.getValueType(VT)); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); | 
|  | } | 
|  |  | 
|  | if (VT.getSizeInBits() == 16) { | 
|  | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | // If Idx is 0, it's cheaper to do a move instead of a pextrw. | 
|  | if (Idx == 0) | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, | 
|  | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, | 
|  | DAG.getNode(ISD::BITCAST, dl, | 
|  | MVT::v4i32, | 
|  | Op.getOperand(0)), | 
|  | Op.getOperand(1))); | 
|  | SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, | 
|  | DAG.getValueType(VT)); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); | 
|  | } | 
|  |  | 
|  | if (VT == MVT::f32) { | 
|  | // EXTRACTPS outputs to a GPR32 register which will require a movd to copy | 
|  | // the result back to FR32 register. It's only worth matching if the | 
|  | // result has a single use which is a store or a bitcast to i32.  And in | 
|  | // the case of a store, it's not worth it if the index is a constant 0, | 
|  | // because a MOVSSmr can be used instead, which is smaller and faster. | 
|  | if (!Op.hasOneUse()) | 
|  | return SDValue(); | 
|  | SDNode *User = *Op.getNode()->use_begin(); | 
|  | if ((User->getOpcode() != ISD::STORE || | 
|  | (isa<ConstantSDNode>(Op.getOperand(1)) && | 
|  | cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) && | 
|  | (User->getOpcode() != ISD::BITCAST || | 
|  | User->getValueType(0) != MVT::i32)) | 
|  | return SDValue(); | 
|  | SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, | 
|  | Op.getOperand(0)), | 
|  | Op.getOperand(1)); | 
|  | return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract); | 
|  | } | 
|  |  | 
|  | if (VT == MVT::i32 || VT == MVT::i64) { | 
|  | // ExtractPS/pextrq works with constant index. | 
|  | if (isa<ConstantSDNode>(Op.getOperand(1))) | 
|  | return Op; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Extract one bit from mask vector, like v16i1 or v8i1. | 
|  | /// AVX-512 feature. | 
|  | SDValue | 
|  | X86TargetLowering::ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | SDLoc dl(Vec); | 
|  | MVT VecVT = Vec.getSimpleValueType(); | 
|  | SDValue Idx = Op.getOperand(1); | 
|  | MVT EltVT = Op.getSimpleValueType(); | 
|  |  | 
|  | assert((EltVT == MVT::i1) && "Unexpected operands in ExtractBitFromMaskVector"); | 
|  |  | 
|  | // variable index can't be handled in mask registers, | 
|  | // extend vector to VR512 | 
|  | if (!isa<ConstantSDNode>(Idx)) { | 
|  | MVT ExtVT = (VecVT == MVT::v8i1 ?  MVT::v8i64 : MVT::v16i32); | 
|  | SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec); | 
|  | SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, | 
|  | ExtVT.getVectorElementType(), Ext, Idx); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt); | 
|  | } | 
|  |  | 
|  | unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  | const TargetRegisterClass* rc = getRegClassFor(VecVT); | 
|  | unsigned MaxSift = rc->getSize()*8 - 1; | 
|  | Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec, | 
|  | DAG.getConstant(MaxSift - IdxVal, MVT::i8)); | 
|  | Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec, | 
|  | DAG.getConstant(MaxSift, MVT::i8)); | 
|  | return DAG.getNode(X86ISD::VEXTRACT, dl, MVT::i1, Vec, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | MVT VecVT = Vec.getSimpleValueType(); | 
|  | SDValue Idx = Op.getOperand(1); | 
|  |  | 
|  | if (Op.getSimpleValueType() == MVT::i1) | 
|  | return ExtractBitFromMaskVector(Op, DAG); | 
|  |  | 
|  | if (!isa<ConstantSDNode>(Idx)) { | 
|  | if (VecVT.is512BitVector() || | 
|  | (VecVT.is256BitVector() && Subtarget->hasInt256() && | 
|  | VecVT.getVectorElementType().getSizeInBits() == 32)) { | 
|  |  | 
|  | MVT MaskEltVT = | 
|  | MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits()); | 
|  | MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() / | 
|  | MaskEltVT.getSizeInBits()); | 
|  |  | 
|  | Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT); | 
|  | SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT, | 
|  | getZeroVector(MaskVT, Subtarget, DAG, dl), | 
|  | Idx, DAG.getConstant(0, getPointerTy())); | 
|  | SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), | 
|  | Perm, DAG.getConstant(0, getPointerTy())); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // If this is a 256-bit vector result, first extract the 128-bit vector and | 
|  | // then extract the element from the 128-bit vector. | 
|  | if (VecVT.is256BitVector() || VecVT.is512BitVector()) { | 
|  |  | 
|  | unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  | // Get the 128-bit vector. | 
|  | Vec = Extract128BitVector(Vec, IdxVal, DAG, dl); | 
|  | MVT EltVT = VecVT.getVectorElementType(); | 
|  |  | 
|  | unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits(); | 
|  |  | 
|  | //if (IdxVal >= NumElems/2) | 
|  | //  IdxVal -= NumElems/2; | 
|  | IdxVal -= (IdxVal/ElemsPerChunk)*ElemsPerChunk; | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec, | 
|  | DAG.getConstant(IdxVal, MVT::i32)); | 
|  | } | 
|  |  | 
|  | assert(VecVT.is128BitVector() && "Unexpected vector length"); | 
|  |  | 
|  | if (Subtarget->hasSSE41()) { | 
|  | SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG); | 
|  | if (Res.getNode()) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | // TODO: handle v16i8. | 
|  | if (VT.getSizeInBits() == 16) { | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | if (Idx == 0) | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, | 
|  | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, | 
|  | DAG.getNode(ISD::BITCAST, dl, | 
|  | MVT::v4i32, Vec), | 
|  | Op.getOperand(1))); | 
|  | // Transform it so it match pextrw which produces a 32-bit result. | 
|  | MVT EltVT = MVT::i32; | 
|  | SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract, | 
|  | DAG.getValueType(VT)); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); | 
|  | } | 
|  |  | 
|  | if (VT.getSizeInBits() == 32) { | 
|  | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | if (Idx == 0) | 
|  | return Op; | 
|  |  | 
|  | // SHUFPS the element to the lowest double word, then movss. | 
|  | int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 }; | 
|  | MVT VVT = Op.getOperand(0).getSimpleValueType(); | 
|  | SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), | 
|  | DAG.getUNDEF(VVT), Mask); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } | 
|  |  | 
|  | if (VT.getSizeInBits() == 64) { | 
|  | // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b | 
|  | // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught | 
|  | //        to match extract_elt for f64. | 
|  | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | if (Idx == 0) | 
|  | return Op; | 
|  |  | 
|  | // UNPCKHPD the element to the lowest double word, then movsd. | 
|  | // Note if the lower 64 bits of the result of the UNPCKHPD is then stored | 
|  | // to a f64mem, the whole operation is folded into a single MOVHPDmr. | 
|  | int Mask[2] = { 1, -1 }; | 
|  | MVT VVT = Op.getOperand(0).getSimpleValueType(); | 
|  | SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), | 
|  | DAG.getUNDEF(VVT), Mask); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDValue N1 = Op.getOperand(1); | 
|  | SDValue N2 = Op.getOperand(2); | 
|  |  | 
|  | if (!VT.is128BitVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) && | 
|  | isa<ConstantSDNode>(N2)) { | 
|  | unsigned Opc; | 
|  | if (VT == MVT::v8i16) | 
|  | Opc = X86ISD::PINSRW; | 
|  | else if (VT == MVT::v16i8) | 
|  | Opc = X86ISD::PINSRB; | 
|  | else | 
|  | Opc = X86ISD::PINSRB; | 
|  |  | 
|  | // Transform it so it match pinsr{b,w} which expects a GR32 as its second | 
|  | // argument. | 
|  | if (N1.getValueType() != MVT::i32) | 
|  | N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); | 
|  | if (N2.getValueType() != MVT::i32) | 
|  | N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); | 
|  | return DAG.getNode(Opc, dl, VT, N0, N1, N2); | 
|  | } | 
|  |  | 
|  | if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) { | 
|  | // Bits [7:6] of the constant are the source select.  This will always be | 
|  | //  zero here.  The DAG Combiner may combine an extract_elt index into these | 
|  | //  bits.  For example (insert (extract, 3), 2) could be matched by putting | 
|  | //  the '3' into bits [7:6] of X86ISD::INSERTPS. | 
|  | // Bits [5:4] of the constant are the destination select.  This is the | 
|  | //  value of the incoming immediate. | 
|  | // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may | 
|  | //   combine either bitwise AND or insert of float 0.0 to set these bits. | 
|  | N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4); | 
|  | // Create this as a scalar to vector.. | 
|  | N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); | 
|  | return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2); | 
|  | } | 
|  |  | 
|  | if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) { | 
|  | // PINSR* works with constant index. | 
|  | return Op; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDValue N1 = Op.getOperand(1); | 
|  | SDValue N2 = Op.getOperand(2); | 
|  |  | 
|  | // If this is a 256-bit vector result, first extract the 128-bit vector, | 
|  | // insert the element into the extracted half and then place it back. | 
|  | if (VT.is256BitVector() || VT.is512BitVector()) { | 
|  | if (!isa<ConstantSDNode>(N2)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Get the desired 128-bit vector half. | 
|  | unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue(); | 
|  | SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl); | 
|  |  | 
|  | // Insert the element into the desired half. | 
|  | unsigned NumEltsIn128 = 128/EltVT.getSizeInBits(); | 
|  | unsigned IdxIn128 = IdxVal - (IdxVal/NumEltsIn128) * NumEltsIn128; | 
|  |  | 
|  | V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1, | 
|  | DAG.getConstant(IdxIn128, MVT::i32)); | 
|  |  | 
|  | // Insert the changed part back to the 256-bit vector | 
|  | return Insert128BitVector(N0, V, IdxVal, DAG, dl); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasSSE41()) | 
|  | return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG); | 
|  |  | 
|  | if (EltVT == MVT::i8) | 
|  | return SDValue(); | 
|  |  | 
|  | if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) { | 
|  | // Transform it so it match pinsrw which expects a 16-bit value in a GR32 | 
|  | // as its second argument. | 
|  | if (N1.getValueType() != MVT::i32) | 
|  | N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); | 
|  | if (N2.getValueType() != MVT::i32) | 
|  | N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); | 
|  | return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) { | 
|  | SDLoc dl(Op); | 
|  | MVT OpVT = Op.getSimpleValueType(); | 
|  |  | 
|  | // If this is a 256-bit vector result, first insert into a 128-bit | 
|  | // vector and then insert into the 256-bit vector. | 
|  | if (!OpVT.is128BitVector()) { | 
|  | // Insert into a 128-bit vector. | 
|  | unsigned SizeFactor = OpVT.getSizeInBits()/128; | 
|  | MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(), | 
|  | OpVT.getVectorNumElements() / SizeFactor); | 
|  |  | 
|  | Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0)); | 
|  |  | 
|  | // Insert the 128-bit vector. | 
|  | return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl); | 
|  | } | 
|  |  | 
|  | if (OpVT == MVT::v1i64 && | 
|  | Op.getOperand(0).getValueType() == MVT::i64) | 
|  | return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0)); | 
|  |  | 
|  | SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0)); | 
|  | assert(OpVT.is128BitVector() && "Expected an SSE type!"); | 
|  | return DAG.getNode(ISD::BITCAST, dl, OpVT, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt)); | 
|  | } | 
|  |  | 
|  | // Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in | 
|  | // a simple subregister reference or explicit instructions to grab | 
|  | // upper bits of a vector. | 
|  | static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc dl(Op); | 
|  | SDValue In =  Op.getOperand(0); | 
|  | SDValue Idx = Op.getOperand(1); | 
|  | unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  | MVT ResVT   = Op.getSimpleValueType(); | 
|  | MVT InVT    = In.getSimpleValueType(); | 
|  |  | 
|  | if (Subtarget->hasFp256()) { | 
|  | if (ResVT.is128BitVector() && | 
|  | (InVT.is256BitVector() || InVT.is512BitVector()) && | 
|  | isa<ConstantSDNode>(Idx)) { | 
|  | return Extract128BitVector(In, IdxVal, DAG, dl); | 
|  | } | 
|  | if (ResVT.is256BitVector() && InVT.is512BitVector() && | 
|  | isa<ConstantSDNode>(Idx)) { | 
|  | return Extract256BitVector(In, IdxVal, DAG, dl); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a | 
|  | // simple superregister reference or explicit instructions to insert | 
|  | // the upper bits of a vector. | 
|  | static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | if (Subtarget->hasFp256()) { | 
|  | SDLoc dl(Op.getNode()); | 
|  | SDValue Vec = Op.getNode()->getOperand(0); | 
|  | SDValue SubVec = Op.getNode()->getOperand(1); | 
|  | SDValue Idx = Op.getNode()->getOperand(2); | 
|  |  | 
|  | if ((Op.getNode()->getSimpleValueType(0).is256BitVector() || | 
|  | Op.getNode()->getSimpleValueType(0).is512BitVector()) && | 
|  | SubVec.getNode()->getSimpleValueType(0).is128BitVector() && | 
|  | isa<ConstantSDNode>(Idx)) { | 
|  | unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  | return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl); | 
|  | } | 
|  |  | 
|  | if (Op.getNode()->getSimpleValueType(0).is512BitVector() && | 
|  | SubVec.getNode()->getSimpleValueType(0).is256BitVector() && | 
|  | isa<ConstantSDNode>(Idx)) { | 
|  | unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  | return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as | 
|  | // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is | 
|  | // one of the above mentioned nodes. It has to be wrapped because otherwise | 
|  | // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only | 
|  | // be used to form addressing mode. These wrapped nodes will be selected | 
|  | // into MOV32ri. | 
|  | SDValue | 
|  | X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { | 
|  | ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); | 
|  |  | 
|  | // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the | 
|  | // global base reg. | 
|  | unsigned char OpFlag = 0; | 
|  | unsigned WrapperKind = X86ISD::Wrapper; | 
|  | CodeModel::Model M = getTargetMachine().getCodeModel(); | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | (M == CodeModel::Small || M == CodeModel::Kernel)) | 
|  | WrapperKind = X86ISD::WrapperRIP; | 
|  | else if (Subtarget->isPICStyleGOT()) | 
|  | OpFlag = X86II::MO_GOTOFF; | 
|  | else if (Subtarget->isPICStyleStubPIC()) | 
|  | OpFlag = X86II::MO_PIC_BASE_OFFSET; | 
|  |  | 
|  | SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(), | 
|  | CP->getAlignment(), | 
|  | CP->getOffset(), OpFlag); | 
|  | SDLoc DL(CP); | 
|  | Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (OpFlag) { | 
|  | Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, | 
|  | SDLoc(), getPointerTy()), | 
|  | Result); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { | 
|  | JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); | 
|  |  | 
|  | // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the | 
|  | // global base reg. | 
|  | unsigned char OpFlag = 0; | 
|  | unsigned WrapperKind = X86ISD::Wrapper; | 
|  | CodeModel::Model M = getTargetMachine().getCodeModel(); | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | (M == CodeModel::Small || M == CodeModel::Kernel)) | 
|  | WrapperKind = X86ISD::WrapperRIP; | 
|  | else if (Subtarget->isPICStyleGOT()) | 
|  | OpFlag = X86II::MO_GOTOFF; | 
|  | else if (Subtarget->isPICStyleStubPIC()) | 
|  | OpFlag = X86II::MO_PIC_BASE_OFFSET; | 
|  |  | 
|  | SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(), | 
|  | OpFlag); | 
|  | SDLoc DL(JT); | 
|  | Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); | 
|  |  | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (OpFlag) | 
|  | Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, | 
|  | SDLoc(), getPointerTy()), | 
|  | Result); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const { | 
|  | const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); | 
|  |  | 
|  | // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the | 
|  | // global base reg. | 
|  | unsigned char OpFlag = 0; | 
|  | unsigned WrapperKind = X86ISD::Wrapper; | 
|  | CodeModel::Model M = getTargetMachine().getCodeModel(); | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | (M == CodeModel::Small || M == CodeModel::Kernel)) { | 
|  | if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF()) | 
|  | OpFlag = X86II::MO_GOTPCREL; | 
|  | WrapperKind = X86ISD::WrapperRIP; | 
|  | } else if (Subtarget->isPICStyleGOT()) { | 
|  | OpFlag = X86II::MO_GOT; | 
|  | } else if (Subtarget->isPICStyleStubPIC()) { | 
|  | OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE; | 
|  | } else if (Subtarget->isPICStyleStubNoDynamic()) { | 
|  | OpFlag = X86II::MO_DARWIN_NONLAZY; | 
|  | } | 
|  |  | 
|  | SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); | 
|  |  | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && | 
|  | !Subtarget->is64Bit()) { | 
|  | Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, | 
|  | SDLoc(), getPointerTy()), | 
|  | Result); | 
|  | } | 
|  |  | 
|  | // For symbols that require a load from a stub to get the address, emit the | 
|  | // load. | 
|  | if (isGlobalStubReference(OpFlag)) | 
|  | Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result, | 
|  | MachinePointerInfo::getGOT(), false, false, false, 0); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { | 
|  | // Create the TargetBlockAddressAddress node. | 
|  | unsigned char OpFlags = | 
|  | Subtarget->ClassifyBlockAddressReference(); | 
|  | CodeModel::Model M = getTargetMachine().getCodeModel(); | 
|  | const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); | 
|  | int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset(); | 
|  | SDLoc dl(Op); | 
|  | SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset, | 
|  | OpFlags); | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | (M == CodeModel::Small || M == CodeModel::Kernel)) | 
|  | Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); | 
|  | else | 
|  | Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); | 
|  |  | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (isGlobalRelativeToPICBase(OpFlags)) { | 
|  | Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), | 
|  | Result); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl, | 
|  | int64_t Offset, SelectionDAG &DAG) const { | 
|  | // Create the TargetGlobalAddress node, folding in the constant | 
|  | // offset if it is legal. | 
|  | unsigned char OpFlags = | 
|  | Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); | 
|  | CodeModel::Model M = getTargetMachine().getCodeModel(); | 
|  | SDValue Result; | 
|  | if (OpFlags == X86II::MO_NO_FLAG && | 
|  | X86::isOffsetSuitableForCodeModel(Offset, M)) { | 
|  | // A direct static reference to a global. | 
|  | Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset); | 
|  | Offset = 0; | 
|  | } else { | 
|  | Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isPICStyleRIPRel() && | 
|  | (M == CodeModel::Small || M == CodeModel::Kernel)) | 
|  | Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); | 
|  | else | 
|  | Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); | 
|  |  | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (isGlobalRelativeToPICBase(OpFlags)) { | 
|  | Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), | 
|  | Result); | 
|  | } | 
|  |  | 
|  | // For globals that require a load from a stub to get the address, emit the | 
|  | // load. | 
|  | if (isGlobalStubReference(OpFlags)) | 
|  | Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result, | 
|  | MachinePointerInfo::getGOT(), false, false, false, 0); | 
|  |  | 
|  | // If there was a non-zero offset that we didn't fold, create an explicit | 
|  | // addition for it. | 
|  | if (Offset != 0) | 
|  | Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result, | 
|  | DAG.getConstant(Offset, getPointerTy())); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { | 
|  | const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); | 
|  | int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); | 
|  | return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG); | 
|  | } | 
|  |  | 
|  | static SDValue | 
|  | GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, | 
|  | SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg, | 
|  | unsigned char OperandFlags, bool LocalDynamic = false) { | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDLoc dl(GA); | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, | 
|  | GA->getValueType(0), | 
|  | GA->getOffset(), | 
|  | OperandFlags); | 
|  |  | 
|  | X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR | 
|  | : X86ISD::TLSADDR; | 
|  |  | 
|  | if (InFlag) { | 
|  | SDValue Ops[] = { Chain,  TGA, *InFlag }; | 
|  | Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops)); | 
|  | } else { | 
|  | SDValue Ops[]  = { Chain, TGA }; | 
|  | Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops)); | 
|  | } | 
|  |  | 
|  | // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. | 
|  | MFI->setAdjustsStack(true); | 
|  |  | 
|  | SDValue Flag = Chain.getValue(1); | 
|  | return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag); | 
|  | } | 
|  |  | 
|  | // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit | 
|  | static SDValue | 
|  | LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, | 
|  | const EVT PtrVT) { | 
|  | SDValue InFlag; | 
|  | SDLoc dl(GA);  // ? function entry point might be better | 
|  | SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, | 
|  | SDLoc(), PtrVT), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD); | 
|  | } | 
|  |  | 
|  | // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit | 
|  | static SDValue | 
|  | LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, | 
|  | const EVT PtrVT) { | 
|  | return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, | 
|  | X86::RAX, X86II::MO_TLSGD); | 
|  | } | 
|  |  | 
|  | static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA, | 
|  | SelectionDAG &DAG, | 
|  | const EVT PtrVT, | 
|  | bool is64Bit) { | 
|  | SDLoc dl(GA); | 
|  |  | 
|  | // Get the start address of the TLS block for this module. | 
|  | X86MachineFunctionInfo* MFI = DAG.getMachineFunction() | 
|  | .getInfo<X86MachineFunctionInfo>(); | 
|  | MFI->incNumLocalDynamicTLSAccesses(); | 
|  |  | 
|  | SDValue Base; | 
|  | if (is64Bit) { | 
|  | Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX, | 
|  | X86II::MO_TLSLD, /*LocalDynamic=*/true); | 
|  | } else { | 
|  | SDValue InFlag; | 
|  | SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, | 
|  | X86II::MO_TLSLDM, /*LocalDynamic=*/true); | 
|  | } | 
|  |  | 
|  | // Note: the CleanupLocalDynamicTLSPass will remove redundant computations | 
|  | // of Base. | 
|  |  | 
|  | // Build x@dtpoff. | 
|  | unsigned char OperandFlags = X86II::MO_DTPOFF; | 
|  | unsigned WrapperKind = X86ISD::Wrapper; | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, | 
|  | GA->getValueType(0), | 
|  | GA->getOffset(), OperandFlags); | 
|  | SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); | 
|  |  | 
|  | // Add x@dtpoff with the base. | 
|  | return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base); | 
|  | } | 
|  |  | 
|  | // Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model. | 
|  | static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, | 
|  | const EVT PtrVT, TLSModel::Model model, | 
|  | bool is64Bit, bool isPIC) { | 
|  | SDLoc dl(GA); | 
|  |  | 
|  | // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit). | 
|  | Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(), | 
|  | is64Bit ? 257 : 256)); | 
|  |  | 
|  | SDValue ThreadPointer = | 
|  | DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0), | 
|  | MachinePointerInfo(Ptr), false, false, false, 0); | 
|  |  | 
|  | unsigned char OperandFlags = 0; | 
|  | // Most TLS accesses are not RIP relative, even on x86-64.  One exception is | 
|  | // initialexec. | 
|  | unsigned WrapperKind = X86ISD::Wrapper; | 
|  | if (model == TLSModel::LocalExec) { | 
|  | OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF; | 
|  | } else if (model == TLSModel::InitialExec) { | 
|  | if (is64Bit) { | 
|  | OperandFlags = X86II::MO_GOTTPOFF; | 
|  | WrapperKind = X86ISD::WrapperRIP; | 
|  | } else { | 
|  | OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF; | 
|  | } | 
|  | } else { | 
|  | llvm_unreachable("Unexpected model"); | 
|  | } | 
|  |  | 
|  | // emit "addl x@ntpoff,%eax" (local exec) | 
|  | // or "addl x@indntpoff,%eax" (initial exec) | 
|  | // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic) | 
|  | SDValue TGA = | 
|  | DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), | 
|  | GA->getOffset(), OperandFlags); | 
|  | SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); | 
|  |  | 
|  | if (model == TLSModel::InitialExec) { | 
|  | if (isPIC && !is64Bit) { | 
|  | Offset = DAG.getNode(ISD::ADD, dl, PtrVT, | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), | 
|  | Offset); | 
|  | } | 
|  |  | 
|  | Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset, | 
|  | MachinePointerInfo::getGOT(), false, false, false, 0); | 
|  | } | 
|  |  | 
|  | // The address of the thread local variable is the add of the thread | 
|  | // pointer with the offset of the variable. | 
|  | return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { | 
|  |  | 
|  | GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); | 
|  | const GlobalValue *GV = GA->getGlobal(); | 
|  |  | 
|  | if (Subtarget->isTargetELF()) { | 
|  | TLSModel::Model model = getTargetMachine().getTLSModel(GV); | 
|  |  | 
|  | switch (model) { | 
|  | case TLSModel::GeneralDynamic: | 
|  | if (Subtarget->is64Bit()) | 
|  | return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy()); | 
|  | return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy()); | 
|  | case TLSModel::LocalDynamic: | 
|  | return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(), | 
|  | Subtarget->is64Bit()); | 
|  | case TLSModel::InitialExec: | 
|  | case TLSModel::LocalExec: | 
|  | return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, | 
|  | Subtarget->is64Bit(), | 
|  | getTargetMachine().getRelocationModel() == Reloc::PIC_); | 
|  | } | 
|  | llvm_unreachable("Unknown TLS model."); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isTargetDarwin()) { | 
|  | // Darwin only has one model of TLS.  Lower to that. | 
|  | unsigned char OpFlag = 0; | 
|  | unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ? | 
|  | X86ISD::WrapperRIP : X86ISD::Wrapper; | 
|  |  | 
|  | // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the | 
|  | // global base reg. | 
|  | bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) && | 
|  | !Subtarget->is64Bit(); | 
|  | if (PIC32) | 
|  | OpFlag = X86II::MO_TLVP_PIC_BASE; | 
|  | else | 
|  | OpFlag = X86II::MO_TLVP; | 
|  | SDLoc DL(Op); | 
|  | SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, | 
|  | GA->getValueType(0), | 
|  | GA->getOffset(), OpFlag); | 
|  | SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); | 
|  |  | 
|  | // With PIC32, the address is actually $g + Offset. | 
|  | if (PIC32) | 
|  | Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, | 
|  | SDLoc(), getPointerTy()), | 
|  | Offset); | 
|  |  | 
|  | // Lowering the machine isd will make sure everything is in the right | 
|  | // location. | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDValue Args[] = { Chain, Offset }; | 
|  | Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2); | 
|  |  | 
|  | // TLSCALL will be codegen'ed as call. Inform MFI that function has calls. | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | MFI->setAdjustsStack(true); | 
|  |  | 
|  | // And our return value (tls address) is in the standard call return value | 
|  | // location. | 
|  | unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; | 
|  | return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(), | 
|  | Chain.getValue(1)); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isTargetKnownWindowsMSVC() || | 
|  | Subtarget->isTargetWindowsGNU()) { | 
|  | // Just use the implicit TLS architecture | 
|  | // Need to generate someting similar to: | 
|  | //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage | 
|  | //                                  ; from TEB | 
|  | //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime) | 
|  | //   mov     rcx, qword [rdx+rcx*8] | 
|  | //   mov     eax, .tls$:tlsvar | 
|  | //   [rax+rcx] contains the address | 
|  | // Windows 64bit: gs:0x58 | 
|  | // Windows 32bit: fs:__tls_array | 
|  |  | 
|  | // If GV is an alias then use the aliasee for determining | 
|  | // thread-localness. | 
|  | if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) | 
|  | GV = GA->getAliasedGlobal(); | 
|  | SDLoc dl(GA); | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  |  | 
|  | // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or | 
|  | // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly | 
|  | // use its literal value of 0x2C. | 
|  | Value *Ptr = Constant::getNullValue(Subtarget->is64Bit() | 
|  | ? Type::getInt8PtrTy(*DAG.getContext(), | 
|  | 256) | 
|  | : Type::getInt32PtrTy(*DAG.getContext(), | 
|  | 257)); | 
|  |  | 
|  | SDValue TlsArray = | 
|  | Subtarget->is64Bit() | 
|  | ? DAG.getIntPtrConstant(0x58) | 
|  | : (Subtarget->isTargetWindowsGNU() | 
|  | ? DAG.getIntPtrConstant(0x2C) | 
|  | : DAG.getExternalSymbol("_tls_array", getPointerTy())); | 
|  |  | 
|  | SDValue ThreadPointer = | 
|  | DAG.getLoad(getPointerTy(), dl, Chain, TlsArray, | 
|  | MachinePointerInfo(Ptr), false, false, false, 0); | 
|  |  | 
|  | // Load the _tls_index variable | 
|  | SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy()); | 
|  | if (Subtarget->is64Bit()) | 
|  | IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain, | 
|  | IDX, MachinePointerInfo(), MVT::i32, | 
|  | false, false, 0); | 
|  | else | 
|  | IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  |  | 
|  | SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()), | 
|  | getPointerTy()); | 
|  | IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale); | 
|  |  | 
|  | SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX); | 
|  | res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  |  | 
|  | // Get the offset of start of .tls section | 
|  | SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, | 
|  | GA->getValueType(0), | 
|  | GA->getOffset(), X86II::MO_SECREL); | 
|  | SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA); | 
|  |  | 
|  | // The address of the thread local variable is the add of the thread | 
|  | // pointer with the offset of the variable. | 
|  | return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("TLS not implemented for this target."); | 
|  | } | 
|  |  | 
|  | /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values | 
|  | /// and take a 2 x i32 value to shift plus a shift amount. | 
|  | static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) { | 
|  | assert(Op.getNumOperands() == 3 && "Not a double-shift!"); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | unsigned VTBits = VT.getSizeInBits(); | 
|  | SDLoc dl(Op); | 
|  | bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; | 
|  | SDValue ShOpLo = Op.getOperand(0); | 
|  | SDValue ShOpHi = Op.getOperand(1); | 
|  | SDValue ShAmt  = Op.getOperand(2); | 
|  | // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the | 
|  | // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away | 
|  | // during isel. | 
|  | SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, | 
|  | DAG.getConstant(VTBits - 1, MVT::i8)); | 
|  | SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, | 
|  | DAG.getConstant(VTBits - 1, MVT::i8)) | 
|  | : DAG.getConstant(0, VT); | 
|  |  | 
|  | SDValue Tmp2, Tmp3; | 
|  | if (Op.getOpcode() == ISD::SHL_PARTS) { | 
|  | Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt); | 
|  | Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); | 
|  | } else { | 
|  | Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt); | 
|  | Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); | 
|  | } | 
|  |  | 
|  | // If the shift amount is larger or equal than the width of a part we can't | 
|  | // rely on the results of shld/shrd. Insert a test and select the appropriate | 
|  | // values for large shift amounts. | 
|  | SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, | 
|  | DAG.getConstant(VTBits, MVT::i8)); | 
|  | SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32, | 
|  | AndNode, DAG.getConstant(0, MVT::i8)); | 
|  |  | 
|  | SDValue Hi, Lo; | 
|  | SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8); | 
|  | SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond }; | 
|  | SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond }; | 
|  |  | 
|  | if (Op.getOpcode() == ISD::SHL_PARTS) { | 
|  | Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); | 
|  | Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); | 
|  | } else { | 
|  | Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); | 
|  | Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); | 
|  | } | 
|  |  | 
|  | SDValue Ops[2] = { Lo, Hi }; | 
|  | return DAG.getMergeValues(Ops, array_lengthof(Ops), dl); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MVT SrcVT = Op.getOperand(0).getSimpleValueType(); | 
|  |  | 
|  | if (SrcVT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 && | 
|  | "Unknown SINT_TO_FP to lower!"); | 
|  |  | 
|  | // These are really Legal; return the operand so the caller accepts it as | 
|  | // Legal. | 
|  | if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) | 
|  | return Op; | 
|  | if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) && | 
|  | Subtarget->is64Bit()) { | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | unsigned Size = SrcVT.getSizeInBits()/8; | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), | 
|  | StackSlot, | 
|  | MachinePointerInfo::getFixedStack(SSFI), | 
|  | false, false, 0); | 
|  | return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, | 
|  | SDValue StackSlot, | 
|  | SelectionDAG &DAG) const { | 
|  | // Build the FILD | 
|  | SDLoc DL(Op); | 
|  | SDVTList Tys; | 
|  | bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); | 
|  | if (useSSE) | 
|  | Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue); | 
|  | else | 
|  | Tys = DAG.getVTList(Op.getValueType(), MVT::Other); | 
|  |  | 
|  | unsigned ByteSize = SrcVT.getSizeInBits()/8; | 
|  |  | 
|  | FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot); | 
|  | MachineMemOperand *MMO; | 
|  | if (FI) { | 
|  | int SSFI = FI->getIndex(); | 
|  | MMO = | 
|  | DAG.getMachineFunction() | 
|  | .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), | 
|  | MachineMemOperand::MOLoad, ByteSize, ByteSize); | 
|  | } else { | 
|  | MMO = cast<LoadSDNode>(StackSlot)->getMemOperand(); | 
|  | StackSlot = StackSlot.getOperand(1); | 
|  | } | 
|  | SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) }; | 
|  | SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG : | 
|  | X86ISD::FILD, DL, | 
|  | Tys, Ops, array_lengthof(Ops), | 
|  | SrcVT, MMO); | 
|  |  | 
|  | if (useSSE) { | 
|  | Chain = Result.getValue(1); | 
|  | SDValue InFlag = Result.getValue(2); | 
|  |  | 
|  | // FIXME: Currently the FST is flagged to the FILD_FLAG. This | 
|  | // shouldn't be necessary except that RFP cannot be live across | 
|  | // multiple blocks. When stackifier is fixed, they can be uncoupled. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | unsigned SSFISize = Op.getValueType().getSizeInBits()/8; | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | Tys = DAG.getVTList(MVT::Other); | 
|  | SDValue Ops[] = { | 
|  | Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag | 
|  | }; | 
|  | MachineMemOperand *MMO = | 
|  | DAG.getMachineFunction() | 
|  | .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), | 
|  | MachineMemOperand::MOStore, SSFISize, SSFISize); | 
|  |  | 
|  | Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys, | 
|  | Ops, array_lengthof(Ops), | 
|  | Op.getValueType(), MMO); | 
|  | Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot, | 
|  | MachinePointerInfo::getFixedStack(SSFI), | 
|  | false, false, false, 0); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion. | 
|  | SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // This algorithm is not obvious. Here it is what we're trying to output: | 
|  | /* | 
|  | movq       %rax,  %xmm0 | 
|  | punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U } | 
|  | subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 } | 
|  | #ifdef __SSE3__ | 
|  | haddpd   %xmm0, %xmm0 | 
|  | #else | 
|  | pshufd   $0x4e, %xmm0, %xmm1 | 
|  | addpd    %xmm1, %xmm0 | 
|  | #endif | 
|  | */ | 
|  |  | 
|  | SDLoc dl(Op); | 
|  | LLVMContext *Context = DAG.getContext(); | 
|  |  | 
|  | // Build some magic constants. | 
|  | static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 }; | 
|  | Constant *C0 = ConstantDataVector::get(*Context, CV0); | 
|  | SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16); | 
|  |  | 
|  | SmallVector<Constant*,2> CV1; | 
|  | CV1.push_back( | 
|  | ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, | 
|  | APInt(64, 0x4330000000000000ULL)))); | 
|  | CV1.push_back( | 
|  | ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, | 
|  | APInt(64, 0x4530000000000000ULL)))); | 
|  | Constant *C1 = ConstantVector::get(CV1); | 
|  | SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16); | 
|  |  | 
|  | // Load the 64-bit value into an XMM register. | 
|  | SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, | 
|  | Op.getOperand(0)); | 
|  | SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, false, 16); | 
|  | SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1), | 
|  | CLod0); | 
|  |  | 
|  | SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, false, 16); | 
|  | SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1); | 
|  | SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1); | 
|  | SDValue Result; | 
|  |  | 
|  | if (Subtarget->hasSSE3()) { | 
|  | // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'. | 
|  | Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub); | 
|  | } else { | 
|  | SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub); | 
|  | SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32, | 
|  | S2F, 0x4E, DAG); | 
|  | Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64, | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle), | 
|  | Sub); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } | 
|  |  | 
|  | // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion. | 
|  | SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | // FP constant to bias correct the final result. | 
|  | SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), | 
|  | MVT::f64); | 
|  |  | 
|  | // Load the 32-bit value into an XMM register. | 
|  | SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, | 
|  | Op.getOperand(0)); | 
|  |  | 
|  | // Zero out the upper parts of the register. | 
|  | Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG); | 
|  |  | 
|  | Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load), | 
|  | DAG.getIntPtrConstant(0)); | 
|  |  | 
|  | // Or the load with the bias. | 
|  | SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, | 
|  | MVT::v2f64, Load)), | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, | 
|  | DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, | 
|  | MVT::v2f64, Bias))); | 
|  | Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or), | 
|  | DAG.getIntPtrConstant(0)); | 
|  |  | 
|  | // Subtract the bias. | 
|  | SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias); | 
|  |  | 
|  | // Handle final rounding. | 
|  | EVT DestVT = Op.getValueType(); | 
|  |  | 
|  | if (DestVT.bitsLT(MVT::f64)) | 
|  | return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | if (DestVT.bitsGT(MVT::f64)) | 
|  | return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); | 
|  |  | 
|  | // Handle final rounding. | 
|  | return Sub; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | MVT SVT = N0.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 || | 
|  | SVT == MVT::v8i8 || SVT == MVT::v8i16) && | 
|  | "Custom UINT_TO_FP is not supported!"); | 
|  |  | 
|  | MVT NVT = MVT::getVectorVT(MVT::i32, SVT.getVectorNumElements()); | 
|  | return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), | 
|  | DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0)); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | if (Op.getValueType().isVector()) | 
|  | return lowerUINT_TO_FP_vec(Op, DAG); | 
|  |  | 
|  | // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't | 
|  | // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform | 
|  | // the optimization here. | 
|  | if (DAG.SignBitIsZero(N0)) | 
|  | return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0); | 
|  |  | 
|  | MVT SrcVT = N0.getSimpleValueType(); | 
|  | MVT DstVT = Op.getSimpleValueType(); | 
|  | if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64) | 
|  | return LowerUINT_TO_FP_i64(Op, DAG); | 
|  | if (SrcVT == MVT::i32 && X86ScalarSSEf64) | 
|  | return LowerUINT_TO_FP_i32(Op, DAG); | 
|  | if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32) | 
|  | return SDValue(); | 
|  |  | 
|  | // Make a 64-bit buffer, and use it to build an FILD. | 
|  | SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64); | 
|  | if (SrcVT == MVT::i32) { | 
|  | SDValue WordOff = DAG.getConstant(4, getPointerTy()); | 
|  | SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl, | 
|  | getPointerTy(), StackSlot, WordOff); | 
|  | SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), | 
|  | StackSlot, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32), | 
|  | OffsetSlot, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG); | 
|  | return Fild; | 
|  | } | 
|  |  | 
|  | assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP"); | 
|  | SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), | 
|  | StackSlot, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | // For i64 source, we need to add the appropriate power of 2 if the input | 
|  | // was negative.  This is the same as the optimization in | 
|  | // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here, | 
|  | // we must be careful to do the computation in x87 extended precision, not | 
|  | // in SSE. (The generic code can't know it's OK to do this, or how to.) | 
|  | int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex(); | 
|  | MachineMemOperand *MMO = | 
|  | DAG.getMachineFunction() | 
|  | .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), | 
|  | MachineMemOperand::MOLoad, 8, 8); | 
|  |  | 
|  | SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other); | 
|  | SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) }; | 
|  | SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, | 
|  | array_lengthof(Ops), MVT::i64, MMO); | 
|  |  | 
|  | APInt FF(32, 0x5F800000ULL); | 
|  |  | 
|  | // Check whether the sign bit is set. | 
|  | SDValue SignSet = DAG.getSetCC(dl, | 
|  | getSetCCResultType(*DAG.getContext(), MVT::i64), | 
|  | Op.getOperand(0), DAG.getConstant(0, MVT::i64), | 
|  | ISD::SETLT); | 
|  |  | 
|  | // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits. | 
|  | SDValue FudgePtr = DAG.getConstantPool( | 
|  | ConstantInt::get(*DAG.getContext(), FF.zext(64)), | 
|  | getPointerTy()); | 
|  |  | 
|  | // Get a pointer to FF if the sign bit was set, or to 0 otherwise. | 
|  | SDValue Zero = DAG.getIntPtrConstant(0); | 
|  | SDValue Four = DAG.getIntPtrConstant(4); | 
|  | SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet, | 
|  | Zero, Four); | 
|  | FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset); | 
|  |  | 
|  | // Load the value out, extending it from f32 to f80. | 
|  | // FIXME: Avoid the extend by constructing the right constant pool? | 
|  | SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), | 
|  | FudgePtr, MachinePointerInfo::getConstantPool(), | 
|  | MVT::f32, false, false, 4); | 
|  | // Extend everything to 80 bits to force it to be done on x87. | 
|  | SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge); | 
|  | return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0)); | 
|  | } | 
|  |  | 
|  | std::pair<SDValue,SDValue> | 
|  | X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, | 
|  | bool IsSigned, bool IsReplace) const { | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | EVT DstTy = Op.getValueType(); | 
|  |  | 
|  | if (!IsSigned && !isIntegerTypeFTOL(DstTy)) { | 
|  | assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT"); | 
|  | DstTy = MVT::i64; | 
|  | } | 
|  |  | 
|  | assert(DstTy.getSimpleVT() <= MVT::i64 && | 
|  | DstTy.getSimpleVT() >= MVT::i16 && | 
|  | "Unknown FP_TO_INT to lower!"); | 
|  |  | 
|  | // These are really Legal. | 
|  | if (DstTy == MVT::i32 && | 
|  | isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) | 
|  | return std::make_pair(SDValue(), SDValue()); | 
|  | if (Subtarget->is64Bit() && | 
|  | DstTy == MVT::i64 && | 
|  | isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) | 
|  | return std::make_pair(SDValue(), SDValue()); | 
|  |  | 
|  | // We lower FP->int64 either into FISTP64 followed by a load from a temporary | 
|  | // stack slot, or into the FTOL runtime function. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | unsigned MemSize = DstTy.getSizeInBits()/8; | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  |  | 
|  | unsigned Opc; | 
|  | if (!IsSigned && isIntegerTypeFTOL(DstTy)) | 
|  | Opc = X86ISD::WIN_FTOL; | 
|  | else | 
|  | switch (DstTy.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Invalid FP_TO_SINT to lower!"); | 
|  | case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; | 
|  | case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; | 
|  | case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; | 
|  | } | 
|  |  | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | SDValue Value = Op.getOperand(0); | 
|  | EVT TheVT = Op.getOperand(0).getValueType(); | 
|  | // FIXME This causes a redundant load/store if the SSE-class value is already | 
|  | // in memory, such as if it is on the callstack. | 
|  | if (isScalarFPTypeInSSEReg(TheVT)) { | 
|  | assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!"); | 
|  | Chain = DAG.getStore(Chain, DL, Value, StackSlot, | 
|  | MachinePointerInfo::getFixedStack(SSFI), | 
|  | false, false, 0); | 
|  | SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); | 
|  | SDValue Ops[] = { | 
|  | Chain, StackSlot, DAG.getValueType(TheVT) | 
|  | }; | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), | 
|  | MachineMemOperand::MOLoad, MemSize, MemSize); | 
|  | Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, | 
|  | array_lengthof(Ops), DstTy, MMO); | 
|  | Chain = Value.getValue(1); | 
|  | SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); | 
|  | StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | } | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), | 
|  | MachineMemOperand::MOStore, MemSize, MemSize); | 
|  |  | 
|  | if (Opc != X86ISD::WIN_FTOL) { | 
|  | // Build the FP_TO_INT*_IN_MEM | 
|  | SDValue Ops[] = { Chain, Value, StackSlot }; | 
|  | SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other), | 
|  | Ops, array_lengthof(Ops), DstTy, | 
|  | MMO); | 
|  | return std::make_pair(FIST, StackSlot); | 
|  | } else { | 
|  | SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL, | 
|  | DAG.getVTList(MVT::Other, MVT::Glue), | 
|  | Chain, Value); | 
|  | SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX, | 
|  | MVT::i32, ftol.getValue(1)); | 
|  | SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX, | 
|  | MVT::i32, eax.getValue(2)); | 
|  | SDValue Ops[] = { eax, edx }; | 
|  | SDValue pair = IsReplace | 
|  | ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, array_lengthof(Ops)) | 
|  | : DAG.getMergeValues(Ops, array_lengthof(Ops), DL); | 
|  | return std::make_pair(pair, SDValue()); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | MVT VT = Op->getSimpleValueType(0); | 
|  | SDValue In = Op->getOperand(0); | 
|  | MVT InVT = In.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | // Optimize vectors in AVX mode: | 
|  | // | 
|  | //   v8i16 -> v8i32 | 
|  | //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32. | 
|  | //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32. | 
|  | //   Concat upper and lower parts. | 
|  | // | 
|  | //   v4i32 -> v4i64 | 
|  | //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64. | 
|  | //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64. | 
|  | //   Concat upper and lower parts. | 
|  | // | 
|  |  | 
|  | if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) && | 
|  | ((VT != MVT::v8i32) || (InVT != MVT::v8i16)) && | 
|  | ((VT != MVT::v4i64) || (InVT != MVT::v4i32))) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Subtarget->hasInt256()) | 
|  | return DAG.getNode(X86ISD::VZEXT, dl, VT, In); | 
|  |  | 
|  | SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl); | 
|  | SDValue Undef = DAG.getUNDEF(InVT); | 
|  | bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND; | 
|  | SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); | 
|  | SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); | 
|  |  | 
|  | MVT HVT = MVT::getVectorVT(VT.getVectorElementType(), | 
|  | VT.getVectorNumElements()/2); | 
|  |  | 
|  | OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo); | 
|  | OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi); | 
|  |  | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); | 
|  | } | 
|  |  | 
|  | static  SDValue LowerZERO_EXTEND_AVX512(SDValue Op, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = Op->getSimpleValueType(0); | 
|  | SDValue In = Op->getOperand(0); | 
|  | MVT InVT = In.getSimpleValueType(); | 
|  | SDLoc DL(Op); | 
|  | unsigned int NumElts = VT.getVectorNumElements(); | 
|  | if (NumElts != 8 && NumElts != 16) | 
|  | return SDValue(); | 
|  |  | 
|  | if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1) | 
|  | return DAG.getNode(X86ISD::VZEXT, DL, VT, In); | 
|  |  | 
|  | EVT ExtVT = (NumElts == 8)? MVT::v8i64 : MVT::v16i32; | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | // Now we have only mask extension | 
|  | assert(InVT.getVectorElementType() == MVT::i1); | 
|  | SDValue Cst = DAG.getTargetConstant(1, ExtVT.getScalarType()); | 
|  | const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue(); | 
|  | SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy()); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment(); | 
|  | SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, false, Alignment); | 
|  |  | 
|  | SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, DL, ExtVT, In, Ld); | 
|  | if (VT.is512BitVector()) | 
|  | return Brcst; | 
|  | return DAG.getNode(X86ISD::VTRUNC, DL, VT, Brcst); | 
|  | } | 
|  |  | 
|  | static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | if (Subtarget->hasFp256()) { | 
|  | SDValue Res = LowerAVXExtend(Op, DAG, Subtarget); | 
|  | if (Res.getNode()) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDValue In = Op.getOperand(0); | 
|  | MVT SVT = In.getSimpleValueType(); | 
|  |  | 
|  | if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1) | 
|  | return LowerZERO_EXTEND_AVX512(Op, DAG); | 
|  |  | 
|  | if (Subtarget->hasFp256()) { | 
|  | SDValue Res = LowerAVXExtend(Op, DAG, Subtarget); | 
|  | if (Res.getNode()) | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | assert(!VT.is256BitVector() || !SVT.is128BitVector() || | 
|  | VT.getVectorNumElements() != SVT.getVectorNumElements()); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDValue In = Op.getOperand(0); | 
|  | MVT InVT = In.getSimpleValueType(); | 
|  |  | 
|  | if (VT == MVT::i1) { | 
|  | assert((InVT.isInteger() && (InVT.getSizeInBits() <= 64)) && | 
|  | "Invalid scalar TRUNCATE operation"); | 
|  | if (InVT == MVT::i32) | 
|  | return SDValue(); | 
|  | if (InVT.getSizeInBits() == 64) | 
|  | In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::i32, In); | 
|  | else if (InVT.getSizeInBits() < 32) | 
|  | In = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, In); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, VT, In); | 
|  | } | 
|  | assert(VT.getVectorNumElements() == InVT.getVectorNumElements() && | 
|  | "Invalid TRUNCATE operation"); | 
|  |  | 
|  | if (InVT.is512BitVector() || VT.getVectorElementType() == MVT::i1) { | 
|  | if (VT.getVectorElementType().getSizeInBits() >=8) | 
|  | return DAG.getNode(X86ISD::VTRUNC, DL, VT, In); | 
|  |  | 
|  | assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type"); | 
|  | unsigned NumElts = InVT.getVectorNumElements(); | 
|  | assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type"); | 
|  | if (InVT.getSizeInBits() < 512) { | 
|  | MVT ExtVT = (NumElts == 16)? MVT::v16i32 : MVT::v8i64; | 
|  | In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In); | 
|  | InVT = ExtVT; | 
|  | } | 
|  |  | 
|  | SDValue Cst = DAG.getTargetConstant(1, InVT.getVectorElementType()); | 
|  | const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue(); | 
|  | SDValue CP = DAG.getConstantPool(C, getPointerTy()); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment(); | 
|  | SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, false, Alignment); | 
|  | SDValue OneV = DAG.getNode(X86ISD::VBROADCAST, DL, InVT, Ld); | 
|  | SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In); | 
|  | return DAG.getNode(X86ISD::TESTM, DL, VT, And, And); | 
|  | } | 
|  |  | 
|  | if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) { | 
|  | // On AVX2, v4i64 -> v4i32 becomes VPERMD. | 
|  | if (Subtarget->hasInt256()) { | 
|  | static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1}; | 
|  | In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In); | 
|  | In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32), | 
|  | ShufMask); | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } | 
|  |  | 
|  | SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, | 
|  | DAG.getIntPtrConstant(2)); | 
|  | OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo); | 
|  | OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi); | 
|  | static const int ShufMask[] = {0, 2, 4, 6}; | 
|  | return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask); | 
|  | } | 
|  |  | 
|  | if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) { | 
|  | // On AVX2, v8i32 -> v8i16 becomed PSHUFB. | 
|  | if (Subtarget->hasInt256()) { | 
|  | In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In); | 
|  |  | 
|  | SmallVector<SDValue,32> pshufbMask; | 
|  | for (unsigned i = 0; i < 2; ++i) { | 
|  | pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8)); | 
|  | pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8)); | 
|  | for (unsigned j = 0; j < 8; ++j) | 
|  | pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); | 
|  | } | 
|  | SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, | 
|  | &pshufbMask[0], 32); | 
|  | In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV); | 
|  | In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In); | 
|  |  | 
|  | static const int ShufMask[] = {0,  2,  -1,  -1}; | 
|  | In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64), | 
|  | &ShufMask[0]); | 
|  | In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, In); | 
|  | } | 
|  |  | 
|  | SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, | 
|  | DAG.getIntPtrConstant(0)); | 
|  |  | 
|  | SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, | 
|  | DAG.getIntPtrConstant(4)); | 
|  |  | 
|  | OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo); | 
|  | OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi); | 
|  |  | 
|  | // The PSHUFB mask: | 
|  | static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1}; | 
|  |  | 
|  | SDValue Undef = DAG.getUNDEF(MVT::v16i8); | 
|  | OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1); | 
|  | OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1); | 
|  |  | 
|  | OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo); | 
|  | OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi); | 
|  |  | 
|  | // The MOVLHPS Mask: | 
|  | static const int ShufMask2[] = {0, 1, 4, 5}; | 
|  | SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2); | 
|  | return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res); | 
|  | } | 
|  |  | 
|  | // Handle truncation of V256 to V128 using shuffles. | 
|  | if (!VT.is128BitVector() || !InVT.is256BitVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | assert(Subtarget->hasFp256() && "256-bit vector without AVX!"); | 
|  |  | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2); | 
|  |  | 
|  | SmallVector<int, 16> MaskVec(NumElems * 2, -1); | 
|  | // Prepare truncation shuffle mask | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | MaskVec[i] = i * 2; | 
|  | SDValue V = DAG.getVectorShuffle(NVT, DL, | 
|  | DAG.getNode(ISD::BITCAST, DL, NVT, In), | 
|  | DAG.getUNDEF(NVT), &MaskVec[0]); | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(!Op.getSimpleValueType().isVector()); | 
|  |  | 
|  | std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, | 
|  | /*IsSigned=*/ true, /*IsReplace=*/ false); | 
|  | SDValue FIST = Vals.first, StackSlot = Vals.second; | 
|  | // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. | 
|  | if (FIST.getNode() == 0) return Op; | 
|  |  | 
|  | if (StackSlot.getNode()) | 
|  | // Load the result. | 
|  | return DAG.getLoad(Op.getValueType(), SDLoc(Op), | 
|  | FIST, StackSlot, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  |  | 
|  | // The node is the result. | 
|  | return FIST; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, | 
|  | /*IsSigned=*/ false, /*IsReplace=*/ false); | 
|  | SDValue FIST = Vals.first, StackSlot = Vals.second; | 
|  | assert(FIST.getNode() && "Unexpected failure"); | 
|  |  | 
|  | if (StackSlot.getNode()) | 
|  | // Load the result. | 
|  | return DAG.getLoad(Op.getValueType(), SDLoc(Op), | 
|  | FIST, StackSlot, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  |  | 
|  | // The node is the result. | 
|  | return FIST; | 
|  | } | 
|  |  | 
|  | static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDValue In = Op.getOperand(0); | 
|  | MVT SVT = In.getSimpleValueType(); | 
|  |  | 
|  | assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!"); | 
|  |  | 
|  | return DAG.getNode(X86ISD::VFPEXT, DL, VT, | 
|  | DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32, | 
|  | In, DAG.getUNDEF(SVT))); | 
|  | } | 
|  |  | 
|  | static SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) { | 
|  | LLVMContext *Context = DAG.getContext(); | 
|  | SDLoc dl(Op); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | MVT EltVT = VT; | 
|  | unsigned NumElts = VT == MVT::f64 ? 2 : 4; | 
|  | if (VT.isVector()) { | 
|  | EltVT = VT.getVectorElementType(); | 
|  | NumElts = VT.getVectorNumElements(); | 
|  | } | 
|  | Constant *C; | 
|  | if (EltVT == MVT::f64) | 
|  | C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, | 
|  | APInt(64, ~(1ULL << 63)))); | 
|  | else | 
|  | C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle, | 
|  | APInt(32, ~(1U << 31)))); | 
|  | C = ConstantVector::getSplat(NumElts, C); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy()); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); | 
