|  | //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by the LLVM research group and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the pass that transforms the X86 machine instructions into | 
|  | // relocatable machine code. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86TargetMachine.h" | 
|  | #include "X86Relocations.h" | 
|  | #include "X86.h" | 
|  | #include "llvm/PassManager.h" | 
|  | #include "llvm/CodeGen/MachineCodeEmitter.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  | Statistic<> | 
|  | NumEmitted("x86-emitter", "Number of machine instructions emitted"); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class Emitter : public MachineFunctionPass { | 
|  | const X86InstrInfo  *II; | 
|  | MachineCodeEmitter  &MCE; | 
|  | std::map<const MachineBasicBlock*, unsigned> BasicBlockAddrs; | 
|  | std::vector<std::pair<const MachineBasicBlock *, unsigned> > BBRefs; | 
|  | public: | 
|  | explicit Emitter(MachineCodeEmitter &mce) : II(0), MCE(mce) {} | 
|  | Emitter(MachineCodeEmitter &mce, const X86InstrInfo& ii) | 
|  | : II(&ii), MCE(mce) {} | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF); | 
|  |  | 
|  | virtual const char *getPassName() const { | 
|  | return "X86 Machine Code Emitter"; | 
|  | } | 
|  |  | 
|  | void emitInstruction(const MachineInstr &MI); | 
|  |  | 
|  | private: | 
|  | void emitBasicBlock(const MachineBasicBlock &MBB); | 
|  |  | 
|  | void emitPCRelativeBlockAddress(const MachineBasicBlock *BB); | 
|  | void emitPCRelativeValue(unsigned Address); | 
|  | void emitGlobalAddressForCall(GlobalValue *GV); | 
|  | void emitGlobalAddressForPtr(GlobalValue *GV, int Disp = 0); | 
|  | void emitExternalSymbolAddress(const char *ES, bool isPCRelative); | 
|  |  | 
|  | void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField); | 
|  | void emitSIBByte(unsigned SS, unsigned Index, unsigned Base); | 
|  | void emitConstant(unsigned Val, unsigned Size); | 
|  |  | 
|  | void emitMemModRMByte(const MachineInstr &MI, | 
|  | unsigned Op, unsigned RegOpcodeField); | 
|  |  | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// addPassesToEmitMachineCode - Add passes to the specified pass manager to get | 
|  | /// machine code emitted.  This uses a MachineCodeEmitter object to handle | 
|  | /// actually outputting the machine code and resolving things like the address | 
|  | /// of functions.  This method should returns true if machine code emission is | 
|  | /// not supported. | 
|  | /// | 
|  | bool X86TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM, | 
|  | MachineCodeEmitter &MCE) { | 
|  | PM.add(new Emitter(MCE)); | 
|  | // Delete machine code for this function | 
|  | PM.add(createMachineCodeDeleter()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Emitter::runOnMachineFunction(MachineFunction &MF) { | 
|  | II = ((X86TargetMachine&)MF.getTarget()).getInstrInfo(); | 
|  |  | 
|  | MCE.startFunction(MF); | 
|  | MCE.emitConstantPool(MF.getConstantPool()); | 
|  | for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) | 
|  | emitBasicBlock(*I); | 
|  | MCE.finishFunction(MF); | 
|  |  | 
|  | // Resolve all forward branches now... | 
|  | for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { | 
|  | unsigned Location = BasicBlockAddrs[BBRefs[i].first]; | 
|  | unsigned Ref = BBRefs[i].second; | 
|  | MCE.emitWordAt(Location-Ref-4, (unsigned*)(intptr_t)Ref); | 
|  | } | 
|  | BBRefs.clear(); | 
|  | BasicBlockAddrs.clear(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Emitter::emitBasicBlock(const MachineBasicBlock &MBB) { | 
|  | if (uint64_t Addr = MCE.getCurrentPCValue()) | 
|  | BasicBlockAddrs[&MBB] = Addr; | 
|  |  | 
|  | for (MachineBasicBlock::const_iterator I = MBB.begin(), E = MBB.end(); | 
|  | I != E; ++I) | 
|  | emitInstruction(*I); | 
|  | } | 
|  |  | 
|  | /// emitPCRelativeValue - Emit a 32-bit PC relative address. | 
