|  | //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Peephole optimize the CFG. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "simplifycfg" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/Type.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/GlobalVariable.h" | 
|  | #include "llvm/Support/CFG.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include <algorithm> | 
|  | #include <functional> | 
|  | #include <set> | 
|  | #include <map> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumSpeculations, "Number of speculative executed instructions"); | 
|  |  | 
|  | namespace { | 
|  | class SimplifyCFGOpt { | 
|  | const TargetData *const TD; | 
|  |  | 
|  | ConstantInt *GetConstantInt(Value *V); | 
|  | Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values); | 
|  | Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values); | 
|  | bool GatherValueComparisons(Instruction *Cond, Value *&CompVal, | 
|  | std::vector<ConstantInt*> &Values); | 
|  | Value *isValueEqualityComparison(TerminatorInst *TI); | 
|  | BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, | 
|  | std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases); | 
|  | bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, | 
|  | BasicBlock *Pred); | 
|  | bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI); | 
|  |  | 
|  | public: | 
|  | explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {} | 
|  | bool run(BasicBlock *BB); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// SafeToMergeTerminators - Return true if it is safe to merge these two | 
|  | /// terminator instructions together. | 
|  | /// | 
|  | static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { | 
|  | if (SI1 == SI2) return false;  // Can't merge with self! | 
|  |  | 
|  | // It is not safe to merge these two switch instructions if they have a common | 
|  | // successor, and if that successor has a PHI node, and if *that* PHI node has | 
|  | // conflicting incoming values from the two switch blocks. | 
|  | BasicBlock *SI1BB = SI1->getParent(); | 
|  | BasicBlock *SI2BB = SI2->getParent(); | 
|  | SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); | 
|  |  | 
|  | for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) | 
|  | if (SI1Succs.count(*I)) | 
|  | for (BasicBlock::iterator BBI = (*I)->begin(); | 
|  | isa<PHINode>(BBI); ++BBI) { | 
|  | PHINode *PN = cast<PHINode>(BBI); | 
|  | if (PN->getIncomingValueForBlock(SI1BB) != | 
|  | PN->getIncomingValueForBlock(SI2BB)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will | 
|  | /// now be entries in it from the 'NewPred' block.  The values that will be | 
|  | /// flowing into the PHI nodes will be the same as those coming in from | 
|  | /// ExistPred, an existing predecessor of Succ. | 
|  | static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, | 
|  | BasicBlock *ExistPred) { | 
|  | assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) != | 
|  | succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!"); | 
|  | if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do | 
|  |  | 
|  | PHINode *PN; | 
|  | for (BasicBlock::iterator I = Succ->begin(); | 
|  | (PN = dyn_cast<PHINode>(I)); ++I) | 
|  | PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// GetIfCondition - Given a basic block (BB) with two predecessors (and | 
|  | /// presumably PHI nodes in it), check to see if the merge at this block is due | 
|  | /// to an "if condition".  If so, return the boolean condition that determines | 
|  | /// which entry into BB will be taken.  Also, return by references the block | 
|  | /// that will be entered from if the condition is true, and the block that will | 
|  | /// be entered if the condition is false. | 
|  | /// | 
|  | /// | 
|  | static Value *GetIfCondition(BasicBlock *BB, | 
|  | BasicBlock *&IfTrue, BasicBlock *&IfFalse) { | 
|  | assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 && | 
|  | "Function can only handle blocks with 2 predecessors!"); | 
|  | BasicBlock *Pred1 = *pred_begin(BB); | 
|  | BasicBlock *Pred2 = *++pred_begin(BB); | 
|  |  | 
|  | // We can only handle branches.  Other control flow will be lowered to | 
|  | // branches if possible anyway. | 
|  | if (!isa<BranchInst>(Pred1->getTerminator()) || | 
|  | !isa<BranchInst>(Pred2->getTerminator())) | 
|  | return 0; | 
|  | BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator()); | 
|  | BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator()); | 
|  |  | 
|  | // Eliminate code duplication by ensuring that Pred1Br is conditional if | 
|  | // either are. | 
|  | if (Pred2Br->isConditional()) { | 
|  | // If both branches are conditional, we don't have an "if statement".  In | 
|  | // reality, we could transform this case, but since the condition will be | 
|  | // required anyway, we stand no chance of eliminating it, so the xform is | 
|  | // probably not profitable. | 
|  | if (Pred1Br->isConditional()) | 
|  | return 0; | 
|  |  | 
|  | std::swap(Pred1, Pred2); | 
|  | std::swap(Pred1Br, Pred2Br); | 
|  | } | 
|  |  | 
|  | if (Pred1Br->isConditional()) { | 
|  | // If we found a conditional branch predecessor, make sure that it branches | 
|  | // to BB and Pred2Br.  If it doesn't, this isn't an "if statement". | 
|  | if (Pred1Br->getSuccessor(0) == BB && | 
|  | Pred1Br->getSuccessor(1) == Pred2) { | 
|  | IfTrue = Pred1; | 
|  | IfFalse = Pred2; | 
|  | } else if (Pred1Br->getSuccessor(0) == Pred2 && | 
|  | Pred1Br->getSuccessor(1) == BB) { | 
|  | IfTrue = Pred2; | 
|  | IfFalse = Pred1; | 
|  | } else { | 
|  | // We know that one arm of the conditional goes to BB, so the other must | 
|  | // go somewhere unrelated, and this must not be an "if statement". | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The only thing we have to watch out for here is to make sure that Pred2 | 
|  | // doesn't have incoming edges from other blocks.  If it does, the condition | 
|  | // doesn't dominate BB. | 
|  | if (++pred_begin(Pred2) != pred_end(Pred2)) | 
|  | return 0; | 
|  |  | 
|  | return Pred1Br->getCondition(); | 
|  | } | 
|  |  | 
|  | // Ok, if we got here, both predecessors end with an unconditional branch to | 
|  | // BB.  Don't panic!  If both blocks only have a single (identical) | 
|  | // predecessor, and THAT is a conditional branch, then we're all ok! | 
|  | if (pred_begin(Pred1) == pred_end(Pred1) || | 
|  | ++pred_begin(Pred1) != pred_end(Pred1) || | 
|  | pred_begin(Pred2) == pred_end(Pred2) || | 
|  | ++pred_begin(Pred2) != pred_end(Pred2) || | 
|  | *pred_begin(Pred1) != *pred_begin(Pred2)) | 
|  | return 0; | 
|  |  | 
|  | // Otherwise, if this is a conditional branch, then we can use it! | 
|  | BasicBlock *CommonPred = *pred_begin(Pred1); | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) { | 
|  | assert(BI->isConditional() && "Two successors but not conditional?"); | 
|  | if (BI->getSuccessor(0) == Pred1) { | 
|  | IfTrue = Pred1; | 
|  | IfFalse = Pred2; | 
|  | } else { | 
|  | IfTrue = Pred2; | 
|  | IfFalse = Pred1; | 
|  | } | 
|  | return BI->getCondition(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// DominatesMergePoint - If we have a merge point of an "if condition" as | 
|  | /// accepted above, return true if the specified value dominates the block.  We | 
|  | /// don't handle the true generality of domination here, just a special case | 
|  | /// which works well enough for us. | 
|  | /// | 
|  | /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to | 
|  | /// see if V (which must be an instruction) is cheap to compute and is | 
|  | /// non-trapping.  If both are true, the instruction is inserted into the set | 
|  | /// and true is returned. | 
|  | static bool DominatesMergePoint(Value *V, BasicBlock *BB, | 
|  | std::set<Instruction*> *AggressiveInsts) { | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) { | 
|  | // Non-instructions all dominate instructions, but not all constantexprs | 
|  | // can be executed unconditionally. | 
|  | if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) | 
|  | if (C->canTrap()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | BasicBlock *PBB = I->getParent(); | 
|  |  | 
|  | // We don't want to allow weird loops that might have the "if condition" in | 
|  | // the bottom of this block. | 
|  | if (PBB == BB) return false; | 
|  |  | 
|  | // If this instruction is defined in a block that contains an unconditional | 
|  | // branch to BB, then it must be in the 'conditional' part of the "if | 
|  | // statement". | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator())) | 
|  | if (BI->isUnconditional() && BI->getSuccessor(0) == BB) { | 
|  | if (!AggressiveInsts) return false; | 
|  | // Okay, it looks like the instruction IS in the "condition".  Check to | 
|  | // see if it's a cheap instruction to unconditionally compute, and if it | 
|  | // only uses stuff defined outside of the condition.  If so, hoist it out. | 
|  | if (!I->isSafeToSpeculativelyExecute()) | 
|  | return false; | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | default: return false;  // Cannot hoist this out safely. | 
|  | case Instruction::Load: { | 
|  | // We have to check to make sure there are no instructions before the | 
|  | // load in its basic block, as we are going to hoist the loop out to | 
|  | // its predecessor. | 
|  | BasicBlock::iterator IP = PBB->begin(); | 
|  | while (isa<DbgInfoIntrinsic>(IP)) | 
|  | IP++; | 
|  | if (IP != BasicBlock::iterator(I)) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | case Instruction::ICmp: | 
|  | break;   // These are all cheap and non-trapping instructions. | 
|  | } | 
|  |  | 
|  | // Okay, we can only really hoist these out if their operands are not | 
|  | // defined in the conditional region. | 
|  | for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) | 
|  | if (!DominatesMergePoint(*i, BB, 0)) | 
|  | return false; | 
|  | // Okay, it's safe to do this!  Remember this instruction. | 
|  | AggressiveInsts->insert(I); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr | 
|  | /// and PointerNullValue. Return NULL if value is not a constant int. | 
|  | ConstantInt *SimplifyCFGOpt::GetConstantInt(Value *V) { | 
|  | // Normal constant int. | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(V); | 
|  | if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy()) | 
|  | return CI; | 
|  |  | 
|  | // This is some kind of pointer constant. Turn it into a pointer-sized | 
|  | // ConstantInt if possible. | 
|  | const IntegerType *PtrTy = TD->getIntPtrType(V->getContext()); | 
|  |  | 
|  | // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). | 
|  | if (isa<ConstantPointerNull>(V)) | 
|  | return ConstantInt::get(PtrTy, 0); | 
|  |  | 
|  | // IntToPtr const int. | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) | 
|  | if (CE->getOpcode() == Instruction::IntToPtr) | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { | 
|  | // The constant is very likely to have the right type already. | 