|  | SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, false, Alignment); | 
|  | if (VT.isVector()) { | 
|  | MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64; | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, | 
|  | DAG.getNode(ISD::AND, dl, ANDVT, | 
|  | DAG.getNode(ISD::BITCAST, dl, ANDVT, | 
|  | Op.getOperand(0)), | 
|  | DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask))); | 
|  | } | 
|  | return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask); | 
|  | } | 
|  |  | 
|  | static SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) { | 
|  | LLVMContext *Context = DAG.getContext(); | 
|  | SDLoc dl(Op); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | MVT EltVT = VT; | 
|  | unsigned NumElts = VT == MVT::f64 ? 2 : 4; | 
|  | if (VT.isVector()) { | 
|  | EltVT = VT.getVectorElementType(); | 
|  | NumElts = VT.getVectorNumElements(); | 
|  | } | 
|  | Constant *C; | 
|  | if (EltVT == MVT::f64) | 
|  | C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, | 
|  | APInt(64, 1ULL << 63))); | 
|  | else | 
|  | C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle, | 
|  | APInt(32, 1U << 31))); | 
|  | C = ConstantVector::getSplat(NumElts, C); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy()); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); | 
|  | SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, false, Alignment); | 
|  | if (VT.isVector()) { | 
|  | MVT XORVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits()/64); | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, | 
|  | DAG.getNode(ISD::XOR, dl, XORVT, | 
|  | DAG.getNode(ISD::BITCAST, dl, XORVT, | 
|  | Op.getOperand(0)), | 
|  | DAG.getNode(ISD::BITCAST, dl, XORVT, Mask))); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask); | 
|  | } | 
|  |  | 
|  | static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | LLVMContext *Context = DAG.getContext(); | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDLoc dl(Op); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | MVT SrcVT = Op1.getSimpleValueType(); | 
|  |  | 
|  | // If second operand is smaller, extend it first. | 
|  | if (SrcVT.bitsLT(VT)) { | 
|  | Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1); | 
|  | SrcVT = VT; | 
|  | } | 
|  | // And if it is bigger, shrink it first. | 
|  | if (SrcVT.bitsGT(VT)) { | 
|  | Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1)); | 
|  | SrcVT = VT; | 
|  | } | 
|  |  | 
|  | // At this point the operands and the result should have the same | 
|  | // type, and that won't be f80 since that is not custom lowered. | 
|  |  | 
|  | // First get the sign bit of second operand. | 
|  | SmallVector<Constant*,4> CV; | 
|  | if (SrcVT == MVT::f64) { | 
|  | const fltSemantics &Sem = APFloat::IEEEdouble; | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63)))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0)))); | 
|  | } else { | 
|  | const fltSemantics &Sem = APFloat::IEEEsingle; | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31)))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); | 
|  | } | 
|  | Constant *C = ConstantVector::get(CV); | 
|  | SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16); | 
|  | SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, false, 16); | 
|  | SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1); | 
|  |  | 
|  | // Shift sign bit right or left if the two operands have different types. | 
|  | if (SrcVT.bitsGT(VT)) { | 
|  | // Op0 is MVT::f32, Op1 is MVT::f64. | 
|  | SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit); | 
|  | SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit, | 
|  | DAG.getConstant(32, MVT::i32)); | 
|  | SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit); | 
|  | SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } | 
|  |  | 
|  | // Clear first operand sign bit. | 
|  | CV.clear(); | 
|  | if (VT == MVT::f64) { | 
|  | const fltSemantics &Sem = APFloat::IEEEdouble; | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(Sem, | 
|  | APInt(64, ~(1ULL << 63))))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0)))); | 
|  | } else { | 
|  | const fltSemantics &Sem = APFloat::IEEEsingle; | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(Sem, | 
|  | APInt(32, ~(1U << 31))))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); | 
|  | CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); | 
|  | } | 
|  | C = ConstantVector::get(CV); | 
|  | CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16); | 
|  | SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, false, 16); | 
|  | SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2); | 
|  |  | 
|  | // Or the value with the sign bit. | 
|  | return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit); | 
|  | } | 
|  |  | 
|  | static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) { | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDLoc dl(Op); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1). | 
|  | SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0, | 
|  | DAG.getConstant(1, VT)); | 
|  | return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT)); | 
|  | } | 
|  |  | 
|  | // LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able. | 
|  | // | 
|  | static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree."); | 
|  |  | 
|  | if (!Subtarget->hasSSE41()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!Op->hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDNode *N = Op.getNode(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | SmallVector<SDValue, 8> Opnds; | 
|  | DenseMap<SDValue, unsigned> VecInMap; | 
|  | SmallVector<SDValue, 8> VecIns; | 
|  | EVT VT = MVT::Other; | 
|  |  | 
|  | // Recognize a special case where a vector is casted into wide integer to | 
|  | // test all 0s. | 
|  | Opnds.push_back(N->getOperand(0)); | 
|  | Opnds.push_back(N->getOperand(1)); | 
|  |  | 
|  | for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) { | 
|  | SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot; | 
|  | // BFS traverse all OR'd operands. | 
|  | if (I->getOpcode() == ISD::OR) { | 
|  | Opnds.push_back(I->getOperand(0)); | 
|  | Opnds.push_back(I->getOperand(1)); | 
|  | // Re-evaluate the number of nodes to be traversed. | 
|  | e += 2; // 2 more nodes (LHS and RHS) are pushed. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Quit if a non-EXTRACT_VECTOR_ELT | 
|  | if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT) | 
|  | return SDValue(); | 
|  |  | 
|  | // Quit if without a constant index. | 
|  | SDValue Idx = I->getOperand(1); | 
|  | if (!isa<ConstantSDNode>(Idx)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue ExtractedFromVec = I->getOperand(0); | 
|  | DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec); | 
|  | if (M == VecInMap.end()) { | 
|  | VT = ExtractedFromVec.getValueType(); | 
|  | // Quit if not 128/256-bit vector. | 
|  | if (!VT.is128BitVector() && !VT.is256BitVector()) | 
|  | return SDValue(); | 
|  | // Quit if not the same type. | 
|  | if (VecInMap.begin() != VecInMap.end() && | 
|  | VT != VecInMap.begin()->first.getValueType()) | 
|  | return SDValue(); | 
|  | M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first; | 
|  | VecIns.push_back(ExtractedFromVec); | 
|  | } | 
|  | M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  | } | 
|  |  | 
|  | assert((VT.is128BitVector() || VT.is256BitVector()) && | 
|  | "Not extracted from 128-/256-bit vector."); | 
|  |  | 
|  | unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U; | 
|  |  | 
|  | for (DenseMap<SDValue, unsigned>::const_iterator | 
|  | I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) { | 
|  | // Quit if not all elements are used. | 
|  | if (I->second != FullMask) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64; | 
|  |  | 
|  | // Cast all vectors into TestVT for PTEST. | 
|  | for (unsigned i = 0, e = VecIns.size(); i < e; ++i) | 
|  | VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]); | 
|  |  | 
|  | // If more than one full vectors are evaluated, OR them first before PTEST. | 
|  | for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) { | 
|  | // Each iteration will OR 2 nodes and append the result until there is only | 
|  | // 1 node left, i.e. the final OR'd value of all vectors. | 
|  | SDValue LHS = VecIns[Slot]; | 
|  | SDValue RHS = VecIns[Slot + 1]; | 
|  | VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS)); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(X86ISD::PTEST, DL, MVT::i32, | 
|  | VecIns.back(), VecIns.back()); | 
|  | } | 
|  |  | 
|  | /// Emit nodes that will be selected as "test Op0,Op0", or something | 
|  | /// equivalent. | 
|  | SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | if (Op.getValueType() == MVT::i1) | 
|  | // KORTEST instruction should be selected | 
|  | return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, | 
|  | DAG.getConstant(0, Op.getValueType())); | 
|  |  | 
|  | // CF and OF aren't always set the way we want. Determine which | 
|  | // of these we need. | 
|  | bool NeedCF = false; | 
|  | bool NeedOF = false; | 
|  | switch (X86CC) { | 
|  | default: break; | 
|  | case X86::COND_A: case X86::COND_AE: | 
|  | case X86::COND_B: case X86::COND_BE: | 
|  | NeedCF = true; | 
|  | break; | 
|  | case X86::COND_G: case X86::COND_GE: | 
|  | case X86::COND_L: case X86::COND_LE: | 
|  | case X86::COND_O: case X86::COND_NO: | 
|  | NeedOF = true; | 
|  | break; | 
|  | } | 
|  | // See if we can use the EFLAGS value from the operand instead of | 
|  | // doing a separate TEST. TEST always sets OF and CF to 0, so unless | 
|  | // we prove that the arithmetic won't overflow, we can't use OF or CF. | 
|  | if (Op.getResNo() != 0 || NeedOF || NeedCF) { | 
|  | // Emit a CMP with 0, which is the TEST pattern. | 
|  | //if (Op.getValueType() == MVT::i1) | 
|  | //  return DAG.getNode(X86ISD::CMP, dl, MVT::i1, Op, | 
|  | //                     DAG.getConstant(0, MVT::i1)); | 
|  | return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, | 
|  | DAG.getConstant(0, Op.getValueType())); | 
|  | } | 
|  | unsigned Opcode = 0; | 
|  | unsigned NumOperands = 0; | 
|  |  | 
|  | // Truncate operations may prevent the merge of the SETCC instruction | 
|  | // and the arithmetic instruction before it. Attempt to truncate the operands | 
|  | // of the arithmetic instruction and use a reduced bit-width instruction. | 
|  | bool NeedTruncation = false; | 
|  | SDValue ArithOp = Op; | 
|  | if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) { | 
|  | SDValue Arith = Op->getOperand(0); | 
|  | // Both the trunc and the arithmetic op need to have one user each. | 
|  | if (Arith->hasOneUse()) | 
|  | switch (Arith.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: { | 
|  | NeedTruncation = true; | 
|  | ArithOp = Arith; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // NOTICE: In the code below we use ArithOp to hold the arithmetic operation | 
|  | // which may be the result of a CAST.  We use the variable 'Op', which is the | 
|  | // non-casted variable when we check for possible users. | 
|  | switch (ArithOp.getOpcode()) { | 
|  | case ISD::ADD: | 
|  | // Due to an isel shortcoming, be conservative if this add is likely to be | 
|  | // selected as part of a load-modify-store instruction. When the root node | 
|  | // in a match is a store, isel doesn't know how to remap non-chain non-flag | 
|  | // uses of other nodes in the match, such as the ADD in this case. This | 
|  | // leads to the ADD being left around and reselected, with the result being | 
|  | // two adds in the output.  Alas, even if none our users are stores, that | 
|  | // doesn't prove we're O.K.  Ergo, if we have any parents that aren't | 
|  | // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require | 
|  | // climbing the DAG back to the root, and it doesn't seem to be worth the | 
|  | // effort. | 
|  | for (SDNode::use_iterator UI = Op.getNode()->use_begin(), | 
|  | UE = Op.getNode()->use_end(); UI != UE; ++UI) | 
|  | if (UI->getOpcode() != ISD::CopyToReg && | 
|  | UI->getOpcode() != ISD::SETCC && | 
|  | UI->getOpcode() != ISD::STORE) | 
|  | goto default_case; | 
|  |  | 
|  | if (ConstantSDNode *C = | 
|  | dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) { | 
|  | // An add of one will be selected as an INC. | 
|  | if (C->getAPIntValue() == 1) { | 
|  | Opcode = X86ISD::INC; | 
|  | NumOperands = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // An add of negative one (subtract of one) will be selected as a DEC. | 
|  | if (C->getAPIntValue().isAllOnesValue()) { | 
|  | Opcode = X86ISD::DEC; | 
|  | NumOperands = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise use a regular EFLAGS-setting add. | 
|  | Opcode = X86ISD::ADD; | 
|  | NumOperands = 2; | 
|  | break; | 
|  | case ISD::AND: { | 
|  | // If the primary and result isn't used, don't bother using X86ISD::AND, | 
|  | // because a TEST instruction will be better. | 
|  | bool NonFlagUse = false; | 
|  | for (SDNode::use_iterator UI = Op.getNode()->use_begin(), | 
|  | UE = Op.getNode()->use_end(); UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | unsigned UOpNo = UI.getOperandNo(); | 
|  | if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) { | 
|  | // Look pass truncate. | 
|  | UOpNo = User->use_begin().getOperandNo(); | 
|  | User = *User->use_begin(); | 
|  | } | 
|  |  | 
|  | if (User->getOpcode() != ISD::BRCOND && | 
|  | User->getOpcode() != ISD::SETCC && | 
|  | !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) { | 
|  | NonFlagUse = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!NonFlagUse) | 
|  | break; | 
|  | } | 
|  | // FALL THROUGH | 
|  | case ISD::SUB: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | // Due to the ISEL shortcoming noted above, be conservative if this op is | 
|  | // likely to be selected as part of a load-modify-store instruction. | 
|  | for (SDNode::use_iterator UI = Op.getNode()->use_begin(), | 
|  | UE = Op.getNode()->use_end(); UI != UE; ++UI) | 
|  | if (UI->getOpcode() == ISD::STORE) | 
|  | goto default_case; | 
|  |  | 
|  | // Otherwise use a regular EFLAGS-setting instruction. | 
|  | switch (ArithOp.getOpcode()) { | 
|  | default: llvm_unreachable("unexpected operator!"); | 
|  | case ISD::SUB: Opcode = X86ISD::SUB; break; | 
|  | case ISD::XOR: Opcode = X86ISD::XOR; break; | 
|  | case ISD::AND: Opcode = X86ISD::AND; break; | 
|  | case ISD::OR: { | 
|  | if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) { | 
|  | SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG); | 
|  | if (EFLAGS.getNode()) | 
|  | return EFLAGS; | 
|  | } | 
|  | Opcode = X86ISD::OR; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | NumOperands = 2; | 
|  | break; | 
|  | case X86ISD::ADD: | 
|  | case X86ISD::SUB: | 
|  | case X86ISD::INC: | 
|  | case X86ISD::DEC: | 
|  | case X86ISD::OR: | 
|  | case X86ISD::XOR: | 
|  | case X86ISD::AND: | 
|  | return SDValue(Op.getNode(), 1); | 
|  | default: | 
|  | default_case: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we found that truncation is beneficial, perform the truncation and | 
|  | // update 'Op'. | 
|  | if (NeedTruncation) { | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue WideVal = Op->getOperand(0); | 
|  | EVT WideVT = WideVal.getValueType(); | 
|  | unsigned ConvertedOp = 0; | 
|  | // Use a target machine opcode to prevent further DAGCombine | 
|  | // optimizations that may separate the arithmetic operations | 
|  | // from the setcc node. | 
|  | switch (WideVal.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::ADD: ConvertedOp = X86ISD::ADD; break; | 
|  | case ISD::SUB: ConvertedOp = X86ISD::SUB; break; | 
|  | case ISD::AND: ConvertedOp = X86ISD::AND; break; | 
|  | case ISD::OR:  ConvertedOp = X86ISD::OR;  break; | 
|  | case ISD::XOR: ConvertedOp = X86ISD::XOR; break; | 
|  | } | 
|  |  | 
|  | if (ConvertedOp) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) { | 
|  | SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0)); | 
|  | SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1)); | 
|  | Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Opcode == 0) | 
|  | // Emit a CMP with 0, which is the TEST pattern. | 
|  | return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, | 
|  | DAG.getConstant(0, Op.getValueType())); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | for (unsigned i = 0; i != NumOperands; ++i) | 
|  | Ops.push_back(Op.getOperand(i)); | 
|  |  | 
|  | SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands); | 
|  | DAG.ReplaceAllUsesWith(Op, New); | 
|  | return SDValue(New.getNode(), 1); | 
|  | } | 
|  |  | 
|  | /// Emit nodes that will be selected as "cmp Op0,Op1", or something | 
|  | /// equivalent. | 
|  | SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op0); | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1)) { | 
|  | if (C->getAPIntValue() == 0) | 
|  | return EmitTest(Op0, X86CC, DAG); | 
|  |  | 
|  | if (Op0.getValueType() == MVT::i1) | 
|  | llvm_unreachable("Unexpected comparison operation for MVT::i1 operands"); | 
|  | } | 
|  |  | 
|  | if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 || | 
|  | Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) { | 
|  | // Do the comparison at i32 if it's smaller, besides the Atom case. | 
|  | // This avoids subregister aliasing issues. Keep the smaller reference | 
|  | // if we're optimizing for size, however, as that'll allow better folding | 
|  | // of memory operations. | 
|  | if (Op0.getValueType() != MVT::i32 && Op0.getValueType() != MVT::i64 && | 
|  | !DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute( | 
|  | AttributeSet::FunctionIndex, Attribute::MinSize) && | 
|  | !Subtarget->isAtom()) { | 
|  | unsigned ExtendOp = | 
|  | isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; | 
|  | Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0); | 
|  | Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1); | 
|  | } | 
|  | // Use SUB instead of CMP to enable CSE between SUB and CMP. | 
|  | SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32); | 
|  | SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs, | 
|  | Op0, Op1); | 
|  | return SDValue(Sub.getNode(), 1); | 
|  | } | 
|  | return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1); | 
|  | } | 
|  |  | 
|  | /// Convert a comparison if required by the subtarget. | 
|  | SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp, | 
|  | SelectionDAG &DAG) const { | 
|  | // If the subtarget does not support the FUCOMI instruction, floating-point | 
|  | // comparisons have to be converted. | 
|  | if (Subtarget->hasCMov() || | 
|  | Cmp.getOpcode() != X86ISD::CMP || | 
|  | !Cmp.getOperand(0).getValueType().isFloatingPoint() || | 
|  | !Cmp.getOperand(1).getValueType().isFloatingPoint()) | 
|  | return Cmp; | 
|  |  | 
|  | // The instruction selector will select an FUCOM instruction instead of | 
|  | // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence | 
|  | // build an SDNode sequence that transfers the result from FPSW into EFLAGS: | 
|  | // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8)))) | 
|  | SDLoc dl(Cmp); | 
|  | SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp); | 
|  | SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW); | 
|  | SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW, | 
|  | DAG.getConstant(8, MVT::i8)); | 
|  | SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl); | 
|  | return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl); | 
|  | } | 
|  |  | 
|  | static bool isAllOnes(SDValue V) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(V); | 
|  | return C && C->isAllOnesValue(); | 
|  | } | 
|  |  | 
|  | /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node | 
|  | /// if it's possible. | 
|  | SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC, | 
|  | SDLoc dl, SelectionDAG &DAG) const { | 
|  | SDValue Op0 = And.getOperand(0); | 
|  | SDValue Op1 = And.getOperand(1); | 
|  | if (Op0.getOpcode() == ISD::TRUNCATE) | 
|  | Op0 = Op0.getOperand(0); | 
|  | if (Op1.getOpcode() == ISD::TRUNCATE) | 
|  | Op1 = Op1.getOperand(0); | 
|  |  | 
|  | SDValue LHS, RHS; | 
|  | if (Op1.getOpcode() == ISD::SHL) | 
|  | std::swap(Op0, Op1); | 
|  | if (Op0.getOpcode() == ISD::SHL) { | 
|  | if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0))) | 
|  | if (And00C->getZExtValue() == 1) { | 
|  | // If we looked past a truncate, check that it's only truncating away | 
|  | // known zeros. | 
|  | unsigned BitWidth = Op0.getValueSizeInBits(); | 
|  | unsigned AndBitWidth = And.getValueSizeInBits(); | 
|  | if (BitWidth > AndBitWidth) { | 
|  | APInt Zeros, Ones; | 
|  | DAG.ComputeMaskedBits(Op0, Zeros, Ones); | 
|  | if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth) | 
|  | return SDValue(); | 
|  | } | 
|  | LHS = Op1; | 
|  | RHS = Op0.getOperand(1); | 
|  | } | 
|  | } else if (Op1.getOpcode() == ISD::Constant) { | 
|  | ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1); | 
|  | uint64_t AndRHSVal = AndRHS->getZExtValue(); | 
|  | SDValue AndLHS = Op0; | 
|  |  | 
|  | if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) { | 
|  | LHS = AndLHS.getOperand(0); | 
|  | RHS = AndLHS.getOperand(1); | 
|  | } | 
|  |  | 
|  | // Use BT if the immediate can't be encoded in a TEST instruction. | 
|  | if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) { | 
|  | LHS = AndLHS; | 
|  | RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LHS.getNode()) { | 
|  | // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT | 
|  | // instruction.  Since the shift amount is in-range-or-undefined, we know | 
|  | // that doing a bittest on the i32 value is ok.  We extend to i32 because | 
|  | // the encoding for the i16 version is larger than the i32 version. | 
|  | // Also promote i16 to i32 for performance / code size reason. | 
|  | if (LHS.getValueType() == MVT::i8 || | 
|  | LHS.getValueType() == MVT::i16) | 
|  | LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS); | 
|  |  | 
|  | // If the operand types disagree, extend the shift amount to match.  Since | 
|  | // BT ignores high bits (like shifts) we can use anyextend. | 
|  | if (LHS.getValueType() != RHS.getValueType()) | 
|  | RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS); | 
|  |  | 
|  | SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS); | 
|  | X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B; | 
|  | return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(Cond, MVT::i8), BT); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point | 
|  | /// mask CMPs. | 
|  | static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0, | 
|  | SDValue &Op1) { | 
|  | unsigned SSECC; | 
|  | bool Swap = false; | 
|  |  | 
|  | // SSE Condition code mapping: | 
|  | //  0 - EQ | 
|  | //  1 - LT | 
|  | //  2 - LE | 
|  | //  3 - UNORD | 
|  | //  4 - NEQ | 
|  | //  5 - NLT | 
|  | //  6 - NLE | 
|  | //  7 - ORD | 
|  | switch (SetCCOpcode) { | 
|  | default: llvm_unreachable("Unexpected SETCC condition"); | 
|  | case ISD::SETOEQ: | 
|  | case ISD::SETEQ:  SSECC = 0; break; | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT:  Swap = true; // Fallthrough | 
|  | case ISD::SETLT: | 
|  | case ISD::SETOLT: SSECC = 1; break; | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE:  Swap = true; // Fallthrough | 
|  | case ISD::SETLE: | 
|  | case ISD::SETOLE: SSECC = 2; break; | 
|  | case ISD::SETUO:  SSECC = 3; break; | 
|  | case ISD::SETUNE: | 
|  | case ISD::SETNE:  SSECC = 4; break; | 
|  | case ISD::SETULE: Swap = true; // Fallthrough | 
|  | case ISD::SETUGE: SSECC = 5; break; | 
|  | case ISD::SETULT: Swap = true; // Fallthrough | 
|  | case ISD::SETUGT: SSECC = 6; break; | 
|  | case ISD::SETO:   SSECC = 7; break; | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETONE: SSECC = 8; break; | 
|  | } | 
|  | if (Swap) | 
|  | std::swap(Op0, Op1); | 
|  |  | 
|  | return SSECC; | 
|  | } | 
|  |  | 
|  | // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128 | 
|  | // ones, and then concatenate the result back. | 
|  | static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC && | 
|  | "Unsupported value type for operation"); | 
|  |  | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SDLoc dl(Op); | 
|  | SDValue CC = Op.getOperand(2); | 
|  |  | 
|  | // Extract the LHS vectors | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); | 
|  | SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); | 
|  |  | 
|  | // Extract the RHS vectors | 
|  | SDValue RHS = Op.getOperand(1); | 
|  | SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl); | 
|  | SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl); | 
|  |  | 
|  | // Issue the operation on the smaller types and concatenate the result back | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, | 
|  | DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC), | 
|  | DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC)); | 
|  | } | 
|  |  | 
|  | static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDValue CC = Op.getOperand(2); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | assert(Op0.getValueType().getVectorElementType().getSizeInBits() >= 32 && | 
|  | Op.getValueType().getScalarType() == MVT::i1 && | 
|  | "Cannot set masked compare for this operation"); | 
|  |  | 
|  | ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); | 
|  | unsigned  Opc = 0; | 
|  | bool Unsigned = false; | 
|  | bool Swap = false; | 
|  | unsigned SSECC; | 
|  | switch (SetCCOpcode) { | 
|  | default: llvm_unreachable("Unexpected SETCC condition"); | 
|  | case ISD::SETNE:  SSECC = 4; break; | 
|  | case ISD::SETEQ:  Opc = X86ISD::PCMPEQM; break; | 
|  | case ISD::SETUGT: SSECC = 6; Unsigned = true; break; | 
|  | case ISD::SETLT:  Swap = true; //fall-through | 
|  | case ISD::SETGT:  Opc = X86ISD::PCMPGTM; break; | 
|  | case ISD::SETULT: SSECC = 1; Unsigned = true; break; | 
|  | case ISD::SETUGE: SSECC = 5; Unsigned = true; break; //NLT | 
|  | case ISD::SETGE:  Swap = true; SSECC = 2; break; // LE + swap | 
|  | case ISD::SETULE: Unsigned = true; //fall-through | 
|  | case ISD::SETLE:  SSECC = 2; break; | 
|  | } | 
|  |  | 
|  | if (Swap) | 
|  | std::swap(Op0, Op1); | 
|  | if (Opc) | 
|  | return DAG.getNode(Opc, dl, VT, Op0, Op1); | 
|  | Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM; | 
|  | return DAG.getNode(Opc, dl, VT, Op0, Op1, | 
|  | DAG.getConstant(SSECC, MVT::i8)); | 
|  | } | 
|  |  | 
|  | /// \brief Try to turn a VSETULT into a VSETULE by modifying its second | 
|  | /// operand \p Op1.  If non-trivial (for example because it's not constant) | 
|  | /// return an empty value. | 
|  | static SDValue ChangeVSETULTtoVSETULE(SDValue Op1, SelectionDAG &DAG) | 
|  | { | 
|  | BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode()); | 
|  | if (!BV) | 
|  | return SDValue(); | 
|  |  | 
|  | MVT VT = Op1.getSimpleValueType(); | 
|  | MVT EVT = VT.getVectorElementType(); | 
|  | unsigned n = VT.getVectorNumElements(); | 
|  | SmallVector<SDValue, 8> ULTOp1; | 
|  |  | 
|  | for (unsigned i = 0; i < n; ++i) { | 
|  | ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i)); | 
|  | if (!Elt || Elt->isOpaque() || Elt->getValueType(0) != EVT) | 
|  | return SDValue(); | 
|  |  | 
|  | // Avoid underflow. | 
|  | APInt Val = Elt->getAPIntValue(); | 
|  | if (Val == 0) | 
|  | return SDValue(); | 
|  |  | 
|  | ULTOp1.push_back(DAG.getConstant(Val - 1, EVT)); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op1), VT, ULTOp1.data(), | 
|  | ULTOp1.size()); | 
|  | } | 
|  |  | 
|  | static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDValue CC = Op.getOperand(2); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); | 
|  | bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | if (isFP) { | 
|  | #ifndef NDEBUG | 
|  | MVT EltVT = Op0.getSimpleValueType().getVectorElementType(); | 
|  | assert(EltVT == MVT::f32 || EltVT == MVT::f64); | 
|  | #endif | 
|  |  | 
|  | unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1); | 
|  | unsigned Opc = X86ISD::CMPP; | 
|  | if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) { | 
|  | assert(VT.getVectorNumElements() <= 16); | 
|  | Opc = X86ISD::CMPM; | 
|  | } | 
|  | // In the two special cases we can't handle, emit two comparisons. | 
|  | if (SSECC == 8) { | 
|  | unsigned CC0, CC1; | 
|  | unsigned CombineOpc; | 
|  | if (SetCCOpcode == ISD::SETUEQ) { | 
|  | CC0 = 3; CC1 = 0; CombineOpc = ISD::OR; | 
|  | } else { | 
|  | assert(SetCCOpcode == ISD::SETONE); | 
|  | CC0 = 7; CC1 = 4; CombineOpc = ISD::AND; | 
|  | } | 
|  |  | 
|  | SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1, | 
|  | DAG.getConstant(CC0, MVT::i8)); | 
|  | SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1, | 
|  | DAG.getConstant(CC1, MVT::i8)); | 
|  | return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1); | 
|  | } | 
|  | // Handle all other FP comparisons here. | 
|  | return DAG.getNode(Opc, dl, VT, Op0, Op1, | 
|  | DAG.getConstant(SSECC, MVT::i8)); | 
|  | } | 
|  |  | 
|  | // Break 256-bit integer vector compare into smaller ones. | 
|  | if (VT.is256BitVector() && !Subtarget->hasInt256()) | 
|  | return Lower256IntVSETCC(Op, DAG); | 
|  |  | 
|  | bool MaskResult = (VT.getVectorElementType() == MVT::i1); | 
|  | EVT OpVT = Op1.getValueType(); | 
|  | if (Subtarget->hasAVX512()) { | 
|  | if (Op1.getValueType().is512BitVector() || | 
|  | (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32)) | 
|  | return LowerIntVSETCC_AVX512(Op, DAG, Subtarget); | 
|  |  | 
|  | // In AVX-512 architecture setcc returns mask with i1 elements, | 
|  | // But there is no compare instruction for i8 and i16 elements. | 
|  | // We are not talking about 512-bit operands in this case, these | 
|  | // types are illegal. | 
|  | if (MaskResult && | 
|  | (OpVT.getVectorElementType().getSizeInBits() < 32 && | 
|  | OpVT.getVectorElementType().getSizeInBits() >= 8)) | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, | 
|  | DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC)); | 
|  | } | 
|  |  | 
|  | // We are handling one of the integer comparisons here.  Since SSE only has | 
|  | // GT and EQ comparisons for integer, swapping operands and multiple | 
|  | // operations may be required for some comparisons. | 
|  | unsigned Opc; | 
|  | bool Swap = false, Invert = false, FlipSigns = false, MinMax = false; | 
|  | bool Subus = false; | 
|  |  | 
|  | switch (SetCCOpcode) { | 
|  | default: llvm_unreachable("Unexpected SETCC condition"); | 
|  | case ISD::SETNE:  Invert = true; | 
|  | case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break; | 
|  | case ISD::SETLT:  Swap = true; | 
|  | case ISD::SETGT:  Opc = X86ISD::PCMPGT; break; | 
|  | case ISD::SETGE:  Swap = true; | 
|  | case ISD::SETLE:  Opc = X86ISD::PCMPGT; | 
|  | Invert = true; break; | 
|  | case ISD::SETULT: Swap = true; | 
|  | case ISD::SETUGT: Opc = X86ISD::PCMPGT; | 
|  | FlipSigns = true; break; | 
|  | case ISD::SETUGE: Swap = true; | 
|  | case ISD::SETULE: Opc = X86ISD::PCMPGT; | 
|  | FlipSigns = true; Invert = true; break; | 
|  | } | 
|  |  | 
|  | // Special case: Use min/max operations for SETULE/SETUGE | 
|  | MVT VET = VT.getVectorElementType(); | 
|  | bool hasMinMax = | 
|  | (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32)) | 
|  | || (Subtarget->hasSSE2()  && (VET == MVT::i8)); | 
|  |  | 
|  | if (hasMinMax) { | 
|  | switch (SetCCOpcode) { | 
|  | default: break; | 
|  | case ISD::SETULE: Opc = X86ISD::UMIN; MinMax = true; break; | 
|  | case ISD::SETUGE: Opc = X86ISD::UMAX; MinMax = true; break; | 
|  | } | 
|  |  | 
|  | if (MinMax) { Swap = false; Invert = false; FlipSigns = false; } | 
|  | } | 
|  |  | 
|  | bool hasSubus = Subtarget->hasSSE2() && (VET == MVT::i8 || VET == MVT::i16); | 
|  | if (!MinMax && hasSubus) { | 
|  | // As another special case, use PSUBUS[BW] when it's profitable. E.g. for | 
|  | // Op0 u<= Op1: | 
|  | //   t = psubus Op0, Op1 | 
|  | //   pcmpeq t, <0..0> | 
|  | switch (SetCCOpcode) { | 
|  | default: break; | 
|  | case ISD::SETULT: { | 
|  | // If the comparison is against a constant we can turn this into a | 
|  | // setule.  With psubus, setule does not require a swap.  This is | 
|  | // beneficial because the constant in the register is no longer | 
|  | // destructed as the destination so it can be hoisted out of a loop. | 
|  | // Only do this pre-AVX since vpcmp* is no longer destructive. | 
|  | if (Subtarget->hasAVX()) | 
|  | break; | 
|  | SDValue ULEOp1 = ChangeVSETULTtoVSETULE(Op1, DAG); | 
|  | if (ULEOp1.getNode()) { | 
|  | Op1 = ULEOp1; | 
|  | Subus = true; Invert = false; Swap = false; | 
|  | } | 
|  | break; | 
|  | } | 
|  | // Psubus is better than flip-sign because it requires no inversion. | 
|  | case ISD::SETUGE: Subus = true; Invert = false; Swap = true;  break; | 
|  | case ISD::SETULE: Subus = true; Invert = false; Swap = false; break; | 
|  | } | 
|  |  | 
|  | if (Subus) { | 
|  | Opc = X86ISD::SUBUS; | 
|  | FlipSigns = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Swap) | 
|  | std::swap(Op0, Op1); | 
|  |  | 
|  | // Check that the operation in question is available (most are plain SSE2, | 
|  | // but PCMPGTQ and PCMPEQQ have different requirements). | 
|  | if (VT == MVT::v2i64) { | 
|  | if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) { | 
|  | assert(Subtarget->hasSSE2() && "Don't know how to lower!"); | 
|  |  | 
|  | // First cast everything to the right type. | 
|  | Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0); | 
|  | Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1); | 
|  |  | 
|  | // Since SSE has no unsigned integer comparisons, we need to flip the sign | 
|  | // bits of the inputs before performing those operations. The lower | 
|  | // compare is always unsigned. | 
|  | SDValue SB; | 
|  | if (FlipSigns) { | 
|  | SB = DAG.getConstant(0x80000000U, MVT::v4i32); | 
|  | } else { | 
|  | SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32); | 
|  | SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32); | 
|  | SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, | 
|  | Sign, Zero, Sign, Zero); | 
|  | } | 
|  | Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB); | 
|  | Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB); | 
|  |  | 
|  | // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2)) | 
|  | SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1); | 
|  | SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1); | 
|  |  | 
|  | // Create masks for only the low parts/high parts of the 64 bit integers. | 
|  | static const int MaskHi[] = { 1, 1, 3, 3 }; | 
|  | static const int MaskLo[] = { 0, 0, 2, 2 }; | 
|  | SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi); | 
|  | SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo); | 
|  | SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi); | 
|  |  | 
|  | SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo); | 
|  | Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi); | 
|  |  | 
|  | if (Invert) | 
|  | Result = DAG.getNOT(dl, Result, MVT::v4i32); | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, Result); | 
|  | } | 
|  |  | 
|  | if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) { | 
|  | // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with | 
|  | // pcmpeqd + pshufd + pand. | 
|  | assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!"); | 
|  |  | 
|  | // First cast everything to the right type. | 
|  | Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0); | 
|  | Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1); | 
|  |  | 
|  | // Do the compare. | 
|  | SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1); | 
|  |  | 
|  | // Make sure the lower and upper halves are both all-ones. | 
|  | static const int Mask[] = { 1, 0, 3, 2 }; | 
|  | SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask); | 
|  | Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf); | 
|  |  | 
|  | if (Invert) | 
|  | Result = DAG.getNOT(dl, Result, MVT::v4i32); | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, Result); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Since SSE has no unsigned integer comparisons, we need to flip the sign | 
|  | // bits of the inputs before performing those operations. | 
|  | if (FlipSigns) { | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT); | 
|  | Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB); | 
|  | Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB); | 
|  | } | 
|  |  | 
|  | SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); | 
|  |  | 
|  | // If the logical-not of the result is required, perform that now. | 
|  | if (Invert) | 
|  | Result = DAG.getNOT(dl, Result, VT); | 
|  |  | 
|  | if (MinMax) | 
|  | Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result); | 
|  |  | 
|  | if (Subus) | 
|  | Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result, | 
|  | getZeroVector(VT, Subtarget, DAG, dl)); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { | 
|  |  | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG); | 
|  |  | 
|  | assert(((!Subtarget->hasAVX512() && VT == MVT::i8) || (VT == MVT::i1)) | 
|  | && "SetCC type must be 8-bit or 1-bit integer"); | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDLoc dl(Op); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  |  | 
|  | // Optimize to BT if possible. | 
|  | // Lower (X & (1 << N)) == 0 to BT(X, N). | 
|  | // Lower ((X >>u N) & 1) != 0 to BT(X, N). | 
|  | // Lower ((X >>s N) & 1) != 0 to BT(X, N). | 
|  | if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && | 
|  | Op1.getOpcode() == ISD::Constant && | 
|  | cast<ConstantSDNode>(Op1)->isNullValue() && | 
|  | (CC == ISD::SETEQ || CC == ISD::SETNE)) { | 
|  | SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG); | 
|  | if (NewSetCC.getNode()) | 
|  | return NewSetCC; | 
|  | } | 
|  |  | 
|  | // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of | 
|  | // these. | 
|  | if (Op1.getOpcode() == ISD::Constant && | 
|  | (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 || | 
|  | cast<ConstantSDNode>(Op1)->isNullValue()) && | 
|  | (CC == ISD::SETEQ || CC == ISD::SETNE)) { | 
|  |  | 
|  | // If the input is a setcc, then reuse the input setcc or use a new one with | 
|  | // the inverted condition. | 
|  | if (Op0.getOpcode() == X86ISD::SETCC) { | 
|  | X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0); | 
|  | bool Invert = (CC == ISD::SETNE) ^ | 
|  | cast<ConstantSDNode>(Op1)->isNullValue(); | 
|  | if (!Invert) | 
|  | return Op0; | 
|  |  | 
|  | CCode = X86::GetOppositeBranchCondition(CCode); | 
|  | SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(CCode, MVT::i8), | 
|  | Op0.getOperand(1)); | 
|  | if (VT == MVT::i1) | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC); | 
|  | return SetCC; | 
|  | } | 
|  | } | 
|  | if ((Op0.getValueType() == MVT::i1) && (Op1.getOpcode() == ISD::Constant) && | 
|  | (cast<ConstantSDNode>(Op1)->getZExtValue() == 1) && | 
|  | (CC == ISD::SETEQ || CC == ISD::SETNE)) { | 
|  |  | 
|  | ISD::CondCode NewCC = ISD::getSetCCInverse(CC, true); | 
|  | return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, MVT::i1), NewCC); | 
|  | } | 
|  |  | 
|  | bool isFP = Op1.getSimpleValueType().isFloatingPoint(); | 
|  | unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG); | 
|  | if (X86CC == X86::COND_INVALID) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG); | 
|  | EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG); | 
|  | SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(X86CC, MVT::i8), EFLAGS); | 
|  | if (VT == MVT::i1) | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC); | 
|  | return SetCC; | 
|  | } | 
|  |  | 
|  | // isX86LogicalCmp - Return true if opcode is a X86 logical comparison. | 
|  | static bool isX86LogicalCmp(SDValue Op) { | 
|  | unsigned Opc = Op.getNode()->getOpcode(); | 
|  | if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI || | 
|  | Opc == X86ISD::SAHF) | 
|  | return true; | 
|  | if (Op.getResNo() == 1 && | 
|  | (Opc == X86ISD::ADD || | 
|  | Opc == X86ISD::SUB || | 
|  | Opc == X86ISD::ADC || | 
|  | Opc == X86ISD::SBB || | 
|  | Opc == X86ISD::SMUL || | 
|  | Opc == X86ISD::UMUL || | 
|  | Opc == X86ISD::INC || | 
|  | Opc == X86ISD::DEC || | 
|  | Opc == X86ISD::OR || | 
|  | Opc == X86ISD::XOR || | 
|  | Opc == X86ISD::AND)) | 
|  | return true; | 
|  |  | 
|  | if (Op.getResNo() == 2 && Opc == X86ISD::UMUL) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isZero(SDValue V) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(V); | 
|  | return C && C->isNullValue(); | 
|  | } | 
|  |  | 
|  | static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) { | 
|  | if (V.getOpcode() != ISD::TRUNCATE) | 
|  | return false; | 
|  |  | 
|  | SDValue VOp0 = V.getOperand(0); | 
|  | unsigned InBits = VOp0.getValueSizeInBits(); | 
|  | unsigned Bits = V.getValueSizeInBits(); | 
|  | return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits)); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { | 
|  | bool addTest = true; | 
|  | SDValue Cond  = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDValue Op2 = Op.getOperand(2); | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op1.getValueType(); | 
|  | SDValue CC; | 
|  |  | 
|  | // Lower fp selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops | 
|  | // are available. Otherwise fp cmovs get lowered into a less efficient branch | 
|  | // sequence later on. | 
|  | if (Cond.getOpcode() == ISD::SETCC && | 
|  | ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) || | 
|  | (Subtarget->hasSSE1() && VT == MVT::f32)) && | 
|  | VT == Cond.getOperand(0).getValueType() && Cond->hasOneUse()) { | 
|  | SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1); | 
|  | int SSECC = translateX86FSETCC( | 
|  | cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1); | 
|  |  | 
|  | if (SSECC != 8) { | 
|  | if (Subtarget->hasAVX512()) { | 
|  | SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CondOp0, CondOp1, | 
|  | DAG.getConstant(SSECC, MVT::i8)); | 
|  | return DAG.getNode(X86ISD::SELECT, DL, VT, Cmp, Op1, Op2); | 
|  | } | 
|  | SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1, | 
|  | DAG.getConstant(SSECC, MVT::i8)); | 
|  | SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2); | 
|  | SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1); | 
|  | return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Cond.getOpcode() == ISD::SETCC) { | 
|  | SDValue NewCond = LowerSETCC(Cond, DAG); | 
|  | if (NewCond.getNode()) | 
|  | Cond = NewCond; | 
|  | } | 
|  |  | 
|  | // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y | 
|  | // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y | 
|  | // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y | 
|  | // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y | 
|  | if (Cond.getOpcode() == X86ISD::SETCC && | 
|  | Cond.getOperand(1).getOpcode() == X86ISD::CMP && | 
|  | isZero(Cond.getOperand(1).getOperand(1))) { | 
|  | SDValue Cmp = Cond.getOperand(1); | 
|  |  | 
|  | unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue(); | 
|  |  | 
|  | if ((isAllOnes(Op1) || isAllOnes(Op2)) && | 
|  | (CondCode == X86::COND_E || CondCode == X86::COND_NE)) { | 
|  | SDValue Y = isAllOnes(Op2) ? Op1 : Op2; | 
|  |  | 
|  | SDValue CmpOp0 = Cmp.getOperand(0); | 
|  | // Apply further optimizations for special cases | 
|  | // (select (x != 0), -1, 0) -> neg & sbb | 
|  | // (select (x == 0), 0, -1) -> neg & sbb | 
|  | if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y)) | 
|  | if (YC->isNullValue() && | 
|  | (isAllOnes(Op1) == (CondCode == X86::COND_NE))) { | 
|  | SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32); | 
|  | SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs, | 
|  | DAG.getConstant(0, CmpOp0.getValueType()), | 
|  | CmpOp0); | 
|  | SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), | 
|  | DAG.getConstant(X86::COND_B, MVT::i8), | 
|  | SDValue(Neg.getNode(), 1)); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, | 
|  | CmpOp0, DAG.getConstant(1, CmpOp0.getValueType())); | 
|  | Cmp = ConvertCmpIfNecessary(Cmp, DAG); | 
|  |  | 
|  | SDValue Res =   // Res = 0 or -1. | 
|  | DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), | 
|  | DAG.getConstant(X86::COND_B, MVT::i8), Cmp); | 
|  |  | 
|  | if (isAllOnes(Op1) != (CondCode == X86::COND_E)) | 
|  | Res = DAG.getNOT(DL, Res, Res.getValueType()); | 
|  |  | 
|  | ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2); | 
|  | if (N2C == 0 || !N2C->isNullValue()) | 
|  | Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y); | 
|  | return Res; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Look past (and (setcc_carry (cmp ...)), 1). | 
|  | if (Cond.getOpcode() == ISD::AND && | 
|  | Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); | 
|  | if (C && C->getAPIntValue() == 1) | 
|  | Cond = Cond.getOperand(0); | 
|  | } | 
|  |  | 
|  | // If condition flag is set by a X86ISD::CMP, then use it as the condition | 
|  | // setting operand in place of the X86ISD::SETCC. | 
|  | unsigned CondOpcode = Cond.getOpcode(); | 
|  | if (CondOpcode == X86ISD::SETCC || | 
|  | CondOpcode == X86ISD::SETCC_CARRY) { | 
|  | CC = Cond.getOperand(0); | 
|  |  | 
|  | SDValue Cmp = Cond.getOperand(1); | 
|  | unsigned Opc = Cmp.getOpcode(); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | bool IllegalFPCMov = false; | 
|  | if (VT.isFloatingPoint() && !VT.isVector() && | 
|  | !isScalarFPTypeInSSEReg(VT))  // FPStack? | 
|  | IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue()); | 
|  |  | 
|  | if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) || | 
|  | Opc == X86ISD::BT) { // FIXME | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | } | 
|  | } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || | 
|  | CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || | 
|  | ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && | 
|  | Cond.getOperand(0).getValueType() != MVT::i8)) { | 
|  | SDValue LHS = Cond.getOperand(0); | 
|  | SDValue RHS = Cond.getOperand(1); | 
|  | unsigned X86Opcode; | 
|  | unsigned X86Cond; | 
|  | SDVTList VTs; | 
|  | switch (CondOpcode) { | 
|  | case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; | 
|  | case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; | 
|  | case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; | 
|  | case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; | 
|  | case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; | 
|  | case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; | 
|  | default: llvm_unreachable("unexpected overflowing operator"); | 
|  | } | 
|  | if (CondOpcode == ISD::UMULO) | 
|  | VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), | 
|  | MVT::i32); | 
|  | else | 
|  | VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); | 
|  |  | 
|  | SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS); | 
|  |  | 
|  | if (CondOpcode == ISD::UMULO) | 
|  | Cond = X86Op.getValue(2); | 
|  | else | 
|  | Cond = X86Op.getValue(1); | 
|  |  | 
|  | CC = DAG.getConstant(X86Cond, MVT::i8); | 
|  | addTest = false; | 
|  | } | 
|  |  | 
|  | if (addTest) { | 
|  | // Look pass the truncate if the high bits are known zero. | 
|  | if (isTruncWithZeroHighBitsInput(Cond, DAG)) | 
|  | Cond = Cond.getOperand(0); | 
|  |  | 
|  | // We know the result of AND is compared against zero. Try to match | 
|  | // it to BT. | 
|  | if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { | 
|  | SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG); | 
|  | if (NewSetCC.getNode()) { | 
|  | CC = NewSetCC.getOperand(0); | 
|  | Cond = NewSetCC.getOperand(1); | 
|  | addTest = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (addTest) { | 
|  | CC = DAG.getConstant(X86::COND_NE, MVT::i8); | 
|  | Cond = EmitTest(Cond, X86::COND_NE, DAG); | 
|  | } | 
|  |  | 
|  | // a <  b ? -1 :  0 -> RES = ~setcc_carry | 
|  | // a <  b ?  0 : -1 -> RES = setcc_carry | 
|  | // a >= b ? -1 :  0 -> RES = setcc_carry | 
|  | // a >= b ?  0 : -1 -> RES = ~setcc_carry | 
|  | if (Cond.getOpcode() == X86ISD::SUB) { | 
|  | Cond = ConvertCmpIfNecessary(Cond, DAG); | 
|  | unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue(); | 
|  |  | 
|  | if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) && | 
|  | (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) { | 
|  | SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), | 
|  | DAG.getConstant(X86::COND_B, MVT::i8), Cond); | 
|  | if (isAllOnes(Op1) != (CondCode == X86::COND_B)) | 
|  | return DAG.getNOT(DL, Res, Res.getValueType()); | 
|  | return Res; | 
|  | } | 
|  | } | 
|  |  | 
|  | // X86 doesn't have an i8 cmov. If both operands are the result of a truncate | 
|  | // widen the cmov and push the truncate through. This avoids introducing a new | 
|  | // branch during isel and doesn't add any extensions. | 
|  | if (Op.getValueType() == MVT::i8 && | 
|  | Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) { | 
|  | SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0); | 
|  | if (T1.getValueType() == T2.getValueType() && | 
|  | // Blacklist CopyFromReg to avoid partial register stalls. | 
|  | T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){ | 
|  | SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue); | 
|  | SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov); | 
|  | } | 
|  | } | 
|  |  | 
|  | // X86ISD::CMOV means set the result (which is operand 1) to the RHS if | 
|  | // condition is true. | 
|  | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); | 
|  | SDValue Ops[] = { Op2, Op1, CC, Cond }; | 
|  | return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops)); | 
|  | } | 
|  |  | 
|  | static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op->getSimpleValueType(0); | 
|  | SDValue In = Op->getOperand(0); | 
|  | MVT InVT = In.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | unsigned int NumElts = VT.getVectorNumElements(); | 
|  | if (NumElts != 8 && NumElts != 16) | 
|  | return SDValue(); | 
|  |  | 
|  | if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1) | 
|  | return DAG.getNode(X86ISD::VSEXT, dl, VT, In); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type"); | 
|  |  | 
|  | MVT ExtVT = (NumElts == 8) ? MVT::v8i64 : MVT::v16i32; | 
|  | Constant *C = ConstantInt::get(*DAG.getContext(), | 
|  | APInt::getAllOnesValue(ExtVT.getScalarType().getSizeInBits())); | 
|  |  | 
|  | SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy()); | 
|  | unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment(); | 
|  | SDValue Ld = DAG.getLoad(ExtVT.getScalarType(), dl, DAG.getEntryNode(), CP, | 
|  | MachinePointerInfo::getConstantPool(), | 
|  | false, false, false, Alignment); | 
|  | SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, dl, ExtVT, In, Ld); | 
|  | if (VT.is512BitVector()) | 
|  | return Brcst; | 
|  | return DAG.getNode(X86ISD::VTRUNC, dl, VT, Brcst); | 
|  | } | 
|  |  | 
|  | static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | MVT VT = Op->getSimpleValueType(0); | 
|  | SDValue In = Op->getOperand(0); | 
|  | MVT InVT = In.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1) | 
|  | return LowerSIGN_EXTEND_AVX512(Op, DAG); | 
|  |  | 
|  | if ((VT != MVT::v4i64 || InVT != MVT::v4i32) && | 
|  | (VT != MVT::v8i32 || InVT != MVT::v8i16) && | 
|  | (VT != MVT::v16i16 || InVT != MVT::v16i8)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Subtarget->hasInt256()) | 
|  | return DAG.getNode(X86ISD::VSEXT, dl, VT, In); | 
|  |  | 
|  | // Optimize vectors in AVX mode | 
|  | // Sign extend  v8i16 to v8i32 and | 
|  | //              v4i32 to v4i64 | 
|  | // | 
|  | // Divide input vector into two parts | 
|  | // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1} | 
|  | // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32 | 
|  | // concat the vectors to original VT | 
|  |  | 
|  | unsigned NumElems = InVT.getVectorNumElements(); | 
|  | SDValue Undef = DAG.getUNDEF(InVT); | 
|  |  | 
|  | SmallVector<int,8> ShufMask1(NumElems, -1); | 
|  | for (unsigned i = 0; i != NumElems/2; ++i) | 
|  | ShufMask1[i] = i; | 
|  |  | 
|  | SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]); | 
|  |  | 
|  | SmallVector<int,8> ShufMask2(NumElems, -1); | 
|  | for (unsigned i = 0; i != NumElems/2; ++i) | 
|  | ShufMask2[i] = i + NumElems/2; | 
|  |  | 
|  | SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]); | 
|  |  | 
|  | MVT HalfVT = MVT::getVectorVT(VT.getScalarType(), | 
|  | VT.getVectorNumElements()/2); | 
|  |  | 
|  | OpLo = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpLo); | 
|  | OpHi = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpHi); | 
|  |  | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); | 
|  | } | 
|  |  | 
|  | // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or | 
|  | // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart | 
|  | // from the AND / OR. | 
|  | static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) { | 
|  | Opc = Op.getOpcode(); | 
|  | if (Opc != ISD::OR && Opc != ISD::AND) | 
|  | return false; | 
|  | return (Op.getOperand(0).getOpcode() == X86ISD::SETCC && | 
|  | Op.getOperand(0).hasOneUse() && | 
|  | Op.getOperand(1).getOpcode() == X86ISD::SETCC && | 
|  | Op.getOperand(1).hasOneUse()); | 
|  | } | 
|  |  | 
|  | // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and | 
|  | // 1 and that the SETCC node has a single use. | 
|  | static bool isXor1OfSetCC(SDValue Op) { | 
|  | if (Op.getOpcode() != ISD::XOR) | 
|  | return false; | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | 
|  | if (N1C && N1C->getAPIntValue() == 1) { | 
|  | return Op.getOperand(0).getOpcode() == X86ISD::SETCC && | 
|  | Op.getOperand(0).hasOneUse(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { | 
|  | bool addTest = true; | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Cond  = Op.getOperand(1); | 
|  | SDValue Dest  = Op.getOperand(2); | 
|  | SDLoc dl(Op); | 
|  | SDValue CC; | 
|  | bool Inverted = false; | 
|  |  | 
|  | if (Cond.getOpcode() == ISD::SETCC) { | 
|  | // Check for setcc([su]{add,sub,mul}o == 0). | 
|  | if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ && | 
|  | isa<ConstantSDNode>(Cond.getOperand(1)) && | 
|  | cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() && | 
|  | Cond.getOperand(0).getResNo() == 1 && | 
|  | (Cond.getOperand(0).getOpcode() == ISD::SADDO || | 
|  | Cond.getOperand(0).getOpcode() == ISD::UADDO || | 
|  | Cond.getOperand(0).getOpcode() == ISD::SSUBO || | 
|  | Cond.getOperand(0).getOpcode() == ISD::USUBO || | 
|  | Cond.getOperand(0).getOpcode() == ISD::SMULO || | 
|  | Cond.getOperand(0).getOpcode() == ISD::UMULO)) { | 
|  | Inverted = true; | 
|  | Cond = Cond.getOperand(0); | 
|  | } else { | 
|  | SDValue NewCond = LowerSETCC(Cond, DAG); | 
|  | if (NewCond.getNode()) | 
|  | Cond = NewCond; | 
|  | } | 
|  | } | 
|  | #if 0 | 
|  | // FIXME: LowerXALUO doesn't handle these!! | 
|  | else if (Cond.getOpcode() == X86ISD::ADD  || | 
|  | Cond.getOpcode() == X86ISD::SUB  || | 
|  | Cond.getOpcode() == X86ISD::SMUL || | 
|  | Cond.getOpcode() == X86ISD::UMUL) | 
|  | Cond = LowerXALUO(Cond, DAG); | 
|  | #endif | 
|  |  | 
|  | // Look pass (and (setcc_carry (cmp ...)), 1). | 
|  | if (Cond.getOpcode() == ISD::AND && | 
|  | Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); | 
|  | if (C && C->getAPIntValue() == 1) | 
|  | Cond = Cond.getOperand(0); | 
|  | } | 
|  |  | 
|  | // If condition flag is set by a X86ISD::CMP, then use it as the condition | 
|  | // setting operand in place of the X86ISD::SETCC. | 
|  | unsigned CondOpcode = Cond.getOpcode(); | 
|  | if (CondOpcode == X86ISD::SETCC || | 
|  | CondOpcode == X86ISD::SETCC_CARRY) { | 
|  | CC = Cond.getOperand(0); | 
|  |  | 
|  | SDValue Cmp = Cond.getOperand(1); | 
|  | unsigned Opc = Cmp.getOpcode(); | 
|  | // FIXME: WHY THE SPECIAL CASING OF LogicalCmp?? | 
|  | if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) { | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | } else { | 
|  | switch (cast<ConstantSDNode>(CC)->getZExtValue()) { | 
|  | default: break; | 
|  | case X86::COND_O: | 
|  | case X86::COND_B: | 
|  | // These can only come from an arithmetic instruction with overflow, | 
|  | // e.g. SADDO, UADDO. | 
|  | Cond = Cond.getNode()->getOperand(1); | 
|  | addTest = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | CondOpcode = Cond.getOpcode(); | 
|  | if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || | 
|  | CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || | 
|  | ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && | 
|  | Cond.getOperand(0).getValueType() != MVT::i8)) { | 
|  | SDValue LHS = Cond.getOperand(0); | 
|  | SDValue RHS = Cond.getOperand(1); | 
|  | unsigned X86Opcode; | 
|  | unsigned X86Cond; | 
|  | SDVTList VTs; | 
|  | // Keep this in sync with LowerXALUO, otherwise we might create redundant | 
|  | // instructions that can't be removed afterwards (i.e. X86ISD::ADD and | 
|  | // X86ISD::INC). | 
|  | switch (CondOpcode) { | 
|  | case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; | 
|  | case ISD::SADDO: | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) | 
|  | if (C->isOne()) { | 
|  | X86Opcode = X86ISD::INC; X86Cond = X86::COND_O; | 
|  | break; | 
|  | } | 
|  | X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; | 
|  | case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; | 
|  | case ISD::SSUBO: | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) | 
|  | if (C->isOne()) { | 
|  | X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O; | 
|  | break; | 
|  | } | 
|  | X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; | 
|  | case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; | 
|  | case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; | 
|  | default: llvm_unreachable("unexpected overflowing operator"); | 
|  | } | 
|  | if (Inverted) | 
|  | X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond); | 
|  | if (CondOpcode == ISD::UMULO) | 
|  | VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), | 
|  | MVT::i32); | 
|  | else | 
|  | VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); | 
|  |  | 
|  | SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS); | 
|  |  | 
|  | if (CondOpcode == ISD::UMULO) | 
|  | Cond = X86Op.getValue(2); | 
|  | else | 
|  | Cond = X86Op.getValue(1); | 
|  |  | 
|  | CC = DAG.getConstant(X86Cond, MVT::i8); | 
|  | addTest = false; | 
|  | } else { | 
|  | unsigned CondOpc; | 
|  | if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) { | 
|  | SDValue Cmp = Cond.getOperand(0).getOperand(1); | 
|  | if (CondOpc == ISD::OR) { | 
|  | // Also, recognize the pattern generated by an FCMP_UNE. We can emit | 
|  | // two branches instead of an explicit OR instruction with a | 
|  | // separate test. | 
|  | if (Cmp == Cond.getOperand(1).getOperand(1) && | 
|  | isX86LogicalCmp(Cmp)) { | 
|  | CC = Cond.getOperand(0).getOperand(0); | 
|  | Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), | 
|  | Chain, Dest, CC, Cmp); | 
|  | CC = Cond.getOperand(1).getOperand(0); | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | } | 
|  | } else { // ISD::AND | 
|  | // Also, recognize the pattern generated by an FCMP_OEQ. We can emit | 
|  | // two branches instead of an explicit AND instruction with a | 
|  | // separate test. However, we only do this if this block doesn't | 
|  | // have a fall-through edge, because this requires an explicit | 
|  | // jmp when the condition is false. | 
|  | if (Cmp == Cond.getOperand(1).getOperand(1) && | 
|  | isX86LogicalCmp(Cmp) && | 
|  | Op.getNode()->hasOneUse()) { | 
|  | X86::CondCode CCode = | 
|  | (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); | 
|  | CCode = X86::GetOppositeBranchCondition(CCode); | 
|  | CC = DAG.getConstant(CCode, MVT::i8); | 