|  | /// | 
|  | void Emitter::emitPCRelativeValue(unsigned Address) { | 
|  | MCE.emitWord(Address-MCE.getCurrentPCValue()-4); | 
|  | } | 
|  |  | 
|  | /// emitPCRelativeBlockAddress - This method emits the PC relative address of | 
|  | /// the specified basic block, or if the basic block hasn't been emitted yet | 
|  | /// (because this is a forward branch), it keeps track of the information | 
|  | /// necessary to resolve this address later (and emits a dummy value). | 
|  | /// | 
|  | void Emitter::emitPCRelativeBlockAddress(const MachineBasicBlock *MBB) { | 
|  | // If this is a backwards branch, we already know the address of the target, | 
|  | // so just emit the value. | 
|  | std::map<const MachineBasicBlock*, unsigned>::iterator I = | 
|  | BasicBlockAddrs.find(MBB); | 
|  | if (I != BasicBlockAddrs.end()) { | 
|  | emitPCRelativeValue(I->second); | 
|  | } else { | 
|  | // Otherwise, remember where this reference was and where it is to so we can | 
|  | // deal with it later. | 
|  | BBRefs.push_back(std::make_pair(MBB, MCE.getCurrentPCValue())); | 
|  | MCE.emitWord(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// emitGlobalAddressForCall - Emit the specified address to the code stream | 
|  | /// assuming this is part of a function call, which is PC relative. | 
|  | /// | 
|  | void Emitter::emitGlobalAddressForCall(GlobalValue *GV) { | 
|  | MCE.addRelocation(MachineRelocation(MCE.getCurrentPCOffset(), | 
|  | X86::reloc_pcrel_word, GV, 0, true)); | 
|  | MCE.emitWord(0); | 
|  | } | 
|  |  | 
|  | /// emitGlobalAddress - Emit the specified address to the code stream assuming | 
|  | /// this is part of a "take the address of a global" instruction, which is not | 
|  | /// PC relative. | 
|  | /// | 
|  | void Emitter::emitGlobalAddressForPtr(GlobalValue *GV, int Disp /* = 0 */) { | 
|  | MCE.addRelocation(MachineRelocation(MCE.getCurrentPCOffset(), | 
|  | X86::reloc_absolute_word, GV)); | 
|  | MCE.emitWord(Disp);   // The relocated value will be added to the displacement | 
|  | } | 
|  |  | 
|  | /// emitExternalSymbolAddress - Arrange for the address of an external symbol to | 
|  | /// be emitted to the current location in the function, and allow it to be PC | 
|  | /// relative. | 
|  | void Emitter::emitExternalSymbolAddress(const char *ES, bool isPCRelative) { | 
|  | MCE.addRelocation(MachineRelocation(MCE.getCurrentPCOffset(), | 
|  | isPCRelative ? X86::reloc_pcrel_word : X86::reloc_absolute_word, ES)); | 
|  | MCE.emitWord(0); | 
|  | } | 
|  |  | 
|  | /// N86 namespace - Native X86 Register numbers... used by X86 backend. | 
|  | /// | 
|  | namespace N86 { | 
|  | enum { | 
|  | EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7 | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | // getX86RegNum - This function maps LLVM register identifiers to their X86 | 
|  | // specific numbering, which is used in various places encoding instructions. | 
|  | // | 
|  | static unsigned getX86RegNum(unsigned RegNo) { | 
|  | switch(RegNo) { | 
|  | case X86::EAX: case X86::AX: case X86::AL: return N86::EAX; | 
|  | case X86::ECX: case X86::CX: case X86::CL: return N86::ECX; | 
|  | case X86::EDX: case X86::DX: case X86::DL: return N86::EDX; | 
|  | case X86::EBX: case X86::BX: case X86::BL: return N86::EBX; | 
|  | case X86::ESP: case X86::SP: case X86::AH: return N86::ESP; | 
|  | case X86::EBP: case X86::BP: case X86::CH: return N86::EBP; | 
|  | case X86::ESI: case X86::SI: case X86::DH: return N86::ESI; | 
|  | case X86::EDI: case X86::DI: case X86::BH: return N86::EDI; | 
|  |  | 
|  | case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3: | 
|  | case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7: | 
|  | return RegNo-X86::ST0; | 
|  | default: | 
|  | assert(MRegisterInfo::isVirtualRegister(RegNo) && | 
|  | "Unknown physical register!"); | 