|  | if (CI->getType() == PtrTy) | 
|  | return CI; | 
|  | else | 
|  | return cast<ConstantInt> | 
|  | (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// GatherConstantSetEQs - Given a potentially 'or'd together collection of | 
|  | /// icmp_eq instructions that compare a value against a constant, return the | 
|  | /// value being compared, and stick the constant into the Values vector. | 
|  | Value *SimplifyCFGOpt:: | 
|  | GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values) { | 
|  | if (Instruction *Inst = dyn_cast<Instruction>(V)) { | 
|  | if (Inst->getOpcode() == Instruction::ICmp && | 
|  | cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) { | 
|  | if (ConstantInt *C = GetConstantInt(Inst->getOperand(1))) { | 
|  | Values.push_back(C); | 
|  | return Inst->getOperand(0); | 
|  | } else if (ConstantInt *C = GetConstantInt(Inst->getOperand(0))) { | 
|  | Values.push_back(C); | 
|  | return Inst->getOperand(1); | 
|  | } | 
|  | } else if (Inst->getOpcode() == Instruction::Or) { | 
|  | if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values)) | 
|  | if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values)) | 
|  | if (LHS == RHS) | 
|  | return LHS; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// GatherConstantSetNEs - Given a potentially 'and'd together collection of | 
|  | /// setne instructions that compare a value against a constant, return the value | 
|  | /// being compared, and stick the constant into the Values vector. | 
|  | Value *SimplifyCFGOpt:: | 
|  | GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values) { | 
|  | if (Instruction *Inst = dyn_cast<Instruction>(V)) { | 
|  | if (Inst->getOpcode() == Instruction::ICmp && | 
|  | cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) { | 
|  | if (ConstantInt *C = GetConstantInt(Inst->getOperand(1))) { | 
|  | Values.push_back(C); | 
|  | return Inst->getOperand(0); | 
|  | } else if (ConstantInt *C = GetConstantInt(Inst->getOperand(0))) { | 
|  | Values.push_back(C); | 
|  | return Inst->getOperand(1); | 
|  | } | 
|  | } else if (Inst->getOpcode() == Instruction::And) { | 
|  | if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values)) | 
|  | if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values)) | 
|  | if (LHS == RHS) | 
|  | return LHS; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a | 
|  | /// bunch of comparisons of one value against constants, return the value and | 
|  | /// the constants being compared. | 
|  | bool SimplifyCFGOpt::GatherValueComparisons(Instruction *Cond, Value *&CompVal, | 
|  | std::vector<ConstantInt*> &Values) { | 
|  | if (Cond->getOpcode() == Instruction::Or) { | 
|  | CompVal = GatherConstantSetEQs(Cond, Values); | 
|  |  | 
|  | // Return true to indicate that the condition is true if the CompVal is | 
|  | // equal to one of the constants. | 
|  | return true; | 
|  | } else if (Cond->getOpcode() == Instruction::And) { | 
|  | CompVal = GatherConstantSetNEs(Cond, Values); | 
|  |  | 
|  | // Return false to indicate that the condition is false if the CompVal is | 
|  | // equal to one of the constants. | 
|  | return false; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { | 
|  | Instruction* Cond = 0; | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
|  | Cond = dyn_cast<Instruction>(SI->getCondition()); | 
|  | } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { | 
|  | if (BI->isConditional()) | 
|  | Cond = dyn_cast<Instruction>(BI->getCondition()); | 
|  | } | 
|  |  | 
|  | TI->eraseFromParent(); | 
|  | if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); | 
|  | } | 
|  |  | 
|  | /// isValueEqualityComparison - Return true if the specified terminator checks | 
|  | /// to see if a value is equal to constant integer value. | 
|  | Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { | 
|  | Value *CV = 0; | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
|  | // Do not permit merging of large switch instructions into their | 
|  | // predecessors unless there is only one predecessor. | 
|  | if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), | 
|  | pred_end(SI->getParent())) <= 128) | 
|  | CV = SI->getCondition(); | 
|  | } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) | 
|  | if (BI->isConditional() && BI->getCondition()->hasOneUse()) | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) | 
|  | if ((ICI->getPredicate() == ICmpInst::ICMP_EQ || | 
|  | ICI->getPredicate() == ICmpInst::ICMP_NE) && | 
|  | GetConstantInt(ICI->getOperand(1))) | 
|  | CV = ICI->getOperand(0); | 
|  |  | 
|  | // Unwrap any lossless ptrtoint cast. | 
|  | if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext())) | 
|  | if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) | 
|  | CV = PTII->getOperand(0); | 
|  | return CV; | 
|  | } | 
|  |  | 
|  | /// GetValueEqualityComparisonCases - Given a value comparison instruction, | 
|  | /// decode all of the 'cases' that it represents and return the 'default' block. | 
|  | BasicBlock *SimplifyCFGOpt:: | 
|  | GetValueEqualityComparisonCases(TerminatorInst *TI, | 
|  | std::vector<std::pair<ConstantInt*, | 
|  | BasicBlock*> > &Cases) { | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
|  | Cases.reserve(SI->getNumCases()); | 
|  | for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) | 
|  | Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i))); | 
|  | return SI->getDefaultDest(); | 
|  | } | 
|  |  | 
|  | BranchInst *BI = cast<BranchInst>(TI); | 
|  | ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); | 
|  | Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1)), | 
|  | BI->getSuccessor(ICI->getPredicate() == | 
|  | ICmpInst::ICMP_NE))); | 
|  | return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries | 
|  | /// in the list that match the specified block. | 
|  | static void EliminateBlockCases(BasicBlock *BB, | 
|  | std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) { | 
|  | for (unsigned i = 0, e = Cases.size(); i != e; ++i) | 
|  | if (Cases[i].second == BB) { | 
|  | Cases.erase(Cases.begin()+i); | 
|  | --i; --e; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as | 
|  | /// well. | 
|  | static bool | 
|  | ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1, | 
|  | std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) { | 
|  | std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2; | 
|  |  | 
|  | // Make V1 be smaller than V2. | 
|  | if (V1->size() > V2->size()) | 
|  | std::swap(V1, V2); | 
|  |  | 
|  | if (V1->size() == 0) return false; | 
|  | if (V1->size() == 1) { | 
|  | // Just scan V2. | 
|  | ConstantInt *TheVal = (*V1)[0].first; | 
|  | for (unsigned i = 0, e = V2->size(); i != e; ++i) | 
|  | if (TheVal == (*V2)[i].first) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, just sort both lists and compare element by element. | 
|  | std::sort(V1->begin(), V1->end()); | 
|  | std::sort(V2->begin(), V2->end()); | 
|  | unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); | 
|  | while (i1 != e1 && i2 != e2) { | 
|  | if ((*V1)[i1].first == (*V2)[i2].first) | 
|  | return true; | 
|  | if ((*V1)[i1].first < (*V2)[i2].first) | 
|  | ++i1; | 
|  | else | 
|  | ++i2; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a | 
|  | /// terminator instruction and its block is known to only have a single | 
|  | /// predecessor block, check to see if that predecessor is also a value | 
|  | /// comparison with the same value, and if that comparison determines the | 
|  | /// outcome of this comparison.  If so, simplify TI.  This does a very limited | 
|  | /// form of jump threading. | 
|  | bool SimplifyCFGOpt:: | 
|  | SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, | 
|  | BasicBlock *Pred) { | 
|  | Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); | 
|  | if (!PredVal) return false;  // Not a value comparison in predecessor. | 
|  |  | 
|  | Value *ThisVal = isValueEqualityComparison(TI); | 
|  | assert(ThisVal && "This isn't a value comparison!!"); | 
|  | if (ThisVal != PredVal) return false;  // Different predicates. | 
|  |  | 
|  | // Find out information about when control will move from Pred to TI's block. | 
|  | std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases; | 
|  | BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), | 
|  | PredCases); | 
|  | EliminateBlockCases(PredDef, PredCases);  // Remove default from cases. | 
|  |  | 
|  | // Find information about how control leaves this block. | 
|  | std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases; | 
|  | BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); | 
|  | EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases. | 
|  |  | 
|  | // If TI's block is the default block from Pred's comparison, potentially | 
|  | // simplify TI based on this knowledge. | 
|  | if (PredDef == TI->getParent()) { | 
|  | // If we are here, we know that the value is none of those cases listed in | 
|  | // PredCases.  If there are any cases in ThisCases that are in PredCases, we | 
|  | // can simplify TI. | 
|  | if (ValuesOverlap(PredCases, ThisCases)) { | 
|  | if (isa<BranchInst>(TI)) { | 
|  | // Okay, one of the successors of this condbr is dead.  Convert it to a | 
|  | // uncond br. | 
|  | assert(ThisCases.size() == 1 && "Branch can only have one case!"); | 
|  | // Insert the new branch. | 
|  | Instruction *NI = BranchInst::Create(ThisDef, TI); | 
|  | (void) NI; | 
|  |  | 
|  | // Remove PHI node entries for the dead edge. | 
|  | ThisCases[0].second->removePredecessor(TI->getParent()); | 
|  |  | 
|  | DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() | 
|  | << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); | 
|  |  | 
|  | EraseTerminatorInstAndDCECond(TI); | 
|  | return true; | 
|  |  | 
|  | } else { | 
|  | SwitchInst *SI = cast<SwitchInst>(TI); | 
|  | // Okay, TI has cases that are statically dead, prune them away. | 
|  | SmallPtrSet<Constant*, 16> DeadCases; | 
|  | for (unsigned i = 0, e = PredCases.size(); i != e; ++i) | 
|  | DeadCases.insert(PredCases[i].first); | 
|  |  | 
|  | DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() | 
|  | << "Through successor TI: " << *TI); | 
|  |  | 
|  | for (unsigned i = SI->getNumCases()-1; i != 0; --i) | 
|  | if (DeadCases.count(SI->getCaseValue(i))) { | 
|  | SI->getSuccessor(i)->removePredecessor(TI->getParent()); | 
|  | SI->removeCase(i); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Leaving: " << *TI << "\n"); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | } else { | 
|  | // Otherwise, TI's block must correspond to some matched value.  Find out | 
|  | // which value (or set of values) this is. | 
|  | ConstantInt *TIV = 0; | 
|  | BasicBlock *TIBB = TI->getParent(); | 
|  | for (unsigned i = 0, e = PredCases.size(); i != e; ++i) | 
|  | if (PredCases[i].second == TIBB) { | 
|  | if (TIV == 0) | 
|  | TIV = PredCases[i].first; | 
|  | else | 
|  | return false;  // Cannot handle multiple values coming to this block. | 