|  | SDNode *User = *Op.getNode()->use_begin(); | 
|  | // Look for an unconditional branch following this conditional branch. | 
|  | // We need this because we need to reverse the successors in order | 
|  | // to implement FCMP_OEQ. | 
|  | if (User->getOpcode() == ISD::BR) { | 
|  | SDValue FalseBB = User->getOperand(1); | 
|  | SDNode *NewBR = | 
|  | DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); | 
|  | assert(NewBR == User); | 
|  | (void)NewBR; | 
|  | Dest = FalseBB; | 
|  |  | 
|  | Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), | 
|  | Chain, Dest, CC, Cmp); | 
|  | X86::CondCode CCode = | 
|  | (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0); | 
|  | CCode = X86::GetOppositeBranchCondition(CCode); | 
|  | CC = DAG.getConstant(CCode, MVT::i8); | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) { | 
|  | // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition. | 
|  | // It should be transformed during dag combiner except when the condition | 
|  | // is set by a arithmetics with overflow node. | 
|  | X86::CondCode CCode = | 
|  | (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); | 
|  | CCode = X86::GetOppositeBranchCondition(CCode); | 
|  | CC = DAG.getConstant(CCode, MVT::i8); | 
|  | Cond = Cond.getOperand(0).getOperand(1); | 
|  | addTest = false; | 
|  | } else if (Cond.getOpcode() == ISD::SETCC && | 
|  | cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) { | 
|  | // For FCMP_OEQ, we can emit | 
|  | // two branches instead of an explicit AND instruction with a | 
|  | // separate test. However, we only do this if this block doesn't | 
|  | // have a fall-through edge, because this requires an explicit | 
|  | // jmp when the condition is false. | 
|  | if (Op.getNode()->hasOneUse()) { | 
|  | SDNode *User = *Op.getNode()->use_begin(); | 
|  | // Look for an unconditional branch following this conditional branch. | 
|  | // We need this because we need to reverse the successors in order | 
|  | // to implement FCMP_OEQ. | 
|  | if (User->getOpcode() == ISD::BR) { | 
|  | SDValue FalseBB = User->getOperand(1); | 
|  | SDNode *NewBR = | 
|  | DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); | 
|  | assert(NewBR == User); | 
|  | (void)NewBR; | 
|  | Dest = FalseBB; | 
|  |  | 
|  | SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, | 
|  | Cond.getOperand(0), Cond.getOperand(1)); | 
|  | Cmp = ConvertCmpIfNecessary(Cmp, DAG); | 
|  | CC = DAG.getConstant(X86::COND_NE, MVT::i8); | 
|  | Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), | 
|  | Chain, Dest, CC, Cmp); | 
|  | CC = DAG.getConstant(X86::COND_P, MVT::i8); | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | } | 
|  | } | 
|  | } else if (Cond.getOpcode() == ISD::SETCC && | 
|  | cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) { | 
|  | // For FCMP_UNE, we can emit | 
|  | // two branches instead of an explicit AND instruction with a | 
|  | // separate test. However, we only do this if this block doesn't | 
|  | // have a fall-through edge, because this requires an explicit | 
|  | // jmp when the condition is false. | 
|  | if (Op.getNode()->hasOneUse()) { | 
|  | SDNode *User = *Op.getNode()->use_begin(); | 
|  | // Look for an unconditional branch following this conditional branch. | 
|  | // We need this because we need to reverse the successors in order | 
|  | // to implement FCMP_UNE. | 
|  | if (User->getOpcode() == ISD::BR) { | 
|  | SDValue FalseBB = User->getOperand(1); | 
|  | SDNode *NewBR = | 
|  | DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); | 
|  | assert(NewBR == User); | 
|  | (void)NewBR; | 
|  |  | 
|  | SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, | 
|  | Cond.getOperand(0), Cond.getOperand(1)); | 
|  | Cmp = ConvertCmpIfNecessary(Cmp, DAG); | 
|  | CC = DAG.getConstant(X86::COND_NE, MVT::i8); | 
|  | Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), | 
|  | Chain, Dest, CC, Cmp); | 
|  | CC = DAG.getConstant(X86::COND_NP, MVT::i8); | 
|  | Cond = Cmp; | 
|  | addTest = false; | 
|  | Dest = FalseBB; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (addTest) { | 
|  | // Look pass the truncate if the high bits are known zero. | 
|  | if (isTruncWithZeroHighBitsInput(Cond, DAG)) | 
|  | Cond = Cond.getOperand(0); | 
|  |  | 
|  | // We know the result of AND is compared against zero. Try to match | 
|  | // it to BT. | 
|  | if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { | 
|  | SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG); | 
|  | if (NewSetCC.getNode()) { | 
|  | CC = NewSetCC.getOperand(0); | 
|  | Cond = NewSetCC.getOperand(1); | 
|  | addTest = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (addTest) { | 
|  | CC = DAG.getConstant(X86::COND_NE, MVT::i8); | 
|  | Cond = EmitTest(Cond, X86::COND_NE, DAG); | 
|  | } | 
|  | Cond = ConvertCmpIfNecessary(Cond, DAG); | 
|  | return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), | 
|  | Chain, Dest, CC, Cond); | 
|  | } | 
|  |  | 
|  | // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. | 
|  | // Calls to _alloca is needed to probe the stack when allocating more than 4k | 
|  | // bytes in one go. Touching the stack at 4K increments is necessary to ensure | 
|  | // that the guard pages used by the OS virtual memory manager are allocated in | 
|  | // correct sequence. | 
|  | SDValue | 
|  | X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | assert((Subtarget->isOSWindows() || | 
|  | getTargetMachine().Options.EnableSegmentedStacks) && | 
|  | "This should be used only on Windows targets or when segmented stacks " | 
|  | "are being used"); | 
|  | assert(!Subtarget->isTargetMacho() && "Not implemented"); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | // Get the inputs. | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Size  = Op.getOperand(1); | 
|  | unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); | 
|  | EVT VT = Op.getNode()->getValueType(0); | 
|  |  | 
|  | bool Is64Bit = Subtarget->is64Bit(); | 
|  | EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32; | 
|  |  | 
|  | if (getTargetMachine().Options.EnableSegmentedStacks) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  |  | 
|  | if (Is64Bit) { | 
|  | // The 64 bit implementation of segmented stacks needs to clobber both r10 | 
|  | // r11. This makes it impossible to use it along with nested parameters. | 
|  | const Function *F = MF.getFunction(); | 
|  |  | 
|  | for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); | 
|  | I != E; ++I) | 
|  | if (I->hasNestAttr()) | 
|  | report_fatal_error("Cannot use segmented stacks with functions that " | 
|  | "have nested arguments."); | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass *AddrRegClass = | 
|  | getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32); | 
|  | unsigned Vreg = MRI.createVirtualRegister(AddrRegClass); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size); | 
|  | SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain, | 
|  | DAG.getRegister(Vreg, SPTy)); | 
|  | SDValue Ops1[2] = { Value, Chain }; | 
|  | return DAG.getMergeValues(Ops1, 2, dl); | 
|  | } else { | 
|  | SDValue Flag; | 
|  | unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX); | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag); | 
|  | Flag = Chain.getValue(1); | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  |  | 
|  | Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag); | 
|  |  | 
|  | const X86RegisterInfo *RegInfo = | 
|  | static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo()); | 
|  | unsigned SPReg = RegInfo->getStackRegister(); | 
|  | SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy); | 
|  | Chain = SP.getValue(1); | 
|  |  | 
|  | if (Align) { | 
|  | SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), | 
|  | DAG.getConstant(-(uint64_t)Align, VT)); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP); | 
|  | } | 
|  |  | 
|  | SDValue Ops1[2] = { SP, Chain }; | 
|  | return DAG.getMergeValues(Ops1, 2, dl); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); | 
|  |  | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) { | 
|  | // vastart just stores the address of the VarArgsFrameIndex slot into the | 
|  | // memory location argument. | 
|  | SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), | 
|  | getPointerTy()); | 
|  | return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), | 
|  | MachinePointerInfo(SV), false, false, 0); | 
|  | } | 
|  |  | 
|  | // __va_list_tag: | 
|  | //   gp_offset         (0 - 6 * 8) | 
|  | //   fp_offset         (48 - 48 + 8 * 16) | 
|  | //   overflow_arg_area (point to parameters coming in memory). | 
|  | //   reg_save_area | 
|  | SmallVector<SDValue, 8> MemOps; | 
|  | SDValue FIN = Op.getOperand(1); | 
|  | // Store gp_offset | 
|  | SDValue Store = DAG.getStore(Op.getOperand(0), DL, | 
|  | DAG.getConstant(FuncInfo->getVarArgsGPOffset(), | 
|  | MVT::i32), | 
|  | FIN, MachinePointerInfo(SV), false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  |  | 
|  | // Store fp_offset | 
|  | FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), | 
|  | FIN, DAG.getIntPtrConstant(4)); | 
|  | Store = DAG.getStore(Op.getOperand(0), DL, | 
|  | DAG.getConstant(FuncInfo->getVarArgsFPOffset(), | 
|  | MVT::i32), | 
|  | FIN, MachinePointerInfo(SV, 4), false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  |  | 
|  | // Store ptr to overflow_arg_area | 
|  | FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), | 
|  | FIN, DAG.getIntPtrConstant(4)); | 
|  | SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), | 
|  | getPointerTy()); | 
|  | Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN, | 
|  | MachinePointerInfo(SV, 8), | 
|  | false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  |  | 
|  | // Store ptr to reg_save_area. | 
|  | FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), | 
|  | FIN, DAG.getIntPtrConstant(8)); | 
|  | SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), | 
|  | getPointerTy()); | 
|  | Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN, | 
|  | MachinePointerInfo(SV, 16), false, false, 0); | 
|  | MemOps.push_back(Store); | 
|  | return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, | 
|  | &MemOps[0], MemOps.size()); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { | 
|  | assert(Subtarget->is64Bit() && | 
|  | "LowerVAARG only handles 64-bit va_arg!"); | 
|  | assert((Subtarget->isTargetLinux() || | 
|  | Subtarget->isTargetDarwin()) && | 
|  | "Unhandled target in LowerVAARG"); | 
|  | assert(Op.getNode()->getNumOperands() == 4); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue SrcPtr = Op.getOperand(1); | 
|  | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
|  | unsigned Align = Op.getConstantOperandVal(3); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | EVT ArgVT = Op.getNode()->getValueType(0); | 
|  | Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); | 
|  | uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy); | 
|  | uint8_t ArgMode; | 
|  |  | 
|  | // Decide which area this value should be read from. | 
|  | // TODO: Implement the AMD64 ABI in its entirety. This simple | 
|  | // selection mechanism works only for the basic types. | 
|  | if (ArgVT == MVT::f80) { | 
|  | llvm_unreachable("va_arg for f80 not yet implemented"); | 
|  | } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) { | 
|  | ArgMode = 2;  // Argument passed in XMM register. Use fp_offset. | 
|  | } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) { | 
|  | ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset. | 
|  | } else { | 
|  | llvm_unreachable("Unhandled argument type in LowerVAARG"); | 
|  | } | 
|  |  | 
|  | if (ArgMode == 2) { | 
|  | // Sanity Check: Make sure using fp_offset makes sense. | 
|  | assert(!getTargetMachine().Options.UseSoftFloat && | 
|  | !(DAG.getMachineFunction() | 
|  | .getFunction()->getAttributes() | 
|  | .hasAttribute(AttributeSet::FunctionIndex, | 
|  | Attribute::NoImplicitFloat)) && | 
|  | Subtarget->hasSSE1()); | 
|  | } | 
|  |  | 
|  | // Insert VAARG_64 node into the DAG | 
|  | // VAARG_64 returns two values: Variable Argument Address, Chain | 
|  | SmallVector<SDValue, 11> InstOps; | 
|  | InstOps.push_back(Chain); | 
|  | InstOps.push_back(SrcPtr); | 
|  | InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32)); | 
|  | InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8)); | 
|  | InstOps.push_back(DAG.getConstant(Align, MVT::i32)); | 
|  | SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other); | 
|  | SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl, | 
|  | VTs, &InstOps[0], InstOps.size(), | 
|  | MVT::i64, | 
|  | MachinePointerInfo(SV), | 
|  | /*Align=*/0, | 
|  | /*Volatile=*/false, | 
|  | /*ReadMem=*/true, | 
|  | /*WriteMem=*/true); | 
|  | Chain = VAARG.getValue(1); | 
|  |  | 
|  | // Load the next argument and return it | 
|  | return DAG.getLoad(ArgVT, dl, | 
|  | Chain, | 
|  | VAARG, | 
|  | MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | } | 
|  |  | 
|  | static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | // X86-64 va_list is a struct { i32, i32, i8*, i8* }. | 
|  | assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!"); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue DstPtr = Op.getOperand(1); | 
|  | SDValue SrcPtr = Op.getOperand(2); | 
|  | const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); | 
|  | const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, | 
|  | DAG.getIntPtrConstant(24), 8, /*isVolatile*/false, | 
|  | false, | 
|  | MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); | 
|  | } | 
|  |  | 
|  | // getTargetVShiftByConstNode - Handle vector element shifts where the shift | 
|  | // amount is a constant. Takes immediate version of shift as input. | 
|  | static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT, | 
|  | SDValue SrcOp, uint64_t ShiftAmt, | 
|  | SelectionDAG &DAG) { | 
|  | MVT ElementType = VT.getVectorElementType(); | 
|  |  | 
|  | // Check for ShiftAmt >= element width | 
|  | if (ShiftAmt >= ElementType.getSizeInBits()) { | 
|  | if (Opc == X86ISD::VSRAI) | 
|  | ShiftAmt = ElementType.getSizeInBits() - 1; | 
|  | else | 
|  | return DAG.getConstant(0, VT); | 
|  | } | 
|  |  | 
|  | assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI) | 
|  | && "Unknown target vector shift-by-constant node"); | 
|  |  | 
|  | // Fold this packed vector shift into a build vector if SrcOp is a | 
|  | // vector of Constants or UNDEFs, and SrcOp valuetype is the same as VT. | 
|  | if (VT == SrcOp.getSimpleValueType() && | 
|  | ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) { | 
|  | SmallVector<SDValue, 8> Elts; | 
|  | unsigned NumElts = SrcOp->getNumOperands(); | 
|  | ConstantSDNode *ND; | 
|  |  | 
|  | switch(Opc) { | 
|  | default: llvm_unreachable(0); | 
|  | case X86ISD::VSHLI: | 
|  | for (unsigned i=0; i!=NumElts; ++i) { | 
|  | SDValue CurrentOp = SrcOp->getOperand(i); | 
|  | if (CurrentOp->getOpcode() == ISD::UNDEF) { | 
|  | Elts.push_back(CurrentOp); | 
|  | continue; | 
|  | } | 
|  | ND = cast<ConstantSDNode>(CurrentOp); | 
|  | const APInt &C = ND->getAPIntValue(); | 
|  | Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), ElementType)); | 
|  | } | 
|  | break; | 
|  | case X86ISD::VSRLI: | 
|  | for (unsigned i=0; i!=NumElts; ++i) { | 
|  | SDValue CurrentOp = SrcOp->getOperand(i); | 
|  | if (CurrentOp->getOpcode() == ISD::UNDEF) { | 
|  | Elts.push_back(CurrentOp); | 
|  | continue; | 
|  | } | 
|  | ND = cast<ConstantSDNode>(CurrentOp); | 
|  | const APInt &C = ND->getAPIntValue(); | 
|  | Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), ElementType)); | 
|  | } | 
|  | break; | 
|  | case X86ISD::VSRAI: | 
|  | for (unsigned i=0; i!=NumElts; ++i) { | 
|  | SDValue CurrentOp = SrcOp->getOperand(i); | 
|  | if (CurrentOp->getOpcode() == ISD::UNDEF) { | 
|  | Elts.push_back(CurrentOp); | 
|  | continue; | 
|  | } | 
|  | ND = cast<ConstantSDNode>(CurrentOp); | 
|  | const APInt &C = ND->getAPIntValue(); | 
|  | Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), ElementType)); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Elts[0], NumElts); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(Opc, dl, VT, SrcOp, DAG.getConstant(ShiftAmt, MVT::i8)); | 
|  | } | 
|  |  | 
|  | // getTargetVShiftNode - Handle vector element shifts where the shift amount | 
|  | // may or may not be a constant. Takes immediate version of shift as input. | 
|  | static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT, | 
|  | SDValue SrcOp, SDValue ShAmt, | 
|  | SelectionDAG &DAG) { | 
|  | assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32"); | 
|  |  | 
|  | // Catch shift-by-constant. | 
|  | if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt)) | 
|  | return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp, | 
|  | CShAmt->getZExtValue(), DAG); | 
|  |  | 
|  | // Change opcode to non-immediate version | 
|  | switch (Opc) { | 
|  | default: llvm_unreachable("Unknown target vector shift node"); | 
|  | case X86ISD::VSHLI: Opc = X86ISD::VSHL; break; | 
|  | case X86ISD::VSRLI: Opc = X86ISD::VSRL; break; | 
|  | case X86ISD::VSRAI: Opc = X86ISD::VSRA; break; | 
|  | } | 
|  |  | 
|  | // Need to build a vector containing shift amount | 
|  | // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0 | 
|  | SDValue ShOps[4]; | 
|  | ShOps[0] = ShAmt; | 
|  | ShOps[1] = DAG.getConstant(0, MVT::i32); | 
|  | ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32); | 
|  | ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4); | 
|  |  | 
|  | // The return type has to be a 128-bit type with the same element | 
|  | // type as the input type. | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits()); | 
|  |  | 
|  | ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt); | 
|  | return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt); | 
|  | } | 
|  |  | 
|  | static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) { | 
|  | SDLoc dl(Op); | 
|  | unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | switch (IntNo) { | 
|  | default: return SDValue();    // Don't custom lower most intrinsics. | 
|  | // Comparison intrinsics. | 
|  | case Intrinsic::x86_sse_comieq_ss: | 
|  | case Intrinsic::x86_sse_comilt_ss: | 
|  | case Intrinsic::x86_sse_comile_ss: | 
|  | case Intrinsic::x86_sse_comigt_ss: | 
|  | case Intrinsic::x86_sse_comige_ss: | 
|  | case Intrinsic::x86_sse_comineq_ss: | 
|  | case Intrinsic::x86_sse_ucomieq_ss: | 
|  | case Intrinsic::x86_sse_ucomilt_ss: | 
|  | case Intrinsic::x86_sse_ucomile_ss: | 
|  | case Intrinsic::x86_sse_ucomigt_ss: | 
|  | case Intrinsic::x86_sse_ucomige_ss: | 
|  | case Intrinsic::x86_sse_ucomineq_ss: | 
|  | case Intrinsic::x86_sse2_comieq_sd: | 
|  | case Intrinsic::x86_sse2_comilt_sd: | 
|  | case Intrinsic::x86_sse2_comile_sd: | 
|  | case Intrinsic::x86_sse2_comigt_sd: | 
|  | case Intrinsic::x86_sse2_comige_sd: | 
|  | case Intrinsic::x86_sse2_comineq_sd: | 
|  | case Intrinsic::x86_sse2_ucomieq_sd: | 
|  | case Intrinsic::x86_sse2_ucomilt_sd: | 
|  | case Intrinsic::x86_sse2_ucomile_sd: | 
|  | case Intrinsic::x86_sse2_ucomigt_sd: | 
|  | case Intrinsic::x86_sse2_ucomige_sd: | 
|  | case Intrinsic::x86_sse2_ucomineq_sd: { | 
|  | unsigned Opc; | 
|  | ISD::CondCode CC; | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::x86_sse_comieq_ss: | 
|  | case Intrinsic::x86_sse2_comieq_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETEQ; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comilt_ss: | 
|  | case Intrinsic::x86_sse2_comilt_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETLT; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comile_ss: | 
|  | case Intrinsic::x86_sse2_comile_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETLE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comigt_ss: | 
|  | case Intrinsic::x86_sse2_comigt_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETGT; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comige_ss: | 
|  | case Intrinsic::x86_sse2_comige_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETGE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comineq_ss: | 
|  | case Intrinsic::x86_sse2_comineq_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETNE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomieq_ss: | 
|  | case Intrinsic::x86_sse2_ucomieq_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETEQ; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomilt_ss: | 
|  | case Intrinsic::x86_sse2_ucomilt_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETLT; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomile_ss: | 
|  | case Intrinsic::x86_sse2_ucomile_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETLE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomigt_ss: | 
|  | case Intrinsic::x86_sse2_ucomigt_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETGT; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomige_ss: | 
|  | case Intrinsic::x86_sse2_ucomige_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETGE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomineq_ss: | 
|  | case Intrinsic::x86_sse2_ucomineq_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETNE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue LHS = Op.getOperand(1); | 
|  | SDValue RHS = Op.getOperand(2); | 
|  | unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG); | 
|  | assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!"); | 
|  | SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS); | 
|  | SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(X86CC, MVT::i8), Cond); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); | 
|  | } | 
|  |  | 
|  | // Arithmetic intrinsics. | 
|  | case Intrinsic::x86_sse2_pmulu_dq: | 
|  | case Intrinsic::x86_avx2_pmulu_dq: | 
|  | return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  |  | 
|  | // SSE2/AVX2 sub with unsigned saturation intrinsics | 
|  | case Intrinsic::x86_sse2_psubus_b: | 
|  | case Intrinsic::x86_sse2_psubus_w: | 
|  | case Intrinsic::x86_avx2_psubus_b: | 
|  | case Intrinsic::x86_avx2_psubus_w: | 
|  | return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  |  | 
|  | // SSE3/AVX horizontal add/sub intrinsics | 
|  | case Intrinsic::x86_sse3_hadd_ps: | 
|  | case Intrinsic::x86_sse3_hadd_pd: | 
|  | case Intrinsic::x86_avx_hadd_ps_256: | 
|  | case Intrinsic::x86_avx_hadd_pd_256: | 
|  | case Intrinsic::x86_sse3_hsub_ps: | 
|  | case Intrinsic::x86_sse3_hsub_pd: | 
|  | case Intrinsic::x86_avx_hsub_ps_256: | 
|  | case Intrinsic::x86_avx_hsub_pd_256: | 
|  | case Intrinsic::x86_ssse3_phadd_w_128: | 
|  | case Intrinsic::x86_ssse3_phadd_d_128: | 
|  | case Intrinsic::x86_avx2_phadd_w: | 
|  | case Intrinsic::x86_avx2_phadd_d: | 
|  | case Intrinsic::x86_ssse3_phsub_w_128: | 
|  | case Intrinsic::x86_ssse3_phsub_d_128: | 
|  | case Intrinsic::x86_avx2_phsub_w: | 
|  | case Intrinsic::x86_avx2_phsub_d: { | 
|  | unsigned Opcode; | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::x86_sse3_hadd_ps: | 
|  | case Intrinsic::x86_sse3_hadd_pd: | 
|  | case Intrinsic::x86_avx_hadd_ps_256: | 
|  | case Intrinsic::x86_avx_hadd_pd_256: | 
|  | Opcode = X86ISD::FHADD; | 
|  | break; | 
|  | case Intrinsic::x86_sse3_hsub_ps: | 
|  | case Intrinsic::x86_sse3_hsub_pd: | 
|  | case Intrinsic::x86_avx_hsub_ps_256: | 
|  | case Intrinsic::x86_avx_hsub_pd_256: | 
|  | Opcode = X86ISD::FHSUB; | 
|  | break; | 
|  | case Intrinsic::x86_ssse3_phadd_w_128: | 
|  | case Intrinsic::x86_ssse3_phadd_d_128: | 
|  | case Intrinsic::x86_avx2_phadd_w: | 
|  | case Intrinsic::x86_avx2_phadd_d: | 
|  | Opcode = X86ISD::HADD; | 
|  | break; | 
|  | case Intrinsic::x86_ssse3_phsub_w_128: | 
|  | case Intrinsic::x86_ssse3_phsub_d_128: | 
|  | case Intrinsic::x86_avx2_phsub_w: | 
|  | case Intrinsic::x86_avx2_phsub_d: | 
|  | Opcode = X86ISD::HSUB; | 
|  | break; | 
|  | } | 
|  | return DAG.getNode(Opcode, dl, Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | } | 
|  |  | 
|  | // SSE2/SSE41/AVX2 integer max/min intrinsics. | 
|  | case Intrinsic::x86_sse2_pmaxu_b: | 
|  | case Intrinsic::x86_sse41_pmaxuw: | 
|  | case Intrinsic::x86_sse41_pmaxud: | 
|  | case Intrinsic::x86_avx2_pmaxu_b: | 
|  | case Intrinsic::x86_avx2_pmaxu_w: | 
|  | case Intrinsic::x86_avx2_pmaxu_d: | 
|  | case Intrinsic::x86_sse2_pminu_b: | 
|  | case Intrinsic::x86_sse41_pminuw: | 
|  | case Intrinsic::x86_sse41_pminud: | 
|  | case Intrinsic::x86_avx2_pminu_b: | 
|  | case Intrinsic::x86_avx2_pminu_w: | 
|  | case Intrinsic::x86_avx2_pminu_d: | 
|  | case Intrinsic::x86_sse41_pmaxsb: | 
|  | case Intrinsic::x86_sse2_pmaxs_w: | 
|  | case Intrinsic::x86_sse41_pmaxsd: | 
|  | case Intrinsic::x86_avx2_pmaxs_b: | 
|  | case Intrinsic::x86_avx2_pmaxs_w: | 
|  | case Intrinsic::x86_avx2_pmaxs_d: | 
|  | case Intrinsic::x86_sse41_pminsb: | 
|  | case Intrinsic::x86_sse2_pmins_w: | 
|  | case Intrinsic::x86_sse41_pminsd: | 
|  | case Intrinsic::x86_avx2_pmins_b: | 
|  | case Intrinsic::x86_avx2_pmins_w: | 
|  | case Intrinsic::x86_avx2_pmins_d: { | 
|  | unsigned Opcode; | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::x86_sse2_pmaxu_b: | 
|  | case Intrinsic::x86_sse41_pmaxuw: | 
|  | case Intrinsic::x86_sse41_pmaxud: | 
|  | case Intrinsic::x86_avx2_pmaxu_b: | 
|  | case Intrinsic::x86_avx2_pmaxu_w: | 
|  | case Intrinsic::x86_avx2_pmaxu_d: | 
|  | Opcode = X86ISD::UMAX; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_pminu_b: | 
|  | case Intrinsic::x86_sse41_pminuw: | 
|  | case Intrinsic::x86_sse41_pminud: | 
|  | case Intrinsic::x86_avx2_pminu_b: | 
|  | case Intrinsic::x86_avx2_pminu_w: | 
|  | case Intrinsic::x86_avx2_pminu_d: | 
|  | Opcode = X86ISD::UMIN; | 
|  | break; | 
|  | case Intrinsic::x86_sse41_pmaxsb: | 
|  | case Intrinsic::x86_sse2_pmaxs_w: | 
|  | case Intrinsic::x86_sse41_pmaxsd: | 
|  | case Intrinsic::x86_avx2_pmaxs_b: | 
|  | case Intrinsic::x86_avx2_pmaxs_w: | 
|  | case Intrinsic::x86_avx2_pmaxs_d: | 
|  | Opcode = X86ISD::SMAX; | 
|  | break; | 
|  | case Intrinsic::x86_sse41_pminsb: | 
|  | case Intrinsic::x86_sse2_pmins_w: | 
|  | case Intrinsic::x86_sse41_pminsd: | 
|  | case Intrinsic::x86_avx2_pmins_b: | 
|  | case Intrinsic::x86_avx2_pmins_w: | 
|  | case Intrinsic::x86_avx2_pmins_d: | 
|  | Opcode = X86ISD::SMIN; | 
|  | break; | 
|  | } | 
|  | return DAG.getNode(Opcode, dl, Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | } | 
|  |  | 
|  | // SSE/SSE2/AVX floating point max/min intrinsics. | 
|  | case Intrinsic::x86_sse_max_ps: | 
|  | case Intrinsic::x86_sse2_max_pd: | 
|  | case Intrinsic::x86_avx_max_ps_256: | 
|  | case Intrinsic::x86_avx_max_pd_256: | 
|  | case Intrinsic::x86_sse_min_ps: | 
|  | case Intrinsic::x86_sse2_min_pd: | 
|  | case Intrinsic::x86_avx_min_ps_256: | 
|  | case Intrinsic::x86_avx_min_pd_256: { | 
|  | unsigned Opcode; | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::x86_sse_max_ps: | 
|  | case Intrinsic::x86_sse2_max_pd: | 
|  | case Intrinsic::x86_avx_max_ps_256: | 
|  | case Intrinsic::x86_avx_max_pd_256: | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | case Intrinsic::x86_sse_min_ps: | 
|  | case Intrinsic::x86_sse2_min_pd: | 
|  | case Intrinsic::x86_avx_min_ps_256: | 
|  | case Intrinsic::x86_avx_min_pd_256: | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  | } | 
|  | return DAG.getNode(Opcode, dl, Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | } | 
|  |  | 
|  | // AVX2 variable shift intrinsics | 
|  | case Intrinsic::x86_avx2_psllv_d: | 
|  | case Intrinsic::x86_avx2_psllv_q: | 
|  | case Intrinsic::x86_avx2_psllv_d_256: | 
|  | case Intrinsic::x86_avx2_psllv_q_256: | 
|  | case Intrinsic::x86_avx2_psrlv_d: | 
|  | case Intrinsic::x86_avx2_psrlv_q: | 
|  | case Intrinsic::x86_avx2_psrlv_d_256: | 
|  | case Intrinsic::x86_avx2_psrlv_q_256: | 
|  | case Intrinsic::x86_avx2_psrav_d: | 
|  | case Intrinsic::x86_avx2_psrav_d_256: { | 
|  | unsigned Opcode; | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::x86_avx2_psllv_d: | 
|  | case Intrinsic::x86_avx2_psllv_q: | 
|  | case Intrinsic::x86_avx2_psllv_d_256: | 
|  | case Intrinsic::x86_avx2_psllv_q_256: | 
|  | Opcode = ISD::SHL; | 
|  | break; | 
|  | case Intrinsic::x86_avx2_psrlv_d: | 
|  | case Intrinsic::x86_avx2_psrlv_q: | 
|  | case Intrinsic::x86_avx2_psrlv_d_256: | 
|  | case Intrinsic::x86_avx2_psrlv_q_256: | 
|  | Opcode = ISD::SRL; | 
|  | break; | 
|  | case Intrinsic::x86_avx2_psrav_d: | 
|  | case Intrinsic::x86_avx2_psrav_d_256: | 
|  | Opcode = ISD::SRA; | 
|  | break; | 
|  | } | 
|  | return DAG.getNode(Opcode, dl, Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_ssse3_pshuf_b_128: | 
|  | case Intrinsic::x86_avx2_pshuf_b: | 
|  | return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  |  | 
|  | case Intrinsic::x86_ssse3_psign_b_128: | 
|  | case Intrinsic::x86_ssse3_psign_w_128: | 
|  | case Intrinsic::x86_ssse3_psign_d_128: | 
|  | case Intrinsic::x86_avx2_psign_b: | 
|  | case Intrinsic::x86_avx2_psign_w: | 
|  | case Intrinsic::x86_avx2_psign_d: | 
|  | return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  |  | 
|  | case Intrinsic::x86_sse41_insertps: | 
|  | return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | 
|  |  | 
|  | case Intrinsic::x86_avx_vperm2f128_ps_256: | 
|  | case Intrinsic::x86_avx_vperm2f128_pd_256: | 
|  | case Intrinsic::x86_avx_vperm2f128_si_256: | 
|  | case Intrinsic::x86_avx2_vperm2i128: | 
|  | return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | 
|  |  | 
|  | case Intrinsic::x86_avx2_permd: | 
|  | case Intrinsic::x86_avx2_permps: | 
|  | // Operands intentionally swapped. Mask is last operand to intrinsic, | 
|  | // but second operand for node/instruction. | 
|  | return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(), | 
|  | Op.getOperand(2), Op.getOperand(1)); | 
|  |  | 
|  | case Intrinsic::x86_sse_sqrt_ps: | 
|  | case Intrinsic::x86_sse2_sqrt_pd: | 
|  | case Intrinsic::x86_avx_sqrt_ps_256: | 
|  | case Intrinsic::x86_avx_sqrt_pd_256: | 
|  | return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1)); | 
|  |  | 
|  | // ptest and testp intrinsics. The intrinsic these come from are designed to | 
|  | // return an integer value, not just an instruction so lower it to the ptest | 
|  | // or testp pattern and a setcc for the result. | 
|  | case Intrinsic::x86_sse41_ptestz: | 
|  | case Intrinsic::x86_sse41_ptestc: | 
|  | case Intrinsic::x86_sse41_ptestnzc: | 
|  | case Intrinsic::x86_avx_ptestz_256: | 
|  | case Intrinsic::x86_avx_ptestc_256: | 
|  | case Intrinsic::x86_avx_ptestnzc_256: | 
|  | case Intrinsic::x86_avx_vtestz_ps: | 
|  | case Intrinsic::x86_avx_vtestc_ps: | 
|  | case Intrinsic::x86_avx_vtestnzc_ps: | 
|  | case Intrinsic::x86_avx_vtestz_pd: | 
|  | case Intrinsic::x86_avx_vtestc_pd: | 
|  | case Intrinsic::x86_avx_vtestnzc_pd: | 
|  | case Intrinsic::x86_avx_vtestz_ps_256: | 
|  | case Intrinsic::x86_avx_vtestc_ps_256: | 
|  | case Intrinsic::x86_avx_vtestnzc_ps_256: | 
|  | case Intrinsic::x86_avx_vtestz_pd_256: | 
|  | case Intrinsic::x86_avx_vtestc_pd_256: | 
|  | case Intrinsic::x86_avx_vtestnzc_pd_256: { | 
|  | bool IsTestPacked = false; | 
|  | unsigned X86CC; | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("Bad fallthrough in Intrinsic lowering."); | 
|  | case Intrinsic::x86_avx_vtestz_ps: | 
|  | case Intrinsic::x86_avx_vtestz_pd: | 
|  | case Intrinsic::x86_avx_vtestz_ps_256: | 
|  | case Intrinsic::x86_avx_vtestz_pd_256: | 
|  | IsTestPacked = true; // Fallthrough | 
|  | case Intrinsic::x86_sse41_ptestz: | 
|  | case Intrinsic::x86_avx_ptestz_256: | 
|  | // ZF = 1 | 
|  | X86CC = X86::COND_E; | 
|  | break; | 
|  | case Intrinsic::x86_avx_vtestc_ps: | 
|  | case Intrinsic::x86_avx_vtestc_pd: | 
|  | case Intrinsic::x86_avx_vtestc_ps_256: | 
|  | case Intrinsic::x86_avx_vtestc_pd_256: | 
|  | IsTestPacked = true; // Fallthrough | 
|  | case Intrinsic::x86_sse41_ptestc: | 
|  | case Intrinsic::x86_avx_ptestc_256: | 
|  | // CF = 1 | 
|  | X86CC = X86::COND_B; | 
|  | break; | 
|  | case Intrinsic::x86_avx_vtestnzc_ps: | 
|  | case Intrinsic::x86_avx_vtestnzc_pd: | 
|  | case Intrinsic::x86_avx_vtestnzc_ps_256: | 
|  | case Intrinsic::x86_avx_vtestnzc_pd_256: | 
|  | IsTestPacked = true; // Fallthrough | 
|  | case Intrinsic::x86_sse41_ptestnzc: | 
|  | case Intrinsic::x86_avx_ptestnzc_256: | 
|  | // ZF and CF = 0 | 
|  | X86CC = X86::COND_A; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue LHS = Op.getOperand(1); | 
|  | SDValue RHS = Op.getOperand(2); | 
|  | unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST; | 
|  | SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS); | 
|  | SDValue CC = DAG.getConstant(X86CC, MVT::i8); | 
|  | SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); | 
|  | } | 
|  | case Intrinsic::x86_avx512_kortestz_w: | 
|  | case Intrinsic::x86_avx512_kortestc_w: { | 
|  | unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz_w)? X86::COND_E: X86::COND_B; | 
|  | SDValue LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(1)); | 
|  | SDValue RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(2)); | 
|  | SDValue CC = DAG.getConstant(X86CC, MVT::i8); | 
|  | SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS); | 
|  | SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i1, CC, Test); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); | 
|  | } | 
|  |  | 
|  | // SSE/AVX shift intrinsics | 
|  | case Intrinsic::x86_sse2_psll_w: | 
|  | case Intrinsic::x86_sse2_psll_d: | 
|  | case Intrinsic::x86_sse2_psll_q: | 
|  | case Intrinsic::x86_avx2_psll_w: | 
|  | case Intrinsic::x86_avx2_psll_d: | 
|  | case Intrinsic::x86_avx2_psll_q: | 
|  | case Intrinsic::x86_sse2_psrl_w: | 
|  | case Intrinsic::x86_sse2_psrl_d: | 
|  | case Intrinsic::x86_sse2_psrl_q: | 
|  | case Intrinsic::x86_avx2_psrl_w: | 
|  | case Intrinsic::x86_avx2_psrl_d: | 
|  | case Intrinsic::x86_avx2_psrl_q: | 
|  | case Intrinsic::x86_sse2_psra_w: | 
|  | case Intrinsic::x86_sse2_psra_d: | 
|  | case Intrinsic::x86_avx2_psra_w: | 
|  | case Intrinsic::x86_avx2_psra_d: { | 
|  | unsigned Opcode; | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::x86_sse2_psll_w: | 
|  | case Intrinsic::x86_sse2_psll_d: | 
|  | case Intrinsic::x86_sse2_psll_q: | 
|  | case Intrinsic::x86_avx2_psll_w: | 
|  | case Intrinsic::x86_avx2_psll_d: | 
|  | case Intrinsic::x86_avx2_psll_q: | 
|  | Opcode = X86ISD::VSHL; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_psrl_w: | 
|  | case Intrinsic::x86_sse2_psrl_d: | 
|  | case Intrinsic::x86_sse2_psrl_q: | 
|  | case Intrinsic::x86_avx2_psrl_w: | 
|  | case Intrinsic::x86_avx2_psrl_d: | 
|  | case Intrinsic::x86_avx2_psrl_q: | 
|  | Opcode = X86ISD::VSRL; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_psra_w: | 
|  | case Intrinsic::x86_sse2_psra_d: | 
|  | case Intrinsic::x86_avx2_psra_w: | 
|  | case Intrinsic::x86_avx2_psra_d: | 
|  | Opcode = X86ISD::VSRA; | 
|  | break; | 
|  | } | 
|  | return DAG.getNode(Opcode, dl, Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | } | 
|  |  | 
|  | // SSE/AVX immediate shift intrinsics | 
|  | case Intrinsic::x86_sse2_pslli_w: | 
|  | case Intrinsic::x86_sse2_pslli_d: | 
|  | case Intrinsic::x86_sse2_pslli_q: | 
|  | case Intrinsic::x86_avx2_pslli_w: | 
|  | case Intrinsic::x86_avx2_pslli_d: | 
|  | case Intrinsic::x86_avx2_pslli_q: | 
|  | case Intrinsic::x86_sse2_psrli_w: | 
|  | case Intrinsic::x86_sse2_psrli_d: | 
|  | case Intrinsic::x86_sse2_psrli_q: | 
|  | case Intrinsic::x86_avx2_psrli_w: | 
|  | case Intrinsic::x86_avx2_psrli_d: | 
|  | case Intrinsic::x86_avx2_psrli_q: | 
|  | case Intrinsic::x86_sse2_psrai_w: | 
|  | case Intrinsic::x86_sse2_psrai_d: | 
|  | case Intrinsic::x86_avx2_psrai_w: | 
|  | case Intrinsic::x86_avx2_psrai_d: { | 
|  | unsigned Opcode; | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::x86_sse2_pslli_w: | 
|  | case Intrinsic::x86_sse2_pslli_d: | 
|  | case Intrinsic::x86_sse2_pslli_q: | 
|  | case Intrinsic::x86_avx2_pslli_w: | 
|  | case Intrinsic::x86_avx2_pslli_d: | 
|  | case Intrinsic::x86_avx2_pslli_q: | 
|  | Opcode = X86ISD::VSHLI; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_psrli_w: | 
|  | case Intrinsic::x86_sse2_psrli_d: | 
|  | case Intrinsic::x86_sse2_psrli_q: | 
|  | case Intrinsic::x86_avx2_psrli_w: | 
|  | case Intrinsic::x86_avx2_psrli_d: | 
|  | case Intrinsic::x86_avx2_psrli_q: | 
|  | Opcode = X86ISD::VSRLI; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_psrai_w: | 
|  | case Intrinsic::x86_sse2_psrai_d: | 
|  | case Intrinsic::x86_avx2_psrai_w: | 
|  | case Intrinsic::x86_avx2_psrai_d: | 
|  | Opcode = X86ISD::VSRAI; | 
|  | break; | 
|  | } | 
|  | return getTargetVShiftNode(Opcode, dl, Op.getSimpleValueType(), | 
|  | Op.getOperand(1), Op.getOperand(2), DAG); | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_sse42_pcmpistria128: | 
|  | case Intrinsic::x86_sse42_pcmpestria128: | 
|  | case Intrinsic::x86_sse42_pcmpistric128: | 
|  | case Intrinsic::x86_sse42_pcmpestric128: | 
|  | case Intrinsic::x86_sse42_pcmpistrio128: | 
|  | case Intrinsic::x86_sse42_pcmpestrio128: | 
|  | case Intrinsic::x86_sse42_pcmpistris128: | 
|  | case Intrinsic::x86_sse42_pcmpestris128: | 
|  | case Intrinsic::x86_sse42_pcmpistriz128: | 
|  | case Intrinsic::x86_sse42_pcmpestriz128: { | 
|  | unsigned Opcode; | 
|  | unsigned X86CC; | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::x86_sse42_pcmpistria128: | 
|  | Opcode = X86ISD::PCMPISTRI; | 
|  | X86CC = X86::COND_A; | 
|  | break; | 
|  | case Intrinsic::x86_sse42_pcmpestria128: | 
|  | Opcode = X86ISD::PCMPESTRI; | 
|  | X86CC = X86::COND_A; | 
|  | break; | 
|  | case Intrinsic::x86_sse42_pcmpistric128: | 
|  | Opcode = X86ISD::PCMPISTRI; | 
|  | X86CC = X86::COND_B; | 
|  | break; | 
|  | case Intrinsic::x86_sse42_pcmpestric128: | 
|  | Opcode = X86ISD::PCMPESTRI; | 
|  | X86CC = X86::COND_B; | 
|  | break; | 
|  | case Intrinsic::x86_sse42_pcmpistrio128: | 
|  | Opcode = X86ISD::PCMPISTRI; | 
|  | X86CC = X86::COND_O; | 
|  | break; | 
|  | case Intrinsic::x86_sse42_pcmpestrio128: | 
|  | Opcode = X86ISD::PCMPESTRI; | 
|  | X86CC = X86::COND_O; | 
|  | break; | 
|  | case Intrinsic::x86_sse42_pcmpistris128: | 
|  | Opcode = X86ISD::PCMPISTRI; | 
|  | X86CC = X86::COND_S; | 
|  | break; | 
|  | case Intrinsic::x86_sse42_pcmpestris128: | 
|  | Opcode = X86ISD::PCMPESTRI; | 
|  | X86CC = X86::COND_S; | 
|  | break; | 
|  | case Intrinsic::x86_sse42_pcmpistriz128: | 
|  | Opcode = X86ISD::PCMPISTRI; | 
|  | X86CC = X86::COND_E; | 
|  | break; | 
|  | case Intrinsic::x86_sse42_pcmpestriz128: | 
|  | Opcode = X86ISD::PCMPESTRI; | 
|  | X86CC = X86::COND_E; | 
|  | break; | 
|  | } | 
|  | SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end()); | 
|  | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); | 
|  | SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size()); | 
|  | SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(X86CC, MVT::i8), | 
|  | SDValue(PCMP.getNode(), 1)); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_sse42_pcmpistri128: | 
|  | case Intrinsic::x86_sse42_pcmpestri128: { | 
|  | unsigned Opcode; | 
|  | if (IntNo == Intrinsic::x86_sse42_pcmpistri128) | 
|  | Opcode = X86ISD::PCMPISTRI; | 
|  | else | 
|  | Opcode = X86ISD::PCMPESTRI; | 
|  |  | 
|  | SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end()); | 
|  | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); | 
|  | return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size()); | 
|  | } | 
|  | case Intrinsic::x86_fma_vfmadd_ps: | 
|  | case Intrinsic::x86_fma_vfmadd_pd: | 
|  | case Intrinsic::x86_fma_vfmsub_ps: | 
|  | case Intrinsic::x86_fma_vfmsub_pd: | 
|  | case Intrinsic::x86_fma_vfnmadd_ps: | 
|  | case Intrinsic::x86_fma_vfnmadd_pd: | 
|  | case Intrinsic::x86_fma_vfnmsub_ps: | 
|  | case Intrinsic::x86_fma_vfnmsub_pd: | 
|  | case Intrinsic::x86_fma_vfmaddsub_ps: | 
|  | case Intrinsic::x86_fma_vfmaddsub_pd: | 
|  | case Intrinsic::x86_fma_vfmsubadd_ps: | 
|  | case Intrinsic::x86_fma_vfmsubadd_pd: | 
|  | case Intrinsic::x86_fma_vfmadd_ps_256: | 
|  | case Intrinsic::x86_fma_vfmadd_pd_256: | 
|  | case Intrinsic::x86_fma_vfmsub_ps_256: | 
|  | case Intrinsic::x86_fma_vfmsub_pd_256: | 
|  | case Intrinsic::x86_fma_vfnmadd_ps_256: | 
|  | case Intrinsic::x86_fma_vfnmadd_pd_256: | 
|  | case Intrinsic::x86_fma_vfnmsub_ps_256: | 
|  | case Intrinsic::x86_fma_vfnmsub_pd_256: | 
|  | case Intrinsic::x86_fma_vfmaddsub_ps_256: | 
|  | case Intrinsic::x86_fma_vfmaddsub_pd_256: | 
|  | case Intrinsic::x86_fma_vfmsubadd_ps_256: | 
|  | case Intrinsic::x86_fma_vfmsubadd_pd_256: | 
|  | case Intrinsic::x86_fma_vfmadd_ps_512: | 
|  | case Intrinsic::x86_fma_vfmadd_pd_512: | 
|  | case Intrinsic::x86_fma_vfmsub_ps_512: | 
|  | case Intrinsic::x86_fma_vfmsub_pd_512: | 
|  | case Intrinsic::x86_fma_vfnmadd_ps_512: | 
|  | case Intrinsic::x86_fma_vfnmadd_pd_512: | 
|  | case Intrinsic::x86_fma_vfnmsub_ps_512: | 
|  | case Intrinsic::x86_fma_vfnmsub_pd_512: | 
|  | case Intrinsic::x86_fma_vfmaddsub_ps_512: | 
|  | case Intrinsic::x86_fma_vfmaddsub_pd_512: | 
|  | case Intrinsic::x86_fma_vfmsubadd_ps_512: | 
|  | case Intrinsic::x86_fma_vfmsubadd_pd_512: { | 
|  | unsigned Opc; | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::x86_fma_vfmadd_ps: | 
|  | case Intrinsic::x86_fma_vfmadd_pd: | 
|  | case Intrinsic::x86_fma_vfmadd_ps_256: | 
|  | case Intrinsic::x86_fma_vfmadd_pd_256: | 
|  | case Intrinsic::x86_fma_vfmadd_ps_512: | 
|  | case Intrinsic::x86_fma_vfmadd_pd_512: | 
|  | Opc = X86ISD::FMADD; | 
|  | break; | 
|  | case Intrinsic::x86_fma_vfmsub_ps: | 
|  | case Intrinsic::x86_fma_vfmsub_pd: | 
|  | case Intrinsic::x86_fma_vfmsub_ps_256: | 
|  | case Intrinsic::x86_fma_vfmsub_pd_256: | 
|  | case Intrinsic::x86_fma_vfmsub_ps_512: | 
|  | case Intrinsic::x86_fma_vfmsub_pd_512: | 
|  | Opc = X86ISD::FMSUB; | 
|  | break; | 
|  | case Intrinsic::x86_fma_vfnmadd_ps: | 
|  | case Intrinsic::x86_fma_vfnmadd_pd: | 
|  | case Intrinsic::x86_fma_vfnmadd_ps_256: | 
|  | case Intrinsic::x86_fma_vfnmadd_pd_256: | 
|  | case Intrinsic::x86_fma_vfnmadd_ps_512: | 
|  | case Intrinsic::x86_fma_vfnmadd_pd_512: | 
|  | Opc = X86ISD::FNMADD; | 
|  | break; | 
|  | case Intrinsic::x86_fma_vfnmsub_ps: | 
|  | case Intrinsic::x86_fma_vfnmsub_pd: | 
|  | case Intrinsic::x86_fma_vfnmsub_ps_256: | 
|  | case Intrinsic::x86_fma_vfnmsub_pd_256: | 
|  | case Intrinsic::x86_fma_vfnmsub_ps_512: | 
|  | case Intrinsic::x86_fma_vfnmsub_pd_512: | 
|  | Opc = X86ISD::FNMSUB; | 
|  | break; | 
|  | case Intrinsic::x86_fma_vfmaddsub_ps: | 
|  | case Intrinsic::x86_fma_vfmaddsub_pd: | 
|  | case Intrinsic::x86_fma_vfmaddsub_ps_256: | 
|  | case Intrinsic::x86_fma_vfmaddsub_pd_256: | 
|  | case Intrinsic::x86_fma_vfmaddsub_ps_512: | 
|  | case Intrinsic::x86_fma_vfmaddsub_pd_512: | 
|  | Opc = X86ISD::FMADDSUB; | 
|  | break; | 
|  | case Intrinsic::x86_fma_vfmsubadd_ps: | 
|  | case Intrinsic::x86_fma_vfmsubadd_pd: | 
|  | case Intrinsic::x86_fma_vfmsubadd_ps_256: | 
|  | case Intrinsic::x86_fma_vfmsubadd_pd_256: | 
|  | case Intrinsic::x86_fma_vfmsubadd_ps_512: | 
|  | case Intrinsic::x86_fma_vfmsubadd_pd_512: | 
|  | Opc = X86ISD::FMSUBADD; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1), | 
|  | Op.getOperand(2), Op.getOperand(3)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, | 
|  | SDValue Base, SDValue Index, | 
|  | SDValue ScaleOp, SDValue Chain, | 
|  | const X86Subtarget * Subtarget) { | 
|  | SDLoc dl(Op); | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp); | 
|  | assert(C && "Invalid scale type"); | 
|  | SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8); | 
|  | SDValue Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl); | 
|  | EVT MaskVT = MVT::getVectorVT(MVT::i1, | 
|  | Index.getSimpleValueType().getVectorNumElements()); | 
|  | SDValue MaskInReg = DAG.getConstant(~0, MaskVT); | 
|  | SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other); | 
|  | SDValue Disp = DAG.getTargetConstant(0, MVT::i32); | 
|  | SDValue Segment = DAG.getRegister(0, MVT::i32); | 
|  | SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain}; | 
|  | SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); | 
|  | SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) }; | 
|  | return DAG.getMergeValues(RetOps, array_lengthof(RetOps), dl); | 
|  | } | 
|  |  | 
|  | static SDValue getMGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, | 
|  | SDValue Src, SDValue Mask, SDValue Base, | 
|  | SDValue Index, SDValue ScaleOp, SDValue Chain, | 
|  | const X86Subtarget * Subtarget) { | 
|  | SDLoc dl(Op); | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp); | 
|  | assert(C && "Invalid scale type"); | 
|  | SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8); | 
|  | EVT MaskVT = MVT::getVectorVT(MVT::i1, | 
|  | Index.getSimpleValueType().getVectorNumElements()); | 
|  | SDValue MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask); | 
|  | SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other); | 
|  | SDValue Disp = DAG.getTargetConstant(0, MVT::i32); | 
|  | SDValue Segment = DAG.getRegister(0, MVT::i32); | 
|  | if (Src.getOpcode() == ISD::UNDEF) | 
|  | Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl); | 
|  | SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain}; | 
|  | SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); | 
|  | SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) }; | 
|  | return DAG.getMergeValues(RetOps, array_lengthof(RetOps), dl); | 
|  | } | 
|  |  | 
|  | static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, | 
|  | SDValue Src, SDValue Base, SDValue Index, | 
|  | SDValue ScaleOp, SDValue Chain) { | 
|  | SDLoc dl(Op); | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp); | 
|  | assert(C && "Invalid scale type"); | 
|  | SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8); | 
|  | SDValue Disp = DAG.getTargetConstant(0, MVT::i32); | 
|  | SDValue Segment = DAG.getRegister(0, MVT::i32); | 
|  | EVT MaskVT = MVT::getVectorVT(MVT::i1, | 
|  | Index.getSimpleValueType().getVectorNumElements()); | 
|  | SDValue MaskInReg = DAG.getConstant(~0, MaskVT); | 
|  | SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other); | 
|  | SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain}; | 
|  | SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); | 
|  | return SDValue(Res, 1); | 
|  | } | 
|  |  | 
|  | static SDValue getMScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, | 
|  | SDValue Src, SDValue Mask, SDValue Base, | 
|  | SDValue Index, SDValue ScaleOp, SDValue Chain) { | 
|  | SDLoc dl(Op); | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp); | 
|  | assert(C && "Invalid scale type"); | 
|  | SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8); | 
|  | SDValue Disp = DAG.getTargetConstant(0, MVT::i32); | 
|  | SDValue Segment = DAG.getRegister(0, MVT::i32); | 
|  | EVT MaskVT = MVT::getVectorVT(MVT::i1, | 
|  | Index.getSimpleValueType().getVectorNumElements()); | 
|  | SDValue MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask); | 
|  | SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other); | 
|  | SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain}; | 
|  | SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); | 
|  | return SDValue(Res, 1); | 
|  | } | 
|  |  | 
|  | static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc dl(Op); | 
|  | unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  | switch (IntNo) { | 
|  | default: return SDValue();    // Don't custom lower most intrinsics. | 
|  |  | 
|  | // RDRAND/RDSEED intrinsics. | 
|  | case Intrinsic::x86_rdrand_16: | 
|  | case Intrinsic::x86_rdrand_32: | 
|  | case Intrinsic::x86_rdrand_64: | 
|  | case Intrinsic::x86_rdseed_16: | 
|  | case Intrinsic::x86_rdseed_32: | 
|  | case Intrinsic::x86_rdseed_64: { | 
|  | unsigned Opcode = (IntNo == Intrinsic::x86_rdseed_16 || | 
|  | IntNo == Intrinsic::x86_rdseed_32 || | 
|  | IntNo == Intrinsic::x86_rdseed_64) ? X86ISD::RDSEED : | 
|  | X86ISD::RDRAND; | 
|  | // Emit the node with the right value type. | 
|  | SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other); | 
|  | SDValue Result = DAG.getNode(Opcode, dl, VTs, Op.getOperand(0)); | 
|  |  | 
|  | // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1. | 
|  | // Otherwise return the value from Rand, which is always 0, casted to i32. | 
|  | SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)), | 
|  | DAG.getConstant(1, Op->getValueType(1)), | 
|  | DAG.getConstant(X86::COND_B, MVT::i32), | 
|  | SDValue(Result.getNode(), 1) }; | 
|  | SDValue isValid = DAG.getNode(X86ISD::CMOV, dl, | 
|  | DAG.getVTList(Op->getValueType(1), MVT::Glue), | 
|  | Ops, array_lengthof(Ops)); | 
|  |  | 
|  | // Return { result, isValid, chain }. | 
|  | return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid, | 
|  | SDValue(Result.getNode(), 2)); | 
|  | } | 
|  | //int_gather(index, base, scale); | 
|  | case Intrinsic::x86_avx512_gather_qpd_512: | 
|  | case Intrinsic::x86_avx512_gather_qps_512: | 
|  | case Intrinsic::x86_avx512_gather_dpd_512: | 
|  | case Intrinsic::x86_avx512_gather_qpi_512: | 
|  | case Intrinsic::x86_avx512_gather_qpq_512: | 
|  | case Intrinsic::x86_avx512_gather_dpq_512: | 
|  | case Intrinsic::x86_avx512_gather_dps_512: | 
|  | case Intrinsic::x86_avx512_gather_dpi_512: { | 
|  | unsigned Opc; | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::x86_avx512_gather_qps_512: Opc = X86::VGATHERQPSZrm; break; | 
|  | case Intrinsic::x86_avx512_gather_qpd_512: Opc = X86::VGATHERQPDZrm; break; | 
|  | case Intrinsic::x86_avx512_gather_dpd_512: Opc = X86::VGATHERDPDZrm; break; | 
|  | case Intrinsic::x86_avx512_gather_dps_512: Opc = X86::VGATHERDPSZrm; break; | 
|  | case Intrinsic::x86_avx512_gather_qpi_512: Opc = X86::VPGATHERQDZrm; break; | 
|  | case Intrinsic::x86_avx512_gather_qpq_512: Opc = X86::VPGATHERQQZrm; break; | 
|  | case Intrinsic::x86_avx512_gather_dpi_512: Opc = X86::VPGATHERDDZrm; break; | 
|  | case Intrinsic::x86_avx512_gather_dpq_512: Opc = X86::VPGATHERDQZrm; break; | 
|  | } | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Index = Op.getOperand(2); | 
|  | SDValue Base  = Op.getOperand(3); | 
|  | SDValue Scale = Op.getOperand(4); | 
|  | return getGatherNode(Opc, Op, DAG, Base, Index, Scale, Chain, Subtarget); | 
|  | } | 
|  | //int_gather_mask(v1, mask, index, base, scale); | 
|  | case Intrinsic::x86_avx512_gather_qps_mask_512: | 
|  | case Intrinsic::x86_avx512_gather_qpd_mask_512: | 
|  | case Intrinsic::x86_avx512_gather_dpd_mask_512: | 
|  | case Intrinsic::x86_avx512_gather_dps_mask_512: | 
|  | case Intrinsic::x86_avx512_gather_qpi_mask_512: | 
|  | case Intrinsic::x86_avx512_gather_qpq_mask_512: | 
|  | case Intrinsic::x86_avx512_gather_dpi_mask_512: | 
|  | case Intrinsic::x86_avx512_gather_dpq_mask_512: { | 
|  | unsigned Opc; | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::x86_avx512_gather_qps_mask_512: | 
|  | Opc = X86::VGATHERQPSZrm; break; | 
|  | case Intrinsic::x86_avx512_gather_qpd_mask_512: | 
|  | Opc = X86::VGATHERQPDZrm; break; | 
|  | case Intrinsic::x86_avx512_gather_dpd_mask_512: | 
|  | Opc = X86::VGATHERDPDZrm; break; | 
|  | case Intrinsic::x86_avx512_gather_dps_mask_512: | 
|  | Opc = X86::VGATHERDPSZrm; break; | 
|  | case Intrinsic::x86_avx512_gather_qpi_mask_512: | 
|  | Opc = X86::VPGATHERQDZrm; break; | 
|  | case Intrinsic::x86_avx512_gather_qpq_mask_512: | 
|  | Opc = X86::VPGATHERQQZrm; break; | 
|  | case Intrinsic::x86_avx512_gather_dpi_mask_512: | 
|  | Opc = X86::VPGATHERDDZrm; break; | 
|  | case Intrinsic::x86_avx512_gather_dpq_mask_512: | 
|  | Opc = X86::VPGATHERDQZrm; break; | 
|  | } | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Src   = Op.getOperand(2); | 
|  | SDValue Mask  = Op.getOperand(3); | 
|  | SDValue Index = Op.getOperand(4); | 
|  | SDValue Base  = Op.getOperand(5); | 
|  | SDValue Scale = Op.getOperand(6); | 
|  | return getMGatherNode(Opc, Op, DAG, Src, Mask, Base, Index, Scale, Chain, | 
|  | Subtarget); | 
|  | } | 
|  | //int_scatter(base, index, v1, scale); | 
|  | case Intrinsic::x86_avx512_scatter_qpd_512: | 
|  | case Intrinsic::x86_avx512_scatter_qps_512: | 
|  | case Intrinsic::x86_avx512_scatter_dpd_512: | 
|  | case Intrinsic::x86_avx512_scatter_qpi_512: | 
|  | case Intrinsic::x86_avx512_scatter_qpq_512: | 
|  | case Intrinsic::x86_avx512_scatter_dpq_512: | 
|  | case Intrinsic::x86_avx512_scatter_dps_512: | 
|  | case Intrinsic::x86_avx512_scatter_dpi_512: { | 
|  | unsigned Opc; | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::x86_avx512_scatter_qpd_512: | 
|  | Opc = X86::VSCATTERQPDZmr; break; | 
|  | case Intrinsic::x86_avx512_scatter_qps_512: | 
|  | Opc = X86::VSCATTERQPSZmr; break; | 
|  | case Intrinsic::x86_avx512_scatter_dpd_512: | 
|  | Opc = X86::VSCATTERDPDZmr; break; | 
|  | case Intrinsic::x86_avx512_scatter_dps_512: | 
|  | Opc = X86::VSCATTERDPSZmr; break; | 
|  | case Intrinsic::x86_avx512_scatter_qpi_512: | 
|  | Opc = X86::VPSCATTERQDZmr; break; | 
|  | case Intrinsic::x86_avx512_scatter_qpq_512: | 
|  | Opc = X86::VPSCATTERQQZmr; break; | 
|  | case Intrinsic::x86_avx512_scatter_dpq_512: | 
|  | Opc = X86::VPSCATTERDQZmr; break; | 
|  | case Intrinsic::x86_avx512_scatter_dpi_512: | 
|  | Opc = X86::VPSCATTERDDZmr; break; | 
|  | } | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Base  = Op.getOperand(2); | 
|  | SDValue Index = Op.getOperand(3); | 
|  | SDValue Src   = Op.getOperand(4); | 
|  | SDValue Scale = Op.getOperand(5); | 
|  | return getScatterNode(Opc, Op, DAG, Src, Base, Index, Scale, Chain); | 
|  | } | 
|  | //int_scatter_mask(base, mask, index, v1, scale); | 
|  | case Intrinsic::x86_avx512_scatter_qps_mask_512: | 
|  | case Intrinsic::x86_avx512_scatter_qpd_mask_512: | 
|  | case Intrinsic::x86_avx512_scatter_dpd_mask_512: | 
|  | case Intrinsic::x86_avx512_scatter_dps_mask_512: | 
|  | case Intrinsic::x86_avx512_scatter_qpi_mask_512: | 
|  | case Intrinsic::x86_avx512_scatter_qpq_mask_512: | 
|  | case Intrinsic::x86_avx512_scatter_dpi_mask_512: | 
|  | case Intrinsic::x86_avx512_scatter_dpq_mask_512: { | 
|  | unsigned Opc; | 
|  | switch (IntNo) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::x86_avx512_scatter_qpd_mask_512: | 
|  | Opc = X86::VSCATTERQPDZmr; break; | 
|  | case Intrinsic::x86_avx512_scatter_qps_mask_512: | 
|  | Opc = X86::VSCATTERQPSZmr; break; | 
|  | case Intrinsic::x86_avx512_scatter_dpd_mask_512: | 
|  | Opc = X86::VSCATTERDPDZmr; break; | 
|  | case Intrinsic::x86_avx512_scatter_dps_mask_512: | 
|  | Opc = X86::VSCATTERDPSZmr; break; | 
|  | case Intrinsic::x86_avx512_scatter_qpi_mask_512: | 
|  | Opc = X86::VPSCATTERQDZmr; break; | 
|  | case Intrinsic::x86_avx512_scatter_qpq_mask_512: | 
|  | Opc = X86::VPSCATTERQQZmr; break; | 
|  | case Intrinsic::x86_avx512_scatter_dpq_mask_512: | 
|  | Opc = X86::VPSCATTERDQZmr; break; | 
|  | case Intrinsic::x86_avx512_scatter_dpi_mask_512: | 
|  | Opc = X86::VPSCATTERDDZmr; break; | 
|  | } | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Base  = Op.getOperand(2); | 
|  | SDValue Mask  = Op.getOperand(3); | 
|  | SDValue Index = Op.getOperand(4); | 
|  | SDValue Src   = Op.getOperand(5); | 
|  | SDValue Scale = Op.getOperand(6); | 
|  | return getMScatterNode(Opc, Op, DAG, Src, Mask, Base, Index, Scale, Chain); | 
|  | } | 
|  | // XTEST intrinsics. | 
|  | case Intrinsic::x86_xtest: { | 
|  | SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other); | 
|  | SDValue InTrans = DAG.getNode(X86ISD::XTEST, dl, VTs, Op.getOperand(0)); | 
|  | SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, | 
|  | DAG.getConstant(X86::COND_NE, MVT::i8), | 
|  | InTrans); | 
|  | SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC); | 
|  | return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), | 
|  | Ret, SDValue(InTrans.getNode(), 1)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | MFI->setReturnAddressIsTaken(true); | 
|  |  | 
|  | if (verifyReturnAddressArgumentIsConstant(Op, DAG)) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | SDLoc dl(Op); | 
|  | EVT PtrVT = getPointerTy(); | 
|  |  | 
|  | if (Depth > 0) { | 
|  | SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); | 
|  | const X86RegisterInfo *RegInfo = | 
|  | static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo()); | 
|  | SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT); | 
|  | return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), | 
|  | DAG.getNode(ISD::ADD, dl, PtrVT, | 
|  | FrameAddr, Offset), | 
|  | MachinePointerInfo(), false, false, false, 0); | 
|  | } | 
|  |  | 
|  | // Just load the return address. | 
|  | SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); | 
|  | return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), | 
|  | RetAddrFI, MachinePointerInfo(), false, false, false, 0); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | MFI->setFrameAddressIsTaken(true); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc dl(Op);  // FIXME probably not meaningful | 
|  | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | const X86RegisterInfo *RegInfo = | 
|  | static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo()); | 
|  | unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction()); | 
|  | assert(((FrameReg == X86::RBP && VT == MVT::i64) || | 
|  | (FrameReg == X86::EBP && VT == MVT::i32)) && | 
|  | "Invalid Frame Register!"); | 
|  | SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); | 
|  | while (Depth--) | 
|  | FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, | 
|  | MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  | return FrameAddr; | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | const X86RegisterInfo *RegInfo = | 
|  | static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo()); | 
|  | return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize()); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDValue Chain     = Op.getOperand(0); | 
|  | SDValue Offset    = Op.getOperand(1); | 
|  | SDValue Handler   = Op.getOperand(2); | 
|  | SDLoc dl      (Op); | 
|  |  | 
|  | EVT PtrVT = getPointerTy(); | 
|  | const X86RegisterInfo *RegInfo = | 
|  | static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo()); | 
|  | unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction()); | 
|  | assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) || | 
|  | (FrameReg == X86::EBP && PtrVT == MVT::i32)) && | 
|  | "Invalid Frame Register!"); | 
|  | SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT); | 
|  | unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX; | 
|  |  | 
|  | SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame, | 
|  | DAG.getIntPtrConstant(RegInfo->getSlotSize())); | 
|  | StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset); | 
|  | Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(), | 
|  | false, false, 0); | 
|  | Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr); | 
|  |  | 
|  | return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain, | 
|  | DAG.getRegister(StoreAddrReg, PtrVT)); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL, | 
|  | DAG.getVTList(MVT::i32, MVT::Other), | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | } | 
|  |  | 
|  | static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) { | 
|  | return Op.getOperand(0); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Root = Op.getOperand(0); | 
|  | SDValue Trmp = Op.getOperand(1); // trampoline | 
|  | SDValue FPtr = Op.getOperand(2); // nested function | 
|  | SDValue Nest = Op.getOperand(3); // 'nest' parameter value | 
|  | SDLoc dl (Op); | 
|  |  | 
|  | const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); | 
|  | const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo(); | 
|  |  | 
|  | if (Subtarget->is64Bit()) { | 
|  | SDValue OutChains[6]; | 
|  |  | 
|  | // Large code-model. | 
|  | const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode. | 
|  | const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode. | 
|  |  | 
|  | const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7; | 
|  | const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7; | 
