| //===-- X86OptimizeLEAs.cpp - optimize usage of LEA instructions ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the pass that performs some optimizations with LEA |
| // instructions in order to improve code size. |
| // Currently, it does two things: |
| // 1) If there are two LEA instructions calculating addresses which only differ |
| // by displacement inside a basic block, one of them is removed. |
| // 2) Address calculations in load and store instructions are replaced by |
| // existing LEA def registers where possible. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "X86Subtarget.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "x86-optimize-LEAs" |
| |
| static cl::opt<bool> EnableX86LEAOpt("enable-x86-lea-opt", cl::Hidden, |
| cl::desc("X86: Enable LEA optimizations."), |
| cl::init(false)); |
| |
| STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions"); |
| STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed"); |
| |
| namespace { |
| class OptimizeLEAPass : public MachineFunctionPass { |
| public: |
| OptimizeLEAPass() : MachineFunctionPass(ID) {} |
| |
| const char *getPassName() const override { return "X86 LEA Optimize"; } |
| |
| /// \brief Loop over all of the basic blocks, replacing address |
| /// calculations in load and store instructions, if it's already |
| /// been calculated by LEA. Also, remove redundant LEAs. |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| private: |
| /// \brief Returns a distance between two instructions inside one basic block. |
| /// Negative result means, that instructions occur in reverse order. |
| int calcInstrDist(const MachineInstr &First, const MachineInstr &Last); |
| |
| /// \brief Choose the best \p LEA instruction from the \p List to replace |
| /// address calculation in \p MI instruction. Return the address displacement |
| /// and the distance between \p MI and the choosen \p LEA in \p AddrDispShift |
| /// and \p Dist. |
| bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, |
| const MachineInstr &MI, MachineInstr *&LEA, |
| int64_t &AddrDispShift, int &Dist); |
| |
| /// \brief Returns true if two machine operand are identical and they are not |
| /// physical registers. |
| bool isIdenticalOp(const MachineOperand &MO1, const MachineOperand &MO2); |
| |
| /// \brief Returns true if the instruction is LEA. |
| bool isLEA(const MachineInstr &MI); |
| |
| /// \brief Returns true if the \p Last LEA instruction can be replaced by the |
| /// \p First. The difference between displacements of the addresses calculated |
| /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper |
| /// replacement of the \p Last LEA's uses with the \p First's def register. |
| bool isReplaceable(const MachineInstr &First, const MachineInstr &Last, |
| int64_t &AddrDispShift); |
| |
| /// \brief Returns true if two instructions have memory operands that only |
| /// differ by displacement. The numbers of the first memory operands for both |
| /// instructions are specified through \p N1 and \p N2. The address |
| /// displacement is returned through AddrDispShift. |
| bool isSimilarMemOp(const MachineInstr &MI1, unsigned N1, |
| const MachineInstr &MI2, unsigned N2, |
| int64_t &AddrDispShift); |
| |
| /// \brief Find all LEA instructions in the basic block. Also, assign position |
| /// numbers to all instructions in the basic block to speed up calculation of |
| /// distance between them. |
| void findLEAs(const MachineBasicBlock &MBB, |
| SmallVectorImpl<MachineInstr *> &List); |
| |
| /// \brief Removes redundant address calculations. |
| bool removeRedundantAddrCalc(const SmallVectorImpl<MachineInstr *> &List); |
| |
| /// \brief Removes LEAs which calculate similar addresses. |
| bool removeRedundantLEAs(SmallVectorImpl<MachineInstr *> &List); |
| |
| DenseMap<const MachineInstr *, unsigned> InstrPos; |
| |
| MachineRegisterInfo *MRI; |
| const X86InstrInfo *TII; |
| const X86RegisterInfo *TRI; |
| |
| static char ID; |
| }; |
| char OptimizeLEAPass::ID = 0; |
| } |
| |
| FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); } |
| |
| int OptimizeLEAPass::calcInstrDist(const MachineInstr &First, |
| const MachineInstr &Last) { |
| // Both instructions must be in the same basic block and they must be |
| // presented in InstrPos. |
| assert(Last.getParent() == First.getParent() && |
| "Instructions are in different basic blocks"); |
| assert(InstrPos.find(&First) != InstrPos.end() && |
| InstrPos.find(&Last) != InstrPos.end() && |
| "Instructions' positions are undefined"); |
| |
| return InstrPos[&Last] - InstrPos[&First]; |
| } |
| |
| // Find the best LEA instruction in the List to replace address recalculation in |
| // MI. Such LEA must meet these requirements: |
| // 1) The address calculated by the LEA differs only by the displacement from |
| // the address used in MI. |
| // 2) The register class of the definition of the LEA is compatible with the |
| // register class of the address base register of MI. |
| // 3) Displacement of the new memory operand should fit in 1 byte if possible. |
| // 4) The LEA should be as close to MI as possible, and prior to it if |
| // possible. |
| bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, |
| const MachineInstr &MI, MachineInstr *&LEA, |
| int64_t &AddrDispShift, int &Dist) { |
| const MachineFunction *MF = MI.getParent()->getParent(); |
| const MCInstrDesc &Desc = MI.getDesc(); |
| int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode()) + |
| X86II::getOperandBias(Desc); |
| |
| LEA = nullptr; |
| |
| // Loop over all LEA instructions. |
| for (auto DefMI : List) { |
| int64_t AddrDispShiftTemp = 0; |
| |
| // Compare instructions memory operands. |
| if (!isSimilarMemOp(MI, MemOpNo, *DefMI, 1, AddrDispShiftTemp)) |
| continue; |
| |
| // Make sure address displacement fits 4 bytes. |
| if (!isInt<32>(AddrDispShiftTemp)) |
| continue; |
| |
| // Check that LEA def register can be used as MI address base. Some |
| // instructions can use a limited set of registers as address base, for |
| // example MOV8mr_NOREX. We could constrain the register class of the LEA |
| // def to suit MI, however since this case is very rare and hard to |
| // reproduce in a test it's just more reliable to skip the LEA. |
| if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) != |
| MRI->getRegClass(DefMI->getOperand(0).getReg())) |
| continue; |
| |
| // Choose the closest LEA instruction from the list, prior to MI if |
| // possible. Note that we took into account resulting address displacement |
| // as well. Also note that the list is sorted by the order in which the LEAs |
| // occur, so the break condition is pretty simple. |
| int DistTemp = calcInstrDist(*DefMI, MI); |
| assert(DistTemp != 0 && |
| "The distance between two different instructions cannot be zero"); |
| if (DistTemp > 0 || LEA == nullptr) { |
| // Do not update return LEA, if the current one provides a displacement |
| // which fits in 1 byte, while the new candidate does not. |
| if (LEA != nullptr && !isInt<8>(AddrDispShiftTemp) && |
| isInt<8>(AddrDispShift)) |
| continue; |
| |
| LEA = DefMI; |
| AddrDispShift = AddrDispShiftTemp; |
| Dist = DistTemp; |
| } |
| |
| // FIXME: Maybe we should not always stop at the first LEA after MI. |
| if (DistTemp < 0) |
| break; |
| } |
| |
| return LEA != nullptr; |
| } |
| |
| bool OptimizeLEAPass::isIdenticalOp(const MachineOperand &MO1, |
| const MachineOperand &MO2) { |
| return MO1.isIdenticalTo(MO2) && |
| (!MO1.isReg() || |
| !TargetRegisterInfo::isPhysicalRegister(MO1.getReg())); |
| } |
| |
| bool OptimizeLEAPass::isLEA(const MachineInstr &MI) { |
| unsigned Opcode = MI.getOpcode(); |
| return Opcode == X86::LEA16r || Opcode == X86::LEA32r || |
| Opcode == X86::LEA64r || Opcode == X86::LEA64_32r; |
| } |
| |
| // Check that the Last LEA can be replaced by the First LEA. To be so, |
| // these requirements must be met: |
| // 1) Addresses calculated by LEAs differ only by displacement. |
| // 2) Def registers of LEAs belong to the same class. |
| // 3) All uses of the Last LEA def register are replaceable, thus the |
| // register is used only as address base. |
| bool OptimizeLEAPass::isReplaceable(const MachineInstr &First, |
| const MachineInstr &Last, |
| int64_t &AddrDispShift) { |
| assert(isLEA(First) && isLEA(Last) && |
| "The function works only with LEA instructions"); |
| |
| // Compare instructions' memory operands. |
| if (!isSimilarMemOp(Last, 1, First, 1, AddrDispShift)) |
| return false; |
| |
| // Make sure that LEA def registers belong to the same class. There may be |
| // instructions (like MOV8mr_NOREX) which allow a limited set of registers to |
| // be used as their operands, so we must be sure that replacing one LEA |
| // with another won't lead to putting a wrong register in the instruction. |
| if (MRI->getRegClass(First.getOperand(0).getReg()) != |
| MRI->getRegClass(Last.getOperand(0).getReg())) |
| return false; |
| |
| // Loop over all uses of the Last LEA to check that its def register is |
| // used only as address base for memory accesses. If so, it can be |
| // replaced, otherwise - no. |
| for (auto &MO : MRI->use_operands(Last.getOperand(0).getReg())) { |
| MachineInstr &MI = *MO.getParent(); |
| |
| // Get the number of the first memory operand. |
| const MCInstrDesc &Desc = MI.getDesc(); |
| int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode()); |
| |
| // If the use instruction has no memory operand - the LEA is not |
| // replaceable. |
| if (MemOpNo < 0) |
| return false; |
| |
| MemOpNo += X86II::getOperandBias(Desc); |
| |
| // If the address base of the use instruction is not the LEA def register - |
| // the LEA is not replaceable. |
| if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO)) |
| return false; |
| |
| // If the LEA def register is used as any other operand of the use |
| // instruction - the LEA is not replaceable. |
| for (unsigned i = 0; i < MI.getNumOperands(); i++) |
| if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) && |
| isIdenticalOp(MI.getOperand(i), MO)) |
| return false; |
| |
| // Check that the new address displacement will fit 4 bytes. |
| if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() && |
| !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() + |
| AddrDispShift)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Check if MI1 and MI2 have memory operands which represent addresses that |
| // differ only by displacement. |
| bool OptimizeLEAPass::isSimilarMemOp(const MachineInstr &MI1, unsigned N1, |
| const MachineInstr &MI2, unsigned N2, |
| int64_t &AddrDispShift) { |
| // Address base, scale, index and segment operands must be identical. |
| static const int IdenticalOpNums[] = {X86::AddrBaseReg, X86::AddrScaleAmt, |
| X86::AddrIndexReg, X86::AddrSegmentReg}; |
| for (auto &N : IdenticalOpNums) |
| if (!isIdenticalOp(MI1.getOperand(N1 + N), MI2.getOperand(N2 + N))) |
| return false; |
| |
| // Address displacement operands may differ by a constant. |
| const MachineOperand *Op1 = &MI1.getOperand(N1 + X86::AddrDisp); |
| const MachineOperand *Op2 = &MI2.getOperand(N2 + X86::AddrDisp); |
| if (!isIdenticalOp(*Op1, *Op2)) { |
| if (Op1->isImm() && Op2->isImm()) |
| AddrDispShift = Op1->getImm() - Op2->getImm(); |
| else if (Op1->isGlobal() && Op2->isGlobal() && |
| Op1->getGlobal() == Op2->getGlobal()) |
| AddrDispShift = Op1->getOffset() - Op2->getOffset(); |
| else |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, |
| SmallVectorImpl<MachineInstr *> &List) { |
| unsigned Pos = 0; |
| for (auto &MI : MBB) { |
| // Assign the position number to the instruction. Note that we are going to |
| // move some instructions during the optimization however there will never |
| // be a need to move two instructions before any selected instruction. So to |
| // avoid multiple positions' updates during moves we just increase position |
| // counter by two leaving a free space for instructions which will be moved. |
| InstrPos[&MI] = Pos += 2; |
| |
| if (isLEA(MI)) |
| List.push_back(const_cast<MachineInstr *>(&MI)); |
| } |
| } |
| |
| // Try to find load and store instructions which recalculate addresses already |
| // calculated by some LEA and replace their memory operands with its def |
| // register. |
| bool OptimizeLEAPass::removeRedundantAddrCalc( |
| const SmallVectorImpl<MachineInstr *> &List) { |
| bool Changed = false; |
| |
| assert(List.size() > 0); |
| MachineBasicBlock *MBB = List[0]->getParent(); |
| |
| // Process all instructions in basic block. |
| for (auto I = MBB->begin(), E = MBB->end(); I != E;) { |
| MachineInstr &MI = *I++; |
| unsigned Opcode = MI.getOpcode(); |
| |
| // Instruction must be load or store. |
| if (!MI.mayLoadOrStore()) |
| continue; |
| |
| // Get the number of the first memory operand. |
| const MCInstrDesc &Desc = MI.getDesc(); |
| int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, Opcode); |
| |
| // If instruction has no memory operand - skip it. |
| if (MemOpNo < 0) |
| continue; |
| |
| MemOpNo += X86II::getOperandBias(Desc); |
| |
| // Get the best LEA instruction to replace address calculation. |
| MachineInstr *DefMI; |
| int64_t AddrDispShift; |
| int Dist; |
| if (!chooseBestLEA(List, MI, DefMI, AddrDispShift, Dist)) |
| continue; |
| |
| // If LEA occurs before current instruction, we can freely replace |
| // the instruction. If LEA occurs after, we can lift LEA above the |
| // instruction and this way to be able to replace it. Since LEA and the |
| // instruction have similar memory operands (thus, the same def |
| // instructions for these operands), we can always do that, without |
| // worries of using registers before their defs. |
| if (Dist < 0) { |
| DefMI->removeFromParent(); |
| MBB->insert(MachineBasicBlock::iterator(&MI), DefMI); |
| InstrPos[DefMI] = InstrPos[&MI] - 1; |
| |
| // Make sure the instructions' position numbers are sane. |
| assert(((InstrPos[DefMI] == 1 && DefMI == MBB->begin()) || |
| InstrPos[DefMI] > |
| InstrPos[std::prev(MachineBasicBlock::iterator(DefMI))]) && |
| "Instruction positioning is broken"); |
| } |
| |
| // Since we can possibly extend register lifetime, clear kill flags. |
| MRI->clearKillFlags(DefMI->getOperand(0).getReg()); |
| |
| ++NumSubstLEAs; |
| DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump();); |
| |
| // Change instruction operands. |
| MI.getOperand(MemOpNo + X86::AddrBaseReg) |
| .ChangeToRegister(DefMI->getOperand(0).getReg(), false); |
| MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1); |
| MI.getOperand(MemOpNo + X86::AddrIndexReg) |
| .ChangeToRegister(X86::NoRegister, false); |
| MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift); |
| MI.getOperand(MemOpNo + X86::AddrSegmentReg) |
| .ChangeToRegister(X86::NoRegister, false); |
| |
| DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump();); |
| |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| // Try to find similar LEAs in the list and replace one with another. |
| bool |
| OptimizeLEAPass::removeRedundantLEAs(SmallVectorImpl<MachineInstr *> &List) { |
| bool Changed = false; |
| |
| // Loop over all LEA pairs. |
| auto I1 = List.begin(); |
| while (I1 != List.end()) { |
| MachineInstr &First = **I1; |
| auto I2 = std::next(I1); |
| while (I2 != List.end()) { |
| MachineInstr &Last = **I2; |
| int64_t AddrDispShift; |
| |
| // LEAs should be in occurence order in the list, so we can freely |
| // replace later LEAs with earlier ones. |
| assert(calcInstrDist(First, Last) > 0 && |
| "LEAs must be in occurence order in the list"); |
| |
| // Check that the Last LEA instruction can be replaced by the First. |
| if (!isReplaceable(First, Last, AddrDispShift)) { |
| ++I2; |
| continue; |
| } |
| |
| // Loop over all uses of the Last LEA and update their operands. Note that |
| // the correctness of this has already been checked in the isReplaceable |
| // function. |
| for (auto UI = MRI->use_begin(Last.getOperand(0).getReg()), |
| UE = MRI->use_end(); |
| UI != UE;) { |
| MachineOperand &MO = *UI++; |
| MachineInstr &MI = *MO.getParent(); |
| |
| // Get the number of the first memory operand. |
| const MCInstrDesc &Desc = MI.getDesc(); |
| int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode()) + |
| X86II::getOperandBias(Desc); |
| |
| // Update address base. |
| MO.setReg(First.getOperand(0).getReg()); |
| |
| // Update address disp. |
| MachineOperand *Op = &MI.getOperand(MemOpNo + X86::AddrDisp); |
| if (Op->isImm()) |
| Op->setImm(Op->getImm() + AddrDispShift); |
| else if (Op->isGlobal()) |
| Op->setOffset(Op->getOffset() + AddrDispShift); |
| else |
| llvm_unreachable("Invalid address displacement operand"); |
| } |
| |
| // Since we can possibly extend register lifetime, clear kill flags. |
| MRI->clearKillFlags(First.getOperand(0).getReg()); |
| |
| ++NumRedundantLEAs; |
| DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: "; Last.dump();); |
| |
| // By this moment, all of the Last LEA's uses must be replaced. So we can |
| // freely remove it. |
| assert(MRI->use_empty(Last.getOperand(0).getReg()) && |
| "The LEA's def register must have no uses"); |
| Last.eraseFromParent(); |
| |
| // Erase removed LEA from the list. |
| I2 = List.erase(I2); |
| |
| Changed = true; |
| } |
| ++I1; |
| } |
| |
| return Changed; |
| } |
| |
| bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) { |
| bool Changed = false; |
| |
| // Perform this optimization only if we care about code size. |
| if (!EnableX86LEAOpt || !MF.getFunction()->optForSize()) |
| return false; |
| |
| MRI = &MF.getRegInfo(); |
| TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); |
| TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); |
| |
| // Process all basic blocks. |
| for (auto &MBB : MF) { |
| SmallVector<MachineInstr *, 16> LEAs; |
| InstrPos.clear(); |
| |
| // Find all LEA instructions in basic block. |
| findLEAs(MBB, LEAs); |
| |
| // If current basic block has no LEAs, move on to the next one. |
| if (LEAs.empty()) |
| continue; |
| |
| // Remove redundant LEA instructions. The optimization may have a negative |
| // effect on performance, so do it only for -Oz. |
| if (MF.getFunction()->optForMinSize()) |
| Changed |= removeRedundantLEAs(LEAs); |
| |
| // Remove redundant address calculations. |
| Changed |= removeRedundantAddrCalc(LEAs); |
| } |
| |
| return Changed; |
| } |