|  | assert(0 && "Register allocator hasn't allocated reg correctly yet!"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, | 
|  | unsigned RM) { | 
|  | assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); | 
|  | return RM | (RegOpcode << 3) | (Mod << 6); | 
|  | } | 
|  |  | 
|  | void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){ | 
|  | MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg))); | 
|  | } | 
|  |  | 
|  | void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) { | 
|  | // SIB byte is in the same format as the ModRMByte... | 
|  | MCE.emitByte(ModRMByte(SS, Index, Base)); | 
|  | } | 
|  |  | 
|  | void Emitter::emitConstant(unsigned Val, unsigned Size) { | 
|  | // Output the constant in little endian byte order... | 
|  | for (unsigned i = 0; i != Size; ++i) { | 
|  | MCE.emitByte(Val & 255); | 
|  | Val >>= 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isDisp8(int Value) { | 
|  | return Value == (signed char)Value; | 
|  | } | 
|  |  | 
|  | void Emitter::emitMemModRMByte(const MachineInstr &MI, | 
|  | unsigned Op, unsigned RegOpcodeField) { | 
|  | const MachineOperand &Op3 = MI.getOperand(Op+3); | 
|  | GlobalValue *GV = 0; | 
|  | int DispVal = 0; | 
|  |  | 
|  | if (Op3.isGlobalAddress()) { | 
|  | GV = Op3.getGlobal(); | 
|  | DispVal = Op3.getOffset(); | 
|  | } else { | 
|  | DispVal = Op3.getImmedValue(); | 
|  | } | 
|  |  | 
|  | const MachineOperand &Base     = MI.getOperand(Op); | 
|  | const MachineOperand &Scale    = MI.getOperand(Op+1); | 
|  | const MachineOperand &IndexReg = MI.getOperand(Op+2); | 
|  |  | 
|  | unsigned BaseReg = 0; | 
|  |  | 
|  | if (Base.isConstantPoolIndex()) { | 
|  | // Emit a direct address reference [disp32] where the displacement of the | 
|  | // constant pool entry is controlled by the MCE. | 
|  | assert(!GV && "Constant Pool reference cannot be relative to global!"); | 
|  | DispVal += MCE.getConstantPoolEntryAddress(Base.getConstantPoolIndex()); | 
|  | } else { | 
|  | BaseReg = Base.getReg(); | 
|  | } | 
|  |  | 
|  | // Is a SIB byte needed? | 
|  | if (IndexReg.getReg() == 0 && BaseReg != X86::ESP) { | 
|  | if (BaseReg == 0) {  // Just a displacement? | 
|  | // Emit special case [disp32] encoding | 
|  | MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); | 
|  | if (GV) | 
|  | emitGlobalAddressForPtr(GV, DispVal); | 
|  | else | 
|  | emitConstant(DispVal, 4); | 
|  | } else { | 
|  | unsigned BaseRegNo = getX86RegNum(BaseReg); | 
|  | if (GV) { | 
|  | // Emit the most general non-SIB encoding: [REG+disp32] | 
|  | MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); | 
|  | emitGlobalAddressForPtr(GV, DispVal); | 
|  | } else if (DispVal == 0 && BaseRegNo != N86::EBP) { | 
|  | // Emit simple indirect register encoding... [EAX] f.e. | 
|  | MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo)); | 
|  | } else if (isDisp8(DispVal)) { | 
|  | // Emit the disp8 encoding... [REG+disp8] | 
|  | MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo)); | 
|  | emitConstant(DispVal, 1); | 
|  | } else { | 
|  | // Emit the most general non-SIB encoding: [REG+disp32] | 
|  | MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); | 
|  | emitConstant(DispVal, 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | } else {  // We need a SIB byte, so start by outputting the ModR/M byte first | 
|  | assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!"); | 
|  |  | 
|  | bool ForceDisp32 = false; | 
|  | bool ForceDisp8  = false; | 
|  | if (BaseReg == 0) { | 
|  | // If there is no base register, we emit the special case SIB byte with | 
|  | // MOD=0, BASE=5, to JUST get the index, scale, and displacement. | 
|  | MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); | 
|  | ForceDisp32 = true; | 
|  | } else if (GV) { | 
|  | // Emit the normal disp32 encoding... | 