|  | } | 
|  | assert(TIV && "No edge from pred to succ?"); | 
|  |  | 
|  | // Okay, we found the one constant that our value can be if we get into TI's | 
|  | // BB.  Find out which successor will unconditionally be branched to. | 
|  | BasicBlock *TheRealDest = 0; | 
|  | for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) | 
|  | if (ThisCases[i].first == TIV) { | 
|  | TheRealDest = ThisCases[i].second; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If not handled by any explicit cases, it is handled by the default case. | 
|  | if (TheRealDest == 0) TheRealDest = ThisDef; | 
|  |  | 
|  | // Remove PHI node entries for dead edges. | 
|  | BasicBlock *CheckEdge = TheRealDest; | 
|  | for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) | 
|  | if (*SI != CheckEdge) | 
|  | (*SI)->removePredecessor(TIBB); | 
|  | else | 
|  | CheckEdge = 0; | 
|  |  | 
|  | // Insert the new branch. | 
|  | Instruction *NI = BranchInst::Create(TheRealDest, TI); | 
|  | (void) NI; | 
|  |  | 
|  | DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() | 
|  | << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); | 
|  |  | 
|  | EraseTerminatorInstAndDCECond(TI); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// ConstantIntOrdering - This class implements a stable ordering of constant | 
|  | /// integers that does not depend on their address.  This is important for | 
|  | /// applications that sort ConstantInt's to ensure uniqueness. | 
|  | struct ConstantIntOrdering { | 
|  | bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { | 
|  | return LHS->getValue().ult(RHS->getValue()); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// FoldValueComparisonIntoPredecessors - The specified terminator is a value | 
|  | /// equality comparison instruction (either a switch or a branch on "X == c"). | 
|  | /// See if any of the predecessors of the terminator block are value comparisons | 
|  | /// on the same value.  If so, and if safe to do so, fold them together. | 
|  | bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI) { | 
|  | BasicBlock *BB = TI->getParent(); | 
|  | Value *CV = isValueEqualityComparison(TI);  // CondVal | 
|  | assert(CV && "Not a comparison?"); | 
|  | bool Changed = false; | 
|  |  | 
|  | SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); | 
|  | while (!Preds.empty()) { | 
|  | BasicBlock *Pred = Preds.pop_back_val(); | 
|  |  | 
|  | // See if the predecessor is a comparison with the same value. | 
|  | TerminatorInst *PTI = Pred->getTerminator(); | 
|  | Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal | 
|  |  | 
|  | if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { | 
|  | // Figure out which 'cases' to copy from SI to PSI. | 
|  | std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases; | 
|  | BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); | 
|  |  | 
|  | std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases; | 
|  | BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); | 
|  |  | 
|  | // Based on whether the default edge from PTI goes to BB or not, fill in | 
|  | // PredCases and PredDefault with the new switch cases we would like to | 
|  | // build. | 
|  | SmallVector<BasicBlock*, 8> NewSuccessors; | 
|  |  | 
|  | if (PredDefault == BB) { | 
|  | // If this is the default destination from PTI, only the edges in TI | 
|  | // that don't occur in PTI, or that branch to BB will be activated. | 
|  | std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; | 
|  | for (unsigned i = 0, e = PredCases.size(); i != e; ++i) | 
|  | if (PredCases[i].second != BB) | 
|  | PTIHandled.insert(PredCases[i].first); | 
|  | else { | 
|  | // The default destination is BB, we don't need explicit targets. | 
|  | std::swap(PredCases[i], PredCases.back()); | 
|  | PredCases.pop_back(); | 
|  | --i; --e; | 
|  | } | 
|  |  | 
|  | // Reconstruct the new switch statement we will be building. | 
|  | if (PredDefault != BBDefault) { | 
|  | PredDefault->removePredecessor(Pred); | 
|  | PredDefault = BBDefault; | 
|  | NewSuccessors.push_back(BBDefault); | 
|  | } | 
|  | for (unsigned i = 0, e = BBCases.size(); i != e; ++i) | 
|  | if (!PTIHandled.count(BBCases[i].first) && | 
|  | BBCases[i].second != BBDefault) { | 
|  | PredCases.push_back(BBCases[i]); | 
|  | NewSuccessors.push_back(BBCases[i].second); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | // If this is not the default destination from PSI, only the edges | 
|  | // in SI that occur in PSI with a destination of BB will be | 
|  | // activated. | 
|  | std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; | 
|  | for (unsigned i = 0, e = PredCases.size(); i != e; ++i) | 
|  | if (PredCases[i].second == BB) { | 
|  | PTIHandled.insert(PredCases[i].first); | 
|  | std::swap(PredCases[i], PredCases.back()); | 
|  | PredCases.pop_back(); | 
|  | --i; --e; | 
|  | } | 
|  |  | 
|  | // Okay, now we know which constants were sent to BB from the | 
|  | // predecessor.  Figure out where they will all go now. | 
|  | for (unsigned i = 0, e = BBCases.size(); i != e; ++i) | 
|  | if (PTIHandled.count(BBCases[i].first)) { | 
|  | // If this is one we are capable of getting... | 
|  | PredCases.push_back(BBCases[i]); | 
|  | NewSuccessors.push_back(BBCases[i].second); | 
|  | PTIHandled.erase(BBCases[i].first);// This constant is taken care of | 
|  | } | 
|  |  | 
|  | // If there are any constants vectored to BB that TI doesn't handle, | 
|  | // they must go to the default destination of TI. | 
|  | for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = | 
|  | PTIHandled.begin(), | 
|  | E = PTIHandled.end(); I != E; ++I) { | 
|  | PredCases.push_back(std::make_pair(*I, BBDefault)); | 
|  | NewSuccessors.push_back(BBDefault); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, at this point, we know which new successor Pred will get.  Make | 
|  | // sure we update the number of entries in the PHI nodes for these | 
|  | // successors. | 
|  | for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) | 
|  | AddPredecessorToBlock(NewSuccessors[i], Pred, BB); | 
|  |  | 
|  | // Convert pointer to int before we switch. | 
|  | if (CV->getType()->isPointerTy()) { | 
|  | assert(TD && "Cannot switch on pointer without TargetData"); | 
|  | CV = new PtrToIntInst(CV, TD->getIntPtrType(CV->getContext()), | 
|  | "magicptr", PTI); | 
|  | } | 
|  |  | 
|  | // Now that the successors are updated, create the new Switch instruction. | 
|  | SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault, | 
|  | PredCases.size(), PTI); | 
|  | for (unsigned i = 0, e = PredCases.size(); i != e; ++i) | 
|  | NewSI->addCase(PredCases[i].first, PredCases[i].second); | 
|  |  | 
|  | EraseTerminatorInstAndDCECond(PTI); | 
|  |  | 
|  | // Okay, last check.  If BB is still a successor of PSI, then we must | 
|  | // have an infinite loop case.  If so, add an infinitely looping block | 
|  | // to handle the case to preserve the behavior of the code. | 
|  | BasicBlock *InfLoopBlock = 0; | 
|  | for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) | 
|  | if (NewSI->getSuccessor(i) == BB) { | 
|  | if (InfLoopBlock == 0) { | 
|  | // Insert it at the end of the function, because it's either code, | 
|  | // or it won't matter if it's hot. :) | 
|  | InfLoopBlock = BasicBlock::Create(BB->getContext(), | 
|  | "infloop", BB->getParent()); | 
|  | BranchInst::Create(InfLoopBlock, InfLoopBlock); | 
|  | } | 
|  | NewSI->setSuccessor(i, InfLoopBlock); | 
|  | } | 
|  |  | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // isSafeToHoistInvoke - If we would need to insert a select that uses the | 
|  | // value of this invoke (comments in HoistThenElseCodeToIf explain why we | 
|  | // would need to do this), we can't hoist the invoke, as there is nowhere | 
|  | // to put the select in this case. | 
|  | static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, | 
|  | Instruction *I1, Instruction *I2) { | 
|  | for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { | 
|  | PHINode *PN; | 
|  | for (BasicBlock::iterator BBI = SI->begin(); | 
|  | (PN = dyn_cast<PHINode>(BBI)); ++BBI) { | 
|  | Value *BB1V = PN->getIncomingValueForBlock(BB1); | 
|  | Value *BB2V = PN->getIncomingValueForBlock(BB2); | 
|  | if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and | 
|  | /// BB2, hoist any common code in the two blocks up into the branch block.  The | 
|  | /// caller of this function guarantees that BI's block dominates BB1 and BB2. | 
|  | static bool HoistThenElseCodeToIf(BranchInst *BI) { | 
|  | // This does very trivial matching, with limited scanning, to find identical | 
|  | // instructions in the two blocks.  In particular, we don't want to get into | 
|  | // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As | 
|  | // such, we currently just scan for obviously identical instructions in an | 
|  | // identical order. | 
|  | BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination. | 
|  | BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination | 
|  |  | 
|  | BasicBlock::iterator BB1_Itr = BB1->begin(); | 
|  | BasicBlock::iterator BB2_Itr = BB2->begin(); | 
|  |  | 
|  | Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; | 
|  | while (isa<DbgInfoIntrinsic>(I1)) | 
|  | I1 = BB1_Itr++; | 
|  | while (isa<DbgInfoIntrinsic>(I2)) | 
|  | I2 = BB2_Itr++; | 
|  | if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) || | 
|  | !I1->isIdenticalToWhenDefined(I2) || | 
|  | (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) | 
|  | return false; | 
|  |  | 
|  | // If we get here, we can hoist at least one instruction. | 
|  | BasicBlock *BIParent = BI->getParent(); | 
|  |  | 
|  | do { | 
|  | // If we are hoisting the terminator instruction, don't move one (making a | 
|  | // broken BB), instead clone it, and remove BI. | 
|  | if (isa<TerminatorInst>(I1)) | 
|  | goto HoistTerminator; | 
|  |  | 
|  | // For a normal instruction, we just move one to right before the branch, | 
|  | // then replace all uses of the other with the first.  Finally, we remove | 
|  | // the now redundant second instruction. | 
|  | BIParent->getInstList().splice(BI, BB1->getInstList(), I1); | 
|  | if (!I2->use_empty()) | 
|  | I2->replaceAllUsesWith(I1); | 
|  | I1->intersectOptionalDataWith(I2); | 
|  | BB2->getInstList().erase(I2); | 
|  |  | 
|  | I1 = BB1_Itr++; | 
|  | while (isa<DbgInfoIntrinsic>(I1)) | 
|  | I1 = BB1_Itr++; | 
|  | I2 = BB2_Itr++; | 
|  | while (isa<DbgInfoIntrinsic>(I2)) | 
|  | I2 = BB2_Itr++; | 
|  | } while (I1->getOpcode() == I2->getOpcode() && | 
|  | I1->isIdenticalToWhenDefined(I2)); | 
|  |  | 
|  | return true; | 
|  |  | 
|  | HoistTerminator: | 
|  | // It may not be possible to hoist an invoke. | 
|  | if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) | 
|  | return true; | 
|  |  | 
|  | // Okay, it is safe to hoist the terminator. | 
|  | Instruction *NT = I1->clone(); | 
|  | BIParent->getInstList().insert(BI, NT); | 
|  | if (!NT->getType()->isVoidTy()) { | 
|  | I1->replaceAllUsesWith(NT); | 
|  | I2->replaceAllUsesWith(NT); | 
|  | NT->takeName(I1); | 
|  | } | 
|  |  | 
|  | // Hoisting one of the terminators from our successor is a great thing. | 
|  | // Unfortunately, the successors of the if/else blocks may have PHI nodes in | 
|  | // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI | 
|  | // nodes, so we insert select instruction to compute the final result. | 
|  | std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; | 
|  | for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { | 
|  | PHINode *PN; | 
|  | for (BasicBlock::iterator BBI = SI->begin(); | 
|  | (PN = dyn_cast<PHINode>(BBI)); ++BBI) { | 
|  | Value *BB1V = PN->getIncomingValueForBlock(BB1); | 
|  | Value *BB2V = PN->getIncomingValueForBlock(BB2); | 
|  | if (BB1V != BB2V) { | 
|  | // These values do not agree.  Insert a select instruction before NT | 
|  | // that determines the right value. | 
|  | SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; | 
|  | if (SI == 0) | 
|  | SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V, | 
|  | BB1V->getName()+"."+BB2V->getName(), NT); | 
|  | // Make the PHI node use the select for all incoming values for BB1/BB2 | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) | 
|  | PN->setIncomingValue(i, SI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update any PHI nodes in our new successors. | 
|  | for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) | 
|  | AddPredecessorToBlock(*SI, BIParent, BB1); | 
|  |  | 
|  | EraseTerminatorInstAndDCECond(BI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1 | 
|  | /// and an BB2 and the only successor of BB1 is BB2, hoist simple code | 
|  | /// (for now, restricted to a single instruction that's side effect free) from | 
|  | /// the BB1 into the branch block to speculatively execute it. | 
|  | static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) { | 
|  | // Only speculatively execution a single instruction (not counting the | 
|  | // terminator) for now. | 
|  | Instruction *HInst = NULL; | 
|  | Instruction *Term = BB1->getTerminator(); | 
|  | for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end(); | 
|  | BBI != BBE; ++BBI) { | 
|  | Instruction *I = BBI; | 
|  | // Skip debug info. | 
|  | if (isa<DbgInfoIntrinsic>(I))   continue; | 
|  | if (I == Term)  break; | 
|  |  | 
|  | if (!HInst) | 
|  | HInst = I; | 
|  | else | 
|  | return false; | 
|  | } | 
|  | if (!HInst) | 
|  | return false; | 
|  |  | 
|  | // Be conservative for now. FP select instruction can often be expensive. | 
|  | Value *BrCond = BI->getCondition(); | 
|  | if (isa<Instruction>(BrCond) && | 
|  | cast<Instruction>(BrCond)->getOpcode() == Instruction::FCmp) | 
|  | return false; | 
|  |  | 
|  | // If BB1 is actually on the false edge of the conditional branch, remember | 
|  | // to swap the select operands later. | 
|  | bool Invert = false; | 
|  | if (BB1 != BI->getSuccessor(0)) { | 
|  | assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?"); | 
|  | Invert = true; | 
|  | } | 
|  |  | 
|  | // Turn | 
|  | // BB: | 
|  | //     %t1 = icmp | 
|  | //     br i1 %t1, label %BB1, label %BB2 | 
|  | // BB1: | 
|  | //     %t3 = add %t2, c | 
|  | //     br label BB2 | 
|  | // BB2: | 
|  | // => | 
|  | // BB: | 
|  | //     %t1 = icmp | 
|  | //     %t4 = add %t2, c | 
|  | //     %t3 = select i1 %t1, %t2, %t3 | 
|  | switch (HInst->getOpcode()) { | 
|  | default: return false;  // Not safe / profitable to hoist. | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | // Not worth doing for vector ops. | 
|  | if (HInst->getType()->isVectorTy()) | 
|  | return false; | 
|  | break; | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | // Don't mess with vector operations. | 
|  | if (HInst->getType()->isVectorTy()) | 
|  | return false; | 
|  | break;   // These are all cheap and non-trapping instructions. | 
|  | } | 
|  |  | 
|  | // If the instruction is obviously dead, don't try to predicate it. | 
|  | if (HInst->use_empty()) { | 
|  | HInst->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Can we speculatively execute the instruction? And what is the value | 
|  | // if the condition is false? Consider the phi uses, if the incoming value | 
|  | // from the "if" block are all the same V, then V is the value of the | 
|  | // select if the condition is false. | 
|  | BasicBlock *BIParent = BI->getParent(); | 
|  | SmallVector<PHINode*, 4> PHIUses; | 
|  | Value *FalseV = NULL; | 
|  |  | 
|  | BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0); | 
|  | for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end(); | 
|  | UI != E; ++UI) { | 
|  | // Ignore any user that is not a PHI node in BB2.  These can only occur in | 
|  | // unreachable blocks, because they would not be dominated by the instr. | 
|  | PHINode *PN = dyn_cast<PHINode>(*UI); | 
|  | if (!PN || PN->getParent() != BB2) | 
|  | return false; | 
|  | PHIUses.push_back(PN); | 
|  |  | 
|  | Value *PHIV = PN->getIncomingValueForBlock(BIParent); | 
|  | if (!FalseV) | 
|  | FalseV = PHIV; | 
|  | else if (FalseV != PHIV) | 
|  | return false;  // Inconsistent value when condition is false. | 
|  | } | 
|  |  | 
|  | assert(FalseV && "Must have at least one user, and it must be a PHI"); | 
|  |  | 
|  | // Do not hoist the instruction if any of its operands are defined but not | 
|  | // used in this BB. The transformation will prevent the operand from | 
|  | // being sunk into the use block. | 
|  | for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end(); | 
|  | i != e; ++i) { | 
|  | Instruction *OpI = dyn_cast<Instruction>(*i); | 
|  | if (OpI && OpI->getParent() == BIParent && | 
|  | !OpI->isUsedInBasicBlock(BIParent)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we get here, we can hoist the instruction. Try to place it | 
|  | // before the icmp instruction preceding the conditional branch. | 
|  | BasicBlock::iterator InsertPos = BI; | 
|  | if (InsertPos != BIParent->begin()) | 
|  | --InsertPos; | 
|  | // Skip debug info between condition and branch. | 
|  | while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos)) | 
|  | --InsertPos; | 
|  | if (InsertPos == BrCond && !isa<PHINode>(BrCond)) { | 
|  | SmallPtrSet<Instruction *, 4> BB1Insns; | 
|  | for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end(); | 
|  | BB1I != BB1E; ++BB1I) | 
|  | BB1Insns.insert(BB1I); | 
|  | for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | Instruction *Use = cast<Instruction>(*UI); | 
|  | if (BB1Insns.count(Use)) { | 
|  | // If BrCond uses the instruction that place it just before | 
|  | // branch instruction. | 
|  | InsertPos = BI; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else | 
|  | InsertPos = BI; | 
|  | BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst); | 
|  |  | 
|  | // Create a select whose true value is the speculatively executed value and | 
|  | // false value is the previously determined FalseV. | 
|  | SelectInst *SI; | 
|  | if (Invert) | 
|  | SI = SelectInst::Create(BrCond, FalseV, HInst, | 
|  | FalseV->getName() + "." + HInst->getName(), BI); | 
|  | else | 
|  | SI = SelectInst::Create(BrCond, HInst, FalseV, | 
|  | HInst->getName() + "." + FalseV->getName(), BI); | 
|  |  | 
|  | // Make the PHI node use the select for all incoming values for "then" and | 
|  | // "if" blocks. | 
|  | for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) { | 
|  | PHINode *PN = PHIUses[i]; | 
|  | for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j) | 
|  | if (PN->getIncomingBlock(j) == BB1 || | 
|  | PN->getIncomingBlock(j) == BIParent) | 
|  | PN->setIncomingValue(j, SI); | 
|  | } | 
|  |  | 
|  | ++NumSpeculations; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch | 
|  | /// across this block. | 
|  | static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { | 
|  | BranchInst *BI = cast<BranchInst>(BB->getTerminator()); | 
|  | unsigned Size = 0; | 
|  |  | 
|  | for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { | 
|  | if (isa<DbgInfoIntrinsic>(BBI)) | 
|  | continue; | 
|  | if (Size > 10) return false;  // Don't clone large BB's. | 
|  | ++Size; | 
|  |  | 
|  | // We can only support instructions that do not define values that are | 
|  | // live outside of the current basic block. | 
|  | for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); | 
|  | UI != E; ++UI) { | 
|  | Instruction *U = cast<Instruction>(*UI); | 
|  | if (U->getParent() != BB || isa<PHINode>(U)) return false; | 
|  | } | 
|  |  | 
|  | // Looks ok, continue checking. | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value | 
|  | /// that is defined in the same block as the branch and if any PHI entries are | 
|  | /// constants, thread edges corresponding to that entry to be branches to their | 
|  | /// ultimate destination. | 
|  | static bool FoldCondBranchOnPHI(BranchInst *BI) { | 
|  | BasicBlock *BB = BI->getParent(); | 
|  | PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); | 
|  | // NOTE: we currently cannot transform this case if the PHI node is used | 
|  | // outside of the block. | 
|  | if (!PN || PN->getParent() != BB || !PN->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Degenerate case of a single entry PHI. | 
|  | if (PN->getNumIncomingValues() == 1) { | 
|  | FoldSingleEntryPHINodes(PN->getParent()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Now we know that this block has multiple preds and two succs. | 
|  | if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; | 
|  |  | 
|  | // Okay, this is a simple enough basic block.  See if any phi values are | 
|  | // constants. | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | ConstantInt *CB; | 
|  | if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) && | 
|  | CB->getType()->isIntegerTy(1)) { | 
|  | // Okay, we now know that all edges from PredBB should be revectored to | 
|  | // branch to RealDest. | 
|  | BasicBlock *PredBB = PN->getIncomingBlock(i); | 
|  | BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); | 
|  |  | 
|  | if (RealDest == BB) continue;  // Skip self loops. | 
|  |  | 
|  | // The dest block might have PHI nodes, other predecessors and other | 
|  | // difficult cases.  Instead of being smart about this, just insert a new | 
|  | // block that jumps to the destination block, effectively splitting | 
|  | // the edge we are about to create. | 
|  | BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), | 
|  | RealDest->getName()+".critedge", | 
|  | RealDest->getParent(), RealDest); | 
|  | BranchInst::Create(RealDest, EdgeBB); | 
|  | PHINode *PN; | 
|  | for (BasicBlock::iterator BBI = RealDest->begin(); | 
|  | (PN = dyn_cast<PHINode>(BBI)); ++BBI) { | 
|  | Value *V = PN->getIncomingValueForBlock(BB); | 
|  | PN->addIncoming(V, EdgeBB); | 
|  | } | 
|  |  | 
|  | // BB may have instructions that are being threaded over.  Clone these | 
|  | // instructions into EdgeBB.  We know that there will be no uses of the | 
|  | // cloned instructions outside of EdgeBB. | 
|  | BasicBlock::iterator InsertPt = EdgeBB->begin(); | 
|  | std::map<Value*, Value*> TranslateMap;  // Track translated values. | 
|  | for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { | 
|  | if (PHINode *PN = dyn_cast<PHINode>(BBI)) { | 
|  | TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); | 
|  | } else { | 
|  | // Clone the instruction. | 
|  | Instruction *N = BBI->clone(); | 
|  | if (BBI->hasName()) N->setName(BBI->getName()+".c"); | 
|  |  | 
|  | // Update operands due to translation. | 
|  | for (User::op_iterator i = N->op_begin(), e = N->op_end(); | 
|  | i != e; ++i) { | 
|  | std::map<Value*, Value*>::iterator PI = | 
|  | TranslateMap.find(*i); | 
|  | if (PI != TranslateMap.end()) | 
|  | *i = PI->second; | 
|  | } | 
|  |  | 
|  | // Check for trivial simplification. | 
|  | if (Constant *C = ConstantFoldInstruction(N)) { | 
|  | TranslateMap[BBI] = C; | 
|  | delete N;   // Constant folded away, don't need actual inst | 
|  | } else { | 
|  | // Insert the new instruction into its new home. | 
|  | EdgeBB->getInstList().insert(InsertPt, N); | 
|  | if (!BBI->use_empty()) | 
|  | TranslateMap[BBI] = N; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Loop over all of the edges from PredBB to BB, changing them to branch | 
|  | // to EdgeBB instead. | 
|  | TerminatorInst *PredBBTI = PredBB->getTerminator(); | 
|  | for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) | 
|  | if (PredBBTI->getSuccessor(i) == BB) { | 
|  | BB->removePredecessor(PredBB); | 
|  | PredBBTI->setSuccessor(i, EdgeBB); | 
|  | } | 
|  |  | 
|  | // Recurse, simplifying any other constants. | 
|  | return FoldCondBranchOnPHI(BI) | true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry | 
|  | /// PHI node, see if we can eliminate it. | 
|  | static bool FoldTwoEntryPHINode(PHINode *PN) { | 
|  | // Ok, this is a two entry PHI node.  Check to see if this is a simple "if | 
|  | // statement", which has a very simple dominance structure.  Basically, we | 
|  | // are trying to find the condition that is being branched on, which | 
|  | // subsequently causes this merge to happen.  We really want control | 
|  | // dependence information for this check, but simplifycfg can't keep it up | 
|  | // to date, and this catches most of the cases we care about anyway. | 
|  | // | 
|  | BasicBlock *BB = PN->getParent(); | 
|  | BasicBlock *IfTrue, *IfFalse; | 
|  | Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); | 
|  | if (!IfCond) return false; | 
|  |  | 
|  | // Okay, we found that we can merge this two-entry phi node into a select. | 
|  | // Doing so would require us to fold *all* two entry phi nodes in this block. | 
|  | // At some point this becomes non-profitable (particularly if the target | 
|  | // doesn't support cmov's).  Only do this transformation if there are two or | 
|  | // fewer PHI nodes in this block. | 
|  | unsigned NumPhis = 0; | 
|  | for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) | 
|  | if (NumPhis > 2) | 
|  | return false; | 
|  |  | 
|  | DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: " | 
|  | << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n"); | 
|  |  | 
|  | // Loop over the PHI's seeing if we can promote them all to select | 
|  | // instructions.  While we are at it, keep track of the instructions | 
|  | // that need to be moved to the dominating block. | 
|  | std::set<Instruction*> AggressiveInsts; | 
|  |  | 
|  | BasicBlock::iterator AfterPHIIt = BB->begin(); | 
|  | while (isa<PHINode>(AfterPHIIt)) { | 
|  | PHINode *PN = cast<PHINode>(AfterPHIIt++); | 
|  | if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) { | 
|  | if (PN->getIncomingValue(0) != PN) | 
|  | PN->replaceAllUsesWith(PN->getIncomingValue(0)); | 
|  | else | 
|  | PN->replaceAllUsesWith(UndefValue::get(PN->getType())); | 
|  | } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB, | 
|  | &AggressiveInsts) || | 
|  | !DominatesMergePoint(PN->getIncomingValue(1), BB, | 
|  | &AggressiveInsts)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we all PHI nodes are promotable, check to make sure that all | 
|  | // instructions in the predecessor blocks can be promoted as well.  If | 
|  | // not, we won't be able to get rid of the control flow, so it's not | 
|  | // worth promoting to select instructions. | 
|  | BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0; | 
|  | PN = cast<PHINode>(BB->begin()); | 
|  | BasicBlock *Pred = PN->getIncomingBlock(0); | 
|  | if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) { | 
|  | IfBlock1 = Pred; | 
|  | DomBlock = *pred_begin(Pred); | 
|  | for (BasicBlock::iterator I = Pred->begin(); | 
|  | !isa<TerminatorInst>(I); ++I) | 
|  | if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { | 
|  | // This is not an aggressive instruction that we can promote. | 
|  | // Because of this, we won't be able to get rid of the control | 
|  | // flow, so the xform is not worth it. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | Pred = PN->getIncomingBlock(1); | 
|  | if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) { | 
|  | IfBlock2 = Pred; | 
|  | DomBlock = *pred_begin(Pred); | 
|  | for (BasicBlock::iterator I = Pred->begin(); | 
|  | !isa<TerminatorInst>(I); ++I) | 
|  | if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { | 
|  | // This is not an aggressive instruction that we can promote. | 
|  | // Because of this, we won't be able to get rid of the control | 
|  | // flow, so the xform is not worth it. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we can still promote the PHI nodes after this gauntlet of tests, | 
|  | // do all of the PHI's now. | 
|  |  | 
|  | // Move all 'aggressive' instructions, which are defined in the | 
|  | // conditional parts of the if's up to the dominating block. | 
|  | if (IfBlock1) { | 
|  | DomBlock->getInstList().splice(DomBlock->getTerminator(), | 
|  | IfBlock1->getInstList(), | 
|  | IfBlock1->begin(), | 
|  | IfBlock1->getTerminator()); | 
|  | } | 
|  | if (IfBlock2) { | 
|  | DomBlock->getInstList().splice(DomBlock->getTerminator(), | 
|  | IfBlock2->getInstList(), | 
|  | IfBlock2->begin(), | 
|  | IfBlock2->getTerminator()); | 
|  | } | 
|  |  | 
|  | while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { | 
|  | // Change the PHI node into a select instruction. | 
|  | Value *TrueVal = | 
|  | PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); | 
|  | Value *FalseVal = | 
|  | PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); | 
|  |  | 
|  | Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", AfterPHIIt); | 
|  | PN->replaceAllUsesWith(NV); | 
|  | NV->takeName(PN); | 
|  |  | 
|  | BB->getInstList().erase(PN); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isTerminatorFirstRelevantInsn - Return true if Term is very first | 
|  | /// instruction ignoring Phi nodes and dbg intrinsics. | 
|  | static bool isTerminatorFirstRelevantInsn(BasicBlock *BB, Instruction *Term) { | 
|  | BasicBlock::iterator BBI = Term; | 
|  | while (BBI != BB->begin()) { | 
|  | --BBI; | 
|  | if (!isa<DbgInfoIntrinsic>(BBI)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (isa<PHINode>(BBI) || &*BBI == Term || isa<DbgInfoIntrinsic>(BBI)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes | 
|  | /// to two returning blocks, try to merge them together into one return, | 
|  | /// introducing a select if the return values disagree. | 
|  | static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) { | 
|  | assert(BI->isConditional() && "Must be a conditional branch"); | 
|  | BasicBlock *TrueSucc = BI->getSuccessor(0); | 
|  | BasicBlock *FalseSucc = BI->getSuccessor(1); | 
|  | ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); | 
|  | ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); | 
|  |  | 
|  | // Check to ensure both blocks are empty (just a return) or optionally empty | 
|  | // with PHI nodes.  If there are other instructions, merging would cause extra | 
|  | // computation on one path or the other. | 
|  | if (!isTerminatorFirstRelevantInsn(TrueSucc, TrueRet)) | 
|  | return false; | 
|  | if (!isTerminatorFirstRelevantInsn(FalseSucc, FalseRet)) | 
|  | return false; | 
|  |  | 
|  | // Okay, we found a branch that is going to two return nodes.  If | 
|  | // there is no return value for this function, just change the | 
|  | // branch into a return. | 
|  | if (FalseRet->getNumOperands() == 0) { | 
|  | TrueSucc->removePredecessor(BI->getParent()); | 
|  | FalseSucc->removePredecessor(BI->getParent()); | 
|  | ReturnInst::Create(BI->getContext(), 0, BI); | 
|  | EraseTerminatorInstAndDCECond(BI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, figure out what the true and false return values are | 
|  | // so we can insert a new select instruction. | 
|  | Value *TrueValue = TrueRet->getReturnValue(); | 
|  | Value *FalseValue = FalseRet->getReturnValue(); | 
|  |  | 
|  | // Unwrap any PHI nodes in the return blocks. | 
|  | if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) | 
|  | if (TVPN->getParent() == TrueSucc) | 
|  | TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); | 
|  | if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) | 
|  | if (FVPN->getParent() == FalseSucc) | 
|  | FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); | 
|  |  | 
|  | // In order for this transformation to be safe, we must be able to | 
|  | // unconditionally execute both operands to the return.  This is | 
|  | // normally the case, but we could have a potentially-trapping | 
|  | // constant expression that prevents this transformation from being | 
|  | // safe. | 
|  | if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) | 
|  | if (TCV->canTrap()) | 
|  | return false; | 
|  | if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) | 
|  | if (FCV->canTrap()) | 
|  | return false; | 
|  |  | 
|  | // Okay, we collected all the mapped values and checked them for sanity, and | 
|  | // defined to really do this transformation.  First, update the CFG. | 
|  | TrueSucc->removePredecessor(BI->getParent()); | 
|  | FalseSucc->removePredecessor(BI->getParent()); | 
|  |  | 
|  | // Insert select instructions where needed. | 
|  | Value *BrCond = BI->getCondition(); | 
|  | if (TrueValue) { | 
|  | // Insert a select if the results differ. | 
|  | if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { | 
|  | } else if (isa<UndefValue>(TrueValue)) { | 
|  | TrueValue = FalseValue; | 
|  | } else { | 
|  | TrueValue = SelectInst::Create(BrCond, TrueValue, | 
|  | FalseValue, "retval", BI); | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *RI = !TrueValue ? | 
|  | ReturnInst::Create(BI->getContext(), BI) : | 
|  | ReturnInst::Create(BI->getContext(), TrueValue, BI); | 
|  | (void) RI; | 
|  |  | 
|  | DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" | 
|  | << "\n  " << *BI << "NewRet = " << *RI | 
|  | << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); | 