|  |  | 
|  | const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix | 
|  |  | 
|  | // Load the pointer to the nested function into R11. | 
|  | unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 | 
|  | SDValue Addr = Trmp; | 
|  | OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), | 
|  | Addr, MachinePointerInfo(TrmpAddr), | 
|  | false, false, 0); | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(2, MVT::i64)); | 
|  | OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, | 
|  | MachinePointerInfo(TrmpAddr, 2), | 
|  | false, false, 2); | 
|  |  | 
|  | // Load the 'nest' parameter value into R10. | 
|  | // R10 is specified in X86CallingConv.td | 
|  | OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(10, MVT::i64)); | 
|  | OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), | 
|  | Addr, MachinePointerInfo(TrmpAddr, 10), | 
|  | false, false, 0); | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(12, MVT::i64)); | 
|  | OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, | 
|  | MachinePointerInfo(TrmpAddr, 12), | 
|  | false, false, 2); | 
|  |  | 
|  | // Jump to the nested function. | 
|  | OpCode = (JMP64r << 8) | REX_WB; // jmpq *... | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(20, MVT::i64)); | 
|  | OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), | 
|  | Addr, MachinePointerInfo(TrmpAddr, 20), | 
|  | false, false, 0); | 
|  |  | 
|  | unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, | 
|  | DAG.getConstant(22, MVT::i64)); | 
|  | OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr, | 
|  | MachinePointerInfo(TrmpAddr, 22), | 
|  | false, false, 0); | 
|  |  | 
|  | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6); | 
|  | } else { | 
|  | const Function *Func = | 
|  | cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); | 
|  | CallingConv::ID CC = Func->getCallingConv(); | 
|  | unsigned NestReg; | 
|  |  | 
|  | switch (CC) { | 
|  | default: | 
|  | llvm_unreachable("Unsupported calling convention"); | 
|  | case CallingConv::C: | 
|  | case CallingConv::X86_StdCall: { | 
|  | // Pass 'nest' parameter in ECX. | 
|  | // Must be kept in sync with X86CallingConv.td | 
|  | NestReg = X86::ECX; | 
|  |  | 
|  | // Check that ECX wasn't needed by an 'inreg' parameter. | 
|  | FunctionType *FTy = Func->getFunctionType(); | 
|  | const AttributeSet &Attrs = Func->getAttributes(); | 
|  |  | 
|  | if (!Attrs.isEmpty() && !Func->isVarArg()) { | 
|  | unsigned InRegCount = 0; | 
|  | unsigned Idx = 1; | 
|  |  | 
|  | for (FunctionType::param_iterator I = FTy->param_begin(), | 
|  | E = FTy->param_end(); I != E; ++I, ++Idx) | 
|  | if (Attrs.hasAttribute(Idx, Attribute::InReg)) | 
|  | // FIXME: should only count parameters that are lowered to integers. | 
|  | InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32; | 
|  |  | 
|  | if (InRegCount > 2) { | 
|  | report_fatal_error("Nest register in use - reduce number of inreg" | 
|  | " parameters!"); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case CallingConv::X86_FastCall: | 
|  | case CallingConv::X86_ThisCall: | 
|  | case CallingConv::Fast: | 
|  | // Pass 'nest' parameter in EAX. | 
|  | // Must be kept in sync with X86CallingConv.td | 
|  | NestReg = X86::EAX; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue OutChains[4]; | 
|  | SDValue Addr, Disp; | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, | 
|  | DAG.getConstant(10, MVT::i32)); | 
|  | Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr); | 
|  |  | 
|  | // This is storing the opcode for MOV32ri. | 
|  | const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte. | 
|  | const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7; | 
|  | OutChains[0] = DAG.getStore(Root, dl, | 
|  | DAG.getConstant(MOV32ri|N86Reg, MVT::i8), | 
|  | Trmp, MachinePointerInfo(TrmpAddr), | 
|  | false, false, 0); | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  | OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, | 
|  | MachinePointerInfo(TrmpAddr, 1), | 
|  | false, false, 1); | 
|  |  | 
|  | const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode. | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, | 
|  | DAG.getConstant(5, MVT::i32)); | 
|  | OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr, | 
|  | MachinePointerInfo(TrmpAddr, 5), | 
|  | false, false, 1); | 
|  |  | 
|  | Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, | 
|  | DAG.getConstant(6, MVT::i32)); | 
|  | OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, | 
|  | MachinePointerInfo(TrmpAddr, 6), | 
|  | false, false, 1); | 
|  |  | 
|  | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | /* | 
|  | The rounding mode is in bits 11:10 of FPSR, and has the following | 
|  | settings: | 
|  | 00 Round to nearest | 
|  | 01 Round to -inf | 
|  | 10 Round to +inf | 
|  | 11 Round to 0 | 
|  |  | 
|  | FLT_ROUNDS, on the other hand, expects the following: | 
|  | -1 Undefined | 
|  | 0 Round to 0 | 
|  | 1 Round to nearest | 
|  | 2 Round to +inf | 
|  | 3 Round to -inf | 
|  |  | 
|  | To perform the conversion, we do: | 
|  | (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) | 
|  | */ | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const TargetMachine &TM = MF.getTarget(); | 
|  | const TargetFrameLowering &TFI = *TM.getFrameLowering(); | 
|  | unsigned StackAlignment = TFI.getStackAlignment(); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | // Save FP Control Word to stack slot | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), | 
|  | MachineMemOperand::MOStore, 2, 2); | 
|  |  | 
|  | SDValue Ops[] = { DAG.getEntryNode(), StackSlot }; | 
|  | SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL, | 
|  | DAG.getVTList(MVT::Other), | 
|  | Ops, array_lengthof(Ops), MVT::i16, | 
|  | MMO); | 
|  |  | 
|  | // Load FP Control Word from stack slot | 
|  | SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot, | 
|  | MachinePointerInfo(), false, false, false, 0); | 
|  |  | 
|  | // Transform as necessary | 
|  | SDValue CWD1 = | 
|  | DAG.getNode(ISD::SRL, DL, MVT::i16, | 
|  | DAG.getNode(ISD::AND, DL, MVT::i16, | 
|  | CWD, DAG.getConstant(0x800, MVT::i16)), | 
|  | DAG.getConstant(11, MVT::i8)); | 
|  | SDValue CWD2 = | 
|  | DAG.getNode(ISD::SRL, DL, MVT::i16, | 
|  | DAG.getNode(ISD::AND, DL, MVT::i16, | 
|  | CWD, DAG.getConstant(0x400, MVT::i16)), | 
|  | DAG.getConstant(9, MVT::i8)); | 
|  |  | 
|  | SDValue RetVal = | 
|  | DAG.getNode(ISD::AND, DL, MVT::i16, | 
|  | DAG.getNode(ISD::ADD, DL, MVT::i16, | 
|  | DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2), | 
|  | DAG.getConstant(1, MVT::i16)), | 
|  | DAG.getConstant(3, MVT::i16)); | 
|  |  | 
|  | return DAG.getNode((VT.getSizeInBits() < 16 ? | 
|  | ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal); | 
|  | } | 
|  |  | 
|  | static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | EVT OpVT = VT; | 
|  | unsigned NumBits = VT.getSizeInBits(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | Op = Op.getOperand(0); | 
|  | if (VT == MVT::i8) { | 
|  | // Zero extend to i32 since there is not an i8 bsr. | 
|  | OpVT = MVT::i32; | 
|  | Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); | 
|  | } | 
|  |  | 
|  | // Issue a bsr (scan bits in reverse) which also sets EFLAGS. | 
|  | SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); | 
|  | Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); | 
|  |  | 
|  | // If src is zero (i.e. bsr sets ZF), returns NumBits. | 
|  | SDValue Ops[] = { | 
|  | Op, | 
|  | DAG.getConstant(NumBits+NumBits-1, OpVT), | 
|  | DAG.getConstant(X86::COND_E, MVT::i8), | 
|  | Op.getValue(1) | 
|  | }; | 
|  | Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops)); | 
|  |  | 
|  | // Finally xor with NumBits-1. | 
|  | Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); | 
|  |  | 
|  | if (VT == MVT::i8) | 
|  | Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | EVT OpVT = VT; | 
|  | unsigned NumBits = VT.getSizeInBits(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | Op = Op.getOperand(0); | 
|  | if (VT == MVT::i8) { | 
|  | // Zero extend to i32 since there is not an i8 bsr. | 
|  | OpVT = MVT::i32; | 
|  | Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); | 
|  | } | 
|  |  | 
|  | // Issue a bsr (scan bits in reverse). | 
|  | SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); | 
|  | Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); | 
|  |  | 
|  | // And xor with NumBits-1. | 
|  | Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); | 
|  |  | 
|  | if (VT == MVT::i8) | 
|  | Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | unsigned NumBits = VT.getSizeInBits(); | 
|  | SDLoc dl(Op); | 
|  | Op = Op.getOperand(0); | 
|  |  | 
|  | // Issue a bsf (scan bits forward) which also sets EFLAGS. | 
|  | SDVTList VTs = DAG.getVTList(VT, MVT::i32); | 
|  | Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op); | 
|  |  | 
|  | // If src is zero (i.e. bsf sets ZF), returns NumBits. | 
|  | SDValue Ops[] = { | 
|  | Op, | 
|  | DAG.getConstant(NumBits, VT), | 
|  | DAG.getConstant(X86::COND_E, MVT::i8), | 
|  | Op.getValue(1) | 
|  | }; | 
|  | return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops)); | 
|  | } | 
|  |  | 
|  | // Lower256IntArith - Break a 256-bit integer operation into two new 128-bit | 
|  | // ones, and then concatenate the result back. | 
|  | static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | assert(VT.is256BitVector() && VT.isInteger() && | 
|  | "Unsupported value type for operation"); | 
|  |  | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | // Extract the LHS vectors | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); | 
|  | SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); | 
|  |  | 
|  | // Extract the RHS vectors | 
|  | SDValue RHS = Op.getOperand(1); | 
|  | SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl); | 
|  | SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl); | 
|  |  | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); | 
|  |  | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, | 
|  | DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1), | 
|  | DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2)); | 
|  | } | 
|  |  | 
|  | static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) { | 
|  | assert(Op.getSimpleValueType().is256BitVector() && | 
|  | Op.getSimpleValueType().isInteger() && | 
|  | "Only handle AVX 256-bit vector integer operation"); | 
|  | return Lower256IntArith(Op, DAG); | 
|  | } | 
|  |  | 
|  | static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) { | 
|  | assert(Op.getSimpleValueType().is256BitVector() && | 
|  | Op.getSimpleValueType().isInteger() && | 
|  | "Only handle AVX 256-bit vector integer operation"); | 
|  | return Lower256IntArith(Op, DAG); | 
|  | } | 
|  |  | 
|  | static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc dl(Op); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | // Decompose 256-bit ops into smaller 128-bit ops. | 
|  | if (VT.is256BitVector() && !Subtarget->hasInt256()) | 
|  | return Lower256IntArith(Op, DAG); | 
|  |  | 
|  | SDValue A = Op.getOperand(0); | 
|  | SDValue B = Op.getOperand(1); | 
|  |  | 
|  | // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle. | 
|  | if (VT == MVT::v4i32) { | 
|  | assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() && | 
|  | "Should not custom lower when pmuldq is available!"); | 
|  |  | 
|  | // Extract the odd parts. | 
|  | static const int UnpackMask[] = { 1, -1, 3, -1 }; | 
|  | SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask); | 
|  | SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask); | 
|  |  | 
|  | // Multiply the even parts. | 
|  | SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B); | 
|  | // Now multiply odd parts. | 
|  | SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds); | 
|  |  | 
|  | Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens); | 
|  | Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds); | 
|  |  | 
|  | // Merge the two vectors back together with a shuffle. This expands into 2 | 
|  | // shuffles. | 
|  | static const int ShufMask[] = { 0, 4, 2, 6 }; | 
|  | return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask); | 
|  | } | 
|  |  | 
|  | assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) && | 
|  | "Only know how to lower V2I64/V4I64/V8I64 multiply"); | 
|  |  | 
|  | //  Ahi = psrlqi(a, 32); | 
|  | //  Bhi = psrlqi(b, 32); | 
|  | // | 
|  | //  AloBlo = pmuludq(a, b); | 
|  | //  AloBhi = pmuludq(a, Bhi); | 
|  | //  AhiBlo = pmuludq(Ahi, b); | 
|  |  | 
|  | //  AloBhi = psllqi(AloBhi, 32); | 
|  | //  AhiBlo = psllqi(AhiBlo, 32); | 
|  | //  return AloBlo + AloBhi + AhiBlo; | 
|  |  | 
|  | SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG); | 
|  | SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG); | 
|  |  | 
|  | // Bit cast to 32-bit vectors for MULUDQ | 
|  | EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : | 
|  | (VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32; | 
|  | A = DAG.getNode(ISD::BITCAST, dl, MulVT, A); | 
|  | B = DAG.getNode(ISD::BITCAST, dl, MulVT, B); | 
|  | Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi); | 
|  | Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi); | 
|  |  | 
|  | SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B); | 
|  | SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi); | 
|  | SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B); | 
|  |  | 
|  | AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG); | 
|  | AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG); | 
|  |  | 
|  | SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi); | 
|  | return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo); | 
|  | } | 
|  |  | 
|  | static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | MVT EltTy = VT.getVectorElementType(); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | // Lower sdiv X, pow2-const. | 
|  | BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1)); | 
|  | if (!C) | 
|  | return SDValue(); | 
|  |  | 
|  | APInt SplatValue, SplatUndef; | 
|  | unsigned SplatBitSize; | 
|  | bool HasAnyUndefs; | 
|  | if (!C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, | 
|  | HasAnyUndefs) || | 
|  | EltTy.getSizeInBits() < SplatBitSize) | 
|  | return SDValue(); | 
|  |  | 
|  | if ((SplatValue != 0) && | 
|  | (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) { | 
|  | unsigned Lg2 = SplatValue.countTrailingZeros(); | 
|  | // Splat the sign bit. | 
|  | SmallVector<SDValue, 16> Sz(NumElts, | 
|  | DAG.getConstant(EltTy.getSizeInBits() - 1, | 
|  | EltTy)); | 
|  | SDValue SGN = DAG.getNode(ISD::SRA, dl, VT, N0, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Sz[0], | 
|  | NumElts)); | 
|  | // Add (N0 < 0) ? abs2 - 1 : 0; | 
|  | SmallVector<SDValue, 16> Amt(NumElts, | 
|  | DAG.getConstant(EltTy.getSizeInBits() - Lg2, | 
|  | EltTy)); | 
|  | SDValue SRL = DAG.getNode(ISD::SRL, dl, VT, SGN, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Amt[0], | 
|  | NumElts)); | 
|  | SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL); | 
|  | SmallVector<SDValue, 16> Lg2Amt(NumElts, DAG.getConstant(Lg2, EltTy)); | 
|  | SDValue SRA = DAG.getNode(ISD::SRA, dl, VT, ADD, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Lg2Amt[0], | 
|  | NumElts)); | 
|  |  | 
|  | // If we're dividing by a positive value, we're done.  Otherwise, we must | 
|  | // negate the result. | 
|  | if (SplatValue.isNonNegative()) | 
|  | return SRA; | 
|  |  | 
|  | SmallVector<SDValue, 16> V(NumElts, DAG.getConstant(0, EltTy)); | 
|  | SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts); | 
|  | return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  | SDValue R = Op.getOperand(0); | 
|  | SDValue Amt = Op.getOperand(1); | 
|  |  | 
|  | // Optimize shl/srl/sra with constant shift amount. | 
|  | if (isSplatVector(Amt.getNode())) { | 
|  | SDValue SclrAmt = Amt->getOperand(0); | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) { | 
|  | uint64_t ShiftAmt = C->getZExtValue(); | 
|  |  | 
|  | if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || | 
|  | (Subtarget->hasInt256() && | 
|  | (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16)) || | 
|  | (Subtarget->hasAVX512() && | 
|  | (VT == MVT::v8i64 || VT == MVT::v16i32))) { | 
|  | if (Op.getOpcode() == ISD::SHL) | 
|  | return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt, | 
|  | DAG); | 
|  | if (Op.getOpcode() == ISD::SRL) | 
|  | return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt, | 
|  | DAG); | 
|  | if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64) | 
|  | return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt, | 
|  | DAG); | 
|  | } | 
|  |  | 
|  | if (VT == MVT::v16i8) { | 
|  | if (Op.getOpcode() == ISD::SHL) { | 
|  | // Make a large shift. | 
|  | SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, | 
|  | MVT::v8i16, R, ShiftAmt, | 
|  | DAG); | 
|  | SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL); | 
|  | // Zero out the rightmost bits. | 
|  | SmallVector<SDValue, 16> V(16, | 
|  | DAG.getConstant(uint8_t(-1U << ShiftAmt), | 
|  | MVT::i8)); | 
|  | return DAG.getNode(ISD::AND, dl, VT, SHL, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16)); | 
|  | } | 
|  | if (Op.getOpcode() == ISD::SRL) { | 
|  | // Make a large shift. | 
|  | SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, | 
|  | MVT::v8i16, R, ShiftAmt, | 
|  | DAG); | 
|  | SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL); | 
|  | // Zero out the leftmost bits. | 
|  | SmallVector<SDValue, 16> V(16, | 
|  | DAG.getConstant(uint8_t(-1U) >> ShiftAmt, | 
|  | MVT::i8)); | 
|  | return DAG.getNode(ISD::AND, dl, VT, SRL, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16)); | 
|  | } | 
|  | if (Op.getOpcode() == ISD::SRA) { | 
|  | if (ShiftAmt == 7) { | 
|  | // R s>> 7  ===  R s< 0 | 
|  | SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); | 
|  | return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R); | 
|  | } | 
|  |  | 
|  | // R s>> a === ((R u>> a) ^ m) - m | 
|  | SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt); | 
|  | SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt, | 
|  | MVT::i8)); | 
|  | SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16); | 
|  | Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask); | 
|  | Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask); | 
|  | return Res; | 
|  | } | 
|  | llvm_unreachable("Unknown shift opcode."); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasInt256() && VT == MVT::v32i8) { | 
|  | if (Op.getOpcode() == ISD::SHL) { | 
|  | // Make a large shift. | 
|  | SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, | 
|  | MVT::v16i16, R, ShiftAmt, | 
|  | DAG); | 
|  | SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL); | 
|  | // Zero out the rightmost bits. | 
|  | SmallVector<SDValue, 32> V(32, | 
|  | DAG.getConstant(uint8_t(-1U << ShiftAmt), | 
|  | MVT::i8)); | 
|  | return DAG.getNode(ISD::AND, dl, VT, SHL, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32)); | 
|  | } | 
|  | if (Op.getOpcode() == ISD::SRL) { | 
|  | // Make a large shift. | 
|  | SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, | 
|  | MVT::v16i16, R, ShiftAmt, | 
|  | DAG); | 
|  | SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL); | 
|  | // Zero out the leftmost bits. | 
|  | SmallVector<SDValue, 32> V(32, | 
|  | DAG.getConstant(uint8_t(-1U) >> ShiftAmt, | 
|  | MVT::i8)); | 
|  | return DAG.getNode(ISD::AND, dl, VT, SRL, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32)); | 
|  | } | 
|  | if (Op.getOpcode() == ISD::SRA) { | 
|  | if (ShiftAmt == 7) { | 
|  | // R s>> 7  ===  R s< 0 | 
|  | SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); | 
|  | return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R); | 
|  | } | 
|  |  | 
|  | // R s>> a === ((R u>> a) ^ m) - m | 
|  | SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt); | 
|  | SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt, | 
|  | MVT::i8)); | 
|  | SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32); | 
|  | Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask); | 
|  | Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask); | 
|  | return Res; | 
|  | } | 
|  | llvm_unreachable("Unknown shift opcode."); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Special case in 32-bit mode, where i64 is expanded into high and low parts. | 
|  | if (!Subtarget->is64Bit() && | 
|  | (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) && | 
|  | Amt.getOpcode() == ISD::BITCAST && | 
|  | Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { | 
|  | Amt = Amt.getOperand(0); | 
|  | unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() / | 
|  | VT.getVectorNumElements(); | 
|  | unsigned RatioInLog2 = Log2_32_Ceil(Ratio); | 
|  | uint64_t ShiftAmt = 0; | 
|  | for (unsigned i = 0; i != Ratio; ++i) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i)); | 
|  | if (C == 0) | 
|  | return SDValue(); | 
|  | // 6 == Log2(64) | 
|  | ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2))); | 
|  | } | 
|  | // Check remaining shift amounts. | 
|  | for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) { | 
|  | uint64_t ShAmt = 0; | 
|  | for (unsigned j = 0; j != Ratio; ++j) { | 
|  | ConstantSDNode *C = | 
|  | dyn_cast<ConstantSDNode>(Amt.getOperand(i + j)); | 
|  | if (C == 0) | 
|  | return SDValue(); | 
|  | // 6 == Log2(64) | 
|  | ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2))); | 
|  | } | 
|  | if (ShAmt != ShiftAmt) | 
|  | return SDValue(); | 
|  | } | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown shift opcode!"); | 
|  | case ISD::SHL: | 
|  | return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt, | 
|  | DAG); | 
|  | case ISD::SRL: | 
|  | return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt, | 
|  | DAG); | 
|  | case ISD::SRA: | 
|  | return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt, | 
|  | DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG, | 
|  | const X86Subtarget* Subtarget) { | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  | SDValue R = Op.getOperand(0); | 
|  | SDValue Amt = Op.getOperand(1); | 
|  |  | 
|  | if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) || | 
|  | VT == MVT::v4i32 || VT == MVT::v8i16 || | 
|  | (Subtarget->hasInt256() && | 
|  | ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) || | 
|  | VT == MVT::v8i32 || VT == MVT::v16i16)) || | 
|  | (Subtarget->hasAVX512() && (VT == MVT::v8i64 || VT == MVT::v16i32))) { | 
|  | SDValue BaseShAmt; | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  |  | 
|  | if (Amt.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | unsigned i, j; | 
|  | for (i = 0; i != NumElts; ++i) { | 
|  | if (Amt.getOperand(i).getOpcode() == ISD::UNDEF) | 
|  | continue; | 
|  | break; | 
|  | } | 
|  | for (j = i; j != NumElts; ++j) { | 
|  | SDValue Arg = Amt.getOperand(j); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) continue; | 
|  | if (Arg != Amt.getOperand(i)) | 
|  | break; | 
|  | } | 
|  | if (i != NumElts && j == NumElts) | 
|  | BaseShAmt = Amt.getOperand(i); | 
|  | } else { | 
|  | if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR) | 
|  | Amt = Amt.getOperand(0); | 
|  | if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE && | 
|  | cast<ShuffleVectorSDNode>(Amt)->isSplat()) { | 
|  | SDValue InVec = Amt.getOperand(0); | 
|  | if (InVec.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | unsigned NumElts = InVec.getValueType().getVectorNumElements(); | 
|  | unsigned i = 0; | 
|  | for (; i != NumElts; ++i) { | 
|  | SDValue Arg = InVec.getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) continue; | 
|  | BaseShAmt = Arg; | 
|  | break; | 
|  | } | 
|  | } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) { | 
|  | if (ConstantSDNode *C = | 
|  | dyn_cast<ConstantSDNode>(InVec.getOperand(2))) { | 
|  | unsigned SplatIdx = | 
|  | cast<ShuffleVectorSDNode>(Amt)->getSplatIndex(); | 
|  | if (C->getZExtValue() == SplatIdx) | 
|  | BaseShAmt = InVec.getOperand(1); | 
|  | } | 
|  | } | 
|  | if (BaseShAmt.getNode() == 0) | 
|  | BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BaseShAmt.getNode()) { | 
|  | if (EltVT.bitsGT(MVT::i32)) | 
|  | BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt); | 
|  | else if (EltVT.bitsLT(MVT::i32)) | 
|  | BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt); | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown shift opcode!"); | 
|  | case ISD::SHL: | 
|  | switch (VT.SimpleTy) { | 
|  | default: return SDValue(); | 
|  | case MVT::v2i64: | 
|  | case MVT::v4i32: | 
|  | case MVT::v8i16: | 
|  | case MVT::v4i64: | 
|  | case MVT::v8i32: | 
|  | case MVT::v16i16: | 
|  | case MVT::v16i32: | 
|  | case MVT::v8i64: | 
|  | return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG); | 
|  | } | 
|  | case ISD::SRA: | 
|  | switch (VT.SimpleTy) { | 
|  | default: return SDValue(); | 
|  | case MVT::v4i32: | 
|  | case MVT::v8i16: | 
|  | case MVT::v8i32: | 
|  | case MVT::v16i16: | 
|  | case MVT::v16i32: | 
|  | case MVT::v8i64: | 
|  | return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG); | 
|  | } | 
|  | case ISD::SRL: | 
|  | switch (VT.SimpleTy) { | 
|  | default: return SDValue(); | 
|  | case MVT::v2i64: | 
|  | case MVT::v4i32: | 
|  | case MVT::v8i16: | 
|  | case MVT::v4i64: | 
|  | case MVT::v8i32: | 
|  | case MVT::v16i16: | 
|  | case MVT::v16i32: | 
|  | case MVT::v8i64: | 
|  | return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Special case in 32-bit mode, where i64 is expanded into high and low parts. | 
|  | if (!Subtarget->is64Bit() && | 
|  | (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64) || | 
|  | (Subtarget->hasAVX512() && VT == MVT::v8i64)) && | 
|  | Amt.getOpcode() == ISD::BITCAST && | 
|  | Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { | 
|  | Amt = Amt.getOperand(0); | 
|  | unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() / | 
|  | VT.getVectorNumElements(); | 
|  | std::vector<SDValue> Vals(Ratio); | 
|  | for (unsigned i = 0; i != Ratio; ++i) | 
|  | Vals[i] = Amt.getOperand(i); | 
|  | for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) { | 
|  | for (unsigned j = 0; j != Ratio; ++j) | 
|  | if (Vals[j] != Amt.getOperand(i + j)) | 
|  | return SDValue(); | 
|  | } | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown shift opcode!"); | 
|  | case ISD::SHL: | 
|  | return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1)); | 
|  | case ISD::SRL: | 
|  | return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1)); | 
|  | case ISD::SRA: | 
|  | return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  |  | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | SDLoc dl(Op); | 
|  | SDValue R = Op.getOperand(0); | 
|  | SDValue Amt = Op.getOperand(1); | 
|  | SDValue V; | 
|  |  | 
|  | if (!Subtarget->hasSSE2()) | 
|  | return SDValue(); | 
|  |  | 
|  | V = LowerScalarImmediateShift(Op, DAG, Subtarget); | 
|  | if (V.getNode()) | 
|  | return V; | 
|  |  | 
|  | V = LowerScalarVariableShift(Op, DAG, Subtarget); | 
|  | if (V.getNode()) | 
|  | return V; | 
|  |  | 
|  | if (Subtarget->hasAVX512() && (VT == MVT::v16i32 || VT == MVT::v8i64)) | 
|  | return Op; | 
|  | // AVX2 has VPSLLV/VPSRAV/VPSRLV. | 
|  | if (Subtarget->hasInt256()) { | 
|  | if (Op.getOpcode() == ISD::SRL && | 
|  | (VT == MVT::v2i64 || VT == MVT::v4i32 || | 
|  | VT == MVT::v4i64 || VT == MVT::v8i32)) | 
|  | return Op; | 
|  | if (Op.getOpcode() == ISD::SHL && | 
|  | (VT == MVT::v2i64 || VT == MVT::v4i32 || | 
|  | VT == MVT::v4i64 || VT == MVT::v8i32)) | 
|  | return Op; | 
|  | if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32)) | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | // If possible, lower this packed shift into a vector multiply instead of | 
|  | // expanding it into a sequence of scalar shifts. | 
|  | // Do this only if the vector shift count is a constant build_vector. | 
|  | if (Op.getOpcode() == ISD::SHL && | 
|  | (VT == MVT::v8i16 || VT == MVT::v4i32 || | 
|  | (Subtarget->hasInt256() && VT == MVT::v16i16)) && | 
|  | ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) { | 
|  | SmallVector<SDValue, 8> Elts; | 
|  | EVT SVT = VT.getScalarType(); | 
|  | unsigned SVTBits = SVT.getSizeInBits(); | 
|  | const APInt &One = APInt(SVTBits, 1); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | for (unsigned i=0; i !=NumElems; ++i) { | 
|  | SDValue Op = Amt->getOperand(i); | 
|  | if (Op->getOpcode() == ISD::UNDEF) { | 
|  | Elts.push_back(Op); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ConstantSDNode *ND = cast<ConstantSDNode>(Op); | 
|  | const APInt &C = APInt(SVTBits, ND->getAPIntValue().getZExtValue()); | 
|  | uint64_t ShAmt = C.getZExtValue(); | 
|  | if (ShAmt >= SVTBits) { | 
|  | Elts.push_back(DAG.getUNDEF(SVT)); | 
|  | continue; | 
|  | } | 
|  | Elts.push_back(DAG.getConstant(One.shl(ShAmt), SVT)); | 
|  | } | 
|  | SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Elts[0], NumElems); | 
|  | return DAG.getNode(ISD::MUL, dl, VT, R, BV); | 
|  | } | 
|  |  | 
|  | // Lower SHL with variable shift amount. | 
|  | if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) { | 
|  | Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT)); | 
|  |  | 
|  | Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT)); | 
|  | Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op); | 
|  | Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op); | 
|  | return DAG.getNode(ISD::MUL, dl, VT, Op, R); | 
|  | } | 
|  |  | 
|  | if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) { | 
|  | assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq."); | 
|  |  | 
|  | // a = a << 5; | 
|  | Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT)); | 
|  | Op = DAG.getNode(ISD::BITCAST, dl, VT, Op); | 
|  |  | 
|  | // Turn 'a' into a mask suitable for VSELECT | 
|  | SDValue VSelM = DAG.getConstant(0x80, VT); | 
|  | SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op); | 
|  | OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM); | 
|  |  | 
|  | SDValue CM1 = DAG.getConstant(0x0f, VT); | 
|  | SDValue CM2 = DAG.getConstant(0x3f, VT); | 
|  |  | 
|  | // r = VSELECT(r, psllw(r & (char16)15, 4), a); | 
|  | SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1); | 
|  | M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 4, DAG); | 
|  | M = DAG.getNode(ISD::BITCAST, dl, VT, M); | 
|  | R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R); | 
|  |  | 
|  | // a += a | 
|  | Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op); | 
|  | OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op); | 
|  | OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM); | 
|  |  | 
|  | // r = VSELECT(r, psllw(r & (char16)63, 2), a); | 
|  | M = DAG.getNode(ISD::AND, dl, VT, R, CM2); | 
|  | M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 2, DAG); | 
|  | M = DAG.getNode(ISD::BITCAST, dl, VT, M); | 
|  | R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R); | 
|  |  | 
|  | // a += a | 
|  | Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op); | 
|  | OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op); | 
|  | OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM); | 
|  |  | 
|  | // return VSELECT(r, r+r, a); | 
|  | R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, | 
|  | DAG.getNode(ISD::ADD, dl, VT, R, R), R); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | // It's worth extending once and using the v8i32 shifts for 16-bit types, but | 
|  | // the extra overheads to get from v16i8 to v8i32 make the existing SSE | 
|  | // solution better. | 
|  | if (Subtarget->hasInt256() && VT == MVT::v8i16) { | 
|  | MVT NewVT = VT == MVT::v8i16 ? MVT::v8i32 : MVT::v16i16; | 
|  | unsigned ExtOpc = | 
|  | Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  | R = DAG.getNode(ExtOpc, dl, NewVT, R); | 
|  | Amt = DAG.getNode(ISD::ANY_EXTEND, dl, NewVT, Amt); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, | 
|  | DAG.getNode(Op.getOpcode(), dl, NewVT, R, Amt)); | 
|  | } | 
|  |  | 
|  | // Decompose 256-bit shifts into smaller 128-bit shifts. | 
|  | if (VT.is256BitVector()) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); | 
|  |  | 
|  | // Extract the two vectors | 
|  | SDValue V1 = Extract128BitVector(R, 0, DAG, dl); | 
|  | SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl); | 
|  |  | 
|  | // Recreate the shift amount vectors | 
|  | SDValue Amt1, Amt2; | 
|  | if (Amt.getOpcode() == ISD::BUILD_VECTOR) { | 
|  | // Constant shift amount | 
|  | SmallVector<SDValue, 4> Amt1Csts; | 
|  | SmallVector<SDValue, 4> Amt2Csts; | 
|  | for (unsigned i = 0; i != NumElems/2; ++i) | 
|  | Amt1Csts.push_back(Amt->getOperand(i)); | 
|  | for (unsigned i = NumElems/2; i != NumElems; ++i) | 
|  | Amt2Csts.push_back(Amt->getOperand(i)); | 
|  |  | 
|  | Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, | 
|  | &Amt1Csts[0], NumElems/2); | 
|  | Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, | 
|  | &Amt2Csts[0], NumElems/2); | 
|  | } else { | 
|  | // Variable shift amount | 
|  | Amt1 = Extract128BitVector(Amt, 0, DAG, dl); | 
|  | Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl); | 
|  | } | 
|  |  | 
|  | // Issue new vector shifts for the smaller types | 
|  | V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1); | 
|  | V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2); | 
|  |  | 
|  | // Concatenate the result back | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { | 
|  | // Lower the "add/sub/mul with overflow" instruction into a regular ins plus | 
|  | // a "setcc" instruction that checks the overflow flag. The "brcond" lowering | 
|  | // looks for this combo and may remove the "setcc" instruction if the "setcc" | 
|  | // has only one use. | 
|  | SDNode *N = Op.getNode(); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | unsigned BaseOp = 0; | 
|  | unsigned Cond = 0; | 
|  | SDLoc DL(Op); | 
|  | switch (Op.getOpcode()) { | 
|  | default: llvm_unreachable("Unknown ovf instruction!"); | 
|  | case ISD::SADDO: | 
|  | // A subtract of one will be selected as a INC. Note that INC doesn't | 
|  | // set CF, so we can't do this for UADDO. | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) | 
|  | if (C->isOne()) { | 
|  | BaseOp = X86ISD::INC; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | } | 
|  | BaseOp = X86ISD::ADD; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | case ISD::UADDO: | 
|  | BaseOp = X86ISD::ADD; | 
|  | Cond = X86::COND_B; | 
|  | break; | 
|  | case ISD::SSUBO: | 
|  | // A subtract of one will be selected as a DEC. Note that DEC doesn't | 
|  | // set CF, so we can't do this for USUBO. | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) | 
|  | if (C->isOne()) { | 
|  | BaseOp = X86ISD::DEC; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | } | 
|  | BaseOp = X86ISD::SUB; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | case ISD::USUBO: | 
|  | BaseOp = X86ISD::SUB; | 
|  | Cond = X86::COND_B; | 
|  | break; | 
|  | case ISD::SMULO: | 
|  | BaseOp = X86ISD::SMUL; | 
|  | Cond = X86::COND_O; | 
|  | break; | 
|  | case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs | 
|  | SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0), | 
|  | MVT::i32); | 
|  | SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS); | 
|  |  | 
|  | SDValue SetCC = | 
|  | DAG.getNode(X86ISD::SETCC, DL, MVT::i8, | 
|  | DAG.getConstant(X86::COND_O, MVT::i32), | 
|  | SDValue(Sum.getNode(), 2)); | 
|  |  | 
|  | return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Also sets EFLAGS. | 
|  | SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); | 
|  | SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); | 
|  |  | 
|  | SDValue SetCC = | 
|  | DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1), | 
|  | DAG.getConstant(Cond, MVT::i32), | 
|  | SDValue(Sum.getNode(), 1)); | 
|  |  | 
|  | return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Op); | 
|  | EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  |  | 
|  | if (!Subtarget->hasSSE2() || !VT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned BitsDiff = VT.getScalarType().getSizeInBits() - | 
|  | ExtraVT.getScalarType().getSizeInBits(); | 
|  |  | 
|  | switch (VT.SimpleTy) { | 
|  | default: return SDValue(); | 
|  | case MVT::v8i32: | 
|  | case MVT::v16i16: | 
|  | if (!Subtarget->hasFp256()) | 
|  | return SDValue(); | 
|  | if (!Subtarget->hasInt256()) { | 
|  | // needs to be split | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | // Extract the LHS vectors | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); | 
|  | SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); | 
|  |  | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); | 
|  |  | 
|  | EVT ExtraEltVT = ExtraVT.getVectorElementType(); | 
|  | unsigned ExtraNumElems = ExtraVT.getVectorNumElements(); | 
|  | ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT, | 
|  | ExtraNumElems/2); | 
|  | SDValue Extra = DAG.getValueType(ExtraVT); | 
|  |  | 
|  | LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra); | 
|  | LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra); | 
|  |  | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2); | 
|  | } | 
|  | // fall through | 
|  | case MVT::v4i32: | 
|  | case MVT::v8i16: { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op00 = Op0.getOperand(0); | 
|  | SDValue Tmp1; | 
|  | // Hopefully, this VECTOR_SHUFFLE is just a VZEXT. | 
|  | if (Op0.getOpcode() == ISD::BITCAST && | 
|  | Op00.getOpcode() == ISD::VECTOR_SHUFFLE) { | 
|  | // (sext (vzext x)) -> (vsext x) | 
|  | Tmp1 = LowerVectorIntExtend(Op00, Subtarget, DAG); | 
|  | if (Tmp1.getNode()) { | 
|  | EVT ExtraEltVT = ExtraVT.getVectorElementType(); | 
|  | // This folding is only valid when the in-reg type is a vector of i8, | 
|  | // i16, or i32. | 
|  | if (ExtraEltVT == MVT::i8 || ExtraEltVT == MVT::i16 || | 
|  | ExtraEltVT == MVT::i32) { | 
|  | SDValue Tmp1Op0 = Tmp1.getOperand(0); | 
|  | assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT && | 
|  | "This optimization is invalid without a VZEXT."); | 
|  | return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0)); | 
|  | } | 
|  | Op0 = Tmp1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the above didn't work, then just use Shift-Left + Shift-Right. | 
|  | Tmp1 = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Op0, BitsDiff, | 
|  | DAG); | 
|  | return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, Tmp1, BitsDiff, | 
|  | DAG); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc dl(Op); | 
|  | AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( | 
|  | cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); | 
|  | SynchronizationScope FenceScope = static_cast<SynchronizationScope>( | 
|  | cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); | 
|  |  | 
|  | // The only fence that needs an instruction is a sequentially-consistent | 
|  | // cross-thread fence. | 
|  | if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) { | 
|  | // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for | 
|  | // no-sse2). There isn't any reason to disable it if the target processor | 
|  | // supports it. | 
|  | if (Subtarget->hasSSE2() || Subtarget->is64Bit()) | 
|  | return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0)); | 
|  |  | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | SDValue Zero = DAG.getConstant(0, MVT::i32); | 
|  | SDValue Ops[] = { | 
|  | DAG.getRegister(X86::ESP, MVT::i32), // Base | 
|  | DAG.getTargetConstant(1, MVT::i8),   // Scale | 
|  | DAG.getRegister(0, MVT::i32),        // Index | 
|  | DAG.getTargetConstant(0, MVT::i32),  // Disp | 
|  | DAG.getRegister(0, MVT::i32),        // Segment. | 
|  | Zero, | 
|  | Chain | 
|  | }; | 
|  | SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops); | 
|  | return SDValue(Res, 0); | 
|  | } | 
|  |  | 
|  | // MEMBARRIER is a compiler barrier; it codegens to a no-op. | 
|  | return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); | 
|  | } | 
|  |  | 
|  | static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | MVT T = Op.getSimpleValueType(); | 
|  | SDLoc DL(Op); | 
|  | unsigned Reg = 0; | 
|  | unsigned size = 0; | 
|  | switch(T.SimpleTy) { | 
|  | default: llvm_unreachable("Invalid value type!"); | 
|  | case MVT::i8:  Reg = X86::AL;  size = 1; break; | 
|  | case MVT::i16: Reg = X86::AX;  size = 2; break; | 
|  | case MVT::i32: Reg = X86::EAX; size = 4; break; | 
|  | case MVT::i64: | 
|  | assert(Subtarget->is64Bit() && "Node not type legal!"); | 
|  | Reg = X86::RAX; size = 8; | 
|  | break; | 
|  | } | 
|  | SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg, | 
|  | Op.getOperand(2), SDValue()); | 
|  | SDValue Ops[] = { cpIn.getValue(0), | 
|  | Op.getOperand(1), | 
|  | Op.getOperand(3), | 
|  | DAG.getTargetConstant(size, MVT::i8), | 
|  | cpIn.getValue(1) }; | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand(); | 
|  | SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys, | 
|  | Ops, array_lengthof(Ops), T, MMO); | 
|  | SDValue cpOut = | 
|  | DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1)); | 
|  | return cpOut; | 
|  | } | 
|  |  | 
|  | static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | assert(Subtarget->is64Bit() && "Result not type legalized?"); | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDValue TheChain = Op.getOperand(0); | 
|  | SDLoc dl(Op); | 
|  | SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); | 
|  | SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1)); | 
|  | SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64, | 
|  | rax.getValue(2)); | 
|  | SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx, | 
|  | DAG.getConstant(32, MVT::i8)); | 
|  | SDValue Ops[] = { | 
|  | DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp), | 
|  | rdx.getValue(1) | 
|  | }; | 
|  | return DAG.getMergeValues(Ops, array_lengthof(Ops), dl); | 
|  | } | 
|  |  | 
|  | static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | MVT SrcVT = Op.getOperand(0).getSimpleValueType(); | 
|  | MVT DstVT = Op.getSimpleValueType(); | 
|  | assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() && | 
|  | Subtarget->hasMMX() && "Unexpected custom BITCAST"); | 
|  | assert((DstVT == MVT::i64 || | 
|  | (DstVT.isVector() && DstVT.getSizeInBits()==64)) && | 
|  | "Unexpected custom BITCAST"); | 
|  | // i64 <=> MMX conversions are Legal. | 
|  | if (SrcVT==MVT::i64 && DstVT.isVector()) | 
|  | return Op; | 
|  | if (DstVT==MVT::i64 && SrcVT.isVector()) | 
|  | return Op; | 
|  | // MMX <=> MMX conversions are Legal. | 
|  | if (SrcVT.isVector() && DstVT.isVector()) | 
|  | return Op; | 
|  | // All other conversions need to be expanded. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) { | 
|  | SDNode *Node = Op.getNode(); | 
|  | SDLoc dl(Node); | 
|  | EVT T = Node->getValueType(0); | 
|  | SDValue negOp = DAG.getNode(ISD::SUB, dl, T, | 
|  | DAG.getConstant(0, T), Node->getOperand(2)); | 
|  | return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, | 
|  | cast<AtomicSDNode>(Node)->getMemoryVT(), | 
|  | Node->getOperand(0), | 
|  | Node->getOperand(1), negOp, | 
|  | cast<AtomicSDNode>(Node)->getSrcValue(), | 
|  | cast<AtomicSDNode>(Node)->getAlignment(), | 
|  | cast<AtomicSDNode>(Node)->getOrdering(), | 
|  | cast<AtomicSDNode>(Node)->getSynchScope()); | 
|  | } | 
|  |  | 
|  | static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) { | 
|  | SDNode *Node = Op.getNode(); | 
|  | SDLoc dl(Node); | 
|  | EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT(); | 
|  |  | 
|  | // Convert seq_cst store -> xchg | 
|  | // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b) | 
|  | // FIXME: On 32-bit, store -> fist or movq would be more efficient | 
|  | //        (The only way to get a 16-byte store is cmpxchg16b) | 
|  | // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment. | 
|  | if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent || | 
|  | !DAG.getTargetLoweringInfo().isTypeLegal(VT)) { | 
|  | SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, | 
|  | cast<AtomicSDNode>(Node)->getMemoryVT(), | 
|  | Node->getOperand(0), | 
|  | Node->getOperand(1), Node->getOperand(2), | 
|  | cast<AtomicSDNode>(Node)->getMemOperand(), | 
|  | cast<AtomicSDNode>(Node)->getOrdering(), | 
|  | cast<AtomicSDNode>(Node)->getSynchScope()); | 
|  | return Swap.getValue(1); | 
|  | } | 
|  | // Other atomic stores have a simple pattern. | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { | 
|  | EVT VT = Op.getNode()->getSimpleValueType(0); | 
|  |  | 
|  | // Let legalize expand this if it isn't a legal type yet. | 
|  | if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(VT, MVT::i32); | 
|  |  | 
|  | unsigned Opc; | 
|  | bool ExtraOp = false; | 
|  | switch (Op.getOpcode()) { | 
|  | default: llvm_unreachable("Invalid code"); | 
|  | case ISD::ADDC: Opc = X86ISD::ADD; break; | 
|  | case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break; | 
|  | case ISD::SUBC: Opc = X86ISD::SUB; break; | 
|  | case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break; | 
|  | } | 
|  |  | 
|  | if (!ExtraOp) | 
|  | return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), | 
|  | Op.getOperand(1)); | 
|  | return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | } | 
|  |  | 
|  | static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget, | 
|  | SelectionDAG &DAG) { | 
|  | assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit()); | 
|  |  | 
|  | // For MacOSX, we want to call an alternative entry point: __sincos_stret, | 
|  | // which returns the values as { float, float } (in XMM0) or | 
|  | // { double, double } (which is returned in XMM0, XMM1). | 
|  | SDLoc dl(Op); | 
|  | SDValue Arg = Op.getOperand(0); | 
|  | EVT ArgVT = Arg.getValueType(); | 
|  | Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  |  | 
|  | Entry.Node = Arg; | 
|  | Entry.Ty = ArgTy; | 
|  | Entry.isSExt = false; | 
|  | Entry.isZExt = false; | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | bool isF64 = ArgVT == MVT::f64; | 
|  | // Only optimize x86_64 for now. i386 is a bit messy. For f32, | 
|  | // the small struct {f32, f32} is returned in (eax, edx). For f64, | 
|  | // the results are returned via SRet in memory. | 
|  | const char *LibcallName =  isF64 ? "__sincos_stret" : "__sincosf_stret"; | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue Callee = DAG.getExternalSymbol(LibcallName, TLI.getPointerTy()); | 
|  |  | 
|  | Type *RetTy = isF64 | 
|  | ? (Type*)StructType::get(ArgTy, ArgTy, NULL) | 
|  | : (Type*)VectorType::get(ArgTy, 4); | 
|  | TargetLowering:: | 
|  | CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, | 
|  | false, false, false, false, 0, | 
|  | CallingConv::C, /*isTaillCall=*/false, | 
|  | /*doesNotRet=*/false, /*isReturnValueUsed*/true, | 
|  | Callee, Args, DAG, dl); | 
|  | std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); | 
|  |  | 
|  | if (isF64) | 
|  | // Returned in xmm0 and xmm1. | 
|  | return CallResult.first; | 
|  |  | 
|  | // Returned in bits 0:31 and 32:64 xmm0. | 
|  | SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT, | 
|  | CallResult.first, DAG.getIntPtrConstant(0)); | 
|  | SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT, | 
|  | CallResult.first, DAG.getIntPtrConstant(1)); | 
|  | SDVTList Tys = DAG.getVTList(ArgVT, ArgVT); | 
|  | return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal); | 
|  | } | 
|  |  | 
|  | /// LowerOperation - Provide custom lowering hooks for some operations. | 
|  | /// | 
|  | SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { | 
|  | switch (Op.getOpcode()) { | 
|  | default: llvm_unreachable("Should not custom lower this!"); | 
|  | case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG); | 
|  | case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG); | 
|  | case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG); | 
|  | case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG); | 
|  | case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG); | 
|  | case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG); | 
|  | case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG); | 
|  | case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG); | 
|  | case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG); | 
|  | case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG); | 
|  | case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG); | 
|  | case ISD::ConstantPool:       return LowerConstantPool(Op, DAG); | 
|  | case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG); | 
|  | case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG); | 
|  | case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG); | 
|  | case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG); | 
|  | case ISD::SHL_PARTS: | 
|  | case ISD::SRA_PARTS: | 
|  | case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG); | 
|  | case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG); | 
|  | case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG); | 
|  | case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG); | 
|  | case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, Subtarget, DAG); | 
|  | case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, Subtarget, DAG); | 
|  | case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, Subtarget, DAG); | 
|  | case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG); | 
|  | case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG); | 
|  | case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG); | 
|  | case ISD::FABS:               return LowerFABS(Op, DAG); | 
|  | case ISD::FNEG:               return LowerFNEG(Op, DAG); | 
|  | case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG); | 
|  | case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG); | 
|  | case ISD::SETCC:              return LowerSETCC(Op, DAG); | 
|  | case ISD::SELECT:             return LowerSELECT(Op, DAG); | 
|  | case ISD::BRCOND:             return LowerBRCOND(Op, DAG); | 
|  | case ISD::JumpTable:          return LowerJumpTable(Op, DAG); | 
|  | case ISD::VASTART:            return LowerVASTART(Op, DAG); | 
|  | case ISD::VAARG:              return LowerVAARG(Op, DAG); | 
|  | case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG); | 
|  | case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); | 
|  | case ISD::INTRINSIC_VOID: | 
|  | case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG); | 
|  | case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG); | 
|  | case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG); | 
|  | case ISD::FRAME_TO_ARGS_OFFSET: | 
|  | return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); | 
|  | case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); | 
|  | case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG); | 
|  | case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG); | 
|  | case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG); | 
|  | case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG); | 
|  | case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG); | 
|  | case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG); | 
|  | case ISD::CTLZ:               return LowerCTLZ(Op, DAG); | 
|  | case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG); | 
|  | case ISD::CTTZ:               return LowerCTTZ(Op, DAG); | 
|  | case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG); | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | case ISD::SHL:                return LowerShift(Op, Subtarget, DAG); | 
|  | case ISD::SADDO: | 
|  | case ISD::UADDO: | 
|  | case ISD::SSUBO: | 
|  | case ISD::USUBO: | 
|  | case ISD::SMULO: | 
|  | case ISD::UMULO:              return LowerXALUO(Op, DAG); | 
|  | case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG); | 
|  | case ISD::BITCAST:            return LowerBITCAST(Op, Subtarget, DAG); | 
|  | case ISD::ADDC: | 
|  | case ISD::ADDE: | 
|  | case ISD::SUBC: | 
|  | case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); | 
|  | case ISD::ADD:                return LowerADD(Op, DAG); | 
|  | case ISD::SUB:                return LowerSUB(Op, DAG); | 
|  | case ISD::SDIV:               return LowerSDIV(Op, DAG); | 
|  | case ISD::FSINCOS:            return LowerFSINCOS(Op, Subtarget, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ReplaceATOMIC_LOAD(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results, | 
|  | SelectionDAG &DAG) { | 
|  | SDLoc dl(Node); | 
|  | EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT(); | 
|  |  | 
|  | // Convert wide load -> cmpxchg8b/cmpxchg16b | 
|  | // FIXME: On 32-bit, load -> fild or movq would be more efficient | 
|  | //        (The only way to get a 16-byte load is cmpxchg16b) | 
|  | // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment. | 
|  | SDValue Zero = DAG.getConstant(0, VT); | 
|  | SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT, | 
|  | Node->getOperand(0), | 
|  | Node->getOperand(1), Zero, Zero, | 
|  | cast<AtomicSDNode>(Node)->getMemOperand(), | 
|  | cast<AtomicSDNode>(Node)->getOrdering(), | 
|  | cast<AtomicSDNode>(Node)->getOrdering(), | 
|  | cast<AtomicSDNode>(Node)->getSynchScope()); | 
|  | Results.push_back(Swap.getValue(0)); | 
|  | Results.push_back(Swap.getValue(1)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results, | 
|  | SelectionDAG &DAG, unsigned NewOp) { | 
|  | SDLoc dl(Node); | 
|  | assert (Node->getValueType(0) == MVT::i64 && | 
|  | "Only know how to expand i64 atomics"); | 
|  |  | 
|  | SDValue Chain = Node->getOperand(0); | 
|  | SDValue In1 = Node->getOperand(1); | 
|  | SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, | 
|  | Node->getOperand(2), DAG.getIntPtrConstant(0)); | 
|  | SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, | 
|  | Node->getOperand(2), DAG.getIntPtrConstant(1)); | 
|  | SDValue Ops[] = { Chain, In1, In2L, In2H }; | 
|  | SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); | 
|  | SDValue Result = | 
|  | DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, array_lengthof(Ops), MVT::i64, | 
|  | cast<MemSDNode>(Node)->getMemOperand()); | 
|  | SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)}; | 
|  | Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); | 
|  | Results.push_back(Result.getValue(2)); | 
|  | } | 
|  |  | 
|  | /// ReplaceNodeResults - Replace a node with an illegal result type | 
|  | /// with a new node built out of custom code. | 
|  | void X86TargetLowering::ReplaceNodeResults(SDNode *N, | 
|  | SmallVectorImpl<SDValue>&Results, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(N); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | switch (N->getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Do not know how to custom type legalize this operation!"); | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | case ISD::ADDC: | 
|  | case ISD::ADDE: | 
|  | case ISD::SUBC: | 
|  | case ISD::SUBE: | 
|  | // We don't want to expand or promote these. | 
|  | return; | 
|  | case ISD::FP_TO_SINT: | 
|  | case ISD::FP_TO_UINT: { | 
|  | bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; | 
|  |  | 
|  | if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType())) | 
|  | return; | 
|  |  | 
|  | std::pair<SDValue,SDValue> Vals = | 
|  | FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true); | 
|  | SDValue FIST = Vals.first, StackSlot = Vals.second; | 
|  | if (FIST.getNode() != 0) { | 
|  | EVT VT = N->getValueType(0); | 
|  | // Return a load from the stack slot. | 
|  | if (StackSlot.getNode() != 0) | 
|  | Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, | 
|  | MachinePointerInfo(), | 
|  | false, false, false, 0)); | 
|  | else | 
|  | Results.push_back(FIST); | 
|  | } | 
|  | return; | 
|  | } | 
|  | case ISD::UINT_TO_FP: { | 
|  | assert(Subtarget->hasSSE2() && "Requires at least SSE2!"); | 
|  | if (N->getOperand(0).getValueType() != MVT::v2i32 || | 
|  | N->getValueType(0) != MVT::v2f32) | 
|  | return; | 
|  | SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64, | 
|  | N->getOperand(0)); | 
|  | SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), | 
|  | MVT::f64); | 
|  | SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias); | 
|  | SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn, | 
|  | DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias)); | 
|  | Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or); | 
|  | SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias); | 
|  | Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub)); | 
|  | return; | 
|  | } | 
|  | case ISD::FP_ROUND: { | 
|  | if (!TLI.isTypeLegal(N->getOperand(0).getValueType())) | 
|  | return; | 
|  | SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0)); | 
|  | Results.push_back(V); | 
|  | return; | 
|  | } | 
|  | case ISD::READCYCLECOUNTER: { | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDValue TheChain = N->getOperand(0); | 
|  | SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); | 
|  | SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32, | 
|  | rd.getValue(1)); | 
|  | SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32, | 
|  | eax.getValue(2)); | 
|  | // Use a buildpair to merge the two 32-bit values into a 64-bit one. | 
|  | SDValue Ops[] = { eax, edx }; | 
|  | Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, | 
|  | array_lengthof(Ops))); | 
|  | Results.push_back(edx.getValue(1)); | 
|  | return; | 
|  | } | 
|  | case ISD::ATOMIC_CMP_SWAP: { | 
|  | EVT T = N->getValueType(0); | 
|  | assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair"); | 
|  | bool Regs64bit = T == MVT::i128; | 
|  | EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32; | 
|  | SDValue cpInL, cpInH; | 
|  | cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), | 
|  | DAG.getConstant(0, HalfT)); | 
|  | cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), | 
|  | DAG.getConstant(1, HalfT)); | 
|  | cpInL = DAG.getCopyToReg(N->getOperand(0), dl, | 
|  | Regs64bit ? X86::RAX : X86::EAX, | 
|  | cpInL, SDValue()); | 
|  | cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, | 
|  | Regs64bit ? X86::RDX : X86::EDX, | 
|  | cpInH, cpInL.getValue(1)); | 
|  | SDValue swapInL, swapInH; | 
|  | swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), | 
|  | DAG.getConstant(0, HalfT)); | 
|  | swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), | 
|  | DAG.getConstant(1, HalfT)); | 
|  | swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, | 
|  | Regs64bit ? X86::RBX : X86::EBX, | 
|  | swapInL, cpInH.getValue(1)); | 
|  | swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, | 
|  | Regs64bit ? X86::RCX : X86::ECX, | 
|  | swapInH, swapInL.getValue(1)); | 
|  | SDValue Ops[] = { swapInH.getValue(0), | 
|  | N->getOperand(1), | 
|  | swapInH.getValue(1) }; | 
|  | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); | 
|  | unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG : | 
|  | X86ISD::LCMPXCHG8_DAG; | 
|  | SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, | 
|  | Ops, array_lengthof(Ops), T, MMO); | 
|  | SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, | 
|  | Regs64bit ? X86::RAX : X86::EAX, | 
|  | HalfT, Result.getValue(1)); | 
|  | SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, | 
|  | Regs64bit ? X86::RDX : X86::EDX, | 
|  | HalfT, cpOutL.getValue(2)); | 
|  | SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; | 
|  | Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2)); | 
|  | Results.push_back(cpOutH.getValue(1)); | 
|  | return; | 
|  | } | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | case ISD::ATOMIC_LOAD_MAX: | 
|  | case ISD::ATOMIC_LOAD_MIN: | 
|  | case ISD::ATOMIC_LOAD_UMAX: | 
|  | case ISD::ATOMIC_LOAD_UMIN: | 
|  | case ISD::ATOMIC_SWAP: { | 
|  | unsigned Opc; | 
|  | switch (N->getOpcode()) { | 
|  | default: llvm_unreachable("Unexpected opcode"); | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | Opc = X86ISD::ATOMADD64_DAG; | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | Opc = X86ISD::ATOMAND64_DAG; | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | Opc = X86ISD::ATOMNAND64_DAG; | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | Opc = X86ISD::ATOMOR64_DAG; | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | Opc = X86ISD::ATOMSUB64_DAG; | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | Opc = X86ISD::ATOMXOR64_DAG; | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD_MAX: | 
|  | Opc = X86ISD::ATOMMAX64_DAG; | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD_MIN: | 
|  | Opc = X86ISD::ATOMMIN64_DAG; | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD_UMAX: | 
|  | Opc = X86ISD::ATOMUMAX64_DAG; | 
|  | break; | 
|  | case ISD::ATOMIC_LOAD_UMIN: | 
|  | Opc = X86ISD::ATOMUMIN64_DAG; | 
|  | break; | 
|  | case ISD::ATOMIC_SWAP: | 
|  | Opc = X86ISD::ATOMSWAP64_DAG; | 
|  | break; | 
|  | } | 
|  | ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc); | 
|  | return; | 
|  | } | 
|  | case ISD::ATOMIC_LOAD: | 
|  | ReplaceATOMIC_LOAD(N, Results, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | switch (Opcode) { | 
|  | default: return NULL; | 
|  | case X86ISD::BSF:                return "X86ISD::BSF"; | 
|  | case X86ISD::BSR:                return "X86ISD::BSR"; | 
|  | case X86ISD::SHLD:               return "X86ISD::SHLD"; | 
|  | case X86ISD::SHRD:               return "X86ISD::SHRD"; | 
|  | case X86ISD::FAND:               return "X86ISD::FAND"; | 
|  | case X86ISD::FANDN:              return "X86ISD::FANDN"; | 
|  | case X86ISD::FOR:                return "X86ISD::FOR"; | 
|  | case X86ISD::FXOR:               return "X86ISD::FXOR"; | 
|  | case X86ISD::FSRL:               return "X86ISD::FSRL"; | 
|  | case X86ISD::FILD:               return "X86ISD::FILD"; | 
|  | case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG"; | 
|  | case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; | 
|  | case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; | 
|  | case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; | 
|  | case X86ISD::FLD:                return "X86ISD::FLD"; | 
|  | case X86ISD::FST:                return "X86ISD::FST"; | 
|  | case X86ISD::CALL:               return "X86ISD::CALL"; | 
|  | case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG"; | 
|  | case X86ISD::BT:                 return "X86ISD::BT"; | 
|  | case X86ISD::CMP:                return "X86ISD::CMP"; | 
|  | case X86ISD::COMI:               return "X86ISD::COMI"; | 
|  | case X86ISD::UCOMI:              return "X86ISD::UCOMI"; | 
|  | case X86ISD::CMPM:               return "X86ISD::CMPM"; | 
|  | case X86ISD::CMPMU:              return "X86ISD::CMPMU"; | 
|  | case X86ISD::SETCC:              return "X86ISD::SETCC"; | 
|  | case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY"; | 
|  | case X86ISD::FSETCC:             return "X86ISD::FSETCC"; | 
|  | case X86ISD::CMOV:               return "X86ISD::CMOV"; | 
|  | case X86ISD::BRCOND:             return "X86ISD::BRCOND"; | 
|  | case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG"; | 
|  | case X86ISD::REP_STOS:           return "X86ISD::REP_STOS"; | 
|  | case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS"; | 
|  | case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg"; | 
|  | case X86ISD::Wrapper:            return "X86ISD::Wrapper"; | 
|  | case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP"; | 
|  | case X86ISD::PEXTRB:             return "X86ISD::PEXTRB"; | 
|  | case X86ISD::PEXTRW:             return "X86ISD::PEXTRW"; | 
|  | case X86ISD::INSERTPS:           return "X86ISD::INSERTPS"; | 
|  | case X86ISD::PINSRB:             return "X86ISD::PINSRB"; | 
|  | case X86ISD::PINSRW:             return "X86ISD::PINSRW"; | 
|  | case X86ISD::PSHUFB:             return "X86ISD::PSHUFB"; | 
|  | case X86ISD::ANDNP:              return "X86ISD::ANDNP"; | 
|  | case X86ISD::PSIGN:              return "X86ISD::PSIGN"; | 
|  | case X86ISD::BLENDV:             return "X86ISD::BLENDV"; | 
|  | case X86ISD::BLENDI:             return "X86ISD::BLENDI"; | 
|  | case X86ISD::SUBUS:              return "X86ISD::SUBUS"; | 
|  | case X86ISD::HADD:               return "X86ISD::HADD"; | 
|  | case X86ISD::HSUB:               return "X86ISD::HSUB"; | 
|  | case X86ISD::FHADD:              return "X86ISD::FHADD"; | 
|  | case X86ISD::FHSUB:              return "X86ISD::FHSUB"; | 
|  | case X86ISD::UMAX:               return "X86ISD::UMAX"; | 
|  | case X86ISD::UMIN:               return "X86ISD::UMIN"; | 
|  | case X86ISD::SMAX:               return "X86ISD::SMAX"; | 
|  | case X86ISD::SMIN:               return "X86ISD::SMIN"; | 
|  | case X86ISD::FMAX:               return "X86ISD::FMAX"; | 
|  | case X86ISD::FMIN:               return "X86ISD::FMIN"; | 
|  | case X86ISD::FMAXC:              return "X86ISD::FMAXC"; | 
|  | case X86ISD::FMINC:              return "X86ISD::FMINC"; | 
|  | case X86ISD::FRSQRT:             return "X86ISD::FRSQRT"; | 
|  | case X86ISD::FRCP:               return "X86ISD::FRCP"; | 
|  | case X86ISD::TLSADDR:            return "X86ISD::TLSADDR"; | 
|  | case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR"; | 
|  | case X86ISD::TLSCALL:            return "X86ISD::TLSCALL"; | 
|  | case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP"; | 
|  | case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP"; | 
|  | case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN"; | 
|  | case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN"; | 
|  | case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m"; | 
|  | case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r"; | 
|  | case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG"; | 
|  | case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG"; | 
|  | case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG"; | 
|  | case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG"; | 
|  | case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG"; | 
|  | case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG"; | 
|  | case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG"; | 
|  | case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG"; | 
|  | case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL"; | 
|  | case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD"; | 
|  | case X86ISD::VZEXT:              return "X86ISD::VZEXT"; | 
|  | case X86ISD::VSEXT:              return "X86ISD::VSEXT"; | 
|  | case X86ISD::VTRUNC:             return "X86ISD::VTRUNC"; | 
|  | case X86ISD::VTRUNCM:            return "X86ISD::VTRUNCM"; | 
|  | case X86ISD::VINSERT:            return "X86ISD::VINSERT"; | 
|  | case X86ISD::VFPEXT:             return "X86ISD::VFPEXT"; | 
|  | case X86ISD::VFPROUND:           return "X86ISD::VFPROUND"; | 
|  | case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ"; | 
|  | case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ"; | 
|  | case X86ISD::VSHL:               return "X86ISD::VSHL"; | 
|  | case X86ISD::VSRL:               return "X86ISD::VSRL"; | 
|  | case X86ISD::VSRA:               return "X86ISD::VSRA"; | 
|  | case X86ISD::VSHLI:              return "X86ISD::VSHLI"; | 
|  | case X86ISD::VSRLI:              return "X86ISD::VSRLI"; | 
|  | case X86ISD::VSRAI:              return "X86ISD::VSRAI"; | 
|  | case X86ISD::CMPP:               return "X86ISD::CMPP"; | 
|  | case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ"; | 
|  | case X86ISD::PCMPGT:             return "X86ISD::PCMPGT"; | 
|  | case X86ISD::PCMPEQM:            return "X86ISD::PCMPEQM"; | 
|  | case X86ISD::PCMPGTM:            return "X86ISD::PCMPGTM"; | 
|  | case X86ISD::ADD:                return "X86ISD::ADD"; | 
|  | case X86ISD::SUB:                return "X86ISD::SUB"; | 
|  | case X86ISD::ADC:                return "X86ISD::ADC"; | 
|  | case X86ISD::SBB:                return "X86ISD::SBB"; | 
|  | case X86ISD::SMUL:               return "X86ISD::SMUL"; | 
|  | case X86ISD::UMUL:               return "X86ISD::UMUL"; | 
|  | case X86ISD::INC:                return "X86ISD::INC"; | 
|  | case X86ISD::DEC:                return "X86ISD::DEC"; | 
|  | case X86ISD::OR:                 return "X86ISD::OR"; | 
|  | case X86ISD::XOR:                return "X86ISD::XOR"; | 
|  | case X86ISD::AND:                return "X86ISD::AND"; | 
|  | case X86ISD::BZHI:               return "X86ISD::BZHI"; | 
|  | case X86ISD::BEXTR:              return "X86ISD::BEXTR"; | 
|  | case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM"; | 
|  | case X86ISD::PTEST:              return "X86ISD::PTEST"; | 
|  | case X86ISD::TESTP:              return "X86ISD::TESTP"; | 
|  | case X86ISD::TESTM:              return "X86ISD::TESTM"; | 
|  | case X86ISD::TESTNM:             return "X86ISD::TESTNM"; | 
|  | case X86ISD::KORTEST:            return "X86ISD::KORTEST"; | 
|  | case X86ISD::PALIGNR:            return "X86ISD::PALIGNR"; | 
|  | case X86ISD::PSHUFD:             return "X86ISD::PSHUFD"; | 
|  | case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW"; | 
|  | case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW"; | 
|  | case X86ISD::SHUFP:              return "X86ISD::SHUFP"; | 
|  | case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS"; | 
|  | case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD"; | 
|  | case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS"; | 
|  | case X86ISD::MOVLPS:             return "X86ISD::MOVLPS"; | 
|  | case X86ISD::MOVLPD:             return "X86ISD::MOVLPD"; | 
|  | case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP"; | 
|  | case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP"; | 
|  | case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP"; | 
|  | case X86ISD::MOVSD:              return "X86ISD::MOVSD"; | 
|  | case X86ISD::MOVSS:              return "X86ISD::MOVSS"; | 
|  | case X86ISD::UNPCKL:             return "X86ISD::UNPCKL"; | 
|  | case X86ISD::UNPCKH:             return "X86ISD::UNPCKH"; | 
|  | case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST"; | 
|  | case X86ISD::VBROADCASTM:        return "X86ISD::VBROADCASTM"; | 
|  | case X86ISD::VPERMILP:           return "X86ISD::VPERMILP"; | 
|  | case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128"; | 
|  | case X86ISD::VPERMV:             return "X86ISD::VPERMV"; | 
|  | case X86ISD::VPERMV3:            return "X86ISD::VPERMV3"; | 
|  | case X86ISD::VPERMIV3:           return "X86ISD::VPERMIV3"; | 
|  | case X86ISD::VPERMI:             return "X86ISD::VPERMI"; | 
|  | case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ"; | 
|  | case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS"; | 
|  | case X86ISD::VAARG_64:           return "X86ISD::VAARG_64"; | 
|  | case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA"; | 
|  | case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER"; | 
|  | case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA"; | 
|  | case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL"; | 
|  | case X86ISD::SAHF:               return "X86ISD::SAHF"; | 
|  | case X86ISD::RDRAND:             return "X86ISD::RDRAND"; | 
|  | case X86ISD::RDSEED:             return "X86ISD::RDSEED"; | 
|  | case X86ISD::FMADD:              return "X86ISD::FMADD"; | 
|  | case X86ISD::FMSUB:              return "X86ISD::FMSUB"; | 
|  | case X86ISD::FNMADD:             return "X86ISD::FNMADD"; | 
|  | case X86ISD::FNMSUB:             return "X86ISD::FNMSUB"; | 
|  | case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB"; | 
|  | case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD"; | 
|  | case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI"; | 
|  | case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI"; | 
|  | case X86ISD::XTEST:              return "X86ISD::XTEST"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // isLegalAddressingMode - Return true if the addressing mode represented | 
|  | // by AM is legal for this target, for a load/store of the specified type. | 
|  | bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, | 
|  | Type *Ty) const { | 
|  | // X86 supports extremely general addressing modes. | 
|  | CodeModel::Model M = getTargetMachine().getCodeModel(); | 
|  | Reloc::Model R = getTargetMachine().getRelocationModel(); | 
|  |  | 
|  | // X86 allows a sign-extended 32-bit immediate field as a displacement. | 
|  | if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL)) | 
|  | return false; | 
|  |  | 
|  | if (AM.BaseGV) { | 
|  | unsigned GVFlags = | 
|  | Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine()); | 
|  |  | 
|  | // If a reference to this global requires an extra load, we can't fold it. | 
|  | if (isGlobalStubReference(GVFlags)) | 
|  | return false; | 
|  |  | 
|  | // If BaseGV requires a register for the PIC base, we cannot also have a | 
|  | // BaseReg specified. | 
|  | if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags)) | 
|  | return false; | 
|  |  | 
|  | // If lower 4G is not available, then we must use rip-relative addressing. | 
|  | if ((M != CodeModel::Small || R != Reloc::Static) && | 
|  | Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | switch (AM.Scale) { | 
|  | case 0: | 
|  | case 1: | 
|  | case 2: | 
|  | case 4: | 
|  | case 8: | 
|  | // These scales always work. | 
|  | break; | 
|  | case 3: | 
|  | case 5: | 
|  | case 9: | 
|  | // These scales are formed with basereg+scalereg.  Only accept if there is | 
|  | // no basereg yet. | 
|  | if (AM.HasBaseReg) | 
|  | return false; | 
|  | break; | 
|  | default:  // Other stuff never works. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const { | 
|  | unsigned Bits = Ty->getScalarSizeInBits(); | 
|  |  | 
|  | // 8-bit shifts are always expensive, but versions with a scalar amount aren't | 
|  | // particularly cheaper than those without. | 
|  | if (Bits == 8) | 
|  | return false; | 
|  |  | 
|  | // On AVX2 there are new vpsllv[dq] instructions (and other shifts), that make | 
|  | // variable shifts just as cheap as scalar ones. | 
|  | if (Subtarget->hasInt256() && (Bits == 32 || Bits == 64)) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, it's significantly cheaper to shift by a scalar amount than by a | 
|  | // fully general vector. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { | 
|  | if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) | 
|  | return false; | 
|  | unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); | 
|  | unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); | 
|  | return NumBits1 > NumBits2; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { | 
|  | if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) | 
|  | return false; | 
|  |  | 
|  | if (!isTypeLegal(EVT::getEVT(Ty1))) | 
|  | return false; | 
|  |  | 
|  | assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop"); | 
|  |  | 
|  | // Assuming the caller doesn't have a zeroext or signext return parameter, | 
|  | // truncation all the way down to i1 is valid. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const { | 
|  | return isInt<32>(Imm); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const { | 
|  | // Can also use sub to handle negated immediates. | 
|  | return isInt<32>(Imm); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { | 
|  | if (!VT1.isInteger() || !VT2.isInteger()) | 
|  | return false; | 
|  | unsigned NumBits1 = VT1.getSizeInBits(); | 
|  | unsigned NumBits2 = VT2.getSizeInBits(); | 
|  | return NumBits1 > NumBits2; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { | 
|  | // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. | 
|  | return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit(); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { | 
|  | // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. | 
|  | return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit(); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { | 
|  | EVT VT1 = Val.getValueType(); | 
|  | if (isZExtFree(VT1, VT2)) | 
|  | return true; | 
|  |  | 
|  | if (Val.getOpcode() != ISD::LOAD) | 
|  | return false; | 
|  |  | 
|  | if (!VT1.isSimple() || !VT1.isInteger() || | 
|  | !VT2.isSimple() || !VT2.isInteger()) | 
|  | return false; | 
|  |  | 
|  | switch (VT1.getSimpleVT().SimpleTy) { | 
|  | default: break; | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | // X86 has 8, 16, and 32-bit zero-extending loads. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { | 
|  | if (!(Subtarget->hasFMA() || Subtarget->hasFMA4())) | 
|  | return false; | 
|  |  | 
|  | VT = VT.getScalarType(); | 
|  |  | 
|  | if (!VT.isSimple()) | 
|  | return false; | 
|  |  | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | return true; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const { | 
|  | // i16 instructions are longer (0x66 prefix) and potentially slower. | 
|  | return !(VT1 == MVT::i32 && VT2 == MVT::i16); | 
|  | } | 
|  |  | 
|  | /// isShuffleMaskLegal - Targets can use this to indicate that they only | 
|  | /// support *some* VECTOR_SHUFFLE operations, those with specific masks. | 
|  | /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values | 
|  | /// are assumed to be legal. | 
|  | bool | 
|  | X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, | 
|  | EVT VT) const { | 
|  | if (!VT.isSimple()) | 
|  | return false; | 
|  |  | 
|  | MVT SVT = VT.getSimpleVT(); | 
|  |  | 
|  | // Very little shuffling can be done for 64-bit vectors right now. | 
|  | if (VT.getSizeInBits() == 64) | 
|  | return false; | 
|  |  | 
|  | // FIXME: pshufb, blends, shifts. | 
|  | return (SVT.getVectorNumElements() == 2 || | 
|  | ShuffleVectorSDNode::isSplatMask(&M[0], VT) || | 
|  | isMOVLMask(M, SVT) || | 
|  | isSHUFPMask(M, SVT) || | 
|  | isPSHUFDMask(M, SVT) || | 
|  | isPSHUFHWMask(M, SVT, Subtarget->hasInt256()) || | 
|  | isPSHUFLWMask(M, SVT, Subtarget->hasInt256()) || | 
|  | isPALIGNRMask(M, SVT, Subtarget) || | 
|  | isUNPCKLMask(M, SVT, Subtarget->hasInt256()) || | 
|  | isUNPCKHMask(M, SVT, Subtarget->hasInt256()) || | 
|  | isUNPCKL_v_undef_Mask(M, SVT, Subtarget->hasInt256()) || | 
|  | isUNPCKH_v_undef_Mask(M, SVT, Subtarget->hasInt256())); | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask, | 
|  | EVT VT) const { | 
|  | if (!VT.isSimple()) | 
|  | return false; | 
|  |  | 
|  | MVT SVT = VT.getSimpleVT(); | 
|  | unsigned NumElts = SVT.getVectorNumElements(); | 
|  | // FIXME: This collection of masks seems suspect. | 
|  | if (NumElts == 2) | 
|  | return true; | 
|  | if (NumElts == 4 && SVT.is128BitVector()) { | 
|  | return (isMOVLMask(Mask, SVT)  || | 
|  | isCommutedMOVLMask(Mask, SVT, true) || | 
|  | isSHUFPMask(Mask, SVT) || | 
|  | isSHUFPMask(Mask, SVT, /* Commuted */ true)); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           X86 Scheduler Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Utility function to emit xbegin specifying the start of an RTM region. | 
|  | static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB, | 
|  | const TargetInstrInfo *TII) { | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | const BasicBlock *BB = MBB->getBasicBlock(); | 
|  | MachineFunction::iterator I = MBB; | 
|  | ++I; | 
|  |  | 
|  | // For the v = xbegin(), we generate | 
|  | // | 
|  | // thisMBB: | 
|  | //  xbegin sinkMBB | 
|  | // | 
|  | // mainMBB: | 
|  | //  eax = -1 | 
|  | // | 
|  | // sinkMBB: | 
|  | //  v = eax | 
|  |  | 
|  | MachineBasicBlock *thisMBB = MBB; | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); | 
|  | MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); | 
|  | MF->insert(I, mainMBB); | 
|  | MF->insert(I, sinkMBB); | 
|  |  | 
|  | // Transfer the remainder of BB and its successor edges to sinkMBB. | 
|  | sinkMBB->splice(sinkMBB->begin(), MBB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), MBB->end()); | 
|  | sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); | 
|  |  | 
|  | // thisMBB: | 
|  | //  xbegin sinkMBB | 
|  | //  # fallthrough to mainMBB | 
|  | //  # abortion to sinkMBB | 
|  | BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB); | 
|  | thisMBB->addSuccessor(mainMBB); | 
|  | thisMBB->addSuccessor(sinkMBB); | 
|  |  | 
|  | // mainMBB: | 
|  | //  EAX = -1 | 
|  | BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1); | 
|  | mainMBB->addSuccessor(sinkMBB); | 
|  |  | 
|  | // sinkMBB: | 
|  | // EAX is live into the sinkMBB | 
|  | sinkMBB->addLiveIn(X86::EAX); | 
|  | BuildMI(*sinkMBB, sinkMBB->begin(), DL, | 
|  | TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) | 
|  | .addReg(X86::EAX); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | return sinkMBB; | 
|  | } | 
|  |  | 
|  | // Get CMPXCHG opcode for the specified data type. | 
|  | static unsigned getCmpXChgOpcode(EVT VT) { | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | case MVT::i8:  return X86::LCMPXCHG8; | 
|  | case MVT::i16: return X86::LCMPXCHG16; | 
|  | case MVT::i32: return X86::LCMPXCHG32; | 
|  | case MVT::i64: return X86::LCMPXCHG64; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("Invalid operand size!"); | 
|  | } | 
|  |  | 
|  | // Get LOAD opcode for the specified data type. | 
|  | static unsigned getLoadOpcode(EVT VT) { | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | case MVT::i8:  return X86::MOV8rm; | 
|  | case MVT::i16: return X86::MOV16rm; | 
|  | case MVT::i32: return X86::MOV32rm; | 
|  | case MVT::i64: return X86::MOV64rm; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("Invalid operand size!"); | 
|  | } | 
|  |  | 
|  | // Get opcode of the non-atomic one from the specified atomic instruction. | 
|  | static unsigned getNonAtomicOpcode(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | case X86::ATOMAND8:  return X86::AND8rr; | 
|  | case X86::ATOMAND16: return X86::AND16rr; | 
|  | case X86::ATOMAND32: return X86::AND32rr; | 
|  | case X86::ATOMAND64: return X86::AND64rr; | 
|  | case X86::ATOMOR8:   return X86::OR8rr; | 
|  | case X86::ATOMOR16:  return X86::OR16rr; | 
|  | case X86::ATOMOR32:  return X86::OR32rr; | 
|  | case X86::ATOMOR64:  return X86::OR64rr; | 
|  | case X86::ATOMXOR8:  return X86::XOR8rr; | 
|  | case X86::ATOMXOR16: return X86::XOR16rr; | 
|  | case X86::ATOMXOR32: return X86::XOR32rr; | 
|  | case X86::ATOMXOR64: return X86::XOR64rr; | 
|  | } | 
|  | llvm_unreachable("Unhandled atomic-load-op opcode!"); | 
|  | } | 
|  |  | 
|  | // Get opcode of the non-atomic one from the specified atomic instruction with | 
|  | // extra opcode. | 
|  | static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc, | 
|  | unsigned &ExtraOpc) { | 
|  | switch (Opc) { | 
|  | case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr; | 
|  | case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr; | 
|  | case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr; | 
|  | case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr; | 
|  | case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr; | 
|  | case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr; | 
|  | case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr; | 
|  | case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr; | 
|  | case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr; | 
|  | case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr; | 
|  | case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr; | 
|  | case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr; | 
|  | case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr; | 
|  | case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr; | 
|  | case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr; | 
|  | case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr; | 
|  | case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr; | 
|  | case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr; | 
|  | case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr; | 
|  | case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr; | 
|  | } | 
|  | llvm_unreachable("Unhandled atomic-load-op opcode!"); | 
|  | } | 
|  |  | 
|  | // Get opcode of the non-atomic one from the specified atomic instruction for | 
|  | // 64-bit data type on 32-bit target. | 
|  | static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) { | 
|  | switch (Opc) { | 
|  | case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr; | 
|  | case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr; | 
|  | case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr; | 
|  | case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr; | 
|  | case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr; | 
|  | case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr; | 
|  | case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr; | 
|  | case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr; | 
|  | case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr; | 
|  | case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr; | 
|  | } | 
|  | llvm_unreachable("Unhandled atomic-load-op opcode!"); | 
|  | } | 
|  |  | 
|  | // Get opcode of the non-atomic one from the specified atomic instruction for | 
|  | // 64-bit data type on 32-bit target with extra opcode. | 
|  | static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc, | 
|  | unsigned &HiOpc, | 
|  | unsigned &ExtraOpc) { | 
|  | switch (Opc) { | 
|  | case X86::ATOMNAND6432: | 
|  | ExtraOpc = X86::NOT32r; | 
|  | HiOpc = X86::AND32rr; | 
|  | return X86::AND32rr; | 
|  | } | 
|  | llvm_unreachable("Unhandled atomic-load-op opcode!"); | 
|  | } | 
|  |  | 
|  | // Get pseudo CMOV opcode from the specified data type. | 
|  | static unsigned getPseudoCMOVOpc(EVT VT) { | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | case MVT::i8:  return X86::CMOV_GR8; | 
|  | case MVT::i16: return X86::CMOV_GR16; | 
|  | case MVT::i32: return X86::CMOV_GR32; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("Unknown CMOV opcode!"); | 
|  | } | 
|  |  | 
|  | // EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions. | 
|  | // They will be translated into a spin-loop or compare-exchange loop from | 
|  | // | 
|  | //    ... | 
|  | //    dst = atomic-fetch-op MI.addr, MI.val | 
|  | //    ... | 
|  | // | 
|  | // to | 
|  | // | 
|  | //    ... | 
|  | //    t1 = LOAD MI.addr | 
|  | // loop: | 
|  | //    t4 = phi(t1, t3 / loop) | 
|  | //    t2 = OP MI.val, t4 | 
|  | //    EAX = t4 | 
|  | //    LCMPXCHG [MI.addr], t2, [EAX is implicitly used & defined] | 
|  | //    t3 = EAX | 
|  | //    JNE loop | 
|  | // sink: | 
|  | //    dst = t3 | 
|  | //    ... | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  |  | 
|  | const BasicBlock *BB = MBB->getBasicBlock(); | 
|  | MachineFunction::iterator I = MBB; | 
|  | ++I; | 
|  |  | 
|  | assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 && | 
|  | "Unexpected number of operands"); | 
|  |  | 
|  | assert(MI->hasOneMemOperand() && | 
|  | "Expected atomic-load-op to have one memoperand"); | 
|  |  | 
|  | // Memory Reference | 
|  | MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); | 
|  | MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); | 
|  |  | 
|  | unsigned DstReg, SrcReg; | 
|  | unsigned MemOpndSlot; | 
|  |  | 
|  | unsigned CurOp = 0; | 
|  |  | 
|  | DstReg = MI->getOperand(CurOp++).getReg(); | 
|  | MemOpndSlot = CurOp; | 
|  | CurOp += X86::AddrNumOperands; | 
|  | SrcReg = MI->getOperand(CurOp++).getReg(); | 
|  |  | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(DstReg); | 
|  | MVT::SimpleValueType VT = *RC->vt_begin(); | 
|  | unsigned t1 = MRI.createVirtualRegister(RC); | 
|  | unsigned t2 = MRI.createVirtualRegister(RC); | 
|  | unsigned t3 = MRI.createVirtualRegister(RC); | 
|  | unsigned t4 = MRI.createVirtualRegister(RC); | 
|  | unsigned PhyReg = getX86SubSuperRegister(X86::EAX, VT); | 
|  |  | 
|  | unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT); | 
|  | unsigned LOADOpc = getLoadOpcode(VT); | 
|  |  | 
|  | // For the atomic load-arith operator, we generate | 
|  | // | 
|  | //  thisMBB: | 
|  | //    t1 = LOAD [MI.addr] | 
|  | //  mainMBB: | 
|  | //    t4 = phi(t1 / thisMBB, t3 / mainMBB) | 
|  | //    t1 = OP MI.val, EAX | 
|  | //    EAX = t4 | 
|  | //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined] | 
|  | //    t3 = EAX | 
|  | //    JNE mainMBB | 
|  | //  sinkMBB: | 
|  | //    dst = t3 | 
|  |  | 
|  | MachineBasicBlock *thisMBB = MBB; | 
|  | MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); | 
|  | MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); | 
|  | MF->insert(I, mainMBB); | 
|  | MF->insert(I, sinkMBB); | 
|  |  | 
|  | MachineInstrBuilder MIB; | 
|  |  | 
|  | // Transfer the remainder of BB and its successor edges to sinkMBB. | 
|  | sinkMBB->splice(sinkMBB->begin(), MBB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), MBB->end()); | 
|  | sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); | 
|  |  | 
|  | // thisMBB: | 
|  | MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1); | 
|  | for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { | 
|  | MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); | 
|  | if (NewMO.isReg()) | 
|  | NewMO.setIsKill(false); | 
|  | MIB.addOperand(NewMO); | 
|  | } | 
|  | for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) { | 
|  | unsigned flags = (*MMOI)->getFlags(); | 
|  | flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad; | 
|  | MachineMemOperand *MMO = | 
|  | MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags, | 
|  | (*MMOI)->getSize(), | 
|  | (*MMOI)->getBaseAlignment(), | 
|  | (*MMOI)->getTBAAInfo(), | 
|  | (*MMOI)->getRanges()); | 
|  | MIB.addMemOperand(MMO); | 
|  | } | 
|  |  | 
|  | thisMBB->addSuccessor(mainMBB); | 
|  |  | 
|  | // mainMBB: | 
|  | MachineBasicBlock *origMainMBB = mainMBB; | 
|  |  | 
|  | // Add a PHI. | 
|  | MachineInstr *Phi = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4) | 
|  | .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB); | 
|  |  | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | switch (Opc) { | 
|  | default: | 
|  | llvm_unreachable("Unhandled atomic-load-op opcode!"); | 
|  | case X86::ATOMAND8: | 
|  | case X86::ATOMAND16: | 
|  | case X86::ATOMAND32: | 
|  | case X86::ATOMAND64: | 
|  | case X86::ATOMOR8: | 
|  | case X86::ATOMOR16: | 
|  | case X86::ATOMOR32: | 
|  | case X86::ATOMOR64: | 
|  | case X86::ATOMXOR8: | 
|  | case X86::ATOMXOR16: | 
|  | case X86::ATOMXOR32: | 
|  | case X86::ATOMXOR64: { | 
|  | unsigned ARITHOpc = getNonAtomicOpcode(Opc); | 
|  | BuildMI(mainMBB, DL, TII->get(ARITHOpc), t2).addReg(SrcReg) | 
|  | .addReg(t4); | 
|  | break; | 
|  | } | 
|  | case X86::ATOMNAND8: | 
|  | case X86::ATOMNAND16: | 
|  | case X86::ATOMNAND32: | 
|  | case X86::ATOMNAND64: { | 
|  | unsigned Tmp = MRI.createVirtualRegister(RC); | 
|  | unsigned NOTOpc; | 
|  | unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc); | 
|  | BuildMI(mainMBB, DL, TII->get(ANDOpc), Tmp).addReg(SrcReg) | 
|  | .addReg(t4); | 
|  | BuildMI(mainMBB, DL, TII->get(NOTOpc), t2).addReg(Tmp); | 
|  | break; | 
|  | } | 
|  | case X86::ATOMMAX8: | 
|  | case X86::ATOMMAX16: | 
|  | case X86::ATOMMAX32: | 
|  | case X86::ATOMMAX64: | 
|  | case X86::ATOMMIN8: | 
|  | case X86::ATOMMIN16: | 
|  | case X86::ATOMMIN32: | 
|  | case X86::ATOMMIN64: | 
|  | case X86::ATOMUMAX8: | 
|  | case X86::ATOMUMAX16: | 
|  | case X86::ATOMUMAX32: | 
|  | case X86::ATOMUMAX64: | 
|  | case X86::ATOMUMIN8: | 
|  | case X86::ATOMUMIN16: | 
|  | case X86::ATOMUMIN32: | 
|  | case X86::ATOMUMIN64: { | 
|  | unsigned CMPOpc; | 
|  | unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc); | 
|  |  | 
|  | BuildMI(mainMBB, DL, TII->get(CMPOpc)) | 
|  | .addReg(SrcReg) | 
|  | .addReg(t4); | 
|  |  | 
|  | if (Subtarget->hasCMov()) { | 
|  | if (VT != MVT::i8) { | 
|  | // Native support | 
|  | BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2) | 
|  | .addReg(SrcReg) | 
|  | .addReg(t4); | 
|  | } else { | 
|  | // Promote i8 to i32 to use CMOV32 | 
|  | const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo(); | 
|  | const TargetRegisterClass *RC32 = | 
|  | TRI->getSubClassWithSubReg(getRegClassFor(MVT::i32), X86::sub_8bit); | 
|  | unsigned SrcReg32 = MRI.createVirtualRegister(RC32); | 
|  | unsigned AccReg32 = MRI.createVirtualRegister(RC32); | 
|  | unsigned Tmp = MRI.createVirtualRegister(RC32); | 
|  |  | 
|  | unsigned Undef = MRI.createVirtualRegister(RC32); | 
|  | BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef); | 
|  |  | 
|  | BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32) | 
|  | .addReg(Undef) | 
|  | .addReg(SrcReg) | 
|  | .addImm(X86::sub_8bit); | 
|  | BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32) | 
|  | .addReg(Undef) | 
|  | .addReg(t4) | 
|  | .addImm(X86::sub_8bit); | 
|  |  | 
|  | BuildMI(mainMBB, DL, TII->get(CMOVOpc), Tmp) | 
|  | .addReg(SrcReg32) | 
|  | .addReg(AccReg32); | 
|  |  | 
|  | BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t2) | 
|  | .addReg(Tmp, 0, X86::sub_8bit); | 
|  | } | 
|  | } else { | 
|  | // Use pseudo select and lower them. | 
|  | assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && | 
|  | "Invalid atomic-load-op transformation!"); | 
|  | unsigned SelOpc = getPseudoCMOVOpc(VT); | 
|  | X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc); | 
|  | assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!"); | 
|  | MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t2) | 
|  | .addReg(SrcReg).addReg(t4) | 
|  | .addImm(CC); | 
|  | mainMBB = EmitLoweredSelect(MIB, mainMBB); | 
|  | // Replace the original PHI node as mainMBB is changed after CMOV | 
|  | // lowering. | 
|  | BuildMI(*origMainMBB, Phi, DL, TII->get(X86::PHI), t4) | 
|  | .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB); | 
|  | Phi->eraseFromParent(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy PhyReg back from virtual register. | 
|  | BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), PhyReg) | 
|  | .addReg(t4); | 
|  |  | 
|  | MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc)); | 
|  | for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { | 
|  | MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); | 
|  | if (NewMO.isReg()) | 
|  | NewMO.setIsKill(false); | 
|  | MIB.addOperand(NewMO); | 
|  | } | 
|  | MIB.addReg(t2); | 
|  | MIB.setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // Copy PhyReg back to virtual register. | 
|  | BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3) | 
|  | .addReg(PhyReg); | 
|  |  | 
|  | BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB); | 
|  |  | 
|  | mainMBB->addSuccessor(origMainMBB); | 
|  | mainMBB->addSuccessor(sinkMBB); | 
|  |  | 
|  | // sinkMBB: | 
|  | BuildMI(*sinkMBB, sinkMBB->begin(), DL, | 
|  | TII->get(TargetOpcode::COPY), DstReg) | 
|  | .addReg(t3); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | return sinkMBB; | 
|  | } | 
|  |  | 
|  | // EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic | 
|  | // instructions. They will be translated into a spin-loop or compare-exchange | 
|  | // loop from | 
|  | // | 
|  | //    ... | 
|  | //    dst = atomic-fetch-op MI.addr, MI.val | 
|  | //    ... | 
|  | // | 
|  | // to | 
|  | // | 
|  | //    ... | 
|  | //    t1L = LOAD [MI.addr + 0] | 
|  | //    t1H = LOAD [MI.addr + 4] | 
|  | // loop: | 
|  | //    t4L = phi(t1L, t3L / loop) | 
|  | //    t4H = phi(t1H, t3H / loop) | 
|  | //    t2L = OP MI.val.lo, t4L | 
|  | //    t2H = OP MI.val.hi, t4H | 
|  | //    EAX = t4L | 
|  | //    EDX = t4H | 
|  | //    EBX = t2L | 
|  | //    ECX = t2H | 
|  | //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined] | 
|  | //    t3L = EAX | 
|  | //    t3H = EDX | 
|  | //    JNE loop | 
|  | // sink: | 
|  | //    dstL = t3L | 
|  | //    dstH = t3H | 
|  | //    ... | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  |  | 
|  | const BasicBlock *BB = MBB->getBasicBlock(); | 
|  | MachineFunction::iterator I = MBB; | 
|  | ++I; | 
|  |  | 
|  | assert(MI->getNumOperands() <= X86::AddrNumOperands + 7 && | 
|  | "Unexpected number of operands"); | 
|  |  | 
|  | assert(MI->hasOneMemOperand() && | 
|  | "Expected atomic-load-op32 to have one memoperand"); | 
|  |  | 
|  | // Memory Reference | 
|  | MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); | 
|  | MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); | 
|  |  | 
|  | unsigned DstLoReg, DstHiReg; | 
|  | unsigned SrcLoReg, SrcHiReg; | 
|  | unsigned MemOpndSlot; | 
|  |  | 
|  | unsigned CurOp = 0; | 
|  |  | 
|  | DstLoReg = MI->getOperand(CurOp++).getReg(); | 
|  | DstHiReg = MI->getOperand(CurOp++).getReg(); | 
|  | MemOpndSlot = CurOp; | 
|  | CurOp += X86::AddrNumOperands; | 
|  | SrcLoReg = MI->getOperand(CurOp++).getReg(); | 
|  | SrcHiReg = MI->getOperand(CurOp++).getReg(); | 
|  |  | 
|  | const TargetRegisterClass *RC = &X86::GR32RegClass; | 
|  | const TargetRegisterClass *RC8 = &X86::GR8RegClass; | 
|  |  | 
|  | unsigned t1L = MRI.createVirtualRegister(RC); | 
|  | unsigned t1H = MRI.createVirtualRegister(RC); | 
|  | unsigned t2L = MRI.createVirtualRegister(RC); | 
|  | unsigned t2H = MRI.createVirtualRegister(RC); | 
|  | unsigned t3L = MRI.createVirtualRegister(RC); | 
|  | unsigned t3H = MRI.createVirtualRegister(RC); | 
|  | unsigned t4L = MRI.createVirtualRegister(RC); | 
|  | unsigned t4H = MRI.createVirtualRegister(RC); | 
|  |  | 
|  | unsigned LCMPXCHGOpc = X86::LCMPXCHG8B; | 
|  | unsigned LOADOpc = X86::MOV32rm; | 
|  |  | 
|  | // For the atomic load-arith operator, we generate | 
|  | // | 
|  | //  thisMBB: | 
|  | //    t1L = LOAD [MI.addr + 0] | 
|  | //    t1H = LOAD [MI.addr + 4] | 
|  | //  mainMBB: | 
|  | //    t4L = phi(t1L / thisMBB, t3L / mainMBB) | 
|  | //    t4H = phi(t1H / thisMBB, t3H / mainMBB) | 
|  | //    t2L = OP MI.val.lo, t4L | 
|  | //    t2H = OP MI.val.hi, t4H | 
|  | //    EBX = t2L | 
|  | //    ECX = t2H | 
|  | //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined] | 
|  | //    t3L = EAX | 
|  | //    t3H = EDX | 
|  | //    JNE loop | 
|  | //  sinkMBB: | 
|  | //    dstL = t3L | 
|  | //    dstH = t3H | 
|  |  | 
|  | MachineBasicBlock *thisMBB = MBB; | 
|  | MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); | 
|  | MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); | 
|  | MF->insert(I, mainMBB); | 
|  | MF->insert(I, sinkMBB); | 
|  |  | 
|  | MachineInstrBuilder MIB; | 
|  |  | 
|  | // Transfer the remainder of BB and its successor edges to sinkMBB. | 
|  | sinkMBB->splice(sinkMBB->begin(), MBB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), MBB->end()); | 
|  | sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); | 
|  |  | 
|  | // thisMBB: | 
|  | // Lo | 
|  | MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1L); | 
|  | for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { | 
|  | MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); | 
|  | if (NewMO.isReg()) | 
|  | NewMO.setIsKill(false); | 
|  | MIB.addOperand(NewMO); | 
|  | } | 
|  | for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) { | 
|  | unsigned flags = (*MMOI)->getFlags(); | 
|  | flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad; | 
|  | MachineMemOperand *MMO = | 
|  | MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags, | 
|  | (*MMOI)->getSize(), | 
|  | (*MMOI)->getBaseAlignment(), | 
|  | (*MMOI)->getTBAAInfo(), | 
|  | (*MMOI)->getRanges()); | 
|  | MIB.addMemOperand(MMO); | 
|  | }; | 
|  | MachineInstr *LowMI = MIB; | 
|  |  | 
|  | // Hi | 
|  | MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1H); | 
|  | for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { | 
|  | if (i == X86::AddrDisp) { | 
|  | MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32) | 
|  | } else { | 
|  | MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); | 
|  | if (NewMO.isReg()) | 
|  | NewMO.setIsKill(false); | 
|  | MIB.addOperand(NewMO); | 
|  | } | 
|  | } | 
|  | MIB.setMemRefs(LowMI->memoperands_begin(), LowMI->memoperands_end()); | 
|  |  | 
|  | thisMBB->addSuccessor(mainMBB); | 
|  |  | 
|  | // mainMBB: | 
|  | MachineBasicBlock *origMainMBB = mainMBB; | 
|  |  | 
|  | // Add PHIs. | 
|  | MachineInstr *PhiL = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4L) | 
|  | .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB); | 
|  | MachineInstr *PhiH = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4H) | 
|  | .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB); | 
|  |  | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | switch (Opc) { | 
|  | default: | 
|  | llvm_unreachable("Unhandled atomic-load-op6432 opcode!"); | 
|  | case X86::ATOMAND6432: | 
|  | case X86::ATOMOR6432: | 
|  | case X86::ATOMXOR6432: | 
|  | case X86::ATOMADD6432: | 
|  | case X86::ATOMSUB6432: { | 
|  | unsigned HiOpc; | 
|  | unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc); | 
|  | BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(t4L) | 
|  | .addReg(SrcLoReg); | 
|  | BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(t4H) | 
|  | .addReg(SrcHiReg); | 
|  | break; | 
|  | } | 
|  | case X86::ATOMNAND6432: { | 
|  | unsigned HiOpc, NOTOpc; | 
|  | unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc); | 
|  | unsigned TmpL = MRI.createVirtualRegister(RC); | 
|  | unsigned TmpH = MRI.createVirtualRegister(RC); | 
|  | BuildMI(mainMBB, DL, TII->get(LoOpc), TmpL).addReg(SrcLoReg) | 
|  | .addReg(t4L); | 
|  | BuildMI(mainMBB, DL, TII->get(HiOpc), TmpH).addReg(SrcHiReg) | 
|  | .addReg(t4H); | 
|  | BuildMI(mainMBB, DL, TII->get(NOTOpc), t2L).addReg(TmpL); | 
|  | BuildMI(mainMBB, DL, TII->get(NOTOpc), t2H).addReg(TmpH); | 
|  | break; | 
|  | } | 
|  | case X86::ATOMMAX6432: | 
|  | case X86::ATOMMIN6432: | 
|  | case X86::ATOMUMAX6432: | 
|  | case X86::ATOMUMIN6432: { | 
|  | unsigned HiOpc; | 
|  | unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc); | 
|  | unsigned cL = MRI.createVirtualRegister(RC8); | 
|  | unsigned cH = MRI.createVirtualRegister(RC8); | 
|  | unsigned cL32 = MRI.createVirtualRegister(RC); | 
|  | unsigned cH32 = MRI.createVirtualRegister(RC); | 
|  | unsigned cc = MRI.createVirtualRegister(RC); | 
|  | // cl := cmp src_lo, lo | 
|  | BuildMI(mainMBB, DL, TII->get(X86::CMP32rr)) | 
|  | .addReg(SrcLoReg).addReg(t4L); | 
|  | BuildMI(mainMBB, DL, TII->get(LoOpc), cL); | 
|  | BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL); | 
|  | // ch := cmp src_hi, hi | 
|  | BuildMI(mainMBB, DL, TII->get(X86::CMP32rr)) | 
|  | .addReg(SrcHiReg).addReg(t4H); | 
|  | BuildMI(mainMBB, DL, TII->get(HiOpc), cH); | 
|  | BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH); | 
|  | // cc := if (src_hi == hi) ? cl : ch; | 
|  | if (Subtarget->hasCMov()) { | 
|  | BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc) | 
|  | .addReg(cH32).addReg(cL32); | 
|  | } else { | 
|  | MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc) | 
|  | .addReg(cH32).addReg(cL32) | 
|  | .addImm(X86::COND_E); | 
|  | mainMBB = EmitLoweredSelect(MIB, mainMBB); | 
|  | } | 
|  | BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc); | 
|  | if (Subtarget->hasCMov()) { | 
|  | BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2L) | 
|  | .addReg(SrcLoReg).addReg(t4L); | 
|  | BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2H) | 
|  | .addReg(SrcHiReg).addReg(t4H); | 
|  | } else { | 
|  | MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2L) | 
|  | .addReg(SrcLoReg).addReg(t4L) | 
|  | .addImm(X86::COND_NE); | 
|  | mainMBB = EmitLoweredSelect(MIB, mainMBB); | 
|  | // As the lowered CMOV won't clobber EFLAGS, we could reuse it for the | 
|  | // 2nd CMOV lowering. | 
|  | mainMBB->addLiveIn(X86::EFLAGS); | 
|  | MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2H) | 
|  | .addReg(SrcHiReg).addReg(t4H) | 
|  | .addImm(X86::COND_NE); | 
|  | mainMBB = EmitLoweredSelect(MIB, mainMBB); | 
|  | // Replace the original PHI node as mainMBB is changed after CMOV | 
|  | // lowering. | 
|  | BuildMI(*origMainMBB, PhiL, DL, TII->get(X86::PHI), t4L) | 
|  | .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB); | 
|  | BuildMI(*origMainMBB, PhiH, DL, TII->get(X86::PHI), t4H) | 
|  | .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB); | 
|  | PhiL->eraseFromParent(); | 
|  | PhiH->eraseFromParent(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case X86::ATOMSWAP6432: { | 
|  | unsigned HiOpc; | 
|  | unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc); | 
|  | BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg); | 
|  | BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy EDX:EAX back from HiReg:LoReg | 
|  | BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(t4L); | 
|  | BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(t4H); | 
|  | // Copy ECX:EBX from t1H:t1L | 
|  | BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t2L); | 
|  | BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t2H); | 
|  |  | 
|  | MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc)); | 
|  | for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { | 
|  | MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); | 
|  | if (NewMO.isReg()) | 
|  | NewMO.setIsKill(false); | 
|  | MIB.addOperand(NewMO); | 
|  | } | 
|  | MIB.setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // Copy EDX:EAX back to t3H:t3L | 
|  | BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3L).addReg(X86::EAX); | 
|  | BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3H).addReg(X86::EDX); | 
|  |  | 
|  | BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB); | 
|  |  | 
|  | mainMBB->addSuccessor(origMainMBB); | 
|  | mainMBB->addSuccessor(sinkMBB); | 
|  |  | 
|  | // sinkMBB: | 
|  | BuildMI(*sinkMBB, sinkMBB->begin(), DL, | 
|  | TII->get(TargetOpcode::COPY), DstLoReg) | 
|  | .addReg(t3L); | 
|  | BuildMI(*sinkMBB, sinkMBB->begin(), DL, | 
|  | TII->get(TargetOpcode::COPY), DstHiReg) | 
|  | .addReg(t3H); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | return sinkMBB; | 
|  | } | 
|  |  | 
|  | // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8 | 
|  | // or XMM0_V32I8 in AVX all of this code can be replaced with that | 
|  | // in the .td file. | 
|  | static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB, | 
|  | const TargetInstrInfo *TII) { | 
|  | unsigned Opc; | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("illegal opcode!"); | 
|  | case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break; | 
|  | case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break; | 
|  | case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break; | 
|  | case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break; | 
|  | case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break; | 
|  | case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break; | 
|  | case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break; | 
|  | case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break; | 
|  | } | 
|  |  | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  | MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); | 
|  |  | 
|  | unsigned NumArgs = MI->getNumOperands(); | 
|  | for (unsigned i = 1; i < NumArgs; ++i) { | 
|  | MachineOperand &Op = MI->getOperand(i); | 
|  | if (!(Op.isReg() && Op.isImplicit())) | 
|  | MIB.addOperand(Op); | 
|  | } | 
|  | if (MI->hasOneMemOperand()) | 
|  | MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); | 
|  |  | 
|  | BuildMI(*BB, MI, dl, | 
|  | TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) | 
|  | .addReg(X86::XMM0); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | // FIXME: Custom handling because TableGen doesn't support multiple implicit | 
|  | // defs in an instruction pattern | 
|  | static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB, | 
|  | const TargetInstrInfo *TII) { | 
|  | unsigned Opc; | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("illegal opcode!"); | 
|  | case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break; | 
|  | case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break; | 
|  | case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break; | 
|  | case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break; | 
|  | case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break; | 
|  | case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break; | 
|  | case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break; | 
|  | case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break; | 
|  | } | 
|  |  | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  | MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); | 
|  |  | 
|  | unsigned NumArgs = MI->getNumOperands(); // remove the results | 
|  | for (unsigned i = 1; i < NumArgs; ++i) { | 
|  | MachineOperand &Op = MI->getOperand(i); | 
|  | if (!(Op.isReg() && Op.isImplicit())) | 
|  | MIB.addOperand(Op); | 
|  | } | 
|  | if (MI->hasOneMemOperand()) | 
|  | MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); | 
|  |  | 
|  | BuildMI(*BB, MI, dl, | 
|  | TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) | 
|  | .addReg(X86::ECX); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB, | 
|  | const TargetInstrInfo *TII, | 
|  | const X86Subtarget* Subtarget) { | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  |  | 
|  | // Address into RAX/EAX, other two args into ECX, EDX. | 
|  | unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; | 
|  | unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; | 
|  | MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg); | 
|  | for (int i = 0; i < X86::AddrNumOperands; ++i) | 
|  | MIB.addOperand(MI->getOperand(i)); | 
|  |  | 
|  | unsigned ValOps = X86::AddrNumOperands; | 
|  | BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX) | 
|  | .addReg(MI->getOperand(ValOps).getReg()); | 
|  | BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX) | 
|  | .addReg(MI->getOperand(ValOps+1).getReg()); | 
|  |  | 
|  | // The instruction doesn't actually take any operands though. | 
|  | BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr)); | 
|  |  | 
|  | MI->eraseFromParent(); // The pseudo is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitVAARG64WithCustomInserter( | 
|  | MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | // Emit va_arg instruction on X86-64. | 
|  |  | 
|  | // Operands to this pseudo-instruction: | 
|  | // 0  ) Output        : destination address (reg) | 
|  | // 1-5) Input         : va_list address (addr, i64mem) | 
|  | // 6  ) ArgSize       : Size (in bytes) of vararg type | 
|  | // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset | 
|  | // 8  ) Align         : Alignment of type | 
|  | // 9  ) EFLAGS (implicit-def) | 
|  |  | 
|  | assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!"); | 
|  | assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands"); | 
|  |  | 
|  | unsigned DestReg = MI->getOperand(0).getReg(); | 
|  | MachineOperand &Base = MI->getOperand(1); | 
|  | MachineOperand &Scale = MI->getOperand(2); | 
|  | MachineOperand &Index = MI->getOperand(3); | 
|  | MachineOperand &Disp = MI->getOperand(4); | 
|  | MachineOperand &Segment = MI->getOperand(5); | 
|  | unsigned ArgSize = MI->getOperand(6).getImm(); | 
|  | unsigned ArgMode = MI->getOperand(7).getImm(); | 
|  | unsigned Align = MI->getOperand(8).getImm(); | 
|  |  | 
|  | // Memory Reference | 
|  | assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand"); | 
|  | MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); | 
|  | MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); | 
|  |  | 
|  | // Machine Information | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); | 
|  | const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64); | 
|  | const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | // struct va_list { | 
|  | //   i32   gp_offset | 
|  | //   i32   fp_offset | 
|  | //   i64   overflow_area (address) | 
|  | //   i64   reg_save_area (address) | 
|  | // } | 
|  | // sizeof(va_list) = 24 | 
|  | // alignment(va_list) = 8 | 
|  |  | 
|  | unsigned TotalNumIntRegs = 6; | 
|  | unsigned TotalNumXMMRegs = 8; | 
|  | bool UseGPOffset = (ArgMode == 1); | 
|  | bool UseFPOffset = (ArgMode == 2); | 
|  | unsigned MaxOffset = TotalNumIntRegs * 8 + | 
|  | (UseFPOffset ? TotalNumXMMRegs * 16 : 0); | 
|  |  | 
|  | /* Align ArgSize to a multiple of 8 */ | 
|  | unsigned ArgSizeA8 = (ArgSize + 7) & ~7; | 
|  | bool NeedsAlign = (Align > 8); | 
|  |  | 
|  | MachineBasicBlock *thisMBB = MBB; | 
|  | MachineBasicBlock *overflowMBB; | 
|  | MachineBasicBlock *offsetMBB; | 
|  | MachineBasicBlock *endMBB; | 
|  |  | 
|  | unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB | 
|  | unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB | 
|  | unsigned OffsetReg = 0; | 
|  |  | 
|  | if (!UseGPOffset && !UseFPOffset) { | 
|  | // If we only pull from the overflow region, we don't create a branch. | 
|  | // We don't need to alter control flow. | 
|  | OffsetDestReg = 0; // unused | 
|  | OverflowDestReg = DestReg; | 
|  |  | 
|  | offsetMBB = NULL; | 
|  | overflowMBB = thisMBB; | 
|  | endMBB = thisMBB; | 
|  | } else { | 
|  | // First emit code to check if gp_offset (or fp_offset) is below the bound. | 
|  | // If so, pull the argument from reg_save_area. (branch to offsetMBB) | 
|  | // If not, pull from overflow_area. (branch to overflowMBB) | 
|  | // | 
|  | //       thisMBB | 
|  | //         |     . | 
|  | //         |        . | 
|  | //     offsetMBB   overflowMBB | 
|  | //         |        . | 
|  | //         |     . | 
|  | //        endMBB | 
|  |  | 
|  | // Registers for the PHI in endMBB | 
|  | OffsetDestReg = MRI.createVirtualRegister(AddrRegClass); | 
|  | OverflowDestReg = MRI.createVirtualRegister(AddrRegClass); | 
|  |  | 
|  | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  | offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  | endMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  |  | 
|  | MachineFunction::iterator MBBIter = MBB; | 
|  | ++MBBIter; | 
|  |  | 
|  | // Insert the new basic blocks | 
|  | MF->insert(MBBIter, offsetMBB); | 
|  | MF->insert(MBBIter, overflowMBB); | 
|  | MF->insert(MBBIter, endMBB); | 
|  |  | 
|  | // Transfer the remainder of MBB and its successor edges to endMBB. | 
|  | endMBB->splice(endMBB->begin(), thisMBB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), thisMBB->end()); | 
|  | endMBB->transferSuccessorsAndUpdatePHIs(thisMBB); | 
|  |  | 
|  | // Make offsetMBB and overflowMBB successors of thisMBB | 
|  | thisMBB->addSuccessor(offsetMBB); | 
|  | thisMBB->addSuccessor(overflowMBB); | 
|  |  | 
|  | // endMBB is a successor of both offsetMBB and overflowMBB | 
|  | offsetMBB->addSuccessor(endMBB); | 
|  | overflowMBB->addSuccessor(endMBB); | 
|  |  | 
|  | // Load the offset value into a register | 
|  | OffsetReg = MRI.createVirtualRegister(OffsetRegClass); | 
|  | BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg) | 
|  | .addOperand(Base) | 
|  | .addOperand(Scale) | 
|  | .addOperand(Index) | 
|  | .addDisp(Disp, UseFPOffset ? 4 : 0) | 
|  | .addOperand(Segment) | 
|  | .setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // Check if there is enough room left to pull this argument. | 
|  | BuildMI(thisMBB, DL, TII->get(X86::CMP32ri)) | 
|  | .addReg(OffsetReg) | 
|  | .addImm(MaxOffset + 8 - ArgSizeA8); | 
|  |  | 
|  | // Branch to "overflowMBB" if offset >= max | 
|  | // Fall through to "offsetMBB" otherwise | 
|  | BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE))) | 
|  | .addMBB(overflowMBB); | 
|  | } | 
|  |  | 
|  | // In offsetMBB, emit code to use the reg_save_area. | 
|  | if (offsetMBB) { | 
|  | assert(OffsetReg != 0); | 
|  |  | 
|  | // Read the reg_save_area address. | 
|  | unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass); | 
|  | BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg) | 
|  | .addOperand(Base) | 
|  | .addOperand(Scale) | 
|  | .addOperand(Index) | 
|  | .addDisp(Disp, 16) | 
|  | .addOperand(Segment) | 
|  | .setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // Zero-extend the offset | 
|  | unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass); | 
|  | BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64) | 
|  | .addImm(0) | 
|  | .addReg(OffsetReg) | 
|  | .addImm(X86::sub_32bit); | 
|  |  | 
|  | // Add the offset to the reg_save_area to get the final address. | 
|  | BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg) | 
|  | .addReg(OffsetReg64) | 
|  | .addReg(RegSaveReg); | 
|  |  | 
|  | // Compute the offset for the next argument | 
|  | unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass); | 
|  | BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg) | 
|  | .addReg(OffsetReg) | 
|  | .addImm(UseFPOffset ? 16 : 8); | 
|  |  | 
|  | // Store it back into the va_list. | 
|  | BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr)) | 
|  | .addOperand(Base) | 
|  | .addOperand(Scale) | 
|  | .addOperand(Index) | 
|  | .addDisp(Disp, UseFPOffset ? 4 : 0) | 
|  | .addOperand(Segment) | 
|  | .addReg(NextOffsetReg) | 
|  | .setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // Jump to endMBB | 
|  | BuildMI(offsetMBB, DL, TII->get(X86::JMP_4)) | 
|  | .addMBB(endMBB); | 
|  | } | 
|  |  | 
|  | // | 
|  | // Emit code to use overflow area | 
|  | // | 
|  |  | 
|  | // Load the overflow_area address into a register. | 
|  | unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass); | 
|  | BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg) | 
|  | .addOperand(Base) | 
|  | .addOperand(Scale) | 
|  | .addOperand(Index) | 
|  | .addDisp(Disp, 8) | 
|  | .addOperand(Segment) | 
|  | .setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // If we need to align it, do so. Otherwise, just copy the address | 
|  | // to OverflowDestReg. | 
|  | if (NeedsAlign) { | 
|  | // Align the overflow address | 
|  | assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2"); | 
|  | unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass); | 
|  |  | 
|  | // aligned_addr = (addr + (align-1)) & ~(align-1) | 
|  | BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg) | 
|  | .addReg(OverflowAddrReg) | 
|  | .addImm(Align-1); | 
|  |  | 
|  | BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg) | 
|  | .addReg(TmpReg) | 
|  | .addImm(~(uint64_t)(Align-1)); | 
|  | } else { | 
|  | BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg) | 
|  | .addReg(OverflowAddrReg); | 
|  | } | 
|  |  | 
|  | // Compute the next overflow address after this argument. | 
|  | // (the overflow address should be kept 8-byte aligned) | 
|  | unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass); | 
|  | BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg) | 
|  | .addReg(OverflowDestReg) | 
|  | .addImm(ArgSizeA8); | 
|  |  | 
|  | // Store the new overflow address. | 
|  | BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr)) | 
|  | .addOperand(Base) | 
|  | .addOperand(Scale) | 
|  | .addOperand(Index) | 
|  | .addDisp(Disp, 8) | 
|  | .addOperand(Segment) | 
|  | .addReg(NextAddrReg) | 
|  | .setMemRefs(MMOBegin, MMOEnd); | 
|  |  | 
|  | // If we branched, emit the PHI to the front of endMBB. | 
|  | if (offsetMBB) { | 
|  | BuildMI(*endMBB, endMBB->begin(), DL, | 
|  | TII->get(X86::PHI), DestReg) | 
|  | .addReg(OffsetDestReg).addMBB(offsetMBB) | 
|  | .addReg(OverflowDestReg).addMBB(overflowMBB); | 
|  | } | 
|  |  | 
|  | // Erase the pseudo instruction | 
|  | MI->eraseFromParent(); | 
|  |  | 
|  | return endMBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter( | 
|  | MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | // Emit code to save XMM registers to the stack. The ABI says that the | 
|  | // number of registers to save is given in %al, so it's theoretically | 
|  | // possible to do an indirect jump trick to avoid saving all of them, | 
|  | // however this code takes a simpler approach and just executes all | 
|  | // of the stores if %al is non-zero. It's less code, and it's probably | 
|  | // easier on the hardware branch predictor, and stores aren't all that | 
|  | // expensive anyway. | 
|  |  | 
|  | // Create the new basic blocks. One block contains all the XMM stores, | 
|  | // and one block is the final destination regardless of whether any | 
|  | // stores were performed. | 
|  | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); | 
|  | MachineFunction *F = MBB->getParent(); | 
|  | MachineFunction::iterator MBBIter = MBB; | 
|  | ++MBBIter; | 
|  | MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(MBBIter, XMMSaveMBB); | 
|  | F->insert(MBBIter, EndMBB); | 
|  |  | 
|  | // Transfer the remainder of MBB and its successor edges to EndMBB. | 
|  | EndMBB->splice(EndMBB->begin(), MBB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), MBB->end()); | 
|  | EndMBB->transferSuccessorsAndUpdatePHIs(MBB); | 
|  |  | 
|  | // The original block will now fall through to the XMM save block. | 
|  | MBB->addSuccessor(XMMSaveMBB); | 
|  | // The XMMSaveMBB will fall through to the end block. | 
|  | XMMSaveMBB->addSuccessor(EndMBB); | 
|  |  | 
|  | // Now add the instructions. | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | unsigned CountReg = MI->getOperand(0).getReg(); | 
|  | int64_t RegSaveFrameIndex = MI->getOperand(1).getImm(); | 
|  | int64_t VarArgsFPOffset = MI->getOperand(2).getImm(); | 
|  |  | 
|  | if (!Subtarget->isTargetWin64()) { | 
|  | // If %al is 0, branch around the XMM save block. | 
|  | BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg); | 
|  | BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB); | 
|  | MBB->addSuccessor(EndMBB); | 
|  | } | 
|  |  | 
|  | // Make sure the last operand is EFLAGS, which gets clobbered by the branch | 
|  | // that was just emitted, but clearly shouldn't be "saved". | 
|  | assert((MI->getNumOperands() <= 3 || | 
|  | !MI->getOperand(MI->getNumOperands() - 1).isReg() || | 
|  | MI->getOperand(MI->getNumOperands() - 1).getReg() == X86::EFLAGS) | 
|  | && "Expected last argument to be EFLAGS"); | 
|  | unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr; | 
|  | // In the XMM save block, save all the XMM argument registers. | 
|  | for (int i = 3, e = MI->getNumOperands() - 1; i != e; ++i) { | 
|  | int64_t Offset = (i - 3) * 16 + VarArgsFPOffset; | 
|  | MachineMemOperand *MMO = | 
|  | F->getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset), | 
|  | MachineMemOperand::MOStore, | 
|  | /*Size=*/16, /*Align=*/16); | 
|  | BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc)) | 
|  | .addFrameIndex(RegSaveFrameIndex) | 
|  | .addImm(/*Scale=*/1) | 
|  | .addReg(/*IndexReg=*/0) | 
|  | .addImm(/*Disp=*/Offset) | 
|  | .addReg(/*Segment=*/0) | 
|  | .addReg(MI->getOperand(i).getReg()) | 
|  | .addMemOperand(MMO); | 
|  | } | 
|  |  | 
|  | MI->eraseFromParent();   // The pseudo instruction is gone now. | 
|  |  | 
|  | return EndMBB; | 
|  | } | 
|  |  | 
|  | // The EFLAGS operand of SelectItr might be missing a kill marker | 
|  | // because there were multiple uses of EFLAGS, and ISel didn't know | 
|  | // which to mark. Figure out whether SelectItr should have had a | 
|  | // kill marker, and set it if it should. Returns the correct kill | 
|  | // marker value. | 
|  | static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr, | 
|  | MachineBasicBlock* BB, | 
|  | const TargetRegisterInfo* TRI) { | 
|  | // Scan forward through BB for a use/def of EFLAGS. | 
|  | MachineBasicBlock::iterator miI(std::next(SelectItr)); | 
|  | for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) { | 
|  | const MachineInstr& mi = *miI; | 
|  | if (mi.readsRegister(X86::EFLAGS)) | 
|  | return false; | 
|  | if (mi.definesRegister(X86::EFLAGS)) | 
|  | break; // Should have kill-flag - update below. | 
|  | } | 
|  |  | 
|  | // If we hit the end of the block, check whether EFLAGS is live into a | 
|  | // successor. | 
|  | if (miI == BB->end()) { | 
|  | for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(), | 
|  | sEnd = BB->succ_end(); | 
|  | sItr != sEnd; ++sItr) { | 
|  | MachineBasicBlock* succ = *sItr; | 
|  | if (succ->isLiveIn(X86::EFLAGS)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We found a def, or hit the end of the basic block and EFLAGS wasn't live | 
|  | // out. SelectMI should have a kill flag on EFLAGS. | 
|  | SelectItr->addRegisterKilled(X86::EFLAGS, TRI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitLoweredSelect(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | // To "insert" a SELECT_CC instruction, we actually have to insert the | 
|  | // diamond control-flow pattern.  The incoming instruction knows the | 
|  | // destination vreg to set, the condition code register to branch on, the | 
|  | // true/false values to select between, and a branch opcode to use. | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | MachineFunction::iterator It = BB; | 
|  | ++It; | 
|  |  | 
|  | //  thisMBB: | 
|  | //  ... | 
|  | //   TrueVal = ... | 
|  | //   cmpTY ccX, r1, r2 | 
|  | //   bCC copy1MBB | 
|  | //   fallthrough --> copy0MBB | 
|  | MachineBasicBlock *thisMBB = BB; | 
|  | MachineFunction *F = BB->getParent(); | 
|  | MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(It, copy0MBB); | 
|  | F->insert(It, sinkMBB); | 
|  |  | 
|  | // If the EFLAGS register isn't dead in the terminator, then claim that it's | 
|  | // live into the sink and copy blocks. | 
|  | const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo(); | 
|  | if (!MI->killsRegister(X86::EFLAGS) && | 
|  | !checkAndUpdateEFLAGSKill(MI, BB, TRI)) { | 
|  | copy0MBB->addLiveIn(X86::EFLAGS); | 
|  | sinkMBB->addLiveIn(X86::EFLAGS); | 
|  | } | 
|  |  | 
|  | // Transfer the remainder of BB and its successor edges to sinkMBB. | 
|  | sinkMBB->splice(sinkMBB->begin(), BB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), BB->end()); | 
|  | sinkMBB->transferSuccessorsAndUpdatePHIs(BB); | 
|  |  | 
|  | // Add the true and fallthrough blocks as its successors. | 
|  | BB->addSuccessor(copy0MBB); | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | // Create the conditional branch instruction. | 
|  | unsigned Opc = | 
|  | X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); | 
|  | BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB); | 
|  |  | 
|  | //  copy0MBB: | 
|  | //   %FalseValue = ... | 
|  | //   # fallthrough to sinkMBB | 
|  | copy0MBB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  sinkMBB: | 
|  | //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] | 
|  | //  ... | 
|  | BuildMI(*sinkMBB, sinkMBB->begin(), DL, | 
|  | TII->get(X86::PHI), MI->getOperand(0).getReg()) | 
|  | .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) | 
|  | .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); | 
|  |  | 
|  | MI->eraseFromParent();   // The pseudo instruction is gone now. | 
|  | return sinkMBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB, | 
|  | bool Is64Bit) const { | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | MachineFunction *MF = BB->getParent(); | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  |  | 
|  | assert(getTargetMachine().Options.EnableSegmentedStacks); | 
|  |  | 
|  | unsigned TlsReg = Is64Bit ? X86::FS : X86::GS; | 
|  | unsigned TlsOffset = Is64Bit ? 0x70 : 0x30; | 
|  |  | 
|  | // BB: | 
|  | //  ... [Till the alloca] | 
|  | // If stacklet is not large enough, jump to mallocMBB | 
|  | // | 
|  | // bumpMBB: | 
|  | //  Allocate by subtracting from RSP | 
|  | //  Jump to continueMBB | 
|  | // | 
|  | // mallocMBB: | 
|  | //  Allocate by call to runtime | 
|  | // | 
|  | // continueMBB: | 
|  | //  ... | 
|  | //  [rest of original BB] | 
|  | // | 
|  |  | 
|  | MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
|  |  | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | const TargetRegisterClass *AddrRegClass = | 
|  | getRegClassFor(Is64Bit ? MVT::i64:MVT::i32); | 
|  |  | 
|  | unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass), | 
|  | bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass), | 
|  | tmpSPVReg = MRI.createVirtualRegister(AddrRegClass), | 
|  | SPLimitVReg = MRI.createVirtualRegister(AddrRegClass), | 
|  | sizeVReg = MI->getOperand(1).getReg(), | 
|  | physSPReg = Is64Bit ? X86::RSP : X86::ESP; | 
|  |  | 
|  | MachineFunction::iterator MBBIter = BB; | 
|  | ++MBBIter; | 
|  |  | 
|  | MF->insert(MBBIter, bumpMBB); | 
|  | MF->insert(MBBIter, mallocMBB); | 
|  | MF->insert(MBBIter, continueMBB); | 
|  |  | 
|  | continueMBB->splice(continueMBB->begin(), BB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), BB->end()); | 
|  | continueMBB->transferSuccessorsAndUpdatePHIs(BB); | 
|  |  | 
|  | // Add code to the main basic block to check if the stack limit has been hit, | 
|  | // and if so, jump to mallocMBB otherwise to bumpMBB. | 
|  | BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg); | 
|  | BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg) | 
|  | .addReg(tmpSPVReg).addReg(sizeVReg); | 
|  | BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr)) | 
|  | .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg) | 
|  | .addReg(SPLimitVReg); | 
|  | BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB); | 
|  |  | 
|  | // bumpMBB simply decreases the stack pointer, since we know the current | 
|  | // stacklet has enough space. | 
|  | BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg) | 
|  | .addReg(SPLimitVReg); | 
|  | BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg) | 
|  | .addReg(SPLimitVReg); | 
|  | BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB); | 
|  |  | 
|  | // Calls into a routine in libgcc to allocate more space from the heap. | 
|  | const uint32_t *RegMask = | 
|  | getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C); | 
|  | if (Is64Bit) { | 
|  | BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI) | 
|  | .addReg(sizeVReg); | 
|  | BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32)) | 
|  | .addExternalSymbol("__morestack_allocate_stack_space") | 
|  | .addRegMask(RegMask) | 
|  | .addReg(X86::RDI, RegState::Implicit) | 
|  | .addReg(X86::RAX, RegState::ImplicitDefine); | 
|  | } else { | 
|  | BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg) | 
|  | .addImm(12); | 
|  | BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg); | 
|  | BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32)) | 
|  | .addExternalSymbol("__morestack_allocate_stack_space") | 
|  | .addRegMask(RegMask) | 
|  | .addReg(X86::EAX, RegState::ImplicitDefine); | 
|  | } | 
|  |  | 
|  | if (!Is64Bit) | 
|  | BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg) | 
|  | .addImm(16); | 
|  |  | 
|  | BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg) | 
|  | .addReg(Is64Bit ? X86::RAX : X86::EAX); | 
|  | BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB); | 
|  |  | 
|  | // Set up the CFG correctly. | 
|  | BB->addSuccessor(bumpMBB); | 
|  | BB->addSuccessor(mallocMBB); | 
|  | mallocMBB->addSuccessor(continueMBB); | 
|  | bumpMBB->addSuccessor(continueMBB); | 
|  |  | 
|  | // Take care of the PHI nodes. | 
|  | BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI), | 
|  | MI->getOperand(0).getReg()) | 
|  | .addReg(mallocPtrVReg).addMBB(mallocMBB) | 
|  | .addReg(bumpSPPtrVReg).addMBB(bumpMBB); | 
|  |  | 
|  | // Delete the original pseudo instruction. | 
|  | MI->eraseFromParent(); | 
|  |  | 
|  | // And we're done. | 
|  | return continueMBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | assert(!Subtarget->isTargetMacho()); | 
|  |  | 
|  | // The lowering is pretty easy: we're just emitting the call to _alloca.  The | 
|  | // non-trivial part is impdef of ESP. | 
|  |  | 
|  | if (Subtarget->isTargetWin64()) { | 
|  | if (Subtarget->isTargetCygMing()) { | 
|  | // ___chkstk(Mingw64): | 
|  | // Clobbers R10, R11, RAX and EFLAGS. | 
|  | // Updates RSP. | 
|  | BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA)) | 
|  | .addExternalSymbol("___chkstk") | 
|  | .addReg(X86::RAX, RegState::Implicit) | 
|  | .addReg(X86::RSP, RegState::Implicit) | 
|  | .addReg(X86::RAX, RegState::Define | RegState::Implicit) | 
|  | .addReg(X86::RSP, RegState::Define | RegState::Implicit) | 
|  | .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); | 
|  | } else { | 
|  | // __chkstk(MSVCRT): does not update stack pointer. | 
|  | // Clobbers R10, R11 and EFLAGS. | 
|  | BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA)) | 
|  | .addExternalSymbol("__chkstk") | 
|  | .addReg(X86::RAX, RegState::Implicit) | 
|  | .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); | 
|  | // RAX has the offset to be subtracted from RSP. | 
|  | BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP) | 
|  | .addReg(X86::RSP) | 
|  | .addReg(X86::RAX); | 
|  | } | 
|  | } else { | 
|  | const char *StackProbeSymbol = | 
|  | Subtarget->isTargetKnownWindowsMSVC() ? "_chkstk" : "_alloca"; | 
|  |  | 
|  | BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32)) | 
|  | .addExternalSymbol(StackProbeSymbol) | 
|  | .addReg(X86::EAX, RegState::Implicit) | 
|  | .addReg(X86::ESP, RegState::Implicit) | 
|  | .addReg(X86::EAX, RegState::Define | RegState::Implicit) | 
|  | .addReg(X86::ESP, RegState::Define | RegState::Implicit) | 
|  | .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); | 
|  | } | 
|  |  | 
|  | MI->eraseFromParent();   // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | // This is pretty easy.  We're taking the value that we received from | 
|  | // our load from the relocation, sticking it in either RDI (x86-64) | 
|  | // or EAX and doing an indirect call.  The return value will then | 
|  | // be in the normal return register. | 
|  | const X86InstrInfo *TII | 
|  | = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo()); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | MachineFunction *F = BB->getParent(); | 
|  |  | 
|  | assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?"); | 
|  | assert(MI->getOperand(3).isGlobal() && "This should be a global"); | 
|  |  | 
|  | // Get a register mask for the lowered call. | 
|  | // FIXME: The 32-bit calls have non-standard calling conventions. Use a | 
|  | // proper register mask. | 
|  | const uint32_t *RegMask = | 
|  | getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C); | 
|  | if (Subtarget->is64Bit()) { | 
|  | MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, | 
|  | TII->get(X86::MOV64rm), X86::RDI) | 
|  | .addReg(X86::RIP) | 
|  | .addImm(0).addReg(0) | 
|  | .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, | 
|  | MI->getOperand(3).getTargetFlags()) | 
|  | .addReg(0); | 
|  | MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m)); | 
|  | addDirectMem(MIB, X86::RDI); | 
|  | MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask); | 
|  | } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) { | 
|  | MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, | 
|  | TII->get(X86::MOV32rm), X86::EAX) | 
|  | .addReg(0) | 
|  | .addImm(0).addReg(0) | 
|  | .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, | 
|  | MI->getOperand(3).getTargetFlags()) | 
|  | .addReg(0); | 
|  | MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); | 
|  | addDirectMem(MIB, X86::EAX); | 
|  | MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); | 
|  | } else { | 
|  | MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, | 
|  | TII->get(X86::MOV32rm), X86::EAX) | 
|  | .addReg(TII->getGlobalBaseReg(F)) | 
|  | .addImm(0).addReg(0) | 
|  | .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, | 
|  | MI->getOperand(3).getTargetFlags()) | 
|  | .addReg(0); | 
|  | MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); | 
|  | addDirectMem(MIB, X86::EAX); | 
|  | MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); | 
|  | } | 
|  |  | 
|  | MI->eraseFromParent(); // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  |  | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  |  | 
|  | const BasicBlock *BB = MBB->getBasicBlock(); | 
|  | MachineFunction::iterator I = MBB; | 
|  | ++I; | 
|  |  | 
|  | // Memory Reference | 
|  | MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); | 
|  | MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); | 
|  |  | 
|  | unsigned DstReg; | 
|  | unsigned MemOpndSlot = 0; | 
|  |  | 
|  | unsigned CurOp = 0; | 
|  |  | 
|  | DstReg = MI->getOperand(CurOp++).getReg(); | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(DstReg); | 
|  | assert(RC->hasType(MVT::i32) && "Invalid destination!"); | 
|  | unsigned mainDstReg = MRI.createVirtualRegister(RC); | 
|  | unsigned restoreDstReg = MRI.createVirtualRegister(RC); | 
|  |  | 
|  | MemOpndSlot = CurOp; | 
|  |  | 
|  | MVT PVT = getPointerTy(); | 
|  | assert((PVT == MVT::i64 || PVT == MVT::i32) && | 
|  | "Invalid Pointer Size!"); | 
|  |  | 
|  | // For v = setjmp(buf), we generate | 
|  | // | 
|  | // thisMBB: | 
|  | //  buf[LabelOffset] = restoreMBB | 
|  | //  SjLjSetup restoreMBB | 
|  | // | 
|  | // mainMBB: | 
|  | //  v_main = 0 | 
|  | // | 
|  | // sinkMBB: | 
|  | //  v = phi(main, restore) | 
|  | // | 
|  | // restoreMBB: | 
|  | //  v_restore = 1 | 
|  |  | 
|  | MachineBasicBlock *thisMBB = MBB; | 
|  | MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); | 
|  | MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); | 
|  | MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB); | 
|  | MF->insert(I, mainMBB); | 
|  | MF->insert(I, sinkMBB); | 
|  | MF->push_back(restoreMBB); | 
|  |  | 
|  | MachineInstrBuilder MIB; | 
|  |  | 
|  | // Transfer the remainder of BB and its successor edges to sinkMBB. | 
|  | sinkMBB->splice(sinkMBB->begin(), MBB, | 
|  | std::next(MachineBasicBlock::iterator(MI)), MBB->end()); | 
|  | sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); | 
|  |  | 
|  | // thisMBB: | 
|  | unsigned PtrStoreOpc = 0; | 
|  | unsigned LabelReg = 0; | 
|  | const int64_t LabelOffset = 1 * PVT.getStoreSize(); | 
|  | Reloc::Model RM = getTargetMachine().getRelocationModel(); | 
|  | bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) && | 
|  | (RM == Reloc::Static || RM == Reloc::DynamicNoPIC); | 
|  |  | 
|  | // Prepare IP either in reg or imm. | 
|  | if (!UseImmLabel) { | 
|  | PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr; | 
|  | const TargetRegisterClass *PtrRC = getRegClassFor(PVT); | 
|  | LabelReg = MRI.createVirtualRegister(PtrRC); | 
|  | if (Subtarget->is64Bit()) { | 
|  | MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg) | 
|  | .addReg(X86::RIP) | 
|  | .addImm(0) | 
|  | .addReg(0) | 
|  | .addMBB(restoreMBB) | 
|  | .addReg(0); | 
|  | } else { | 
|  | const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII); | 
|  | MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg) | 
|  | .addReg(XII->getGlobalBaseReg(MF)) | 
|  | .addImm(0) | 
|  | .addReg(0) | 
|  | .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference()) | 
|  | .addReg(0); | 
|  | } | 
|  | } else | 
|  | PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi; | 
|  | // Store IP | 
|  | MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc)); | 
|  | for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { | 
|  | if (i == X86::AddrDisp) | 
|  | MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset); | 
|  | else | 
|  | MIB.addOperand(MI->getOperand(MemOpndSlot + i)); | 
|  | } | 
|  | if (!UseImmLabel) | 
|  | MIB.addReg(LabelReg); | 
|  | else | 
|  | MIB.addMBB(restoreMBB); | 
|  | MIB.setMemRefs(MMOBegin, MMOEnd); | 
|  | // Setup | 
|  | MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup)) | 
|  | .addMBB(restoreMBB); | 
|  |  | 
|  | const X86RegisterInfo *RegInfo = | 
|  | static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo()); | 
|  | MIB.addRegMask(RegInfo->getNoPreservedMask()); | 
|  | thisMBB->addSuccessor(mainMBB); | 
|  | thisMBB->addSuccessor(restoreMBB); | 
|  |  | 
|  | // mainMBB: | 
|  | //  EAX = 0 | 
|  | BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg); | 
|  | mainMBB->addSuccessor(sinkMBB); | 
|  |  | 
|  | // sinkMBB: | 
|  | BuildMI(*sinkMBB, sinkMBB->begin(), DL, | 
|  | TII->get(X86::PHI), DstReg) | 
|  | .addReg(mainDstReg).addMBB(mainMBB) | 
|  | .addReg(restoreDstReg).addMBB(restoreMBB); | 
|  |  | 
|  | // restoreMBB: | 
|  | BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1); | 
|  | BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB); | 
|  | restoreMBB->addSuccessor(sinkMBB); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | return sinkMBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  |  | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  |  | 
|  | // Memory Reference | 
|  | MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); | 
|  | MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); | 
|  |  | 
|  | MVT PVT = getPointerTy(); | 
|  | assert((PVT == MVT::i64 || PVT == MVT::i32) && | 
|  | "Invalid Pointer Size!"); | 
|  |  | 
|  | const TargetRegisterClass *RC = | 
|  | (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass; | 
|  | unsigned Tmp = MRI.createVirtualRegister(RC); | 
|  | // Since FP is only updated here but NOT referenced, it's treated as GPR. | 
|  | const X86RegisterInfo *RegInfo = | 
|  | static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo()); | 
|  | unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP; | 
|  | unsigned SP = RegInfo->getStackRegister(); | 
|  |  | 
|  | MachineInstrBuilder MIB; | 
|  |  | 
|  | const int64_t LabelOffset = 1 * PVT.getStoreSize(); | 
|  | const int64_t SPOffset = 2 * PVT.getStoreSize(); | 
|  |  | 
|  | unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm; | 
|  | unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r; | 
|  |  | 
|  | // Reload FP | 
|  | MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP); | 
|  | for (unsigned i = 0; i < X86::AddrNumOperands; ++i) | 
|  | MIB.addOperand(MI->getOperand(i)); | 
|  | MIB.setMemRefs(MMOBegin, MMOEnd); | 
|  | // Reload IP | 
|  | MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp); | 
|  | for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { | 
|  | if (i == X86::AddrDisp) | 
|  | MIB.addDisp(MI->getOperand(i), LabelOffset); | 
|  | else | 
|  | MIB.addOperand(MI->getOperand(i)); | 
|  | } | 
|  | MIB.setMemRefs(MMOBegin, MMOEnd); | 
|  | // Reload SP | 
|  | MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP); | 
|  | for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { | 
|  | if (i == X86::AddrDisp) | 
|  | MIB.addDisp(MI->getOperand(i), SPOffset); | 
|  | else | 
|  | MIB.addOperand(MI->getOperand(i)); | 
|  | } | 
|  | MIB.setMemRefs(MMOBegin, MMOEnd); | 
|  | // Jump | 
|  | BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | return MBB; | 
|  | } | 
|  |  | 
|  | // Replace 213-type (isel default) FMA3 instructions with 231-type for | 
|  | // accumulator loops. Writing back to the accumulator allows the coalescer | 
|  | // to remove extra copies in the loop. | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::emitFMA3Instr(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | MachineOperand &AddendOp = MI->getOperand(3); | 
|  |  | 
|  | // Bail out early if the addend isn't a register - we can't switch these. | 
|  | if (!AddendOp.isReg()) | 
|  | return MBB; | 
|  |  | 
|  | MachineFunction &MF = *MBB->getParent(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  |  | 
|  | // Check whether the addend is defined by a PHI: | 
|  | assert(MRI.hasOneDef(AddendOp.getReg()) && "Multiple defs in SSA?"); | 
|  | MachineInstr &AddendDef = *MRI.def_instr_begin(AddendOp.getReg()); | 
|  | if (!AddendDef.isPHI()) | 
|  | return MBB; | 
|  |  | 
|  | // Look for the following pattern: | 
|  | // loop: | 
|  | //   %addend = phi [%entry, 0], [%loop, %result] | 
|  | //   ... | 
|  | //   %result<tied1> = FMA213 %m2<tied0>, %m1, %addend | 
|  |  | 
|  | // Replace with: | 
|  | //   loop: | 
|  | //   %addend = phi [%entry, 0], [%loop, %result] | 
|  | //   ... | 
|  | //   %result<tied1> = FMA231 %addend<tied0>, %m1, %m2 | 
|  |  | 
|  | for (unsigned i = 1, e = AddendDef.getNumOperands(); i < e; i += 2) { | 
|  | assert(AddendDef.getOperand(i).isReg()); | 
|  | MachineOperand PHISrcOp = AddendDef.getOperand(i); | 
|  | MachineInstr &PHISrcInst = *MRI.def_instr_begin(PHISrcOp.getReg()); | 
|  | if (&PHISrcInst == MI) { | 
|  | // Found a matching instruction. | 
|  | unsigned NewFMAOpc = 0; | 
|  | switch (MI->getOpcode()) { | 
|  | case X86::VFMADDPDr213r: NewFMAOpc = X86::VFMADDPDr231r; break; | 
|  | case X86::VFMADDPSr213r: NewFMAOpc = X86::VFMADDPSr231r; break; | 
|  | case X86::VFMADDSDr213r: NewFMAOpc = X86::VFMADDSDr231r; break; | 
|  | case X86::VFMADDSSr213r: NewFMAOpc = X86::VFMADDSSr231r; break; | 
|  | case X86::VFMSUBPDr213r: NewFMAOpc = X86::VFMSUBPDr231r; break; | 
|  | case X86::VFMSUBPSr213r: NewFMAOpc = X86::VFMSUBPSr231r; break; | 
|  | case X86::VFMSUBSDr213r: NewFMAOpc = X86::VFMSUBSDr231r; break; | 
|  | case X86::VFMSUBSSr213r: NewFMAOpc = X86::VFMSUBSSr231r; break; | 
|  | case X86::VFNMADDPDr213r: NewFMAOpc = X86::VFNMADDPDr231r; break; | 
|  | case X86::VFNMADDPSr213r: NewFMAOpc = X86::VFNMADDPSr231r; break; | 
|  | case X86::VFNMADDSDr213r: NewFMAOpc = X86::VFNMADDSDr231r; break; | 
|  | case X86::VFNMADDSSr213r: NewFMAOpc = X86::VFNMADDSSr231r; break; | 
|  | case X86::VFNMSUBPDr213r: NewFMAOpc = X86::VFNMSUBPDr231r; break; | 
|  | case X86::VFNMSUBPSr213r: NewFMAOpc = X86::VFNMSUBPSr231r; break; | 
|  | case X86::VFNMSUBSDr213r: NewFMAOpc = X86::VFNMSUBSDr231r; break; | 
|  | case X86::VFNMSUBSSr213r: NewFMAOpc = X86::VFNMSUBSSr231r; break; | 
|  | case X86::VFMADDPDr213rY: NewFMAOpc = X86::VFMADDPDr231rY; break; | 
|  | case X86::VFMADDPSr213rY: NewFMAOpc = X86::VFMADDPSr231rY; break; | 
|  | case X86::VFMSUBPDr213rY: NewFMAOpc = X86::VFMSUBPDr231rY; break; | 
|  | case X86::VFMSUBPSr213rY: NewFMAOpc = X86::VFMSUBPSr231rY; break; | 
|  | case X86::VFNMADDPDr213rY: NewFMAOpc = X86::VFNMADDPDr231rY; break; | 
|  | case X86::VFNMADDPSr213rY: NewFMAOpc = X86::VFNMADDPSr231rY; break; | 
|  | case X86::VFNMSUBPDr213rY: NewFMAOpc = X86::VFNMSUBPDr231rY; break; | 
|  | case X86::VFNMSUBPSr213rY: NewFMAOpc = X86::VFNMSUBPSr231rY; break; | 
|  | default: llvm_unreachable("Unrecognized FMA variant."); | 
|  | } | 
|  |  | 
|  | const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(MF, MI->getDebugLoc(), TII.get(NewFMAOpc)) | 
|  | .addOperand(MI->getOperand(0)) | 
|  | .addOperand(MI->getOperand(3)) | 
|  | .addOperand(MI->getOperand(2)) | 
|  | .addOperand(MI->getOperand(1)); | 
|  | MBB->insert(MachineBasicBlock::iterator(MI), MIB); | 
|  | MI->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return MBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("Unexpected instr type to insert"); | 
|  | case X86::TAILJMPd64: | 
|  | case X86::TAILJMPr64: | 
|  | case X86::TAILJMPm64: | 
|  | llvm_unreachable("TAILJMP64 would not be touched here."); | 
|  | case X86::TCRETURNdi64: | 
|  | case X86::TCRETURNri64: | 
|  | case X86::TCRETURNmi64: | 
|  | return BB; | 
|  | case X86::WIN_ALLOCA: | 
|  | return EmitLoweredWinAlloca(MI, BB); | 
|  | case X86::SEG_ALLOCA_32: | 
|  | return EmitLoweredSegAlloca(MI, BB, false); | 
|  | case X86::SEG_ALLOCA_64: | 
|  | return EmitLoweredSegAlloca(MI, BB, true); | 
|  | case X86::TLSCall_32: | 
|  | case X86::TLSCall_64: | 
|  | return EmitLoweredTLSCall(MI, BB); | 
|  | case X86::CMOV_GR8: | 
|  | case X86::CMOV_FR32: | 
|  | case X86::CMOV_FR64: | 
|  | case X86::CMOV_V4F32: | 
|  | case X86::CMOV_V2F64: | 
|  | case X86::CMOV_V2I64: | 
|  | case X86::CMOV_V8F32: | 
|  | case X86::CMOV_V4F64: | 
|  | case X86::CMOV_V4I64: | 
|  | case X86::CMOV_V16F32: | 
|  | case X86::CMOV_V8F64: | 
|  | case X86::CMOV_V8I64: | 
|  | case X86::CMOV_GR16: | 
|  | case X86::CMOV_GR32: | 
|  | case X86::CMOV_RFP32: | 
|  | case X86::CMOV_RFP64: | 
|  | case X86::CMOV_RFP80: | 
|  | return EmitLoweredSelect(MI, BB); | 
|  |  | 
|  | case X86::FP32_TO_INT16_IN_MEM: | 
|  | case X86::FP32_TO_INT32_IN_MEM: | 
|  | case X86::FP32_TO_INT64_IN_MEM: | 
|  | case X86::FP64_TO_INT16_IN_MEM: | 
|  | case X86::FP64_TO_INT32_IN_MEM: | 
|  | case X86::FP64_TO_INT64_IN_MEM: | 
|  | case X86::FP80_TO_INT16_IN_MEM: | 
|  | case X86::FP80_TO_INT32_IN_MEM: | 
|  | case X86::FP80_TO_INT64_IN_MEM: { | 
|  | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  |  | 
|  | // Change the floating point control register to use "round towards zero" | 
|  | // mode when truncating to an integer value. | 
|  | MachineFunction *F = BB->getParent(); | 
|  | int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false); | 
|  | addFrameReference(BuildMI(*BB, MI, DL, | 
|  | TII->get(X86::FNSTCW16m)), CWFrameIdx); | 
|  |  | 
|  | // Load the old value of the high byte of the control word... | 
|  | unsigned OldCW = | 
|  | F->getRegInfo().createVirtualRegister(&X86::GR16RegClass); | 
|  | addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW), | 
|  | CWFrameIdx); | 
|  |  | 
|  | // Set the high part to be round to zero... | 
|  | addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx) | 
|  | .addImm(0xC7F); | 
|  |  | 
|  | // Reload the modified control word now... | 
|  | addFrameReference(BuildMI(*BB, MI, DL, | 
|  | TII->get(X86::FLDCW16m)), CWFrameIdx); | 
|  |  | 
|  | // Restore the memory image of control word to original value | 
|  | addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx) | 
|  | .addReg(OldCW); | 
|  |  | 
|  | // Get the X86 opcode to use. | 
|  | unsigned Opc; | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("illegal opcode!"); | 
|  | case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; | 
|  | case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; | 
|  | case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; | 
|  | case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; | 
|  | case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; | 
|  | case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; | 
|  | case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; | 
|  | case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; | 
|  | case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; | 
|  | } | 
|  |  | 
|  | X86AddressMode AM; | 
|  | MachineOperand &Op = MI->getOperand(0); | 
|  | if (Op.isReg()) { | 
|  | AM.BaseType = X86AddressMode::RegBase; | 
|  | AM.Base.Reg = Op.getReg(); | 
|  | } else { | 
|  | AM.BaseType = X86AddressMode::FrameIndexBase; | 
|  | AM.Base.FrameIndex = Op.getIndex(); | 
|  | } | 
|  | Op = MI->getOperand(1); | 
|  | if (Op.isImm()) | 
|  | AM.Scale = Op.getImm(); | 
|  | Op = MI->getOperand(2); | 
|  | if (Op.isImm()) | 
|  | AM.IndexReg = Op.getImm(); | 
|  | Op = MI->getOperand(3); | 
|  | if (Op.isGlobal()) { | 
|  | AM.GV = Op.getGlobal(); | 
|  | } else { | 
|  | AM.Disp = Op.getImm(); | 
|  | } | 
|  | addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM) | 
|  | .addReg(MI->getOperand(X86::AddrNumOperands).getReg()); | 
|  |  | 
|  | // Reload the original control word now. | 
|  | addFrameReference(BuildMI(*BB, MI, DL, | 
|  | TII->get(X86::FLDCW16m)), CWFrameIdx); | 
|  |  | 
|  | MI->eraseFromParent();   // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  | // String/text processing lowering. | 
|  | case X86::PCMPISTRM128REG: | 
|  | case X86::VPCMPISTRM128REG: | 
|  | case X86::PCMPISTRM128MEM: | 
|  | case X86::VPCMPISTRM128MEM: | 
|  | case X86::PCMPESTRM128REG: | 
|  | case X86::VPCMPESTRM128REG: | 
|  | case X86::PCMPESTRM128MEM: | 
|  | case X86::VPCMPESTRM128MEM: | 
|  | assert(Subtarget->hasSSE42() && | 
|  | "Target must have SSE4.2 or AVX features enabled"); | 
|  | return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo()); | 
|  |  | 
|  | // String/text processing lowering. | 
|  | case X86::PCMPISTRIREG: | 
|  | case X86::VPCMPISTRIREG: | 
|  | case X86::PCMPISTRIMEM: | 
|  | case X86::VPCMPISTRIMEM: | 
|  | case X86::PCMPESTRIREG: | 
|  | case X86::VPCMPESTRIREG: | 
|  | case X86::PCMPESTRIMEM: | 
|  | case X86::VPCMPESTRIMEM: | 
|  | assert(Subtarget->hasSSE42() && | 
|  | "Target must have SSE4.2 or AVX features enabled"); | 
|  | return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo()); | 
|  |  | 
|  | // Thread synchronization. | 
|  | case X86::MONITOR: | 
|  | return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget); | 
|  |  | 
|  | // xbegin | 
|  | case X86::XBEGIN: | 
|  | return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo()); | 
|  |  | 
|  | // Atomic Lowering. | 
|  | case X86::ATOMAND8: | 
|  | case X86::ATOMAND16: | 
|  | case X86::ATOMAND32: | 
|  | case X86::ATOMAND64: | 
|  | // Fall through | 
|  | case X86::ATOMOR8: | 
|  | case X86::ATOMOR16: | 
|  | case X86::ATOMOR32: | 
|  | case X86::ATOMOR64: | 
|  | // Fall through | 
|  | case X86::ATOMXOR16: | 
|  | case X86::ATOMXOR8: | 
|  | case X86::ATOMXOR32: | 
|  | case X86::ATOMXOR64: | 
|  | // Fall through | 
|  | case X86::ATOMNAND8: | 
|  | case X86::ATOMNAND16: | 
|  | case X86::ATOMNAND32: | 
|  | case X86::ATOMNAND64: | 
|  | // Fall through | 
|  | case X86::ATOMMAX8: | 
|  | case X86::ATOMMAX16: | 
|  | case X86::ATOMMAX32: | 
|  | case X86::ATOMMAX64: | 
|  | // Fall through | 
|  | case X86::ATOMMIN8: | 
|  | case X86::ATOMMIN16: | 
|  | case X86::ATOMMIN32: | 
|  | case X86::ATOMMIN64: | 
|  | // Fall through | 
|  | case X86::ATOMUMAX8: | 
|  | case X86::ATOMUMAX16: | 
|  | case X86::ATOMUMAX32: | 
|  | case X86::ATOMUMAX64: | 
|  | // Fall through | 
|  | case X86::ATOMUMIN8: | 
|  | case X86::ATOMUMIN16: | 
|  | case X86::ATOMUMIN32: | 
|  | case X86::ATOMUMIN64: | 
|  | return EmitAtomicLoadArith(MI, BB); | 
|  |  | 
|  | // This group does 64-bit operations on a 32-bit host. | 
|  | case X86::ATOMAND6432: | 
|  | case X86::ATOMOR6432: | 
|  | case X86::ATOMXOR6432: | 
|  | case X86::ATOMNAND6432: | 
|  | case X86::ATOMADD6432: | 
|  | case X86::ATOMSUB6432: | 
|  | case X86::ATOMMAX6432: | 
|  | case X86::ATOMMIN6432: | 
|  | case X86::ATOMUMAX6432: | 
|  | case X86::ATOMUMIN6432: | 
|  | case X86::ATOMSWAP6432: | 
|  | return EmitAtomicLoadArith6432(MI, BB); | 
|  |  | 
|  | case X86::VASTART_SAVE_XMM_REGS: | 
|  | return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB); | 
|  |  | 
|  | case X86::VAARG_64: | 
|  | return EmitVAARG64WithCustomInserter(MI, BB); | 
|  |  | 
|  | case X86::EH_SjLj_SetJmp32: | 
|  | case X86::EH_SjLj_SetJmp64: | 
|  | return emitEHSjLjSetJmp(MI, BB); | 
|  |  | 
|  | case X86::EH_SjLj_LongJmp32: | 
|  | case X86::EH_SjLj_LongJmp64: | 
|  | return emitEHSjLjLongJmp(MI, BB); | 
|  |  | 
|  | case TargetOpcode::STACKMAP: | 
|  | case TargetOpcode::PATCHPOINT: | 
|  | return emitPatchPoint(MI, BB); | 
|  |  | 
|  | case X86::VFMADDPDr213r: | 
|  | case X86::VFMADDPSr213r: | 
|  | case X86::VFMADDSDr213r: | 
|  | case X86::VFMADDSSr213r: | 
|  | case X86::VFMSUBPDr213r: | 
|  | case X86::VFMSUBPSr213r: | 
|  | case X86::VFMSUBSDr213r: | 
|  | case X86::VFMSUBSSr213r: | 
|  | case X86::VFNMADDPDr213r: | 
|  | case X86::VFNMADDPSr213r: | 
|  | case X86::VFNMADDSDr213r: | 
|  | case X86::VFNMADDSSr213r: | 
|  | case X86::VFNMSUBPDr213r: | 
|  | case X86::VFNMSUBPSr213r: | 
|  | case X86::VFNMSUBSDr213r: | 
|  | case X86::VFNMSUBSSr213r: | 
|  | case X86::VFMADDPDr213rY: | 
|  | case X86::VFMADDPSr213rY: | 
|  | case X86::VFMSUBPDr213rY: | 
|  | case X86::VFMSUBPSr213rY: | 
|  | case X86::VFNMADDPDr213rY: | 
|  | case X86::VFNMADDPSr213rY: | 
|  | case X86::VFNMSUBPDr213rY: | 
|  | case X86::VFNMSUBPSr213rY: | 
|  | return emitFMA3Instr(MI, BB); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           X86 Optimization Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, | 
|  | APInt &KnownZero, | 
|  | APInt &KnownOne, | 
|  | const SelectionDAG &DAG, | 
|  | unsigned Depth) const { | 
|  | unsigned BitWidth = KnownZero.getBitWidth(); | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | assert((Opc >= ISD::BUILTIN_OP_END || | 
|  | Opc == ISD::INTRINSIC_WO_CHAIN || | 
|  | Opc == ISD::INTRINSIC_W_CHAIN || | 
|  | Opc == ISD::INTRINSIC_VOID) && | 
|  | "Should use MaskedValueIsZero if you don't know whether Op" | 
|  | " is a target node!"); | 
|  |  | 
|  | KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything. | 
|  | switch (Opc) { | 
|  | default: break; | 
|  | case X86ISD::ADD: | 
|  | case X86ISD::SUB: | 
|  | case X86ISD::ADC: | 
|  | case X86ISD::SBB: | 
|  | case X86ISD::SMUL: | 
|  | case X86ISD::UMUL: | 
|  | case X86ISD::INC: | 
|  | case X86ISD::DEC: | 
|  | case X86ISD::OR: | 
|  | case X86ISD::XOR: | 
|  | case X86ISD::AND: | 
|  | // These nodes' second result is a boolean. | 
|  | if (Op.getResNo() == 0) | 
|  | break; | 
|  | // Fallthrough | 
|  | case X86ISD::SETCC: | 
|  | KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); | 
|  | break; | 
|  | case ISD::INTRINSIC_WO_CHAIN: { | 
|  | unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  | unsigned NumLoBits = 0; | 
|  | switch (IntId) { | 
|  | default: break; | 
|  | case Intrinsic::x86_sse_movmsk_ps: | 
|  | case Intrinsic::x86_avx_movmsk_ps_256: | 
|  | case Intrinsic::x86_sse2_movmsk_pd: | 
|  | case Intrinsic::x86_avx_movmsk_pd_256: | 
|  | case Intrinsic::x86_mmx_pmovmskb: | 
|  | case Intrinsic::x86_sse2_pmovmskb_128: | 
|  | case Intrinsic::x86_avx2_pmovmskb: { | 
|  | // High bits of movmskp{s|d}, pmovmskb are known zero. | 
|  | switch (IntId) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break; | 
|  | case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break; | 
|  | case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break; | 
|  | case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break; | 
|  | case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break; | 
|  | case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break; | 
|  | case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break; | 
|  | } | 
|  | KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, | 
|  | unsigned Depth) const { | 
|  | // SETCC_CARRY sets the dest to ~0 for true or 0 for false. | 
|  | if (Op.getOpcode() == X86ISD::SETCC_CARRY) | 
|  | return Op.getValueType().getScalarType().getSizeInBits(); | 
|  |  | 
|  | // Fallback case. | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the | 
|  | /// node is a GlobalAddress + offset. | 
|  | bool X86TargetLowering::isGAPlusOffset(SDNode *N, | 
|  | const GlobalValue* &GA, | 
|  | int64_t &Offset) const { | 
|  | if (N->getOpcode() == X86ISD::Wrapper) { | 
|  | if (isa<GlobalAddressSDNode>(N->getOperand(0))) { | 
|  | GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); | 
|  | Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return TargetLowering::isGAPlusOffset(N, GA, Offset); | 
|  | } | 
|  |  | 
|  | /// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the | 
|  | /// same as extracting the high 128-bit part of 256-bit vector and then | 
|  | /// inserting the result into the low part of a new 256-bit vector | 
|  | static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) { | 
|  | EVT VT = SVOp->getValueType(0); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u> | 
|  | for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j) | 
|  | if (!isUndefOrEqual(SVOp->getMaskElt(i), j) || | 
|  | SVOp->getMaskElt(j) >= 0) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the | 
|  | /// same as extracting the low 128-bit part of 256-bit vector and then | 
|  | /// inserting the result into the high part of a new 256-bit vector | 
|  | static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) { | 
|  | EVT VT = SVOp->getValueType(0); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1> | 
|  | for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j) | 
|  | if (!isUndefOrEqual(SVOp->getMaskElt(i), j) || | 
|  | SVOp->getMaskElt(j) >= 0) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors. | 
|  | static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget* Subtarget) { | 
|  | SDLoc dl(N); | 
|  | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); | 
|  | SDValue V1 = SVOp->getOperand(0); | 
|  | SDValue V2 = SVOp->getOperand(1); | 
|  | EVT VT = SVOp->getValueType(0); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  |  | 
|  | if (V1.getOpcode() == ISD::CONCAT_VECTORS && | 
|  | V2.getOpcode() == ISD::CONCAT_VECTORS) { | 
|  | // | 
|  | //                   0,0,0,... | 
|  | //                      | | 
|  | //    V      UNDEF    BUILD_VECTOR    UNDEF | 
|  | //     \      /           \           / | 
|  | //  CONCAT_VECTOR         CONCAT_VECTOR | 
|  | //         \                  / | 
|  | //          \                / | 
|  | //          RESULT: V + zero extended | 
|  | // | 
|  | if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR || | 
|  | V2.getOperand(1).getOpcode() != ISD::UNDEF || | 
|  | V1.getOperand(1).getOpcode() != ISD::UNDEF) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode())) | 
|  | return SDValue(); | 
|  |  | 
|  | // To match the shuffle mask, the first half of the mask should | 
|  | // be exactly the first vector, and all the rest a splat with the | 
|  | // first element of the second one. | 
|  | for (unsigned i = 0; i != NumElems/2; ++i) | 
|  | if (!isUndefOrEqual(SVOp->getMaskElt(i), i) || | 
|  | !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If V1 is coming from a vector load then just fold to a VZEXT_LOAD. | 
|  | if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) { | 
|  | if (Ld->hasNUsesOfValue(1, 0)) { | 
|  | SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other); | 
|  | SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() }; | 
|  | SDValue ResNode = | 
|  | DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, | 
|  | array_lengthof(Ops), | 
|  | Ld->getMemoryVT(), | 
|  | Ld->getPointerInfo(), | 
|  | Ld->getAlignment(), | 
|  | false/*isVolatile*/, true/*ReadMem*/, | 
|  | false/*WriteMem*/); | 
|  |  | 
|  | // Make sure the newly-created LOAD is in the same position as Ld in | 
|  | // terms of dependency. We create a TokenFactor for Ld and ResNode, | 
|  | // and update uses of Ld's output chain to use the TokenFactor. | 
|  | if (Ld->hasAnyUseOfValue(1)) { | 
|  | SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | SDValue(Ld, 1), SDValue(ResNode.getNode(), 1)); | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain); | 
|  | DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1), | 
|  | SDValue(ResNode.getNode(), 1)); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, ResNode); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit a zeroed vector and insert the desired subvector on its | 
|  | // first half. | 
|  | SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); | 
|  | SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl); | 
|  | return DCI.CombineTo(N, InsV); | 
|  | } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // Combine some shuffles into subvector extracts and inserts: | 
|  | // | 
|  |  | 
|  | // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u> | 
|  | if (isShuffleHigh128VectorInsertLow(SVOp)) { | 
|  | SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl); | 
|  | SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl); | 
|  | return DCI.CombineTo(N, InsV); | 
|  | } | 
|  |  | 
|  | // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1> | 
|  | if (isShuffleLow128VectorInsertHigh(SVOp)) { | 
|  | SDValue V = Extract128BitVector(V1, 0, DAG, dl); | 
|  | SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl); | 
|  | return DCI.CombineTo(N, InsV); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformShuffleCombine - Performs several different shuffle combines. | 
|  | static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Don't create instructions with illegal types after legalize types has run. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType())) | 
|  | return SDValue(); | 
|  |  | 
|  | // Combine 256-bit vector shuffles. This is only profitable when in AVX mode | 
|  | if (Subtarget->hasFp256() && VT.is256BitVector() && | 
|  | N->getOpcode() == ISD::VECTOR_SHUFFLE) | 
|  | return PerformShuffleCombine256(N, DAG, DCI, Subtarget); | 
|  |  | 
|  | // Only handle 128 wide vector from here on. | 
|  | if (!VT.is128BitVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Combine a vector_shuffle that is equal to build_vector load1, load2, load3, | 
|  | // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are | 
|  | // consecutive, non-overlapping, and in the right order. | 
|  | SmallVector<SDValue, 16> Elts; | 
|  | for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) | 
|  | Elts.push_back(getShuffleScalarElt(N, i, DAG, 0)); | 
|  |  | 
|  | return EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true); | 
|  | } | 
|  |  | 
|  | /// PerformTruncateCombine - Converts truncate operation to | 
|  | /// a sequence of vector shuffle operations. | 
|  | /// It is possible when we truncate 256-bit vector to 128-bit vector | 
|  | static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget)  { | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target | 
|  | /// specific shuffle of a load can be folded into a single element load. | 
|  | /// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but | 
|  | /// shuffles have been customed lowered so we need to handle those here. | 
|  | static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue InVec = N->getOperand(0); | 
|  | SDValue EltNo = N->getOperand(1); | 
|  |  | 
|  | if (!isa<ConstantSDNode>(EltNo)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = InVec.getValueType(); | 
|  |  | 
|  | bool HasShuffleIntoBitcast = false; | 
|  | if (InVec.getOpcode() == ISD::BITCAST) { | 
|  | // Don't duplicate a load with other uses. | 
|  | if (!InVec.hasOneUse()) | 
|  | return SDValue(); | 
|  | EVT BCVT = InVec.getOperand(0).getValueType(); | 
|  | if (BCVT.getVectorNumElements() != VT.getVectorNumElements()) | 
|  | return SDValue(); | 
|  | InVec = InVec.getOperand(0); | 
|  | HasShuffleIntoBitcast = true; | 
|  | } | 
|  |  | 
|  | if (!isTargetShuffle(InVec.getOpcode())) | 
|  | return SDValue(); | 
|  |  | 
|  | // Don't duplicate a load with other uses. | 
|  | if (!InVec.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | SmallVector<int, 16> ShuffleMask; | 
|  | bool UnaryShuffle; | 
|  | if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask, | 
|  | UnaryShuffle)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Select the input vector, guarding against out of range extract vector. | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); | 
|  | int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt]; | 
|  | SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0) | 
|  | : InVec.getOperand(1); | 
|  |  | 
|  | // If inputs to shuffle are the same for both ops, then allow 2 uses | 
|  | unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1; | 
|  |  | 
|  | if (LdNode.getOpcode() == ISD::BITCAST) { | 
|  | // Don't duplicate a load with other uses. | 
|  | if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0)) | 
|  | return SDValue(); | 
|  |  | 
|  | AllowedUses = 1; // only allow 1 load use if we have a bitcast | 
|  | LdNode = LdNode.getOperand(0); | 
|  | } | 
|  |  | 
|  | if (!ISD::isNormalLoad(LdNode.getNode())) | 
|  | return SDValue(); | 
|  |  | 
|  | LoadSDNode *LN0 = cast<LoadSDNode>(LdNode); | 
|  |  | 
|  | if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (HasShuffleIntoBitcast) { | 
|  | // If there's a bitcast before the shuffle, check if the load type and | 
|  | // alignment is valid. | 
|  | unsigned Align = LN0->getAlignment(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | unsigned NewAlign = TLI.getDataLayout()-> | 
|  | getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext())); | 
|  |  | 
|  | if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT)) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // All checks match so transform back to vector_shuffle so that DAG combiner | 
|  | // can finish the job | 
|  | SDLoc dl(N); | 
|  |  | 
|  | // Create shuffle node taking into account the case that its a unary shuffle | 
|  | SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1); | 
|  | Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl, | 
|  | InVec.getOperand(0), Shuffle, | 
|  | &ShuffleMask[0]); | 
|  | Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle, | 
|  | EltNo); | 
|  | } | 
|  |  | 
|  | /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index | 
|  | /// generation and convert it from being a bunch of shuffles and extracts | 
|  | /// to a simple store and scalar loads to extract the elements. | 
|  | static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI); | 
|  | if (NewOp.getNode()) | 
|  | return NewOp; | 
|  |  | 
|  | SDValue InputVector = N->getOperand(0); | 
|  |  | 
|  | // Detect whether we are trying to convert from mmx to i32 and the bitcast | 
|  | // from mmx to v2i32 has a single usage. | 
|  | if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST && | 
|  | InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx && | 
|  | InputVector.hasOneUse() && N->getValueType(0) == MVT::i32) | 
|  | return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector), | 
|  | N->getValueType(0), | 
|  | InputVector.getNode()->getOperand(0)); | 
|  |  | 
|  | // Only operate on vectors of 4 elements, where the alternative shuffling | 
|  | // gets to be more expensive. | 
|  | if (InputVector.getValueType() != MVT::v4i32) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a | 
|  | // single use which is a sign-extend or zero-extend, and all elements are | 
|  | // used. | 
|  | SmallVector<SDNode *, 4> Uses; | 
|  | unsigned ExtractedElements = 0; | 
|  | for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(), | 
|  | UE = InputVector.getNode()->use_end(); UI != UE; ++UI) { | 
|  | if (UI.getUse().getResNo() != InputVector.getResNo()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDNode *Extract = *UI; | 
|  | if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Extract->getValueType(0) != MVT::i32) | 
|  | return SDValue(); | 
|  | if (!Extract->hasOneUse()) | 
|  | return SDValue(); | 
|  | if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND && | 
|  | Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND) | 
|  | return SDValue(); | 
|  | if (!isa<ConstantSDNode>(Extract->getOperand(1))) | 
|  | return SDValue(); | 
|  |  | 
|  | // Record which element was extracted. | 
|  | ExtractedElements |= | 
|  | 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue(); | 
|  |  | 
|  | Uses.push_back(Extract); | 
|  | } | 
|  |  | 
|  | // If not all the elements were used, this may not be worthwhile. | 
|  | if (ExtractedElements != 15) | 
|  | return SDValue(); | 
|  |  | 
|  | // Ok, we've now decided to do the transformation. | 
|  | SDLoc dl(InputVector); | 
|  |  | 
|  | // Store the value to a temporary stack slot. | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType()); | 
|  | SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, | 
|  | MachinePointerInfo(), false, false, 0); | 
|  |  | 
|  | // Replace each use (extract) with a load of the appropriate element. | 
|  | for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(), | 
|  | UE = Uses.end(); UI != UE; ++UI) { | 
|  | SDNode *Extract = *UI; | 
|  |  | 
|  | // cOMpute the element's address. | 
|  | SDValue Idx = Extract->getOperand(1); | 
|  | unsigned EltSize = | 
|  | InputVector.getValueType().getVectorElementType().getSizeInBits()/8; | 
|  | uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy()); | 
|  |  | 
|  | SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), | 
|  | StackPtr, OffsetVal); | 
|  |  | 
|  | // Load the scalar. | 
|  | SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch, | 
|  | ScalarAddr, MachinePointerInfo(), | 
|  | false, false, false, 0); | 
|  |  | 
|  | // Replace the exact with the load. | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar); | 
|  | } | 
|  |  | 
|  | // The replacement was made in place; don't return anything. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match. | 
|  | static std::pair<unsigned, bool> | 
|  | matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS, | 
|  | SelectionDAG &DAG, const X86Subtarget *Subtarget) { | 
|  | if (!VT.isVector()) | 
|  | return std::make_pair(0, false); | 
|  |  | 
|  | bool NeedSplit = false; | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: return std::make_pair(0, false); | 
|  | case MVT::v32i8: | 
|  | case MVT::v16i16: | 
|  | case MVT::v8i32: | 
|  | if (!Subtarget->hasAVX2()) | 
|  | NeedSplit = true; | 
|  | if (!Subtarget->hasAVX()) | 
|  | return std::make_pair(0, false); | 
|  | break; | 
|  | case MVT::v16i8: | 
|  | case MVT::v8i16: | 
|  | case MVT::v4i32: | 
|  | if (!Subtarget->hasSSE2()) | 
|  | return std::make_pair(0, false); | 
|  | } | 
|  |  | 
|  | // SSE2 has only a small subset of the operations. | 
|  | bool hasUnsigned = Subtarget->hasSSE41() || | 
|  | (Subtarget->hasSSE2() && VT == MVT::v16i8); | 
|  | bool hasSigned = Subtarget->hasSSE41() || | 
|  | (Subtarget->hasSSE2() && VT == MVT::v8i16); | 
|  |  | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); | 
|  |  | 
|  | unsigned Opc = 0; | 
|  | // Check for x CC y ? x : y. | 
|  | if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && | 
|  | DAG.isEqualTo(RHS, Cond.getOperand(1))) { | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETULT: | 
|  | case ISD::SETULE: | 
|  | Opc = hasUnsigned ? X86ISD::UMIN : 0; break; | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: | 
|  | Opc = hasUnsigned ? X86ISD::UMAX : 0; break; | 
|  | case ISD::SETLT: | 
|  | case ISD::SETLE: | 
|  | Opc = hasSigned ? X86ISD::SMIN : 0; break; | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: | 
|  | Opc = hasSigned ? X86ISD::SMAX : 0; break; | 
|  | } | 
|  | // Check for x CC y ? y : x -- a min/max with reversed arms. | 
|  | } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && | 
|  | DAG.isEqualTo(RHS, Cond.getOperand(0))) { | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETULT: | 
|  | case ISD::SETULE: | 
|  | Opc = hasUnsigned ? X86ISD::UMAX : 0; break; | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: | 
|  | Opc = hasUnsigned ? X86ISD::UMIN : 0; break; | 
|  | case ISD::SETLT: | 
|  | case ISD::SETLE: | 
|  | Opc = hasSigned ? X86ISD::SMAX : 0; break; | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: | 
|  | Opc = hasSigned ? X86ISD::SMIN : 0; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return std::make_pair(Opc, NeedSplit); | 
|  | } | 
|  |  | 
|  | /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT | 
|  | /// nodes. | 
|  | static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDLoc DL(N); | 
|  | SDValue Cond = N->getOperand(0); | 
|  | // Get the LHS/RHS of the select. | 
|  | SDValue LHS = N->getOperand(1); | 
|  | SDValue RHS = N->getOperand(2); | 
|  | EVT VT = LHS.getValueType(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | // If we have SSE[12] support, try to form min/max nodes. SSE min/max | 
|  | // instructions match the semantics of the common C idiom x<y?x:y but not | 
|  | // x<=y?x:y, because of how they handle negative zero (which can be | 
|  | // ignored in unsafe-math mode). | 
|  | if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() && | 
|  | VT != MVT::f80 && TLI.isTypeLegal(VT) && | 
|  | (Subtarget->hasSSE2() || | 
|  | (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); | 
|  |  | 
|  | unsigned Opcode = 0; | 
|  | // Check for x CC y ? x : y. | 
|  | if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && | 
|  | DAG.isEqualTo(RHS, Cond.getOperand(1))) { | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETULT: | 
|  | // Converting this to a min would handle NaNs incorrectly, and swapping | 
|  | // the operands would cause it to handle comparisons between positive | 
|  | // and negative zero incorrectly. | 
|  | if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { | 
|  | if (!DAG.getTarget().Options.UnsafeFPMath && | 
|  | !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) | 
|  | break; | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  | case ISD::SETOLE: | 
|  | // Converting this to a min would handle comparisons between positive | 
|  | // and negative zero incorrectly. | 
|  | if (!DAG.getTarget().Options.UnsafeFPMath && | 
|  | !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) | 
|  | break; | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  | case ISD::SETULE: | 
|  | // Converting this to a min would handle both negative zeros and NaNs | 
|  | // incorrectly, but we can swap the operands to fix both. | 
|  | std::swap(LHS, RHS); | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETLT: | 
|  | case ISD::SETLE: | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  |  | 
|  | case ISD::SETOGE: | 
|  | // Converting this to a max would handle comparisons between positive | 
|  | // and negative zero incorrectly. | 
|  | if (!DAG.getTarget().Options.UnsafeFPMath && | 
|  | !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) | 
|  | break; | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | case ISD::SETUGT: | 
|  | // Converting this to a max would handle NaNs incorrectly, and swapping | 
|  | // the operands would cause it to handle comparisons between positive | 
|  | // and negative zero incorrectly. | 
|  | if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { | 
|  | if (!DAG.getTarget().Options.UnsafeFPMath && | 
|  | !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) | 
|  | break; | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | case ISD::SETUGE: | 
|  | // Converting this to a max would handle both negative zeros and NaNs | 
|  | // incorrectly, but we can swap the operands to fix both. | 
|  | std::swap(LHS, RHS); | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | } | 
|  | // Check for x CC y ? y : x -- a min/max with reversed arms. | 
|  | } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && | 
|  | DAG.isEqualTo(RHS, Cond.getOperand(0))) { | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETOGE: | 
|  | // Converting this to a min would handle comparisons between positive | 
|  | // and negative zero incorrectly, and swapping the operands would | 
|  | // cause it to handle NaNs incorrectly. | 
|  | if (!DAG.getTarget().Options.UnsafeFPMath && | 
|  | !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) { | 
|  | if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) | 
|  | break; | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  | case ISD::SETUGT: | 
|  | // Converting this to a min would handle NaNs incorrectly. | 
|  | if (!DAG.getTarget().Options.UnsafeFPMath && | 
|  | (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) | 
|  | break; | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  | case ISD::SETUGE: | 
|  | // Converting this to a min would handle both negative zeros and NaNs | 
|  | // incorrectly, but we can swap the operands to fix both. | 
|  | std::swap(LHS, RHS); | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: | 
|  | Opcode = X86ISD::FMIN; | 
|  | break; | 
|  |  | 
|  | case ISD::SETULT: | 
|  | // Converting this to a max would handle NaNs incorrectly. | 
|  | if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) | 
|  | break; | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | case ISD::SETOLE: | 
|  | // Converting this to a max would handle comparisons between positive | 
|  | // and negative zero incorrectly, and swapping the operands would | 
|  | // cause it to handle NaNs incorrectly. | 
|  | if (!DAG.getTarget().Options.UnsafeFPMath && | 
|  | !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) { | 
|  | if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) | 
|  | break; | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | case ISD::SETULE: | 
|  | // Converting this to a max would handle both negative zeros and NaNs | 
|  | // incorrectly, but we can swap the operands to fix both. | 
|  | std::swap(LHS, RHS); | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETLT: | 
|  | case ISD::SETLE: | 
|  | Opcode = X86ISD::FMAX; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Opcode) | 
|  | return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS); | 
|  | } | 
|  |  | 
|  | EVT CondVT = Cond.getValueType(); | 
|  | if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() && | 
|  | CondVT.getVectorElementType() == MVT::i1) { | 
|  | // v16i8 (select v16i1, v16i8, v16i8) does not have a proper | 
|  | // lowering on AVX-512. In this case we convert it to | 
|  | // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction. | 
|  | // The same situation for all 128 and 256-bit vectors of i8 and i16 | 
|  | EVT OpVT = LHS.getValueType(); | 
|  | if ((OpVT.is128BitVector() || OpVT.is256BitVector()) && | 
|  | (OpVT.getVectorElementType() == MVT::i8 || | 
|  | OpVT.getVectorElementType() == MVT::i16)) { | 
|  | Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond); | 
|  | DCI.AddToWorklist(Cond.getNode()); | 
|  | return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS); | 
|  | } | 
|  | } | 
|  | // If this is a select between two integer constants, try to do some | 
|  | // optimizations. | 
|  | if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) { | 
|  | if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS)) | 
|  | // Don't do this for crazy integer types. | 
|  | if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) { | 
|  | // If this is efficiently invertible, canonicalize the LHSC/RHSC values | 
|  | // so that TrueC (the true value) is larger than FalseC. | 
|  | bool NeedsCondInvert = false; | 
|  |  | 
|  | if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) && | 
|  | // Efficiently invertible. | 
|  | (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible. | 
|  | (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible. | 
|  | isa<ConstantSDNode>(Cond.getOperand(1))))) { | 
|  | NeedsCondInvert = true; | 
|  | std::swap(TrueC, FalseC); | 
|  | } | 
|  |  | 
|  | // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0. | 
|  | if (FalseC->getAPIntValue() == 0 && | 
|  | TrueC->getAPIntValue().isPowerOf2()) { | 
|  | if (NeedsCondInvert) // Invert the condition if needed. | 
|  | Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(1, Cond.getValueType())); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond); | 
|  |  | 
|  | unsigned ShAmt = TrueC->getAPIntValue().logBase2(); | 
|  | return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond, | 
|  | DAG.getConstant(ShAmt, MVT::i8)); | 
|  | } | 
|  |  | 
|  | // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. | 
|  | if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { | 
|  | if (NeedsCondInvert) // Invert the condition if needed. | 
|  | Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(1, Cond.getValueType())); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, | 
|  | FalseC->getValueType(0), Cond); | 
|  | return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, | 
|  | SDValue(FalseC, 0)); | 
|  | } | 
|  |  | 
|  | // Optimize cases that will turn into an LEA instruction.  This requires | 
|  | // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). | 
|  | if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { | 
|  | uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); | 
|  | if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; | 
|  |  | 
|  | bool isFastMultiplier = false; | 
|  | if (Diff < 10) { | 
|  | switch ((unsigned char)Diff) { | 
|  | default: break; | 
|  | case 1:  // result = add base, cond | 
|  | case 2:  // result = lea base(    , cond*2) | 
|  | case 3:  // result = lea base(cond, cond*2) | 
|  | case 4:  // result = lea base(    , cond*4) | 
|  | case 5:  // result = lea base(cond, cond*4) | 
|  | case 8:  // result = lea base(    , cond*8) | 
|  | case 9:  // result = lea base(cond, cond*8) | 
|  | isFastMultiplier = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isFastMultiplier) { | 
|  | APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); | 
|  | if (NeedsCondInvert) // Invert the condition if needed. | 
|  | Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(1, Cond.getValueType())); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), | 
|  | Cond); | 
|  | // Scale the condition by the difference. | 
|  | if (Diff != 1) | 
|  | Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(Diff, Cond.getValueType())); | 
|  |  | 
|  | // Add the base if non-zero. | 
|  | if (FalseC->getAPIntValue() != 0) | 
|  | Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, | 
|  | SDValue(FalseC, 0)); | 
|  | return Cond; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Canonicalize max and min: | 
|  | // (x > y) ? x : y -> (x >= y) ? x : y | 
|  | // (x < y) ? x : y -> (x <= y) ? x : y | 
|  | // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates | 
|  | // the need for an extra compare | 
|  | // against zero. e.g. | 
|  | // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0 | 
|  | // subl   %esi, %edi | 
|  | // testl  %edi, %edi | 
|  | // movl   $0, %eax | 
|  | // cmovgl %edi, %eax | 
|  | // => | 
|  | // xorl   %eax, %eax | 
|  | // subl   %esi, $edi | 
|  | // cmovsl %eax, %edi | 
|  | if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC && | 
|  | DAG.isEqualTo(LHS, Cond.getOperand(0)) && | 
|  | DAG.isEqualTo(RHS, Cond.getOperand(1))) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETLT: | 
|  | case ISD::SETGT: { | 
|  | ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE; | 
|  | Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(), | 
|  | Cond.getOperand(0), Cond.getOperand(1), NewCC); | 
|  | return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Early exit check | 
|  | if (!TLI.isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Match VSELECTs into subs with unsigned saturation. | 
|  | if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC && | 
|  | // psubus is available in SSE2 and AVX2 for i8 and i16 vectors. | 
|  | ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) || | 
|  | (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); | 
|  |  | 
|  | // Check if one of the arms of the VSELECT is a zero vector. If it's on the | 
|  | // left side invert the predicate to simplify logic below. | 
|  | SDValue Other; | 
|  | if (ISD::isBuildVectorAllZeros(LHS.getNode())) { | 
|  | Other = RHS; | 
|  | CC = ISD::getSetCCInverse(CC, true); | 
|  | } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) { | 
|  | Other = LHS; | 
|  | } | 
|  |  | 
|  | if (Other.getNode() && Other->getNumOperands() == 2 && | 
|  | DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) { | 
|  | SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1); | 
|  | SDValue CondRHS = Cond->getOperand(1); | 
|  |  | 
|  | // Look for a general sub with unsigned saturation first. | 
|  | // x >= y ? x-y : 0 --> subus x, y | 
|  | // x >  y ? x-y : 0 --> subus x, y | 
|  | if ((CC == ISD::SETUGE || CC == ISD::SETUGT) && | 
|  | Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS)) | 
|  | return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS); | 
|  |  | 
|  | // If the RHS is a constant we have to reverse the const canonicalization. | 
|  | // x > C-1 ? x+-C : 0 --> subus x, C | 
|  | if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD && | 
|  | isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) { | 
|  | APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue(); | 
|  | if (CondRHS.getConstantOperandVal(0) == -A-1) | 
|  | return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, | 
|  | DAG.getConstant(-A, VT)); | 
|  | } | 
|  |  | 
|  | // Another special case: If C was a sign bit, the sub has been | 
|  | // canonicalized into a xor. | 
|  | // FIXME: Would it be better to use ComputeMaskedBits to determine whether | 
|  | //        it's safe to decanonicalize the xor? | 
|  | // x s< 0 ? x^C : 0 --> subus x, C | 
|  | if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR && | 
|  | ISD::isBuildVectorAllZeros(CondRHS.getNode()) && | 
|  | isSplatVector(OpRHS.getNode())) { | 
|  | APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue(); | 
|  | if (A.isSignBit()) | 
|  | return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to match a min/max vector operation. | 
|  | if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) { | 
|  | std::pair<unsigned, bool> ret = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget); | 
|  | unsigned Opc = ret.first; | 
|  | bool NeedSplit = ret.second; | 
|  |  | 
|  | if (Opc && NeedSplit) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | // Extract the LHS vectors | 
|  | SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, DL); | 
|  | SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, DL); | 
|  |  | 
|  | // Extract the RHS vectors | 
|  | SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, DL); | 
|  | SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, DL); | 
|  |  | 
|  | // Create min/max for each subvector | 
|  | LHS = DAG.getNode(Opc, DL, LHS1.getValueType(), LHS1, RHS1); | 
|  | RHS = DAG.getNode(Opc, DL, LHS2.getValueType(), LHS2, RHS2); | 
|  |  | 
|  | // Merge the result | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LHS, RHS); | 
|  | } else if (Opc) | 
|  | return DAG.getNode(Opc, DL, VT, LHS, RHS); | 
|  | } | 
|  |  | 
|  | // Simplify vector selection if the selector will be produced by CMPP*/PCMP*. | 
|  | if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC && | 
|  | // Check if SETCC has already been promoted | 
|  | TLI.getSetCCResultType(*DAG.getContext(), VT) == CondVT && | 
|  | // Check that condition value type matches vselect operand type | 
|  | CondVT == VT) { | 
|  |  | 
|  | assert(Cond.getValueType().isVector() && | 
|  | "vector select expects a vector selector!"); | 
|  |  | 
|  | bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode()); | 
|  | bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); | 
|  |  | 
|  | if (!TValIsAllOnes && !FValIsAllZeros) { | 
|  | // Try invert the condition if true value is not all 1s and false value | 
|  | // is not all 0s. | 
|  | bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode()); | 
|  | bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode()); | 
|  |  | 
|  | if (TValIsAllZeros || FValIsAllOnes) { | 
|  | SDValue CC = Cond.getOperand(2); | 
|  | ISD::CondCode NewCC = | 
|  | ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), | 
|  | Cond.getOperand(0).getValueType().isInteger()); | 
|  | Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1), NewCC); | 
|  | std::swap(LHS, RHS); | 
|  | TValIsAllOnes = FValIsAllOnes; | 
|  | FValIsAllZeros = TValIsAllZeros; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TValIsAllOnes || FValIsAllZeros) { | 
|  | SDValue Ret; | 
|  |  | 
|  | if (TValIsAllOnes && FValIsAllZeros) | 
|  | Ret = Cond; | 
|  | else if (TValIsAllOnes) | 
|  | Ret = DAG.getNode(ISD::OR, DL, CondVT, Cond, | 
|  | DAG.getNode(ISD::BITCAST, DL, CondVT, RHS)); | 
|  | else if (FValIsAllZeros) | 
|  | Ret = DAG.getNode(ISD::AND, DL, CondVT, Cond, | 
|  | DAG.getNode(ISD::BITCAST, DL, CondVT, LHS)); | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, Ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to fold this VSELECT into a MOVSS/MOVSD | 
|  | if (N->getOpcode() == ISD::VSELECT && | 
|  | Cond.getOpcode() == ISD::BUILD_VECTOR && !DCI.isBeforeLegalize()) { | 
|  | if (VT == MVT::v4i32 || VT == MVT::v4f32 || | 
|  | (Subtarget->hasSSE2() && (VT == MVT::v2i64 || VT == MVT::v2f64))) { | 
|  | bool CanFold = false; | 
|  | unsigned NumElems = Cond.getNumOperands(); | 
|  | SDValue A = LHS; | 
|  | SDValue B = RHS; | 
|  |  | 
|  | if (isZero(Cond.getOperand(0))) { | 
|  | CanFold = true; | 
|  |  | 
|  | // fold (vselect <0,-1,-1,-1>, A, B) -> (movss A, B) | 
|  | // fold (vselect <0,-1> -> (movsd A, B) | 
|  | for (unsigned i = 1, e = NumElems; i != e && CanFold; ++i) | 
|  | CanFold = isAllOnes(Cond.getOperand(i)); | 
|  | } else if (isAllOnes(Cond.getOperand(0))) { | 
|  | CanFold = true; | 
|  | std::swap(A, B); | 
|  |  | 
|  | // fold (vselect <-1,0,0,0>, A, B) -> (movss B, A) | 
|  | // fold (vselect <-1,0> -> (movsd B, A) | 
|  | for (unsigned i = 1, e = NumElems; i != e && CanFold; ++i) | 
|  | CanFold = isZero(Cond.getOperand(i)); | 
|  | } | 
|  |  | 
|  | if (CanFold) { | 
|  | if (VT == MVT::v4i32 || VT == MVT::v4f32) | 
|  | return getTargetShuffleNode(X86ISD::MOVSS, DL, VT, A, B, DAG); | 
|  | return getTargetShuffleNode(X86ISD::MOVSD, DL, VT, A, B, DAG); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasSSE2() && (VT == MVT::v4i32 || VT == MVT::v4f32)) { | 
|  | // fold (v4i32: vselect <0,0,-1,-1>, A, B) -> | 
|  | //      (v4i32 (bitcast (movsd (v2i64 (bitcast A)), | 
|  | //                             (v2i64 (bitcast B))))) | 
|  | // | 
|  | // fold (v4f32: vselect <0,0,-1,-1>, A, B) -> | 
|  | //      (v4f32 (bitcast (movsd (v2f64 (bitcast A)), | 
|  | //                             (v2f64 (bitcast B))))) | 
|  | // | 
|  | // fold (v4i32: vselect <-1,-1,0,0>, A, B) -> | 
|  | //      (v4i32 (bitcast (movsd (v2i64 (bitcast B)), | 
|  | //                             (v2i64 (bitcast A))))) | 
|  | // | 
|  | // fold (v4f32: vselect <-1,-1,0,0>, A, B) -> | 
|  | //      (v4f32 (bitcast (movsd (v2f64 (bitcast B)), | 
|  | //                             (v2f64 (bitcast A))))) | 
|  |  | 
|  | CanFold = (isZero(Cond.getOperand(0)) && | 
|  | isZero(Cond.getOperand(1)) && | 
|  | isAllOnes(Cond.getOperand(2)) && | 
|  | isAllOnes(Cond.getOperand(3))); | 
|  |  | 
|  | if (!CanFold && isAllOnes(Cond.getOperand(0)) && | 
|  | isAllOnes(Cond.getOperand(1)) && | 
|  | isZero(Cond.getOperand(2)) && | 
|  | isZero(Cond.getOperand(3))) { | 
|  | CanFold = true; | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  |  | 
|  | if (CanFold) { | 
|  | EVT NVT = (VT == MVT::v4i32) ? MVT::v2i64 : MVT::v2f64; | 
|  | SDValue NewA = DAG.getNode(ISD::BITCAST, DL, NVT, LHS); | 
|  | SDValue NewB = DAG.getNode(ISD::BITCAST, DL, NVT, RHS); | 
|  | SDValue Select = getTargetShuffleNode(X86ISD::MOVSD, DL, NVT, NewA, | 
|  | NewB, DAG); | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, Select); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we know that this node is legal then we know that it is going to be | 
|  | // matched by one of the SSE/AVX BLEND instructions. These instructions only | 
|  | // depend on the highest bit in each word. Try to use SimplifyDemandedBits | 
|  | // to simplify previous instructions. | 
|  | if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() && | 
|  | !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) { | 
|  | unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits(); | 
|  |  | 
|  | // Don't optimize vector selects that map to mask-registers. | 
|  | if (BitWidth == 1) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check all uses of that condition operand to check whether it will be | 
|  | // consumed by non-BLEND instructions, which may depend on all bits are set | 
|  | // properly. | 
|  | for (SDNode::use_iterator I = Cond->use_begin(), | 
|  | E = Cond->use_end(); I != E; ++I) | 
|  | if (I->getOpcode() != ISD::VSELECT) | 
|  | // TODO: Add other opcodes eventually lowered into BLEND. | 
|  | return SDValue(); | 
|  |  | 
|  | assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size"); | 
|  | APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1); | 
|  |  | 
|  | APInt KnownZero, KnownOne; | 
|  | TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(), | 
|  | DCI.isBeforeLegalizeOps()); | 
|  | if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) || | 
|  | TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO)) | 
|  | DCI.CommitTargetLoweringOpt(TLO); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Check whether a boolean test is testing a boolean value generated by | 
|  | // X86ISD::SETCC. If so, return the operand of that SETCC and proper condition | 
|  | // code. | 
|  | // | 
|  | // Simplify the following patterns: | 
|  | // (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or | 
|  | // (Op (CMP (SETCC Cond EFLAGS) 0) NEQ) | 
|  | // to (Op EFLAGS Cond) | 
|  | // | 
|  | // (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or | 
|  | // (Op (CMP (SETCC Cond EFLAGS) 1) NEQ) | 
|  | // to (Op EFLAGS !Cond) | 
|  | // | 
|  | // where Op could be BRCOND or CMOV. | 
|  | // | 
|  | static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) { | 
|  | // Quit if not CMP and SUB with its value result used. | 
|  | if (Cmp.getOpcode() != X86ISD::CMP && | 
|  | (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0))) | 
|  | return SDValue(); | 
|  |  | 
|  | // Quit if not used as a boolean value. | 
|  | if (CC != X86::COND_E && CC != X86::COND_NE) | 
|  | return SDValue(); | 
|  |  | 
|  | // Check CMP operands. One of them should be 0 or 1 and the other should be | 
|  | // an SetCC or extended from it. | 
|  | SDValue Op1 = Cmp.getOperand(0); | 
|  | SDValue Op2 = Cmp.getOperand(1); | 
|  |  | 
|  | SDValue SetCC; | 
|  | const ConstantSDNode* C = 0; | 
|  | bool needOppositeCond = (CC == X86::COND_E); | 
|  | bool checkAgainstTrue = false; // Is it a comparison against 1? | 
|  |  | 
|  | if ((C = dyn_cast<ConstantSDNode>(Op1))) | 
|  | SetCC = Op2; | 
|  | else if ((C = dyn_cast<ConstantSDNode>(Op2))) | 
|  | SetCC = Op1; | 
|  | else // Quit if all operands are not constants. | 
|  | return SDValue(); | 
|  |  | 
|  | if (C->getZExtValue() == 1) { | 
|  | needOppositeCond = !needOppositeCond; | 
|  | checkAgainstTrue = true; | 
|  | } else if (C->getZExtValue() != 0) | 
|  | // Quit if the constant is neither 0 or 1. | 
|  | return SDValue(); | 
|  |  | 
|  | bool truncatedToBoolWithAnd = false; | 
|  | // Skip (zext $x), (trunc $x), or (and $x, 1) node. | 
|  | while (SetCC.getOpcode() == ISD::ZERO_EXTEND || | 
|  | SetCC.getOpcode() == ISD::TRUNCATE || | 
|  | SetCC.getOpcode() == ISD::AND) { | 
|  | if (SetCC.getOpcode() == ISD::AND) { | 
|  | int OpIdx = -1; | 
|  | ConstantSDNode *CS; | 
|  | if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(0))) && | 
|  | CS->getZExtValue() == 1) | 
|  | OpIdx = 1; | 
|  | if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(1))) && | 
|  | CS->getZExtValue() == 1) | 
|  | OpIdx = 0; | 
|  | if (OpIdx == -1) | 
|  | break; | 
|  | SetCC = SetCC.getOperand(OpIdx); | 
|  | truncatedToBoolWithAnd = true; | 
|  | } else | 
|  | SetCC = SetCC.getOperand(0); | 
|  | } | 
|  |  | 
|  | switch (SetCC.getOpcode()) { | 
|  | case X86ISD::SETCC_CARRY: | 
|  | // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to | 
|  | // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1, | 
|  | // i.e. it's a comparison against true but the result of SETCC_CARRY is not | 
|  | // truncated to i1 using 'and'. | 
|  | if (checkAgainstTrue && !truncatedToBoolWithAnd) | 
|  | break; | 
|  | assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B && | 
|  | "Invalid use of SETCC_CARRY!"); | 
|  | // FALL THROUGH | 
|  | case X86ISD::SETCC: | 
|  | // Set the condition code or opposite one if necessary. | 
|  | CC = X86::CondCode(SetCC.getConstantOperandVal(0)); | 
|  | if (needOppositeCond) | 
|  | CC = X86::GetOppositeBranchCondition(CC); | 
|  | return SetCC.getOperand(1); | 
|  | case X86ISD::CMOV: { | 
|  | // Check whether false/true value has canonical one, i.e. 0 or 1. | 
|  | ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0)); | 
|  | ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1)); | 
|  | // Quit if true value is not a constant. | 
|  | if (!TVal) | 
|  | return SDValue(); | 
|  | // Quit if false value is not a constant. | 
|  | if (!FVal) { | 
|  | SDValue Op = SetCC.getOperand(0); | 
|  | // Skip 'zext' or 'trunc' node. | 
|  | if (Op.getOpcode() == ISD::ZERO_EXTEND || | 
|  | Op.getOpcode() == ISD::TRUNCATE) | 
|  | Op = Op.getOperand(0); | 
|  | // A special case for rdrand/rdseed, where 0 is set if false cond is | 
|  | // found. | 
|  | if ((Op.getOpcode() != X86ISD::RDRAND && | 
|  | Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0) | 
|  | return SDValue(); | 
|  | } | 
|  | // Quit if false value is not the constant 0 or 1. | 
|  | bool FValIsFalse = true; | 
|  | if (FVal && FVal->getZExtValue() != 0) { | 
|  | if (FVal->getZExtValue() != 1) | 
|  | return SDValue(); | 
|  | // If FVal is 1, opposite cond is needed. | 
|  | needOppositeCond = !needOppositeCond; | 
|  | FValIsFalse = false; | 
|  | } | 
|  | // Quit if TVal is not the constant opposite of FVal. | 
|  | if (FValIsFalse && TVal->getZExtValue() != 1) | 
|  | return SDValue(); | 
|  | if (!FValIsFalse && TVal->getZExtValue() != 0) | 
|  | return SDValue(); | 
|  | CC = X86::CondCode(SetCC.getConstantOperandVal(2)); | 
|  | if (needOppositeCond) | 
|  | CC = X86::GetOppositeBranchCondition(CC); | 
|  | return SetCC.getOperand(3); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL] | 
|  | static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // If the flag operand isn't dead, don't touch this CMOV. | 
|  | if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue FalseOp = N->getOperand(0); | 
|  | SDValue TrueOp = N->getOperand(1); | 
|  | X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2); | 
|  | SDValue Cond = N->getOperand(3); | 
|  |  | 
|  | if (CC == X86::COND_E || CC == X86::COND_NE) { | 
|  | switch (Cond.getOpcode()) { | 
|  | default: break; | 
|  | case X86ISD::BSR: | 
|  | case X86ISD::BSF: | 
|  | // If operand of BSR / BSF are proven never zero, then ZF cannot be set. | 
|  | if (DAG.isKnownNeverZero(Cond.getOperand(0))) | 
|  | return (CC == X86::COND_E) ? FalseOp : TrueOp; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Flags; | 
|  |  | 
|  | Flags = checkBoolTestSetCCCombine(Cond, CC); | 
|  | if (Flags.getNode() && | 
|  | // Extra check as FCMOV only supports a subset of X86 cond. | 
|  | (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) { | 
|  | SDValue Ops[] = { FalseOp, TrueOp, | 
|  | DAG.getConstant(CC, MVT::i8), Flags }; | 
|  | return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), | 
|  | Ops, array_lengthof(Ops)); | 
|  | } | 
|  |  | 
|  | // If this is a select between two integer constants, try to do some | 
|  | // optimizations.  Note that the operands are ordered the opposite of SELECT | 
|  | // operands. | 
|  | if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) { | 
|  | if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) { | 
|  | // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is | 
|  | // larger than FalseC (the false value). | 
|  | if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) { | 
|  | CC = X86::GetOppositeBranchCondition(CC); | 
|  | std::swap(TrueC, FalseC); | 
|  | std::swap(TrueOp, FalseOp); | 
|  | } | 
|  |  | 
|  | // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0. | 
|  | // This is efficient for any integer data type (including i8/i16) and | 
|  | // shift amount. | 
|  | if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { | 
|  | Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, | 
|  | DAG.getConstant(CC, MVT::i8), Cond); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond); | 
|  |  | 
|  | unsigned ShAmt = TrueC->getAPIntValue().logBase2(); | 
|  | Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(ShAmt, MVT::i8)); | 
|  | if (N->getNumValues() == 2)  // Dead flag value? | 
|  | return DCI.CombineTo(N, Cond, SDValue()); | 
|  | return Cond; | 
|  | } | 
|  |  | 
|  | // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient | 
|  | // for any integer data type, including i8/i16. | 
|  | if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { | 
|  | Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, | 
|  | DAG.getConstant(CC, MVT::i8), Cond); | 
|  |  | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, | 
|  | FalseC->getValueType(0), Cond); | 
|  | Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, | 
|  | SDValue(FalseC, 0)); | 
|  |  | 
|  | if (N->getNumValues() == 2)  // Dead flag value? | 
|  | return DCI.CombineTo(N, Cond, SDValue()); | 
|  | return Cond; | 
|  | } | 
|  |  | 
|  | // Optimize cases that will turn into an LEA instruction.  This requires | 
|  | // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). | 
|  | if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { | 
|  | uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); | 
|  | if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; | 
|  |  | 
|  | bool isFastMultiplier = false; | 
|  | if (Diff < 10) { | 
|  | switch ((unsigned char)Diff) { | 
|  | default: break; | 
|  | case 1:  // result = add base, cond | 
|  | case 2:  // result = lea base(    , cond*2) | 
|  | case 3:  // result = lea base(cond, cond*2) | 
|  | case 4:  // result = lea base(    , cond*4) | 
|  | case 5:  // result = lea base(cond, cond*4) | 
|  | case 8:  // result = lea base(    , cond*8) | 
|  | case 9:  // result = lea base(cond, cond*8) | 
|  | isFastMultiplier = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isFastMultiplier) { | 
|  | APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); | 
|  | Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, | 
|  | DAG.getConstant(CC, MVT::i8), Cond); | 
|  | // Zero extend the condition if needed. | 
|  | Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), | 
|  | Cond); | 
|  | // Scale the condition by the difference. | 
|  | if (Diff != 1) | 
|  | Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, | 
|  | DAG.getConstant(Diff, Cond.getValueType())); | 
|  |  | 
|  | // Add the base if non-zero. | 
|  | if (FalseC->getAPIntValue() != 0) | 
|  | Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, | 
|  | SDValue(FalseC, 0)); | 
|  | if (N->getNumValues() == 2)  // Dead flag value? | 
|  | return DCI.CombineTo(N, Cond, SDValue()); | 
|  | return Cond; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle these cases: | 
|  | //   (select (x != c), e, c) -> select (x != c), e, x), | 
|  | //   (select (x == c), c, e) -> select (x == c), x, e) | 
|  | // where the c is an integer constant, and the "select" is the combination | 
|  | // of CMOV and CMP. | 
|  | // | 
|  | // The rationale for this change is that the conditional-move from a constant | 
|  | // needs two instructions, however, conditional-move from a register needs | 
|  | // only one instruction. | 
|  | // | 
|  | // CAVEAT: By replacing a constant with a symbolic value, it may obscure | 
|  | //  some instruction-combining opportunities. This opt needs to be | 
|  | //  postponed as late as possible. | 
|  | // | 
|  | if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) { | 
|  | // the DCI.xxxx conditions are provided to postpone the optimization as | 
|  | // late as possible. | 
|  |  | 
|  | ConstantSDNode *CmpAgainst = 0; | 
|  | if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) && | 
|  | (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) && | 
|  | !isa<ConstantSDNode>(Cond.getOperand(0))) { | 
|  |  | 
|  | if (CC == X86::COND_NE && | 
|  | CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) { | 
|  | CC = X86::GetOppositeBranchCondition(CC); | 
|  | std::swap(TrueOp, FalseOp); | 
|  | } | 
|  |  | 
|  | if (CC == X86::COND_E && | 
|  | CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) { | 
|  | SDValue Ops[] = { FalseOp, Cond.getOperand(0), | 
|  | DAG.getConstant(CC, MVT::i8), Cond }; | 
|  | return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops, | 
|  | array_lengthof(Ops)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformMulCombine - Optimize a single multiply with constant into two | 
|  | /// in order to implement it with two cheaper instructions, e.g. | 
|  | /// LEA + SHL, LEA + LEA. | 
|  | static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | if (!C) | 
|  | return SDValue(); | 
|  | uint64_t MulAmt = C->getZExtValue(); | 
|  | if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9) | 
|  | return SDValue(); | 
|  |  | 
|  | uint64_t MulAmt1 = 0; | 
|  | uint64_t MulAmt2 = 0; | 
|  | if ((MulAmt % 9) == 0) { | 
|  | MulAmt1 = 9; | 
|  | MulAmt2 = MulAmt / 9; | 
|  | } else if ((MulAmt % 5) == 0) { | 
|  | MulAmt1 = 5; | 
|  | MulAmt2 = MulAmt / 5; | 
|  | } else if ((MulAmt % 3) == 0) { | 
|  | MulAmt1 = 3; | 
|  | MulAmt2 = MulAmt / 3; | 
|  | } | 
|  | if (MulAmt2 && | 
|  | (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){ | 
|  | SDLoc DL(N); | 
|  |  | 
|  | if (isPowerOf2_64(MulAmt2) && | 
|  | !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD)) | 
|  | // If second multiplifer is pow2, issue it first. We want the multiply by | 
|  | // 3, 5, or 9 to be folded into the addressing mode unless the lone use | 
|  | // is an add. | 
|  | std::swap(MulAmt1, MulAmt2); | 
|  |  | 
|  | SDValue NewMul; | 
|  | if (isPowerOf2_64(MulAmt1)) | 
|  | NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), | 
|  | DAG.getConstant(Log2_64(MulAmt1), MVT::i8)); | 
|  | else | 
|  | NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), | 
|  | DAG.getConstant(MulAmt1, VT)); | 
|  |  | 
|  | if (isPowerOf2_64(MulAmt2)) | 
|  | NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul, | 
|  | DAG.getConstant(Log2_64(MulAmt2), MVT::i8)); | 
|  | else | 
|  | NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul, | 
|  | DAG.getConstant(MulAmt2, VT)); | 
|  |  | 
|  | // Do not add new nodes to DAG combiner worklist. | 
|  | DCI.CombineTo(N, NewMul, false); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
|  | EVT VT = N0.getValueType(); | 
|  |  | 
|  | // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2)) | 
|  | // since the result of setcc_c is all zero's or all ones. | 
|  | if (VT.isInteger() && !VT.isVector() && | 
|  | N1C && N0.getOpcode() == ISD::AND && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() == X86ISD::SETCC_CARRY || | 
|  | ((N00.getOpcode() == ISD::ANY_EXTEND || | 
|  | N00.getOpcode() == ISD::ZERO_EXTEND) && | 
|  | N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) { | 
|  | APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | APInt ShAmt = N1C->getAPIntValue(); | 
|  | Mask = Mask.shl(ShAmt); | 
|  | if (Mask != 0) | 
|  | return DAG.getNode(ISD::AND, SDLoc(N), VT, | 
|  | N00, DAG.getConstant(Mask, VT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Hardware support for vector shifts is sparse which makes us scalarize the | 
|  | // vector operations in many cases. Also, on sandybridge ADD is faster than | 
|  | // shl. | 
|  | // (shl V, 1) -> add V,V | 
|  | if (isSplatVector(N1.getNode())) { | 
|  | assert(N0.getValueType().isVector() && "Invalid vector shift type"); | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0)); | 
|  | // We shift all of the values by one. In many cases we do not have | 
|  | // hardware support for this operation. This is better expressed as an ADD | 
|  | // of two values. | 
|  | if (N1C && (1 == N1C->getZExtValue())) { | 
|  | return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// \brief Returns a vector of 0s if the node in input is a vector logical | 
|  | /// shift by a constant amount which is known to be bigger than or equal | 
|  | /// to the vector element size in bits. | 
|  | static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 && | 
|  | (!Subtarget->hasInt256() || | 
|  | (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16))) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Amt = N->getOperand(1); | 
|  | SDLoc DL(N); | 
|  | if (isSplatVector(Amt.getNode())) { | 
|  | SDValue SclrAmt = Amt->getOperand(0); | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) { | 
|  | APInt ShiftAmt = C->getAPIntValue(); | 
|  | unsigned MaxAmount = VT.getVectorElementType().getSizeInBits(); | 
|  |  | 
|  | // SSE2/AVX2 logical shifts always return a vector of 0s | 
|  | // if the shift amount is bigger than or equal to | 
|  | // the element size. The constant shift amount will be | 
|  | // encoded as a 8-bit immediate. | 
|  | if (ShiftAmt.trunc(8).uge(MaxAmount)) | 
|  | return getZeroVector(VT, Subtarget, DAG, DL); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformShiftCombine - Combine shifts. | 
|  | static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | if (N->getOpcode() == ISD::SHL) { | 
|  | SDValue V = PerformSHLCombine(N, DAG); | 
|  | if (V.getNode()) return V; | 
|  | } | 
|  |  | 
|  | if (N->getOpcode() != ISD::SRA) { | 
|  | // Try to fold this logical shift into a zero vector. | 
|  | SDValue V = performShiftToAllZeros(N, DAG, Subtarget); | 
|  | if (V.getNode()) return V; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..)) | 
|  | // where both setccs reference the same FP CMP, and rewrite for CMPEQSS | 
|  | // and friends.  Likewise for OR -> CMPNEQSS. | 
|  | static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | unsigned opcode; | 
|  |  | 
|  | // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but | 
|  | // we're requiring SSE2 for both. | 
|  | if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDValue CMP0 = N0->getOperand(1); | 
|  | SDValue CMP1 = N1->getOperand(1); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // The SETCCs should both refer to the same CMP. | 
|  | if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue CMP00 = CMP0->getOperand(0); | 
|  | SDValue CMP01 = CMP0->getOperand(1); | 
|  | EVT     VT    = CMP00.getValueType(); | 
|  |  | 
|  | if (VT == MVT::f32 || VT == MVT::f64) { | 
|  | bool ExpectingFlags = false; | 
|  | // Check for any users that want flags: | 
|  | for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); | 
|  | !ExpectingFlags && UI != UE; ++UI) | 
|  | switch (UI->getOpcode()) { | 
|  | default: | 
|  | case ISD::BR_CC: | 
|  | case ISD::BRCOND: | 
|  | case ISD::SELECT: | 
|  | ExpectingFlags = true; | 
|  | break; | 
|  | case ISD::CopyToReg: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!ExpectingFlags) { | 
|  | enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0); | 
|  | enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0); | 
|  |  | 
|  | if (cc1 == X86::COND_E || cc1 == X86::COND_NE) { | 
|  | X86::CondCode tmp = cc0; | 
|  | cc0 = cc1; | 
|  | cc1 = tmp; | 
|  | } | 
|  |  | 
|  | if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) || | 
|  | (cc0 == X86::COND_NE && cc1 == X86::COND_P)) { | 
|  | // FIXME: need symbolic constants for these magic numbers. | 
|  | // See X86ATTInstPrinter.cpp:printSSECC(). | 
|  | unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4; | 
|  | if (Subtarget->hasAVX512()) { | 
|  | SDValue FSetCC = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CMP00, | 
|  | CMP01, DAG.getConstant(x86cc, MVT::i8)); | 
|  | if (N->getValueType(0) != MVT::i1) | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0), | 
|  | FSetCC); | 
|  | return FSetCC; | 
|  | } | 
|  | SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL, | 
|  | CMP00.getValueType(), CMP00, CMP01, | 
|  | DAG.getConstant(x86cc, MVT::i8)); | 
|  |  | 
|  | bool is64BitFP = (CMP00.getValueType() == MVT::f64); | 
|  | MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32; | 
|  |  | 
|  | if (is64BitFP && !Subtarget->is64Bit()) { | 
|  | // On a 32-bit target, we cannot bitcast the 64-bit float to a | 
|  | // 64-bit integer, since that's not a legal type. Since | 
|  | // OnesOrZeroesF is all ones of all zeroes, we don't need all the | 
|  | // bits, but can do this little dance to extract the lowest 32 bits | 
|  | // and work with those going forward. | 
|  | SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, | 
|  | OnesOrZeroesF); | 
|  | SDValue Vector32 = DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, | 
|  | Vector64); | 
|  | OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, | 
|  | Vector32, DAG.getIntPtrConstant(0)); | 
|  | IntVT = MVT::i32; | 
|  | } | 
|  |  | 
|  | SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, IntVT, OnesOrZeroesF); | 
|  | SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI, | 
|  | DAG.getConstant(1, IntVT)); | 
|  | SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed); | 
|  | return OneBitOfTruth; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector | 
|  | /// so it can be folded inside ANDNP. | 
|  | static bool CanFoldXORWithAllOnes(const SDNode *N) { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Match direct AllOnes for 128 and 256-bit vectors | 
|  | if (ISD::isBuildVectorAllOnes(N)) | 
|  | return true; | 
|  |  | 
|  | // Look through a bit convert. | 
|  | if (N->getOpcode() == ISD::BITCAST) | 
|  | N = N->getOperand(0).getNode(); | 
|  |  | 
|  | // Sometimes the operand may come from a insert_subvector building a 256-bit | 
|  | // allones vector | 
|  | if (VT.is256BitVector() && | 
|  | N->getOpcode() == ISD::INSERT_SUBVECTOR) { | 
|  | SDValue V1 = N->getOperand(0); | 
|  | SDValue V2 = N->getOperand(1); | 
|  |  | 
|  | if (V1.getOpcode() == ISD::INSERT_SUBVECTOR && | 
|  | V1.getOperand(0).getOpcode() == ISD::UNDEF && | 
|  | ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) && | 
|  | ISD::isBuildVectorAllOnes(V2.getNode())) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized | 
|  | // register. In most cases we actually compare or select YMM-sized registers | 
|  | // and mixing the two types creates horrible code. This method optimizes | 
|  | // some of the transition sequences. | 
|  | static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | EVT VT = N->getValueType(0); | 
|  | if (!VT.is256BitVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | assert((N->getOpcode() == ISD::ANY_EXTEND || | 
|  | N->getOpcode() == ISD::ZERO_EXTEND || | 
|  | N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node"); | 
|  |  | 
|  | SDValue Narrow = N->getOperand(0); | 
|  | EVT NarrowVT = Narrow->getValueType(0); | 
|  | if (!NarrowVT.is128BitVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Narrow->getOpcode() != ISD::XOR && | 
|  | Narrow->getOpcode() != ISD::AND && | 
|  | Narrow->getOpcode() != ISD::OR) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N0  = Narrow->getOperand(0); | 
|  | SDValue N1  = Narrow->getOperand(1); | 
|  | SDLoc DL(Narrow); | 
|  |  | 
|  | // The Left side has to be a trunc. | 
|  | if (N0.getOpcode() != ISD::TRUNCATE) | 
|  | return SDValue(); | 
|  |  | 
|  | // The type of the truncated inputs. | 
|  | EVT WideVT = N0->getOperand(0)->getValueType(0); | 
|  | if (WideVT != VT) | 
|  | return SDValue(); | 
|  |  | 
|  | // The right side has to be a 'trunc' or a constant vector. | 
|  | bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE; | 
|  | bool RHSConst = (isSplatVector(N1.getNode()) && | 
|  | isa<ConstantSDNode>(N1->getOperand(0))); | 
|  | if (!RHSTrunc && !RHSConst) | 
|  | return SDValue(); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Set N0 and N1 to hold the inputs to the new wide operation. | 
|  | N0 = N0->getOperand(0); | 
|  | if (RHSConst) { | 
|  | N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(), | 
|  | N1->getOperand(0)); | 
|  | SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1); | 
|  | N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size()); | 
|  | } else if (RHSTrunc) { | 
|  | N1 = N1->getOperand(0); | 
|  | } | 
|  |  | 
|  | // Generate the wide operation. | 
|  | SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1); | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | switch (Opcode) { | 
|  | case ISD::ANY_EXTEND: | 
|  | return Op; | 
|  | case ISD::ZERO_EXTEND: { | 
|  | unsigned InBits = NarrowVT.getScalarType().getSizeInBits(); | 
|  | APInt Mask = APInt::getAllOnesValue(InBits); | 
|  | Mask = Mask.zext(VT.getScalarType().getSizeInBits()); | 
|  | return DAG.getNode(ISD::AND, DL, VT, | 
|  | Op, DAG.getConstant(Mask, VT)); | 
|  | } | 
|  | case ISD::SIGN_EXTEND: | 
|  | return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, | 
|  | Op, DAG.getValueType(NarrowVT)); | 
|  | default: | 
|  | llvm_unreachable("Unexpected opcode"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | EVT VT = N->getValueType(0); | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget); | 
|  | if (R.getNode()) | 
|  | return R; | 
|  |  | 
|  | // Create BEXTR and BZHI instructions | 
|  | // BZHI is X & ((1 << Y) - 1) | 
|  | // BEXTR is ((X >> imm) & (2**size-1)) | 
|  | if (VT == MVT::i32 || VT == MVT::i64) { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | if (Subtarget->hasBMI2()) { | 
|  | // Check for (and (add (shl 1, Y), -1), X) | 
|  | if (N0.getOpcode() == ISD::ADD && isAllOnes(N0.getOperand(1))) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() == ISD::SHL) { | 
|  | SDValue N001 = N00.getOperand(1); | 
|  | assert(N001.getValueType() == MVT::i8 && "unexpected type"); | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N00.getOperand(0)); | 
|  | if (C && C->getZExtValue() == 1) | 
|  | return DAG.getNode(X86ISD::BZHI, DL, VT, N1, N001); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for (and X, (add (shl 1, Y), -1)) | 
|  | if (N1.getOpcode() == ISD::ADD && isAllOnes(N1.getOperand(1))) { | 
|  | SDValue N10 = N1.getOperand(0); | 
|  | if (N10.getOpcode() == ISD::SHL) { | 
|  | SDValue N101 = N10.getOperand(1); | 
|  | assert(N101.getValueType() == MVT::i8 && "unexpected type"); | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N10.getOperand(0)); | 
|  | if (C && C->getZExtValue() == 1) | 
|  | return DAG.getNode(X86ISD::BZHI, DL, VT, N0, N101); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for BEXTR. | 
|  | if ((Subtarget->hasBMI() || Subtarget->hasTBM()) && | 
|  | (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) { | 
|  | ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1); | 
|  | ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (MaskNode && ShiftNode) { | 
|  | uint64_t Mask = MaskNode->getZExtValue(); | 
|  | uint64_t Shift = ShiftNode->getZExtValue(); | 
|  | if (isMask_64(Mask)) { | 
|  | uint64_t MaskSize = CountPopulation_64(Mask); | 
|  | if (Shift + MaskSize <= VT.getSizeInBits()) | 
|  | return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0), | 
|  | DAG.getConstant(Shift | (MaskSize << 8), VT)); | 
|  | } | 
|  | } | 
|  | } // BEXTR | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Want to form ANDNP nodes: | 
|  | // 1) In the hopes of then easily combining them with OR and AND nodes | 
|  | //    to form PBLEND/PSIGN. | 
|  | // 2) To match ANDN packed intrinsics | 
|  | if (VT != MVT::v2i64 && VT != MVT::v4i64) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Check LHS for vnot | 
|  | if (N0.getOpcode() == ISD::XOR && | 
|  | //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode())) | 
|  | CanFoldXORWithAllOnes(N0.getOperand(1).getNode())) | 
|  | return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1); | 
|  |  | 
|  | // Check RHS for vnot | 
|  | if (N1.getOpcode() == ISD::XOR && | 
|  | //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode())) | 
|  | CanFoldXORWithAllOnes(N1.getOperand(1).getNode())) | 
|  | return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget); | 
|  | if (R.getNode()) | 
|  | return R; | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // look for psign/blend | 
|  | if (VT == MVT::v2i64 || VT == MVT::v4i64) { | 
|  | if (!Subtarget->hasSSSE3() || | 
|  | (VT == MVT::v4i64 && !Subtarget->hasInt256())) | 
|  | return SDValue(); | 
|  |  | 
|  | // Canonicalize pandn to RHS | 
|  | if (N0.getOpcode() == X86ISD::ANDNP) | 
|  | std::swap(N0, N1); | 
|  | // or (and (m, y), (pandn m, x)) | 
|  | if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) { | 
|  | SDValue Mask = N1.getOperand(0); | 
|  | SDValue X    = N1.getOperand(1); | 
|  | SDValue Y; | 
|  | if (N0.getOperand(0) == Mask) | 
|  | Y = N0.getOperand(1); | 
|  | if (N0.getOperand(1) == Mask) | 
|  | Y = N0.getOperand(0); | 
|  |  | 
|  | // Check to see if the mask appeared in both the AND and ANDNP and | 
|  | if (!Y.getNode()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them. | 
|  | // Look through mask bitcast. | 
|  | if (Mask.getOpcode() == ISD::BITCAST) | 
|  | Mask = Mask.getOperand(0); | 
|  | if (X.getOpcode() == ISD::BITCAST) | 
|  | X = X.getOperand(0); | 
|  | if (Y.getOpcode() == ISD::BITCAST) | 
|  | Y = Y.getOperand(0); | 
|  |  | 
|  | EVT MaskVT = Mask.getValueType(); | 
|  |  | 
|  | // Validate that the Mask operand is a vector sra node. | 
|  | // FIXME: what to do for bytes, since there is a psignb/pblendvb, but | 
|  | // there is no psrai.b | 
|  | unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits(); | 
|  | unsigned SraAmt = ~0; | 
|  | if (Mask.getOpcode() == ISD::SRA) { | 
|  | SDValue Amt = Mask.getOperand(1); | 
|  | if (isSplatVector(Amt.getNode())) { | 
|  | SDValue SclrAmt = Amt->getOperand(0); | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) | 
|  | SraAmt = C->getZExtValue(); | 
|  | } | 
|  | } else if (Mask.getOpcode() == X86ISD::VSRAI) { | 
|  | SDValue SraC = Mask.getOperand(1); | 
|  | SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue(); | 
|  | } | 
|  | if ((SraAmt + 1) != EltBits) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Now we know we at least have a plendvb with the mask val.  See if | 
|  | // we can form a psignb/w/d. | 
|  | // psign = x.type == y.type == mask.type && y = sub(0, x); | 
|  | if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X && | 
|  | ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) && | 
|  | X.getValueType() == MaskVT && Y.getValueType() == MaskVT) { | 
|  | assert((EltBits == 8 || EltBits == 16 || EltBits == 32) && | 
|  | "Unsupported VT for PSIGN"); | 
|  | Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0)); | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, Mask); | 
|  | } | 
|  | // PBLENDVB only available on SSE 4.1 | 
|  | if (!Subtarget->hasSSE41()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8; | 
|  |  | 
|  | X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X); | 
|  | Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y); | 
|  | Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask); | 
|  | Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X); | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, Mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c) | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | bool OptForSize = MF.getFunction()->getAttributes(). | 
|  | hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); | 
|  |  | 
|  | // SHLD/SHRD instructions have lower register pressure, but on some | 
|  | // platforms they have higher latency than the equivalent | 
|  | // series of shifts/or that would otherwise be generated. | 
|  | // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions | 
|  | // have higher latencies and we are not optimizing for size. | 
|  | if (!OptForSize && Subtarget->isSHLDSlow()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) | 
|  | std::swap(N0, N1); | 
|  | if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) | 
|  | return SDValue(); | 
|  | if (!N0.hasOneUse() || !N1.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue ShAmt0 = N0.getOperand(1); | 
|  | if (ShAmt0.getValueType() != MVT::i8) | 
|  | return SDValue(); | 
|  | SDValue ShAmt1 = N1.getOperand(1); | 
|  | if (ShAmt1.getValueType() != MVT::i8) | 
|  | return SDValue(); | 
|  | if (ShAmt0.getOpcode() == ISD::TRUNCATE) | 
|  | ShAmt0 = ShAmt0.getOperand(0); | 
|  | if (ShAmt1.getOpcode() == ISD::TRUNCATE) | 
|  | ShAmt1 = ShAmt1.getOperand(0); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | unsigned Opc = X86ISD::SHLD; | 
|  | SDValue Op0 = N0.getOperand(0); | 
|  | SDValue Op1 = N1.getOperand(0); | 
|  | if (ShAmt0.getOpcode() == ISD::SUB) { | 
|  | Opc = X86ISD::SHRD; | 
|  | std::swap(Op0, Op1); | 
|  | std::swap(ShAmt0, ShAmt1); | 
|  | } | 
|  |  | 
|  | unsigned Bits = VT.getSizeInBits(); | 
|  | if (ShAmt1.getOpcode() == ISD::SUB) { | 
|  | SDValue Sum = ShAmt1.getOperand(0); | 
|  | if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) { | 
|  | SDValue ShAmt1Op1 = ShAmt1.getOperand(1); | 
|  | if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE) | 
|  | ShAmt1Op1 = ShAmt1Op1.getOperand(0); | 
|  | if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0) | 
|  | return DAG.getNode(Opc, DL, VT, | 
|  | Op0, Op1, | 
|  | DAG.getNode(ISD::TRUNCATE, DL, | 
|  | MVT::i8, ShAmt0)); | 
|  | } | 
|  | } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) { | 
|  | ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0); | 
|  | if (ShAmt0C && | 
|  | ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits) | 
|  | return DAG.getNode(Opc, DL, VT, | 
|  | N0.getOperand(0), N1.getOperand(0), | 
|  | DAG.getNode(ISD::TRUNCATE, DL, | 
|  | MVT::i8, ShAmt0)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Generate NEG and CMOV for integer abs. | 
|  | static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Since X86 does not have CMOV for 8-bit integer, we don't convert | 
|  | // 8-bit integer abs to NEG and CMOV. | 
|  | if (VT.isInteger() && VT.getSizeInBits() == 8) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1) | 
|  | // and change it to SUB and CMOV. | 
|  | if (VT.isInteger() && N->getOpcode() == ISD::XOR && | 
|  | N0.getOpcode() == ISD::ADD && | 
|  | N0.getOperand(1) == N1 && | 
|  | N1.getOpcode() == ISD::SRA && | 
|  | N1.getOperand(0) == N0.getOperand(0)) | 
|  | if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) | 
|  | if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) { | 
|  | // Generate SUB & CMOV. | 
|  | SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32), | 
|  | DAG.getConstant(0, VT), N0.getOperand(0)); | 
|  |  | 
|  | SDValue Ops[] = { N0.getOperand(0), Neg, | 
|  | DAG.getConstant(X86::COND_GE, MVT::i8), | 
|  | SDValue(Neg.getNode(), 1) }; | 
|  | return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), | 
|  | Ops, array_lengthof(Ops)); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes | 
|  | static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Subtarget->hasCMov()) { | 
|  | SDValue RV = performIntegerAbsCombine(N, DAG); | 
|  | if (RV.getNode()) | 
|  | return RV; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformLOADCombine - Do target-specific dag combines on LOAD nodes. | 
|  | static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | LoadSDNode *Ld = cast<LoadSDNode>(N); | 
|  | EVT RegVT = Ld->getValueType(0); | 
|  | EVT MemVT = Ld->getMemoryVT(); | 
|  | SDLoc dl(Ld); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | unsigned RegSz = RegVT.getSizeInBits(); | 
|  |  | 
|  | // On Sandybridge unaligned 256bit loads are inefficient. | 
|  | ISD::LoadExtType Ext = Ld->getExtensionType(); | 
|  | unsigned Alignment = Ld->getAlignment(); | 
|  | bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8; | 
|  | if (RegVT.is256BitVector() && !Subtarget->hasInt256() && | 
|  | !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) { | 
|  | unsigned NumElems = RegVT.getVectorNumElements(); | 
|  | if (NumElems < 2) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Ptr = Ld->getBasePtr(); | 
|  | SDValue Increment = DAG.getConstant(16, TLI.getPointerTy()); | 
|  |  | 
|  | EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), | 
|  | NumElems/2); | 
|  | SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, | 
|  | Ld->getPointerInfo(), Ld->isVolatile(), | 
|  | Ld->isNonTemporal(), Ld->isInvariant(), | 
|  | Alignment); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); | 
|  | SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, | 
|  | Ld->getPointerInfo(), Ld->isVolatile(), | 
|  | Ld->isNonTemporal(), Ld->isInvariant(), | 
|  | std::min(16U, Alignment)); | 
|  | SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | Load1.getValue(1), | 
|  | Load2.getValue(1)); | 
|  |  | 
|  | SDValue NewVec = DAG.getUNDEF(RegVT); | 
|  | NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl); | 
|  | NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl); | 
|  | return DCI.CombineTo(N, NewVec, TF, true); | 
|  | } | 
|  |  | 
|  | // If this is a vector EXT Load then attempt to optimize it using a | 
|  | // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the | 
|  | // expansion is still better than scalar code. | 
|  | // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll | 
|  | // emit a shuffle and a arithmetic shift. | 
|  | // TODO: It is possible to support ZExt by zeroing the undef values | 
|  | // during the shuffle phase or after the shuffle. | 
|  | if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() && | 
|  | (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) { | 
|  | assert(MemVT != RegVT && "Cannot extend to the same type"); | 
|  | assert(MemVT.isVector() && "Must load a vector from memory"); | 
|  |  | 
|  | unsigned NumElems = RegVT.getVectorNumElements(); | 
|  | unsigned MemSz = MemVT.getSizeInBits(); | 
|  | assert(RegSz > MemSz && "Register size must be greater than the mem size"); | 
|  |  | 
|  | if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256()) | 
|  | return SDValue(); | 
|  |  | 
|  | // All sizes must be a power of two. | 
|  | if (!isPowerOf2_32(RegSz * MemSz * NumElems)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Attempt to load the original value using scalar loads. | 
|  | // Find the largest scalar type that divides the total loaded size. | 
|  | MVT SclrLoadTy = MVT::i8; | 
|  | for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE; | 
|  | tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) { | 
|  | MVT Tp = (MVT::SimpleValueType)tp; | 
|  | if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) { | 
|  | SclrLoadTy = Tp; | 
|  | } | 
|  | } | 
|  |  | 
|  | // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. | 
|  | if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 && | 
|  | (64 <= MemSz)) | 
|  | SclrLoadTy = MVT::f64; | 
|  |  | 
|  | // Calculate the number of scalar loads that we need to perform | 
|  | // in order to load our vector from memory. | 
|  | unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits(); | 
|  | if (Ext == ISD::SEXTLOAD && NumLoads > 1) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned loadRegZize = RegSz; | 
|  | if (Ext == ISD::SEXTLOAD && RegSz == 256) | 
|  | loadRegZize /= 2; | 
|  |  | 
|  | // Represent our vector as a sequence of elements which are the | 
|  | // largest scalar that we can load. | 
|  | EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy, | 
|  | loadRegZize/SclrLoadTy.getSizeInBits()); | 
|  |  | 
|  | // Represent the data using the same element type that is stored in | 
|  | // memory. In practice, we ''widen'' MemVT. | 
|  | EVT WideVecVT = | 
|  | EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), | 
|  | loadRegZize/MemVT.getScalarType().getSizeInBits()); | 
|  |  | 
|  | assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() && | 
|  | "Invalid vector type"); | 
|  |  | 
|  | // We can't shuffle using an illegal type. | 
|  | if (!TLI.isTypeLegal(WideVecVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SmallVector<SDValue, 8> Chains; | 
|  | SDValue Ptr = Ld->getBasePtr(); | 
|  | SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8, | 
|  | TLI.getPointerTy()); | 
|  | SDValue Res = DAG.getUNDEF(LoadUnitVecVT); | 
|  |  | 
|  | for (unsigned i = 0; i < NumLoads; ++i) { | 
|  | // Perform a single load. | 
|  | SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), | 
|  | Ptr, Ld->getPointerInfo(), | 
|  | Ld->isVolatile(), Ld->isNonTemporal(), | 
|  | Ld->isInvariant(), Ld->getAlignment()); | 
|  | Chains.push_back(ScalarLoad.getValue(1)); | 
|  | // Create the first element type using SCALAR_TO_VECTOR in order to avoid | 
|  | // another round of DAGCombining. | 
|  | if (i == 0) | 
|  | Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad); | 
|  | else | 
|  | Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res, | 
|  | ScalarLoad, DAG.getIntPtrConstant(i)); | 
|  |  | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); | 
|  | } | 
|  |  | 
|  | SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], | 
|  | Chains.size()); | 
|  |  | 
|  | // Bitcast the loaded value to a vector of the original element type, in | 
|  | // the size of the target vector type. | 
|  | SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res); | 
|  | unsigned SizeRatio = RegSz/MemSz; | 
|  |  | 
|  | if (Ext == ISD::SEXTLOAD) { | 
|  | // If we have SSE4.1 we can directly emit a VSEXT node. | 
|  | if (Subtarget->hasSSE41()) { | 
|  | SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec); | 
|  | return DCI.CombineTo(N, Sext, TF, true); | 
|  | } | 
|  |  | 
|  | // Otherwise we'll shuffle the small elements in the high bits of the | 
|  | // larger type and perform an arithmetic shift. If the shift is not legal | 
|  | // it's better to scalarize. | 
|  | if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // Redistribute the loaded elements into the different locations. | 
|  | SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | ShuffleVec[i*SizeRatio + SizeRatio-1] = i; | 
|  |  | 
|  | SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec, | 
|  | DAG.getUNDEF(WideVecVT), | 
|  | &ShuffleVec[0]); | 
|  |  | 
|  | Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff); | 
|  |  | 
|  | // Build the arithmetic shift. | 
|  | unsigned Amt = RegVT.getVectorElementType().getSizeInBits() - | 
|  | MemVT.getVectorElementType().getSizeInBits(); | 
|  | Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff, | 
|  | DAG.getConstant(Amt, RegVT)); | 
|  |  | 
|  | return DCI.CombineTo(N, Shuff, TF, true); | 
|  | } | 
|  |  | 
|  | // Redistribute the loaded elements into the different locations. | 
|  | SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | ShuffleVec[i*SizeRatio] = i; | 
|  |  | 
|  | SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec, | 
|  | DAG.getUNDEF(WideVecVT), | 
|  | &ShuffleVec[0]); | 
|  |  | 
|  | // Bitcast to the requested type. | 
|  | Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff); | 
|  | // Replace the original load with the new sequence | 
|  | // and return the new chain. | 
|  | return DCI.CombineTo(N, Shuff, TF, true); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformSTORECombine - Do target-specific dag combines on STORE nodes. | 
|  | static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | StoreSDNode *St = cast<StoreSDNode>(N); | 
|  | EVT VT = St->getValue().getValueType(); | 
|  | EVT StVT = St->getMemoryVT(); | 
|  | SDLoc dl(St); | 
|  | SDValue StoredVal = St->getOperand(1); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | // If we are saving a concatenation of two XMM registers, perform two stores. | 
|  | // On Sandy Bridge, 256-bit memory operations are executed by two | 
|  | // 128-bit ports. However, on Haswell it is better to issue a single 256-bit | 
|  | // memory  operation. | 
|  | unsigned Alignment = St->getAlignment(); | 
|  | bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8; | 
|  | if (VT.is256BitVector() && !Subtarget->hasInt256() && | 
|  | StVT == VT && !IsAligned) { | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | if (NumElems < 2) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl); | 
|  | SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl); | 
|  |  | 
|  | SDValue Stride = DAG.getConstant(16, TLI.getPointerTy()); | 
|  | SDValue Ptr0 = St->getBasePtr(); | 
|  | SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride); | 
|  |  | 
|  | SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0, | 
|  | St->getPointerInfo(), St->isVolatile(), | 
|  | St->isNonTemporal(), Alignment); | 
|  | SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1, | 
|  | St->getPointerInfo(), St->isVolatile(), | 
|  | St->isNonTemporal(), | 
|  | std::min(16U, Alignment)); | 
|  | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1); | 
|  | } | 
|  |  | 
|  | // Optimize trunc store (of multiple scalars) to shuffle and store. | 
|  | // First, pack all of the elements in one place. Next, store to memory | 
|  | // in fewer chunks. | 
|  | if (St->isTruncatingStore() && VT.isVector()) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | assert(StVT != VT && "Cannot truncate to the same type"); | 
|  | unsigned FromSz = VT.getVectorElementType().getSizeInBits(); | 
|  | unsigned ToSz = StVT.getVectorElementType().getSizeInBits(); | 
|  |  | 
|  | // From, To sizes and ElemCount must be pow of two | 
|  | if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue(); | 
|  | // We are going to use the original vector elt for storing. | 
|  | // Accumulated smaller vector elements must be a multiple of the store size. | 
|  | if (0 != (NumElems * FromSz) % ToSz) return SDValue(); | 
|  |  | 
|  | unsigned SizeRatio  = FromSz / ToSz; | 
|  |  | 
|  | assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits()); | 
|  |  | 
|  | // Create a type on which we perform the shuffle | 
|  | EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), | 
|  | StVT.getScalarType(), NumElems*SizeRatio); | 
|  |  | 
|  | assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); | 
|  |  | 
|  | SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue()); | 
|  | SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); | 
|  | for (unsigned i = 0; i != NumElems; ++i) | 
|  | ShuffleVec[i] = i * SizeRatio; | 
|  |  | 
|  | // Can't shuffle using an illegal type. | 
|  | if (!TLI.isTypeLegal(WideVecVT)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec, | 
|  | DAG.getUNDEF(WideVecVT), | 
|  | &ShuffleVec[0]); | 
|  | // At this point all of the data is stored at the bottom of the | 
|  | // register. We now need to save it to mem. | 
|  |  | 
|  | // Find the largest store unit | 
|  | MVT StoreType = MVT::i8; | 
|  | for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE; | 
|  | tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) { | 
|  | MVT Tp = (MVT::SimpleValueType)tp; | 
|  | if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz) | 
|  | StoreType = Tp; | 
|  | } | 
|  |  | 
|  | // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. | 
|  | if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 && | 
|  | (64 <= NumElems * ToSz)) | 
|  | StoreType = MVT::f64; | 
|  |  | 
|  | // Bitcast the original vector into a vector of store-size units | 
|  | EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(), | 
|  | StoreType, VT.getSizeInBits()/StoreType.getSizeInBits()); | 
|  | assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); | 
|  | SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff); | 
|  | SmallVector<SDValue, 8> Chains; | 
|  | SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8, | 
|  | TLI.getPointerTy()); | 
|  | SDValue Ptr = St->getBasePtr(); | 
|  |  | 
|  | // Perform one or more big stores into memory. | 
|  | for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) { | 
|  | SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, | 
|  | StoreType, ShuffWide, | 
|  | DAG.getIntPtrConstant(i)); | 
|  | SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr, | 
|  | St->getPointerInfo(), St->isVolatile(), | 
|  | St->isNonTemporal(), St->getAlignment()); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); | 
|  | Chains.push_back(Ch); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], | 
|  | Chains.size()); | 
|  | } | 
|  |  | 
|  | // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering | 
|  | // the FP state in cases where an emms may be missing. | 
|  | // A preferable solution to the general problem is to figure out the right | 
|  | // places to insert EMMS.  This qualifies as a quick hack. | 
|  |  | 
|  | // Similarly, turn load->store of i64 into double load/stores in 32-bit mode. | 
|  | if (VT.getSizeInBits() != 64) | 
|  | return SDValue(); | 
|  |  | 
|  | const Function *F = DAG.getMachineFunction().getFunction(); | 
|  | bool NoImplicitFloatOps = F->getAttributes(). | 
|  | hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat); | 
|  | bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps | 
|  | && Subtarget->hasSSE2(); | 
|  | if ((VT.isVector() || | 
|  | (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) && | 
|  | isa<LoadSDNode>(St->getValue()) && | 
|  | !cast<LoadSDNode>(St->getValue())->isVolatile() && | 
|  | St->getChain().hasOneUse() && !St->isVolatile()) { | 
|  | SDNode* LdVal = St->getValue().getNode(); | 
|  | LoadSDNode *Ld = 0; | 
|  | int TokenFactorIndex = -1; | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | SDNode* ChainVal = St->getChain().getNode(); | 
|  | // Must be a store of a load.  We currently handle two cases:  the load | 
|  | // is a direct child, and it's under an intervening TokenFactor.  It is | 
|  | // possible to dig deeper under nested TokenFactors. | 
|  | if (ChainVal == LdVal) | 
|  | Ld = cast<LoadSDNode>(St->getChain()); | 
|  | else if (St->getValue().hasOneUse() && | 
|  | ChainVal->getOpcode() == ISD::TokenFactor) { | 
|  | for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) { | 
|  | if (ChainVal->getOperand(i).getNode() == LdVal) { | 
|  | TokenFactorIndex = i; | 
|  | Ld = cast<LoadSDNode>(St->getValue()); | 
|  | } else | 
|  | Ops.push_back(ChainVal->getOperand(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Ld || !ISD::isNormalLoad(Ld)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If this is not the MMX case, i.e. we are just turning i64 load/store | 
|  | // into f64 load/store, avoid the transformation if there are multiple | 
|  | // uses of the loaded value. | 
|  | if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc LdDL(Ld); | 
|  | SDLoc StDL(N); | 
|  | // If we are a 64-bit capable x86, lower to a single movq load/store pair. | 
|  | // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store | 
|  | // pair instead. | 
|  | if (Subtarget->is64Bit() || F64IsLegal) { | 
|  | EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64; | 
|  | SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(), | 
|  | Ld->getPointerInfo(), Ld->isVolatile(), | 
|  | Ld->isNonTemporal(), Ld->isInvariant(), | 
|  | Ld->getAlignment()); | 
|  | SDValue NewChain = NewLd.getValue(1); | 
|  | if (TokenFactorIndex != -1) { | 
|  | Ops.push_back(NewChain); | 
|  | NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], | 
|  | Ops.size()); | 
|  | } | 
|  | return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(), | 
|  | St->getPointerInfo(), | 
|  | St->isVolatile(), St->isNonTemporal(), | 
|  | St->getAlignment()); | 
|  | } | 
|  |  | 
|  | // Otherwise, lower to two pairs of 32-bit loads / stores. | 
|  | SDValue LoAddr = Ld->getBasePtr(); | 
|  | SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr, | 
|  | DAG.getConstant(4, MVT::i32)); | 
|  |  | 
|  | SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr, | 
|  | Ld->getPointerInfo(), | 
|  | Ld->isVolatile(), Ld->isNonTemporal(), | 
|  | Ld->isInvariant(), Ld->getAlignment()); | 
|  | SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr, | 
|  | Ld->getPointerInfo().getWithOffset(4), | 
|  | Ld->isVolatile(), Ld->isNonTemporal(), | 
|  | Ld->isInvariant(), | 
|  | MinAlign(Ld->getAlignment(), 4)); | 
|  |  | 
|  | SDValue NewChain = LoLd.getValue(1); | 
|  | if (TokenFactorIndex != -1) { | 
|  | Ops.push_back(LoLd); | 
|  | Ops.push_back(HiLd); | 
|  | NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], | 
|  | Ops.size()); | 
|  | } | 
|  |  | 
|  | LoAddr = St->getBasePtr(); | 
|  | HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr, | 
|  | DAG.getConstant(4, MVT::i32)); | 
|  |  | 
|  | SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr, | 
|  | St->getPointerInfo(), | 
|  | St->isVolatile(), St->isNonTemporal(), | 
|  | St->getAlignment()); | 
|  | SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr, | 
|  | St->getPointerInfo().getWithOffset(4), | 
|  | St->isVolatile(), | 
|  | St->isNonTemporal(), | 
|  | MinAlign(St->getAlignment(), 4)); | 
|  | return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal" | 
|  | /// and return the operands for the horizontal operation in LHS and RHS.  A | 
|  | /// horizontal operation performs the binary operation on successive elements | 
|  | /// of its first operand, then on successive elements of its second operand, | 
|  | /// returning the resulting values in a vector.  For example, if | 
|  | ///   A = < float a0, float a1, float a2, float a3 > | 
|  | /// and | 
|  | ///   B = < float b0, float b1, float b2, float b3 > | 
|  | /// then the result of doing a horizontal operation on A and B is | 
|  | ///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >. | 
|  | /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form | 
|  | /// A horizontal-op B, for some already available A and B, and if so then LHS is | 
|  | /// set to A, RHS to B, and the routine returns 'true'. | 
|  | /// Note that the binary operation should have the property that if one of the | 
|  | /// operands is UNDEF then the result is UNDEF. | 
|  | static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) { | 
|  | // Look for the following pattern: if | 
|  | //   A = < float a0, float a1, float a2, float a3 > | 
|  | //   B = < float b0, float b1, float b2, float b3 > | 
|  | // and | 
|  | //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6> | 
|  | //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7> | 
|  | // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 > | 
|  | // which is A horizontal-op B. | 
|  |  | 
|  | // At least one of the operands should be a vector shuffle. | 
|  | if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE && | 
|  | RHS.getOpcode() != ISD::VECTOR_SHUFFLE) | 
|  | return false; | 
|  |  | 
|  | MVT VT = LHS.getSimpleValueType(); | 
|  |  | 
|  | assert((VT.is128BitVector() || VT.is256BitVector()) && | 
|  | "Unsupported vector type for horizontal add/sub"); | 
|  |  | 
|  | // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to | 
|  | // operate independently on 128-bit lanes. | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | unsigned NumLanes = VT.getSizeInBits()/128; | 
|  | unsigned NumLaneElts = NumElts / NumLanes; | 
|  | assert((NumLaneElts % 2 == 0) && | 
|  | "Vector type should have an even number of elements in each lane"); | 
|  | unsigned HalfLaneElts = NumLaneElts/2; | 
|  |  | 
|  | // View LHS in the form | 
|  | //   LHS = VECTOR_SHUFFLE A, B, LMask | 
|  | // If LHS is not a shuffle then pretend it is the shuffle | 
|  | //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1> | 
|  | // NOTE: in what follows a default initialized SDValue represents an UNDEF of | 
|  | // type VT. | 
|  | SDValue A, B; | 
|  | SmallVector<int, 16> LMask(NumElts); | 
|  | if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) { | 
|  | if (LHS.getOperand(0).getOpcode() != ISD::UNDEF) | 
|  | A = LHS.getOperand(0); | 
|  | if (LHS.getOperand(1).getOpcode() != ISD::UNDEF) | 
|  | B = LHS.getOperand(1); | 
|  | ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(); | 
|  | std::copy(Mask.begin(), Mask.end(), LMask.begin()); | 
|  | } else { | 
|  | if (LHS.getOpcode() != ISD::UNDEF) | 
|  | A = LHS; | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | LMask[i] = i; | 
|  | } | 
|  |  | 
|  | // Likewise, view RHS in the form | 
|  | //   RHS = VECTOR_SHUFFLE C, D, RMask | 
|  | SDValue C, D; | 
|  | SmallVector<int, 16> RMask(NumElts); | 
|  | if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) { | 
|  | if (RHS.getOperand(0).getOpcode() != ISD::UNDEF) | 
|  | C = RHS.getOperand(0); | 
|  | if (RHS.getOperand(1).getOpcode() != ISD::UNDEF) | 
|  | D = RHS.getOperand(1); | 
|  | ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(); | 
|  | std::copy(Mask.begin(), Mask.end(), RMask.begin()); | 
|  | } else { | 
|  | if (RHS.getOpcode() != ISD::UNDEF) | 
|  | C = RHS; | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | RMask[i] = i; | 
|  | } | 
|  |  | 
|  | // Check that the shuffles are both shuffling the same vectors. | 
|  | if (!(A == C && B == D) && !(A == D && B == C)) | 
|  | return false; | 
|  |  | 
|  | // If everything is UNDEF then bail out: it would be better to fold to UNDEF. | 
|  | if (!A.getNode() && !B.getNode()) | 
|  | return false; | 
|  |  | 
|  | // If A and B occur in reverse order in RHS, then "swap" them (which means | 
|  | // rewriting the mask). | 
|  | if (A != C) | 
|  | CommuteVectorShuffleMask(RMask, NumElts); | 
|  |  | 
|  | // At this point LHS and RHS are equivalent to | 
|  | //   LHS = VECTOR_SHUFFLE A, B, LMask | 
|  | //   RHS = VECTOR_SHUFFLE A, B, RMask | 
|  | // Check that the masks correspond to performing a horizontal operation. | 
|  | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { | 
|  | for (unsigned i = 0; i != NumLaneElts; ++i) { | 
|  | int LIdx = LMask[i+l], RIdx = RMask[i+l]; | 
|  |  | 
|  | // Ignore any UNDEF components. | 
|  | if (LIdx < 0 || RIdx < 0 || | 
|  | (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) || | 
|  | (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts))) | 
|  | continue; | 
|  |  | 
|  | // Check that successive elements are being operated on.  If not, this is | 
|  | // not a horizontal operation. | 
|  | unsigned Src = (i/HalfLaneElts); // each lane is split between srcs | 
|  | int Index = 2*(i%HalfLaneElts) + NumElts*Src + l; | 
|  | if (!(LIdx == Index && RIdx == Index + 1) && | 
|  | !(IsCommutative && LIdx == Index + 1 && RIdx == Index)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it. | 
|  | RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// PerformFADDCombine - Do target-specific dag combines on floating point adds. | 
|  | static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | // Try to synthesize horizontal adds from adds of shuffles. | 
|  | if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || | 
|  | (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && | 
|  | isHorizontalBinOp(LHS, RHS, true)) | 
|  | return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformFSUBCombine - Do target-specific dag combines on floating point subs. | 
|  | static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | // Try to synthesize horizontal subs from subs of shuffles. | 
|  | if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || | 
|  | (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && | 
|  | isHorizontalBinOp(LHS, RHS, false)) | 
|  | return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and | 
|  | /// X86ISD::FXOR nodes. | 
|  | static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); | 
|  | // F[X]OR(0.0, x) -> x | 
|  | // F[X]OR(x, 0.0) -> x | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(1); | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(0); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and | 
|  | /// X86ISD::FMAX nodes. | 
|  | static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX); | 
|  |  | 
|  | // Only perform optimizations if UnsafeMath is used. | 
|  | if (!DAG.getTarget().Options.UnsafeFPMath) | 
|  | return SDValue(); | 
|  |  | 
|  | // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes | 
|  | // into FMINC and FMAXC, which are Commutative operations. | 
|  | unsigned NewOp = 0; | 
|  | switch (N->getOpcode()) { | 
|  | default: llvm_unreachable("unknown opcode"); | 
|  | case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break; | 
|  | case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break; | 
|  | } | 
|  |  | 
|  | return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0), | 
|  | N->getOperand(0), N->getOperand(1)); | 
|  | } | 
|  |  | 
|  | /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes. | 
|  | static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | // FAND(0.0, x) -> 0.0 | 
|  | // FAND(x, 0.0) -> 0.0 | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(0); | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(1); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// PerformFANDNCombine - Do target-specific dag combines on X86ISD::FANDN nodes | 
|  | static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | // FANDN(x, 0.0) -> 0.0 | 
|  | // FANDN(0.0, x) -> x | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(1); | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) | 
|  | if (C->getValueAPF().isPosZero()) | 
|  | return N->getOperand(1); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformBTCombine(SDNode *N, | 
|  | SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI) { | 
|  | // BT ignores high bits in the bit index operand. | 
|  | SDValue Op1 = N->getOperand(1); | 
|  | if (Op1.hasOneUse()) { | 
|  | unsigned BitWidth = Op1.getValueSizeInBits(); | 
|  | APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth)); | 
|  | APInt KnownZero, KnownOne; | 
|  | TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), | 
|  | !DCI.isBeforeLegalizeOps()); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) || | 
|  | TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO)) | 
|  | DCI.CommitTargetLoweringOpt(TLO); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | SDValue Op = N->getOperand(0); | 
|  | if (Op.getOpcode() == ISD::BITCAST) | 
|  | Op = Op.getOperand(0); | 
|  | EVT VT = N->getValueType(0), OpVT = Op.getValueType(); | 
|  | if (Op.getOpcode() == X86ISD::VZEXT_LOAD && | 
|  | VT.getVectorElementType().getSizeInBits() == | 
|  | OpVT.getVectorElementType().getSizeInBits()) { | 
|  | return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | EVT VT = N->getValueType(0); | 
|  | if (!VT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  | EVT ExtraVT = cast<VTSDNode>(N1)->getVT(); | 
|  | SDLoc dl(N); | 
|  |  | 
|  | // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the | 
|  | // both SSE and AVX2 since there is no sign-extended shift right | 
|  | // operation on a vector with 64-bit elements. | 
|  | //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) -> | 
|  | // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT))) | 
|  | if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND || | 
|  | N0.getOpcode() == ISD::SIGN_EXTEND)) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  |  | 
|  | // EXTLOAD has a better solution on AVX2, | 
|  | // it may be replaced with X86ISD::VSEXT node. | 
|  | if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256()) | 
|  | if (!ISD::isNormalLoad(N00.getNode())) | 
|  | return SDValue(); | 
|  |  | 
|  | if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) { | 
|  | SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, | 
|  | N00, N1); | 
|  | return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | if (!DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!Subtarget->hasFp256()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT.isVector() && VT.getSizeInBits() == 256) { | 
|  | SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget); | 
|  | if (R.getNode()) | 
|  | return R; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget* Subtarget) { | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Let legalize expand this if it isn't a legal type yet. | 
|  | if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT ScalarVT = VT.getScalarType(); | 
|  | if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || | 
|  | (!Subtarget->hasFMA() && !Subtarget->hasFMA4())) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue A = N->getOperand(0); | 
|  | SDValue B = N->getOperand(1); | 
|  | SDValue C = N->getOperand(2); | 
|  |  | 
|  | bool NegA = (A.getOpcode() == ISD::FNEG); | 
|  | bool NegB = (B.getOpcode() == ISD::FNEG); | 
|  | bool NegC = (C.getOpcode() == ISD::FNEG); | 
|  |  | 
|  | // Negative multiplication when NegA xor NegB | 
|  | bool NegMul = (NegA != NegB); | 
|  | if (NegA) | 
|  | A = A.getOperand(0); | 
|  | if (NegB) | 
|  | B = B.getOperand(0); | 
|  | if (NegC) | 
|  | C = C.getOperand(0); | 
|  |  | 
|  | unsigned Opcode; | 
|  | if (!NegMul) | 
|  | Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB; | 
|  | else | 
|  | Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB; | 
|  |  | 
|  | return DAG.getNode(Opcode, dl, VT, A, B, C); | 
|  | } | 
|  |  | 
|  | static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | // (i32 zext (and (i8  x86isd::setcc_carry), 1)) -> | 
|  | //           (and (i32 x86isd::setcc_carry), 1) | 
|  | // This eliminates the zext. This transformation is necessary because | 
|  | // ISD::SETCC is always legalized to i8. | 
|  | SDLoc dl(N); | 
|  | SDValue N0 = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (N0.getOpcode() == ISD::AND && | 
|  | N0.hasOneUse() && | 
|  | N0.getOperand(0).hasOneUse()) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() == X86ISD::SETCC_CARRY) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!C || C->getZExtValue() != 1) | 
|  | return SDValue(); | 
|  | return DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, | 
|  | N00.getOperand(0), N00.getOperand(1)), | 
|  | DAG.getConstant(1, VT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N0.getOpcode() == ISD::TRUNCATE && | 
|  | N0.hasOneUse() && | 
|  | N0.getOperand(0).hasOneUse()) { | 
|  | SDValue N00 = N0.getOperand(0); | 
|  | if (N00.getOpcode() == X86ISD::SETCC_CARRY) { | 
|  | return DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, | 
|  | N00.getOperand(0), N00.getOperand(1)), | 
|  | DAG.getConstant(1, VT)); | 
|  | } | 
|  | } | 
|  | if (VT.is256BitVector()) { | 
|  | SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget); | 
|  | if (R.getNode()) | 
|  | return R; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Optimize x == -y --> x+y == 0 | 
|  | //          x != -y --> x+y != 0 | 
|  | static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget* Subtarget) { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB) | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0))) | 
|  | if (C->getAPIntValue() == 0 && LHS.hasOneUse()) { | 
|  | SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N), | 
|  | LHS.getValueType(), RHS, LHS.getOperand(1)); | 
|  | return DAG.getSetCC(SDLoc(N), N->getValueType(0), | 
|  | addV, DAG.getConstant(0, addV.getValueType()), CC); | 
|  | } | 
|  | if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB) | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0))) | 
|  | if (C->getAPIntValue() == 0 && RHS.hasOneUse()) { | 
|  | SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N), | 
|  | RHS.getValueType(), LHS, RHS.getOperand(1)); | 
|  | return DAG.getSetCC(SDLoc(N), N->getValueType(0), | 
|  | addV, DAG.getConstant(0, addV.getValueType()), CC); | 
|  | } | 
|  |  | 
|  | if (VT.getScalarType() == MVT::i1) { | 
|  | bool IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) && | 
|  | (LHS.getOperand(0).getValueType().getScalarType() ==  MVT::i1); | 
|  | bool IsVZero0 = ISD::isBuildVectorAllZeros(LHS.getNode()); | 
|  | if (!IsSEXT0 && !IsVZero0) | 
|  | return SDValue(); | 
|  | bool IsSEXT1 = (RHS.getOpcode() == ISD::SIGN_EXTEND) && | 
|  | (RHS.getOperand(0).getValueType().getScalarType() ==  MVT::i1); | 
|  | bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode()); | 
|  |  | 
|  | if (!IsSEXT1 && !IsVZero1) | 
|  | return SDValue(); | 
|  |  | 
|  | if (IsSEXT0 && IsVZero1) { | 
|  | assert(VT == LHS.getOperand(0).getValueType() && "Uexpected operand type"); | 
|  | if (CC == ISD::SETEQ) | 
|  | return DAG.getNOT(DL, LHS.getOperand(0), VT); | 
|  | return LHS.getOperand(0); | 
|  | } | 
|  | if (IsSEXT1 && IsVZero0) { | 
|  | assert(VT == RHS.getOperand(0).getValueType() && "Uexpected operand type"); | 
|  | if (CC == ISD::SETEQ) | 
|  | return DAG.getNOT(DL, RHS.getOperand(0), VT); | 
|  | return RHS.getOperand(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Helper function of PerformSETCCCombine. It is to materialize "setb reg" | 
|  | // as "sbb reg,reg", since it can be extended without zext and produces | 
|  | // an all-ones bit which is more useful than 0/1 in some cases. | 
|  | static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG, | 
|  | MVT VT) { | 
|  | if (VT == MVT::i8) | 
|  | return DAG.getNode(ISD::AND, DL, VT, | 
|  | DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, | 
|  | DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS), | 
|  | DAG.getConstant(1, VT)); | 
|  | assert (VT == MVT::i1 && "Unexpected type for SECCC node"); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, | 
|  | DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, | 
|  | DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS)); | 
|  | } | 
|  |  | 
|  | // Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT | 
|  | static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDLoc DL(N); | 
|  | X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0)); | 
|  | SDValue EFLAGS = N->getOperand(1); | 
|  |  | 
|  | if (CC == X86::COND_A) { | 
|  | // Try to convert COND_A into COND_B in an attempt to facilitate | 
|  | // materializing "setb reg". | 
|  | // | 
|  | // Do not flip "e > c", where "c" is a constant, because Cmp instruction | 
|  | // cannot take an immediate as its first operand. | 
|  | // | 
|  | if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() && | 
|  | EFLAGS.getValueType().isInteger() && | 
|  | !isa<ConstantSDNode>(EFLAGS.getOperand(1))) { | 
|  | SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS), | 
|  | EFLAGS.getNode()->getVTList(), | 
|  | EFLAGS.getOperand(1), EFLAGS.getOperand(0)); | 
|  | SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo()); | 
|  | return MaterializeSETB(DL, NewEFLAGS, DAG, N->getSimpleValueType(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Materialize "setb reg" as "sbb reg,reg", since it can be extended without | 
|  | // a zext and produces an all-ones bit which is more useful than 0/1 in some | 
|  | // cases. | 
|  | if (CC == X86::COND_B) | 
|  | return MaterializeSETB(DL, EFLAGS, DAG, N->getSimpleValueType(0)); | 
|  |  | 
|  | SDValue Flags; | 
|  |  | 
|  | Flags = checkBoolTestSetCCCombine(EFLAGS, CC); | 
|  | if (Flags.getNode()) { | 
|  | SDValue Cond = DAG.getConstant(CC, MVT::i8); | 
|  | return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Optimize branch condition evaluation. | 
|  | // | 
|  | static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDLoc DL(N); | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue Dest = N->getOperand(1); | 
|  | SDValue EFLAGS = N->getOperand(3); | 
|  | X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2)); | 
|  |  | 
|  | SDValue Flags; | 
|  |  | 
|  | Flags = checkBoolTestSetCCCombine(EFLAGS, CC); | 
|  | if (Flags.getNode()) { | 
|  | SDValue Cond = DAG.getConstant(CC, MVT::i8); | 
|  | return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond, | 
|  | Flags); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86TargetLowering *XTLI) { | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | EVT InVT = Op0->getValueType(0); | 
|  |  | 
|  | // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32)) | 
|  | if (InVT == MVT::v8i8 || InVT == MVT::v4i8) { | 
|  | SDLoc dl(N); | 
|  | MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32; | 
|  | SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0); | 
|  | return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P); | 
|  | } | 
|  |  | 
|  | // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have | 
|  | // a 32-bit target where SSE doesn't support i64->FP operations. | 
|  | if (Op0.getOpcode() == ISD::LOAD) { | 
|  | LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode()); | 
|  | EVT VT = Ld->getValueType(0); | 
|  | if (!Ld->isVolatile() && !N->getValueType(0).isVector() && | 
|  | ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() && | 
|  | !XTLI->getSubtarget()->is64Bit() && | 
|  | VT == MVT::i64) { | 
|  | SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0), | 
|  | Ld->getChain(), Op0, DAG); | 
|  | DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1)); | 
|  | return FILDChain; | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS | 
|  | static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG, | 
|  | X86TargetLowering::DAGCombinerInfo &DCI) { | 
|  | // If the LHS and RHS of the ADC node are zero, then it can't overflow and | 
|  | // the result is either zero or one (depending on the input carry bit). | 
|  | // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1. | 
|  | if (X86::isZeroNode(N->getOperand(0)) && | 
|  | X86::isZeroNode(N->getOperand(1)) && | 
|  | // We don't have a good way to replace an EFLAGS use, so only do this when | 
|  | // dead right now. | 
|  | SDValue(N, 1).use_empty()) { | 
|  | SDLoc DL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue CarryOut = DAG.getConstant(0, N->getValueType(1)); | 
|  | SDValue Res1 = DAG.getNode(ISD::AND, DL, VT, | 
|  | DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, | 
|  | DAG.getConstant(X86::COND_B,MVT::i8), | 
|  | N->getOperand(2)), | 
|  | DAG.getConstant(1, VT)); | 
|  | return DCI.CombineTo(N, Res1, CarryOut); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // fold (add Y, (sete  X, 0)) -> adc  0, Y | 
|  | //      (add Y, (setne X, 0)) -> sbb -1, Y | 
|  | //      (sub (sete  X, 0), Y) -> sbb  0, Y | 
|  | //      (sub (setne X, 0), Y) -> adc -1, Y | 
|  | static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) { | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Look through ZExts. | 
|  | SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0); | 
|  | if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue SetCC = Ext.getOperand(0); | 
|  | if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0); | 
|  | if (CC != X86::COND_E && CC != X86::COND_NE) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Cmp = SetCC.getOperand(1); | 
|  | if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() || | 
|  | !X86::isZeroNode(Cmp.getOperand(1)) || | 
|  | !Cmp.getOperand(0).getValueType().isInteger()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue CmpOp0 = Cmp.getOperand(0); | 
|  | SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0, | 
|  | DAG.getConstant(1, CmpOp0.getValueType())); | 
|  |  | 
|  | SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1); | 
|  | if (CC == X86::COND_NE) | 
|  | return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB, | 
|  | DL, OtherVal.getValueType(), OtherVal, | 
|  | DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp); | 
|  | return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC, | 
|  | DL, OtherVal.getValueType(), OtherVal, | 
|  | DAG.getConstant(0, OtherVal.getValueType()), NewCmp); | 
|  | } | 
|  |  | 
|  | /// PerformADDCombine - Do target-specific dag combines on integer adds. | 
|  | static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  |  | 
|  | // Try to synthesize horizontal adds from adds of shuffles. | 
|  | if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || | 
|  | (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && | 
|  | isHorizontalBinOp(Op0, Op1, true)) | 
|  | return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1); | 
|  |  | 
|  | return OptimizeConditionalInDecrement(N, DAG); | 
|  | } | 
|  |  | 
|  | static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const X86Subtarget *Subtarget) { | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  |  | 
|  | // X86 can't encode an immediate LHS of a sub. See if we can push the | 
|  | // negation into a preceding instruction. | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) { | 
|  | // If the RHS of the sub is a XOR with one use and a constant, invert the | 
|  | // immediate. Then add one to the LHS of the sub so we can turn | 
|  | // X-Y -> X+~Y+1, saving one register. | 
|  | if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR && | 
|  | isa<ConstantSDNode>(Op1.getOperand(1))) { | 
|  | APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue(); | 
|  | EVT VT = Op0.getValueType(); | 
|  | SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT, | 
|  | Op1.getOperand(0), | 
|  | DAG.getConstant(~XorC, VT)); | 
|  | return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor, | 
|  | DAG.getConstant(C->getAPIntValue()+1, VT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to synthesize horizontal adds from adds of shuffles. | 
|  | EVT VT = N->getValueType(0); | 
|  | if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || | 
|  | (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && | 
|  | isHorizontalBinOp(Op0, Op1, true)) | 
|  | return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1); | 
|  |  | 
|  | return OptimizeConditionalInDecrement(N, DAG); | 
|  | } | 
|  |  | 
|  | /// performVZEXTCombine - Performs build vector combines | 
|  | static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const X86Subtarget *Subtarget) { | 
|  | // (vzext (bitcast (vzext (x)) -> (vzext x) | 
|  | SDValue In = N->getOperand(0); | 
|  | while (In.getOpcode() == ISD::BITCAST) | 
|  | In = In.getOperand(0); | 
|  |  | 
|  | if (In.getOpcode() != X86ISD::VZEXT) | 
|  | return SDValue(); | 
|  |  | 
|  | return DAG.getNode(X86ISD::VZEXT, SDLoc(N), N->getValueType(0), | 
|  | In.getOperand(0)); | 
|  | } | 
|  |  | 
|  | SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI); | 
|  | case ISD::VSELECT: | 
|  | case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget); | 
|  | case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget); | 
|  | case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget); | 
|  | case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI); | 
|  | case ISD::MUL:            return PerformMulCombine(N, DAG, DCI); | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget); | 
|  | case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this); | 
|  | case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget); | 
|  | case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget); | 
|  | case X86ISD::FXOR: | 
|  | case X86ISD::FOR:         return PerformFORCombine(N, DAG); | 
|  | case X86ISD::FMIN: | 
|  | case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG); | 
|  | case X86ISD::FAND:        return PerformFANDCombine(N, DAG); | 
|  | case X86ISD::FANDN:       return PerformFANDNCombine(N, DAG); | 
|  | case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI); | 
|  | case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG); | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::SIGN_EXTEND_INREG: return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); | 
|  | case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget); | 
|  | case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG, Subtarget); | 
|  | case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget); | 
|  | case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget); | 
|  | case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget); | 
|  | case X86ISD::SHUFP:       // Handle all target specific shuffles | 
|  | case X86ISD::PALIGNR: | 
|  | case X86ISD::UNPCKH: | 
|  | case X86ISD::UNPCKL: | 
|  | case X86ISD::MOVHLPS: | 
|  | case X86ISD::MOVLHPS: | 
|  | case X86ISD::PSHUFD: | 
|  | case X86ISD::PSHUFHW: | 
|  | case X86ISD::PSHUFLW: | 
|  | case X86ISD::MOVSS: | 
|  | case X86ISD::MOVSD: | 
|  | case X86ISD::VPERMILP: | 
|  | case X86ISD::VPERM2X128: | 
|  | case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget); | 
|  | case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// isTypeDesirableForOp - Return true if the target has native support for | 
|  | /// the specified value type and it is 'desirable' to use the type for the | 
|  | /// given node type. e.g. On x86 i16 is legal, but undesirable since i16 | 
|  | /// instruction encodings are longer and some i16 instructions are slow. | 
|  | bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const { | 
|  | if (!isTypeLegal(VT)) | 
|  | return false; | 
|  | if (VT != MVT::i16) | 
|  | return true; | 
|  |  | 
|  | switch (Opc) { | 
|  | default: | 
|  | return true; | 
|  | case ISD::LOAD: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::SHL: | 
|  | case ISD::SRL: | 
|  | case ISD::SUB: | 
|  | case ISD::ADD: | 
|  | case ISD::MUL: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// IsDesirableToPromoteOp - This method query the target whether it is | 
|  | /// beneficial for dag combiner to promote the specified node. If true, it | 
|  | /// should return the desired promotion type by reference. | 
|  | bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | if (VT != MVT::i16) | 
|  | return false; | 
|  |  | 
|  | bool Promote = false; | 
|  | bool Commute = false; | 
|  | switch (Op.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::LOAD: { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Op); | 
|  | // If the non-extending load has a single use and it's not live out, then it | 
|  | // might be folded. | 
|  | if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&& | 
|  | Op.hasOneUse()*/) { | 
|  | for (SDNode::use_iterator UI = Op.getNode()->use_begin(), | 
|  | UE = Op.getNode()->use_end(); UI != UE; ++UI) { | 
|  | // The only case where we'd want to promote LOAD (rather then it being | 
|  | // promoted as an operand is when it's only use is liveout. | 
|  | if (UI->getOpcode() != ISD::CopyToReg) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | Promote = true; | 
|  | break; | 
|  | } | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | Promote = true; | 
|  | break; | 
|  | case ISD::SHL: | 
|  | case ISD::SRL: { | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | // Look out for (store (shl (load), x)). | 
|  | if (MayFoldLoad(N0) && MayFoldIntoStore(Op)) | 
|  | return false; | 
|  | Promote = true; | 
|  | break; | 
|  | } | 
|  | case ISD::ADD: | 
|  | case ISD::MUL: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | Commute = true; | 
|  | // fallthrough | 
|  | case ISD::SUB: { | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | SDValue N1 = Op.getOperand(1); | 
|  | if (!Commute && MayFoldLoad(N1)) | 
|  | return false; | 
|  | // Avoid disabling potential load folding opportunities. | 
|  | if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op))) | 
|  | return false; | 
|  | if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op))) | 
|  | return false; | 
|  | Promote = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | PVT = MVT::i32; | 
|  | return Promote; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           X86 Inline Assembly Support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | // Helper to match a string separated by whitespace. | 
|  | bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) { | 
|  | s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace. | 
|  |  | 
|  | for (unsigned i = 0, e = args.size(); i != e; ++i) { | 
|  | StringRef piece(*args[i]); | 
|  | if (!s.startswith(piece)) // Check if the piece matches. | 
|  | return false; | 
|  |  | 
|  | s = s.substr(piece.size()); | 
|  | StringRef::size_type pos = s.find_first_not_of(" \t"); | 
|  | if (pos == 0) // We matched a prefix. | 
|  | return false; | 
|  |  | 
|  | s = s.substr(pos); | 
|  | } | 
|  |  | 
|  | return s.empty(); | 
|  | } | 
|  | const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={}; | 
|  | } | 
|  |  | 
|  | static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) { | 
|  |  | 
|  | if (AsmPieces.size() == 3 || AsmPieces.size() == 4) { | 
|  | if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") && | 
|  | std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") && | 
|  | std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) { | 
|  |  | 
|  | if (AsmPieces.size() == 3) | 
|  | return true; | 
|  | else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}")) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { | 
|  | InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); | 
|  |  | 
|  | std::string AsmStr = IA->getAsmString(); | 
|  |  | 
|  | IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); | 
|  | if (!Ty || Ty->getBitWidth() % 16 != 0) | 
|  | return false; | 
|  |  | 
|  | // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a" | 
|  | SmallVector<StringRef, 4> AsmPieces; | 
|  | SplitString(AsmStr, AsmPieces, ";\n"); | 
|  |  | 
|  | switch (AsmPieces.size()) { | 
|  | default: return false; | 
|  | case 1: | 
|  | // FIXME: this should verify that we are targeting a 486 or better.  If not, | 
|  | // we will turn this bswap into something that will be lowered to logical | 
|  | // ops instead of emitting the bswap asm.  For now, we don't support 486 or | 
|  | // lower so don't worry about this. | 
|  | // bswap $0 | 
|  | if (matchAsm(AsmPieces[0], "bswap", "$0") || | 
|  | matchAsm(AsmPieces[0], "bswapl", "$0") || | 
|  | matchAsm(AsmPieces[0], "bswapq", "$0") || | 
|  | matchAsm(AsmPieces[0], "bswap", "${0:q}") || | 
|  | matchAsm(AsmPieces[0], "bswapl", "${0:q}") || | 
|  | matchAsm(AsmPieces[0], "bswapq", "${0:q}")) { | 
|  | // No need to check constraints, nothing other than the equivalent of | 
|  | // "=r,0" would be valid here. | 
|  | return IntrinsicLowering::LowerToByteSwap(CI); | 
|  | } | 
|  |  | 
|  | // rorw $$8, ${0:w}  -->  llvm.bswap.i16 | 
|  | if (CI->getType()->isIntegerTy(16) && | 
|  | IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && | 
|  | (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") || | 
|  | matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) { | 
|  | AsmPieces.clear(); | 
|  | const std::string &ConstraintsStr = IA->getConstraintString(); | 
|  | SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); | 
|  | array_pod_sort(AsmPieces.begin(), AsmPieces.end()); | 
|  | if (clobbersFlagRegisters(AsmPieces)) | 
|  | return IntrinsicLowering::LowerToByteSwap(CI); | 
|  | } | 
|  | break; | 
|  | case 3: | 
|  | if (CI->getType()->isIntegerTy(32) && | 
|  | IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && | 
|  | matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") && | 
|  | matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") && | 
|  | matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) { | 
|  | AsmPieces.clear(); | 
|  | const std::string &ConstraintsStr = IA->getConstraintString(); | 
|  | SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); | 
|  | array_pod_sort(AsmPieces.begin(), AsmPieces.end()); | 
|  | if (clobbersFlagRegisters(AsmPieces)) | 
|  | return IntrinsicLowering::LowerToByteSwap(CI); | 
|  | } | 
|  |  | 
|  | if (CI->getType()->isIntegerTy(64)) { | 
|  | InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); | 
|  | if (Constraints.size() >= 2 && | 
|  | Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" && | 
|  | Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") { | 
|  | // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64 | 
|  | if (matchAsm(AsmPieces[0], "bswap", "%eax") && | 
|  | matchAsm(AsmPieces[1], "bswap", "%edx") && | 
|  | matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx")) | 
|  | return IntrinsicLowering::LowerToByteSwap(CI); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getConstraintType - Given a constraint letter, return the type of | 
|  | /// constraint it is for this target. | 
|  | X86TargetLowering::ConstraintType | 
|  | X86TargetLowering::getConstraintType(const std::string &Constraint) const { | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | case 'R': | 
|  | case 'q': | 
|  | case 'Q': | 
|  | case 'f': | 
|  | case 't': | 
|  | case 'u': | 
|  | case 'y': | 
|  | case 'x': | 
|  | case 'Y': | 
|  | case 'l': | 
|  | return C_RegisterClass; | 
|  | case 'a': | 
|  | case 'b': | 
|  | case 'c': | 
|  | case 'd': | 
|  | case 'S': | 
|  | case 'D': | 
|  | case 'A': | 
|  | return C_Register; | 
|  | case 'I': | 
|  | case 'J': | 
|  | case 'K': | 
|  | case 'L': | 
|  | case 'M': | 
|  | case 'N': | 
|  | case 'G': | 
|  | case 'C': | 
|  | case 'e': | 
|  | case 'Z': | 
|  | return C_Other; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | return TargetLowering::getConstraintType(Constraint); | 
|  | } | 
|  |  | 
|  | /// Examine constraint type and operand type and determine a weight value. | 
|  | /// This object must already have been set up with the operand type | 
|  | /// and the current alternative constraint selected. | 
|  | TargetLowering::ConstraintWeight | 
|  | X86TargetLowering::getSingleConstraintMatchWeight( | 
|  | AsmOperandInfo &info, const char *constraint) const { | 
|  | ConstraintWeight weight = CW_Invalid; | 
|  | Value *CallOperandVal = info.CallOperandVal; | 
|  | // If we don't have a value, we can't do a match, | 
|  | // but allow it at the lowest weight. | 
|  | if (CallOperandVal == NULL) | 
|  | return CW_Default; | 
|  | Type *type = CallOperandVal->getType(); | 
|  | // Look at the constraint type. | 
|  | switch (*constraint) { | 
|  | default: | 
|  | weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); | 
|  | case 'R': | 
|  | case 'q': | 
|  | case 'Q': | 
|  | case 'a': | 
|  | case 'b': | 
|  | case 'c': | 
|  | case 'd': | 
|  | case 'S': | 
|  | case 'D': | 
|  | case 'A': | 
|  | if (CallOperandVal->getType()->isIntegerTy()) | 
|  | weight = CW_SpecificReg; | 
|  | break; | 
|  | case 'f': | 
|  | case 't': | 
|  | case 'u': | 
|  | if (type->isFloatingPointTy()) | 
|  | weight = CW_SpecificReg; | 
|  | break; | 
|  | case 'y': | 
|  | if (type->isX86_MMXTy() && Subtarget->hasMMX()) | 
|  | weight = CW_SpecificReg; | 
|  | break; | 
|  | case 'x': | 
|  | case 'Y': | 
|  | if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) || | 
|  | ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256())) | 
|  | weight = CW_Register; | 
|  | break; | 
|  | case 'I': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { | 
|  | if (C->getZExtValue() <= 31) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'J': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if (C->getZExtValue() <= 63) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'K': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f)) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'L': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff)) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'M': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if (C->getZExtValue() <= 3) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'N': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if (C->getZExtValue() <= 0xff) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'G': | 
|  | case 'C': | 
|  | if (dyn_cast<ConstantFP>(CallOperandVal)) { | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'e': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if ((C->getSExtValue() >= -0x80000000LL) && | 
|  | (C->getSExtValue() <= 0x7fffffffLL)) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | case 'Z': | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { | 
|  | if (C->getZExtValue() <= 0xffffffff) | 
|  | weight = CW_Constant; | 
|  | } | 
|  | break; | 
|  | } | 
|  | return weight; | 
|  | } | 
|  |  | 
|  | /// LowerXConstraint - try to replace an X constraint, which matches anything, | 
|  | /// with another that has more specific requirements based on the type of the | 
|  | /// corresponding operand. | 
|  | const char *X86TargetLowering:: | 
|  | LowerXConstraint(EVT ConstraintVT) const { | 
|  | // FP X constraints get lowered to SSE1/2 registers if available, otherwise | 
|  | // 'f' like normal targets. | 
|  | if (ConstraintVT.isFloatingPoint()) { | 
|  | if (Subtarget->hasSSE2()) | 
|  | return "Y"; | 
|  | if (Subtarget->hasSSE1()) | 
|  | return "x"; | 
|  | } | 
|  |  | 
|  | return TargetLowering::LowerXConstraint(ConstraintVT); | 
|  | } | 
|  |  | 
|  | /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops | 
|  | /// vector.  If it is invalid, don't add anything to Ops. | 
|  | void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, | 
|  | std::string &Constraint, | 
|  | std::vector<SDValue>&Ops, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Result(0, 0); | 
|  |  | 
|  | // Only support length 1 constraints for now. | 
|  | if (Constraint.length() > 1) return; | 
|  |  | 
|  | char ConstraintLetter = Constraint[0]; | 
|  | switch (ConstraintLetter) { | 
|  | default: break; | 
|  | case 'I': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (C->getZExtValue() <= 31) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'J': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (C->getZExtValue() <= 63) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'K': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (isInt<8>(C->getSExtValue())) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'N': | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (C->getZExtValue() <= 255) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return; | 
|  | case 'e': { | 
|  | // 32-bit signed value | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), | 
|  | C->getSExtValue())) { | 
|  | // Widen to 64 bits here to get it sign extended. | 
|  | Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64); | 
|  | break; | 
|  | } | 
|  | // FIXME gcc accepts some relocatable values here too, but only in certain | 
|  | // memory models; it's complicated. | 
|  | } | 
|  | return; | 
|  | } | 
|  | case 'Z': { | 
|  | // 32-bit unsigned value | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), | 
|  | C->getZExtValue())) { | 
|  | Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | // FIXME gcc accepts some relocatable values here too, but only in certain | 
|  | // memory models; it's complicated. | 
|  | return; | 
|  | } | 
|  | case 'i': { | 
|  | // Literal immediates are always ok. | 
|  | if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) { | 
|  | // Widen to 64 bits here to get it sign extended. | 
|  | Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // In any sort of PIC mode addresses need to be computed at runtime by | 
|  | // adding in a register or some sort of table lookup.  These can't | 
|  | // be used as immediates. | 
|  | if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC()) | 
|  | return; | 
|  |  | 
|  | // If we are in non-pic codegen mode, we allow the address of a global (with | 
|  | // an optional displacement) to be used with 'i'. | 
|  | GlobalAddressSDNode *GA = 0; | 
|  | int64_t Offset = 0; | 
|  |  | 
|  | // Match either (GA), (GA+C), (GA+C1+C2), etc. | 
|  | while (1) { | 
|  | if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) { | 
|  | Offset += GA->getOffset(); | 
|  | break; | 
|  | } else if (Op.getOpcode() == ISD::ADD) { | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | Offset += C->getZExtValue(); | 
|  | Op = Op.getOperand(0); | 
|  | continue; | 
|  | } | 
|  | } else if (Op.getOpcode() == ISD::SUB) { | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | Offset += -C->getZExtValue(); | 
|  | Op = Op.getOperand(0); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, this isn't something we can handle, reject it. | 
|  | return; | 
|  | } | 
|  |  | 
|  | const GlobalValue *GV = GA->getGlobal(); | 
|  | // If we require an extra load to get this address, as in PIC mode, we | 
|  | // can't accept it. | 
|  | if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV, | 
|  | getTargetMachine()))) | 
|  | return; | 
|  |  | 
|  | Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), | 
|  | GA->getValueType(0), Offset); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Result.getNode()) { | 
|  | Ops.push_back(Result); | 
|  | return; | 
|  | } | 
|  | return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass*> | 
|  | X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, | 
|  | MVT VT) const { | 
|  | // First, see if this is a constraint that directly corresponds to an LLVM | 
|  | // register class. | 
|  | if (Constraint.size() == 1) { | 
|  | // GCC Constraint Letters | 
|  | switch (Constraint[0]) { | 
|  | default: break; | 
|  | // TODO: Slight differences here in allocation order and leaving | 
|  | // RIP in the class. Do they matter any more here than they do | 
|  | // in the normal allocation? | 
|  | case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode. | 
|  | if (Subtarget->is64Bit()) { | 
|  | if (VT == MVT::i32 || VT == MVT::f32) | 
|  | return std::make_pair(0U, &X86::GR32RegClass); | 
|  | if (VT == MVT::i16) | 
|  | return std::make_pair(0U, &X86::GR16RegClass); | 
|  | if (VT == MVT::i8 || VT == MVT::i1) | 
|  | return std::make_pair(0U, &X86::GR8RegClass); | 
|  | if (VT == MVT::i64 || VT == MVT::f64) | 
|  | return std::make_pair(0U, &X86::GR64RegClass); | 
|  | break; | 
|  | } | 
|  | // 32-bit fallthrough | 
|  | case 'Q':   // Q_REGS | 
|  | if (VT == MVT::i32 || VT == MVT::f32) | 
|  | return std::make_pair(0U, &X86::GR32_ABCDRegClass); | 
|  | if (VT == MVT::i16) | 
|  | return std::make_pair(0U, &X86::GR16_ABCDRegClass); | 
|  | if (VT == MVT::i8 || VT == MVT::i1) | 
|  | return std::make_pair(0U, &X86::GR8_ABCD_LRegClass); | 
|  | if (VT == MVT::i64) | 
|  | return std::make_pair(0U, &X86::GR64_ABCDRegClass); | 
|  | break; | 
|  | case 'r':   // GENERAL_REGS | 
|  | case 'l':   // INDEX_REGS | 
|  | if (VT == MVT::i8 || VT == MVT::i1) | 
|  | return std::make_pair(0U, &X86::GR8RegClass); | 
|  | if (VT == MVT::i16) | 
|  | return std::make_pair(0U, &X86::GR16RegClass); | 
|  | if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit()) | 
|  | return std::make_pair(0U, &X86::GR32RegClass); | 
|  | return std::make_pair(0U, &X86::GR64RegClass); | 
|  | case 'R':   // LEGACY_REGS | 
|  | if (VT == MVT::i8 || VT == MVT::i1) | 
|  | return std::make_pair(0U, &X86::GR8_NOREXRegClass); | 
|  | if (VT == MVT::i16) | 
|  | return std::make_pair(0U, &X86::GR16_NOREXRegClass); | 
|  | if (VT == MVT::i32 || !Subtarget->is64Bit()) | 
|  | return std::make_pair(0U, &X86::GR32_NOREXRegClass); | 
|  | return std::make_pair(0U, &X86::GR64_NOREXRegClass); | 
|  | case 'f':  // FP Stack registers. | 
|  | // If SSE is enabled for this VT, use f80 to ensure the isel moves the | 
|  | // value to the correct fpstack register class. | 
|  | if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) | 
|  | return std::make_pair(0U, &X86::RFP32RegClass); | 
|  | if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) | 
|  | return std::make_pair(0U, &X86::RFP64RegClass); | 
|  | return std::make_pair(0U, &X86::RFP80RegClass); | 
|  | case 'y':   // MMX_REGS if MMX allowed. | 
|  | if (!Subtarget->hasMMX()) break; | 
|  | return std::make_pair(0U, &X86::VR64RegClass); | 
|  | case 'Y':   // SSE_REGS if SSE2 allowed | 
|  | if (!Subtarget->hasSSE2()) break; | 
|  | // FALL THROUGH. | 
|  | case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed | 
|  | if (!Subtarget->hasSSE1()) break; | 
|  |  | 
|  | switch (VT.SimpleTy) { | 
|  | default: break; | 
|  | // Scalar SSE types. | 
|  | case MVT::f32: | 
|  | case MVT::i32: | 
|  | return std::make_pair(0U, &X86::FR32RegClass); | 
|  | case MVT::f64: | 
|  | case MVT::i64: | 
|  | return std::make_pair(0U, &X86::FR64RegClass); | 
|  | // Vector types. | 
|  | case MVT::v16i8: | 
|  | case MVT::v8i16: | 
|  | case MVT::v4i32: | 
|  | case MVT::v2i64: | 
|  | case MVT::v4f32: | 
|  | case MVT::v2f64: | 
|  | return std::make_pair(0U, &X86::VR128RegClass); | 
|  | // AVX types. | 
|  | case MVT::v32i8: | 
|  | case MVT::v16i16: | 
|  | case MVT::v8i32: | 
|  | case MVT::v4i64: | 
|  | case MVT::v8f32: | 
|  | case MVT::v4f64: | 
|  | return std::make_pair(0U, &X86::VR256RegClass); | 
|  | case MVT::v8f64: | 
|  | case MVT::v16f32: | 
|  | case MVT::v16i32: | 
|  | case MVT::v8i64: | 
|  | return std::make_pair(0U, &X86::VR512RegClass); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Use the default implementation in TargetLowering to convert the register | 
|  | // constraint into a member of a register class. | 
|  | std::pair<unsigned, const TargetRegisterClass*> Res; | 
|  | Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); | 
|  |  | 
|  | // Not found as a standard register? | 
|  | if (Res.second == 0) { | 
|  | // Map st(0) -> st(7) -> ST0 | 
|  | if (Constraint.size() == 7 && Constraint[0] == '{' && | 
|  | tolower(Constraint[1]) == 's' && | 
|  | tolower(Constraint[2]) == 't' && | 
|  | Constraint[3] == '(' && | 
|  | (Constraint[4] >= '0' && Constraint[4] <= '7') && | 
|  | Constraint[5] == ')' && | 
|  | Constraint[6] == '}') { | 
|  |  | 
|  | Res.first = X86::ST0+Constraint[4]-'0'; | 
|  | Res.second = &X86::RFP80RegClass; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // GCC allows "st(0)" to be called just plain "st". | 
|  | if (StringRef("{st}").equals_lower(Constraint)) { | 
|  | Res.first = X86::ST0; | 
|  | Res.second = &X86::RFP80RegClass; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // flags -> EFLAGS | 
|  | if (StringRef("{flags}").equals_lower(Constraint)) { | 
|  | Res.first = X86::EFLAGS; | 
|  | Res.second = &X86::CCRRegClass; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // 'A' means EAX + EDX. | 
|  | if (Constraint == "A") { | 
|  | Res.first = X86::EAX; | 
|  | Res.second = &X86::GR32_ADRegClass; | 
|  | return Res; | 
|  | } | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // Otherwise, check to see if this is a register class of the wrong value | 
|  | // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to | 
|  | // turn into {ax},{dx}. | 
|  | if (Res.second->hasType(VT)) | 
|  | return Res;   // Correct type already, nothing to do. | 
|  |  | 
|  | // All of the single-register GCC register classes map their values onto | 
|  | // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we | 
|  | // really want an 8-bit or 32-bit register, map to the appropriate register | 
|  | // class and return the appropriate register. | 
|  | if (Res.second == &X86::GR16RegClass) { | 
|  | if (VT == MVT::i8 || VT == MVT::i1) { | 
|  | unsigned DestReg = 0; | 
|  | switch (Res.first) { | 
|  | default: break; | 
|  | case X86::AX: DestReg = X86::AL; break; | 
|  | case X86::DX: DestReg = X86::DL; break; | 
|  | case X86::CX: DestReg = X86::CL; break; | 
|  | case X86::BX: DestReg = X86::BL; break; | 
|  | } | 
|  | if (DestReg) { | 
|  | Res.first = DestReg; | 
|  | Res.second = &X86::GR8RegClass; | 
|  | } | 
|  | } else if (VT == MVT::i32 || VT == MVT::f32) { | 
|  | unsigned DestReg = 0; | 
|  | switch (Res.first) { | 
|  | default: break; | 
|  | case X86::AX: DestReg = X86::EAX; break; | 
|  | case X86::DX: DestReg = X86::EDX; break; | 
|  | case X86::CX: DestReg = X86::ECX; break; | 
|  | case X86::BX: DestReg = X86::EBX; break; | 
|  | case X86::SI: DestReg = X86::ESI; break; | 
|  | case X86::DI: DestReg = X86::EDI; break; | 
|  | case X86::BP: DestReg = X86::EBP; break; | 
|  | case X86::SP: DestReg = X86::ESP; break; | 
|  | } | 
|  | if (DestReg) { | 
|  | Res.first = DestReg; | 
|  | Res.second = &X86::GR32RegClass; | 
|  | } | 
|  | } else if (VT == MVT::i64 || VT == MVT::f64) { | 
|  | unsigned DestReg = 0; | 
|  | switch (Res.first) { | 
|  | default: break; | 
|  | case X86::AX: DestReg = X86::RAX; break; | 
|  | case X86::DX: DestReg = X86::RDX; break; | 
|  | case X86::CX: DestReg = X86::RCX; break; | 
|  | case X86::BX: DestReg = X86::RBX; break; | 
|  | case X86::SI: DestReg = X86::RSI; break; | 
|  | case X86::DI: DestReg = X86::RDI; break; | 
|  | case X86::BP: DestReg = X86::RBP; break; | 
|  | case X86::SP: DestReg = X86::RSP; break; | 
|  | } | 
|  | if (DestReg) { | 
|  | Res.first = DestReg; | 
|  | Res.second = &X86::GR64RegClass; | 
|  | } | 
|  | } | 
|  | } else if (Res.second == &X86::FR32RegClass || | 
|  | Res.second == &X86::FR64RegClass || | 
|  | Res.second == &X86::VR128RegClass || | 
|  | Res.second == &X86::VR256RegClass || | 
|  | Res.second == &X86::FR32XRegClass || | 
|  | Res.second == &X86::FR64XRegClass || | 
|  | Res.second == &X86::VR128XRegClass || | 
|  | Res.second == &X86::VR256XRegClass || | 
|  | Res.second == &X86::VR512RegClass) { | 
|  | // Handle references to XMM physical registers that got mapped into the | 
|  | // wrong class.  This can happen with constraints like {xmm0} where the | 
|  | // target independent register mapper will just pick the first match it can | 
|  | // find, ignoring the required type. | 
|  |  | 
|  | if (VT == MVT::f32 || VT == MVT::i32) | 
|  | Res.second = &X86::FR32RegClass; | 
|  | else if (VT == MVT::f64 || VT == MVT::i64) | 
|  | Res.second = &X86::FR64RegClass; | 
|  | else if (X86::VR128RegClass.hasType(VT)) | 
|  | Res.second = &X86::VR128RegClass; | 
|  | else if (X86::VR256RegClass.hasType(VT)) | 
|  | Res.second = &X86::VR256RegClass; | 
|  | else if (X86::VR512RegClass.hasType(VT)) | 
|  | Res.second = &X86::VR512RegClass; | 
|  | } | 
|  |  | 
|  | return Res; | 
|  | } |