|  | MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); | 
|  | ForceDisp32 = true; | 
|  | } else if (DispVal == 0 && BaseReg != X86::EBP) { | 
|  | // Emit no displacement ModR/M byte | 
|  | MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); | 
|  | } else if (isDisp8(DispVal)) { | 
|  | // Emit the disp8 encoding... | 
|  | MCE.emitByte(ModRMByte(1, RegOpcodeField, 4)); | 
|  | ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP | 
|  | } else { | 
|  | // Emit the normal disp32 encoding... | 
|  | MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); | 
|  | } | 
|  |  | 
|  | // Calculate what the SS field value should be... | 
|  | static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; | 
|  | unsigned SS = SSTable[Scale.getImmedValue()]; | 
|  |  | 
|  | if (BaseReg == 0) { | 
|  | // Handle the SIB byte for the case where there is no base.  The | 
|  | // displacement has already been output. | 
|  | assert(IndexReg.getReg() && "Index register must be specified!"); | 
|  | emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5); | 
|  | } else { | 
|  | unsigned BaseRegNo = getX86RegNum(BaseReg); | 
|  | unsigned IndexRegNo; | 
|  | if (IndexReg.getReg()) | 
|  | IndexRegNo = getX86RegNum(IndexReg.getReg()); | 
|  | else | 
|  | IndexRegNo = 4;   // For example [ESP+1*<noreg>+4] | 
|  | emitSIBByte(SS, IndexRegNo, BaseRegNo); | 
|  | } | 
|  |  | 
|  | // Do we need to output a displacement? | 
|  | if (DispVal != 0 || ForceDisp32 || ForceDisp8) { | 
|  | if (!ForceDisp32 && isDisp8(DispVal)) | 
|  | emitConstant(DispVal, 1); | 
|  | else if (GV) | 
|  | emitGlobalAddressForPtr(GV, DispVal); | 
|  | else | 
|  | emitConstant(DispVal, 4); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned sizeOfImm(const TargetInstrDescriptor &Desc) { | 
|  | switch (Desc.TSFlags & X86II::ImmMask) { | 
|  | case X86II::Imm8:   return 1; | 
|  | case X86II::Imm16:  return 2; | 
|  | case X86II::Imm32:  return 4; | 
|  | default: assert(0 && "Immediate size not set!"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Emitter::emitInstruction(const MachineInstr &MI) { | 
|  | NumEmitted++;  // Keep track of the # of mi's emitted | 
|  |  | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | const TargetInstrDescriptor &Desc = II->get(Opcode); | 
|  |  | 
|  | // Emit the repeat opcode prefix as needed. | 
|  | if ((Desc.TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3); | 
|  |  | 
|  | // Emit instruction prefixes if necessary | 
|  | if (Desc.TSFlags & X86II::OpSize) MCE.emitByte(0x66);// Operand size... | 
|  |  | 
|  | switch (Desc.TSFlags & X86II::Op0Mask) { | 
|  | case X86II::TB: | 
|  | MCE.emitByte(0x0F);   // Two-byte opcode prefix | 
|  | break; | 
|  | case X86II::REP: break; // already handled. | 
|  | case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB: | 
|  | case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF: | 
|  | MCE.emitByte(0xD8+ | 
|  | (((Desc.TSFlags & X86II::Op0Mask)-X86II::D8) | 
|  | >> X86II::Op0Shift)); | 
|  | break; // Two-byte opcode prefix | 
|  | default: assert(0 && "Invalid prefix!"); | 
|  | case 0: break;  // No prefix! | 
|  | } | 
|  |  | 
|  | unsigned char BaseOpcode = II->getBaseOpcodeFor(Opcode); | 
|  | switch (Desc.TSFlags & X86II::FormMask) { | 
|  | default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!"); | 
|  | case X86II::Pseudo: | 
|  | if (Opcode != X86::IMPLICIT_USE && | 
|  | Opcode != X86::IMPLICIT_DEF && | 
|  | Opcode != X86::FP_REG_KILL) | 
|  | std::cerr << "X86 Machine Code Emitter: No 'form', not emitting: " << MI; | 
|  | break; | 
|  |  | 
|  | case X86II::RawFrm: | 
|  | MCE.emitByte(BaseOpcode); | 
|  | if (MI.getNumOperands() == 1) { | 
|  | const MachineOperand &MO = MI.getOperand(0); | 
|  | if (MO.isMachineBasicBlock()) { | 
|  | emitPCRelativeBlockAddress(MO.getMachineBasicBlock()); | 
|  | } else if (MO.isGlobalAddress()) { | 