|  |  | 
|  | EraseTerminatorInstAndDCECond(BI); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch, | 
|  | /// and if a predecessor branches to us and one of our successors, fold the | 
|  | /// setcc into the predecessor and use logical operations to pick the right | 
|  | /// destination. | 
|  | bool llvm::FoldBranchToCommonDest(BranchInst *BI) { | 
|  | BasicBlock *BB = BI->getParent(); | 
|  | Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); | 
|  | if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || | 
|  | Cond->getParent() != BB || !Cond->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Only allow this if the condition is a simple instruction that can be | 
|  | // executed unconditionally.  It must be in the same block as the branch, and | 
|  | // must be at the front of the block. | 
|  | BasicBlock::iterator FrontIt = BB->front(); | 
|  | // Ignore dbg intrinsics. | 
|  | while(isa<DbgInfoIntrinsic>(FrontIt)) | 
|  | ++FrontIt; | 
|  |  | 
|  | // Allow a single instruction to be hoisted in addition to the compare | 
|  | // that feeds the branch.  We later ensure that any values that _it_ uses | 
|  | // were also live in the predecessor, so that we don't unnecessarily create | 
|  | // register pressure or inhibit out-of-order execution. | 
|  | Instruction *BonusInst = 0; | 
|  | if (&*FrontIt != Cond && | 
|  | FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond && | 
|  | FrontIt->isSafeToSpeculativelyExecute()) { | 
|  | BonusInst = &*FrontIt; | 
|  | ++FrontIt; | 
|  | } | 
|  |  | 
|  | // Only a single bonus inst is allowed. | 
|  | if (&*FrontIt != Cond) | 
|  | return false; | 
|  |  | 
|  | // Make sure the instruction after the condition is the cond branch. | 
|  | BasicBlock::iterator CondIt = Cond; ++CondIt; | 
|  | // Ingore dbg intrinsics. | 
|  | while(isa<DbgInfoIntrinsic>(CondIt)) | 
|  | ++CondIt; | 
|  | if (&*CondIt != BI) { | 
|  | assert (!isa<DbgInfoIntrinsic>(CondIt) && "Hey do not forget debug info!"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Cond is known to be a compare or binary operator.  Check to make sure that | 
|  | // neither operand is a potentially-trapping constant expression. | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) | 
|  | if (CE->canTrap()) | 
|  | return false; | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) | 
|  | if (CE->canTrap()) | 
|  | return false; | 
|  |  | 
|  |  | 
|  | // Finally, don't infinitely unroll conditional loops. | 
|  | BasicBlock *TrueDest  = BI->getSuccessor(0); | 
|  | BasicBlock *FalseDest = BI->getSuccessor(1); | 
|  | if (TrueDest == BB || FalseDest == BB) | 
|  | return false; | 
|  |  | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { | 
|  | BasicBlock *PredBlock = *PI; | 
|  | BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); | 
|  |  | 
|  | // Check that we have two conditional branches.  If there is a PHI node in | 
|  | // the common successor, verify that the same value flows in from both | 
|  | // blocks. | 
|  | if (PBI == 0 || PBI->isUnconditional() || | 
|  | !SafeToMergeTerminators(BI, PBI)) | 
|  | continue; | 
|  |  | 
|  | // Ensure that any values used in the bonus instruction are also used | 
|  | // by the terminator of the predecessor.  This means that those values | 
|  | // must already have been resolved, so we won't be inhibiting the | 
|  | // out-of-order core by speculating them earlier. | 
|  | if (BonusInst) { | 
|  | // Collect the values used by the bonus inst | 
|  | SmallPtrSet<Value*, 4> UsedValues; | 
|  | for (Instruction::op_iterator OI = BonusInst->op_begin(), | 
|  | OE = BonusInst->op_end(); OI != OE; ++OI) { | 
|  | Value* V = *OI; | 
|  | if (!isa<Constant>(V)) | 
|  | UsedValues.insert(V); | 
|  | } | 
|  |  | 
|  | SmallVector<std::pair<Value*, unsigned>, 4> Worklist; | 
|  | Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); | 
|  |  | 
|  | // Walk up to four levels back up the use-def chain of the predecessor's | 
|  | // terminator to see if all those values were used.  The choice of four | 
|  | // levels is arbitrary, to provide a compile-time-cost bound. | 
|  | while (!Worklist.empty()) { | 
|  | std::pair<Value*, unsigned> Pair = Worklist.back(); | 
|  | Worklist.pop_back(); | 
|  |  | 
|  | if (Pair.second >= 4) continue; | 
|  | UsedValues.erase(Pair.first); | 
|  | if (UsedValues.empty()) break; | 
|  |  | 
|  | if (Instruction* I = dyn_cast<Instruction>(Pair.first)) { | 
|  | for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); | 
|  | OI != OE; ++OI) | 
|  | Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!UsedValues.empty()) return false; | 
|  | } | 
|  |  | 
|  | Instruction::BinaryOps Opc; | 
|  | bool InvertPredCond = false; | 
|  |  | 
|  | if (PBI->getSuccessor(0) == TrueDest) | 
|  | Opc = Instruction::Or; | 
|  | else if (PBI->getSuccessor(1) == FalseDest) | 
|  | Opc = Instruction::And; | 
|  | else if (PBI->getSuccessor(0) == FalseDest) | 
|  | Opc = Instruction::And, InvertPredCond = true; | 
|  | else if (PBI->getSuccessor(1) == TrueDest) | 
|  | Opc = Instruction::Or, InvertPredCond = true; | 
|  | else | 
|  | continue; | 
|  |  | 
|  | DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); | 
|  |  | 
|  | // If we need to invert the condition in the pred block to match, do so now. | 
|  | if (InvertPredCond) { | 
|  | Value *NewCond = | 
|  | BinaryOperator::CreateNot(PBI->getCondition(), | 
|  | PBI->getCondition()->getName()+".not", PBI); | 
|  | PBI->setCondition(NewCond); | 
|  | BasicBlock *OldTrue = PBI->getSuccessor(0); | 
|  | BasicBlock *OldFalse = PBI->getSuccessor(1); | 
|  | PBI->setSuccessor(0, OldFalse); | 
|  | PBI->setSuccessor(1, OldTrue); | 
|  | } | 
|  |  | 
|  | // If we have a bonus inst, clone it into the predecessor block. | 
|  | Instruction *NewBonus = 0; | 
|  | if (BonusInst) { | 
|  | NewBonus = BonusInst->clone(); | 
|  | PredBlock->getInstList().insert(PBI, NewBonus); | 
|  | NewBonus->takeName(BonusInst); | 
|  | BonusInst->setName(BonusInst->getName()+".old"); | 
|  | } | 
|  |  | 
|  | // Clone Cond into the predecessor basic block, and or/and the | 
|  | // two conditions together. | 
|  | Instruction *New = Cond->clone(); | 
|  | if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); | 
|  | PredBlock->getInstList().insert(PBI, New); | 
|  | New->takeName(Cond); | 
|  | Cond->setName(New->getName()+".old"); | 
|  |  | 
|  | Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(), | 
|  | New, "or.cond", PBI); | 
|  | PBI->setCondition(NewCond); | 
|  | if (PBI->getSuccessor(0) == BB) { | 
|  | AddPredecessorToBlock(TrueDest, PredBlock, BB); | 
|  | PBI->setSuccessor(0, TrueDest); | 
|  | } | 
|  | if (PBI->getSuccessor(1) == BB) { | 
|  | AddPredecessorToBlock(FalseDest, PredBlock, BB); | 
|  | PBI->setSuccessor(1, FalseDest); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a | 
|  | /// predecessor of another block, this function tries to simplify it.  We know | 
|  | /// that PBI and BI are both conditional branches, and BI is in one of the | 
|  | /// successor blocks of PBI - PBI branches to BI. | 
|  | static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { | 
|  | assert(PBI->isConditional() && BI->isConditional()); | 
|  | BasicBlock *BB = BI->getParent(); | 
|  |  | 
|  | // If this block ends with a branch instruction, and if there is a | 
|  | // predecessor that ends on a branch of the same condition, make | 
|  | // this conditional branch redundant. | 
|  | if (PBI->getCondition() == BI->getCondition() && | 
|  | PBI->getSuccessor(0) != PBI->getSuccessor(1)) { | 
|  | // Okay, the outcome of this conditional branch is statically | 
|  | // knowable.  If this block had a single pred, handle specially. | 
|  | if (BB->getSinglePredecessor()) { | 
|  | // Turn this into a branch on constant. | 
|  | bool CondIsTrue = PBI->getSuccessor(0) == BB; | 
|  | BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), | 
|  | CondIsTrue)); | 
|  | return true;  // Nuke the branch on constant. | 
|  | } | 
|  |  | 
|  | // Otherwise, if there are multiple predecessors, insert a PHI that merges | 
|  | // in the constant and simplify the block result.  Subsequent passes of | 
|  | // simplifycfg will thread the block. | 
|  | if (BlockIsSimpleEnoughToThreadThrough(BB)) { | 
|  | PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), | 
|  | BI->getCondition()->getName() + ".pr", | 
|  | BB->begin()); | 
|  | // Okay, we're going to insert the PHI node.  Since PBI is not the only | 
|  | // predecessor, compute the PHI'd conditional value for all of the preds. | 
|  | // Any predecessor where the condition is not computable we keep symbolic. | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { | 
|  | BasicBlock *P = *PI; | 
|  | if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && | 
|  | PBI != BI && PBI->isConditional() && | 
|  | PBI->getCondition() == BI->getCondition() && | 
|  | PBI->getSuccessor(0) != PBI->getSuccessor(1)) { | 
|  | bool CondIsTrue = PBI->getSuccessor(0) == BB; | 
|  | NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), | 
|  | CondIsTrue), P); | 
|  | } else { | 
|  | NewPN->addIncoming(BI->getCondition(), P); | 
|  | } | 
|  | } | 
|  |  | 
|  | BI->setCondition(NewPN); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a conditional branch in an empty block, and if any | 
|  | // predecessors is a conditional branch to one of our destinations, | 
|  | // fold the conditions into logical ops and one cond br. | 
|  | BasicBlock::iterator BBI = BB->begin(); | 
|  | // Ignore dbg intrinsics. | 
|  | while (isa<DbgInfoIntrinsic>(BBI)) | 
|  | ++BBI; | 
|  | if (&*BBI != BI) | 
|  | return false; | 
|  |  | 
|  |  | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) | 
|  | if (CE->canTrap()) | 
|  | return false; | 
|  |  | 
|  | int PBIOp, BIOp; | 
|  | if (PBI->getSuccessor(0) == BI->getSuccessor(0)) | 
|  | PBIOp = BIOp = 0; | 
|  | else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) | 
|  | PBIOp = 0, BIOp = 1; | 
|  | else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) | 
|  | PBIOp = 1, BIOp = 0; | 
|  | else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) | 
|  | PBIOp = BIOp = 1; | 
|  | else | 
|  | return false; | 
|  |  | 
|  | // Check to make sure that the other destination of this branch | 
|  | // isn't BB itself.  If so, this is an infinite loop that will | 
|  | // keep getting unwound. | 
|  | if (PBI->getSuccessor(PBIOp) == BB) | 
|  | return false; | 
|  |  | 
|  | // Do not perform this transformation if it would require | 
|  | // insertion of a large number of select instructions. For targets | 
|  | // without predication/cmovs, this is a big pessimization. | 
|  | BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); | 
|  |  | 
|  | unsigned NumPhis = 0; | 
|  | for (BasicBlock::iterator II = CommonDest->begin(); | 
|  | isa<PHINode>(II); ++II, ++NumPhis) | 
|  | if (NumPhis > 2) // Disable this xform. | 
|  | return false; | 
|  |  | 
|  | // Finally, if everything is ok, fold the branches to logical ops. | 
|  | BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1); | 
|  |  | 
|  | DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() | 
|  | << "AND: " << *BI->getParent()); | 
|  |  | 
|  |  | 
|  | // If OtherDest *is* BB, then BB is a basic block with a single conditional | 
|  | // branch in it, where one edge (OtherDest) goes back to itself but the other | 
|  | // exits.  We don't *know* that the program avoids the infinite loop | 
|  | // (even though that seems likely).  If we do this xform naively, we'll end up | 
|  | // recursively unpeeling the loop.  Since we know that (after the xform is | 
|  | // done) that the block *is* infinite if reached, we just make it an obviously | 
|  | // infinite loop with no cond branch. | 
|  | if (OtherDest == BB) { | 
|  | // Insert it at the end of the function, because it's either code, | 
|  | // or it won't matter if it's hot. :) | 
|  | BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), | 
|  | "infloop", BB->getParent()); | 
|  | BranchInst::Create(InfLoopBlock, InfLoopBlock); | 
|  | OtherDest = InfLoopBlock; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << *PBI->getParent()->getParent()); | 
|  |  | 
|  | // BI may have other predecessors.  Because of this, we leave | 
|  | // it alone, but modify PBI. | 
|  |  | 
|  | // Make sure we get to CommonDest on True&True directions. | 
|  | Value *PBICond = PBI->getCondition(); | 
|  | if (PBIOp) | 
|  | PBICond = BinaryOperator::CreateNot(PBICond, | 
|  | PBICond->getName()+".not", | 
|  | PBI); | 
|  | Value *BICond = BI->getCondition(); | 
|  | if (BIOp) | 
|  | BICond = BinaryOperator::CreateNot(BICond, | 
|  | BICond->getName()+".not", | 
|  | PBI); | 
|  | // Merge the conditions. | 
|  | Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI); | 
|  |  | 
|  | // Modify PBI to branch on the new condition to the new dests. | 
|  | PBI->setCondition(Cond); | 
|  | PBI->setSuccessor(0, CommonDest); | 
|  | PBI->setSuccessor(1, OtherDest); | 
|  |  | 
|  | // OtherDest may have phi nodes.  If so, add an entry from PBI's | 
|  | // block that are identical to the entries for BI's block. | 
|  | PHINode *PN; | 
|  | for (BasicBlock::iterator II = OtherDest->begin(); | 
|  | (PN = dyn_cast<PHINode>(II)); ++II) { | 
|  | Value *V = PN->getIncomingValueForBlock(BB); | 
|  | PN->addIncoming(V, PBI->getParent()); | 
|  | } | 
|  |  | 
|  | // We know that the CommonDest already had an edge from PBI to | 
|  | // it.  If it has PHIs though, the PHIs may have different | 
|  | // entries for BB and PBI's BB.  If so, insert a select to make | 
|  | // them agree. | 
|  | for (BasicBlock::iterator II = CommonDest->begin(); | 
|  | (PN = dyn_cast<PHINode>(II)); ++II) { | 
|  | Value *BIV = PN->getIncomingValueForBlock(BB); | 
|  | unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); | 
|  | Value *PBIV = PN->getIncomingValue(PBBIdx); | 
|  | if (BIV != PBIV) { | 
|  | // Insert a select in PBI to pick the right value. | 
|  | Value *NV = SelectInst::Create(PBICond, PBIV, BIV, | 
|  | PBIV->getName()+".mux", PBI); | 
|  | PN->setIncomingValue(PBBIdx, NV); | 
|  | } | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "INTO: " << *PBI->getParent()); | 
|  | DEBUG(dbgs() << *PBI->getParent()->getParent()); | 
|  |  | 
|  | // This basic block is probably dead.  We know it has at least | 
|  | // one fewer predecessor. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SimplifyCFGOpt::run(BasicBlock *BB) { | 
|  | bool Changed = false; | 
|  | Function *M = BB->getParent(); | 
|  |  | 
|  | assert(BB && BB->getParent() && "Block not embedded in function!"); | 
|  | assert(BB->getTerminator() && "Degenerate basic block encountered!"); | 
|  | assert(&BB->getParent()->getEntryBlock() != BB && | 
|  | "Can't Simplify entry block!"); | 
|  |  | 
|  | // Remove basic blocks that have no predecessors... or that just have themself | 
|  | // as a predecessor.  These are unreachable. | 
|  | if (pred_begin(BB) == pred_end(BB) || BB->getSinglePredecessor() == BB) { | 
|  | DEBUG(dbgs() << "Removing BB: \n" << *BB); | 
|  | DeleteDeadBlock(BB); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check to see if we can constant propagate this terminator instruction | 
|  | // away... | 
|  | Changed |= ConstantFoldTerminator(BB); | 
|  |  | 
|  | // Check for and eliminate duplicate PHI nodes in this block. | 
|  | Changed |= EliminateDuplicatePHINodes(BB); | 
|  |  | 
|  | // If there is a trivial two-entry PHI node in this basic block, and we can | 
|  | // eliminate it, do so now. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) | 
|  | if (PN->getNumIncomingValues() == 2) | 
|  | Changed |= FoldTwoEntryPHINode(PN); | 
|  |  | 
|  | // If this is a returning block with only PHI nodes in it, fold the return | 
|  | // instruction into any unconditional branch predecessors. | 
|  | // | 
|  | // If any predecessor is a conditional branch that just selects among | 
|  | // different return values, fold the replace the branch/return with a select | 
|  | // and return. | 
|  | if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { | 
|  | if (isTerminatorFirstRelevantInsn(BB, BB->getTerminator())) { | 
|  | // Find predecessors that end with branches. | 
|  | SmallVector<BasicBlock*, 8> UncondBranchPreds; | 
|  | SmallVector<BranchInst*, 8> CondBranchPreds; | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { | 
|  | BasicBlock *P = *PI; | 
|  | TerminatorInst *PTI = P->getTerminator(); | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { | 
|  | if (BI->isUnconditional()) | 
|  | UncondBranchPreds.push_back(P); | 
|  | else | 
|  | CondBranchPreds.push_back(BI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we found some, do the transformation! | 
|  | if (!UncondBranchPreds.empty()) { | 
|  | while (!UncondBranchPreds.empty()) { | 
|  | BasicBlock *Pred = UncondBranchPreds.pop_back_val(); | 
|  | DEBUG(dbgs() << "FOLDING: " << *BB | 
|  | << "INTO UNCOND BRANCH PRED: " << *Pred); | 
|  | Instruction *UncondBranch = Pred->getTerminator(); | 
|  | // Clone the return and add it to the end of the predecessor. | 
|  | Instruction *NewRet = RI->clone(); | 
|  | Pred->getInstList().push_back(NewRet); | 
|  |  | 
|  | // If the return instruction returns a value, and if the value was a | 
|  | // PHI node in "BB", propagate the right value into the return. | 
|  | for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); | 
|  | i != e; ++i) | 
|  | if (PHINode *PN = dyn_cast<PHINode>(*i)) | 
|  | if (PN->getParent() == BB) | 
|  | *i = PN->getIncomingValueForBlock(Pred); | 
|  |  | 
|  | // Update any PHI nodes in the returning block to realize that we no | 
|  | // longer branch to them. | 
|  | BB->removePredecessor(Pred); | 
|  | Pred->getInstList().erase(UncondBranch); | 
|  | } | 
|  |  | 
|  | // If we eliminated all predecessors of the block, delete the block now. | 
|  | if (pred_begin(BB) == pred_end(BB)) | 
|  | // We know there are no successors, so just nuke the block. | 
|  | M->getBasicBlockList().erase(BB); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check out all of the conditional branches going to this return | 
|  | // instruction.  If any of them just select between returns, change the | 
|  | // branch itself into a select/return pair. | 
|  | while (!CondBranchPreds.empty()) { | 
|  | BranchInst *BI = CondBranchPreds.pop_back_val(); | 
|  |  | 
|  | // Check to see if the non-BB successor is also a return block. | 
|  | if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && | 
|  | isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && | 
|  | SimplifyCondBranchToTwoReturns(BI)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } else if (isa<UnwindInst>(BB->begin())) { | 
|  | // Check to see if the first instruction in this block is just an unwind. | 
|  | // If so, replace any invoke instructions which use this as an exception | 
|  | // destination with call instructions. | 
|  | // | 
|  | SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); | 
|  | while (!Preds.empty()) { | 
|  | BasicBlock *Pred = Preds.back(); | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator())) | 
|  | if (II->getUnwindDest() == BB) { | 
|  | // Insert a new branch instruction before the invoke, because this | 
|  | // is now a fall through. | 
|  | BranchInst *BI = BranchInst::Create(II->getNormalDest(), II); | 
|  | Pred->getInstList().remove(II);   // Take out of symbol table | 
|  |  | 
|  | // Insert the call now. | 
|  | SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3); | 
|  | CallInst *CI = CallInst::Create(II->getCalledValue(), | 
|  | Args.begin(), Args.end(), | 
|  | II->getName(), BI); | 
|  | CI->setCallingConv(II->getCallingConv()); | 
|  | CI->setAttributes(II->getAttributes()); | 
|  | // If the invoke produced a value, the Call now does instead. | 
|  | II->replaceAllUsesWith(CI); | 
|  | delete II; | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | Preds.pop_back(); | 
|  | } | 
|  |  | 
|  | // If this block is now dead, remove it. | 
|  | if (pred_begin(BB) == pred_end(BB)) { | 
|  | // We know there are no successors, so just nuke the block. | 
|  | M->getBasicBlockList().erase(BB); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { | 
|  | if (isValueEqualityComparison(SI)) { | 
|  | // If we only have one predecessor, and if it is a branch on this value, | 
|  | // see if that predecessor totally determines the outcome of this switch. | 
|  | if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) | 
|  | if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred)) | 
|  | return SimplifyCFG(BB) || 1; | 
|  |  | 
|  | // If the block only contains the switch, see if we can fold the block | 
|  | // away into any preds. | 
|  | BasicBlock::iterator BBI = BB->begin(); | 
|  | // Ignore dbg intrinsics. | 
|  | while (isa<DbgInfoIntrinsic>(BBI)) | 
|  | ++BBI; | 
|  | if (SI == &*BBI) | 
|  | if (FoldValueComparisonIntoPredecessors(SI)) | 
|  | return SimplifyCFG(BB) || 1; | 
|  | } | 
|  | } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { | 
|  | if (BI->isUnconditional()) { | 
|  | BasicBlock::iterator BBI = BB->getFirstNonPHI(); | 
|  |  | 
|  | // Ignore dbg intrinsics. | 
|  | while (isa<DbgInfoIntrinsic>(BBI)) | 
|  | ++BBI; | 
|  | if (BBI->isTerminator()) // Terminator is the only non-phi instruction! | 
|  | if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) | 
|  | return true; | 
|  |  | 
|  | } else {  // Conditional branch | 
|  | if (isValueEqualityComparison(BI)) { | 
|  | // If we only have one predecessor, and if it is a branch on this value, | 
|  | // see if that predecessor totally determines the outcome of this | 
|  | // switch. | 
|  | if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) | 
|  | if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred)) | 
|  | return SimplifyCFG(BB) | true; | 
|  |  | 
|  | // This block must be empty, except for the setcond inst, if it exists. | 
|  | // Ignore dbg intrinsics. | 
|  | BasicBlock::iterator I = BB->begin(); | 
|  | // Ignore dbg intrinsics. | 
|  | while (isa<DbgInfoIntrinsic>(I)) | 
|  | ++I; | 
|  | if (&*I == BI) { | 
|  | if (FoldValueComparisonIntoPredecessors(BI)) | 
|  | return SimplifyCFG(BB) | true; | 
|  | } else if (&*I == cast<Instruction>(BI->getCondition())){ | 
|  | ++I; | 
|  | // Ignore dbg intrinsics. | 
|  | while (isa<DbgInfoIntrinsic>(I)) | 
|  | ++I; | 
|  | if(&*I == BI) { | 
|  | if (FoldValueComparisonIntoPredecessors(BI)) | 
|  | return SimplifyCFG(BB) | true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a branch on a phi node in the current block, thread control | 
|  | // through this block if any PHI node entries are constants. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) | 
|  | if (PN->getParent() == BI->getParent()) | 
|  | if (FoldCondBranchOnPHI(BI)) | 
|  | return SimplifyCFG(BB) | true; | 
|  |  | 
|  | // If this basic block is ONLY a setcc and a branch, and if a predecessor | 
|  | // branches to us and one of our successors, fold the setcc into the | 
|  | // predecessor and use logical operations to pick the right destination. | 
|  | if (FoldBranchToCommonDest(BI)) | 
|  | return SimplifyCFG(BB) | true; | 
|  |  | 
|  |  | 
|  | // Scan predecessor blocks for conditional branches. | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) | 
|  | if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) | 
|  | if (PBI != BI && PBI->isConditional()) | 
|  | if (SimplifyCondBranchToCondBranch(PBI, BI)) | 
|  | return SimplifyCFG(BB) | true; | 
|  | } | 
|  | } else if (isa<UnreachableInst>(BB->getTerminator())) { | 
|  | // If there are any instructions immediately before the unreachable that can | 
|  | // be removed, do so. | 
|  | Instruction *Unreachable = BB->getTerminator(); | 
|  | while (Unreachable != BB->begin()) { | 
|  | BasicBlock::iterator BBI = Unreachable; | 
|  | --BBI; | 
|  | // Do not delete instructions that can have side effects, like calls | 
|  | // (which may never return) and volatile loads and stores. | 
|  | if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; | 
|  |  | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) | 
|  | if (SI->isVolatile()) | 
|  | break; | 
|  |  | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) | 
|  | if (LI->isVolatile()) | 
|  | break; | 
|  |  | 
|  | // Delete this instruction | 
|  | BB->getInstList().erase(BBI); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | // If the unreachable instruction is the first in the block, take a gander | 
|  | // at all of the predecessors of this instruction, and simplify them. | 
|  | if (&BB->front() == Unreachable) { | 
|  | SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); | 
|  | for (unsigned i = 0, e = Preds.size(); i != e; ++i) { | 
|  | TerminatorInst *TI = Preds[i]->getTerminator(); | 
|  |  | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { | 
|  | if (BI->isUnconditional()) { | 
|  | if (BI->getSuccessor(0) == BB) { | 
|  | new UnreachableInst(TI->getContext(), TI); | 
|  | TI->eraseFromParent(); | 
|  | Changed = true; | 
|  | } | 
|  | } else { | 
|  | if (BI->getSuccessor(0) == BB) { | 
|  | BranchInst::Create(BI->getSuccessor(1), BI); | 
|  | EraseTerminatorInstAndDCECond(BI); | 
|  | } else if (BI->getSuccessor(1) == BB) { | 
|  | BranchInst::Create(BI->getSuccessor(0), BI); | 
|  | EraseTerminatorInstAndDCECond(BI); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
|  | for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) | 
|  | if (SI->getSuccessor(i) == BB) { | 
|  | BB->removePredecessor(SI->getParent()); | 
|  | SI->removeCase(i); | 
|  | --i; --e; | 
|  | Changed = true; | 
|  | } | 
|  | // If the default value is unreachable, figure out the most popular | 
|  | // destination and make it the default. | 
|  | if (SI->getSuccessor(0) == BB) { | 
|  | std::map<BasicBlock*, unsigned> Popularity; | 
|  | for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) | 
|  | Popularity[SI->getSuccessor(i)]++; | 
|  |  | 
|  | // Find the most popular block. | 
|  | unsigned MaxPop = 0; | 
|  | BasicBlock *MaxBlock = 0; | 
|  | for (std::map<BasicBlock*, unsigned>::iterator | 
|  | I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { | 
|  | if (I->second > MaxPop) { | 
|  | MaxPop = I->second; | 
|  | MaxBlock = I->first; | 
|  | } | 
|  | } | 
|  | if (MaxBlock) { | 
|  | // Make this the new default, allowing us to delete any explicit | 
|  | // edges to it. | 
|  | SI->setSuccessor(0, MaxBlock); | 
|  | Changed = true; | 
|  |  | 
|  | // If MaxBlock has phinodes in it, remove MaxPop-1 entries from | 
|  | // it. | 
|  | if (isa<PHINode>(MaxBlock->begin())) | 
|  | for (unsigned i = 0; i != MaxPop-1; ++i) | 
|  | MaxBlock->removePredecessor(SI->getParent()); | 
|  |  | 
|  | for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) | 
|  | if (SI->getSuccessor(i) == MaxBlock) { | 
|  | SI->removeCase(i); | 
|  | --i; --e; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { | 
|  | if (II->getUnwindDest() == BB) { | 
|  | // Convert the invoke to a call instruction.  This would be a good | 
|  | // place to note that the call does not throw though. | 
|  | BranchInst *BI = BranchInst::Create(II->getNormalDest(), II); | 
|  | II->removeFromParent();   // Take out of symbol table | 
|  |  | 
|  | // Insert the call now... | 
|  | SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); | 
|  | CallInst *CI = CallInst::Create(II->getCalledValue(), | 
|  | Args.begin(), Args.end(), | 
|  | II->getName(), BI); | 
|  | CI->setCallingConv(II->getCallingConv()); | 
|  | CI->setAttributes(II->getAttributes()); | 
|  | // If the invoke produced a value, the call does now instead. | 
|  | II->replaceAllUsesWith(CI); | 
|  | delete II; | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this block is now dead, remove it. | 
|  | if (pred_begin(BB) == pred_end(BB)) { | 
|  | // We know there are no successors, so just nuke the block. | 
|  | M->getBasicBlockList().erase(BB); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Merge basic blocks into their predecessor if there is only one distinct | 
|  | // pred, and if there is only one distinct successor of the predecessor, and | 
|  | // if there are no PHI nodes. | 
|  | // | 
|  | if (MergeBlockIntoPredecessor(BB)) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, if this block only has a single predecessor, and if that block | 
|  | // is a conditional branch, see if we can hoist any code from this block up | 
|  | // into our predecessor. | 
|  | pred_iterator PI(pred_begin(BB)), PE(pred_end(BB)); | 
|  | BasicBlock *OnlyPred = *PI++; | 
|  | for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same | 
|  | if (*PI != OnlyPred) { | 
|  | OnlyPred = 0;       // There are multiple different predecessors... | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (OnlyPred) | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator())) | 
|  | if (BI->isConditional()) { | 
|  | // Get the other block. | 
|  | BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB); | 
|  | PI = pred_begin(OtherBB); | 
|  | ++PI; | 
|  |  | 
|  | if (PI == pred_end(OtherBB)) { | 
|  | // We have a conditional branch to two blocks that are only reachable | 
|  | // from the condbr.  We know that the condbr dominates the two blocks, | 
|  | // so see if there is any identical code in the "then" and "else" | 
|  | // blocks.  If so, we can hoist it up to the branching block. | 
|  | Changed |= HoistThenElseCodeToIf(BI); | 
|  | } else { | 
|  | BasicBlock* OnlySucc = NULL; | 
|  | for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); | 
|  | SI != SE; ++SI) { | 
|  | if (!OnlySucc) | 
|  | OnlySucc = *SI; | 
|  | else if (*SI != OnlySucc) { | 
|  | OnlySucc = 0;     // There are multiple distinct successors! | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (OnlySucc == OtherBB) { | 
|  | // If BB's only successor is the other successor of the predecessor, | 
|  | // i.e. a triangle, see if we can hoist any code from this block up | 
|  | // to the "if" block. | 
|  | Changed |= SpeculativelyExecuteBB(BI, BB); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator())) | 
|  | // Change br (X == 0 | X == 1), T, F into a switch instruction. | 
|  | if (BI->isConditional() && isa<Instruction>(BI->getCondition())) { | 
|  | Instruction *Cond = cast<Instruction>(BI->getCondition()); | 
|  | // If this is a bunch of seteq's or'd together, or if it's a bunch of | 
|  | // 'setne's and'ed together, collect them. | 
|  | Value *CompVal = 0; | 
|  | std::vector<ConstantInt*> Values; | 
|  | bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values); | 
|  | if (CompVal) { | 
|  | // There might be duplicate constants in the list, which the switch | 
|  | // instruction can't handle, remove them now. | 
|  | std::sort(Values.begin(), Values.end(), ConstantIntOrdering()); | 
|  | Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); | 
|  |  | 
|  | // Figure out which block is which destination. | 
|  | BasicBlock *DefaultBB = BI->getSuccessor(1); | 
|  | BasicBlock *EdgeBB    = BI->getSuccessor(0); | 
|  | if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); | 
|  |  | 
|  | // Convert pointer to int before we switch. | 
|  | if (CompVal->getType()->isPointerTy()) { | 
|  | assert(TD && "Cannot switch on pointer without TargetData"); | 
|  | CompVal = new PtrToIntInst(CompVal, | 
|  | TD->getIntPtrType(CompVal->getContext()), | 
|  | "magicptr", BI); | 
|  | } | 
|  |  | 
|  | // Create the new switch instruction now. | 
|  | SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB, | 
|  | Values.size(), BI); | 
|  |  | 
|  | // Add all of the 'cases' to the switch instruction. | 
|  | for (unsigned i = 0, e = Values.size(); i != e; ++i) | 
|  | New->addCase(Values[i], EdgeBB); | 
|  |  | 
|  | // We added edges from PI to the EdgeBB.  As such, if there were any | 
|  | // PHI nodes in EdgeBB, they need entries to be added corresponding to | 
|  | // the number of edges added. | 
|  | for (BasicBlock::iterator BBI = EdgeBB->begin(); | 
|  | isa<PHINode>(BBI); ++BBI) { | 
|  | PHINode *PN = cast<PHINode>(BBI); | 
|  | Value *InVal = PN->getIncomingValueForBlock(*PI); | 
|  | for (unsigned i = 0, e = Values.size()-1; i != e; ++i) | 
|  | PN->addIncoming(InVal, *PI); | 
|  | } | 
|  |  | 
|  | // Erase the old branch instruction. | 
|  | EraseTerminatorInstAndDCECond(BI); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// SimplifyCFG - This function is used to do simplification of a CFG.  For | 
|  | /// example, it adjusts branches to branches to eliminate the extra hop, it | 
|  | /// eliminates unreachable basic blocks, and does other "peephole" optimization | 
|  | /// of the CFG.  It returns true if a modification was made. | 
|  | /// | 
|  | /// WARNING:  The entry node of a function may not be simplified. | 
|  | /// | 
|  | bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) { | 
|  | return SimplifyCFGOpt(TD).run(BB); | 
|  | } |