|  | assert(MO.isPCRelative() && "Call target is not PC Relative?"); | 
|  | emitGlobalAddressForCall(MO.getGlobal()); | 
|  | } else if (MO.isExternalSymbol()) { | 
|  | emitExternalSymbolAddress(MO.getSymbolName(), true); | 
|  | } else if (MO.isImmediate()) { | 
|  | emitConstant(MO.getImmedValue(), sizeOfImm(Desc)); | 
|  | } else { | 
|  | assert(0 && "Unknown RawFrm operand!"); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case X86II::AddRegFrm: | 
|  | MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(0).getReg())); | 
|  | if (MI.getNumOperands() == 2) { | 
|  | const MachineOperand &MO1 = MI.getOperand(1); | 
|  | if (Value *V = MO1.getVRegValueOrNull()) { | 
|  | assert(sizeOfImm(Desc) == 4 && | 
|  | "Don't know how to emit non-pointer values!"); | 
|  | emitGlobalAddressForPtr(cast<GlobalValue>(V)); | 
|  | } else if (MO1.isGlobalAddress()) { | 
|  | assert(sizeOfImm(Desc) == 4 && | 
|  | "Don't know how to emit non-pointer values!"); | 
|  | assert(!MO1.isPCRelative() && "Function pointer ref is PC relative?"); | 
|  | emitGlobalAddressForPtr(MO1.getGlobal(), MO1.getOffset()); | 
|  | } else if (MO1.isExternalSymbol()) { | 
|  | assert(sizeOfImm(Desc) == 4 && | 
|  | "Don't know how to emit non-pointer values!"); | 
|  | emitExternalSymbolAddress(MO1.getSymbolName(), false); | 
|  | } else { | 
|  | emitConstant(MO1.getImmedValue(), sizeOfImm(Desc)); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case X86II::MRMDestReg: { | 
|  | MCE.emitByte(BaseOpcode); | 
|  | emitRegModRMByte(MI.getOperand(0).getReg(), | 
|  | getX86RegNum(MI.getOperand(1).getReg())); | 
|  | if (MI.getNumOperands() == 3) | 
|  | emitConstant(MI.getOperand(2).getImmedValue(), sizeOfImm(Desc)); | 
|  | break; | 
|  | } | 
|  | case X86II::MRMDestMem: | 
|  | MCE.emitByte(BaseOpcode); | 
|  | emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg())); | 
|  | if (MI.getNumOperands() == 6) | 
|  | emitConstant(MI.getOperand(5).getImmedValue(), sizeOfImm(Desc)); | 
|  | break; | 
|  |  | 
|  | case X86II::MRMSrcReg: | 
|  | MCE.emitByte(BaseOpcode); | 
|  |  | 
|  | emitRegModRMByte(MI.getOperand(1).getReg(), | 
|  | getX86RegNum(MI.getOperand(0).getReg())); | 
|  | if (MI.getNumOperands() == 3) | 
|  | emitConstant(MI.getOperand(2).getImmedValue(), sizeOfImm(Desc)); | 
|  | break; | 
|  |  | 
|  | case X86II::MRMSrcMem: | 
|  | MCE.emitByte(BaseOpcode); | 
|  | emitMemModRMByte(MI, 1, getX86RegNum(MI.getOperand(0).getReg())); | 
|  | if (MI.getNumOperands() == 2+4) | 
|  | emitConstant(MI.getOperand(5).getImmedValue(), sizeOfImm(Desc)); | 
|  | break; | 
|  |  | 
|  | case X86II::MRM0r: case X86II::MRM1r: | 
|  | case X86II::MRM2r: case X86II::MRM3r: | 
|  | case X86II::MRM4r: case X86II::MRM5r: | 
|  | case X86II::MRM6r: case X86II::MRM7r: | 
|  | MCE.emitByte(BaseOpcode); | 
|  | emitRegModRMByte(MI.getOperand(0).getReg(), | 
|  | (Desc.TSFlags & X86II::FormMask)-X86II::MRM0r); | 
|  |  | 
|  | if (MI.getOperand(MI.getNumOperands()-1).isImmediate()) { | 
|  | emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(), | 
|  | sizeOfImm(Desc)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case X86II::MRM0m: case X86II::MRM1m: | 
|  | case X86II::MRM2m: case X86II::MRM3m: | 
|  | case X86II::MRM4m: case X86II::MRM5m: | 
|  | case X86II::MRM6m: case X86II::MRM7m: | 
|  | MCE.emitByte(BaseOpcode); | 
|  | emitMemModRMByte(MI, 0, (Desc.TSFlags & X86II::FormMask)-X86II::MRM0m); | 
|  |  | 
|  | if (MI.getNumOperands() == 5) { | 
|  | if (MI.getOperand(4).isImmediate()) | 
|  | emitConstant(MI.getOperand(4).getImmedValue(), sizeOfImm(Desc)); | 
|  | else if (MI.getOperand(4).isGlobalAddress()) | 
|  | emitGlobalAddressForPtr(MI.getOperand(4).getGlobal(), | 
|  | MI.getOperand(4).getOffset()); | 
|  | else | 
|  | assert(0 && "Unknown operand!"); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } |