|  | //===--- SemaOverload.cpp - C++ Overloading -------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file provides Sema routines for C++ overloading. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/Sema/Overload.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/CXXInheritance.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/ExprObjC.h" | 
|  | #include "clang/AST/TypeOrdering.h" | 
|  | #include "clang/Basic/Diagnostic.h" | 
|  | #include "clang/Basic/DiagnosticOptions.h" | 
|  | #include "clang/Basic/PartialDiagnostic.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Sema/Initialization.h" | 
|  | #include "clang/Sema/Lookup.h" | 
|  | #include "clang/Sema/SemaInternal.h" | 
|  | #include "clang/Sema/Template.h" | 
|  | #include "clang/Sema/TemplateDeduction.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include <algorithm> | 
|  | #include <cstdlib> | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace sema; | 
|  |  | 
|  | /// A convenience routine for creating a decayed reference to a function. | 
|  | static ExprResult | 
|  | CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, | 
|  | bool HadMultipleCandidates, | 
|  | SourceLocation Loc = SourceLocation(), | 
|  | const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){ | 
|  | if (S.DiagnoseUseOfDecl(FoundDecl, Loc)) | 
|  | return ExprError(); | 
|  | // If FoundDecl is different from Fn (such as if one is a template | 
|  | // and the other a specialization), make sure DiagnoseUseOfDecl is | 
|  | // called on both. | 
|  | // FIXME: This would be more comprehensively addressed by modifying | 
|  | // DiagnoseUseOfDecl to accept both the FoundDecl and the decl | 
|  | // being used. | 
|  | if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc)) | 
|  | return ExprError(); | 
|  | DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(), | 
|  | VK_LValue, Loc, LocInfo); | 
|  | if (HadMultipleCandidates) | 
|  | DRE->setHadMultipleCandidates(true); | 
|  |  | 
|  | S.MarkDeclRefReferenced(DRE); | 
|  |  | 
|  | ExprResult E = DRE; | 
|  | E = S.DefaultFunctionArrayConversion(E.get()); | 
|  | if (E.isInvalid()) | 
|  | return ExprError(); | 
|  | return E; | 
|  | } | 
|  |  | 
|  | static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, | 
|  | bool InOverloadResolution, | 
|  | StandardConversionSequence &SCS, | 
|  | bool CStyle, | 
|  | bool AllowObjCWritebackConversion); | 
|  |  | 
|  | static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, | 
|  | QualType &ToType, | 
|  | bool InOverloadResolution, | 
|  | StandardConversionSequence &SCS, | 
|  | bool CStyle); | 
|  | static OverloadingResult | 
|  | IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, | 
|  | UserDefinedConversionSequence& User, | 
|  | OverloadCandidateSet& Conversions, | 
|  | bool AllowExplicit, | 
|  | bool AllowObjCConversionOnExplicit); | 
|  |  | 
|  |  | 
|  | static ImplicitConversionSequence::CompareKind | 
|  | CompareStandardConversionSequences(Sema &S, | 
|  | const StandardConversionSequence& SCS1, | 
|  | const StandardConversionSequence& SCS2); | 
|  |  | 
|  | static ImplicitConversionSequence::CompareKind | 
|  | CompareQualificationConversions(Sema &S, | 
|  | const StandardConversionSequence& SCS1, | 
|  | const StandardConversionSequence& SCS2); | 
|  |  | 
|  | static ImplicitConversionSequence::CompareKind | 
|  | CompareDerivedToBaseConversions(Sema &S, | 
|  | const StandardConversionSequence& SCS1, | 
|  | const StandardConversionSequence& SCS2); | 
|  |  | 
|  | /// GetConversionRank - Retrieve the implicit conversion rank | 
|  | /// corresponding to the given implicit conversion kind. | 
|  | ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) { | 
|  | static const ImplicitConversionRank | 
|  | Rank[(int)ICK_Num_Conversion_Kinds] = { | 
|  | ICR_Exact_Match, | 
|  | ICR_Exact_Match, | 
|  | ICR_Exact_Match, | 
|  | ICR_Exact_Match, | 
|  | ICR_Exact_Match, | 
|  | ICR_Exact_Match, | 
|  | ICR_Promotion, | 
|  | ICR_Promotion, | 
|  | ICR_Promotion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Complex_Real_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Writeback_Conversion | 
|  | }; | 
|  | return Rank[(int)Kind]; | 
|  | } | 
|  |  | 
|  | /// GetImplicitConversionName - Return the name of this kind of | 
|  | /// implicit conversion. | 
|  | static const char* GetImplicitConversionName(ImplicitConversionKind Kind) { | 
|  | static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { | 
|  | "No conversion", | 
|  | "Lvalue-to-rvalue", | 
|  | "Array-to-pointer", | 
|  | "Function-to-pointer", | 
|  | "Noreturn adjustment", | 
|  | "Qualification", | 
|  | "Integral promotion", | 
|  | "Floating point promotion", | 
|  | "Complex promotion", | 
|  | "Integral conversion", | 
|  | "Floating conversion", | 
|  | "Complex conversion", | 
|  | "Floating-integral conversion", | 
|  | "Pointer conversion", | 
|  | "Pointer-to-member conversion", | 
|  | "Boolean conversion", | 
|  | "Compatible-types conversion", | 
|  | "Derived-to-base conversion", | 
|  | "Vector conversion", | 
|  | "Vector splat", | 
|  | "Complex-real conversion", | 
|  | "Block Pointer conversion", | 
|  | "Transparent Union Conversion", | 
|  | "Writeback conversion" | 
|  | }; | 
|  | return Name[Kind]; | 
|  | } | 
|  |  | 
|  | /// StandardConversionSequence - Set the standard conversion | 
|  | /// sequence to the identity conversion. | 
|  | void StandardConversionSequence::setAsIdentityConversion() { | 
|  | First = ICK_Identity; | 
|  | Second = ICK_Identity; | 
|  | Third = ICK_Identity; | 
|  | DeprecatedStringLiteralToCharPtr = false; | 
|  | QualificationIncludesObjCLifetime = false; | 
|  | ReferenceBinding = false; | 
|  | DirectBinding = false; | 
|  | IsLvalueReference = true; | 
|  | BindsToFunctionLvalue = false; | 
|  | BindsToRvalue = false; | 
|  | BindsImplicitObjectArgumentWithoutRefQualifier = false; | 
|  | ObjCLifetimeConversionBinding = false; | 
|  | CopyConstructor = nullptr; | 
|  | } | 
|  |  | 
|  | /// getRank - Retrieve the rank of this standard conversion sequence | 
|  | /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the | 
|  | /// implicit conversions. | 
|  | ImplicitConversionRank StandardConversionSequence::getRank() const { | 
|  | ImplicitConversionRank Rank = ICR_Exact_Match; | 
|  | if  (GetConversionRank(First) > Rank) | 
|  | Rank = GetConversionRank(First); | 
|  | if  (GetConversionRank(Second) > Rank) | 
|  | Rank = GetConversionRank(Second); | 
|  | if  (GetConversionRank(Third) > Rank) | 
|  | Rank = GetConversionRank(Third); | 
|  | return Rank; | 
|  | } | 
|  |  | 
|  | /// isPointerConversionToBool - Determines whether this conversion is | 
|  | /// a conversion of a pointer or pointer-to-member to bool. This is | 
|  | /// used as part of the ranking of standard conversion sequences | 
|  | /// (C++ 13.3.3.2p4). | 
|  | bool StandardConversionSequence::isPointerConversionToBool() const { | 
|  | // Note that FromType has not necessarily been transformed by the | 
|  | // array-to-pointer or function-to-pointer implicit conversions, so | 
|  | // check for their presence as well as checking whether FromType is | 
|  | // a pointer. | 
|  | if (getToType(1)->isBooleanType() && | 
|  | (getFromType()->isPointerType() || | 
|  | getFromType()->isObjCObjectPointerType() || | 
|  | getFromType()->isBlockPointerType() || | 
|  | getFromType()->isNullPtrType() || | 
|  | First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isPointerConversionToVoidPointer - Determines whether this | 
|  | /// conversion is a conversion of a pointer to a void pointer. This is | 
|  | /// used as part of the ranking of standard conversion sequences (C++ | 
|  | /// 13.3.3.2p4). | 
|  | bool | 
|  | StandardConversionSequence:: | 
|  | isPointerConversionToVoidPointer(ASTContext& Context) const { | 
|  | QualType FromType = getFromType(); | 
|  | QualType ToType = getToType(1); | 
|  |  | 
|  | // Note that FromType has not necessarily been transformed by the | 
|  | // array-to-pointer implicit conversion, so check for its presence | 
|  | // and redo the conversion to get a pointer. | 
|  | if (First == ICK_Array_To_Pointer) | 
|  | FromType = Context.getArrayDecayedType(FromType); | 
|  |  | 
|  | if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) | 
|  | if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) | 
|  | return ToPtrType->getPointeeType()->isVoidType(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Skip any implicit casts which could be either part of a narrowing conversion | 
|  | /// or after one in an implicit conversion. | 
|  | static const Expr *IgnoreNarrowingConversion(const Expr *Converted) { | 
|  | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) { | 
|  | switch (ICE->getCastKind()) { | 
|  | case CK_NoOp: | 
|  | case CK_IntegralCast: | 
|  | case CK_IntegralToBoolean: | 
|  | case CK_IntegralToFloating: | 
|  | case CK_FloatingToIntegral: | 
|  | case CK_FloatingToBoolean: | 
|  | case CK_FloatingCast: | 
|  | Converted = ICE->getSubExpr(); | 
|  | continue; | 
|  |  | 
|  | default: | 
|  | return Converted; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Converted; | 
|  | } | 
|  |  | 
|  | /// Check if this standard conversion sequence represents a narrowing | 
|  | /// conversion, according to C++11 [dcl.init.list]p7. | 
|  | /// | 
|  | /// \param Ctx  The AST context. | 
|  | /// \param Converted  The result of applying this standard conversion sequence. | 
|  | /// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the | 
|  | ///        value of the expression prior to the narrowing conversion. | 
|  | /// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the | 
|  | ///        type of the expression prior to the narrowing conversion. | 
|  | NarrowingKind | 
|  | StandardConversionSequence::getNarrowingKind(ASTContext &Ctx, | 
|  | const Expr *Converted, | 
|  | APValue &ConstantValue, | 
|  | QualType &ConstantType) const { | 
|  | assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++"); | 
|  |  | 
|  | // C++11 [dcl.init.list]p7: | 
|  | //   A narrowing conversion is an implicit conversion ... | 
|  | QualType FromType = getToType(0); | 
|  | QualType ToType = getToType(1); | 
|  | switch (Second) { | 
|  | // -- from a floating-point type to an integer type, or | 
|  | // | 
|  | // -- from an integer type or unscoped enumeration type to a floating-point | 
|  | //    type, except where the source is a constant expression and the actual | 
|  | //    value after conversion will fit into the target type and will produce | 
|  | //    the original value when converted back to the original type, or | 
|  | case ICK_Floating_Integral: | 
|  | if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { | 
|  | return NK_Type_Narrowing; | 
|  | } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) { | 
|  | llvm::APSInt IntConstantValue; | 
|  | const Expr *Initializer = IgnoreNarrowingConversion(Converted); | 
|  | if (Initializer && | 
|  | Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) { | 
|  | // Convert the integer to the floating type. | 
|  | llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); | 
|  | Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(), | 
|  | llvm::APFloat::rmNearestTiesToEven); | 
|  | // And back. | 
|  | llvm::APSInt ConvertedValue = IntConstantValue; | 
|  | bool ignored; | 
|  | Result.convertToInteger(ConvertedValue, | 
|  | llvm::APFloat::rmTowardZero, &ignored); | 
|  | // If the resulting value is different, this was a narrowing conversion. | 
|  | if (IntConstantValue != ConvertedValue) { | 
|  | ConstantValue = APValue(IntConstantValue); | 
|  | ConstantType = Initializer->getType(); | 
|  | return NK_Constant_Narrowing; | 
|  | } | 
|  | } else { | 
|  | // Variables are always narrowings. | 
|  | return NK_Variable_Narrowing; | 
|  | } | 
|  | } | 
|  | return NK_Not_Narrowing; | 
|  |  | 
|  | // -- from long double to double or float, or from double to float, except | 
|  | //    where the source is a constant expression and the actual value after | 
|  | //    conversion is within the range of values that can be represented (even | 
|  | //    if it cannot be represented exactly), or | 
|  | case ICK_Floating_Conversion: | 
|  | if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && | 
|  | Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { | 
|  | // FromType is larger than ToType. | 
|  | const Expr *Initializer = IgnoreNarrowingConversion(Converted); | 
|  | if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { | 
|  | // Constant! | 
|  | assert(ConstantValue.isFloat()); | 
|  | llvm::APFloat FloatVal = ConstantValue.getFloat(); | 
|  | // Convert the source value into the target type. | 
|  | bool ignored; | 
|  | llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( | 
|  | Ctx.getFloatTypeSemantics(ToType), | 
|  | llvm::APFloat::rmNearestTiesToEven, &ignored); | 
|  | // If there was no overflow, the source value is within the range of | 
|  | // values that can be represented. | 
|  | if (ConvertStatus & llvm::APFloat::opOverflow) { | 
|  | ConstantType = Initializer->getType(); | 
|  | return NK_Constant_Narrowing; | 
|  | } | 
|  | } else { | 
|  | return NK_Variable_Narrowing; | 
|  | } | 
|  | } | 
|  | return NK_Not_Narrowing; | 
|  |  | 
|  | // -- from an integer type or unscoped enumeration type to an integer type | 
|  | //    that cannot represent all the values of the original type, except where | 
|  | //    the source is a constant expression and the actual value after | 
|  | //    conversion will fit into the target type and will produce the original | 
|  | //    value when converted back to the original type. | 
|  | case ICK_Boolean_Conversion:  // Bools are integers too. | 
|  | if (!FromType->isIntegralOrUnscopedEnumerationType()) { | 
|  | // Boolean conversions can be from pointers and pointers to members | 
|  | // [conv.bool], and those aren't considered narrowing conversions. | 
|  | return NK_Not_Narrowing; | 
|  | }  // Otherwise, fall through to the integral case. | 
|  | case ICK_Integral_Conversion: { | 
|  | assert(FromType->isIntegralOrUnscopedEnumerationType()); | 
|  | assert(ToType->isIntegralOrUnscopedEnumerationType()); | 
|  | const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); | 
|  | const unsigned FromWidth = Ctx.getIntWidth(FromType); | 
|  | const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); | 
|  | const unsigned ToWidth = Ctx.getIntWidth(ToType); | 
|  |  | 
|  | if (FromWidth > ToWidth || | 
|  | (FromWidth == ToWidth && FromSigned != ToSigned) || | 
|  | (FromSigned && !ToSigned)) { | 
|  | // Not all values of FromType can be represented in ToType. | 
|  | llvm::APSInt InitializerValue; | 
|  | const Expr *Initializer = IgnoreNarrowingConversion(Converted); | 
|  | if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) { | 
|  | // Such conversions on variables are always narrowing. | 
|  | return NK_Variable_Narrowing; | 
|  | } | 
|  | bool Narrowing = false; | 
|  | if (FromWidth < ToWidth) { | 
|  | // Negative -> unsigned is narrowing. Otherwise, more bits is never | 
|  | // narrowing. | 
|  | if (InitializerValue.isSigned() && InitializerValue.isNegative()) | 
|  | Narrowing = true; | 
|  | } else { | 
|  | // Add a bit to the InitializerValue so we don't have to worry about | 
|  | // signed vs. unsigned comparisons. | 
|  | InitializerValue = InitializerValue.extend( | 
|  | InitializerValue.getBitWidth() + 1); | 
|  | // Convert the initializer to and from the target width and signed-ness. | 
|  | llvm::APSInt ConvertedValue = InitializerValue; | 
|  | ConvertedValue = ConvertedValue.trunc(ToWidth); | 
|  | ConvertedValue.setIsSigned(ToSigned); | 
|  | ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); | 
|  | ConvertedValue.setIsSigned(InitializerValue.isSigned()); | 
|  | // If the result is different, this was a narrowing conversion. | 
|  | if (ConvertedValue != InitializerValue) | 
|  | Narrowing = true; | 
|  | } | 
|  | if (Narrowing) { | 
|  | ConstantType = Initializer->getType(); | 
|  | ConstantValue = APValue(InitializerValue); | 
|  | return NK_Constant_Narrowing; | 
|  | } | 
|  | } | 
|  | return NK_Not_Narrowing; | 
|  | } | 
|  |  | 
|  | default: | 
|  | // Other kinds of conversions are not narrowings. | 
|  | return NK_Not_Narrowing; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// dump - Print this standard conversion sequence to standard | 
|  | /// error. Useful for debugging overloading issues. | 
|  | void StandardConversionSequence::dump() const { | 
|  | raw_ostream &OS = llvm::errs(); | 
|  | bool PrintedSomething = false; | 
|  | if (First != ICK_Identity) { | 
|  | OS << GetImplicitConversionName(First); | 
|  | PrintedSomething = true; | 
|  | } | 
|  |  | 
|  | if (Second != ICK_Identity) { | 
|  | if (PrintedSomething) { | 
|  | OS << " -> "; | 
|  | } | 
|  | OS << GetImplicitConversionName(Second); | 
|  |  | 
|  | if (CopyConstructor) { | 
|  | OS << " (by copy constructor)"; | 
|  | } else if (DirectBinding) { | 
|  | OS << " (direct reference binding)"; | 
|  | } else if (ReferenceBinding) { | 
|  | OS << " (reference binding)"; | 
|  | } | 
|  | PrintedSomething = true; | 
|  | } | 
|  |  | 
|  | if (Third != ICK_Identity) { | 
|  | if (PrintedSomething) { | 
|  | OS << " -> "; | 
|  | } | 
|  | OS << GetImplicitConversionName(Third); | 
|  | PrintedSomething = true; | 
|  | } | 
|  |  | 
|  | if (!PrintedSomething) { | 
|  | OS << "No conversions required"; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// dump - Print this user-defined conversion sequence to standard | 
|  | /// error. Useful for debugging overloading issues. | 
|  | void UserDefinedConversionSequence::dump() const { | 
|  | raw_ostream &OS = llvm::errs(); | 
|  | if (Before.First || Before.Second || Before.Third) { | 
|  | Before.dump(); | 
|  | OS << " -> "; | 
|  | } | 
|  | if (ConversionFunction) | 
|  | OS << '\'' << *ConversionFunction << '\''; | 
|  | else | 
|  | OS << "aggregate initialization"; | 
|  | if (After.First || After.Second || After.Third) { | 
|  | OS << " -> "; | 
|  | After.dump(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// dump - Print this implicit conversion sequence to standard | 
|  | /// error. Useful for debugging overloading issues. | 
|  | void ImplicitConversionSequence::dump() const { | 
|  | raw_ostream &OS = llvm::errs(); | 
|  | if (isStdInitializerListElement()) | 
|  | OS << "Worst std::initializer_list element conversion: "; | 
|  | switch (ConversionKind) { | 
|  | case StandardConversion: | 
|  | OS << "Standard conversion: "; | 
|  | Standard.dump(); | 
|  | break; | 
|  | case UserDefinedConversion: | 
|  | OS << "User-defined conversion: "; | 
|  | UserDefined.dump(); | 
|  | break; | 
|  | case EllipsisConversion: | 
|  | OS << "Ellipsis conversion"; | 
|  | break; | 
|  | case AmbiguousConversion: | 
|  | OS << "Ambiguous conversion"; | 
|  | break; | 
|  | case BadConversion: | 
|  | OS << "Bad conversion"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | OS << "\n"; | 
|  | } | 
|  |  | 
|  | void AmbiguousConversionSequence::construct() { | 
|  | new (&conversions()) ConversionSet(); | 
|  | } | 
|  |  | 
|  | void AmbiguousConversionSequence::destruct() { | 
|  | conversions().~ConversionSet(); | 
|  | } | 
|  |  | 
|  | void | 
|  | AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { | 
|  | FromTypePtr = O.FromTypePtr; | 
|  | ToTypePtr = O.ToTypePtr; | 
|  | new (&conversions()) ConversionSet(O.conversions()); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Structure used by DeductionFailureInfo to store | 
|  | // template argument information. | 
|  | struct DFIArguments { | 
|  | TemplateArgument FirstArg; | 
|  | TemplateArgument SecondArg; | 
|  | }; | 
|  | // Structure used by DeductionFailureInfo to store | 
|  | // template parameter and template argument information. | 
|  | struct DFIParamWithArguments : DFIArguments { | 
|  | TemplateParameter Param; | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// \brief Convert from Sema's representation of template deduction information | 
|  | /// to the form used in overload-candidate information. | 
|  | DeductionFailureInfo | 
|  | clang::MakeDeductionFailureInfo(ASTContext &Context, | 
|  | Sema::TemplateDeductionResult TDK, | 
|  | TemplateDeductionInfo &Info) { | 
|  | DeductionFailureInfo Result; | 
|  | Result.Result = static_cast<unsigned>(TDK); | 
|  | Result.HasDiagnostic = false; | 
|  | Result.Data = nullptr; | 
|  | switch (TDK) { | 
|  | case Sema::TDK_Success: | 
|  | case Sema::TDK_Invalid: | 
|  | case Sema::TDK_InstantiationDepth: | 
|  | case Sema::TDK_TooManyArguments: | 
|  | case Sema::TDK_TooFewArguments: | 
|  | break; | 
|  |  | 
|  | case Sema::TDK_Incomplete: | 
|  | case Sema::TDK_InvalidExplicitArguments: | 
|  | Result.Data = Info.Param.getOpaqueValue(); | 
|  | break; | 
|  |  | 
|  | case Sema::TDK_NonDeducedMismatch: { | 
|  | // FIXME: Should allocate from normal heap so that we can free this later. | 
|  | DFIArguments *Saved = new (Context) DFIArguments; | 
|  | Saved->FirstArg = Info.FirstArg; | 
|  | Saved->SecondArg = Info.SecondArg; | 
|  | Result.Data = Saved; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Sema::TDK_Inconsistent: | 
|  | case Sema::TDK_Underqualified: { | 
|  | // FIXME: Should allocate from normal heap so that we can free this later. | 
|  | DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; | 
|  | Saved->Param = Info.Param; | 
|  | Saved->FirstArg = Info.FirstArg; | 
|  | Saved->SecondArg = Info.SecondArg; | 
|  | Result.Data = Saved; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Sema::TDK_SubstitutionFailure: | 
|  | Result.Data = Info.take(); | 
|  | if (Info.hasSFINAEDiagnostic()) { | 
|  | PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt( | 
|  | SourceLocation(), PartialDiagnostic::NullDiagnostic()); | 
|  | Info.takeSFINAEDiagnostic(*Diag); | 
|  | Result.HasDiagnostic = true; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Sema::TDK_FailedOverloadResolution: | 
|  | Result.Data = Info.Expression; | 
|  | break; | 
|  |  | 
|  | case Sema::TDK_MiscellaneousDeductionFailure: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void DeductionFailureInfo::Destroy() { | 
|  | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | 
|  | case Sema::TDK_Success: | 
|  | case Sema::TDK_Invalid: | 
|  | case Sema::TDK_InstantiationDepth: | 
|  | case Sema::TDK_Incomplete: | 
|  | case Sema::TDK_TooManyArguments: | 
|  | case Sema::TDK_TooFewArguments: | 
|  | case Sema::TDK_InvalidExplicitArguments: | 
|  | case Sema::TDK_FailedOverloadResolution: | 
|  | break; | 
|  |  | 
|  | case Sema::TDK_Inconsistent: | 
|  | case Sema::TDK_Underqualified: | 
|  | case Sema::TDK_NonDeducedMismatch: | 
|  | // FIXME: Destroy the data? | 
|  | Data = nullptr; | 
|  | break; | 
|  |  | 
|  | case Sema::TDK_SubstitutionFailure: | 
|  | // FIXME: Destroy the template argument list? | 
|  | Data = nullptr; | 
|  | if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { | 
|  | Diag->~PartialDiagnosticAt(); | 
|  | HasDiagnostic = false; | 
|  | } | 
|  | break; | 
|  |  | 
|  | // Unhandled | 
|  | case Sema::TDK_MiscellaneousDeductionFailure: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() { | 
|  | if (HasDiagnostic) | 
|  | return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic)); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | TemplateParameter DeductionFailureInfo::getTemplateParameter() { | 
|  | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | 
|  | case Sema::TDK_Success: | 
|  | case Sema::TDK_Invalid: | 
|  | case Sema::TDK_InstantiationDepth: | 
|  | case Sema::TDK_TooManyArguments: | 
|  | case Sema::TDK_TooFewArguments: | 
|  | case Sema::TDK_SubstitutionFailure: | 
|  | case Sema::TDK_NonDeducedMismatch: | 
|  | case Sema::TDK_FailedOverloadResolution: | 
|  | return TemplateParameter(); | 
|  |  | 
|  | case Sema::TDK_Incomplete: | 
|  | case Sema::TDK_InvalidExplicitArguments: | 
|  | return TemplateParameter::getFromOpaqueValue(Data); | 
|  |  | 
|  | case Sema::TDK_Inconsistent: | 
|  | case Sema::TDK_Underqualified: | 
|  | return static_cast<DFIParamWithArguments*>(Data)->Param; | 
|  |  | 
|  | // Unhandled | 
|  | case Sema::TDK_MiscellaneousDeductionFailure: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return TemplateParameter(); | 
|  | } | 
|  |  | 
|  | TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() { | 
|  | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | 
|  | case Sema::TDK_Success: | 
|  | case Sema::TDK_Invalid: | 
|  | case Sema::TDK_InstantiationDepth: | 
|  | case Sema::TDK_TooManyArguments: | 
|  | case Sema::TDK_TooFewArguments: | 
|  | case Sema::TDK_Incomplete: | 
|  | case Sema::TDK_InvalidExplicitArguments: | 
|  | case Sema::TDK_Inconsistent: | 
|  | case Sema::TDK_Underqualified: | 
|  | case Sema::TDK_NonDeducedMismatch: | 
|  | case Sema::TDK_FailedOverloadResolution: | 
|  | return nullptr; | 
|  |  | 
|  | case Sema::TDK_SubstitutionFailure: | 
|  | return static_cast<TemplateArgumentList*>(Data); | 
|  |  | 
|  | // Unhandled | 
|  | case Sema::TDK_MiscellaneousDeductionFailure: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const TemplateArgument *DeductionFailureInfo::getFirstArg() { | 
|  | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | 
|  | case Sema::TDK_Success: | 
|  | case Sema::TDK_Invalid: | 
|  | case Sema::TDK_InstantiationDepth: | 
|  | case Sema::TDK_Incomplete: | 
|  | case Sema::TDK_TooManyArguments: | 
|  | case Sema::TDK_TooFewArguments: | 
|  | case Sema::TDK_InvalidExplicitArguments: | 
|  | case Sema::TDK_SubstitutionFailure: | 
|  | case Sema::TDK_FailedOverloadResolution: | 
|  | return nullptr; | 
|  |  | 
|  | case Sema::TDK_Inconsistent: | 
|  | case Sema::TDK_Underqualified: | 
|  | case Sema::TDK_NonDeducedMismatch: | 
|  | return &static_cast<DFIArguments*>(Data)->FirstArg; | 
|  |  | 
|  | // Unhandled | 
|  | case Sema::TDK_MiscellaneousDeductionFailure: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const TemplateArgument *DeductionFailureInfo::getSecondArg() { | 
|  | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | 
|  | case Sema::TDK_Success: | 
|  | case Sema::TDK_Invalid: | 
|  | case Sema::TDK_InstantiationDepth: | 
|  | case Sema::TDK_Incomplete: | 
|  | case Sema::TDK_TooManyArguments: | 
|  | case Sema::TDK_TooFewArguments: | 
|  | case Sema::TDK_InvalidExplicitArguments: | 
|  | case Sema::TDK_SubstitutionFailure: | 
|  | case Sema::TDK_FailedOverloadResolution: | 
|  | return nullptr; | 
|  |  | 
|  | case Sema::TDK_Inconsistent: | 
|  | case Sema::TDK_Underqualified: | 
|  | case Sema::TDK_NonDeducedMismatch: | 
|  | return &static_cast<DFIArguments*>(Data)->SecondArg; | 
|  |  | 
|  | // Unhandled | 
|  | case Sema::TDK_MiscellaneousDeductionFailure: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Expr *DeductionFailureInfo::getExpr() { | 
|  | if (static_cast<Sema::TemplateDeductionResult>(Result) == | 
|  | Sema::TDK_FailedOverloadResolution) | 
|  | return static_cast<Expr*>(Data); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void OverloadCandidateSet::destroyCandidates() { | 
|  | for (iterator i = begin(), e = end(); i != e; ++i) { | 
|  | for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii) | 
|  | i->Conversions[ii].~ImplicitConversionSequence(); | 
|  | if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction) | 
|  | i->DeductionFailure.Destroy(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void OverloadCandidateSet::clear() { | 
|  | destroyCandidates(); | 
|  | NumInlineSequences = 0; | 
|  | Candidates.clear(); | 
|  | Functions.clear(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class UnbridgedCastsSet { | 
|  | struct Entry { | 
|  | Expr **Addr; | 
|  | Expr *Saved; | 
|  | }; | 
|  | SmallVector<Entry, 2> Entries; | 
|  |  | 
|  | public: | 
|  | void save(Sema &S, Expr *&E) { | 
|  | assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); | 
|  | Entry entry = { &E, E }; | 
|  | Entries.push_back(entry); | 
|  | E = S.stripARCUnbridgedCast(E); | 
|  | } | 
|  |  | 
|  | void restore() { | 
|  | for (SmallVectorImpl<Entry>::iterator | 
|  | i = Entries.begin(), e = Entries.end(); i != e; ++i) | 
|  | *i->Addr = i->Saved; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// checkPlaceholderForOverload - Do any interesting placeholder-like | 
|  | /// preprocessing on the given expression. | 
|  | /// | 
|  | /// \param unbridgedCasts a collection to which to add unbridged casts; | 
|  | ///   without this, they will be immediately diagnosed as errors | 
|  | /// | 
|  | /// Return true on unrecoverable error. | 
|  | static bool | 
|  | checkPlaceholderForOverload(Sema &S, Expr *&E, | 
|  | UnbridgedCastsSet *unbridgedCasts = nullptr) { | 
|  | if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) { | 
|  | // We can't handle overloaded expressions here because overload | 
|  | // resolution might reasonably tweak them. | 
|  | if (placeholder->getKind() == BuiltinType::Overload) return false; | 
|  |  | 
|  | // If the context potentially accepts unbridged ARC casts, strip | 
|  | // the unbridged cast and add it to the collection for later restoration. | 
|  | if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && | 
|  | unbridgedCasts) { | 
|  | unbridgedCasts->save(S, E); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Go ahead and check everything else. | 
|  | ExprResult result = S.CheckPlaceholderExpr(E); | 
|  | if (result.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | E = result.get(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Nothing to do. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// checkArgPlaceholdersForOverload - Check a set of call operands for | 
|  | /// placeholders. | 
|  | static bool checkArgPlaceholdersForOverload(Sema &S, | 
|  | MultiExprArg Args, | 
|  | UnbridgedCastsSet &unbridged) { | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) | 
|  | if (checkPlaceholderForOverload(S, Args[i], &unbridged)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // IsOverload - Determine whether the given New declaration is an | 
|  | // overload of the declarations in Old. This routine returns false if | 
|  | // New and Old cannot be overloaded, e.g., if New has the same | 
|  | // signature as some function in Old (C++ 1.3.10) or if the Old | 
|  | // declarations aren't functions (or function templates) at all. When | 
|  | // it does return false, MatchedDecl will point to the decl that New | 
|  | // cannot be overloaded with.  This decl may be a UsingShadowDecl on | 
|  | // top of the underlying declaration. | 
|  | // | 
|  | // Example: Given the following input: | 
|  | // | 
|  | //   void f(int, float); // #1 | 
|  | //   void f(int, int); // #2 | 
|  | //   int f(int, int); // #3 | 
|  | // | 
|  | // When we process #1, there is no previous declaration of "f", | 
|  | // so IsOverload will not be used. | 
|  | // | 
|  | // When we process #2, Old contains only the FunctionDecl for #1.  By | 
|  | // comparing the parameter types, we see that #1 and #2 are overloaded | 
|  | // (since they have different signatures), so this routine returns | 
|  | // false; MatchedDecl is unchanged. | 
|  | // | 
|  | // When we process #3, Old is an overload set containing #1 and #2. We | 
|  | // compare the signatures of #3 to #1 (they're overloaded, so we do | 
|  | // nothing) and then #3 to #2. Since the signatures of #3 and #2 are | 
|  | // identical (return types of functions are not part of the | 
|  | // signature), IsOverload returns false and MatchedDecl will be set to | 
|  | // point to the FunctionDecl for #2. | 
|  | // | 
|  | // 'NewIsUsingShadowDecl' indicates that 'New' is being introduced | 
|  | // into a class by a using declaration.  The rules for whether to hide | 
|  | // shadow declarations ignore some properties which otherwise figure | 
|  | // into a function template's signature. | 
|  | Sema::OverloadKind | 
|  | Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, | 
|  | NamedDecl *&Match, bool NewIsUsingDecl) { | 
|  | for (LookupResult::iterator I = Old.begin(), E = Old.end(); | 
|  | I != E; ++I) { | 
|  | NamedDecl *OldD = *I; | 
|  |  | 
|  | bool OldIsUsingDecl = false; | 
|  | if (isa<UsingShadowDecl>(OldD)) { | 
|  | OldIsUsingDecl = true; | 
|  |  | 
|  | // We can always introduce two using declarations into the same | 
|  | // context, even if they have identical signatures. | 
|  | if (NewIsUsingDecl) continue; | 
|  |  | 
|  | OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); | 
|  | } | 
|  |  | 
|  | // If either declaration was introduced by a using declaration, | 
|  | // we'll need to use slightly different rules for matching. | 
|  | // Essentially, these rules are the normal rules, except that | 
|  | // function templates hide function templates with different | 
|  | // return types or template parameter lists. | 
|  | bool UseMemberUsingDeclRules = | 
|  | (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() && | 
|  | !New->getFriendObjectKind(); | 
|  |  | 
|  | if (FunctionDecl *OldF = OldD->getAsFunction()) { | 
|  | if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { | 
|  | if (UseMemberUsingDeclRules && OldIsUsingDecl) { | 
|  | HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!isa<FunctionTemplateDecl>(OldD) && | 
|  | !shouldLinkPossiblyHiddenDecl(*I, New)) | 
|  | continue; | 
|  |  | 
|  | Match = *I; | 
|  | return Ovl_Match; | 
|  | } | 
|  | } else if (isa<UsingDecl>(OldD)) { | 
|  | // We can overload with these, which can show up when doing | 
|  | // redeclaration checks for UsingDecls. | 
|  | assert(Old.getLookupKind() == LookupUsingDeclName); | 
|  | } else if (isa<TagDecl>(OldD)) { | 
|  | // We can always overload with tags by hiding them. | 
|  | } else if (isa<UnresolvedUsingValueDecl>(OldD)) { | 
|  | // Optimistically assume that an unresolved using decl will | 
|  | // overload; if it doesn't, we'll have to diagnose during | 
|  | // template instantiation. | 
|  | } else { | 
|  | // (C++ 13p1): | 
|  | //   Only function declarations can be overloaded; object and type | 
|  | //   declarations cannot be overloaded. | 
|  | Match = *I; | 
|  | return Ovl_NonFunction; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Ovl_Overload; | 
|  | } | 
|  |  | 
|  | bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, | 
|  | bool UseUsingDeclRules) { | 
|  | // C++ [basic.start.main]p2: This function shall not be overloaded. | 
|  | if (New->isMain()) | 
|  | return false; | 
|  |  | 
|  | // MSVCRT user defined entry points cannot be overloaded. | 
|  | if (New->isMSVCRTEntryPoint()) | 
|  | return false; | 
|  |  | 
|  | FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); | 
|  | FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); | 
|  |  | 
|  | // C++ [temp.fct]p2: | 
|  | //   A function template can be overloaded with other function templates | 
|  | //   and with normal (non-template) functions. | 
|  | if ((OldTemplate == nullptr) != (NewTemplate == nullptr)) | 
|  | return true; | 
|  |  | 
|  | // Is the function New an overload of the function Old? | 
|  | QualType OldQType = Context.getCanonicalType(Old->getType()); | 
|  | QualType NewQType = Context.getCanonicalType(New->getType()); | 
|  |  | 
|  | // Compare the signatures (C++ 1.3.10) of the two functions to | 
|  | // determine whether they are overloads. If we find any mismatch | 
|  | // in the signature, they are overloads. | 
|  |  | 
|  | // If either of these functions is a K&R-style function (no | 
|  | // prototype), then we consider them to have matching signatures. | 
|  | if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || | 
|  | isa<FunctionNoProtoType>(NewQType.getTypePtr())) | 
|  | return false; | 
|  |  | 
|  | const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType); | 
|  | const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType); | 
|  |  | 
|  | // The signature of a function includes the types of its | 
|  | // parameters (C++ 1.3.10), which includes the presence or absence | 
|  | // of the ellipsis; see C++ DR 357). | 
|  | if (OldQType != NewQType && | 
|  | (OldType->getNumParams() != NewType->getNumParams() || | 
|  | OldType->isVariadic() != NewType->isVariadic() || | 
|  | !FunctionParamTypesAreEqual(OldType, NewType))) | 
|  | return true; | 
|  |  | 
|  | // C++ [temp.over.link]p4: | 
|  | //   The signature of a function template consists of its function | 
|  | //   signature, its return type and its template parameter list. The names | 
|  | //   of the template parameters are significant only for establishing the | 
|  | //   relationship between the template parameters and the rest of the | 
|  | //   signature. | 
|  | // | 
|  | // We check the return type and template parameter lists for function | 
|  | // templates first; the remaining checks follow. | 
|  | // | 
|  | // However, we don't consider either of these when deciding whether | 
|  | // a member introduced by a shadow declaration is hidden. | 
|  | if (!UseUsingDeclRules && NewTemplate && | 
|  | (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), | 
|  | OldTemplate->getTemplateParameters(), | 
|  | false, TPL_TemplateMatch) || | 
|  | OldType->getReturnType() != NewType->getReturnType())) | 
|  | return true; | 
|  |  | 
|  | // If the function is a class member, its signature includes the | 
|  | // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. | 
|  | // | 
|  | // As part of this, also check whether one of the member functions | 
|  | // is static, in which case they are not overloads (C++ | 
|  | // 13.1p2). While not part of the definition of the signature, | 
|  | // this check is important to determine whether these functions | 
|  | // can be overloaded. | 
|  | CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); | 
|  | CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); | 
|  | if (OldMethod && NewMethod && | 
|  | !OldMethod->isStatic() && !NewMethod->isStatic()) { | 
|  | if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) { | 
|  | if (!UseUsingDeclRules && | 
|  | (OldMethod->getRefQualifier() == RQ_None || | 
|  | NewMethod->getRefQualifier() == RQ_None)) { | 
|  | // C++0x [over.load]p2: | 
|  | //   - Member function declarations with the same name and the same | 
|  | //     parameter-type-list as well as member function template | 
|  | //     declarations with the same name, the same parameter-type-list, and | 
|  | //     the same template parameter lists cannot be overloaded if any of | 
|  | //     them, but not all, have a ref-qualifier (8.3.5). | 
|  | Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) | 
|  | << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); | 
|  | Diag(OldMethod->getLocation(), diag::note_previous_declaration); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We may not have applied the implicit const for a constexpr member | 
|  | // function yet (because we haven't yet resolved whether this is a static | 
|  | // or non-static member function). Add it now, on the assumption that this | 
|  | // is a redeclaration of OldMethod. | 
|  | unsigned OldQuals = OldMethod->getTypeQualifiers(); | 
|  | unsigned NewQuals = NewMethod->getTypeQualifiers(); | 
|  | if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() && | 
|  | !isa<CXXConstructorDecl>(NewMethod)) | 
|  | NewQuals |= Qualifiers::Const; | 
|  |  | 
|  | // We do not allow overloading based off of '__restrict'. | 
|  | OldQuals &= ~Qualifiers::Restrict; | 
|  | NewQuals &= ~Qualifiers::Restrict; | 
|  | if (OldQuals != NewQuals) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // enable_if attributes are an order-sensitive part of the signature. | 
|  | for (specific_attr_iterator<EnableIfAttr> | 
|  | NewI = New->specific_attr_begin<EnableIfAttr>(), | 
|  | NewE = New->specific_attr_end<EnableIfAttr>(), | 
|  | OldI = Old->specific_attr_begin<EnableIfAttr>(), | 
|  | OldE = Old->specific_attr_end<EnableIfAttr>(); | 
|  | NewI != NewE || OldI != OldE; ++NewI, ++OldI) { | 
|  | if (NewI == NewE || OldI == OldE) | 
|  | return true; | 
|  | llvm::FoldingSetNodeID NewID, OldID; | 
|  | NewI->getCond()->Profile(NewID, Context, true); | 
|  | OldI->getCond()->Profile(OldID, Context, true); | 
|  | if (NewID != OldID) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // The signatures match; this is not an overload. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Checks availability of the function depending on the current | 
|  | /// function context. Inside an unavailable function, unavailability is ignored. | 
|  | /// | 
|  | /// \returns true if \arg FD is unavailable and current context is inside | 
|  | /// an available function, false otherwise. | 
|  | bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) { | 
|  | return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable(); | 
|  | } | 
|  |  | 
|  | /// \brief Tries a user-defined conversion from From to ToType. | 
|  | /// | 
|  | /// Produces an implicit conversion sequence for when a standard conversion | 
|  | /// is not an option. See TryImplicitConversion for more information. | 
|  | static ImplicitConversionSequence | 
|  | TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, | 
|  | bool SuppressUserConversions, | 
|  | bool AllowExplicit, | 
|  | bool InOverloadResolution, | 
|  | bool CStyle, | 
|  | bool AllowObjCWritebackConversion, | 
|  | bool AllowObjCConversionOnExplicit) { | 
|  | ImplicitConversionSequence ICS; | 
|  |  | 
|  | if (SuppressUserConversions) { | 
|  | // We're not in the case above, so there is no conversion that | 
|  | // we can perform. | 
|  | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | // Attempt user-defined conversion. | 
|  | OverloadCandidateSet Conversions(From->getExprLoc(), | 
|  | OverloadCandidateSet::CSK_Normal); | 
|  | switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, | 
|  | Conversions, AllowExplicit, | 
|  | AllowObjCConversionOnExplicit)) { | 
|  | case OR_Success: | 
|  | case OR_Deleted: | 
|  | ICS.setUserDefined(); | 
|  | ICS.UserDefined.Before.setAsIdentityConversion(); | 
|  | // C++ [over.ics.user]p4: | 
|  | //   A conversion of an expression of class type to the same class | 
|  | //   type is given Exact Match rank, and a conversion of an | 
|  | //   expression of class type to a base class of that type is | 
|  | //   given Conversion rank, in spite of the fact that a copy | 
|  | //   constructor (i.e., a user-defined conversion function) is | 
|  | //   called for those cases. | 
|  | if (CXXConstructorDecl *Constructor | 
|  | = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { | 
|  | QualType FromCanon | 
|  | = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); | 
|  | QualType ToCanon | 
|  | = S.Context.getCanonicalType(ToType).getUnqualifiedType(); | 
|  | if (Constructor->isCopyConstructor() && | 
|  | (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) { | 
|  | // Turn this into a "standard" conversion sequence, so that it | 
|  | // gets ranked with standard conversion sequences. | 
|  | ICS.setStandard(); | 
|  | ICS.Standard.setAsIdentityConversion(); | 
|  | ICS.Standard.setFromType(From->getType()); | 
|  | ICS.Standard.setAllToTypes(ToType); | 
|  | ICS.Standard.CopyConstructor = Constructor; | 
|  | if (ToCanon != FromCanon) | 
|  | ICS.Standard.Second = ICK_Derived_To_Base; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | ICS.setAmbiguous(); | 
|  | ICS.Ambiguous.setFromType(From->getType()); | 
|  | ICS.Ambiguous.setToType(ToType); | 
|  | for (OverloadCandidateSet::iterator Cand = Conversions.begin(); | 
|  | Cand != Conversions.end(); ++Cand) | 
|  | if (Cand->Viable) | 
|  | ICS.Ambiguous.addConversion(Cand->Function); | 
|  | break; | 
|  |  | 
|  | // Fall through. | 
|  | case OR_No_Viable_Function: | 
|  | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | /// TryImplicitConversion - Attempt to perform an implicit conversion | 
|  | /// from the given expression (Expr) to the given type (ToType). This | 
|  | /// function returns an implicit conversion sequence that can be used | 
|  | /// to perform the initialization. Given | 
|  | /// | 
|  | ///   void f(float f); | 
|  | ///   void g(int i) { f(i); } | 
|  | /// | 
|  | /// this routine would produce an implicit conversion sequence to | 
|  | /// describe the initialization of f from i, which will be a standard | 
|  | /// conversion sequence containing an lvalue-to-rvalue conversion (C++ | 
|  | /// 4.1) followed by a floating-integral conversion (C++ 4.9). | 
|  | // | 
|  | /// Note that this routine only determines how the conversion can be | 
|  | /// performed; it does not actually perform the conversion. As such, | 
|  | /// it will not produce any diagnostics if no conversion is available, | 
|  | /// but will instead return an implicit conversion sequence of kind | 
|  | /// "BadConversion". | 
|  | /// | 
|  | /// If @p SuppressUserConversions, then user-defined conversions are | 
|  | /// not permitted. | 
|  | /// If @p AllowExplicit, then explicit user-defined conversions are | 
|  | /// permitted. | 
|  | /// | 
|  | /// \param AllowObjCWritebackConversion Whether we allow the Objective-C | 
|  | /// writeback conversion, which allows __autoreleasing id* parameters to | 
|  | /// be initialized with __strong id* or __weak id* arguments. | 
|  | static ImplicitConversionSequence | 
|  | TryImplicitConversion(Sema &S, Expr *From, QualType ToType, | 
|  | bool SuppressUserConversions, | 
|  | bool AllowExplicit, | 
|  | bool InOverloadResolution, | 
|  | bool CStyle, | 
|  | bool AllowObjCWritebackConversion, | 
|  | bool AllowObjCConversionOnExplicit) { | 
|  | ImplicitConversionSequence ICS; | 
|  | if (IsStandardConversion(S, From, ToType, InOverloadResolution, | 
|  | ICS.Standard, CStyle, AllowObjCWritebackConversion)){ | 
|  | ICS.setStandard(); | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | if (!S.getLangOpts().CPlusPlus) { | 
|  | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | // C++ [over.ics.user]p4: | 
|  | //   A conversion of an expression of class type to the same class | 
|  | //   type is given Exact Match rank, and a conversion of an | 
|  | //   expression of class type to a base class of that type is | 
|  | //   given Conversion rank, in spite of the fact that a copy/move | 
|  | //   constructor (i.e., a user-defined conversion function) is | 
|  | //   called for those cases. | 
|  | QualType FromType = From->getType(); | 
|  | if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && | 
|  | (S.Context.hasSameUnqualifiedType(FromType, ToType) || | 
|  | S.IsDerivedFrom(FromType, ToType))) { | 
|  | ICS.setStandard(); | 
|  | ICS.Standard.setAsIdentityConversion(); | 
|  | ICS.Standard.setFromType(FromType); | 
|  | ICS.Standard.setAllToTypes(ToType); | 
|  |  | 
|  | // We don't actually check at this point whether there is a valid | 
|  | // copy/move constructor, since overloading just assumes that it | 
|  | // exists. When we actually perform initialization, we'll find the | 
|  | // appropriate constructor to copy the returned object, if needed. | 
|  | ICS.Standard.CopyConstructor = nullptr; | 
|  |  | 
|  | // Determine whether this is considered a derived-to-base conversion. | 
|  | if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) | 
|  | ICS.Standard.Second = ICK_Derived_To_Base; | 
|  |  | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, | 
|  | AllowExplicit, InOverloadResolution, CStyle, | 
|  | AllowObjCWritebackConversion, | 
|  | AllowObjCConversionOnExplicit); | 
|  | } | 
|  |  | 
|  | ImplicitConversionSequence | 
|  | Sema::TryImplicitConversion(Expr *From, QualType ToType, | 
|  | bool SuppressUserConversions, | 
|  | bool AllowExplicit, | 
|  | bool InOverloadResolution, | 
|  | bool CStyle, | 
|  | bool AllowObjCWritebackConversion) { | 
|  | return ::TryImplicitConversion(*this, From, ToType, | 
|  | SuppressUserConversions, AllowExplicit, | 
|  | InOverloadResolution, CStyle, | 
|  | AllowObjCWritebackConversion, | 
|  | /*AllowObjCConversionOnExplicit=*/false); | 
|  | } | 
|  |  | 
|  | /// PerformImplicitConversion - Perform an implicit conversion of the | 
|  | /// expression From to the type ToType. Returns the | 
|  | /// converted expression. Flavor is the kind of conversion we're | 
|  | /// performing, used in the error message. If @p AllowExplicit, | 
|  | /// explicit user-defined conversions are permitted. | 
|  | ExprResult | 
|  | Sema::PerformImplicitConversion(Expr *From, QualType ToType, | 
|  | AssignmentAction Action, bool AllowExplicit) { | 
|  | ImplicitConversionSequence ICS; | 
|  | return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::PerformImplicitConversion(Expr *From, QualType ToType, | 
|  | AssignmentAction Action, bool AllowExplicit, | 
|  | ImplicitConversionSequence& ICS) { | 
|  | if (checkPlaceholderForOverload(*this, From)) | 
|  | return ExprError(); | 
|  |  | 
|  | // Objective-C ARC: Determine whether we will allow the writeback conversion. | 
|  | bool AllowObjCWritebackConversion | 
|  | = getLangOpts().ObjCAutoRefCount && | 
|  | (Action == AA_Passing || Action == AA_Sending); | 
|  | if (getLangOpts().ObjC1) | 
|  | CheckObjCBridgeRelatedConversions(From->getLocStart(), | 
|  | ToType, From->getType(), From); | 
|  | ICS = ::TryImplicitConversion(*this, From, ToType, | 
|  | /*SuppressUserConversions=*/false, | 
|  | AllowExplicit, | 
|  | /*InOverloadResolution=*/false, | 
|  | /*CStyle=*/false, | 
|  | AllowObjCWritebackConversion, | 
|  | /*AllowObjCConversionOnExplicit=*/false); | 
|  | return PerformImplicitConversion(From, ToType, ICS, Action); | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether the conversion from FromType to ToType is a valid | 
|  | /// conversion that strips "noreturn" off the nested function type. | 
|  | bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType, | 
|  | QualType &ResultTy) { | 
|  | if (Context.hasSameUnqualifiedType(FromType, ToType)) | 
|  | return false; | 
|  |  | 
|  | // Permit the conversion F(t __attribute__((noreturn))) -> F(t) | 
|  | // where F adds one of the following at most once: | 
|  | //   - a pointer | 
|  | //   - a member pointer | 
|  | //   - a block pointer | 
|  | CanQualType CanTo = Context.getCanonicalType(ToType); | 
|  | CanQualType CanFrom = Context.getCanonicalType(FromType); | 
|  | Type::TypeClass TyClass = CanTo->getTypeClass(); | 
|  | if (TyClass != CanFrom->getTypeClass()) return false; | 
|  | if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { | 
|  | if (TyClass == Type::Pointer) { | 
|  | CanTo = CanTo.getAs<PointerType>()->getPointeeType(); | 
|  | CanFrom = CanFrom.getAs<PointerType>()->getPointeeType(); | 
|  | } else if (TyClass == Type::BlockPointer) { | 
|  | CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType(); | 
|  | CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType(); | 
|  | } else if (TyClass == Type::MemberPointer) { | 
|  | CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType(); | 
|  | CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType(); | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | TyClass = CanTo->getTypeClass(); | 
|  | if (TyClass != CanFrom->getTypeClass()) return false; | 
|  | if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const FunctionType *FromFn = cast<FunctionType>(CanFrom); | 
|  | FunctionType::ExtInfo EInfo = FromFn->getExtInfo(); | 
|  | if (!EInfo.getNoReturn()) return false; | 
|  |  | 
|  | FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false)); | 
|  | assert(QualType(FromFn, 0).isCanonical()); | 
|  | if (QualType(FromFn, 0) != CanTo) return false; | 
|  |  | 
|  | ResultTy = ToType; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether the conversion from FromType to ToType is a valid | 
|  | /// vector conversion. | 
|  | /// | 
|  | /// \param ICK Will be set to the vector conversion kind, if this is a vector | 
|  | /// conversion. | 
|  | static bool IsVectorConversion(Sema &S, QualType FromType, | 
|  | QualType ToType, ImplicitConversionKind &ICK) { | 
|  | // We need at least one of these types to be a vector type to have a vector | 
|  | // conversion. | 
|  | if (!ToType->isVectorType() && !FromType->isVectorType()) | 
|  | return false; | 
|  |  | 
|  | // Identical types require no conversions. | 
|  | if (S.Context.hasSameUnqualifiedType(FromType, ToType)) | 
|  | return false; | 
|  |  | 
|  | // There are no conversions between extended vector types, only identity. | 
|  | if (ToType->isExtVectorType()) { | 
|  | // There are no conversions between extended vector types other than the | 
|  | // identity conversion. | 
|  | if (FromType->isExtVectorType()) | 
|  | return false; | 
|  |  | 
|  | // Vector splat from any arithmetic type to a vector. | 
|  | if (FromType->isArithmeticType()) { | 
|  | ICK = ICK_Vector_Splat; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We can perform the conversion between vector types in the following cases: | 
|  | // 1)vector types are equivalent AltiVec and GCC vector types | 
|  | // 2)lax vector conversions are permitted and the vector types are of the | 
|  | //   same size | 
|  | if (ToType->isVectorType() && FromType->isVectorType()) { | 
|  | if (S.Context.areCompatibleVectorTypes(FromType, ToType) || | 
|  | S.isLaxVectorConversion(FromType, ToType)) { | 
|  | ICK = ICK_Vector_Conversion; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, | 
|  | bool InOverloadResolution, | 
|  | StandardConversionSequence &SCS, | 
|  | bool CStyle); | 
|  |  | 
|  | /// IsStandardConversion - Determines whether there is a standard | 
|  | /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the | 
|  | /// expression From to the type ToType. Standard conversion sequences | 
|  | /// only consider non-class types; for conversions that involve class | 
|  | /// types, use TryImplicitConversion. If a conversion exists, SCS will | 
|  | /// contain the standard conversion sequence required to perform this | 
|  | /// conversion and this routine will return true. Otherwise, this | 
|  | /// routine will return false and the value of SCS is unspecified. | 
|  | static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, | 
|  | bool InOverloadResolution, | 
|  | StandardConversionSequence &SCS, | 
|  | bool CStyle, | 
|  | bool AllowObjCWritebackConversion) { | 
|  | QualType FromType = From->getType(); | 
|  |  | 
|  | // Standard conversions (C++ [conv]) | 
|  | SCS.setAsIdentityConversion(); | 
|  | SCS.IncompatibleObjC = false; | 
|  | SCS.setFromType(FromType); | 
|  | SCS.CopyConstructor = nullptr; | 
|  |  | 
|  | // There are no standard conversions for class types in C++, so | 
|  | // abort early. When overloading in C, however, we do permit | 
|  | if (FromType->isRecordType() || ToType->isRecordType()) { | 
|  | if (S.getLangOpts().CPlusPlus) | 
|  | return false; | 
|  |  | 
|  | // When we're overloading in C, we allow, as standard conversions, | 
|  | } | 
|  |  | 
|  | // The first conversion can be an lvalue-to-rvalue conversion, | 
|  | // array-to-pointer conversion, or function-to-pointer conversion | 
|  | // (C++ 4p1). | 
|  |  | 
|  | if (FromType == S.Context.OverloadTy) { | 
|  | DeclAccessPair AccessPair; | 
|  | if (FunctionDecl *Fn | 
|  | = S.ResolveAddressOfOverloadedFunction(From, ToType, false, | 
|  | AccessPair)) { | 
|  | // We were able to resolve the address of the overloaded function, | 
|  | // so we can convert to the type of that function. | 
|  | FromType = Fn->getType(); | 
|  | SCS.setFromType(FromType); | 
|  |  | 
|  | // we can sometimes resolve &foo<int> regardless of ToType, so check | 
|  | // if the type matches (identity) or we are converting to bool | 
|  | if (!S.Context.hasSameUnqualifiedType( | 
|  | S.ExtractUnqualifiedFunctionType(ToType), FromType)) { | 
|  | QualType resultTy; | 
|  | // if the function type matches except for [[noreturn]], it's ok | 
|  | if (!S.IsNoReturnConversion(FromType, | 
|  | S.ExtractUnqualifiedFunctionType(ToType), resultTy)) | 
|  | // otherwise, only a boolean conversion is standard | 
|  | if (!ToType->isBooleanType()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check if the "from" expression is taking the address of an overloaded | 
|  | // function and recompute the FromType accordingly. Take advantage of the | 
|  | // fact that non-static member functions *must* have such an address-of | 
|  | // expression. | 
|  | CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); | 
|  | if (Method && !Method->isStatic()) { | 
|  | assert(isa<UnaryOperator>(From->IgnoreParens()) && | 
|  | "Non-unary operator on non-static member address"); | 
|  | assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() | 
|  | == UO_AddrOf && | 
|  | "Non-address-of operator on non-static member address"); | 
|  | const Type *ClassType | 
|  | = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); | 
|  | FromType = S.Context.getMemberPointerType(FromType, ClassType); | 
|  | } else if (isa<UnaryOperator>(From->IgnoreParens())) { | 
|  | assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == | 
|  | UO_AddrOf && | 
|  | "Non-address-of operator for overloaded function expression"); | 
|  | FromType = S.Context.getPointerType(FromType); | 
|  | } | 
|  |  | 
|  | // Check that we've computed the proper type after overload resolution. | 
|  | assert(S.Context.hasSameType( | 
|  | FromType, | 
|  | S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | // Lvalue-to-rvalue conversion (C++11 4.1): | 
|  | //   A glvalue (3.10) of a non-function, non-array type T can | 
|  | //   be converted to a prvalue. | 
|  | bool argIsLValue = From->isGLValue(); | 
|  | if (argIsLValue && | 
|  | !FromType->isFunctionType() && !FromType->isArrayType() && | 
|  | S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { | 
|  | SCS.First = ICK_Lvalue_To_Rvalue; | 
|  |  | 
|  | // C11 6.3.2.1p2: | 
|  | //   ... if the lvalue has atomic type, the value has the non-atomic version | 
|  | //   of the type of the lvalue ... | 
|  | if (const AtomicType *Atomic = FromType->getAs<AtomicType>()) | 
|  | FromType = Atomic->getValueType(); | 
|  |  | 
|  | // If T is a non-class type, the type of the rvalue is the | 
|  | // cv-unqualified version of T. Otherwise, the type of the rvalue | 
|  | // is T (C++ 4.1p1). C++ can't get here with class types; in C, we | 
|  | // just strip the qualifiers because they don't matter. | 
|  | FromType = FromType.getUnqualifiedType(); | 
|  | } else if (FromType->isArrayType()) { | 
|  | // Array-to-pointer conversion (C++ 4.2) | 
|  | SCS.First = ICK_Array_To_Pointer; | 
|  |  | 
|  | // An lvalue or rvalue of type "array of N T" or "array of unknown | 
|  | // bound of T" can be converted to an rvalue of type "pointer to | 
|  | // T" (C++ 4.2p1). | 
|  | FromType = S.Context.getArrayDecayedType(FromType); | 
|  |  | 
|  | if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { | 
|  | // This conversion is deprecated in C++03 (D.4) | 
|  | SCS.DeprecatedStringLiteralToCharPtr = true; | 
|  |  | 
|  | // For the purpose of ranking in overload resolution | 
|  | // (13.3.3.1.1), this conversion is considered an | 
|  | // array-to-pointer conversion followed by a qualification | 
|  | // conversion (4.4). (C++ 4.2p2) | 
|  | SCS.Second = ICK_Identity; | 
|  | SCS.Third = ICK_Qualification; | 
|  | SCS.QualificationIncludesObjCLifetime = false; | 
|  | SCS.setAllToTypes(FromType); | 
|  | return true; | 
|  | } | 
|  | } else if (FromType->isFunctionType() && argIsLValue) { | 
|  | // Function-to-pointer conversion (C++ 4.3). | 
|  | SCS.First = ICK_Function_To_Pointer; | 
|  |  | 
|  | // An lvalue of function type T can be converted to an rvalue of | 
|  | // type "pointer to T." The result is a pointer to the | 
|  | // function. (C++ 4.3p1). | 
|  | FromType = S.Context.getPointerType(FromType); | 
|  | } else { | 
|  | // We don't require any conversions for the first step. | 
|  | SCS.First = ICK_Identity; | 
|  | } | 
|  | SCS.setToType(0, FromType); | 
|  |  | 
|  | // The second conversion can be an integral promotion, floating | 
|  | // point promotion, integral conversion, floating point conversion, | 
|  | // floating-integral conversion, pointer conversion, | 
|  | // pointer-to-member conversion, or boolean conversion (C++ 4p1). | 
|  | // For overloading in C, this can also be a "compatible-type" | 
|  | // conversion. | 
|  | bool IncompatibleObjC = false; | 
|  | ImplicitConversionKind SecondICK = ICK_Identity; | 
|  | if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { | 
|  | // The unqualified versions of the types are the same: there's no | 
|  | // conversion to do. | 
|  | SCS.Second = ICK_Identity; | 
|  | } else if (S.IsIntegralPromotion(From, FromType, ToType)) { | 
|  | // Integral promotion (C++ 4.5). | 
|  | SCS.Second = ICK_Integral_Promotion; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if (S.IsFloatingPointPromotion(FromType, ToType)) { | 
|  | // Floating point promotion (C++ 4.6). | 
|  | SCS.Second = ICK_Floating_Promotion; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if (S.IsComplexPromotion(FromType, ToType)) { | 
|  | // Complex promotion (Clang extension) | 
|  | SCS.Second = ICK_Complex_Promotion; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if (ToType->isBooleanType() && | 
|  | (FromType->isArithmeticType() || | 
|  | FromType->isAnyPointerType() || | 
|  | FromType->isBlockPointerType() || | 
|  | FromType->isMemberPointerType() || | 
|  | FromType->isNullPtrType())) { | 
|  | // Boolean conversions (C++ 4.12). | 
|  | SCS.Second = ICK_Boolean_Conversion; | 
|  | FromType = S.Context.BoolTy; | 
|  | } else if (FromType->isIntegralOrUnscopedEnumerationType() && | 
|  | ToType->isIntegralType(S.Context)) { | 
|  | // Integral conversions (C++ 4.7). | 
|  | SCS.Second = ICK_Integral_Conversion; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) { | 
|  | // Complex conversions (C99 6.3.1.6) | 
|  | SCS.Second = ICK_Complex_Conversion; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || | 
|  | (ToType->isAnyComplexType() && FromType->isArithmeticType())) { | 
|  | // Complex-real conversions (C99 6.3.1.7) | 
|  | SCS.Second = ICK_Complex_Real; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { | 
|  | // Floating point conversions (C++ 4.8). | 
|  | SCS.Second = ICK_Floating_Conversion; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if ((FromType->isRealFloatingType() && | 
|  | ToType->isIntegralType(S.Context)) || | 
|  | (FromType->isIntegralOrUnscopedEnumerationType() && | 
|  | ToType->isRealFloatingType())) { | 
|  | // Floating-integral conversions (C++ 4.9). | 
|  | SCS.Second = ICK_Floating_Integral; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { | 
|  | SCS.Second = ICK_Block_Pointer_Conversion; | 
|  | } else if (AllowObjCWritebackConversion && | 
|  | S.isObjCWritebackConversion(FromType, ToType, FromType)) { | 
|  | SCS.Second = ICK_Writeback_Conversion; | 
|  | } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, | 
|  | FromType, IncompatibleObjC)) { | 
|  | // Pointer conversions (C++ 4.10). | 
|  | SCS.Second = ICK_Pointer_Conversion; | 
|  | SCS.IncompatibleObjC = IncompatibleObjC; | 
|  | FromType = FromType.getUnqualifiedType(); | 
|  | } else if (S.IsMemberPointerConversion(From, FromType, ToType, | 
|  | InOverloadResolution, FromType)) { | 
|  | // Pointer to member conversions (4.11). | 
|  | SCS.Second = ICK_Pointer_Member; | 
|  | } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) { | 
|  | SCS.Second = SecondICK; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if (!S.getLangOpts().CPlusPlus && | 
|  | S.Context.typesAreCompatible(ToType, FromType)) { | 
|  | // Compatible conversions (Clang extension for C function overloading) | 
|  | SCS.Second = ICK_Compatible_Conversion; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) { | 
|  | // Treat a conversion that strips "noreturn" as an identity conversion. | 
|  | SCS.Second = ICK_NoReturn_Adjustment; | 
|  | } else if (IsTransparentUnionStandardConversion(S, From, ToType, | 
|  | InOverloadResolution, | 
|  | SCS, CStyle)) { | 
|  | SCS.Second = ICK_TransparentUnionConversion; | 
|  | FromType = ToType; | 
|  | } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS, | 
|  | CStyle)) { | 
|  | // tryAtomicConversion has updated the standard conversion sequence | 
|  | // appropriately. | 
|  | return true; | 
|  | } else if (ToType->isEventT() && | 
|  | From->isIntegerConstantExpr(S.getASTContext()) && | 
|  | (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) { | 
|  | SCS.Second = ICK_Zero_Event_Conversion; | 
|  | FromType = ToType; | 
|  | } else { | 
|  | // No second conversion required. | 
|  | SCS.Second = ICK_Identity; | 
|  | } | 
|  | SCS.setToType(1, FromType); | 
|  |  | 
|  | QualType CanonFrom; | 
|  | QualType CanonTo; | 
|  | // The third conversion can be a qualification conversion (C++ 4p1). | 
|  | bool ObjCLifetimeConversion; | 
|  | if (S.IsQualificationConversion(FromType, ToType, CStyle, | 
|  | ObjCLifetimeConversion)) { | 
|  | SCS.Third = ICK_Qualification; | 
|  | SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; | 
|  | FromType = ToType; | 
|  | CanonFrom = S.Context.getCanonicalType(FromType); | 
|  | CanonTo = S.Context.getCanonicalType(ToType); | 
|  | } else { | 
|  | // No conversion required | 
|  | SCS.Third = ICK_Identity; | 
|  |  | 
|  | // C++ [over.best.ics]p6: | 
|  | //   [...] Any difference in top-level cv-qualification is | 
|  | //   subsumed by the initialization itself and does not constitute | 
|  | //   a conversion. [...] | 
|  | CanonFrom = S.Context.getCanonicalType(FromType); | 
|  | CanonTo = S.Context.getCanonicalType(ToType); | 
|  | if (CanonFrom.getLocalUnqualifiedType() | 
|  | == CanonTo.getLocalUnqualifiedType() && | 
|  | CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) { | 
|  | FromType = ToType; | 
|  | CanonFrom = CanonTo; | 
|  | } | 
|  | } | 
|  | SCS.setToType(2, FromType); | 
|  |  | 
|  | // If we have not converted the argument type to the parameter type, | 
|  | // this is a bad conversion sequence. | 
|  | if (CanonFrom != CanonTo) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | IsTransparentUnionStandardConversion(Sema &S, Expr* From, | 
|  | QualType &ToType, | 
|  | bool InOverloadResolution, | 
|  | StandardConversionSequence &SCS, | 
|  | bool CStyle) { | 
|  |  | 
|  | const RecordType *UT = ToType->getAsUnionType(); | 
|  | if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) | 
|  | return false; | 
|  | // The field to initialize within the transparent union. | 
|  | RecordDecl *UD = UT->getDecl(); | 
|  | // It's compatible if the expression matches any of the fields. | 
|  | for (const auto *it : UD->fields()) { | 
|  | if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, | 
|  | CStyle, /*ObjCWritebackConversion=*/false)) { | 
|  | ToType = it->getType(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// IsIntegralPromotion - Determines whether the conversion from the | 
|  | /// expression From (whose potentially-adjusted type is FromType) to | 
|  | /// ToType is an integral promotion (C++ 4.5). If so, returns true and | 
|  | /// sets PromotedType to the promoted type. | 
|  | bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { | 
|  | const BuiltinType *To = ToType->getAs<BuiltinType>(); | 
|  | // All integers are built-in. | 
|  | if (!To) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // An rvalue of type char, signed char, unsigned char, short int, or | 
|  | // unsigned short int can be converted to an rvalue of type int if | 
|  | // int can represent all the values of the source type; otherwise, | 
|  | // the source rvalue can be converted to an rvalue of type unsigned | 
|  | // int (C++ 4.5p1). | 
|  | if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && | 
|  | !FromType->isEnumeralType()) { | 
|  | if (// We can promote any signed, promotable integer type to an int | 
|  | (FromType->isSignedIntegerType() || | 
|  | // We can promote any unsigned integer type whose size is | 
|  | // less than int to an int. | 
|  | (!FromType->isSignedIntegerType() && | 
|  | Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { | 
|  | return To->getKind() == BuiltinType::Int; | 
|  | } | 
|  |  | 
|  | return To->getKind() == BuiltinType::UInt; | 
|  | } | 
|  |  | 
|  | // C++11 [conv.prom]p3: | 
|  | //   A prvalue of an unscoped enumeration type whose underlying type is not | 
|  | //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the | 
|  | //   following types that can represent all the values of the enumeration | 
|  | //   (i.e., the values in the range bmin to bmax as described in 7.2): int, | 
|  | //   unsigned int, long int, unsigned long int, long long int, or unsigned | 
|  | //   long long int. If none of the types in that list can represent all the | 
|  | //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration | 
|  | //   type can be converted to an rvalue a prvalue of the extended integer type | 
|  | //   with lowest integer conversion rank (4.13) greater than the rank of long | 
|  | //   long in which all the values of the enumeration can be represented. If | 
|  | //   there are two such extended types, the signed one is chosen. | 
|  | // C++11 [conv.prom]p4: | 
|  | //   A prvalue of an unscoped enumeration type whose underlying type is fixed | 
|  | //   can be converted to a prvalue of its underlying type. Moreover, if | 
|  | //   integral promotion can be applied to its underlying type, a prvalue of an | 
|  | //   unscoped enumeration type whose underlying type is fixed can also be | 
|  | //   converted to a prvalue of the promoted underlying type. | 
|  | if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { | 
|  | // C++0x 7.2p9: Note that this implicit enum to int conversion is not | 
|  | // provided for a scoped enumeration. | 
|  | if (FromEnumType->getDecl()->isScoped()) | 
|  | return false; | 
|  |  | 
|  | // We can perform an integral promotion to the underlying type of the enum, | 
|  | // even if that's not the promoted type. | 
|  | if (FromEnumType->getDecl()->isFixed()) { | 
|  | QualType Underlying = FromEnumType->getDecl()->getIntegerType(); | 
|  | return Context.hasSameUnqualifiedType(Underlying, ToType) || | 
|  | IsIntegralPromotion(From, Underlying, ToType); | 
|  | } | 
|  |  | 
|  | // We have already pre-calculated the promotion type, so this is trivial. | 
|  | if (ToType->isIntegerType() && | 
|  | !RequireCompleteType(From->getLocStart(), FromType, 0)) | 
|  | return Context.hasSameUnqualifiedType(ToType, | 
|  | FromEnumType->getDecl()->getPromotionType()); | 
|  | } | 
|  |  | 
|  | // C++0x [conv.prom]p2: | 
|  | //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted | 
|  | //   to an rvalue a prvalue of the first of the following types that can | 
|  | //   represent all the values of its underlying type: int, unsigned int, | 
|  | //   long int, unsigned long int, long long int, or unsigned long long int. | 
|  | //   If none of the types in that list can represent all the values of its | 
|  | //   underlying type, an rvalue a prvalue of type char16_t, char32_t, | 
|  | //   or wchar_t can be converted to an rvalue a prvalue of its underlying | 
|  | //   type. | 
|  | if (FromType->isAnyCharacterType() && !FromType->isCharType() && | 
|  | ToType->isIntegerType()) { | 
|  | // Determine whether the type we're converting from is signed or | 
|  | // unsigned. | 
|  | bool FromIsSigned = FromType->isSignedIntegerType(); | 
|  | uint64_t FromSize = Context.getTypeSize(FromType); | 
|  |  | 
|  | // The types we'll try to promote to, in the appropriate | 
|  | // order. Try each of these types. | 
|  | QualType PromoteTypes[6] = { | 
|  | Context.IntTy, Context.UnsignedIntTy, | 
|  | Context.LongTy, Context.UnsignedLongTy , | 
|  | Context.LongLongTy, Context.UnsignedLongLongTy | 
|  | }; | 
|  | for (int Idx = 0; Idx < 6; ++Idx) { | 
|  | uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); | 
|  | if (FromSize < ToSize || | 
|  | (FromSize == ToSize && | 
|  | FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { | 
|  | // We found the type that we can promote to. If this is the | 
|  | // type we wanted, we have a promotion. Otherwise, no | 
|  | // promotion. | 
|  | return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // An rvalue for an integral bit-field (9.6) can be converted to an | 
|  | // rvalue of type int if int can represent all the values of the | 
|  | // bit-field; otherwise, it can be converted to unsigned int if | 
|  | // unsigned int can represent all the values of the bit-field. If | 
|  | // the bit-field is larger yet, no integral promotion applies to | 
|  | // it. If the bit-field has an enumerated type, it is treated as any | 
|  | // other value of that type for promotion purposes (C++ 4.5p3). | 
|  | // FIXME: We should delay checking of bit-fields until we actually perform the | 
|  | // conversion. | 
|  | using llvm::APSInt; | 
|  | if (From) | 
|  | if (FieldDecl *MemberDecl = From->getSourceBitField()) { | 
|  | APSInt BitWidth; | 
|  | if (FromType->isIntegralType(Context) && | 
|  | MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { | 
|  | APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); | 
|  | ToSize = Context.getTypeSize(ToType); | 
|  |  | 
|  | // Are we promoting to an int from a bitfield that fits in an int? | 
|  | if (BitWidth < ToSize || | 
|  | (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { | 
|  | return To->getKind() == BuiltinType::Int; | 
|  | } | 
|  |  | 
|  | // Are we promoting to an unsigned int from an unsigned bitfield | 
|  | // that fits into an unsigned int? | 
|  | if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { | 
|  | return To->getKind() == BuiltinType::UInt; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // An rvalue of type bool can be converted to an rvalue of type int, | 
|  | // with false becoming zero and true becoming one (C++ 4.5p4). | 
|  | if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// IsFloatingPointPromotion - Determines whether the conversion from | 
|  | /// FromType to ToType is a floating point promotion (C++ 4.6). If so, | 
|  | /// returns true and sets PromotedType to the promoted type. | 
|  | bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { | 
|  | if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) | 
|  | if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { | 
|  | /// An rvalue of type float can be converted to an rvalue of type | 
|  | /// double. (C++ 4.6p1). | 
|  | if (FromBuiltin->getKind() == BuiltinType::Float && | 
|  | ToBuiltin->getKind() == BuiltinType::Double) | 
|  | return true; | 
|  |  | 
|  | // C99 6.3.1.5p1: | 
|  | //   When a float is promoted to double or long double, or a | 
|  | //   double is promoted to long double [...]. | 
|  | if (!getLangOpts().CPlusPlus && | 
|  | (FromBuiltin->getKind() == BuiltinType::Float || | 
|  | FromBuiltin->getKind() == BuiltinType::Double) && | 
|  | (ToBuiltin->getKind() == BuiltinType::LongDouble)) | 
|  | return true; | 
|  |  | 
|  | // Half can be promoted to float. | 
|  | if (!getLangOpts().NativeHalfType && | 
|  | FromBuiltin->getKind() == BuiltinType::Half && | 
|  | ToBuiltin->getKind() == BuiltinType::Float) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Determine if a conversion is a complex promotion. | 
|  | /// | 
|  | /// A complex promotion is defined as a complex -> complex conversion | 
|  | /// where the conversion between the underlying real types is a | 
|  | /// floating-point or integral promotion. | 
|  | bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { | 
|  | const ComplexType *FromComplex = FromType->getAs<ComplexType>(); | 
|  | if (!FromComplex) | 
|  | return false; | 
|  |  | 
|  | const ComplexType *ToComplex = ToType->getAs<ComplexType>(); | 
|  | if (!ToComplex) | 
|  | return false; | 
|  |  | 
|  | return IsFloatingPointPromotion(FromComplex->getElementType(), | 
|  | ToComplex->getElementType()) || | 
|  | IsIntegralPromotion(nullptr, FromComplex->getElementType(), | 
|  | ToComplex->getElementType()); | 
|  | } | 
|  |  | 
|  | /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from | 
|  | /// the pointer type FromPtr to a pointer to type ToPointee, with the | 
|  | /// same type qualifiers as FromPtr has on its pointee type. ToType, | 
|  | /// if non-empty, will be a pointer to ToType that may or may not have | 
|  | /// the right set of qualifiers on its pointee. | 
|  | /// | 
|  | static QualType | 
|  | BuildSimilarlyQualifiedPointerType(const Type *FromPtr, | 
|  | QualType ToPointee, QualType ToType, | 
|  | ASTContext &Context, | 
|  | bool StripObjCLifetime = false) { | 
|  | assert((FromPtr->getTypeClass() == Type::Pointer || | 
|  | FromPtr->getTypeClass() == Type::ObjCObjectPointer) && | 
|  | "Invalid similarly-qualified pointer type"); | 
|  |  | 
|  | /// Conversions to 'id' subsume cv-qualifier conversions. | 
|  | if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) | 
|  | return ToType.getUnqualifiedType(); | 
|  |  | 
|  | QualType CanonFromPointee | 
|  | = Context.getCanonicalType(FromPtr->getPointeeType()); | 
|  | QualType CanonToPointee = Context.getCanonicalType(ToPointee); | 
|  | Qualifiers Quals = CanonFromPointee.getQualifiers(); | 
|  |  | 
|  | if (StripObjCLifetime) | 
|  | Quals.removeObjCLifetime(); | 
|  |  | 
|  | // Exact qualifier match -> return the pointer type we're converting to. | 
|  | if (CanonToPointee.getLocalQualifiers() == Quals) { | 
|  | // ToType is exactly what we need. Return it. | 
|  | if (!ToType.isNull()) | 
|  | return ToType.getUnqualifiedType(); | 
|  |  | 
|  | // Build a pointer to ToPointee. It has the right qualifiers | 
|  | // already. | 
|  | if (isa<ObjCObjectPointerType>(ToType)) | 
|  | return Context.getObjCObjectPointerType(ToPointee); | 
|  | return Context.getPointerType(ToPointee); | 
|  | } | 
|  |  | 
|  | // Just build a canonical type that has the right qualifiers. | 
|  | QualType QualifiedCanonToPointee | 
|  | = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); | 
|  |  | 
|  | if (isa<ObjCObjectPointerType>(ToType)) | 
|  | return Context.getObjCObjectPointerType(QualifiedCanonToPointee); | 
|  | return Context.getPointerType(QualifiedCanonToPointee); | 
|  | } | 
|  |  | 
|  | static bool isNullPointerConstantForConversion(Expr *Expr, | 
|  | bool InOverloadResolution, | 
|  | ASTContext &Context) { | 
|  | // Handle value-dependent integral null pointer constants correctly. | 
|  | // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 | 
|  | if (Expr->isValueDependent() && !Expr->isTypeDependent() && | 
|  | Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) | 
|  | return !InOverloadResolution; | 
|  |  | 
|  | return Expr->isNullPointerConstant(Context, | 
|  | InOverloadResolution? Expr::NPC_ValueDependentIsNotNull | 
|  | : Expr::NPC_ValueDependentIsNull); | 
|  | } | 
|  |  | 
|  | /// IsPointerConversion - Determines whether the conversion of the | 
|  | /// expression From, which has the (possibly adjusted) type FromType, | 
|  | /// can be converted to the type ToType via a pointer conversion (C++ | 
|  | /// 4.10). If so, returns true and places the converted type (that | 
|  | /// might differ from ToType in its cv-qualifiers at some level) into | 
|  | /// ConvertedType. | 
|  | /// | 
|  | /// This routine also supports conversions to and from block pointers | 
|  | /// and conversions with Objective-C's 'id', 'id<protocols...>', and | 
|  | /// pointers to interfaces. FIXME: Once we've determined the | 
|  | /// appropriate overloading rules for Objective-C, we may want to | 
|  | /// split the Objective-C checks into a different routine; however, | 
|  | /// GCC seems to consider all of these conversions to be pointer | 
|  | /// conversions, so for now they live here. IncompatibleObjC will be | 
|  | /// set if the conversion is an allowed Objective-C conversion that | 
|  | /// should result in a warning. | 
|  | bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, | 
|  | bool InOverloadResolution, | 
|  | QualType& ConvertedType, | 
|  | bool &IncompatibleObjC) { | 
|  | IncompatibleObjC = false; | 
|  | if (isObjCPointerConversion(FromType, ToType, ConvertedType, | 
|  | IncompatibleObjC)) | 
|  | return true; | 
|  |  | 
|  | // Conversion from a null pointer constant to any Objective-C pointer type. | 
|  | if (ToType->isObjCObjectPointerType() && | 
|  | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | 
|  | ConvertedType = ToType; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Blocks: Block pointers can be converted to void*. | 
|  | if (FromType->isBlockPointerType() && ToType->isPointerType() && | 
|  | ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { | 
|  | ConvertedType = ToType; | 
|  | return true; | 
|  | } | 
|  | // Blocks: A null pointer constant can be converted to a block | 
|  | // pointer type. | 
|  | if (ToType->isBlockPointerType() && | 
|  | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | 
|  | ConvertedType = ToType; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the left-hand-side is nullptr_t, the right side can be a null | 
|  | // pointer constant. | 
|  | if (ToType->isNullPtrType() && | 
|  | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | 
|  | ConvertedType = ToType; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const PointerType* ToTypePtr = ToType->getAs<PointerType>(); | 
|  | if (!ToTypePtr) | 
|  | return false; | 
|  |  | 
|  | // A null pointer constant can be converted to a pointer type (C++ 4.10p1). | 
|  | if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | 
|  | ConvertedType = ToType; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Beyond this point, both types need to be pointers | 
|  | // , including objective-c pointers. | 
|  | QualType ToPointeeType = ToTypePtr->getPointeeType(); | 
|  | if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && | 
|  | !getLangOpts().ObjCAutoRefCount) { | 
|  | ConvertedType = BuildSimilarlyQualifiedPointerType( | 
|  | FromType->getAs<ObjCObjectPointerType>(), | 
|  | ToPointeeType, | 
|  | ToType, Context); | 
|  | return true; | 
|  | } | 
|  | const PointerType *FromTypePtr = FromType->getAs<PointerType>(); | 
|  | if (!FromTypePtr) | 
|  | return false; | 
|  |  | 
|  | QualType FromPointeeType = FromTypePtr->getPointeeType(); | 
|  |  | 
|  | // If the unqualified pointee types are the same, this can't be a | 
|  | // pointer conversion, so don't do all of the work below. | 
|  | if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) | 
|  | return false; | 
|  |  | 
|  | // An rvalue of type "pointer to cv T," where T is an object type, | 
|  | // can be converted to an rvalue of type "pointer to cv void" (C++ | 
|  | // 4.10p2). | 
|  | if (FromPointeeType->isIncompleteOrObjectType() && | 
|  | ToPointeeType->isVoidType()) { | 
|  | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | 
|  | ToPointeeType, | 
|  | ToType, Context, | 
|  | /*StripObjCLifetime=*/true); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // MSVC allows implicit function to void* type conversion. | 
|  | if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() && | 
|  | ToPointeeType->isVoidType()) { | 
|  | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | 
|  | ToPointeeType, | 
|  | ToType, Context); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // When we're overloading in C, we allow a special kind of pointer | 
|  | // conversion for compatible-but-not-identical pointee types. | 
|  | if (!getLangOpts().CPlusPlus && | 
|  | Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { | 
|  | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | 
|  | ToPointeeType, | 
|  | ToType, Context); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // C++ [conv.ptr]p3: | 
|  | // | 
|  | //   An rvalue of type "pointer to cv D," where D is a class type, | 
|  | //   can be converted to an rvalue of type "pointer to cv B," where | 
|  | //   B is a base class (clause 10) of D. If B is an inaccessible | 
|  | //   (clause 11) or ambiguous (10.2) base class of D, a program that | 
|  | //   necessitates this conversion is ill-formed. The result of the | 
|  | //   conversion is a pointer to the base class sub-object of the | 
|  | //   derived class object. The null pointer value is converted to | 
|  | //   the null pointer value of the destination type. | 
|  | // | 
|  | // Note that we do not check for ambiguity or inaccessibility | 
|  | // here. That is handled by CheckPointerConversion. | 
|  | if (getLangOpts().CPlusPlus && | 
|  | FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && | 
|  | !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && | 
|  | !RequireCompleteType(From->getLocStart(), FromPointeeType, 0) && | 
|  | IsDerivedFrom(FromPointeeType, ToPointeeType)) { | 
|  | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | 
|  | ToPointeeType, | 
|  | ToType, Context); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && | 
|  | Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { | 
|  | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | 
|  | ToPointeeType, | 
|  | ToType, Context); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Adopt the given qualifiers for the given type. | 
|  | static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ | 
|  | Qualifiers TQs = T.getQualifiers(); | 
|  |  | 
|  | // Check whether qualifiers already match. | 
|  | if (TQs == Qs) | 
|  | return T; | 
|  |  | 
|  | if (Qs.compatiblyIncludes(TQs)) | 
|  | return Context.getQualifiedType(T, Qs); | 
|  |  | 
|  | return Context.getQualifiedType(T.getUnqualifiedType(), Qs); | 
|  | } | 
|  |  | 
|  | /// isObjCPointerConversion - Determines whether this is an | 
|  | /// Objective-C pointer conversion. Subroutine of IsPointerConversion, | 
|  | /// with the same arguments and return values. | 
|  | bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, | 
|  | QualType& ConvertedType, | 
|  | bool &IncompatibleObjC) { | 
|  | if (!getLangOpts().ObjC1) | 
|  | return false; | 
|  |  | 
|  | // The set of qualifiers on the type we're converting from. | 
|  | Qualifiers FromQualifiers = FromType.getQualifiers(); | 
|  |  | 
|  | // First, we handle all conversions on ObjC object pointer types. | 
|  | const ObjCObjectPointerType* ToObjCPtr = | 
|  | ToType->getAs<ObjCObjectPointerType>(); | 
|  | const ObjCObjectPointerType *FromObjCPtr = | 
|  | FromType->getAs<ObjCObjectPointerType>(); | 
|  |  | 
|  | if (ToObjCPtr && FromObjCPtr) { | 
|  | // If the pointee types are the same (ignoring qualifications), | 
|  | // then this is not a pointer conversion. | 
|  | if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), | 
|  | FromObjCPtr->getPointeeType())) | 
|  | return false; | 
|  |  | 
|  | // Check for compatible | 
|  | // Objective C++: We're able to convert between "id" or "Class" and a | 
|  | // pointer to any interface (in both directions). | 
|  | if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { | 
|  | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); | 
|  | return true; | 
|  | } | 
|  | // Conversions with Objective-C's id<...>. | 
|  | if ((FromObjCPtr->isObjCQualifiedIdType() || | 
|  | ToObjCPtr->isObjCQualifiedIdType()) && | 
|  | Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, | 
|  | /*compare=*/false)) { | 
|  | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); | 
|  | return true; | 
|  | } | 
|  | // Objective C++: We're able to convert from a pointer to an | 
|  | // interface to a pointer to a different interface. | 
|  | if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { | 
|  | const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); | 
|  | const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); | 
|  | if (getLangOpts().CPlusPlus && LHS && RHS && | 
|  | !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( | 
|  | FromObjCPtr->getPointeeType())) | 
|  | return false; | 
|  | ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, | 
|  | ToObjCPtr->getPointeeType(), | 
|  | ToType, Context); | 
|  | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { | 
|  | // Okay: this is some kind of implicit downcast of Objective-C | 
|  | // interfaces, which is permitted. However, we're going to | 
|  | // complain about it. | 
|  | IncompatibleObjC = true; | 
|  | ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, | 
|  | ToObjCPtr->getPointeeType(), | 
|  | ToType, Context); | 
|  | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | // Beyond this point, both types need to be C pointers or block pointers. | 
|  | QualType ToPointeeType; | 
|  | if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) | 
|  | ToPointeeType = ToCPtr->getPointeeType(); | 
|  | else if (const BlockPointerType *ToBlockPtr = | 
|  | ToType->getAs<BlockPointerType>()) { | 
|  | // Objective C++: We're able to convert from a pointer to any object | 
|  | // to a block pointer type. | 
|  | if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { | 
|  | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); | 
|  | return true; | 
|  | } | 
|  | ToPointeeType = ToBlockPtr->getPointeeType(); | 
|  | } | 
|  | else if (FromType->getAs<BlockPointerType>() && | 
|  | ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { | 
|  | // Objective C++: We're able to convert from a block pointer type to a | 
|  | // pointer to any object. | 
|  | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); | 
|  | return true; | 
|  | } | 
|  | else | 
|  | return false; | 
|  |  | 
|  | QualType FromPointeeType; | 
|  | if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) | 
|  | FromPointeeType = FromCPtr->getPointeeType(); | 
|  | else if (const BlockPointerType *FromBlockPtr = | 
|  | FromType->getAs<BlockPointerType>()) | 
|  | FromPointeeType = FromBlockPtr->getPointeeType(); | 
|  | else | 
|  | return false; | 
|  |  | 
|  | // If we have pointers to pointers, recursively check whether this | 
|  | // is an Objective-C conversion. | 
|  | if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && | 
|  | isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, | 
|  | IncompatibleObjC)) { | 
|  | // We always complain about this conversion. | 
|  | IncompatibleObjC = true; | 
|  | ConvertedType = Context.getPointerType(ConvertedType); | 
|  | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | 
|  | return true; | 
|  | } | 
|  | // Allow conversion of pointee being objective-c pointer to another one; | 
|  | // as in I* to id. | 
|  | if (FromPointeeType->getAs<ObjCObjectPointerType>() && | 
|  | ToPointeeType->getAs<ObjCObjectPointerType>() && | 
|  | isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, | 
|  | IncompatibleObjC)) { | 
|  |  | 
|  | ConvertedType = Context.getPointerType(ConvertedType); | 
|  | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If we have pointers to functions or blocks, check whether the only | 
|  | // differences in the argument and result types are in Objective-C | 
|  | // pointer conversions. If so, we permit the conversion (but | 
|  | // complain about it). | 
|  | const FunctionProtoType *FromFunctionType | 
|  | = FromPointeeType->getAs<FunctionProtoType>(); | 
|  | const FunctionProtoType *ToFunctionType | 
|  | = ToPointeeType->getAs<FunctionProtoType>(); | 
|  | if (FromFunctionType && ToFunctionType) { | 
|  | // If the function types are exactly the same, this isn't an | 
|  | // Objective-C pointer conversion. | 
|  | if (Context.getCanonicalType(FromPointeeType) | 
|  | == Context.getCanonicalType(ToPointeeType)) | 
|  | return false; | 
|  |  | 
|  | // Perform the quick checks that will tell us whether these | 
|  | // function types are obviously different. | 
|  | if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || | 
|  | FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || | 
|  | FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) | 
|  | return false; | 
|  |  | 
|  | bool HasObjCConversion = false; | 
|  | if (Context.getCanonicalType(FromFunctionType->getReturnType()) == | 
|  | Context.getCanonicalType(ToFunctionType->getReturnType())) { | 
|  | // Okay, the types match exactly. Nothing to do. | 
|  | } else if (isObjCPointerConversion(FromFunctionType->getReturnType(), | 
|  | ToFunctionType->getReturnType(), | 
|  | ConvertedType, IncompatibleObjC)) { | 
|  | // Okay, we have an Objective-C pointer conversion. | 
|  | HasObjCConversion = true; | 
|  | } else { | 
|  | // Function types are too different. Abort. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check argument types. | 
|  | for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); | 
|  | ArgIdx != NumArgs; ++ArgIdx) { | 
|  | QualType FromArgType = FromFunctionType->getParamType(ArgIdx); | 
|  | QualType ToArgType = ToFunctionType->getParamType(ArgIdx); | 
|  | if (Context.getCanonicalType(FromArgType) | 
|  | == Context.getCanonicalType(ToArgType)) { | 
|  | // Okay, the types match exactly. Nothing to do. | 
|  | } else if (isObjCPointerConversion(FromArgType, ToArgType, | 
|  | ConvertedType, IncompatibleObjC)) { | 
|  | // Okay, we have an Objective-C pointer conversion. | 
|  | HasObjCConversion = true; | 
|  | } else { | 
|  | // Argument types are too different. Abort. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HasObjCConversion) { | 
|  | // We had an Objective-C conversion. Allow this pointer | 
|  | // conversion, but complain about it. | 
|  | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); | 
|  | IncompatibleObjC = true; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether this is an Objective-C writeback conversion, | 
|  | /// used for parameter passing when performing automatic reference counting. | 
|  | /// | 
|  | /// \param FromType The type we're converting form. | 
|  | /// | 
|  | /// \param ToType The type we're converting to. | 
|  | /// | 
|  | /// \param ConvertedType The type that will be produced after applying | 
|  | /// this conversion. | 
|  | bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, | 
|  | QualType &ConvertedType) { | 
|  | if (!getLangOpts().ObjCAutoRefCount || | 
|  | Context.hasSameUnqualifiedType(FromType, ToType)) | 
|  | return false; | 
|  |  | 
|  | // Parameter must be a pointer to __autoreleasing (with no other qualifiers). | 
|  | QualType ToPointee; | 
|  | if (const PointerType *ToPointer = ToType->getAs<PointerType>()) | 
|  | ToPointee = ToPointer->getPointeeType(); | 
|  | else | 
|  | return false; | 
|  |  | 
|  | Qualifiers ToQuals = ToPointee.getQualifiers(); | 
|  | if (!ToPointee->isObjCLifetimeType() || | 
|  | ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || | 
|  | !ToQuals.withoutObjCLifetime().empty()) | 
|  | return false; | 
|  |  | 
|  | // Argument must be a pointer to __strong to __weak. | 
|  | QualType FromPointee; | 
|  | if (const PointerType *FromPointer = FromType->getAs<PointerType>()) | 
|  | FromPointee = FromPointer->getPointeeType(); | 
|  | else | 
|  | return false; | 
|  |  | 
|  | Qualifiers FromQuals = FromPointee.getQualifiers(); | 
|  | if (!FromPointee->isObjCLifetimeType() || | 
|  | (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && | 
|  | FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) | 
|  | return false; | 
|  |  | 
|  | // Make sure that we have compatible qualifiers. | 
|  | FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); | 
|  | if (!ToQuals.compatiblyIncludes(FromQuals)) | 
|  | return false; | 
|  |  | 
|  | // Remove qualifiers from the pointee type we're converting from; they | 
|  | // aren't used in the compatibility check belong, and we'll be adding back | 
|  | // qualifiers (with __autoreleasing) if the compatibility check succeeds. | 
|  | FromPointee = FromPointee.getUnqualifiedType(); | 
|  |  | 
|  | // The unqualified form of the pointee types must be compatible. | 
|  | ToPointee = ToPointee.getUnqualifiedType(); | 
|  | bool IncompatibleObjC; | 
|  | if (Context.typesAreCompatible(FromPointee, ToPointee)) | 
|  | FromPointee = ToPointee; | 
|  | else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, | 
|  | IncompatibleObjC)) | 
|  | return false; | 
|  |  | 
|  | /// \brief Construct the type we're converting to, which is a pointer to | 
|  | /// __autoreleasing pointee. | 
|  | FromPointee = Context.getQualifiedType(FromPointee, FromQuals); | 
|  | ConvertedType = Context.getPointerType(FromPointee); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, | 
|  | QualType& ConvertedType) { | 
|  | QualType ToPointeeType; | 
|  | if (const BlockPointerType *ToBlockPtr = | 
|  | ToType->getAs<BlockPointerType>()) | 
|  | ToPointeeType = ToBlockPtr->getPointeeType(); | 
|  | else | 
|  | return false; | 
|  |  | 
|  | QualType FromPointeeType; | 
|  | if (const BlockPointerType *FromBlockPtr = | 
|  | FromType->getAs<BlockPointerType>()) | 
|  | FromPointeeType = FromBlockPtr->getPointeeType(); | 
|  | else | 
|  | return false; | 
|  | // We have pointer to blocks, check whether the only | 
|  | // differences in the argument and result types are in Objective-C | 
|  | // pointer conversions. If so, we permit the conversion. | 
|  |  | 
|  | const FunctionProtoType *FromFunctionType | 
|  | = FromPointeeType->getAs<FunctionProtoType>(); | 
|  | const FunctionProtoType *ToFunctionType | 
|  | = ToPointeeType->getAs<FunctionProtoType>(); | 
|  |  | 
|  | if (!FromFunctionType || !ToFunctionType) | 
|  | return false; | 
|  |  | 
|  | if (Context.hasSameType(FromPointeeType, ToPointeeType)) | 
|  | return true; | 
|  |  | 
|  | // Perform the quick checks that will tell us whether these | 
|  | // function types are obviously different. | 
|  | if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || | 
|  | FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) | 
|  | return false; | 
|  |  | 
|  | FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); | 
|  | FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); | 
|  | if (FromEInfo != ToEInfo) | 
|  | return false; | 
|  |  | 
|  | bool IncompatibleObjC = false; | 
|  | if (Context.hasSameType(FromFunctionType->getReturnType(), | 
|  | ToFunctionType->getReturnType())) { | 
|  | // Okay, the types match exactly. Nothing to do. | 
|  | } else { | 
|  | QualType RHS = FromFunctionType->getReturnType(); | 
|  | QualType LHS = ToFunctionType->getReturnType(); | 
|  | if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) && | 
|  | !RHS.hasQualifiers() && LHS.hasQualifiers()) | 
|  | LHS = LHS.getUnqualifiedType(); | 
|  |  | 
|  | if (Context.hasSameType(RHS,LHS)) { | 
|  | // OK exact match. | 
|  | } else if (isObjCPointerConversion(RHS, LHS, | 
|  | ConvertedType, IncompatibleObjC)) { | 
|  | if (IncompatibleObjC) | 
|  | return false; | 
|  | // Okay, we have an Objective-C pointer conversion. | 
|  | } | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check argument types. | 
|  | for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); | 
|  | ArgIdx != NumArgs; ++ArgIdx) { | 
|  | IncompatibleObjC = false; | 
|  | QualType FromArgType = FromFunctionType->getParamType(ArgIdx); | 
|  | QualType ToArgType = ToFunctionType->getParamType(ArgIdx); | 
|  | if (Context.hasSameType(FromArgType, ToArgType)) { | 
|  | // Okay, the types match exactly. Nothing to do. | 
|  | } else if (isObjCPointerConversion(ToArgType, FromArgType, | 
|  | ConvertedType, IncompatibleObjC)) { | 
|  | if (IncompatibleObjC) | 
|  | return false; | 
|  | // Okay, we have an Objective-C pointer conversion. | 
|  | } else | 
|  | // Argument types are too different. Abort. | 
|  | return false; | 
|  | } | 
|  | if (LangOpts.ObjCAutoRefCount && | 
|  | !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType, | 
|  | ToFunctionType)) | 
|  | return false; | 
|  |  | 
|  | ConvertedType = ToType; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | ft_default, | 
|  | ft_different_class, | 
|  | ft_parameter_arity, | 
|  | ft_parameter_mismatch, | 
|  | ft_return_type, | 
|  | ft_qualifer_mismatch | 
|  | }; | 
|  |  | 
|  | /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing | 
|  | /// function types.  Catches different number of parameter, mismatch in | 
|  | /// parameter types, and different return types. | 
|  | void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, | 
|  | QualType FromType, QualType ToType) { | 
|  | // If either type is not valid, include no extra info. | 
|  | if (FromType.isNull() || ToType.isNull()) { | 
|  | PDiag << ft_default; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Get the function type from the pointers. | 
|  | if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { | 
|  | const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(), | 
|  | *ToMember = ToType->getAs<MemberPointerType>(); | 
|  | if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) { | 
|  | PDiag << ft_different_class << QualType(ToMember->getClass(), 0) | 
|  | << QualType(FromMember->getClass(), 0); | 
|  | return; | 
|  | } | 
|  | FromType = FromMember->getPointeeType(); | 
|  | ToType = ToMember->getPointeeType(); | 
|  | } | 
|  |  | 
|  | if (FromType->isPointerType()) | 
|  | FromType = FromType->getPointeeType(); | 
|  | if (ToType->isPointerType()) | 
|  | ToType = ToType->getPointeeType(); | 
|  |  | 
|  | // Remove references. | 
|  | FromType = FromType.getNonReferenceType(); | 
|  | ToType = ToType.getNonReferenceType(); | 
|  |  | 
|  | // Don't print extra info for non-specialized template functions. | 
|  | if (FromType->isInstantiationDependentType() && | 
|  | !FromType->getAs<TemplateSpecializationType>()) { | 
|  | PDiag << ft_default; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // No extra info for same types. | 
|  | if (Context.hasSameType(FromType, ToType)) { | 
|  | PDiag << ft_default; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(), | 
|  | *ToFunction = ToType->getAs<FunctionProtoType>(); | 
|  |  | 
|  | // Both types need to be function types. | 
|  | if (!FromFunction || !ToFunction) { | 
|  | PDiag << ft_default; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (FromFunction->getNumParams() != ToFunction->getNumParams()) { | 
|  | PDiag << ft_parameter_arity << ToFunction->getNumParams() | 
|  | << FromFunction->getNumParams(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle different parameter types. | 
|  | unsigned ArgPos; | 
|  | if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { | 
|  | PDiag << ft_parameter_mismatch << ArgPos + 1 | 
|  | << ToFunction->getParamType(ArgPos) | 
|  | << FromFunction->getParamType(ArgPos); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle different return type. | 
|  | if (!Context.hasSameType(FromFunction->getReturnType(), | 
|  | ToFunction->getReturnType())) { | 
|  | PDiag << ft_return_type << ToFunction->getReturnType() | 
|  | << FromFunction->getReturnType(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned FromQuals = FromFunction->getTypeQuals(), | 
|  | ToQuals = ToFunction->getTypeQuals(); | 
|  | if (FromQuals != ToQuals) { | 
|  | PDiag << ft_qualifer_mismatch << ToQuals << FromQuals; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Unable to find a difference, so add no extra info. | 
|  | PDiag << ft_default; | 
|  | } | 
|  |  | 
|  | /// FunctionParamTypesAreEqual - This routine checks two function proto types | 
|  | /// for equality of their argument types. Caller has already checked that | 
|  | /// they have same number of arguments.  If the parameters are different, | 
|  | /// ArgPos will have the parameter index of the first different parameter. | 
|  | bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType, | 
|  | const FunctionProtoType *NewType, | 
|  | unsigned *ArgPos) { | 
|  | for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(), | 
|  | N = NewType->param_type_begin(), | 
|  | E = OldType->param_type_end(); | 
|  | O && (O != E); ++O, ++N) { | 
|  | if (!Context.hasSameType(O->getUnqualifiedType(), | 
|  | N->getUnqualifiedType())) { | 
|  | if (ArgPos) | 
|  | *ArgPos = O - OldType->param_type_begin(); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// CheckPointerConversion - Check the pointer conversion from the | 
|  | /// expression From to the type ToType. This routine checks for | 
|  | /// ambiguous or inaccessible derived-to-base pointer | 
|  | /// conversions for which IsPointerConversion has already returned | 
|  | /// true. It returns true and produces a diagnostic if there was an | 
|  | /// error, or returns false otherwise. | 
|  | bool Sema::CheckPointerConversion(Expr *From, QualType ToType, | 
|  | CastKind &Kind, | 
|  | CXXCastPath& BasePath, | 
|  | bool IgnoreBaseAccess) { | 
|  | QualType FromType = From->getType(); | 
|  | bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; | 
|  |  | 
|  | Kind = CK_BitCast; | 
|  |  | 
|  | if (!IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() && | 
|  | From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) == | 
|  | Expr::NPCK_ZeroExpression) { | 
|  | if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy)) | 
|  | DiagRuntimeBehavior(From->getExprLoc(), From, | 
|  | PDiag(diag::warn_impcast_bool_to_null_pointer) | 
|  | << ToType << From->getSourceRange()); | 
|  | else if (!isUnevaluatedContext()) | 
|  | Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer) | 
|  | << ToType << From->getSourceRange(); | 
|  | } | 
|  | if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { | 
|  | if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { | 
|  | QualType FromPointeeType = FromPtrType->getPointeeType(), | 
|  | ToPointeeType   = ToPtrType->getPointeeType(); | 
|  |  | 
|  | if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && | 
|  | !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { | 
|  | // We must have a derived-to-base conversion. Check an | 
|  | // ambiguous or inaccessible conversion. | 
|  | if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, | 
|  | From->getExprLoc(), | 
|  | From->getSourceRange(), &BasePath, | 
|  | IgnoreBaseAccess)) | 
|  | return true; | 
|  |  | 
|  | // The conversion was successful. | 
|  | Kind = CK_DerivedToBase; | 
|  | } | 
|  | } | 
|  | } else if (const ObjCObjectPointerType *ToPtrType = | 
|  | ToType->getAs<ObjCObjectPointerType>()) { | 
|  | if (const ObjCObjectPointerType *FromPtrType = | 
|  | FromType->getAs<ObjCObjectPointerType>()) { | 
|  | // Objective-C++ conversions are always okay. | 
|  | // FIXME: We should have a different class of conversions for the | 
|  | // Objective-C++ implicit conversions. | 
|  | if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) | 
|  | return false; | 
|  | } else if (FromType->isBlockPointerType()) { | 
|  | Kind = CK_BlockPointerToObjCPointerCast; | 
|  | } else { | 
|  | Kind = CK_CPointerToObjCPointerCast; | 
|  | } | 
|  | } else if (ToType->isBlockPointerType()) { | 
|  | if (!FromType->isBlockPointerType()) | 
|  | Kind = CK_AnyPointerToBlockPointerCast; | 
|  | } | 
|  |  | 
|  | // We shouldn't fall into this case unless it's valid for other | 
|  | // reasons. | 
|  | if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) | 
|  | Kind = CK_NullToPointer; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// IsMemberPointerConversion - Determines whether the conversion of the | 
|  | /// expression From, which has the (possibly adjusted) type FromType, can be | 
|  | /// converted to the type ToType via a member pointer conversion (C++ 4.11). | 
|  | /// If so, returns true and places the converted type (that might differ from | 
|  | /// ToType in its cv-qualifiers at some level) into ConvertedType. | 
|  | bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, | 
|  | QualType ToType, | 
|  | bool InOverloadResolution, | 
|  | QualType &ConvertedType) { | 
|  | const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); | 
|  | if (!ToTypePtr) | 
|  | return false; | 
|  |  | 
|  | // A null pointer constant can be converted to a member pointer (C++ 4.11p1) | 
|  | if (From->isNullPointerConstant(Context, | 
|  | InOverloadResolution? Expr::NPC_ValueDependentIsNotNull | 
|  | : Expr::NPC_ValueDependentIsNull)) { | 
|  | ConvertedType = ToType; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, both types have to be member pointers. | 
|  | const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); | 
|  | if (!FromTypePtr) | 
|  | return false; | 
|  |  | 
|  | // A pointer to member of B can be converted to a pointer to member of D, | 
|  | // where D is derived from B (C++ 4.11p2). | 
|  | QualType FromClass(FromTypePtr->getClass(), 0); | 
|  | QualType ToClass(ToTypePtr->getClass(), 0); | 
|  |  | 
|  | if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && | 
|  | !RequireCompleteType(From->getLocStart(), ToClass, 0) && | 
|  | IsDerivedFrom(ToClass, FromClass)) { | 
|  | ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), | 
|  | ToClass.getTypePtr()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CheckMemberPointerConversion - Check the member pointer conversion from the | 
|  | /// expression From to the type ToType. This routine checks for ambiguous or | 
|  | /// virtual or inaccessible base-to-derived member pointer conversions | 
|  | /// for which IsMemberPointerConversion has already returned true. It returns | 
|  | /// true and produces a diagnostic if there was an error, or returns false | 
|  | /// otherwise. | 
|  | bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, | 
|  | CastKind &Kind, | 
|  | CXXCastPath &BasePath, | 
|  | bool IgnoreBaseAccess) { | 
|  | QualType FromType = From->getType(); | 
|  | const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); | 
|  | if (!FromPtrType) { | 
|  | // This must be a null pointer to member pointer conversion | 
|  | assert(From->isNullPointerConstant(Context, | 
|  | Expr::NPC_ValueDependentIsNull) && | 
|  | "Expr must be null pointer constant!"); | 
|  | Kind = CK_NullToMemberPointer; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); | 
|  | assert(ToPtrType && "No member pointer cast has a target type " | 
|  | "that is not a member pointer."); | 
|  |  | 
|  | QualType FromClass = QualType(FromPtrType->getClass(), 0); | 
|  | QualType ToClass   = QualType(ToPtrType->getClass(), 0); | 
|  |  | 
|  | // FIXME: What about dependent types? | 
|  | assert(FromClass->isRecordType() && "Pointer into non-class."); | 
|  | assert(ToClass->isRecordType() && "Pointer into non-class."); | 
|  |  | 
|  | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
|  | /*DetectVirtual=*/true); | 
|  | bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); | 
|  | assert(DerivationOkay && | 
|  | "Should not have been called if derivation isn't OK."); | 
|  | (void)DerivationOkay; | 
|  |  | 
|  | if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). | 
|  | getUnqualifiedType())) { | 
|  | std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); | 
|  | Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) | 
|  | << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (const RecordType *VBase = Paths.getDetectedVirtual()) { | 
|  | Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) | 
|  | << FromClass << ToClass << QualType(VBase, 0) | 
|  | << From->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!IgnoreBaseAccess) | 
|  | CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, | 
|  | Paths.front(), | 
|  | diag::err_downcast_from_inaccessible_base); | 
|  |  | 
|  | // Must be a base to derived member conversion. | 
|  | BuildBasePathArray(Paths, BasePath); | 
|  | Kind = CK_BaseToDerivedMemberPointer; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine whether the lifetime conversion between the two given | 
|  | /// qualifiers sets is nontrivial. | 
|  | static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals, | 
|  | Qualifiers ToQuals) { | 
|  | // Converting anything to const __unsafe_unretained is trivial. | 
|  | if (ToQuals.hasConst() && | 
|  | ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// IsQualificationConversion - Determines whether the conversion from | 
|  | /// an rvalue of type FromType to ToType is a qualification conversion | 
|  | /// (C++ 4.4). | 
|  | /// | 
|  | /// \param ObjCLifetimeConversion Output parameter that will be set to indicate | 
|  | /// when the qualification conversion involves a change in the Objective-C | 
|  | /// object lifetime. | 
|  | bool | 
|  | Sema::IsQualificationConversion(QualType FromType, QualType ToType, | 
|  | bool CStyle, bool &ObjCLifetimeConversion) { | 
|  | FromType = Context.getCanonicalType(FromType); | 
|  | ToType = Context.getCanonicalType(ToType); | 
|  | ObjCLifetimeConversion = false; | 
|  |  | 
|  | // If FromType and ToType are the same type, this is not a | 
|  | // qualification conversion. | 
|  | if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) | 
|  | return false; | 
|  |  | 
|  | // (C++ 4.4p4): | 
|  | //   A conversion can add cv-qualifiers at levels other than the first | 
|  | //   in multi-level pointers, subject to the following rules: [...] | 
|  | bool PreviousToQualsIncludeConst = true; | 
|  | bool UnwrappedAnyPointer = false; | 
|  | while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { | 
|  | // Within each iteration of the loop, we check the qualifiers to | 
|  | // determine if this still looks like a qualification | 
|  | // conversion. Then, if all is well, we unwrap one more level of | 
|  | // pointers or pointers-to-members and do it all again | 
|  | // until there are no more pointers or pointers-to-members left to | 
|  | // unwrap. | 
|  | UnwrappedAnyPointer = true; | 
|  |  | 
|  | Qualifiers FromQuals = FromType.getQualifiers(); | 
|  | Qualifiers ToQuals = ToType.getQualifiers(); | 
|  |  | 
|  | // Objective-C ARC: | 
|  | //   Check Objective-C lifetime conversions. | 
|  | if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() && | 
|  | UnwrappedAnyPointer) { | 
|  | if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { | 
|  | if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals)) | 
|  | ObjCLifetimeConversion = true; | 
|  | FromQuals.removeObjCLifetime(); | 
|  | ToQuals.removeObjCLifetime(); | 
|  | } else { | 
|  | // Qualification conversions cannot cast between different | 
|  | // Objective-C lifetime qualifiers. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allow addition/removal of GC attributes but not changing GC attributes. | 
|  | if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && | 
|  | (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { | 
|  | FromQuals.removeObjCGCAttr(); | 
|  | ToQuals.removeObjCGCAttr(); | 
|  | } | 
|  |  | 
|  | //   -- for every j > 0, if const is in cv 1,j then const is in cv | 
|  | //      2,j, and similarly for volatile. | 
|  | if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) | 
|  | return false; | 
|  |  | 
|  | //   -- if the cv 1,j and cv 2,j are different, then const is in | 
|  | //      every cv for 0 < k < j. | 
|  | if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() | 
|  | && !PreviousToQualsIncludeConst) | 
|  | return false; | 
|  |  | 
|  | // Keep track of whether all prior cv-qualifiers in the "to" type | 
|  | // include const. | 
|  | PreviousToQualsIncludeConst | 
|  | = PreviousToQualsIncludeConst && ToQuals.hasConst(); | 
|  | } | 
|  |  | 
|  | // We are left with FromType and ToType being the pointee types | 
|  | // after unwrapping the original FromType and ToType the same number | 
|  | // of types. If we unwrapped any pointers, and if FromType and | 
|  | // ToType have the same unqualified type (since we checked | 
|  | // qualifiers above), then this is a qualification conversion. | 
|  | return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); | 
|  | } | 
|  |  | 
|  | /// \brief - Determine whether this is a conversion from a scalar type to an | 
|  | /// atomic type. | 
|  | /// | 
|  | /// If successful, updates \c SCS's second and third steps in the conversion | 
|  | /// sequence to finish the conversion. | 
|  | static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, | 
|  | bool InOverloadResolution, | 
|  | StandardConversionSequence &SCS, | 
|  | bool CStyle) { | 
|  | const AtomicType *ToAtomic = ToType->getAs<AtomicType>(); | 
|  | if (!ToAtomic) | 
|  | return false; | 
|  |  | 
|  | StandardConversionSequence InnerSCS; | 
|  | if (!IsStandardConversion(S, From, ToAtomic->getValueType(), | 
|  | InOverloadResolution, InnerSCS, | 
|  | CStyle, /*AllowObjCWritebackConversion=*/false)) | 
|  | return false; | 
|  |  | 
|  | SCS.Second = InnerSCS.Second; | 
|  | SCS.setToType(1, InnerSCS.getToType(1)); | 
|  | SCS.Third = InnerSCS.Third; | 
|  | SCS.QualificationIncludesObjCLifetime | 
|  | = InnerSCS.QualificationIncludesObjCLifetime; | 
|  | SCS.setToType(2, InnerSCS.getToType(2)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isFirstArgumentCompatibleWithType(ASTContext &Context, | 
|  | CXXConstructorDecl *Constructor, | 
|  | QualType Type) { | 
|  | const FunctionProtoType *CtorType = | 
|  | Constructor->getType()->getAs<FunctionProtoType>(); | 
|  | if (CtorType->getNumParams() > 0) { | 
|  | QualType FirstArg = CtorType->getParamType(0); | 
|  | if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType())) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static OverloadingResult | 
|  | IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType, | 
|  | CXXRecordDecl *To, | 
|  | UserDefinedConversionSequence &User, | 
|  | OverloadCandidateSet &CandidateSet, | 
|  | bool AllowExplicit) { | 
|  | DeclContext::lookup_result R = S.LookupConstructors(To); | 
|  | for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end(); | 
|  | Con != ConEnd; ++Con) { | 
|  | NamedDecl *D = *Con; | 
|  | DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); | 
|  |  | 
|  | // Find the constructor (which may be a template). | 
|  | CXXConstructorDecl *Constructor = nullptr; | 
|  | FunctionTemplateDecl *ConstructorTmpl | 
|  | = dyn_cast<FunctionTemplateDecl>(D); | 
|  | if (ConstructorTmpl) | 
|  | Constructor | 
|  | = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); | 
|  | else | 
|  | Constructor = cast<CXXConstructorDecl>(D); | 
|  |  | 
|  | bool Usable = !Constructor->isInvalidDecl() && | 
|  | S.isInitListConstructor(Constructor) && | 
|  | (AllowExplicit || !Constructor->isExplicit()); | 
|  | if (Usable) { | 
|  | // If the first argument is (a reference to) the target type, | 
|  | // suppress conversions. | 
|  | bool SuppressUserConversions = | 
|  | isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType); | 
|  | if (ConstructorTmpl) | 
|  | S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, | 
|  | /*ExplicitArgs*/ nullptr, | 
|  | From, CandidateSet, | 
|  | SuppressUserConversions); | 
|  | else | 
|  | S.AddOverloadCandidate(Constructor, FoundDecl, | 
|  | From, CandidateSet, | 
|  | SuppressUserConversions); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) { | 
|  | case OR_Success: { | 
|  | // Record the standard conversion we used and the conversion function. | 
|  | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); | 
|  | QualType ThisType = Constructor->getThisType(S.Context); | 
|  | // Initializer lists don't have conversions as such. | 
|  | User.Before.setAsIdentityConversion(); | 
|  | User.HadMultipleCandidates = HadMultipleCandidates; | 
|  | User.ConversionFunction = Constructor; | 
|  | User.FoundConversionFunction = Best->FoundDecl; | 
|  | User.After.setAsIdentityConversion(); | 
|  | User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType()); | 
|  | User.After.setAllToTypes(ToType); | 
|  | return OR_Success; | 
|  | } | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | return OR_No_Viable_Function; | 
|  | case OR_Deleted: | 
|  | return OR_Deleted; | 
|  | case OR_Ambiguous: | 
|  | return OR_Ambiguous; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid OverloadResult!"); | 
|  | } | 
|  |  | 
|  | /// Determines whether there is a user-defined conversion sequence | 
|  | /// (C++ [over.ics.user]) that converts expression From to the type | 
|  | /// ToType. If such a conversion exists, User will contain the | 
|  | /// user-defined conversion sequence that performs such a conversion | 
|  | /// and this routine will return true. Otherwise, this routine returns | 
|  | /// false and User is unspecified. | 
|  | /// | 
|  | /// \param AllowExplicit  true if the conversion should consider C++0x | 
|  | /// "explicit" conversion functions as well as non-explicit conversion | 
|  | /// functions (C++0x [class.conv.fct]p2). | 
|  | /// | 
|  | /// \param AllowObjCConversionOnExplicit true if the conversion should | 
|  | /// allow an extra Objective-C pointer conversion on uses of explicit | 
|  | /// constructors. Requires \c AllowExplicit to also be set. | 
|  | static OverloadingResult | 
|  | IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, | 
|  | UserDefinedConversionSequence &User, | 
|  | OverloadCandidateSet &CandidateSet, | 
|  | bool AllowExplicit, | 
|  | bool AllowObjCConversionOnExplicit) { | 
|  | assert(AllowExplicit || !AllowObjCConversionOnExplicit); | 
|  |  | 
|  | // Whether we will only visit constructors. | 
|  | bool ConstructorsOnly = false; | 
|  |  | 
|  | // If the type we are conversion to is a class type, enumerate its | 
|  | // constructors. | 
|  | if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { | 
|  | // C++ [over.match.ctor]p1: | 
|  | //   When objects of class type are direct-initialized (8.5), or | 
|  | //   copy-initialized from an expression of the same or a | 
|  | //   derived class type (8.5), overload resolution selects the | 
|  | //   constructor. [...] For copy-initialization, the candidate | 
|  | //   functions are all the converting constructors (12.3.1) of | 
|  | //   that class. The argument list is the expression-list within | 
|  | //   the parentheses of the initializer. | 
|  | if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || | 
|  | (From->getType()->getAs<RecordType>() && | 
|  | S.IsDerivedFrom(From->getType(), ToType))) | 
|  | ConstructorsOnly = true; | 
|  |  | 
|  | S.RequireCompleteType(From->getExprLoc(), ToType, 0); | 
|  | // RequireCompleteType may have returned true due to some invalid decl | 
|  | // during template instantiation, but ToType may be complete enough now | 
|  | // to try to recover. | 
|  | if (ToType->isIncompleteType()) { | 
|  | // We're not going to find any constructors. | 
|  | } else if (CXXRecordDecl *ToRecordDecl | 
|  | = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { | 
|  |  | 
|  | Expr **Args = &From; | 
|  | unsigned NumArgs = 1; | 
|  | bool ListInitializing = false; | 
|  | if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) { | 
|  | // But first, see if there is an init-list-constructor that will work. | 
|  | OverloadingResult Result = IsInitializerListConstructorConversion( | 
|  | S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit); | 
|  | if (Result != OR_No_Viable_Function) | 
|  | return Result; | 
|  | // Never mind. | 
|  | CandidateSet.clear(); | 
|  |  | 
|  | // If we're list-initializing, we pass the individual elements as | 
|  | // arguments, not the entire list. | 
|  | Args = InitList->getInits(); | 
|  | NumArgs = InitList->getNumInits(); | 
|  | ListInitializing = true; | 
|  | } | 
|  |  | 
|  | DeclContext::lookup_result R = S.LookupConstructors(ToRecordDecl); | 
|  | for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end(); | 
|  | Con != ConEnd; ++Con) { | 
|  | NamedDecl *D = *Con; | 
|  | DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); | 
|  |  | 
|  | // Find the constructor (which may be a template). | 
|  | CXXConstructorDecl *Constructor = nullptr; | 
|  | FunctionTemplateDecl *ConstructorTmpl | 
|  | = dyn_cast<FunctionTemplateDecl>(D); | 
|  | if (ConstructorTmpl) | 
|  | Constructor | 
|  | = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); | 
|  | else | 
|  | Constructor = cast<CXXConstructorDecl>(D); | 
|  |  | 
|  | bool Usable = !Constructor->isInvalidDecl(); | 
|  | if (ListInitializing) | 
|  | Usable = Usable && (AllowExplicit || !Constructor->isExplicit()); | 
|  | else | 
|  | Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit); | 
|  | if (Usable) { | 
|  | bool SuppressUserConversions = !ConstructorsOnly; | 
|  | if (SuppressUserConversions && ListInitializing) { | 
|  | SuppressUserConversions = false; | 
|  | if (NumArgs == 1) { | 
|  | // If the first argument is (a reference to) the target type, | 
|  | // suppress conversions. | 
|  | SuppressUserConversions = isFirstArgumentCompatibleWithType( | 
|  | S.Context, Constructor, ToType); | 
|  | } | 
|  | } | 
|  | if (ConstructorTmpl) | 
|  | S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, | 
|  | /*ExplicitArgs*/ nullptr, | 
|  | llvm::makeArrayRef(Args, NumArgs), | 
|  | CandidateSet, SuppressUserConversions); | 
|  | else | 
|  | // Allow one user-defined conversion when user specifies a | 
|  | // From->ToType conversion via an static cast (c-style, etc). | 
|  | S.AddOverloadCandidate(Constructor, FoundDecl, | 
|  | llvm::makeArrayRef(Args, NumArgs), | 
|  | CandidateSet, SuppressUserConversions); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Enumerate conversion functions, if we're allowed to. | 
|  | if (ConstructorsOnly || isa<InitListExpr>(From)) { | 
|  | } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 0)) { | 
|  | // No conversion functions from incomplete types. | 
|  | } else if (const RecordType *FromRecordType | 
|  | = From->getType()->getAs<RecordType>()) { | 
|  | if (CXXRecordDecl *FromRecordDecl | 
|  | = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { | 
|  | // Add all of the conversion functions as candidates. | 
|  | const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions(); | 
|  | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | 
|  | DeclAccessPair FoundDecl = I.getPair(); | 
|  | NamedDecl *D = FoundDecl.getDecl(); | 
|  | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); | 
|  | if (isa<UsingShadowDecl>(D)) | 
|  | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
|  |  | 
|  | CXXConversionDecl *Conv; | 
|  | FunctionTemplateDecl *ConvTemplate; | 
|  | if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) | 
|  | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | 
|  | else | 
|  | Conv = cast<CXXConversionDecl>(D); | 
|  |  | 
|  | if (AllowExplicit || !Conv->isExplicit()) { | 
|  | if (ConvTemplate) | 
|  | S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl, | 
|  | ActingContext, From, ToType, | 
|  | CandidateSet, | 
|  | AllowObjCConversionOnExplicit); | 
|  | else | 
|  | S.AddConversionCandidate(Conv, FoundDecl, ActingContext, | 
|  | From, ToType, CandidateSet, | 
|  | AllowObjCConversionOnExplicit); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (auto Result = CandidateSet.BestViableFunction(S, From->getLocStart(), | 
|  | Best, true)) { | 
|  | case OR_Success: | 
|  | case OR_Deleted: | 
|  | // Record the standard conversion we used and the conversion function. | 
|  | if (CXXConstructorDecl *Constructor | 
|  | = dyn_cast<CXXConstructorDecl>(Best->Function)) { | 
|  | // C++ [over.ics.user]p1: | 
|  | //   If the user-defined conversion is specified by a | 
|  | //   constructor (12.3.1), the initial standard conversion | 
|  | //   sequence converts the source type to the type required by | 
|  | //   the argument of the constructor. | 
|  | // | 
|  | QualType ThisType = Constructor->getThisType(S.Context); | 
|  | if (isa<InitListExpr>(From)) { | 
|  | // Initializer lists don't have conversions as such. | 
|  | User.Before.setAsIdentityConversion(); | 
|  | } else { | 
|  | if (Best->Conversions[0].isEllipsis()) | 
|  | User.EllipsisConversion = true; | 
|  | else { | 
|  | User.Before = Best->Conversions[0].Standard; | 
|  | User.EllipsisConversion = false; | 
|  | } | 
|  | } | 
|  | User.HadMultipleCandidates = HadMultipleCandidates; | 
|  | User.ConversionFunction = Constructor; | 
|  | User.FoundConversionFunction = Best->FoundDecl; | 
|  | User.After.setAsIdentityConversion(); | 
|  | User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType()); | 
|  | User.After.setAllToTypes(ToType); | 
|  | return Result; | 
|  | } | 
|  | if (CXXConversionDecl *Conversion | 
|  | = dyn_cast<CXXConversionDecl>(Best->Function)) { | 
|  | // C++ [over.ics.user]p1: | 
|  | // | 
|  | //   [...] If the user-defined conversion is specified by a | 
|  | //   conversion function (12.3.2), the initial standard | 
|  | //   conversion sequence converts the source type to the | 
|  | //   implicit object parameter of the conversion function. | 
|  | User.Before = Best->Conversions[0].Standard; | 
|  | User.HadMultipleCandidates = HadMultipleCandidates; | 
|  | User.ConversionFunction = Conversion; | 
|  | User.FoundConversionFunction = Best->FoundDecl; | 
|  | User.EllipsisConversion = false; | 
|  |  | 
|  | // C++ [over.ics.user]p2: | 
|  | //   The second standard conversion sequence converts the | 
|  | //   result of the user-defined conversion to the target type | 
|  | //   for the sequence. Since an implicit conversion sequence | 
|  | //   is an initialization, the special rules for | 
|  | //   initialization by user-defined conversion apply when | 
|  | //   selecting the best user-defined conversion for a | 
|  | //   user-defined conversion sequence (see 13.3.3 and | 
|  | //   13.3.3.1). | 
|  | User.After = Best->FinalConversion; | 
|  | return Result; | 
|  | } | 
|  | llvm_unreachable("Not a constructor or conversion function?"); | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | return OR_No_Viable_Function; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | return OR_Ambiguous; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid OverloadResult!"); | 
|  | } | 
|  |  | 
|  | bool | 
|  | Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { | 
|  | ImplicitConversionSequence ICS; | 
|  | OverloadCandidateSet CandidateSet(From->getExprLoc(), | 
|  | OverloadCandidateSet::CSK_Normal); | 
|  | OverloadingResult OvResult = | 
|  | IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, | 
|  | CandidateSet, false, false); | 
|  | if (OvResult == OR_Ambiguous) | 
|  | Diag(From->getLocStart(), diag::err_typecheck_ambiguous_condition) | 
|  | << From->getType() << ToType << From->getSourceRange(); | 
|  | else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) { | 
|  | if (!RequireCompleteType(From->getLocStart(), ToType, | 
|  | diag::err_typecheck_nonviable_condition_incomplete, | 
|  | From->getType(), From->getSourceRange())) | 
|  | Diag(From->getLocStart(), diag::err_typecheck_nonviable_condition) | 
|  | << From->getType() << From->getSourceRange() << ToType; | 
|  | } else | 
|  | return false; | 
|  | CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Compare the user-defined conversion functions or constructors | 
|  | /// of two user-defined conversion sequences to determine whether any ordering | 
|  | /// is possible. | 
|  | static ImplicitConversionSequence::CompareKind | 
|  | compareConversionFunctions(Sema &S, FunctionDecl *Function1, | 
|  | FunctionDecl *Function2) { | 
|  | if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11) | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | // Objective-C++: | 
|  | //   If both conversion functions are implicitly-declared conversions from | 
|  | //   a lambda closure type to a function pointer and a block pointer, | 
|  | //   respectively, always prefer the conversion to a function pointer, | 
|  | //   because the function pointer is more lightweight and is more likely | 
|  | //   to keep code working. | 
|  | CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1); | 
|  | if (!Conv1) | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2); | 
|  | if (!Conv2) | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) { | 
|  | bool Block1 = Conv1->getConversionType()->isBlockPointerType(); | 
|  | bool Block2 = Conv2->getConversionType()->isBlockPointerType(); | 
|  | if (Block1 != Block2) | 
|  | return Block1 ? ImplicitConversionSequence::Worse | 
|  | : ImplicitConversionSequence::Better; | 
|  | } | 
|  |  | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  | } | 
|  |  | 
|  | static bool hasDeprecatedStringLiteralToCharPtrConversion( | 
|  | const ImplicitConversionSequence &ICS) { | 
|  | return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) || | 
|  | (ICS.isUserDefined() && | 
|  | ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr); | 
|  | } | 
|  |  | 
|  | /// CompareImplicitConversionSequences - Compare two implicit | 
|  | /// conversion sequences to determine whether one is better than the | 
|  | /// other or if they are indistinguishable (C++ 13.3.3.2). | 
|  | static ImplicitConversionSequence::CompareKind | 
|  | CompareImplicitConversionSequences(Sema &S, | 
|  | const ImplicitConversionSequence& ICS1, | 
|  | const ImplicitConversionSequence& ICS2) | 
|  | { | 
|  | // (C++ 13.3.3.2p2): When comparing the basic forms of implicit | 
|  | // conversion sequences (as defined in 13.3.3.1) | 
|  | //   -- a standard conversion sequence (13.3.3.1.1) is a better | 
|  | //      conversion sequence than a user-defined conversion sequence or | 
|  | //      an ellipsis conversion sequence, and | 
|  | //   -- a user-defined conversion sequence (13.3.3.1.2) is a better | 
|  | //      conversion sequence than an ellipsis conversion sequence | 
|  | //      (13.3.3.1.3). | 
|  | // | 
|  | // C++0x [over.best.ics]p10: | 
|  | //   For the purpose of ranking implicit conversion sequences as | 
|  | //   described in 13.3.3.2, the ambiguous conversion sequence is | 
|  | //   treated as a user-defined sequence that is indistinguishable | 
|  | //   from any other user-defined conversion sequence. | 
|  |  | 
|  | // String literal to 'char *' conversion has been deprecated in C++03. It has | 
|  | // been removed from C++11. We still accept this conversion, if it happens at | 
|  | // the best viable function. Otherwise, this conversion is considered worse | 
|  | // than ellipsis conversion. Consider this as an extension; this is not in the | 
|  | // standard. For example: | 
|  | // | 
|  | // int &f(...);    // #1 | 
|  | // void f(char*);  // #2 | 
|  | // void g() { int &r = f("foo"); } | 
|  | // | 
|  | // In C++03, we pick #2 as the best viable function. | 
|  | // In C++11, we pick #1 as the best viable function, because ellipsis | 
|  | // conversion is better than string-literal to char* conversion (since there | 
|  | // is no such conversion in C++11). If there was no #1 at all or #1 couldn't | 
|  | // convert arguments, #2 would be the best viable function in C++11. | 
|  | // If the best viable function has this conversion, a warning will be issued | 
|  | // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11. | 
|  |  | 
|  | if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && | 
|  | hasDeprecatedStringLiteralToCharPtrConversion(ICS1) != | 
|  | hasDeprecatedStringLiteralToCharPtrConversion(ICS2)) | 
|  | return hasDeprecatedStringLiteralToCharPtrConversion(ICS1) | 
|  | ? ImplicitConversionSequence::Worse | 
|  | : ImplicitConversionSequence::Better; | 
|  |  | 
|  | if (ICS1.getKindRank() < ICS2.getKindRank()) | 
|  | return ImplicitConversionSequence::Better; | 
|  | if (ICS2.getKindRank() < ICS1.getKindRank()) | 
|  | return ImplicitConversionSequence::Worse; | 
|  |  | 
|  | // The following checks require both conversion sequences to be of | 
|  | // the same kind. | 
|  | if (ICS1.getKind() != ICS2.getKind()) | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | ImplicitConversionSequence::CompareKind Result = | 
|  | ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | // Two implicit conversion sequences of the same form are | 
|  | // indistinguishable conversion sequences unless one of the | 
|  | // following rules apply: (C++ 13.3.3.2p3): | 
|  |  | 
|  | // List-initialization sequence L1 is a better conversion sequence than | 
|  | // list-initialization sequence L2 if: | 
|  | // - L1 converts to std::initializer_list<X> for some X and L2 does not, or, | 
|  | //   if not that, | 
|  | // - L1 converts to type “array of N1 T”, L2 converts to type “array of N2 T”, | 
|  | //   and N1 is smaller than N2., | 
|  | // even if one of the other rules in this paragraph would otherwise apply. | 
|  | if (!ICS1.isBad()) { | 
|  | if (ICS1.isStdInitializerListElement() && | 
|  | !ICS2.isStdInitializerListElement()) | 
|  | return ImplicitConversionSequence::Better; | 
|  | if (!ICS1.isStdInitializerListElement() && | 
|  | ICS2.isStdInitializerListElement()) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | } | 
|  |  | 
|  | if (ICS1.isStandard()) | 
|  | // Standard conversion sequence S1 is a better conversion sequence than | 
|  | // standard conversion sequence S2 if [...] | 
|  | Result = CompareStandardConversionSequences(S, | 
|  | ICS1.Standard, ICS2.Standard); | 
|  | else if (ICS1.isUserDefined()) { | 
|  | // User-defined conversion sequence U1 is a better conversion | 
|  | // sequence than another user-defined conversion sequence U2 if | 
|  | // they contain the same user-defined conversion function or | 
|  | // constructor and if the second standard conversion sequence of | 
|  | // U1 is better than the second standard conversion sequence of | 
|  | // U2 (C++ 13.3.3.2p3). | 
|  | if (ICS1.UserDefined.ConversionFunction == | 
|  | ICS2.UserDefined.ConversionFunction) | 
|  | Result = CompareStandardConversionSequences(S, | 
|  | ICS1.UserDefined.After, | 
|  | ICS2.UserDefined.After); | 
|  | else | 
|  | Result = compareConversionFunctions(S, | 
|  | ICS1.UserDefined.ConversionFunction, | 
|  | ICS2.UserDefined.ConversionFunction); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { | 
|  | while (Context.UnwrapSimilarPointerTypes(T1, T2)) { | 
|  | Qualifiers Quals; | 
|  | T1 = Context.getUnqualifiedArrayType(T1, Quals); | 
|  | T2 = Context.getUnqualifiedArrayType(T2, Quals); | 
|  | } | 
|  |  | 
|  | return Context.hasSameUnqualifiedType(T1, T2); | 
|  | } | 
|  |  | 
|  | // Per 13.3.3.2p3, compare the given standard conversion sequences to | 
|  | // determine if one is a proper subset of the other. | 
|  | static ImplicitConversionSequence::CompareKind | 
|  | compareStandardConversionSubsets(ASTContext &Context, | 
|  | const StandardConversionSequence& SCS1, | 
|  | const StandardConversionSequence& SCS2) { | 
|  | ImplicitConversionSequence::CompareKind Result | 
|  | = ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | // the identity conversion sequence is considered to be a subsequence of | 
|  | // any non-identity conversion sequence | 
|  | if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) | 
|  | return ImplicitConversionSequence::Worse; | 
|  |  | 
|  | if (SCS1.Second != SCS2.Second) { | 
|  | if (SCS1.Second == ICK_Identity) | 
|  | Result = ImplicitConversionSequence::Better; | 
|  | else if (SCS2.Second == ICK_Identity) | 
|  | Result = ImplicitConversionSequence::Worse; | 
|  | else | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  | } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | if (SCS1.Third == SCS2.Third) { | 
|  | return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result | 
|  | : ImplicitConversionSequence::Indistinguishable; | 
|  | } | 
|  |  | 
|  | if (SCS1.Third == ICK_Identity) | 
|  | return Result == ImplicitConversionSequence::Worse | 
|  | ? ImplicitConversionSequence::Indistinguishable | 
|  | : ImplicitConversionSequence::Better; | 
|  |  | 
|  | if (SCS2.Third == ICK_Identity) | 
|  | return Result == ImplicitConversionSequence::Better | 
|  | ? ImplicitConversionSequence::Indistinguishable | 
|  | : ImplicitConversionSequence::Worse; | 
|  |  | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether one of the given reference bindings is better | 
|  | /// than the other based on what kind of bindings they are. | 
|  | static bool | 
|  | isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, | 
|  | const StandardConversionSequence &SCS2) { | 
|  | // C++0x [over.ics.rank]p3b4: | 
|  | //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an | 
|  | //      implicit object parameter of a non-static member function declared | 
|  | //      without a ref-qualifier, and *either* S1 binds an rvalue reference | 
|  | //      to an rvalue and S2 binds an lvalue reference *or S1 binds an | 
|  | //      lvalue reference to a function lvalue and S2 binds an rvalue | 
|  | //      reference*. | 
|  | // | 
|  | // FIXME: Rvalue references. We're going rogue with the above edits, | 
|  | // because the semantics in the current C++0x working paper (N3225 at the | 
|  | // time of this writing) break the standard definition of std::forward | 
|  | // and std::reference_wrapper when dealing with references to functions. | 
|  | // Proposed wording changes submitted to CWG for consideration. | 
|  | if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || | 
|  | SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) | 
|  | return false; | 
|  |  | 
|  | return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && | 
|  | SCS2.IsLvalueReference) || | 
|  | (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && | 
|  | !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue); | 
|  | } | 
|  |  | 
|  | /// CompareStandardConversionSequences - Compare two standard | 
|  | /// conversion sequences to determine whether one is better than the | 
|  | /// other or if they are indistinguishable (C++ 13.3.3.2p3). | 
|  | static ImplicitConversionSequence::CompareKind | 
|  | CompareStandardConversionSequences(Sema &S, | 
|  | const StandardConversionSequence& SCS1, | 
|  | const StandardConversionSequence& SCS2) | 
|  | { | 
|  | // Standard conversion sequence S1 is a better conversion sequence | 
|  | // than standard conversion sequence S2 if (C++ 13.3.3.2p3): | 
|  |  | 
|  | //  -- S1 is a proper subsequence of S2 (comparing the conversion | 
|  | //     sequences in the canonical form defined by 13.3.3.1.1, | 
|  | //     excluding any Lvalue Transformation; the identity conversion | 
|  | //     sequence is considered to be a subsequence of any | 
|  | //     non-identity conversion sequence) or, if not that, | 
|  | if (ImplicitConversionSequence::CompareKind CK | 
|  | = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) | 
|  | return CK; | 
|  |  | 
|  | //  -- the rank of S1 is better than the rank of S2 (by the rules | 
|  | //     defined below), or, if not that, | 
|  | ImplicitConversionRank Rank1 = SCS1.getRank(); | 
|  | ImplicitConversionRank Rank2 = SCS2.getRank(); | 
|  | if (Rank1 < Rank2) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (Rank2 < Rank1) | 
|  | return ImplicitConversionSequence::Worse; | 
|  |  | 
|  | // (C++ 13.3.3.2p4): Two conversion sequences with the same rank | 
|  | // are indistinguishable unless one of the following rules | 
|  | // applies: | 
|  |  | 
|  | //   A conversion that is not a conversion of a pointer, or | 
|  | //   pointer to member, to bool is better than another conversion | 
|  | //   that is such a conversion. | 
|  | if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) | 
|  | return SCS2.isPointerConversionToBool() | 
|  | ? ImplicitConversionSequence::Better | 
|  | : ImplicitConversionSequence::Worse; | 
|  |  | 
|  | // C++ [over.ics.rank]p4b2: | 
|  | // | 
|  | //   If class B is derived directly or indirectly from class A, | 
|  | //   conversion of B* to A* is better than conversion of B* to | 
|  | //   void*, and conversion of A* to void* is better than conversion | 
|  | //   of B* to void*. | 
|  | bool SCS1ConvertsToVoid | 
|  | = SCS1.isPointerConversionToVoidPointer(S.Context); | 
|  | bool SCS2ConvertsToVoid | 
|  | = SCS2.isPointerConversionToVoidPointer(S.Context); | 
|  | if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { | 
|  | // Exactly one of the conversion sequences is a conversion to | 
|  | // a void pointer; it's the worse conversion. | 
|  | return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better | 
|  | : ImplicitConversionSequence::Worse; | 
|  | } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { | 
|  | // Neither conversion sequence converts to a void pointer; compare | 
|  | // their derived-to-base conversions. | 
|  | if (ImplicitConversionSequence::CompareKind DerivedCK | 
|  | = CompareDerivedToBaseConversions(S, SCS1, SCS2)) | 
|  | return DerivedCK; | 
|  | } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && | 
|  | !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { | 
|  | // Both conversion sequences are conversions to void | 
|  | // pointers. Compare the source types to determine if there's an | 
|  | // inheritance relationship in their sources. | 
|  | QualType FromType1 = SCS1.getFromType(); | 
|  | QualType FromType2 = SCS2.getFromType(); | 
|  |  | 
|  | // Adjust the types we're converting from via the array-to-pointer | 
|  | // conversion, if we need to. | 
|  | if (SCS1.First == ICK_Array_To_Pointer) | 
|  | FromType1 = S.Context.getArrayDecayedType(FromType1); | 
|  | if (SCS2.First == ICK_Array_To_Pointer) | 
|  | FromType2 = S.Context.getArrayDecayedType(FromType2); | 
|  |  | 
|  | QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); | 
|  | QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); | 
|  |  | 
|  | if (S.IsDerivedFrom(FromPointee2, FromPointee1)) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) | 
|  | return ImplicitConversionSequence::Worse; | 
|  |  | 
|  | // Objective-C++: If one interface is more specific than the | 
|  | // other, it is the better one. | 
|  | const ObjCObjectPointerType* FromObjCPtr1 | 
|  | = FromType1->getAs<ObjCObjectPointerType>(); | 
|  | const ObjCObjectPointerType* FromObjCPtr2 | 
|  | = FromType2->getAs<ObjCObjectPointerType>(); | 
|  | if (FromObjCPtr1 && FromObjCPtr2) { | 
|  | bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, | 
|  | FromObjCPtr2); | 
|  | bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, | 
|  | FromObjCPtr1); | 
|  | if (AssignLeft != AssignRight) { | 
|  | return AssignLeft? ImplicitConversionSequence::Better | 
|  | : ImplicitConversionSequence::Worse; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compare based on qualification conversions (C++ 13.3.3.2p3, | 
|  | // bullet 3). | 
|  | if (ImplicitConversionSequence::CompareKind QualCK | 
|  | = CompareQualificationConversions(S, SCS1, SCS2)) | 
|  | return QualCK; | 
|  |  | 
|  | if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { | 
|  | // Check for a better reference binding based on the kind of bindings. | 
|  | if (isBetterReferenceBindingKind(SCS1, SCS2)) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (isBetterReferenceBindingKind(SCS2, SCS1)) | 
|  | return ImplicitConversionSequence::Worse; | 
|  |  | 
|  | // C++ [over.ics.rank]p3b4: | 
|  | //   -- S1 and S2 are reference bindings (8.5.3), and the types to | 
|  | //      which the references refer are the same type except for | 
|  | //      top-level cv-qualifiers, and the type to which the reference | 
|  | //      initialized by S2 refers is more cv-qualified than the type | 
|  | //      to which the reference initialized by S1 refers. | 
|  | QualType T1 = SCS1.getToType(2); | 
|  | QualType T2 = SCS2.getToType(2); | 
|  | T1 = S.Context.getCanonicalType(T1); | 
|  | T2 = S.Context.getCanonicalType(T2); | 
|  | Qualifiers T1Quals, T2Quals; | 
|  | QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); | 
|  | QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); | 
|  | if (UnqualT1 == UnqualT2) { | 
|  | // Objective-C++ ARC: If the references refer to objects with different | 
|  | // lifetimes, prefer bindings that don't change lifetime. | 
|  | if (SCS1.ObjCLifetimeConversionBinding != | 
|  | SCS2.ObjCLifetimeConversionBinding) { | 
|  | return SCS1.ObjCLifetimeConversionBinding | 
|  | ? ImplicitConversionSequence::Worse | 
|  | : ImplicitConversionSequence::Better; | 
|  | } | 
|  |  | 
|  | // If the type is an array type, promote the element qualifiers to the | 
|  | // type for comparison. | 
|  | if (isa<ArrayType>(T1) && T1Quals) | 
|  | T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); | 
|  | if (isa<ArrayType>(T2) && T2Quals) | 
|  | T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); | 
|  | if (T2.isMoreQualifiedThan(T1)) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (T1.isMoreQualifiedThan(T2)) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | } | 
|  | } | 
|  |  | 
|  | // In Microsoft mode, prefer an integral conversion to a | 
|  | // floating-to-integral conversion if the integral conversion | 
|  | // is between types of the same size. | 
|  | // For example: | 
|  | // void f(float); | 
|  | // void f(int); | 
|  | // int main { | 
|  | //    long a; | 
|  | //    f(a); | 
|  | // } | 
|  | // Here, MSVC will call f(int) instead of generating a compile error | 
|  | // as clang will do in standard mode. | 
|  | if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion && | 
|  | SCS2.Second == ICK_Floating_Integral && | 
|  | S.Context.getTypeSize(SCS1.getFromType()) == | 
|  | S.Context.getTypeSize(SCS1.getToType(2))) | 
|  | return ImplicitConversionSequence::Better; | 
|  |  | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  | } | 
|  |  | 
|  | /// CompareQualificationConversions - Compares two standard conversion | 
|  | /// sequences to determine whether they can be ranked based on their | 
|  | /// qualification conversions (C++ 13.3.3.2p3 bullet 3). | 
|  | static ImplicitConversionSequence::CompareKind | 
|  | CompareQualificationConversions(Sema &S, | 
|  | const StandardConversionSequence& SCS1, | 
|  | const StandardConversionSequence& SCS2) { | 
|  | // C++ 13.3.3.2p3: | 
|  | //  -- S1 and S2 differ only in their qualification conversion and | 
|  | //     yield similar types T1 and T2 (C++ 4.4), respectively, and the | 
|  | //     cv-qualification signature of type T1 is a proper subset of | 
|  | //     the cv-qualification signature of type T2, and S1 is not the | 
|  | //     deprecated string literal array-to-pointer conversion (4.2). | 
|  | if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || | 
|  | SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | // FIXME: the example in the standard doesn't use a qualification | 
|  | // conversion (!) | 
|  | QualType T1 = SCS1.getToType(2); | 
|  | QualType T2 = SCS2.getToType(2); | 
|  | T1 = S.Context.getCanonicalType(T1); | 
|  | T2 = S.Context.getCanonicalType(T2); | 
|  | Qualifiers T1Quals, T2Quals; | 
|  | QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); | 
|  | QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); | 
|  |  | 
|  | // If the types are the same, we won't learn anything by unwrapped | 
|  | // them. | 
|  | if (UnqualT1 == UnqualT2) | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | // If the type is an array type, promote the element qualifiers to the type | 
|  | // for comparison. | 
|  | if (isa<ArrayType>(T1) && T1Quals) | 
|  | T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); | 
|  | if (isa<ArrayType>(T2) && T2Quals) | 
|  | T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); | 
|  |  | 
|  | ImplicitConversionSequence::CompareKind Result | 
|  | = ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | // Objective-C++ ARC: | 
|  | //   Prefer qualification conversions not involving a change in lifetime | 
|  | //   to qualification conversions that do not change lifetime. | 
|  | if (SCS1.QualificationIncludesObjCLifetime != | 
|  | SCS2.QualificationIncludesObjCLifetime) { | 
|  | Result = SCS1.QualificationIncludesObjCLifetime | 
|  | ? ImplicitConversionSequence::Worse | 
|  | : ImplicitConversionSequence::Better; | 
|  | } | 
|  |  | 
|  | while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) { | 
|  | // Within each iteration of the loop, we check the qualifiers to | 
|  | // determine if this still looks like a qualification | 
|  | // conversion. Then, if all is well, we unwrap one more level of | 
|  | // pointers or pointers-to-members and do it all again | 
|  | // until there are no more pointers or pointers-to-members left | 
|  | // to unwrap. This essentially mimics what | 
|  | // IsQualificationConversion does, but here we're checking for a | 
|  | // strict subset of qualifiers. | 
|  | if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) | 
|  | // The qualifiers are the same, so this doesn't tell us anything | 
|  | // about how the sequences rank. | 
|  | ; | 
|  | else if (T2.isMoreQualifiedThan(T1)) { | 
|  | // T1 has fewer qualifiers, so it could be the better sequence. | 
|  | if (Result == ImplicitConversionSequence::Worse) | 
|  | // Neither has qualifiers that are a subset of the other's | 
|  | // qualifiers. | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | Result = ImplicitConversionSequence::Better; | 
|  | } else if (T1.isMoreQualifiedThan(T2)) { | 
|  | // T2 has fewer qualifiers, so it could be the better sequence. | 
|  | if (Result == ImplicitConversionSequence::Better) | 
|  | // Neither has qualifiers that are a subset of the other's | 
|  | // qualifiers. | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | Result = ImplicitConversionSequence::Worse; | 
|  | } else { | 
|  | // Qualifiers are disjoint. | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  | } | 
|  |  | 
|  | // If the types after this point are equivalent, we're done. | 
|  | if (S.Context.hasSameUnqualifiedType(T1, T2)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check that the winning standard conversion sequence isn't using | 
|  | // the deprecated string literal array to pointer conversion. | 
|  | switch (Result) { | 
|  | case ImplicitConversionSequence::Better: | 
|  | if (SCS1.DeprecatedStringLiteralToCharPtr) | 
|  | Result = ImplicitConversionSequence::Indistinguishable; | 
|  | break; | 
|  |  | 
|  | case ImplicitConversionSequence::Indistinguishable: | 
|  | break; | 
|  |  | 
|  | case ImplicitConversionSequence::Worse: | 
|  | if (SCS2.DeprecatedStringLiteralToCharPtr) | 
|  | Result = ImplicitConversionSequence::Indistinguishable; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// CompareDerivedToBaseConversions - Compares two standard conversion | 
|  | /// sequences to determine whether they can be ranked based on their | 
|  | /// various kinds of derived-to-base conversions (C++ | 
|  | /// [over.ics.rank]p4b3).  As part of these checks, we also look at | 
|  | /// conversions between Objective-C interface types. | 
|  | static ImplicitConversionSequence::CompareKind | 
|  | CompareDerivedToBaseConversions(Sema &S, | 
|  | const StandardConversionSequence& SCS1, | 
|  | const StandardConversionSequence& SCS2) { | 
|  | QualType FromType1 = SCS1.getFromType(); | 
|  | QualType ToType1 = SCS1.getToType(1); | 
|  | QualType FromType2 = SCS2.getFromType(); | 
|  | QualType ToType2 = SCS2.getToType(1); | 
|  |  | 
|  | // Adjust the types we're converting from via the array-to-pointer | 
|  | // conversion, if we need to. | 
|  | if (SCS1.First == ICK_Array_To_Pointer) | 
|  | FromType1 = S.Context.getArrayDecayedType(FromType1); | 
|  | if (SCS2.First == ICK_Array_To_Pointer) | 
|  | FromType2 = S.Context.getArrayDecayedType(FromType2); | 
|  |  | 
|  | // Canonicalize all of the types. | 
|  | FromType1 = S.Context.getCanonicalType(FromType1); | 
|  | ToType1 = S.Context.getCanonicalType(ToType1); | 
|  | FromType2 = S.Context.getCanonicalType(FromType2); | 
|  | ToType2 = S.Context.getCanonicalType(ToType2); | 
|  |  | 
|  | // C++ [over.ics.rank]p4b3: | 
|  | // | 
|  | //   If class B is derived directly or indirectly from class A and | 
|  | //   class C is derived directly or indirectly from B, | 
|  | // | 
|  | // Compare based on pointer conversions. | 
|  | if (SCS1.Second == ICK_Pointer_Conversion && | 
|  | SCS2.Second == ICK_Pointer_Conversion && | 
|  | /*FIXME: Remove if Objective-C id conversions get their own rank*/ | 
|  | FromType1->isPointerType() && FromType2->isPointerType() && | 
|  | ToType1->isPointerType() && ToType2->isPointerType()) { | 
|  | QualType FromPointee1 | 
|  | = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); | 
|  | QualType ToPointee1 | 
|  | = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); | 
|  | QualType FromPointee2 | 
|  | = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); | 
|  | QualType ToPointee2 | 
|  | = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); | 
|  |  | 
|  | //   -- conversion of C* to B* is better than conversion of C* to A*, | 
|  | if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { | 
|  | if (S.IsDerivedFrom(ToPointee1, ToPointee2)) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | } | 
|  |  | 
|  | //   -- conversion of B* to A* is better than conversion of C* to A*, | 
|  | if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { | 
|  | if (S.IsDerivedFrom(FromPointee2, FromPointee1)) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | } | 
|  | } else if (SCS1.Second == ICK_Pointer_Conversion && | 
|  | SCS2.Second == ICK_Pointer_Conversion) { | 
|  | const ObjCObjectPointerType *FromPtr1 | 
|  | = FromType1->getAs<ObjCObjectPointerType>(); | 
|  | const ObjCObjectPointerType *FromPtr2 | 
|  | = FromType2->getAs<ObjCObjectPointerType>(); | 
|  | const ObjCObjectPointerType *ToPtr1 | 
|  | = ToType1->getAs<ObjCObjectPointerType>(); | 
|  | const ObjCObjectPointerType *ToPtr2 | 
|  | = ToType2->getAs<ObjCObjectPointerType>(); | 
|  |  | 
|  | if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { | 
|  | // Apply the same conversion ranking rules for Objective-C pointer types | 
|  | // that we do for C++ pointers to class types. However, we employ the | 
|  | // Objective-C pseudo-subtyping relationship used for assignment of | 
|  | // Objective-C pointer types. | 
|  | bool FromAssignLeft | 
|  | = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); | 
|  | bool FromAssignRight | 
|  | = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); | 
|  | bool ToAssignLeft | 
|  | = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); | 
|  | bool ToAssignRight | 
|  | = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); | 
|  |  | 
|  | // A conversion to an a non-id object pointer type or qualified 'id' | 
|  | // type is better than a conversion to 'id'. | 
|  | if (ToPtr1->isObjCIdType() && | 
|  | (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | if (ToPtr2->isObjCIdType() && | 
|  | (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) | 
|  | return ImplicitConversionSequence::Better; | 
|  |  | 
|  | // A conversion to a non-id object pointer type is better than a | 
|  | // conversion to a qualified 'id' type | 
|  | if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) | 
|  | return ImplicitConversionSequence::Better; | 
|  |  | 
|  | // A conversion to an a non-Class object pointer type or qualified 'Class' | 
|  | // type is better than a conversion to 'Class'. | 
|  | if (ToPtr1->isObjCClassType() && | 
|  | (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | if (ToPtr2->isObjCClassType() && | 
|  | (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) | 
|  | return ImplicitConversionSequence::Better; | 
|  |  | 
|  | // A conversion to a non-Class object pointer type is better than a | 
|  | // conversion to a qualified 'Class' type. | 
|  | if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) | 
|  | return ImplicitConversionSequence::Better; | 
|  |  | 
|  | //   -- "conversion of C* to B* is better than conversion of C* to A*," | 
|  | if (S.Context.hasSameType(FromType1, FromType2) && | 
|  | !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && | 
|  | (ToAssignLeft != ToAssignRight)) | 
|  | return ToAssignLeft? ImplicitConversionSequence::Worse | 
|  | : ImplicitConversionSequence::Better; | 
|  |  | 
|  | //   -- "conversion of B* to A* is better than conversion of C* to A*," | 
|  | if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && | 
|  | (FromAssignLeft != FromAssignRight)) | 
|  | return FromAssignLeft? ImplicitConversionSequence::Better | 
|  | : ImplicitConversionSequence::Worse; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Ranking of member-pointer types. | 
|  | if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && | 
|  | FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && | 
|  | ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { | 
|  | const MemberPointerType * FromMemPointer1 = | 
|  | FromType1->getAs<MemberPointerType>(); | 
|  | const MemberPointerType * ToMemPointer1 = | 
|  | ToType1->getAs<MemberPointerType>(); | 
|  | const MemberPointerType * FromMemPointer2 = | 
|  | FromType2->getAs<MemberPointerType>(); | 
|  | const MemberPointerType * ToMemPointer2 = | 
|  | ToType2->getAs<MemberPointerType>(); | 
|  | const Type *FromPointeeType1 = FromMemPointer1->getClass(); | 
|  | const Type *ToPointeeType1 = ToMemPointer1->getClass(); | 
|  | const Type *FromPointeeType2 = FromMemPointer2->getClass(); | 
|  | const Type *ToPointeeType2 = ToMemPointer2->getClass(); | 
|  | QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); | 
|  | QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); | 
|  | QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); | 
|  | QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); | 
|  | // conversion of A::* to B::* is better than conversion of A::* to C::*, | 
|  | if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { | 
|  | if (S.IsDerivedFrom(ToPointee1, ToPointee2)) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) | 
|  | return ImplicitConversionSequence::Better; | 
|  | } | 
|  | // conversion of B::* to C::* is better than conversion of A::* to C::* | 
|  | if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { | 
|  | if (S.IsDerivedFrom(FromPointee1, FromPointee2)) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (S.IsDerivedFrom(FromPointee2, FromPointee1)) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SCS1.Second == ICK_Derived_To_Base) { | 
|  | //   -- conversion of C to B is better than conversion of C to A, | 
|  | //   -- binding of an expression of type C to a reference of type | 
|  | //      B& is better than binding an expression of type C to a | 
|  | //      reference of type A&, | 
|  | if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && | 
|  | !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { | 
|  | if (S.IsDerivedFrom(ToType1, ToType2)) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (S.IsDerivedFrom(ToType2, ToType1)) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | } | 
|  |  | 
|  | //   -- conversion of B to A is better than conversion of C to A. | 
|  | //   -- binding of an expression of type B to a reference of type | 
|  | //      A& is better than binding an expression of type C to a | 
|  | //      reference of type A&, | 
|  | if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && | 
|  | S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { | 
|  | if (S.IsDerivedFrom(FromType2, FromType1)) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (S.IsDerivedFrom(FromType1, FromType2)) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether the given type is valid, e.g., it is not an invalid | 
|  | /// C++ class. | 
|  | static bool isTypeValid(QualType T) { | 
|  | if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) | 
|  | return !Record->isInvalidDecl(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// CompareReferenceRelationship - Compare the two types T1 and T2 to | 
|  | /// determine whether they are reference-related, | 
|  | /// reference-compatible, reference-compatible with added | 
|  | /// qualification, or incompatible, for use in C++ initialization by | 
|  | /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference | 
|  | /// type, and the first type (T1) is the pointee type of the reference | 
|  | /// type being initialized. | 
|  | Sema::ReferenceCompareResult | 
|  | Sema::CompareReferenceRelationship(SourceLocation Loc, | 
|  | QualType OrigT1, QualType OrigT2, | 
|  | bool &DerivedToBase, | 
|  | bool &ObjCConversion, | 
|  | bool &ObjCLifetimeConversion) { | 
|  | assert(!OrigT1->isReferenceType() && | 
|  | "T1 must be the pointee type of the reference type"); | 
|  | assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); | 
|  |  | 
|  | QualType T1 = Context.getCanonicalType(OrigT1); | 
|  | QualType T2 = Context.getCanonicalType(OrigT2); | 
|  | Qualifiers T1Quals, T2Quals; | 
|  | QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); | 
|  | QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); | 
|  |  | 
|  | // C++ [dcl.init.ref]p4: | 
|  | //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is | 
|  | //   reference-related to "cv2 T2" if T1 is the same type as T2, or | 
|  | //   T1 is a base class of T2. | 
|  | DerivedToBase = false; | 
|  | ObjCConversion = false; | 
|  | ObjCLifetimeConversion = false; | 
|  | if (UnqualT1 == UnqualT2) { | 
|  | // Nothing to do. | 
|  | } else if (!RequireCompleteType(Loc, OrigT2, 0) && | 
|  | isTypeValid(UnqualT1) && isTypeValid(UnqualT2) && | 
|  | IsDerivedFrom(UnqualT2, UnqualT1)) | 
|  | DerivedToBase = true; | 
|  | else if (UnqualT1->isObjCObjectOrInterfaceType() && | 
|  | UnqualT2->isObjCObjectOrInterfaceType() && | 
|  | Context.canBindObjCObjectType(UnqualT1, UnqualT2)) | 
|  | ObjCConversion = true; | 
|  | else | 
|  | return Ref_Incompatible; | 
|  |  | 
|  | // At this point, we know that T1 and T2 are reference-related (at | 
|  | // least). | 
|  |  | 
|  | // If the type is an array type, promote the element qualifiers to the type | 
|  | // for comparison. | 
|  | if (isa<ArrayType>(T1) && T1Quals) | 
|  | T1 = Context.getQualifiedType(UnqualT1, T1Quals); | 
|  | if (isa<ArrayType>(T2) && T2Quals) | 
|  | T2 = Context.getQualifiedType(UnqualT2, T2Quals); | 
|  |  | 
|  | // C++ [dcl.init.ref]p4: | 
|  | //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is | 
|  | //   reference-related to T2 and cv1 is the same cv-qualification | 
|  | //   as, or greater cv-qualification than, cv2. For purposes of | 
|  | //   overload resolution, cases for which cv1 is greater | 
|  | //   cv-qualification than cv2 are identified as | 
|  | //   reference-compatible with added qualification (see 13.3.3.2). | 
|  | // | 
|  | // Note that we also require equivalence of Objective-C GC and address-space | 
|  | // qualifiers when performing these computations, so that e.g., an int in | 
|  | // address space 1 is not reference-compatible with an int in address | 
|  | // space 2. | 
|  | if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() && | 
|  | T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) { | 
|  | if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals)) | 
|  | ObjCLifetimeConversion = true; | 
|  |  | 
|  | T1Quals.removeObjCLifetime(); | 
|  | T2Quals.removeObjCLifetime(); | 
|  | } | 
|  |  | 
|  | if (T1Quals == T2Quals) | 
|  | return Ref_Compatible; | 
|  | else if (T1Quals.compatiblyIncludes(T2Quals)) | 
|  | return Ref_Compatible_With_Added_Qualification; | 
|  | else | 
|  | return Ref_Related; | 
|  | } | 
|  |  | 
|  | /// \brief Look for a user-defined conversion to an value reference-compatible | 
|  | ///        with DeclType. Return true if something definite is found. | 
|  | static bool | 
|  | FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, | 
|  | QualType DeclType, SourceLocation DeclLoc, | 
|  | Expr *Init, QualType T2, bool AllowRvalues, | 
|  | bool AllowExplicit) { | 
|  | assert(T2->isRecordType() && "Can only find conversions of record types."); | 
|  | CXXRecordDecl *T2RecordDecl | 
|  | = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); | 
|  |  | 
|  | OverloadCandidateSet CandidateSet(DeclLoc, OverloadCandidateSet::CSK_Normal); | 
|  | const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); | 
|  | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | 
|  | NamedDecl *D = *I; | 
|  | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); | 
|  | if (isa<UsingShadowDecl>(D)) | 
|  | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
|  |  | 
|  | FunctionTemplateDecl *ConvTemplate | 
|  | = dyn_cast<FunctionTemplateDecl>(D); | 
|  | CXXConversionDecl *Conv; | 
|  | if (ConvTemplate) | 
|  | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | 
|  | else | 
|  | Conv = cast<CXXConversionDecl>(D); | 
|  |  | 
|  | // If this is an explicit conversion, and we're not allowed to consider | 
|  | // explicit conversions, skip it. | 
|  | if (!AllowExplicit && Conv->isExplicit()) | 
|  | continue; | 
|  |  | 
|  | if (AllowRvalues) { | 
|  | bool DerivedToBase = false; | 
|  | bool ObjCConversion = false; | 
|  | bool ObjCLifetimeConversion = false; | 
|  |  | 
|  | // If we are initializing an rvalue reference, don't permit conversion | 
|  | // functions that return lvalues. | 
|  | if (!ConvTemplate && DeclType->isRValueReferenceType()) { | 
|  | const ReferenceType *RefType | 
|  | = Conv->getConversionType()->getAs<LValueReferenceType>(); | 
|  | if (RefType && !RefType->getPointeeType()->isFunctionType()) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!ConvTemplate && | 
|  | S.CompareReferenceRelationship( | 
|  | DeclLoc, | 
|  | Conv->getConversionType().getNonReferenceType() | 
|  | .getUnqualifiedType(), | 
|  | DeclType.getNonReferenceType().getUnqualifiedType(), | 
|  | DerivedToBase, ObjCConversion, ObjCLifetimeConversion) == | 
|  | Sema::Ref_Incompatible) | 
|  | continue; | 
|  | } else { | 
|  | // If the conversion function doesn't return a reference type, | 
|  | // it can't be considered for this conversion. An rvalue reference | 
|  | // is only acceptable if its referencee is a function type. | 
|  |  | 
|  | const ReferenceType *RefType = | 
|  | Conv->getConversionType()->getAs<ReferenceType>(); | 
|  | if (!RefType || | 
|  | (!RefType->isLValueReferenceType() && | 
|  | !RefType->getPointeeType()->isFunctionType())) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (ConvTemplate) | 
|  | S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, | 
|  | Init, DeclType, CandidateSet, | 
|  | /*AllowObjCConversionOnExplicit=*/false); | 
|  | else | 
|  | S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, | 
|  | DeclType, CandidateSet, | 
|  | /*AllowObjCConversionOnExplicit=*/false); | 
|  | } | 
|  |  | 
|  | bool HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { | 
|  | case OR_Success: | 
|  | // C++ [over.ics.ref]p1: | 
|  | // | 
|  | //   [...] If the parameter binds directly to the result of | 
|  | //   applying a conversion function to the argument | 
|  | //   expression, the implicit conversion sequence is a | 
|  | //   user-defined conversion sequence (13.3.3.1.2), with the | 
|  | //   second standard conversion sequence either an identity | 
|  | //   conversion or, if the conversion function returns an | 
|  | //   entity of a type that is a derived class of the parameter | 
|  | //   type, a derived-to-base Conversion. | 
|  | if (!Best->FinalConversion.DirectBinding) | 
|  | return false; | 
|  |  | 
|  | ICS.setUserDefined(); | 
|  | ICS.UserDefined.Before = Best->Conversions[0].Standard; | 
|  | ICS.UserDefined.After = Best->FinalConversion; | 
|  | ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; | 
|  | ICS.UserDefined.ConversionFunction = Best->Function; | 
|  | ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; | 
|  | ICS.UserDefined.EllipsisConversion = false; | 
|  | assert(ICS.UserDefined.After.ReferenceBinding && | 
|  | ICS.UserDefined.After.DirectBinding && | 
|  | "Expected a direct reference binding!"); | 
|  | return true; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | ICS.setAmbiguous(); | 
|  | for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); | 
|  | Cand != CandidateSet.end(); ++Cand) | 
|  | if (Cand->Viable) | 
|  | ICS.Ambiguous.addConversion(Cand->Function); | 
|  | return true; | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | case OR_Deleted: | 
|  | // There was no suitable conversion, or we found a deleted | 
|  | // conversion; continue with other checks. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid OverloadResult!"); | 
|  | } | 
|  |  | 
|  | /// \brief Compute an implicit conversion sequence for reference | 
|  | /// initialization. | 
|  | static ImplicitConversionSequence | 
|  | TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, | 
|  | SourceLocation DeclLoc, | 
|  | bool SuppressUserConversions, | 
|  | bool AllowExplicit) { | 
|  | assert(DeclType->isReferenceType() && "Reference init needs a reference"); | 
|  |  | 
|  | // Most paths end in a failed conversion. | 
|  | ImplicitConversionSequence ICS; | 
|  | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); | 
|  |  | 
|  | QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); | 
|  | QualType T2 = Init->getType(); | 
|  |  | 
|  | // If the initializer is the address of an overloaded function, try | 
|  | // to resolve the overloaded function. If all goes well, T2 is the | 
|  | // type of the resulting function. | 
|  | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { | 
|  | DeclAccessPair Found; | 
|  | if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, | 
|  | false, Found)) | 
|  | T2 = Fn->getType(); | 
|  | } | 
|  |  | 
|  | // Compute some basic properties of the types and the initializer. | 
|  | bool isRValRef = DeclType->isRValueReferenceType(); | 
|  | bool DerivedToBase = false; | 
|  | bool ObjCConversion = false; | 
|  | bool ObjCLifetimeConversion = false; | 
|  | Expr::Classification InitCategory = Init->Classify(S.Context); | 
|  | Sema::ReferenceCompareResult RefRelationship | 
|  | = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase, | 
|  | ObjCConversion, ObjCLifetimeConversion); | 
|  |  | 
|  |  | 
|  | // C++0x [dcl.init.ref]p5: | 
|  | //   A reference to type "cv1 T1" is initialized by an expression | 
|  | //   of type "cv2 T2" as follows: | 
|  |  | 
|  | //     -- If reference is an lvalue reference and the initializer expression | 
|  | if (!isRValRef) { | 
|  | //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is | 
|  | //        reference-compatible with "cv2 T2," or | 
|  | // | 
|  | // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. | 
|  | if (InitCategory.isLValue() && | 
|  | RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { | 
|  | // C++ [over.ics.ref]p1: | 
|  | //   When a parameter of reference type binds directly (8.5.3) | 
|  | //   to an argument expression, the implicit conversion sequence | 
|  | //   is the identity conversion, unless the argument expression | 
|  | //   has a type that is a derived class of the parameter type, | 
|  | //   in which case the implicit conversion sequence is a | 
|  | //   derived-to-base Conversion (13.3.3.1). | 
|  | ICS.setStandard(); | 
|  | ICS.Standard.First = ICK_Identity; | 
|  | ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base | 
|  | : ObjCConversion? ICK_Compatible_Conversion | 
|  | : ICK_Identity; | 
|  | ICS.Standard.Third = ICK_Identity; | 
|  | ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); | 
|  | ICS.Standard.setToType(0, T2); | 
|  | ICS.Standard.setToType(1, T1); | 
|  | ICS.Standard.setToType(2, T1); | 
|  | ICS.Standard.ReferenceBinding = true; | 
|  | ICS.Standard.DirectBinding = true; | 
|  | ICS.Standard.IsLvalueReference = !isRValRef; | 
|  | ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); | 
|  | ICS.Standard.BindsToRvalue = false; | 
|  | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; | 
|  | ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; | 
|  | ICS.Standard.CopyConstructor = nullptr; | 
|  | ICS.Standard.DeprecatedStringLiteralToCharPtr = false; | 
|  |  | 
|  | // Nothing more to do: the inaccessibility/ambiguity check for | 
|  | // derived-to-base conversions is suppressed when we're | 
|  | // computing the implicit conversion sequence (C++ | 
|  | // [over.best.ics]p2). | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | //       -- has a class type (i.e., T2 is a class type), where T1 is | 
|  | //          not reference-related to T2, and can be implicitly | 
|  | //          converted to an lvalue of type "cv3 T3," where "cv1 T1" | 
|  | //          is reference-compatible with "cv3 T3" 92) (this | 
|  | //          conversion is selected by enumerating the applicable | 
|  | //          conversion functions (13.3.1.6) and choosing the best | 
|  | //          one through overload resolution (13.3)), | 
|  | if (!SuppressUserConversions && T2->isRecordType() && | 
|  | !S.RequireCompleteType(DeclLoc, T2, 0) && | 
|  | RefRelationship == Sema::Ref_Incompatible) { | 
|  | if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, | 
|  | Init, T2, /*AllowRvalues=*/false, | 
|  | AllowExplicit)) | 
|  | return ICS; | 
|  | } | 
|  | } | 
|  |  | 
|  | //     -- Otherwise, the reference shall be an lvalue reference to a | 
|  | //        non-volatile const type (i.e., cv1 shall be const), or the reference | 
|  | //        shall be an rvalue reference. | 
|  | if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) | 
|  | return ICS; | 
|  |  | 
|  | //       -- If the initializer expression | 
|  | // | 
|  | //            -- is an xvalue, class prvalue, array prvalue or function | 
|  | //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or | 
|  | if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification && | 
|  | (InitCategory.isXValue() || | 
|  | (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) || | 
|  | (InitCategory.isLValue() && T2->isFunctionType()))) { | 
|  | ICS.setStandard(); | 
|  | ICS.Standard.First = ICK_Identity; | 
|  | ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base | 
|  | : ObjCConversion? ICK_Compatible_Conversion | 
|  | : ICK_Identity; | 
|  | ICS.Standard.Third = ICK_Identity; | 
|  | ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); | 
|  | ICS.Standard.setToType(0, T2); | 
|  | ICS.Standard.setToType(1, T1); | 
|  | ICS.Standard.setToType(2, T1); | 
|  | ICS.Standard.ReferenceBinding = true; | 
|  | // In C++0x, this is always a direct binding. In C++98/03, it's a direct | 
|  | // binding unless we're binding to a class prvalue. | 
|  | // Note: Although xvalues wouldn't normally show up in C++98/03 code, we | 
|  | // allow the use of rvalue references in C++98/03 for the benefit of | 
|  | // standard library implementors; therefore, we need the xvalue check here. | 
|  | ICS.Standard.DirectBinding = | 
|  | S.getLangOpts().CPlusPlus11 || | 
|  | !(InitCategory.isPRValue() || T2->isRecordType()); | 
|  | ICS.Standard.IsLvalueReference = !isRValRef; | 
|  | ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); | 
|  | ICS.Standard.BindsToRvalue = InitCategory.isRValue(); | 
|  | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; | 
|  | ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; | 
|  | ICS.Standard.CopyConstructor = nullptr; | 
|  | ICS.Standard.DeprecatedStringLiteralToCharPtr = false; | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | //            -- has a class type (i.e., T2 is a class type), where T1 is not | 
|  | //               reference-related to T2, and can be implicitly converted to | 
|  | //               an xvalue, class prvalue, or function lvalue of type | 
|  | //               "cv3 T3", where "cv1 T1" is reference-compatible with | 
|  | //               "cv3 T3", | 
|  | // | 
|  | //          then the reference is bound to the value of the initializer | 
|  | //          expression in the first case and to the result of the conversion | 
|  | //          in the second case (or, in either case, to an appropriate base | 
|  | //          class subobject). | 
|  | if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && | 
|  | T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) && | 
|  | FindConversionForRefInit(S, ICS, DeclType, DeclLoc, | 
|  | Init, T2, /*AllowRvalues=*/true, | 
|  | AllowExplicit)) { | 
|  | // In the second case, if the reference is an rvalue reference | 
|  | // and the second standard conversion sequence of the | 
|  | // user-defined conversion sequence includes an lvalue-to-rvalue | 
|  | // conversion, the program is ill-formed. | 
|  | if (ICS.isUserDefined() && isRValRef && | 
|  | ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) | 
|  | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); | 
|  |  | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | // A temporary of function type cannot be created; don't even try. | 
|  | if (T1->isFunctionType()) | 
|  | return ICS; | 
|  |  | 
|  | //       -- Otherwise, a temporary of type "cv1 T1" is created and | 
|  | //          initialized from the initializer expression using the | 
|  | //          rules for a non-reference copy initialization (8.5). The | 
|  | //          reference is then bound to the temporary. If T1 is | 
|  | //          reference-related to T2, cv1 must be the same | 
|  | //          cv-qualification as, or greater cv-qualification than, | 
|  | //          cv2; otherwise, the program is ill-formed. | 
|  | if (RefRelationship == Sema::Ref_Related) { | 
|  | // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then | 
|  | // we would be reference-compatible or reference-compatible with | 
|  | // added qualification. But that wasn't the case, so the reference | 
|  | // initialization fails. | 
|  | // | 
|  | // Note that we only want to check address spaces and cvr-qualifiers here. | 
|  | // ObjC GC and lifetime qualifiers aren't important. | 
|  | Qualifiers T1Quals = T1.getQualifiers(); | 
|  | Qualifiers T2Quals = T2.getQualifiers(); | 
|  | T1Quals.removeObjCGCAttr(); | 
|  | T1Quals.removeObjCLifetime(); | 
|  | T2Quals.removeObjCGCAttr(); | 
|  | T2Quals.removeObjCLifetime(); | 
|  | if (!T1Quals.compatiblyIncludes(T2Quals)) | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | // If at least one of the types is a class type, the types are not | 
|  | // related, and we aren't allowed any user conversions, the | 
|  | // reference binding fails. This case is important for breaking | 
|  | // recursion, since TryImplicitConversion below will attempt to | 
|  | // create a temporary through the use of a copy constructor. | 
|  | if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && | 
|  | (T1->isRecordType() || T2->isRecordType())) | 
|  | return ICS; | 
|  |  | 
|  | // If T1 is reference-related to T2 and the reference is an rvalue | 
|  | // reference, the initializer expression shall not be an lvalue. | 
|  | if (RefRelationship >= Sema::Ref_Related && | 
|  | isRValRef && Init->Classify(S.Context).isLValue()) | 
|  | return ICS; | 
|  |  | 
|  | // C++ [over.ics.ref]p2: | 
|  | //   When a parameter of reference type is not bound directly to | 
|  | //   an argument expression, the conversion sequence is the one | 
|  | //   required to convert the argument expression to the | 
|  | //   underlying type of the reference according to | 
|  | //   13.3.3.1. Conceptually, this conversion sequence corresponds | 
|  | //   to copy-initializing a temporary of the underlying type with | 
|  | //   the argument expression. Any difference in top-level | 
|  | //   cv-qualification is subsumed by the initialization itself | 
|  | //   and does not constitute a conversion. | 
|  | ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, | 
|  | /*AllowExplicit=*/false, | 
|  | /*InOverloadResolution=*/false, | 
|  | /*CStyle=*/false, | 
|  | /*AllowObjCWritebackConversion=*/false, | 
|  | /*AllowObjCConversionOnExplicit=*/false); | 
|  |  | 
|  | // Of course, that's still a reference binding. | 
|  | if (ICS.isStandard()) { | 
|  | ICS.Standard.ReferenceBinding = true; | 
|  | ICS.Standard.IsLvalueReference = !isRValRef; | 
|  | ICS.Standard.BindsToFunctionLvalue = false; | 
|  | ICS.Standard.BindsToRvalue = true; | 
|  | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; | 
|  | ICS.Standard.ObjCLifetimeConversionBinding = false; | 
|  | } else if (ICS.isUserDefined()) { | 
|  | const ReferenceType *LValRefType = | 
|  | ICS.UserDefined.ConversionFunction->getReturnType() | 
|  | ->getAs<LValueReferenceType>(); | 
|  |  | 
|  | // C++ [over.ics.ref]p3: | 
|  | //   Except for an implicit object parameter, for which see 13.3.1, a | 
|  | //   standard conversion sequence cannot be formed if it requires [...] | 
|  | //   binding an rvalue reference to an lvalue other than a function | 
|  | //   lvalue. | 
|  | // Note that the function case is not possible here. | 
|  | if (DeclType->isRValueReferenceType() && LValRefType) { | 
|  | // FIXME: This is the wrong BadConversionSequence. The problem is binding | 
|  | // an rvalue reference to a (non-function) lvalue, not binding an lvalue | 
|  | // reference to an rvalue! | 
|  | ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType); | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | ICS.UserDefined.Before.setAsIdentityConversion(); | 
|  | ICS.UserDefined.After.ReferenceBinding = true; | 
|  | ICS.UserDefined.After.IsLvalueReference = !isRValRef; | 
|  | ICS.UserDefined.After.BindsToFunctionLvalue = false; | 
|  | ICS.UserDefined.After.BindsToRvalue = !LValRefType; | 
|  | ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; | 
|  | ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; | 
|  | } | 
|  |  | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | static ImplicitConversionSequence | 
|  | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, | 
|  | bool SuppressUserConversions, | 
|  | bool InOverloadResolution, | 
|  | bool AllowObjCWritebackConversion, | 
|  | bool AllowExplicit = false); | 
|  |  | 
|  | /// TryListConversion - Try to copy-initialize a value of type ToType from the | 
|  | /// initializer list From. | 
|  | static ImplicitConversionSequence | 
|  | TryListConversion(Sema &S, InitListExpr *From, QualType ToType, | 
|  | bool SuppressUserConversions, | 
|  | bool InOverloadResolution, | 
|  | bool AllowObjCWritebackConversion) { | 
|  | // C++11 [over.ics.list]p1: | 
|  | //   When an argument is an initializer list, it is not an expression and | 
|  | //   special rules apply for converting it to a parameter type. | 
|  |  | 
|  | ImplicitConversionSequence Result; | 
|  | Result.setBad(BadConversionSequence::no_conversion, From, ToType); | 
|  |  | 
|  | // We need a complete type for what follows. Incomplete types can never be | 
|  | // initialized from init lists. | 
|  | if (S.RequireCompleteType(From->getLocStart(), ToType, 0)) | 
|  | return Result; | 
|  |  | 
|  | // Per DR1467: | 
|  | //   If the parameter type is a class X and the initializer list has a single | 
|  | //   element of type cv U, where U is X or a class derived from X, the | 
|  | //   implicit conversion sequence is the one required to convert the element | 
|  | //   to the parameter type. | 
|  | // | 
|  | //   Otherwise, if the parameter type is a character array [... ] | 
|  | //   and the initializer list has a single element that is an | 
|  | //   appropriately-typed string literal (8.5.2 [dcl.init.string]), the | 
|  | //   implicit conversion sequence is the identity conversion. | 
|  | if (From->getNumInits() == 1) { | 
|  | if (ToType->isRecordType()) { | 
|  | QualType InitType = From->getInit(0)->getType(); | 
|  | if (S.Context.hasSameUnqualifiedType(InitType, ToType) || | 
|  | S.IsDerivedFrom(InitType, ToType)) | 
|  | return TryCopyInitialization(S, From->getInit(0), ToType, | 
|  | SuppressUserConversions, | 
|  | InOverloadResolution, | 
|  | AllowObjCWritebackConversion); | 
|  | } | 
|  | // FIXME: Check the other conditions here: array of character type, | 
|  | // initializer is a string literal. | 
|  | if (ToType->isArrayType()) { | 
|  | InitializedEntity Entity = | 
|  | InitializedEntity::InitializeParameter(S.Context, ToType, | 
|  | /*Consumed=*/false); | 
|  | if (S.CanPerformCopyInitialization(Entity, From)) { | 
|  | Result.setStandard(); | 
|  | Result.Standard.setAsIdentityConversion(); | 
|  | Result.Standard.setFromType(ToType); | 
|  | Result.Standard.setAllToTypes(ToType); | 
|  | return Result; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below). | 
|  | // C++11 [over.ics.list]p2: | 
|  | //   If the parameter type is std::initializer_list<X> or "array of X" and | 
|  | //   all the elements can be implicitly converted to X, the implicit | 
|  | //   conversion sequence is the worst conversion necessary to convert an | 
|  | //   element of the list to X. | 
|  | // | 
|  | // C++14 [over.ics.list]p3: | 
|  | //   Otherwise, if the parameter type is “array of N X”, if the initializer | 
|  | //   list has exactly N elements or if it has fewer than N elements and X is | 
|  | //   default-constructible, and if all the elements of the initializer list | 
|  | //   can be implicitly converted to X, the implicit conversion sequence is | 
|  | //   the worst conversion necessary to convert an element of the list to X. | 
|  | // | 
|  | // FIXME: We're missing a lot of these checks. | 
|  | bool toStdInitializerList = false; | 
|  | QualType X; | 
|  | if (ToType->isArrayType()) | 
|  | X = S.Context.getAsArrayType(ToType)->getElementType(); | 
|  | else | 
|  | toStdInitializerList = S.isStdInitializerList(ToType, &X); | 
|  | if (!X.isNull()) { | 
|  | for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) { | 
|  | Expr *Init = From->getInit(i); | 
|  | ImplicitConversionSequence ICS = | 
|  | TryCopyInitialization(S, Init, X, SuppressUserConversions, | 
|  | InOverloadResolution, | 
|  | AllowObjCWritebackConversion); | 
|  | // If a single element isn't convertible, fail. | 
|  | if (ICS.isBad()) { | 
|  | Result = ICS; | 
|  | break; | 
|  | } | 
|  | // Otherwise, look for the worst conversion. | 
|  | if (Result.isBad() || | 
|  | CompareImplicitConversionSequences(S, ICS, Result) == | 
|  | ImplicitConversionSequence::Worse) | 
|  | Result = ICS; | 
|  | } | 
|  |  | 
|  | // For an empty list, we won't have computed any conversion sequence. | 
|  | // Introduce the identity conversion sequence. | 
|  | if (From->getNumInits() == 0) { | 
|  | Result.setStandard(); | 
|  | Result.Standard.setAsIdentityConversion(); | 
|  | Result.Standard.setFromType(ToType); | 
|  | Result.Standard.setAllToTypes(ToType); | 
|  | } | 
|  |  | 
|  | Result.setStdInitializerListElement(toStdInitializerList); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // C++14 [over.ics.list]p4: | 
|  | // C++11 [over.ics.list]p3: | 
|  | //   Otherwise, if the parameter is a non-aggregate class X and overload | 
|  | //   resolution chooses a single best constructor [...] the implicit | 
|  | //   conversion sequence is a user-defined conversion sequence. If multiple | 
|  | //   constructors are viable but none is better than the others, the | 
|  | //   implicit conversion sequence is a user-defined conversion sequence. | 
|  | if (ToType->isRecordType() && !ToType->isAggregateType()) { | 
|  | // This function can deal with initializer lists. | 
|  | return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, | 
|  | /*AllowExplicit=*/false, | 
|  | InOverloadResolution, /*CStyle=*/false, | 
|  | AllowObjCWritebackConversion, | 
|  | /*AllowObjCConversionOnExplicit=*/false); | 
|  | } | 
|  |  | 
|  | // C++14 [over.ics.list]p5: | 
|  | // C++11 [over.ics.list]p4: | 
|  | //   Otherwise, if the parameter has an aggregate type which can be | 
|  | //   initialized from the initializer list [...] the implicit conversion | 
|  | //   sequence is a user-defined conversion sequence. | 
|  | if (ToType->isAggregateType()) { | 
|  | // Type is an aggregate, argument is an init list. At this point it comes | 
|  | // down to checking whether the initialization works. | 
|  | // FIXME: Find out whether this parameter is consumed or not. | 
|  | InitializedEntity Entity = | 
|  | InitializedEntity::InitializeParameter(S.Context, ToType, | 
|  | /*Consumed=*/false); | 
|  | if (S.CanPerformCopyInitialization(Entity, From)) { | 
|  | Result.setUserDefined(); | 
|  | Result.UserDefined.Before.setAsIdentityConversion(); | 
|  | // Initializer lists don't have a type. | 
|  | Result.UserDefined.Before.setFromType(QualType()); | 
|  | Result.UserDefined.Before.setAllToTypes(QualType()); | 
|  |  | 
|  | Result.UserDefined.After.setAsIdentityConversion(); | 
|  | Result.UserDefined.After.setFromType(ToType); | 
|  | Result.UserDefined.After.setAllToTypes(ToType); | 
|  | Result.UserDefined.ConversionFunction = nullptr; | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // C++14 [over.ics.list]p6: | 
|  | // C++11 [over.ics.list]p5: | 
|  | //   Otherwise, if the parameter is a reference, see 13.3.3.1.4. | 
|  | if (ToType->isReferenceType()) { | 
|  | // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't | 
|  | // mention initializer lists in any way. So we go by what list- | 
|  | // initialization would do and try to extrapolate from that. | 
|  |  | 
|  | QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType(); | 
|  |  | 
|  | // If the initializer list has a single element that is reference-related | 
|  | // to the parameter type, we initialize the reference from that. | 
|  | if (From->getNumInits() == 1) { | 
|  | Expr *Init = From->getInit(0); | 
|  |  | 
|  | QualType T2 = Init->getType(); | 
|  |  | 
|  | // If the initializer is the address of an overloaded function, try | 
|  | // to resolve the overloaded function. If all goes well, T2 is the | 
|  | // type of the resulting function. | 
|  | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { | 
|  | DeclAccessPair Found; | 
|  | if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( | 
|  | Init, ToType, false, Found)) | 
|  | T2 = Fn->getType(); | 
|  | } | 
|  |  | 
|  | // Compute some basic properties of the types and the initializer. | 
|  | bool dummy1 = false; | 
|  | bool dummy2 = false; | 
|  | bool dummy3 = false; | 
|  | Sema::ReferenceCompareResult RefRelationship | 
|  | = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1, | 
|  | dummy2, dummy3); | 
|  |  | 
|  | if (RefRelationship >= Sema::Ref_Related) { | 
|  | return TryReferenceInit(S, Init, ToType, /*FIXME*/From->getLocStart(), | 
|  | SuppressUserConversions, | 
|  | /*AllowExplicit=*/false); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we bind the reference to a temporary created from the | 
|  | // initializer list. | 
|  | Result = TryListConversion(S, From, T1, SuppressUserConversions, | 
|  | InOverloadResolution, | 
|  | AllowObjCWritebackConversion); | 
|  | if (Result.isFailure()) | 
|  | return Result; | 
|  | assert(!Result.isEllipsis() && | 
|  | "Sub-initialization cannot result in ellipsis conversion."); | 
|  |  | 
|  | // Can we even bind to a temporary? | 
|  | if (ToType->isRValueReferenceType() || | 
|  | (T1.isConstQualified() && !T1.isVolatileQualified())) { | 
|  | StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : | 
|  | Result.UserDefined.After; | 
|  | SCS.ReferenceBinding = true; | 
|  | SCS.IsLvalueReference = ToType->isLValueReferenceType(); | 
|  | SCS.BindsToRvalue = true; | 
|  | SCS.BindsToFunctionLvalue = false; | 
|  | SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; | 
|  | SCS.ObjCLifetimeConversionBinding = false; | 
|  | } else | 
|  | Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, | 
|  | From, ToType); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // C++14 [over.ics.list]p7: | 
|  | // C++11 [over.ics.list]p6: | 
|  | //   Otherwise, if the parameter type is not a class: | 
|  | if (!ToType->isRecordType()) { | 
|  | //    - if the initializer list has one element that is not itself an | 
|  | //      initializer list, the implicit conversion sequence is the one | 
|  | //      required to convert the element to the parameter type. | 
|  | unsigned NumInits = From->getNumInits(); | 
|  | if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0))) | 
|  | Result = TryCopyInitialization(S, From->getInit(0), ToType, | 
|  | SuppressUserConversions, | 
|  | InOverloadResolution, | 
|  | AllowObjCWritebackConversion); | 
|  | //    - if the initializer list has no elements, the implicit conversion | 
|  | //      sequence is the identity conversion. | 
|  | else if (NumInits == 0) { | 
|  | Result.setStandard(); | 
|  | Result.Standard.setAsIdentityConversion(); | 
|  | Result.Standard.setFromType(ToType); | 
|  | Result.Standard.setAllToTypes(ToType); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // C++14 [over.ics.list]p8: | 
|  | // C++11 [over.ics.list]p7: | 
|  | //   In all cases other than those enumerated above, no conversion is possible | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// TryCopyInitialization - Try to copy-initialize a value of type | 
|  | /// ToType from the expression From. Return the implicit conversion | 
|  | /// sequence required to pass this argument, which may be a bad | 
|  | /// conversion sequence (meaning that the argument cannot be passed to | 
|  | /// a parameter of this type). If @p SuppressUserConversions, then we | 
|  | /// do not permit any user-defined conversion sequences. | 
|  | static ImplicitConversionSequence | 
|  | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, | 
|  | bool SuppressUserConversions, | 
|  | bool InOverloadResolution, | 
|  | bool AllowObjCWritebackConversion, | 
|  | bool AllowExplicit) { | 
|  | if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) | 
|  | return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, | 
|  | InOverloadResolution,AllowObjCWritebackConversion); | 
|  |  | 
|  | if (ToType->isReferenceType()) | 
|  | return TryReferenceInit(S, From, ToType, | 
|  | /*FIXME:*/From->getLocStart(), | 
|  | SuppressUserConversions, | 
|  | AllowExplicit); | 
|  |  | 
|  | return TryImplicitConversion(S, From, ToType, | 
|  | SuppressUserConversions, | 
|  | /*AllowExplicit=*/false, | 
|  | InOverloadResolution, | 
|  | /*CStyle=*/false, | 
|  | AllowObjCWritebackConversion, | 
|  | /*AllowObjCConversionOnExplicit=*/false); | 
|  | } | 
|  |  | 
|  | static bool TryCopyInitialization(const CanQualType FromQTy, | 
|  | const CanQualType ToQTy, | 
|  | Sema &S, | 
|  | SourceLocation Loc, | 
|  | ExprValueKind FromVK) { | 
|  | OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); | 
|  | ImplicitConversionSequence ICS = | 
|  | TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); | 
|  |  | 
|  | return !ICS.isBad(); | 
|  | } | 
|  |  | 
|  | /// TryObjectArgumentInitialization - Try to initialize the object | 
|  | /// parameter of the given member function (@c Method) from the | 
|  | /// expression @p From. | 
|  | static ImplicitConversionSequence | 
|  | TryObjectArgumentInitialization(Sema &S, QualType FromType, | 
|  | Expr::Classification FromClassification, | 
|  | CXXMethodDecl *Method, | 
|  | CXXRecordDecl *ActingContext) { | 
|  | QualType ClassType = S.Context.getTypeDeclType(ActingContext); | 
|  | // [class.dtor]p2: A destructor can be invoked for a const, volatile or | 
|  | //                 const volatile object. | 
|  | unsigned Quals = isa<CXXDestructorDecl>(Method) ? | 
|  | Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); | 
|  | QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals); | 
|  |  | 
|  | // Set up the conversion sequence as a "bad" conversion, to allow us | 
|  | // to exit early. | 
|  | ImplicitConversionSequence ICS; | 
|  |  | 
|  | // We need to have an object of class type. | 
|  | if (const PointerType *PT = FromType->getAs<PointerType>()) { | 
|  | FromType = PT->getPointeeType(); | 
|  |  | 
|  | // When we had a pointer, it's implicitly dereferenced, so we | 
|  | // better have an lvalue. | 
|  | assert(FromClassification.isLValue()); | 
|  | } | 
|  |  | 
|  | assert(FromType->isRecordType()); | 
|  |  | 
|  | // C++0x [over.match.funcs]p4: | 
|  | //   For non-static member functions, the type of the implicit object | 
|  | //   parameter is | 
|  | // | 
|  | //     - "lvalue reference to cv X" for functions declared without a | 
|  | //        ref-qualifier or with the & ref-qualifier | 
|  | //     - "rvalue reference to cv X" for functions declared with the && | 
|  | //        ref-qualifier | 
|  | // | 
|  | // where X is the class of which the function is a member and cv is the | 
|  | // cv-qualification on the member function declaration. | 
|  | // | 
|  | // However, when finding an implicit conversion sequence for the argument, we | 
|  | // are not allowed to create temporaries or perform user-defined conversions | 
|  | // (C++ [over.match.funcs]p5). We perform a simplified version of | 
|  | // reference binding here, that allows class rvalues to bind to | 
|  | // non-constant references. | 
|  |  | 
|  | // First check the qualifiers. | 
|  | QualType FromTypeCanon = S.Context.getCanonicalType(FromType); | 
|  | if (ImplicitParamType.getCVRQualifiers() | 
|  | != FromTypeCanon.getLocalCVRQualifiers() && | 
|  | !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { | 
|  | ICS.setBad(BadConversionSequence::bad_qualifiers, | 
|  | FromType, ImplicitParamType); | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | // Check that we have either the same type or a derived type. It | 
|  | // affects the conversion rank. | 
|  | QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); | 
|  | ImplicitConversionKind SecondKind; | 
|  | if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { | 
|  | SecondKind = ICK_Identity; | 
|  | } else if (S.IsDerivedFrom(FromType, ClassType)) | 
|  | SecondKind = ICK_Derived_To_Base; | 
|  | else { | 
|  | ICS.setBad(BadConversionSequence::unrelated_class, | 
|  | FromType, ImplicitParamType); | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | // Check the ref-qualifier. | 
|  | switch (Method->getRefQualifier()) { | 
|  | case RQ_None: | 
|  | // Do nothing; we don't care about lvalueness or rvalueness. | 
|  | break; | 
|  |  | 
|  | case RQ_LValue: | 
|  | if (!FromClassification.isLValue() && Quals != Qualifiers::Const) { | 
|  | // non-const lvalue reference cannot bind to an rvalue | 
|  | ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, | 
|  | ImplicitParamType); | 
|  | return ICS; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case RQ_RValue: | 
|  | if (!FromClassification.isRValue()) { | 
|  | // rvalue reference cannot bind to an lvalue | 
|  | ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, | 
|  | ImplicitParamType); | 
|  | return ICS; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Success. Mark this as a reference binding. | 
|  | ICS.setStandard(); | 
|  | ICS.Standard.setAsIdentityConversion(); | 
|  | ICS.Standard.Second = SecondKind; | 
|  | ICS.Standard.setFromType(FromType); | 
|  | ICS.Standard.setAllToTypes(ImplicitParamType); | 
|  | ICS.Standard.ReferenceBinding = true; | 
|  | ICS.Standard.DirectBinding = true; | 
|  | ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; | 
|  | ICS.Standard.BindsToFunctionLvalue = false; | 
|  | ICS.Standard.BindsToRvalue = FromClassification.isRValue(); | 
|  | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier | 
|  | = (Method->getRefQualifier() == RQ_None); | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | /// PerformObjectArgumentInitialization - Perform initialization of | 
|  | /// the implicit object parameter for the given Method with the given | 
|  | /// expression. | 
|  | ExprResult | 
|  | Sema::PerformObjectArgumentInitialization(Expr *From, | 
|  | NestedNameSpecifier *Qualifier, | 
|  | NamedDecl *FoundDecl, | 
|  | CXXMethodDecl *Method) { | 
|  | QualType FromRecordType, DestType; | 
|  | QualType ImplicitParamRecordType  = | 
|  | Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); | 
|  |  | 
|  | Expr::Classification FromClassification; | 
|  | if (const PointerType *PT = From->getType()->getAs<PointerType>()) { | 
|  | FromRecordType = PT->getPointeeType(); | 
|  | DestType = Method->getThisType(Context); | 
|  | FromClassification = Expr::Classification::makeSimpleLValue(); | 
|  | } else { | 
|  | FromRecordType = From->getType(); | 
|  | DestType = ImplicitParamRecordType; | 
|  | FromClassification = From->Classify(Context); | 
|  | } | 
|  |  | 
|  | // Note that we always use the true parent context when performing | 
|  | // the actual argument initialization. | 
|  | ImplicitConversionSequence ICS = TryObjectArgumentInitialization( | 
|  | *this, From->getType(), FromClassification, Method, Method->getParent()); | 
|  | if (ICS.isBad()) { | 
|  | if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) { | 
|  | Qualifiers FromQs = FromRecordType.getQualifiers(); | 
|  | Qualifiers ToQs = DestType.getQualifiers(); | 
|  | unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); | 
|  | if (CVR) { | 
|  | Diag(From->getLocStart(), | 
|  | diag::err_member_function_call_bad_cvr) | 
|  | << Method->getDeclName() << FromRecordType << (CVR - 1) | 
|  | << From->getSourceRange(); | 
|  | Diag(Method->getLocation(), diag::note_previous_decl) | 
|  | << Method->getDeclName(); | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Diag(From->getLocStart(), | 
|  | diag::err_implicit_object_parameter_init) | 
|  | << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); | 
|  | } | 
|  |  | 
|  | if (ICS.Standard.Second == ICK_Derived_To_Base) { | 
|  | ExprResult FromRes = | 
|  | PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); | 
|  | if (FromRes.isInvalid()) | 
|  | return ExprError(); | 
|  | From = FromRes.get(); | 
|  | } | 
|  |  | 
|  | if (!Context.hasSameType(From->getType(), DestType)) | 
|  | From = ImpCastExprToType(From, DestType, CK_NoOp, | 
|  | From->getValueKind()).get(); | 
|  | return From; | 
|  | } | 
|  |  | 
|  | /// TryContextuallyConvertToBool - Attempt to contextually convert the | 
|  | /// expression From to bool (C++0x [conv]p3). | 
|  | static ImplicitConversionSequence | 
|  | TryContextuallyConvertToBool(Sema &S, Expr *From) { | 
|  | return TryImplicitConversion(S, From, S.Context.BoolTy, | 
|  | /*SuppressUserConversions=*/false, | 
|  | /*AllowExplicit=*/true, | 
|  | /*InOverloadResolution=*/false, | 
|  | /*CStyle=*/false, | 
|  | /*AllowObjCWritebackConversion=*/false, | 
|  | /*AllowObjCConversionOnExplicit=*/false); | 
|  | } | 
|  |  | 
|  | /// PerformContextuallyConvertToBool - Perform a contextual conversion | 
|  | /// of the expression From to bool (C++0x [conv]p3). | 
|  | ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { | 
|  | if (checkPlaceholderForOverload(*this, From)) | 
|  | return ExprError(); | 
|  |  | 
|  | ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); | 
|  | if (!ICS.isBad()) | 
|  | return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); | 
|  |  | 
|  | if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) | 
|  | return Diag(From->getLocStart(), | 
|  | diag::err_typecheck_bool_condition) | 
|  | << From->getType() << From->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | /// Check that the specified conversion is permitted in a converted constant | 
|  | /// expression, according to C++11 [expr.const]p3. Return true if the conversion | 
|  | /// is acceptable. | 
|  | static bool CheckConvertedConstantConversions(Sema &S, | 
|  | StandardConversionSequence &SCS) { | 
|  | // Since we know that the target type is an integral or unscoped enumeration | 
|  | // type, most conversion kinds are impossible. All possible First and Third | 
|  | // conversions are fine. | 
|  | switch (SCS.Second) { | 
|  | case ICK_Identity: | 
|  | case ICK_NoReturn_Adjustment: | 
|  | case ICK_Integral_Promotion: | 
|  | case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere. | 
|  | return true; | 
|  |  | 
|  | case ICK_Boolean_Conversion: | 
|  | // Conversion from an integral or unscoped enumeration type to bool is | 
|  | // classified as ICK_Boolean_Conversion, but it's also arguably an integral | 
|  | // conversion, so we allow it in a converted constant expression. | 
|  | // | 
|  | // FIXME: Per core issue 1407, we should not allow this, but that breaks | 
|  | // a lot of popular code. We should at least add a warning for this | 
|  | // (non-conforming) extension. | 
|  | return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && | 
|  | SCS.getToType(2)->isBooleanType(); | 
|  |  | 
|  | case ICK_Pointer_Conversion: | 
|  | case ICK_Pointer_Member: | 
|  | // C++1z: null pointer conversions and null member pointer conversions are | 
|  | // only permitted if the source type is std::nullptr_t. | 
|  | return SCS.getFromType()->isNullPtrType(); | 
|  |  | 
|  | case ICK_Floating_Promotion: | 
|  | case ICK_Complex_Promotion: | 
|  | case ICK_Floating_Conversion: | 
|  | case ICK_Complex_Conversion: | 
|  | case ICK_Floating_Integral: | 
|  | case ICK_Compatible_Conversion: | 
|  | case ICK_Derived_To_Base: | 
|  | case ICK_Vector_Conversion: | 
|  | case ICK_Vector_Splat: | 
|  | case ICK_Complex_Real: | 
|  | case ICK_Block_Pointer_Conversion: | 
|  | case ICK_TransparentUnionConversion: | 
|  | case ICK_Writeback_Conversion: | 
|  | case ICK_Zero_Event_Conversion: | 
|  | return false; | 
|  |  | 
|  | case ICK_Lvalue_To_Rvalue: | 
|  | case ICK_Array_To_Pointer: | 
|  | case ICK_Function_To_Pointer: | 
|  | llvm_unreachable("found a first conversion kind in Second"); | 
|  |  | 
|  | case ICK_Qualification: | 
|  | llvm_unreachable("found a third conversion kind in Second"); | 
|  |  | 
|  | case ICK_Num_Conversion_Kinds: | 
|  | break; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unknown conversion kind"); | 
|  | } | 
|  |  | 
|  | /// CheckConvertedConstantExpression - Check that the expression From is a | 
|  | /// converted constant expression of type T, perform the conversion and produce | 
|  | /// the converted expression, per C++11 [expr.const]p3. | 
|  | static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, | 
|  | QualType T, APValue &Value, | 
|  | Sema::CCEKind CCE, | 
|  | bool RequireInt) { | 
|  | assert(S.getLangOpts().CPlusPlus11 && | 
|  | "converted constant expression outside C++11"); | 
|  |  | 
|  | if (checkPlaceholderForOverload(S, From)) | 
|  | return ExprError(); | 
|  |  | 
|  | // C++1z [expr.const]p3: | 
|  | //  A converted constant expression of type T is an expression, | 
|  | //  implicitly converted to type T, where the converted | 
|  | //  expression is a constant expression and the implicit conversion | 
|  | //  sequence contains only [... list of conversions ...]. | 
|  | ImplicitConversionSequence ICS = | 
|  | TryCopyInitialization(S, From, T, | 
|  | /*SuppressUserConversions=*/false, | 
|  | /*InOverloadResolution=*/false, | 
|  | /*AllowObjcWritebackConversion=*/false, | 
|  | /*AllowExplicit=*/false); | 
|  | StandardConversionSequence *SCS = nullptr; | 
|  | switch (ICS.getKind()) { | 
|  | case ImplicitConversionSequence::StandardConversion: | 
|  | SCS = &ICS.Standard; | 
|  | break; | 
|  | case ImplicitConversionSequence::UserDefinedConversion: | 
|  | // We are converting to a non-class type, so the Before sequence | 
|  | // must be trivial. | 
|  | SCS = &ICS.UserDefined.After; | 
|  | break; | 
|  | case ImplicitConversionSequence::AmbiguousConversion: | 
|  | case ImplicitConversionSequence::BadConversion: | 
|  | if (!S.DiagnoseMultipleUserDefinedConversion(From, T)) | 
|  | return S.Diag(From->getLocStart(), | 
|  | diag::err_typecheck_converted_constant_expression) | 
|  | << From->getType() << From->getSourceRange() << T; | 
|  | return ExprError(); | 
|  |  | 
|  | case ImplicitConversionSequence::EllipsisConversion: | 
|  | llvm_unreachable("ellipsis conversion in converted constant expression"); | 
|  | } | 
|  |  | 
|  | // Check that we would only use permitted conversions. | 
|  | if (!CheckConvertedConstantConversions(S, *SCS)) { | 
|  | return S.Diag(From->getLocStart(), | 
|  | diag::err_typecheck_converted_constant_expression_disallowed) | 
|  | << From->getType() << From->getSourceRange() << T; | 
|  | } | 
|  | // [...] and where the reference binding (if any) binds directly. | 
|  | if (SCS->ReferenceBinding && !SCS->DirectBinding) { | 
|  | return S.Diag(From->getLocStart(), | 
|  | diag::err_typecheck_converted_constant_expression_indirect) | 
|  | << From->getType() << From->getSourceRange() << T; | 
|  | } | 
|  |  | 
|  | ExprResult Result = | 
|  | S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting); | 
|  | if (Result.isInvalid()) | 
|  | return Result; | 
|  |  | 
|  | // Check for a narrowing implicit conversion. | 
|  | APValue PreNarrowingValue; | 
|  | QualType PreNarrowingType; | 
|  | switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue, | 
|  | PreNarrowingType)) { | 
|  | case NK_Variable_Narrowing: | 
|  | // Implicit conversion to a narrower type, and the value is not a constant | 
|  | // expression. We'll diagnose this in a moment. | 
|  | case NK_Not_Narrowing: | 
|  | break; | 
|  |  | 
|  | case NK_Constant_Narrowing: | 
|  | S.Diag(From->getLocStart(), diag::ext_cce_narrowing) | 
|  | << CCE << /*Constant*/1 | 
|  | << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T; | 
|  | break; | 
|  |  | 
|  | case NK_Type_Narrowing: | 
|  | S.Diag(From->getLocStart(), diag::ext_cce_narrowing) | 
|  | << CCE << /*Constant*/0 << From->getType() << T; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check the expression is a constant expression. | 
|  | SmallVector<PartialDiagnosticAt, 8> Notes; | 
|  | Expr::EvalResult Eval; | 
|  | Eval.Diag = &Notes; | 
|  |  | 
|  | if ((T->isReferenceType() | 
|  | ? !Result.get()->EvaluateAsLValue(Eval, S.Context) | 
|  | : !Result.get()->EvaluateAsRValue(Eval, S.Context)) || | 
|  | (RequireInt && !Eval.Val.isInt())) { | 
|  | // The expression can't be folded, so we can't keep it at this position in | 
|  | // the AST. | 
|  | Result = ExprError(); | 
|  | } else { | 
|  | Value = Eval.Val; | 
|  |  | 
|  | if (Notes.empty()) { | 
|  | // It's a constant expression. | 
|  | return Result; | 
|  | } | 
|  | } | 
|  |  | 
|  | // It's not a constant expression. Produce an appropriate diagnostic. | 
|  | if (Notes.size() == 1 && | 
|  | Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) | 
|  | S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE; | 
|  | else { | 
|  | S.Diag(From->getLocStart(), diag::err_expr_not_cce) | 
|  | << CCE << From->getSourceRange(); | 
|  | for (unsigned I = 0; I < Notes.size(); ++I) | 
|  | S.Diag(Notes[I].first, Notes[I].second); | 
|  | } | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, | 
|  | APValue &Value, CCEKind CCE) { | 
|  | return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, | 
|  | llvm::APSInt &Value, | 
|  | CCEKind CCE) { | 
|  | assert(T->isIntegralOrEnumerationType() && "unexpected converted const type"); | 
|  |  | 
|  | APValue V; | 
|  | auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true); | 
|  | if (!R.isInvalid()) | 
|  | Value = V.getInt(); | 
|  | return R; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// dropPointerConversions - If the given standard conversion sequence | 
|  | /// involves any pointer conversions, remove them.  This may change | 
|  | /// the result type of the conversion sequence. | 
|  | static void dropPointerConversion(StandardConversionSequence &SCS) { | 
|  | if (SCS.Second == ICK_Pointer_Conversion) { | 
|  | SCS.Second = ICK_Identity; | 
|  | SCS.Third = ICK_Identity; | 
|  | SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// TryContextuallyConvertToObjCPointer - Attempt to contextually | 
|  | /// convert the expression From to an Objective-C pointer type. | 
|  | static ImplicitConversionSequence | 
|  | TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { | 
|  | // Do an implicit conversion to 'id'. | 
|  | QualType Ty = S.Context.getObjCIdType(); | 
|  | ImplicitConversionSequence ICS | 
|  | = TryImplicitConversion(S, From, Ty, | 
|  | // FIXME: Are these flags correct? | 
|  | /*SuppressUserConversions=*/false, | 
|  | /*AllowExplicit=*/true, | 
|  | /*InOverloadResolution=*/false, | 
|  | /*CStyle=*/false, | 
|  | /*AllowObjCWritebackConversion=*/false, | 
|  | /*AllowObjCConversionOnExplicit=*/true); | 
|  |  | 
|  | // Strip off any final conversions to 'id'. | 
|  | switch (ICS.getKind()) { | 
|  | case ImplicitConversionSequence::BadConversion: | 
|  | case ImplicitConversionSequence::AmbiguousConversion: | 
|  | case ImplicitConversionSequence::EllipsisConversion: | 
|  | break; | 
|  |  | 
|  | case ImplicitConversionSequence::UserDefinedConversion: | 
|  | dropPointerConversion(ICS.UserDefined.After); | 
|  | break; | 
|  |  | 
|  | case ImplicitConversionSequence::StandardConversion: | 
|  | dropPointerConversion(ICS.Standard); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | /// PerformContextuallyConvertToObjCPointer - Perform a contextual | 
|  | /// conversion of the expression From to an Objective-C pointer type. | 
|  | ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { | 
|  | if (checkPlaceholderForOverload(*this, From)) | 
|  | return ExprError(); | 
|  |  | 
|  | QualType Ty = Context.getObjCIdType(); | 
|  | ImplicitConversionSequence ICS = | 
|  | TryContextuallyConvertToObjCPointer(*this, From); | 
|  | if (!ICS.isBad()) | 
|  | return PerformImplicitConversion(From, Ty, ICS, AA_Converting); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | /// Determine whether the provided type is an integral type, or an enumeration | 
|  | /// type of a permitted flavor. | 
|  | bool Sema::ICEConvertDiagnoser::match(QualType T) { | 
|  | return AllowScopedEnumerations ? T->isIntegralOrEnumerationType() | 
|  | : T->isIntegralOrUnscopedEnumerationType(); | 
|  | } | 
|  |  | 
|  | static ExprResult | 
|  | diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From, | 
|  | Sema::ContextualImplicitConverter &Converter, | 
|  | QualType T, UnresolvedSetImpl &ViableConversions) { | 
|  |  | 
|  | if (Converter.Suppress) | 
|  | return ExprError(); | 
|  |  | 
|  | Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange(); | 
|  | for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { | 
|  | CXXConversionDecl *Conv = | 
|  | cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); | 
|  | QualType ConvTy = Conv->getConversionType().getNonReferenceType(); | 
|  | Converter.noteAmbiguous(SemaRef, Conv, ConvTy); | 
|  | } | 
|  | return From; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, | 
|  | Sema::ContextualImplicitConverter &Converter, | 
|  | QualType T, bool HadMultipleCandidates, | 
|  | UnresolvedSetImpl &ExplicitConversions) { | 
|  | if (ExplicitConversions.size() == 1 && !Converter.Suppress) { | 
|  | DeclAccessPair Found = ExplicitConversions[0]; | 
|  | CXXConversionDecl *Conversion = | 
|  | cast<CXXConversionDecl>(Found->getUnderlyingDecl()); | 
|  |  | 
|  | // The user probably meant to invoke the given explicit | 
|  | // conversion; use it. | 
|  | QualType ConvTy = Conversion->getConversionType().getNonReferenceType(); | 
|  | std::string TypeStr; | 
|  | ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy()); | 
|  |  | 
|  | Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy) | 
|  | << FixItHint::CreateInsertion(From->getLocStart(), | 
|  | "static_cast<" + TypeStr + ">(") | 
|  | << FixItHint::CreateInsertion( | 
|  | SemaRef.getLocForEndOfToken(From->getLocEnd()), ")"); | 
|  | Converter.noteExplicitConv(SemaRef, Conversion, ConvTy); | 
|  |  | 
|  | // If we aren't in a SFINAE context, build a call to the | 
|  | // explicit conversion function. | 
|  | if (SemaRef.isSFINAEContext()) | 
|  | return true; | 
|  |  | 
|  | SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); | 
|  | ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, | 
|  | HadMultipleCandidates); | 
|  | if (Result.isInvalid()) | 
|  | return true; | 
|  | // Record usage of conversion in an implicit cast. | 
|  | From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), | 
|  | CK_UserDefinedConversion, Result.get(), | 
|  | nullptr, Result.get()->getValueKind()); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, | 
|  | Sema::ContextualImplicitConverter &Converter, | 
|  | QualType T, bool HadMultipleCandidates, | 
|  | DeclAccessPair &Found) { | 
|  | CXXConversionDecl *Conversion = | 
|  | cast<CXXConversionDecl>(Found->getUnderlyingDecl()); | 
|  | SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); | 
|  |  | 
|  | QualType ToType = Conversion->getConversionType().getNonReferenceType(); | 
|  | if (!Converter.SuppressConversion) { | 
|  | if (SemaRef.isSFINAEContext()) | 
|  | return true; | 
|  |  | 
|  | Converter.diagnoseConversion(SemaRef, Loc, T, ToType) | 
|  | << From->getSourceRange(); | 
|  | } | 
|  |  | 
|  | ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, | 
|  | HadMultipleCandidates); | 
|  | if (Result.isInvalid()) | 
|  | return true; | 
|  | // Record usage of conversion in an implicit cast. | 
|  | From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), | 
|  | CK_UserDefinedConversion, Result.get(), | 
|  | nullptr, Result.get()->getValueKind()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static ExprResult finishContextualImplicitConversion( | 
|  | Sema &SemaRef, SourceLocation Loc, Expr *From, | 
|  | Sema::ContextualImplicitConverter &Converter) { | 
|  | if (!Converter.match(From->getType()) && !Converter.Suppress) | 
|  | Converter.diagnoseNoMatch(SemaRef, Loc, From->getType()) | 
|  | << From->getSourceRange(); | 
|  |  | 
|  | return SemaRef.DefaultLvalueConversion(From); | 
|  | } | 
|  |  | 
|  | static void | 
|  | collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType, | 
|  | UnresolvedSetImpl &ViableConversions, | 
|  | OverloadCandidateSet &CandidateSet) { | 
|  | for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { | 
|  | DeclAccessPair FoundDecl = ViableConversions[I]; | 
|  | NamedDecl *D = FoundDecl.getDecl(); | 
|  | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); | 
|  | if (isa<UsingShadowDecl>(D)) | 
|  | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
|  |  | 
|  | CXXConversionDecl *Conv; | 
|  | FunctionTemplateDecl *ConvTemplate; | 
|  | if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) | 
|  | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | 
|  | else | 
|  | Conv = cast<CXXConversionDecl>(D); | 
|  |  | 
|  | if (ConvTemplate) | 
|  | SemaRef.AddTemplateConversionCandidate( | 
|  | ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet, | 
|  | /*AllowObjCConversionOnExplicit=*/false); | 
|  | else | 
|  | SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, | 
|  | ToType, CandidateSet, | 
|  | /*AllowObjCConversionOnExplicit=*/false); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Attempt to convert the given expression to a type which is accepted | 
|  | /// by the given converter. | 
|  | /// | 
|  | /// This routine will attempt to convert an expression of class type to a | 
|  | /// type accepted by the specified converter. In C++11 and before, the class | 
|  | /// must have a single non-explicit conversion function converting to a matching | 
|  | /// type. In C++1y, there can be multiple such conversion functions, but only | 
|  | /// one target type. | 
|  | /// | 
|  | /// \param Loc The source location of the construct that requires the | 
|  | /// conversion. | 
|  | /// | 
|  | /// \param From The expression we're converting from. | 
|  | /// | 
|  | /// \param Converter Used to control and diagnose the conversion process. | 
|  | /// | 
|  | /// \returns The expression, converted to an integral or enumeration type if | 
|  | /// successful. | 
|  | ExprResult Sema::PerformContextualImplicitConversion( | 
|  | SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) { | 
|  | // We can't perform any more checking for type-dependent expressions. | 
|  | if (From->isTypeDependent()) | 
|  | return From; | 
|  |  | 
|  | // Process placeholders immediately. | 
|  | if (From->hasPlaceholderType()) { | 
|  | ExprResult result = CheckPlaceholderExpr(From); | 
|  | if (result.isInvalid()) | 
|  | return result; | 
|  | From = result.get(); | 
|  | } | 
|  |  | 
|  | // If the expression already has a matching type, we're golden. | 
|  | QualType T = From->getType(); | 
|  | if (Converter.match(T)) | 
|  | return DefaultLvalueConversion(From); | 
|  |  | 
|  | // FIXME: Check for missing '()' if T is a function type? | 
|  |  | 
|  | // We can only perform contextual implicit conversions on objects of class | 
|  | // type. | 
|  | const RecordType *RecordTy = T->getAs<RecordType>(); | 
|  | if (!RecordTy || !getLangOpts().CPlusPlus) { | 
|  | if (!Converter.Suppress) | 
|  | Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange(); | 
|  | return From; | 
|  | } | 
|  |  | 
|  | // We must have a complete class type. | 
|  | struct TypeDiagnoserPartialDiag : TypeDiagnoser { | 
|  | ContextualImplicitConverter &Converter; | 
|  | Expr *From; | 
|  |  | 
|  | TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From) | 
|  | : TypeDiagnoser(Converter.Suppress), Converter(Converter), From(From) {} | 
|  |  | 
|  | void diagnose(Sema &S, SourceLocation Loc, QualType T) override { | 
|  | Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange(); | 
|  | } | 
|  | } IncompleteDiagnoser(Converter, From); | 
|  |  | 
|  | if (RequireCompleteType(Loc, T, IncompleteDiagnoser)) | 
|  | return From; | 
|  |  | 
|  | // Look for a conversion to an integral or enumeration type. | 
|  | UnresolvedSet<4> | 
|  | ViableConversions; // These are *potentially* viable in C++1y. | 
|  | UnresolvedSet<4> ExplicitConversions; | 
|  | const auto &Conversions = | 
|  | cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); | 
|  |  | 
|  | bool HadMultipleCandidates = | 
|  | (std::distance(Conversions.begin(), Conversions.end()) > 1); | 
|  |  | 
|  | // To check that there is only one target type, in C++1y: | 
|  | QualType ToType; | 
|  | bool HasUniqueTargetType = true; | 
|  |  | 
|  | // Collect explicit or viable (potentially in C++1y) conversions. | 
|  | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | 
|  | NamedDecl *D = (*I)->getUnderlyingDecl(); | 
|  | CXXConversionDecl *Conversion; | 
|  | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); | 
|  | if (ConvTemplate) { | 
|  | if (getLangOpts().CPlusPlus14) | 
|  | Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | 
|  | else | 
|  | continue; // C++11 does not consider conversion operator templates(?). | 
|  | } else | 
|  | Conversion = cast<CXXConversionDecl>(D); | 
|  |  | 
|  | assert((!ConvTemplate || getLangOpts().CPlusPlus14) && | 
|  | "Conversion operator templates are considered potentially " | 
|  | "viable in C++1y"); | 
|  |  | 
|  | QualType CurToType = Conversion->getConversionType().getNonReferenceType(); | 
|  | if (Converter.match(CurToType) || ConvTemplate) { | 
|  |  | 
|  | if (Conversion->isExplicit()) { | 
|  | // FIXME: For C++1y, do we need this restriction? | 
|  | // cf. diagnoseNoViableConversion() | 
|  | if (!ConvTemplate) | 
|  | ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); | 
|  | } else { | 
|  | if (!ConvTemplate && getLangOpts().CPlusPlus14) { | 
|  | if (ToType.isNull()) | 
|  | ToType = CurToType.getUnqualifiedType(); | 
|  | else if (HasUniqueTargetType && | 
|  | (CurToType.getUnqualifiedType() != ToType)) | 
|  | HasUniqueTargetType = false; | 
|  | } | 
|  | ViableConversions.addDecl(I.getDecl(), I.getAccess()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (getLangOpts().CPlusPlus14) { | 
|  | // C++1y [conv]p6: | 
|  | // ... An expression e of class type E appearing in such a context | 
|  | // is said to be contextually implicitly converted to a specified | 
|  | // type T and is well-formed if and only if e can be implicitly | 
|  | // converted to a type T that is determined as follows: E is searched | 
|  | // for conversion functions whose return type is cv T or reference to | 
|  | // cv T such that T is allowed by the context. There shall be | 
|  | // exactly one such T. | 
|  |  | 
|  | // If no unique T is found: | 
|  | if (ToType.isNull()) { | 
|  | if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, | 
|  | HadMultipleCandidates, | 
|  | ExplicitConversions)) | 
|  | return ExprError(); | 
|  | return finishContextualImplicitConversion(*this, Loc, From, Converter); | 
|  | } | 
|  |  | 
|  | // If more than one unique Ts are found: | 
|  | if (!HasUniqueTargetType) | 
|  | return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, | 
|  | ViableConversions); | 
|  |  | 
|  | // If one unique T is found: | 
|  | // First, build a candidate set from the previously recorded | 
|  | // potentially viable conversions. | 
|  | OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); | 
|  | collectViableConversionCandidates(*this, From, ToType, ViableConversions, | 
|  | CandidateSet); | 
|  |  | 
|  | // Then, perform overload resolution over the candidate set. | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(*this, Loc, Best)) { | 
|  | case OR_Success: { | 
|  | // Apply this conversion. | 
|  | DeclAccessPair Found = | 
|  | DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess()); | 
|  | if (recordConversion(*this, Loc, From, Converter, T, | 
|  | HadMultipleCandidates, Found)) | 
|  | return ExprError(); | 
|  | break; | 
|  | } | 
|  | case OR_Ambiguous: | 
|  | return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, | 
|  | ViableConversions); | 
|  | case OR_No_Viable_Function: | 
|  | if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, | 
|  | HadMultipleCandidates, | 
|  | ExplicitConversions)) | 
|  | return ExprError(); | 
|  | // fall through 'OR_Deleted' case. | 
|  | case OR_Deleted: | 
|  | // We'll complain below about a non-integral condition type. | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch (ViableConversions.size()) { | 
|  | case 0: { | 
|  | if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, | 
|  | HadMultipleCandidates, | 
|  | ExplicitConversions)) | 
|  | return ExprError(); | 
|  |  | 
|  | // We'll complain below about a non-integral condition type. | 
|  | break; | 
|  | } | 
|  | case 1: { | 
|  | // Apply this conversion. | 
|  | DeclAccessPair Found = ViableConversions[0]; | 
|  | if (recordConversion(*this, Loc, From, Converter, T, | 
|  | HadMultipleCandidates, Found)) | 
|  | return ExprError(); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, | 
|  | ViableConversions); | 
|  | } | 
|  | } | 
|  |  | 
|  | return finishContextualImplicitConversion(*this, Loc, From, Converter); | 
|  | } | 
|  |  | 
|  | /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is | 
|  | /// an acceptable non-member overloaded operator for a call whose | 
|  | /// arguments have types T1 (and, if non-empty, T2). This routine | 
|  | /// implements the check in C++ [over.match.oper]p3b2 concerning | 
|  | /// enumeration types. | 
|  | static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context, | 
|  | FunctionDecl *Fn, | 
|  | ArrayRef<Expr *> Args) { | 
|  | QualType T1 = Args[0]->getType(); | 
|  | QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType(); | 
|  |  | 
|  | if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) | 
|  | return true; | 
|  |  | 
|  | if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) | 
|  | return true; | 
|  |  | 
|  | const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>(); | 
|  | if (Proto->getNumParams() < 1) | 
|  | return false; | 
|  |  | 
|  | if (T1->isEnumeralType()) { | 
|  | QualType ArgType = Proto->getParamType(0).getNonReferenceType(); | 
|  | if (Context.hasSameUnqualifiedType(T1, ArgType)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Proto->getNumParams() < 2) | 
|  | return false; | 
|  |  | 
|  | if (!T2.isNull() && T2->isEnumeralType()) { | 
|  | QualType ArgType = Proto->getParamType(1).getNonReferenceType(); | 
|  | if (Context.hasSameUnqualifiedType(T2, ArgType)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// AddOverloadCandidate - Adds the given function to the set of | 
|  | /// candidate functions, using the given function call arguments.  If | 
|  | /// @p SuppressUserConversions, then don't allow user-defined | 
|  | /// conversions via constructors or conversion operators. | 
|  | /// | 
|  | /// \param PartialOverloading true if we are performing "partial" overloading | 
|  | /// based on an incomplete set of function arguments. This feature is used by | 
|  | /// code completion. | 
|  | void | 
|  | Sema::AddOverloadCandidate(FunctionDecl *Function, | 
|  | DeclAccessPair FoundDecl, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet &CandidateSet, | 
|  | bool SuppressUserConversions, | 
|  | bool PartialOverloading, | 
|  | bool AllowExplicit) { | 
|  | const FunctionProtoType *Proto | 
|  | = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); | 
|  | assert(Proto && "Functions without a prototype cannot be overloaded"); | 
|  | assert(!Function->getDescribedFunctionTemplate() && | 
|  | "Use AddTemplateOverloadCandidate for function templates"); | 
|  |  | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { | 
|  | if (!isa<CXXConstructorDecl>(Method)) { | 
|  | // If we get here, it's because we're calling a member function | 
|  | // that is named without a member access expression (e.g., | 
|  | // "this->f") that was either written explicitly or created | 
|  | // implicitly. This can happen with a qualified call to a member | 
|  | // function, e.g., X::f(). We use an empty type for the implied | 
|  | // object argument (C++ [over.call.func]p3), and the acting context | 
|  | // is irrelevant. | 
|  | AddMethodCandidate(Method, FoundDecl, Method->getParent(), | 
|  | QualType(), Expr::Classification::makeSimpleLValue(), | 
|  | Args, CandidateSet, SuppressUserConversions, | 
|  | PartialOverloading); | 
|  | return; | 
|  | } | 
|  | // We treat a constructor like a non-member function, since its object | 
|  | // argument doesn't participate in overload resolution. | 
|  | } | 
|  |  | 
|  | if (!CandidateSet.isNewCandidate(Function)) | 
|  | return; | 
|  |  | 
|  | // C++ [over.match.oper]p3: | 
|  | //   if no operand has a class type, only those non-member functions in the | 
|  | //   lookup set that have a first parameter of type T1 or "reference to | 
|  | //   (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there | 
|  | //   is a right operand) a second parameter of type T2 or "reference to | 
|  | //   (possibly cv-qualified) T2", when T2 is an enumeration type, are | 
|  | //   candidate functions. | 
|  | if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator && | 
|  | !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args)) | 
|  | return; | 
|  |  | 
|  | // C++11 [class.copy]p11: [DR1402] | 
|  | //   A defaulted move constructor that is defined as deleted is ignored by | 
|  | //   overload resolution. | 
|  | CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function); | 
|  | if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() && | 
|  | Constructor->isMoveConstructor()) | 
|  | return; | 
|  |  | 
|  | // Overload resolution is always an unevaluated context. | 
|  | EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); | 
|  |  | 
|  | // Add this candidate | 
|  | OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size()); | 
|  | Candidate.FoundDecl = FoundDecl; | 
|  | Candidate.Function = Function; | 
|  | Candidate.Viable = true; | 
|  | Candidate.IsSurrogate = false; | 
|  | Candidate.IgnoreObjectArgument = false; | 
|  | Candidate.ExplicitCallArguments = Args.size(); | 
|  |  | 
|  | if (Constructor) { | 
|  | // C++ [class.copy]p3: | 
|  | //   A member function template is never instantiated to perform the copy | 
|  | //   of a class object to an object of its class type. | 
|  | QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); | 
|  | if (Args.size() == 1 && | 
|  | Constructor->isSpecializationCopyingObject() && | 
|  | (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || | 
|  | IsDerivedFrom(Args[0]->getType(), ClassType))) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_illegal_constructor; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned NumParams = Proto->getNumParams(); | 
|  |  | 
|  | // (C++ 13.3.2p2): A candidate function having fewer than m | 
|  | // parameters is viable only if it has an ellipsis in its parameter | 
|  | // list (8.3.5). | 
|  | if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && | 
|  | !Proto->isVariadic()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_too_many_arguments; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // (C++ 13.3.2p2): A candidate function having more than m parameters | 
|  | // is viable only if the (m+1)st parameter has a default argument | 
|  | // (8.3.6). For the purposes of overload resolution, the | 
|  | // parameter list is truncated on the right, so that there are | 
|  | // exactly m parameters. | 
|  | unsigned MinRequiredArgs = Function->getMinRequiredArguments(); | 
|  | if (Args.size() < MinRequiredArgs && !PartialOverloading) { | 
|  | // Not enough arguments. | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_too_few_arguments; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // (CUDA B.1): Check for invalid calls between targets. | 
|  | if (getLangOpts().CUDA) | 
|  | if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) | 
|  | // Skip the check for callers that are implicit members, because in this | 
|  | // case we may not yet know what the member's target is; the target is | 
|  | // inferred for the member automatically, based on the bases and fields of | 
|  | // the class. | 
|  | if (!Caller->isImplicit() && CheckCUDATarget(Caller, Function)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_target; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Determine the implicit conversion sequences for each of the | 
|  | // arguments. | 
|  | for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { | 
|  | if (ArgIdx < NumParams) { | 
|  | // (C++ 13.3.2p3): for F to be a viable function, there shall | 
|  | // exist for each argument an implicit conversion sequence | 
|  | // (13.3.3.1) that converts that argument to the corresponding | 
|  | // parameter of F. | 
|  | QualType ParamType = Proto->getParamType(ArgIdx); | 
|  | Candidate.Conversions[ArgIdx] | 
|  | = TryCopyInitialization(*this, Args[ArgIdx], ParamType, | 
|  | SuppressUserConversions, | 
|  | /*InOverloadResolution=*/true, | 
|  | /*AllowObjCWritebackConversion=*/ | 
|  | getLangOpts().ObjCAutoRefCount, | 
|  | AllowExplicit); | 
|  | if (Candidate.Conversions[ArgIdx].isBad()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_conversion; | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | // (C++ 13.3.2p2): For the purposes of overload resolution, any | 
|  | // argument for which there is no corresponding parameter is | 
|  | // considered to ""match the ellipsis" (C+ 13.3.3.1.3). | 
|  | Candidate.Conversions[ArgIdx].setEllipsis(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_enable_if; | 
|  | Candidate.DeductionFailure.Data = FailedAttr; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | ObjCMethodDecl *Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, | 
|  | bool IsInstance) { | 
|  | SmallVector<ObjCMethodDecl*, 4> Methods; | 
|  | if (!CollectMultipleMethodsInGlobalPool(Sel, Methods, IsInstance)) | 
|  | return nullptr; | 
|  |  | 
|  | for (unsigned b = 0, e = Methods.size(); b < e; b++) { | 
|  | bool Match = true; | 
|  | ObjCMethodDecl *Method = Methods[b]; | 
|  | unsigned NumNamedArgs = Sel.getNumArgs(); | 
|  | // Method might have more arguments than selector indicates. This is due | 
|  | // to addition of c-style arguments in method. | 
|  | if (Method->param_size() > NumNamedArgs) | 
|  | NumNamedArgs = Method->param_size(); | 
|  | if (Args.size() < NumNamedArgs) | 
|  | continue; | 
|  |  | 
|  | for (unsigned i = 0; i < NumNamedArgs; i++) { | 
|  | // We can't do any type-checking on a type-dependent argument. | 
|  | if (Args[i]->isTypeDependent()) { | 
|  | Match = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ParmVarDecl *param = Method->parameters()[i]; | 
|  | Expr *argExpr = Args[i]; | 
|  | assert(argExpr && "SelectBestMethod(): missing expression"); | 
|  |  | 
|  | // Strip the unbridged-cast placeholder expression off unless it's | 
|  | // a consumed argument. | 
|  | if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && | 
|  | !param->hasAttr<CFConsumedAttr>()) | 
|  | argExpr = stripARCUnbridgedCast(argExpr); | 
|  |  | 
|  | // If the parameter is __unknown_anytype, move on to the next method. | 
|  | if (param->getType() == Context.UnknownAnyTy) { | 
|  | Match = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ImplicitConversionSequence ConversionState | 
|  | = TryCopyInitialization(*this, argExpr, param->getType(), | 
|  | /*SuppressUserConversions*/false, | 
|  | /*InOverloadResolution=*/true, | 
|  | /*AllowObjCWritebackConversion=*/ | 
|  | getLangOpts().ObjCAutoRefCount, | 
|  | /*AllowExplicit*/false); | 
|  | if (ConversionState.isBad()) { | 
|  | Match = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Promote additional arguments to variadic methods. | 
|  | if (Match && Method->isVariadic()) { | 
|  | for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { | 
|  | if (Args[i]->isTypeDependent()) { | 
|  | Match = false; | 
|  | break; | 
|  | } | 
|  | ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, | 
|  | nullptr); | 
|  | if (Arg.isInvalid()) { | 
|  | Match = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Check for extra arguments to non-variadic methods. | 
|  | if (Args.size() != NumNamedArgs) | 
|  | Match = false; | 
|  | else if (Match && NumNamedArgs == 0 && Methods.size() > 1) { | 
|  | // Special case when selectors have no argument. In this case, select | 
|  | // one with the most general result type of 'id'. | 
|  | for (unsigned b = 0, e = Methods.size(); b < e; b++) { | 
|  | QualType ReturnT = Methods[b]->getReturnType(); | 
|  | if (ReturnT->isObjCIdType()) | 
|  | return Methods[b]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Match) | 
|  | return Method; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static bool IsNotEnableIfAttr(Attr *A) { return !isa<EnableIfAttr>(A); } | 
|  |  | 
|  | EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args, | 
|  | bool MissingImplicitThis) { | 
|  | // FIXME: specific_attr_iterator<EnableIfAttr> iterates in reverse order, but | 
|  | // we need to find the first failing one. | 
|  | if (!Function->hasAttrs()) | 
|  | return nullptr; | 
|  | AttrVec Attrs = Function->getAttrs(); | 
|  | AttrVec::iterator E = std::remove_if(Attrs.begin(), Attrs.end(), | 
|  | IsNotEnableIfAttr); | 
|  | if (Attrs.begin() == E) | 
|  | return nullptr; | 
|  | std::reverse(Attrs.begin(), E); | 
|  |  | 
|  | SFINAETrap Trap(*this); | 
|  |  | 
|  | // Convert the arguments. | 
|  | SmallVector<Expr *, 16> ConvertedArgs; | 
|  | bool InitializationFailed = false; | 
|  | bool ContainsValueDependentExpr = false; | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | if (i == 0 && !MissingImplicitThis && isa<CXXMethodDecl>(Function) && | 
|  | !cast<CXXMethodDecl>(Function)->isStatic() && | 
|  | !isa<CXXConstructorDecl>(Function)) { | 
|  | CXXMethodDecl *Method = cast<CXXMethodDecl>(Function); | 
|  | ExprResult R = | 
|  | PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr, | 
|  | Method, Method); | 
|  | if (R.isInvalid()) { | 
|  | InitializationFailed = true; | 
|  | break; | 
|  | } | 
|  | ContainsValueDependentExpr |= R.get()->isValueDependent(); | 
|  | ConvertedArgs.push_back(R.get()); | 
|  | } else { | 
|  | ExprResult R = | 
|  | PerformCopyInitialization(InitializedEntity::InitializeParameter( | 
|  | Context, | 
|  | Function->getParamDecl(i)), | 
|  | SourceLocation(), | 
|  | Args[i]); | 
|  | if (R.isInvalid()) { | 
|  | InitializationFailed = true; | 
|  | break; | 
|  | } | 
|  | ContainsValueDependentExpr |= R.get()->isValueDependent(); | 
|  | ConvertedArgs.push_back(R.get()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (InitializationFailed || Trap.hasErrorOccurred()) | 
|  | return cast<EnableIfAttr>(Attrs[0]); | 
|  |  | 
|  | for (AttrVec::iterator I = Attrs.begin(); I != E; ++I) { | 
|  | APValue Result; | 
|  | EnableIfAttr *EIA = cast<EnableIfAttr>(*I); | 
|  | if (EIA->getCond()->isValueDependent()) { | 
|  | // Don't even try now, we'll examine it after instantiation. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!EIA->getCond()->EvaluateWithSubstitution( | 
|  | Result, Context, Function, llvm::makeArrayRef(ConvertedArgs))) { | 
|  | if (!ContainsValueDependentExpr) | 
|  | return EIA; | 
|  | } else if (!Result.isInt() || !Result.getInt().getBoolValue()) { | 
|  | return EIA; | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// \brief Add all of the function declarations in the given function set to | 
|  | /// the overload candidate set. | 
|  | void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet& CandidateSet, | 
|  | TemplateArgumentListInfo *ExplicitTemplateArgs, | 
|  | bool SuppressUserConversions, | 
|  | bool PartialOverloading) { | 
|  | for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { | 
|  | NamedDecl *D = F.getDecl()->getUnderlyingDecl(); | 
|  | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) | 
|  | AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), | 
|  | cast<CXXMethodDecl>(FD)->getParent(), | 
|  | Args[0]->getType(), Args[0]->Classify(Context), | 
|  | Args.slice(1), CandidateSet, | 
|  | SuppressUserConversions, PartialOverloading); | 
|  | else | 
|  | AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet, | 
|  | SuppressUserConversions, PartialOverloading); | 
|  | } else { | 
|  | FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); | 
|  | if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && | 
|  | !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) | 
|  | AddMethodTemplateCandidate(FunTmpl, F.getPair(), | 
|  | cast<CXXRecordDecl>(FunTmpl->getDeclContext()), | 
|  | ExplicitTemplateArgs, | 
|  | Args[0]->getType(), | 
|  | Args[0]->Classify(Context), Args.slice(1), | 
|  | CandidateSet, SuppressUserConversions, | 
|  | PartialOverloading); | 
|  | else | 
|  | AddTemplateOverloadCandidate(FunTmpl, F.getPair(), | 
|  | ExplicitTemplateArgs, Args, | 
|  | CandidateSet, SuppressUserConversions, | 
|  | PartialOverloading); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// AddMethodCandidate - Adds a named decl (which is some kind of | 
|  | /// method) as a method candidate to the given overload set. | 
|  | void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, | 
|  | QualType ObjectType, | 
|  | Expr::Classification ObjectClassification, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet& CandidateSet, | 
|  | bool SuppressUserConversions) { | 
|  | NamedDecl *Decl = FoundDecl.getDecl(); | 
|  | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); | 
|  |  | 
|  | if (isa<UsingShadowDecl>(Decl)) | 
|  | Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); | 
|  |  | 
|  | if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { | 
|  | assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && | 
|  | "Expected a member function template"); | 
|  | AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, | 
|  | /*ExplicitArgs*/ nullptr, | 
|  | ObjectType, ObjectClassification, | 
|  | Args, CandidateSet, | 
|  | SuppressUserConversions); | 
|  | } else { | 
|  | AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, | 
|  | ObjectType, ObjectClassification, | 
|  | Args, | 
|  | CandidateSet, SuppressUserConversions); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// AddMethodCandidate - Adds the given C++ member function to the set | 
|  | /// of candidate functions, using the given function call arguments | 
|  | /// and the object argument (@c Object). For example, in a call | 
|  | /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain | 
|  | /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't | 
|  | /// allow user-defined conversions via constructors or conversion | 
|  | /// operators. | 
|  | void | 
|  | Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, | 
|  | CXXRecordDecl *ActingContext, QualType ObjectType, | 
|  | Expr::Classification ObjectClassification, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet &CandidateSet, | 
|  | bool SuppressUserConversions, | 
|  | bool PartialOverloading) { | 
|  | const FunctionProtoType *Proto | 
|  | = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); | 
|  | assert(Proto && "Methods without a prototype cannot be overloaded"); | 
|  | assert(!isa<CXXConstructorDecl>(Method) && | 
|  | "Use AddOverloadCandidate for constructors"); | 
|  |  | 
|  | if (!CandidateSet.isNewCandidate(Method)) | 
|  | return; | 
|  |  | 
|  | // C++11 [class.copy]p23: [DR1402] | 
|  | //   A defaulted move assignment operator that is defined as deleted is | 
|  | //   ignored by overload resolution. | 
|  | if (Method->isDefaulted() && Method->isDeleted() && | 
|  | Method->isMoveAssignmentOperator()) | 
|  | return; | 
|  |  | 
|  | // Overload resolution is always an unevaluated context. | 
|  | EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); | 
|  |  | 
|  | // Add this candidate | 
|  | OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1); | 
|  | Candidate.FoundDecl = FoundDecl; | 
|  | Candidate.Function = Method; | 
|  | Candidate.IsSurrogate = false; | 
|  | Candidate.IgnoreObjectArgument = false; | 
|  | Candidate.ExplicitCallArguments = Args.size(); | 
|  |  | 
|  | unsigned NumParams = Proto->getNumParams(); | 
|  |  | 
|  | // (C++ 13.3.2p2): A candidate function having fewer than m | 
|  | // parameters is viable only if it has an ellipsis in its parameter | 
|  | // list (8.3.5). | 
|  | if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && | 
|  | !Proto->isVariadic()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_too_many_arguments; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // (C++ 13.3.2p2): A candidate function having more than m parameters | 
|  | // is viable only if the (m+1)st parameter has a default argument | 
|  | // (8.3.6). For the purposes of overload resolution, the | 
|  | // parameter list is truncated on the right, so that there are | 
|  | // exactly m parameters. | 
|  | unsigned MinRequiredArgs = Method->getMinRequiredArguments(); | 
|  | if (Args.size() < MinRequiredArgs && !PartialOverloading) { | 
|  | // Not enough arguments. | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_too_few_arguments; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Candidate.Viable = true; | 
|  |  | 
|  | if (Method->isStatic() || ObjectType.isNull()) | 
|  | // The implicit object argument is ignored. | 
|  | Candidate.IgnoreObjectArgument = true; | 
|  | else { | 
|  | // Determine the implicit conversion sequence for the object | 
|  | // parameter. | 
|  | Candidate.Conversions[0] | 
|  | = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification, | 
|  | Method, ActingContext); | 
|  | if (Candidate.Conversions[0].isBad()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_conversion; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // (CUDA B.1): Check for invalid calls between targets. | 
|  | if (getLangOpts().CUDA) | 
|  | if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) | 
|  | if (CheckCUDATarget(Caller, Method)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_target; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Determine the implicit conversion sequences for each of the | 
|  | // arguments. | 
|  | for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { | 
|  | if (ArgIdx < NumParams) { | 
|  | // (C++ 13.3.2p3): for F to be a viable function, there shall | 
|  | // exist for each argument an implicit conversion sequence | 
|  | // (13.3.3.1) that converts that argument to the corresponding | 
|  | // parameter of F. | 
|  | QualType ParamType = Proto->getParamType(ArgIdx); | 
|  | Candidate.Conversions[ArgIdx + 1] | 
|  | = TryCopyInitialization(*this, Args[ArgIdx], ParamType, | 
|  | SuppressUserConversions, | 
|  | /*InOverloadResolution=*/true, | 
|  | /*AllowObjCWritebackConversion=*/ | 
|  | getLangOpts().ObjCAutoRefCount); | 
|  | if (Candidate.Conversions[ArgIdx + 1].isBad()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_conversion; | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | // (C++ 13.3.2p2): For the purposes of overload resolution, any | 
|  | // argument for which there is no corresponding parameter is | 
|  | // considered to "match the ellipsis" (C+ 13.3.3.1.3). | 
|  | Candidate.Conversions[ArgIdx + 1].setEllipsis(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_enable_if; | 
|  | Candidate.DeductionFailure.Data = FailedAttr; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Add a C++ member function template as a candidate to the candidate | 
|  | /// set, using template argument deduction to produce an appropriate member | 
|  | /// function template specialization. | 
|  | void | 
|  | Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, | 
|  | DeclAccessPair FoundDecl, | 
|  | CXXRecordDecl *ActingContext, | 
|  | TemplateArgumentListInfo *ExplicitTemplateArgs, | 
|  | QualType ObjectType, | 
|  | Expr::Classification ObjectClassification, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet& CandidateSet, | 
|  | bool SuppressUserConversions, | 
|  | bool PartialOverloading) { | 
|  | if (!CandidateSet.isNewCandidate(MethodTmpl)) | 
|  | return; | 
|  |  | 
|  | // C++ [over.match.funcs]p7: | 
|  | //   In each case where a candidate is a function template, candidate | 
|  | //   function template specializations are generated using template argument | 
|  | //   deduction (14.8.3, 14.8.2). Those candidates are then handled as | 
|  | //   candidate functions in the usual way.113) A given name can refer to one | 
|  | //   or more function templates and also to a set of overloaded non-template | 
|  | //   functions. In such a case, the candidate functions generated from each | 
|  | //   function template are combined with the set of non-template candidate | 
|  | //   functions. | 
|  | TemplateDeductionInfo Info(CandidateSet.getLocation()); | 
|  | FunctionDecl *Specialization = nullptr; | 
|  | if (TemplateDeductionResult Result | 
|  | = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args, | 
|  | Specialization, Info, PartialOverloading)) { | 
|  | OverloadCandidate &Candidate = CandidateSet.addCandidate(); | 
|  | Candidate.FoundDecl = FoundDecl; | 
|  | Candidate.Function = MethodTmpl->getTemplatedDecl(); | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_deduction; | 
|  | Candidate.IsSurrogate = false; | 
|  | Candidate.IgnoreObjectArgument = false; | 
|  | Candidate.ExplicitCallArguments = Args.size(); | 
|  | Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, | 
|  | Info); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Add the function template specialization produced by template argument | 
|  | // deduction as a candidate. | 
|  | assert(Specialization && "Missing member function template specialization?"); | 
|  | assert(isa<CXXMethodDecl>(Specialization) && | 
|  | "Specialization is not a member function?"); | 
|  | AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, | 
|  | ActingContext, ObjectType, ObjectClassification, Args, | 
|  | CandidateSet, SuppressUserConversions, PartialOverloading); | 
|  | } | 
|  |  | 
|  | /// \brief Add a C++ function template specialization as a candidate | 
|  | /// in the candidate set, using template argument deduction to produce | 
|  | /// an appropriate function template specialization. | 
|  | void | 
|  | Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, | 
|  | DeclAccessPair FoundDecl, | 
|  | TemplateArgumentListInfo *ExplicitTemplateArgs, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet& CandidateSet, | 
|  | bool SuppressUserConversions, | 
|  | bool PartialOverloading) { | 
|  | if (!CandidateSet.isNewCandidate(FunctionTemplate)) | 
|  | return; | 
|  |  | 
|  | // C++ [over.match.funcs]p7: | 
|  | //   In each case where a candidate is a function template, candidate | 
|  | //   function template specializations are generated using template argument | 
|  | //   deduction (14.8.3, 14.8.2). Those candidates are then handled as | 
|  | //   candidate functions in the usual way.113) A given name can refer to one | 
|  | //   or more function templates and also to a set of overloaded non-template | 
|  | //   functions. In such a case, the candidate functions generated from each | 
|  | //   function template are combined with the set of non-template candidate | 
|  | //   functions. | 
|  | TemplateDeductionInfo Info(CandidateSet.getLocation()); | 
|  | FunctionDecl *Specialization = nullptr; | 
|  | if (TemplateDeductionResult Result | 
|  | = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args, | 
|  | Specialization, Info, PartialOverloading)) { | 
|  | OverloadCandidate &Candidate = CandidateSet.addCandidate(); | 
|  | Candidate.FoundDecl = FoundDecl; | 
|  | Candidate.Function = FunctionTemplate->getTemplatedDecl(); | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_deduction; | 
|  | Candidate.IsSurrogate = false; | 
|  | Candidate.IgnoreObjectArgument = false; | 
|  | Candidate.ExplicitCallArguments = Args.size(); | 
|  | Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, | 
|  | Info); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Add the function template specialization produced by template argument | 
|  | // deduction as a candidate. | 
|  | assert(Specialization && "Missing function template specialization?"); | 
|  | AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet, | 
|  | SuppressUserConversions, PartialOverloading); | 
|  | } | 
|  |  | 
|  | /// Determine whether this is an allowable conversion from the result | 
|  | /// of an explicit conversion operator to the expected type, per C++ | 
|  | /// [over.match.conv]p1 and [over.match.ref]p1. | 
|  | /// | 
|  | /// \param ConvType The return type of the conversion function. | 
|  | /// | 
|  | /// \param ToType The type we are converting to. | 
|  | /// | 
|  | /// \param AllowObjCPointerConversion Allow a conversion from one | 
|  | /// Objective-C pointer to another. | 
|  | /// | 
|  | /// \returns true if the conversion is allowable, false otherwise. | 
|  | static bool isAllowableExplicitConversion(Sema &S, | 
|  | QualType ConvType, QualType ToType, | 
|  | bool AllowObjCPointerConversion) { | 
|  | QualType ToNonRefType = ToType.getNonReferenceType(); | 
|  |  | 
|  | // Easy case: the types are the same. | 
|  | if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType)) | 
|  | return true; | 
|  |  | 
|  | // Allow qualification conversions. | 
|  | bool ObjCLifetimeConversion; | 
|  | if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false, | 
|  | ObjCLifetimeConversion)) | 
|  | return true; | 
|  |  | 
|  | // If we're not allowed to consider Objective-C pointer conversions, | 
|  | // we're done. | 
|  | if (!AllowObjCPointerConversion) | 
|  | return false; | 
|  |  | 
|  | // Is this an Objective-C pointer conversion? | 
|  | bool IncompatibleObjC = false; | 
|  | QualType ConvertedType; | 
|  | return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType, | 
|  | IncompatibleObjC); | 
|  | } | 
|  |  | 
|  | /// AddConversionCandidate - Add a C++ conversion function as a | 
|  | /// candidate in the candidate set (C++ [over.match.conv], | 
|  | /// C++ [over.match.copy]). From is the expression we're converting from, | 
|  | /// and ToType is the type that we're eventually trying to convert to | 
|  | /// (which may or may not be the same type as the type that the | 
|  | /// conversion function produces). | 
|  | void | 
|  | Sema::AddConversionCandidate(CXXConversionDecl *Conversion, | 
|  | DeclAccessPair FoundDecl, | 
|  | CXXRecordDecl *ActingContext, | 
|  | Expr *From, QualType ToType, | 
|  | OverloadCandidateSet& CandidateSet, | 
|  | bool AllowObjCConversionOnExplicit) { | 
|  | assert(!Conversion->getDescribedFunctionTemplate() && | 
|  | "Conversion function templates use AddTemplateConversionCandidate"); | 
|  | QualType ConvType = Conversion->getConversionType().getNonReferenceType(); | 
|  | if (!CandidateSet.isNewCandidate(Conversion)) | 
|  | return; | 
|  |  | 
|  | // If the conversion function has an undeduced return type, trigger its | 
|  | // deduction now. | 
|  | if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) { | 
|  | if (DeduceReturnType(Conversion, From->getExprLoc())) | 
|  | return; | 
|  | ConvType = Conversion->getConversionType().getNonReferenceType(); | 
|  | } | 
|  |  | 
|  | // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion | 
|  | // operator is only a candidate if its return type is the target type or | 
|  | // can be converted to the target type with a qualification conversion. | 
|  | if (Conversion->isExplicit() && | 
|  | !isAllowableExplicitConversion(*this, ConvType, ToType, | 
|  | AllowObjCConversionOnExplicit)) | 
|  | return; | 
|  |  | 
|  | // Overload resolution is always an unevaluated context. | 
|  | EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); | 
|  |  | 
|  | // Add this candidate | 
|  | OverloadCandidate &Candidate = CandidateSet.addCandidate(1); | 
|  | Candidate.FoundDecl = FoundDecl; | 
|  | Candidate.Function = Conversion; | 
|  | Candidate.IsSurrogate = false; | 
|  | Candidate.IgnoreObjectArgument = false; | 
|  | Candidate.FinalConversion.setAsIdentityConversion(); | 
|  | Candidate.FinalConversion.setFromType(ConvType); | 
|  | Candidate.FinalConversion.setAllToTypes(ToType); | 
|  | Candidate.Viable = true; | 
|  | Candidate.ExplicitCallArguments = 1; | 
|  |  | 
|  | // C++ [over.match.funcs]p4: | 
|  | //   For conversion functions, the function is considered to be a member of | 
|  | //   the class of the implicit implied object argument for the purpose of | 
|  | //   defining the type of the implicit object parameter. | 
|  | // | 
|  | // Determine the implicit conversion sequence for the implicit | 
|  | // object parameter. | 
|  | QualType ImplicitParamType = From->getType(); | 
|  | if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) | 
|  | ImplicitParamType = FromPtrType->getPointeeType(); | 
|  | CXXRecordDecl *ConversionContext | 
|  | = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl()); | 
|  |  | 
|  | Candidate.Conversions[0] | 
|  | = TryObjectArgumentInitialization(*this, From->getType(), | 
|  | From->Classify(Context), | 
|  | Conversion, ConversionContext); | 
|  |  | 
|  | if (Candidate.Conversions[0].isBad()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_conversion; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We won't go through a user-defined type conversion function to convert a | 
|  | // derived to base as such conversions are given Conversion Rank. They only | 
|  | // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] | 
|  | QualType FromCanon | 
|  | = Context.getCanonicalType(From->getType().getUnqualifiedType()); | 
|  | QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); | 
|  | if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_trivial_conversion; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // To determine what the conversion from the result of calling the | 
|  | // conversion function to the type we're eventually trying to | 
|  | // convert to (ToType), we need to synthesize a call to the | 
|  | // conversion function and attempt copy initialization from it. This | 
|  | // makes sure that we get the right semantics with respect to | 
|  | // lvalues/rvalues and the type. Fortunately, we can allocate this | 
|  | // call on the stack and we don't need its arguments to be | 
|  | // well-formed. | 
|  | DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(), | 
|  | VK_LValue, From->getLocStart()); | 
|  | ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, | 
|  | Context.getPointerType(Conversion->getType()), | 
|  | CK_FunctionToPointerDecay, | 
|  | &ConversionRef, VK_RValue); | 
|  |  | 
|  | QualType ConversionType = Conversion->getConversionType(); | 
|  | if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_final_conversion; | 
|  | return; | 
|  | } | 
|  |  | 
|  | ExprValueKind VK = Expr::getValueKindForType(ConversionType); | 
|  |  | 
|  | // Note that it is safe to allocate CallExpr on the stack here because | 
|  | // there are 0 arguments (i.e., nothing is allocated using ASTContext's | 
|  | // allocator). | 
|  | QualType CallResultType = ConversionType.getNonLValueExprType(Context); | 
|  | CallExpr Call(Context, &ConversionFn, None, CallResultType, VK, | 
|  | From->getLocStart()); | 
|  | ImplicitConversionSequence ICS = | 
|  | TryCopyInitialization(*this, &Call, ToType, | 
|  | /*SuppressUserConversions=*/true, | 
|  | /*InOverloadResolution=*/false, | 
|  | /*AllowObjCWritebackConversion=*/false); | 
|  |  | 
|  | switch (ICS.getKind()) { | 
|  | case ImplicitConversionSequence::StandardConversion: | 
|  | Candidate.FinalConversion = ICS.Standard; | 
|  |  | 
|  | // C++ [over.ics.user]p3: | 
|  | //   If the user-defined conversion is specified by a specialization of a | 
|  | //   conversion function template, the second standard conversion sequence | 
|  | //   shall have exact match rank. | 
|  | if (Conversion->getPrimaryTemplate() && | 
|  | GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_final_conversion_not_exact; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // C++0x [dcl.init.ref]p5: | 
|  | //    In the second case, if the reference is an rvalue reference and | 
|  | //    the second standard conversion sequence of the user-defined | 
|  | //    conversion sequence includes an lvalue-to-rvalue conversion, the | 
|  | //    program is ill-formed. | 
|  | if (ToType->isRValueReferenceType() && | 
|  | ICS.Standard.First == ICK_Lvalue_To_Rvalue) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_final_conversion; | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ImplicitConversionSequence::BadConversion: | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_final_conversion; | 
|  | return; | 
|  |  | 
|  | default: | 
|  | llvm_unreachable( | 
|  | "Can only end up with a standard conversion sequence or failure"); | 
|  | } | 
|  |  | 
|  | if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_enable_if; | 
|  | Candidate.DeductionFailure.Data = FailedAttr; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Adds a conversion function template specialization | 
|  | /// candidate to the overload set, using template argument deduction | 
|  | /// to deduce the template arguments of the conversion function | 
|  | /// template from the type that we are converting to (C++ | 
|  | /// [temp.deduct.conv]). | 
|  | void | 
|  | Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, | 
|  | DeclAccessPair FoundDecl, | 
|  | CXXRecordDecl *ActingDC, | 
|  | Expr *From, QualType ToType, | 
|  | OverloadCandidateSet &CandidateSet, | 
|  | bool AllowObjCConversionOnExplicit) { | 
|  | assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && | 
|  | "Only conversion function templates permitted here"); | 
|  |  | 
|  | if (!CandidateSet.isNewCandidate(FunctionTemplate)) | 
|  | return; | 
|  |  | 
|  | TemplateDeductionInfo Info(CandidateSet.getLocation()); | 
|  | CXXConversionDecl *Specialization = nullptr; | 
|  | if (TemplateDeductionResult Result | 
|  | = DeduceTemplateArguments(FunctionTemplate, ToType, | 
|  | Specialization, Info)) { | 
|  | OverloadCandidate &Candidate = CandidateSet.addCandidate(); | 
|  | Candidate.FoundDecl = FoundDecl; | 
|  | Candidate.Function = FunctionTemplate->getTemplatedDecl(); | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_deduction; | 
|  | Candidate.IsSurrogate = false; | 
|  | Candidate.IgnoreObjectArgument = false; | 
|  | Candidate.ExplicitCallArguments = 1; | 
|  | Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, | 
|  | Info); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Add the conversion function template specialization produced by | 
|  | // template argument deduction as a candidate. | 
|  | assert(Specialization && "Missing function template specialization?"); | 
|  | AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, | 
|  | CandidateSet, AllowObjCConversionOnExplicit); | 
|  | } | 
|  |  | 
|  | /// AddSurrogateCandidate - Adds a "surrogate" candidate function that | 
|  | /// converts the given @c Object to a function pointer via the | 
|  | /// conversion function @c Conversion, and then attempts to call it | 
|  | /// with the given arguments (C++ [over.call.object]p2-4). Proto is | 
|  | /// the type of function that we'll eventually be calling. | 
|  | void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, | 
|  | DeclAccessPair FoundDecl, | 
|  | CXXRecordDecl *ActingContext, | 
|  | const FunctionProtoType *Proto, | 
|  | Expr *Object, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet& CandidateSet) { | 
|  | if (!CandidateSet.isNewCandidate(Conversion)) | 
|  | return; | 
|  |  | 
|  | // Overload resolution is always an unevaluated context. | 
|  | EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); | 
|  |  | 
|  | OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1); | 
|  | Candidate.FoundDecl = FoundDecl; | 
|  | Candidate.Function = nullptr; | 
|  | Candidate.Surrogate = Conversion; | 
|  | Candidate.Viable = true; | 
|  | Candidate.IsSurrogate = true; | 
|  | Candidate.IgnoreObjectArgument = false; | 
|  | Candidate.ExplicitCallArguments = Args.size(); | 
|  |  | 
|  | // Determine the implicit conversion sequence for the implicit | 
|  | // object parameter. | 
|  | ImplicitConversionSequence ObjectInit | 
|  | = TryObjectArgumentInitialization(*this, Object->getType(), | 
|  | Object->Classify(Context), | 
|  | Conversion, ActingContext); | 
|  | if (ObjectInit.isBad()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_conversion; | 
|  | Candidate.Conversions[0] = ObjectInit; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The first conversion is actually a user-defined conversion whose | 
|  | // first conversion is ObjectInit's standard conversion (which is | 
|  | // effectively a reference binding). Record it as such. | 
|  | Candidate.Conversions[0].setUserDefined(); | 
|  | Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; | 
|  | Candidate.Conversions[0].UserDefined.EllipsisConversion = false; | 
|  | Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false; | 
|  | Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; | 
|  | Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl; | 
|  | Candidate.Conversions[0].UserDefined.After | 
|  | = Candidate.Conversions[0].UserDefined.Before; | 
|  | Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); | 
|  |  | 
|  | // Find the | 
|  | unsigned NumParams = Proto->getNumParams(); | 
|  |  | 
|  | // (C++ 13.3.2p2): A candidate function having fewer than m | 
|  | // parameters is viable only if it has an ellipsis in its parameter | 
|  | // list (8.3.5). | 
|  | if (Args.size() > NumParams && !Proto->isVariadic()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_too_many_arguments; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Function types don't have any default arguments, so just check if | 
|  | // we have enough arguments. | 
|  | if (Args.size() < NumParams) { | 
|  | // Not enough arguments. | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_too_few_arguments; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Determine the implicit conversion sequences for each of the | 
|  | // arguments. | 
|  | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | 
|  | if (ArgIdx < NumParams) { | 
|  | // (C++ 13.3.2p3): for F to be a viable function, there shall | 
|  | // exist for each argument an implicit conversion sequence | 
|  | // (13.3.3.1) that converts that argument to the corresponding | 
|  | // parameter of F. | 
|  | QualType ParamType = Proto->getParamType(ArgIdx); | 
|  | Candidate.Conversions[ArgIdx + 1] | 
|  | = TryCopyInitialization(*this, Args[ArgIdx], ParamType, | 
|  | /*SuppressUserConversions=*/false, | 
|  | /*InOverloadResolution=*/false, | 
|  | /*AllowObjCWritebackConversion=*/ | 
|  | getLangOpts().ObjCAutoRefCount); | 
|  | if (Candidate.Conversions[ArgIdx + 1].isBad()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_conversion; | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | // (C++ 13.3.2p2): For the purposes of overload resolution, any | 
|  | // argument for which there is no corresponding parameter is | 
|  | // considered to ""match the ellipsis" (C+ 13.3.3.1.3). | 
|  | Candidate.Conversions[ArgIdx + 1].setEllipsis(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_enable_if; | 
|  | Candidate.DeductionFailure.Data = FailedAttr; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Add overload candidates for overloaded operators that are | 
|  | /// member functions. | 
|  | /// | 
|  | /// Add the overloaded operator candidates that are member functions | 
|  | /// for the operator Op that was used in an operator expression such | 
|  | /// as "x Op y". , Args/NumArgs provides the operator arguments, and | 
|  | /// CandidateSet will store the added overload candidates. (C++ | 
|  | /// [over.match.oper]). | 
|  | void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, | 
|  | SourceLocation OpLoc, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet& CandidateSet, | 
|  | SourceRange OpRange) { | 
|  | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | 
|  |  | 
|  | // C++ [over.match.oper]p3: | 
|  | //   For a unary operator @ with an operand of a type whose | 
|  | //   cv-unqualified version is T1, and for a binary operator @ with | 
|  | //   a left operand of a type whose cv-unqualified version is T1 and | 
|  | //   a right operand of a type whose cv-unqualified version is T2, | 
|  | //   three sets of candidate functions, designated member | 
|  | //   candidates, non-member candidates and built-in candidates, are | 
|  | //   constructed as follows: | 
|  | QualType T1 = Args[0]->getType(); | 
|  |  | 
|  | //     -- If T1 is a complete class type or a class currently being | 
|  | //        defined, the set of member candidates is the result of the | 
|  | //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise, | 
|  | //        the set of member candidates is empty. | 
|  | if (const RecordType *T1Rec = T1->getAs<RecordType>()) { | 
|  | // Complete the type if it can be completed. | 
|  | RequireCompleteType(OpLoc, T1, 0); | 
|  | // If the type is neither complete nor being defined, bail out now. | 
|  | if (!T1Rec->getDecl()->getDefinition()) | 
|  | return; | 
|  |  | 
|  | LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); | 
|  | LookupQualifiedName(Operators, T1Rec->getDecl()); | 
|  | Operators.suppressDiagnostics(); | 
|  |  | 
|  | for (LookupResult::iterator Oper = Operators.begin(), | 
|  | OperEnd = Operators.end(); | 
|  | Oper != OperEnd; | 
|  | ++Oper) | 
|  | AddMethodCandidate(Oper.getPair(), Args[0]->getType(), | 
|  | Args[0]->Classify(Context), | 
|  | Args.slice(1), | 
|  | CandidateSet, | 
|  | /* SuppressUserConversions = */ false); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// AddBuiltinCandidate - Add a candidate for a built-in | 
|  | /// operator. ResultTy and ParamTys are the result and parameter types | 
|  | /// of the built-in candidate, respectively. Args and NumArgs are the | 
|  | /// arguments being passed to the candidate. IsAssignmentOperator | 
|  | /// should be true when this built-in candidate is an assignment | 
|  | /// operator. NumContextualBoolArguments is the number of arguments | 
|  | /// (at the beginning of the argument list) that will be contextually | 
|  | /// converted to bool. | 
|  | void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet& CandidateSet, | 
|  | bool IsAssignmentOperator, | 
|  | unsigned NumContextualBoolArguments) { | 
|  | // Overload resolution is always an unevaluated context. | 
|  | EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); | 
|  |  | 
|  | // Add this candidate | 
|  | OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size()); | 
|  | Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none); | 
|  | Candidate.Function = nullptr; | 
|  | Candidate.IsSurrogate = false; | 
|  | Candidate.IgnoreObjectArgument = false; | 
|  | Candidate.BuiltinTypes.ResultTy = ResultTy; | 
|  | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) | 
|  | Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; | 
|  |  | 
|  | // Determine the implicit conversion sequences for each of the | 
|  | // arguments. | 
|  | Candidate.Viable = true; | 
|  | Candidate.ExplicitCallArguments = Args.size(); | 
|  | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | 
|  | // C++ [over.match.oper]p4: | 
|  | //   For the built-in assignment operators, conversions of the | 
|  | //   left operand are restricted as follows: | 
|  | //     -- no temporaries are introduced to hold the left operand, and | 
|  | //     -- no user-defined conversions are applied to the left | 
|  | //        operand to achieve a type match with the left-most | 
|  | //        parameter of a built-in candidate. | 
|  | // | 
|  | // We block these conversions by turning off user-defined | 
|  | // conversions, since that is the only way that initialization of | 
|  | // a reference to a non-class type can occur from something that | 
|  | // is not of the same type. | 
|  | if (ArgIdx < NumContextualBoolArguments) { | 
|  | assert(ParamTys[ArgIdx] == Context.BoolTy && | 
|  | "Contextual conversion to bool requires bool type"); | 
|  | Candidate.Conversions[ArgIdx] | 
|  | = TryContextuallyConvertToBool(*this, Args[ArgIdx]); | 
|  | } else { | 
|  | Candidate.Conversions[ArgIdx] | 
|  | = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], | 
|  | ArgIdx == 0 && IsAssignmentOperator, | 
|  | /*InOverloadResolution=*/false, | 
|  | /*AllowObjCWritebackConversion=*/ | 
|  | getLangOpts().ObjCAutoRefCount); | 
|  | } | 
|  | if (Candidate.Conversions[ArgIdx].isBad()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_conversion; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// BuiltinCandidateTypeSet - A set of types that will be used for the | 
|  | /// candidate operator functions for built-in operators (C++ | 
|  | /// [over.built]). The types are separated into pointer types and | 
|  | /// enumeration types. | 
|  | class BuiltinCandidateTypeSet  { | 
|  | /// TypeSet - A set of types. | 
|  | typedef llvm::SmallPtrSet<QualType, 8> TypeSet; | 
|  |  | 
|  | /// PointerTypes - The set of pointer types that will be used in the | 
|  | /// built-in candidates. | 
|  | TypeSet PointerTypes; | 
|  |  | 
|  | /// MemberPointerTypes - The set of member pointer types that will be | 
|  | /// used in the built-in candidates. | 
|  | TypeSet MemberPointerTypes; | 
|  |  | 
|  | /// EnumerationTypes - The set of enumeration types that will be | 
|  | /// used in the built-in candidates. | 
|  | TypeSet EnumerationTypes; | 
|  |  | 
|  | /// \brief The set of vector types that will be used in the built-in | 
|  | /// candidates. | 
|  | TypeSet VectorTypes; | 
|  |  | 
|  | /// \brief A flag indicating non-record types are viable candidates | 
|  | bool HasNonRecordTypes; | 
|  |  | 
|  | /// \brief A flag indicating whether either arithmetic or enumeration types | 
|  | /// were present in the candidate set. | 
|  | bool HasArithmeticOrEnumeralTypes; | 
|  |  | 
|  | /// \brief A flag indicating whether the nullptr type was present in the | 
|  | /// candidate set. | 
|  | bool HasNullPtrType; | 
|  |  | 
|  | /// Sema - The semantic analysis instance where we are building the | 
|  | /// candidate type set. | 
|  | Sema &SemaRef; | 
|  |  | 
|  | /// Context - The AST context in which we will build the type sets. | 
|  | ASTContext &Context; | 
|  |  | 
|  | bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, | 
|  | const Qualifiers &VisibleQuals); | 
|  | bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); | 
|  |  | 
|  | public: | 
|  | /// iterator - Iterates through the types that are part of the set. | 
|  | typedef TypeSet::iterator iterator; | 
|  |  | 
|  | BuiltinCandidateTypeSet(Sema &SemaRef) | 
|  | : HasNonRecordTypes(false), | 
|  | HasArithmeticOrEnumeralTypes(false), | 
|  | HasNullPtrType(false), | 
|  | SemaRef(SemaRef), | 
|  | Context(SemaRef.Context) { } | 
|  |  | 
|  | void AddTypesConvertedFrom(QualType Ty, | 
|  | SourceLocation Loc, | 
|  | bool AllowUserConversions, | 
|  | bool AllowExplicitConversions, | 
|  | const Qualifiers &VisibleTypeConversionsQuals); | 
|  |  | 
|  | /// pointer_begin - First pointer type found; | 
|  | iterator pointer_begin() { return PointerTypes.begin(); } | 
|  |  | 
|  | /// pointer_end - Past the last pointer type found; | 
|  | iterator pointer_end() { return PointerTypes.end(); } | 
|  |  | 
|  | /// member_pointer_begin - First member pointer type found; | 
|  | iterator member_pointer_begin() { return MemberPointerTypes.begin(); } | 
|  |  | 
|  | /// member_pointer_end - Past the last member pointer type found; | 
|  | iterator member_pointer_end() { return MemberPointerTypes.end(); } | 
|  |  | 
|  | /// enumeration_begin - First enumeration type found; | 
|  | iterator enumeration_begin() { return EnumerationTypes.begin(); } | 
|  |  | 
|  | /// enumeration_end - Past the last enumeration type found; | 
|  | iterator enumeration_end() { return EnumerationTypes.end(); } | 
|  |  | 
|  | iterator vector_begin() { return VectorTypes.begin(); } | 
|  | iterator vector_end() { return VectorTypes.end(); } | 
|  |  | 
|  | bool hasNonRecordTypes() { return HasNonRecordTypes; } | 
|  | bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } | 
|  | bool hasNullPtrType() const { return HasNullPtrType; } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to | 
|  | /// the set of pointer types along with any more-qualified variants of | 
|  | /// that type. For example, if @p Ty is "int const *", this routine | 
|  | /// will add "int const *", "int const volatile *", "int const | 
|  | /// restrict *", and "int const volatile restrict *" to the set of | 
|  | /// pointer types. Returns true if the add of @p Ty itself succeeded, | 
|  | /// false otherwise. | 
|  | /// | 
|  | /// FIXME: what to do about extended qualifiers? | 
|  | bool | 
|  | BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, | 
|  | const Qualifiers &VisibleQuals) { | 
|  |  | 
|  | // Insert this type. | 
|  | if (!PointerTypes.insert(Ty).second) | 
|  | return false; | 
|  |  | 
|  | QualType PointeeTy; | 
|  | const PointerType *PointerTy = Ty->getAs<PointerType>(); | 
|  | bool buildObjCPtr = false; | 
|  | if (!PointerTy) { | 
|  | const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>(); | 
|  | PointeeTy = PTy->getPointeeType(); | 
|  | buildObjCPtr = true; | 
|  | } else { | 
|  | PointeeTy = PointerTy->getPointeeType(); | 
|  | } | 
|  |  | 
|  | // Don't add qualified variants of arrays. For one, they're not allowed | 
|  | // (the qualifier would sink to the element type), and for another, the | 
|  | // only overload situation where it matters is subscript or pointer +- int, | 
|  | // and those shouldn't have qualifier variants anyway. | 
|  | if (PointeeTy->isArrayType()) | 
|  | return true; | 
|  |  | 
|  | unsigned BaseCVR = PointeeTy.getCVRQualifiers(); | 
|  | bool hasVolatile = VisibleQuals.hasVolatile(); | 
|  | bool hasRestrict = VisibleQuals.hasRestrict(); | 
|  |  | 
|  | // Iterate through all strict supersets of BaseCVR. | 
|  | for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { | 
|  | if ((CVR | BaseCVR) != CVR) continue; | 
|  | // Skip over volatile if no volatile found anywhere in the types. | 
|  | if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; | 
|  |  | 
|  | // Skip over restrict if no restrict found anywhere in the types, or if | 
|  | // the type cannot be restrict-qualified. | 
|  | if ((CVR & Qualifiers::Restrict) && | 
|  | (!hasRestrict || | 
|  | (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType())))) | 
|  | continue; | 
|  |  | 
|  | // Build qualified pointee type. | 
|  | QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); | 
|  |  | 
|  | // Build qualified pointer type. | 
|  | QualType QPointerTy; | 
|  | if (!buildObjCPtr) | 
|  | QPointerTy = Context.getPointerType(QPointeeTy); | 
|  | else | 
|  | QPointerTy = Context.getObjCObjectPointerType(QPointeeTy); | 
|  |  | 
|  | // Insert qualified pointer type. | 
|  | PointerTypes.insert(QPointerTy); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty | 
|  | /// to the set of pointer types along with any more-qualified variants of | 
|  | /// that type. For example, if @p Ty is "int const *", this routine | 
|  | /// will add "int const *", "int const volatile *", "int const | 
|  | /// restrict *", and "int const volatile restrict *" to the set of | 
|  | /// pointer types. Returns true if the add of @p Ty itself succeeded, | 
|  | /// false otherwise. | 
|  | /// | 
|  | /// FIXME: what to do about extended qualifiers? | 
|  | bool | 
|  | BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( | 
|  | QualType Ty) { | 
|  | // Insert this type. | 
|  | if (!MemberPointerTypes.insert(Ty).second) | 
|  | return false; | 
|  |  | 
|  | const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); | 
|  | assert(PointerTy && "type was not a member pointer type!"); | 
|  |  | 
|  | QualType PointeeTy = PointerTy->getPointeeType(); | 
|  | // Don't add qualified variants of arrays. For one, they're not allowed | 
|  | // (the qualifier would sink to the element type), and for another, the | 
|  | // only overload situation where it matters is subscript or pointer +- int, | 
|  | // and those shouldn't have qualifier variants anyway. | 
|  | if (PointeeTy->isArrayType()) | 
|  | return true; | 
|  | const Type *ClassTy = PointerTy->getClass(); | 
|  |  | 
|  | // Iterate through all strict supersets of the pointee type's CVR | 
|  | // qualifiers. | 
|  | unsigned BaseCVR = PointeeTy.getCVRQualifiers(); | 
|  | for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { | 
|  | if ((CVR | BaseCVR) != CVR) continue; | 
|  |  | 
|  | QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); | 
|  | MemberPointerTypes.insert( | 
|  | Context.getMemberPointerType(QPointeeTy, ClassTy)); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// AddTypesConvertedFrom - Add each of the types to which the type @p | 
|  | /// Ty can be implicit converted to the given set of @p Types. We're | 
|  | /// primarily interested in pointer types and enumeration types. We also | 
|  | /// take member pointer types, for the conditional operator. | 
|  | /// AllowUserConversions is true if we should look at the conversion | 
|  | /// functions of a class type, and AllowExplicitConversions if we | 
|  | /// should also include the explicit conversion functions of a class | 
|  | /// type. | 
|  | void | 
|  | BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, | 
|  | SourceLocation Loc, | 
|  | bool AllowUserConversions, | 
|  | bool AllowExplicitConversions, | 
|  | const Qualifiers &VisibleQuals) { | 
|  | // Only deal with canonical types. | 
|  | Ty = Context.getCanonicalType(Ty); | 
|  |  | 
|  | // Look through reference types; they aren't part of the type of an | 
|  | // expression for the purposes of conversions. | 
|  | if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) | 
|  | Ty = RefTy->getPointeeType(); | 
|  |  | 
|  | // If we're dealing with an array type, decay to the pointer. | 
|  | if (Ty->isArrayType()) | 
|  | Ty = SemaRef.Context.getArrayDecayedType(Ty); | 
|  |  | 
|  | // Otherwise, we don't care about qualifiers on the type. | 
|  | Ty = Ty.getLocalUnqualifiedType(); | 
|  |  | 
|  | // Flag if we ever add a non-record type. | 
|  | const RecordType *TyRec = Ty->getAs<RecordType>(); | 
|  | HasNonRecordTypes = HasNonRecordTypes || !TyRec; | 
|  |  | 
|  | // Flag if we encounter an arithmetic type. | 
|  | HasArithmeticOrEnumeralTypes = | 
|  | HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); | 
|  |  | 
|  | if (Ty->isObjCIdType() || Ty->isObjCClassType()) | 
|  | PointerTypes.insert(Ty); | 
|  | else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { | 
|  | // Insert our type, and its more-qualified variants, into the set | 
|  | // of types. | 
|  | if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) | 
|  | return; | 
|  | } else if (Ty->isMemberPointerType()) { | 
|  | // Member pointers are far easier, since the pointee can't be converted. | 
|  | if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) | 
|  | return; | 
|  | } else if (Ty->isEnumeralType()) { | 
|  | HasArithmeticOrEnumeralTypes = true; | 
|  | EnumerationTypes.insert(Ty); | 
|  | } else if (Ty->isVectorType()) { | 
|  | // We treat vector types as arithmetic types in many contexts as an | 
|  | // extension. | 
|  | HasArithmeticOrEnumeralTypes = true; | 
|  | VectorTypes.insert(Ty); | 
|  | } else if (Ty->isNullPtrType()) { | 
|  | HasNullPtrType = true; | 
|  | } else if (AllowUserConversions && TyRec) { | 
|  | // No conversion functions in incomplete types. | 
|  | if (SemaRef.RequireCompleteType(Loc, Ty, 0)) | 
|  | return; | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); | 
|  | for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { | 
|  | if (isa<UsingShadowDecl>(D)) | 
|  | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
|  |  | 
|  | // Skip conversion function templates; they don't tell us anything | 
|  | // about which builtin types we can convert to. | 
|  | if (isa<FunctionTemplateDecl>(D)) | 
|  | continue; | 
|  |  | 
|  | CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); | 
|  | if (AllowExplicitConversions || !Conv->isExplicit()) { | 
|  | AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, | 
|  | VisibleQuals); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Helper function for AddBuiltinOperatorCandidates() that adds | 
|  | /// the volatile- and non-volatile-qualified assignment operators for the | 
|  | /// given type to the candidate set. | 
|  | static void AddBuiltinAssignmentOperatorCandidates(Sema &S, | 
|  | QualType T, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet &CandidateSet) { | 
|  | QualType ParamTypes[2]; | 
|  |  | 
|  | // T& operator=(T&, T) | 
|  | ParamTypes[0] = S.Context.getLValueReferenceType(T); | 
|  | ParamTypes[1] = T; | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/true); | 
|  |  | 
|  | if (!S.Context.getCanonicalType(T).isVolatileQualified()) { | 
|  | // volatile T& operator=(volatile T&, T) | 
|  | ParamTypes[0] | 
|  | = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); | 
|  | ParamTypes[1] = T; | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/true); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, | 
|  | /// if any, found in visible type conversion functions found in ArgExpr's type. | 
|  | static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { | 
|  | Qualifiers VRQuals; | 
|  | const RecordType *TyRec; | 
|  | if (const MemberPointerType *RHSMPType = | 
|  | ArgExpr->getType()->getAs<MemberPointerType>()) | 
|  | TyRec = RHSMPType->getClass()->getAs<RecordType>(); | 
|  | else | 
|  | TyRec = ArgExpr->getType()->getAs<RecordType>(); | 
|  | if (!TyRec) { | 
|  | // Just to be safe, assume the worst case. | 
|  | VRQuals.addVolatile(); | 
|  | VRQuals.addRestrict(); | 
|  | return VRQuals; | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); | 
|  | if (!ClassDecl->hasDefinition()) | 
|  | return VRQuals; | 
|  |  | 
|  | for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { | 
|  | if (isa<UsingShadowDecl>(D)) | 
|  | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
|  | if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { | 
|  | QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); | 
|  | if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) | 
|  | CanTy = ResTypeRef->getPointeeType(); | 
|  | // Need to go down the pointer/mempointer chain and add qualifiers | 
|  | // as see them. | 
|  | bool done = false; | 
|  | while (!done) { | 
|  | if (CanTy.isRestrictQualified()) | 
|  | VRQuals.addRestrict(); | 
|  | if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) | 
|  | CanTy = ResTypePtr->getPointeeType(); | 
|  | else if (const MemberPointerType *ResTypeMPtr = | 
|  | CanTy->getAs<MemberPointerType>()) | 
|  | CanTy = ResTypeMPtr->getPointeeType(); | 
|  | else | 
|  | done = true; | 
|  | if (CanTy.isVolatileQualified()) | 
|  | VRQuals.addVolatile(); | 
|  | if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) | 
|  | return VRQuals; | 
|  | } | 
|  | } | 
|  | } | 
|  | return VRQuals; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// \brief Helper class to manage the addition of builtin operator overload | 
|  | /// candidates. It provides shared state and utility methods used throughout | 
|  | /// the process, as well as a helper method to add each group of builtin | 
|  | /// operator overloads from the standard to a candidate set. | 
|  | class BuiltinOperatorOverloadBuilder { | 
|  | // Common instance state available to all overload candidate addition methods. | 
|  | Sema &S; | 
|  | ArrayRef<Expr *> Args; | 
|  | Qualifiers VisibleTypeConversionsQuals; | 
|  | bool HasArithmeticOrEnumeralCandidateType; | 
|  | SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; | 
|  | OverloadCandidateSet &CandidateSet; | 
|  |  | 
|  | // Define some constants used to index and iterate over the arithemetic types | 
|  | // provided via the getArithmeticType() method below. | 
|  | // The "promoted arithmetic types" are the arithmetic | 
|  | // types are that preserved by promotion (C++ [over.built]p2). | 
|  | static const unsigned FirstIntegralType = 3; | 
|  | static const unsigned LastIntegralType = 20; | 
|  | static const unsigned FirstPromotedIntegralType = 3, | 
|  | LastPromotedIntegralType = 11; | 
|  | static const unsigned FirstPromotedArithmeticType = 0, | 
|  | LastPromotedArithmeticType = 11; | 
|  | static const unsigned NumArithmeticTypes = 20; | 
|  |  | 
|  | /// \brief Get the canonical type for a given arithmetic type index. | 
|  | CanQualType getArithmeticType(unsigned index) { | 
|  | assert(index < NumArithmeticTypes); | 
|  | static CanQualType ASTContext::* const | 
|  | ArithmeticTypes[NumArithmeticTypes] = { | 
|  | // Start of promoted types. | 
|  | &ASTContext::FloatTy, | 
|  | &ASTContext::DoubleTy, | 
|  | &ASTContext::LongDoubleTy, | 
|  |  | 
|  | // Start of integral types. | 
|  | &ASTContext::IntTy, | 
|  | &ASTContext::LongTy, | 
|  | &ASTContext::LongLongTy, | 
|  | &ASTContext::Int128Ty, | 
|  | &ASTContext::UnsignedIntTy, | 
|  | &ASTContext::UnsignedLongTy, | 
|  | &ASTContext::UnsignedLongLongTy, | 
|  | &ASTContext::UnsignedInt128Ty, | 
|  | // End of promoted types. | 
|  |  | 
|  | &ASTContext::BoolTy, | 
|  | &ASTContext::CharTy, | 
|  | &ASTContext::WCharTy, | 
|  | &ASTContext::Char16Ty, | 
|  | &ASTContext::Char32Ty, | 
|  | &ASTContext::SignedCharTy, | 
|  | &ASTContext::ShortTy, | 
|  | &ASTContext::UnsignedCharTy, | 
|  | &ASTContext::UnsignedShortTy, | 
|  | // End of integral types. | 
|  | // FIXME: What about complex? What about half? | 
|  | }; | 
|  | return S.Context.*ArithmeticTypes[index]; | 
|  | } | 
|  |  | 
|  | /// \brief Gets the canonical type resulting from the usual arithemetic | 
|  | /// converions for the given arithmetic types. | 
|  | CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) { | 
|  | // Accelerator table for performing the usual arithmetic conversions. | 
|  | // The rules are basically: | 
|  | //   - if either is floating-point, use the wider floating-point | 
|  | //   - if same signedness, use the higher rank | 
|  | //   - if same size, use unsigned of the higher rank | 
|  | //   - use the larger type | 
|  | // These rules, together with the axiom that higher ranks are | 
|  | // never smaller, are sufficient to precompute all of these results | 
|  | // *except* when dealing with signed types of higher rank. | 
|  | // (we could precompute SLL x UI for all known platforms, but it's | 
|  | // better not to make any assumptions). | 
|  | // We assume that int128 has a higher rank than long long on all platforms. | 
|  | enum PromotedType { | 
|  | Dep=-1, | 
|  | Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128 | 
|  | }; | 
|  | static const PromotedType ConversionsTable[LastPromotedArithmeticType] | 
|  | [LastPromotedArithmeticType] = { | 
|  | /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt }, | 
|  | /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl }, | 
|  | /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl }, | 
|  | /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128 }, | 
|  | /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL, S128,  Dep,   UL,  ULL, U128 }, | 
|  | /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL, S128,  Dep,  Dep,  ULL, U128 }, | 
|  | /*S128*/ {  Flt,  Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 }, | 
|  | /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep, S128,   UI,   UL,  ULL, U128 }, | 
|  | /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep, S128,   UL,   UL,  ULL, U128 }, | 
|  | /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL, S128,  ULL,  ULL,  ULL, U128 }, | 
|  | /*U128*/ {  Flt,  Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 }, | 
|  | }; | 
|  |  | 
|  | assert(L < LastPromotedArithmeticType); | 
|  | assert(R < LastPromotedArithmeticType); | 
|  | int Idx = ConversionsTable[L][R]; | 
|  |  | 
|  | // Fast path: the table gives us a concrete answer. | 
|  | if (Idx != Dep) return getArithmeticType(Idx); | 
|  |  | 
|  | // Slow path: we need to compare widths. | 
|  | // An invariant is that the signed type has higher rank. | 
|  | CanQualType LT = getArithmeticType(L), | 
|  | RT = getArithmeticType(R); | 
|  | unsigned LW = S.Context.getIntWidth(LT), | 
|  | RW = S.Context.getIntWidth(RT); | 
|  |  | 
|  | // If they're different widths, use the signed type. | 
|  | if (LW > RW) return LT; | 
|  | else if (LW < RW) return RT; | 
|  |  | 
|  | // Otherwise, use the unsigned type of the signed type's rank. | 
|  | if (L == SL || R == SL) return S.Context.UnsignedLongTy; | 
|  | assert(L == SLL || R == SLL); | 
|  | return S.Context.UnsignedLongLongTy; | 
|  | } | 
|  |  | 
|  | /// \brief Helper method to factor out the common pattern of adding overloads | 
|  | /// for '++' and '--' builtin operators. | 
|  | void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, | 
|  | bool HasVolatile, | 
|  | bool HasRestrict) { | 
|  | QualType ParamTypes[2] = { | 
|  | S.Context.getLValueReferenceType(CandidateTy), | 
|  | S.Context.IntTy | 
|  | }; | 
|  |  | 
|  | // Non-volatile version. | 
|  | if (Args.size() == 1) | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet); | 
|  | else | 
|  | S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet); | 
|  |  | 
|  | // Use a heuristic to reduce number of builtin candidates in the set: | 
|  | // add volatile version only if there are conversions to a volatile type. | 
|  | if (HasVolatile) { | 
|  | ParamTypes[0] = | 
|  | S.Context.getLValueReferenceType( | 
|  | S.Context.getVolatileType(CandidateTy)); | 
|  | if (Args.size() == 1) | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet); | 
|  | else | 
|  | S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | // Add restrict version only if there are conversions to a restrict type | 
|  | // and our candidate type is a non-restrict-qualified pointer. | 
|  | if (HasRestrict && CandidateTy->isAnyPointerType() && | 
|  | !CandidateTy.isRestrictQualified()) { | 
|  | ParamTypes[0] | 
|  | = S.Context.getLValueReferenceType( | 
|  | S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict)); | 
|  | if (Args.size() == 1) | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet); | 
|  | else | 
|  | S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet); | 
|  |  | 
|  | if (HasVolatile) { | 
|  | ParamTypes[0] | 
|  | = S.Context.getLValueReferenceType( | 
|  | S.Context.getCVRQualifiedType(CandidateTy, | 
|  | (Qualifiers::Volatile | | 
|  | Qualifiers::Restrict))); | 
|  | if (Args.size() == 1) | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet); | 
|  | else | 
|  | S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | public: | 
|  | BuiltinOperatorOverloadBuilder( | 
|  | Sema &S, ArrayRef<Expr *> Args, | 
|  | Qualifiers VisibleTypeConversionsQuals, | 
|  | bool HasArithmeticOrEnumeralCandidateType, | 
|  | SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, | 
|  | OverloadCandidateSet &CandidateSet) | 
|  | : S(S), Args(Args), | 
|  | VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), | 
|  | HasArithmeticOrEnumeralCandidateType( | 
|  | HasArithmeticOrEnumeralCandidateType), | 
|  | CandidateTypes(CandidateTypes), | 
|  | CandidateSet(CandidateSet) { | 
|  | // Validate some of our static helper constants in debug builds. | 
|  | assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy && | 
|  | "Invalid first promoted integral type"); | 
|  | assert(getArithmeticType(LastPromotedIntegralType - 1) | 
|  | == S.Context.UnsignedInt128Ty && | 
|  | "Invalid last promoted integral type"); | 
|  | assert(getArithmeticType(FirstPromotedArithmeticType) | 
|  | == S.Context.FloatTy && | 
|  | "Invalid first promoted arithmetic type"); | 
|  | assert(getArithmeticType(LastPromotedArithmeticType - 1) | 
|  | == S.Context.UnsignedInt128Ty && | 
|  | "Invalid last promoted arithmetic type"); | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p3: | 
|  | // | 
|  | //   For every pair (T, VQ), where T is an arithmetic type, and VQ | 
|  | //   is either volatile or empty, there exist candidate operator | 
|  | //   functions of the form | 
|  | // | 
|  | //       VQ T&      operator++(VQ T&); | 
|  | //       T          operator++(VQ T&, int); | 
|  | // | 
|  | // C++ [over.built]p4: | 
|  | // | 
|  | //   For every pair (T, VQ), where T is an arithmetic type other | 
|  | //   than bool, and VQ is either volatile or empty, there exist | 
|  | //   candidate operator functions of the form | 
|  | // | 
|  | //       VQ T&      operator--(VQ T&); | 
|  | //       T          operator--(VQ T&, int); | 
|  | void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { | 
|  | if (!HasArithmeticOrEnumeralCandidateType) | 
|  | return; | 
|  |  | 
|  | for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); | 
|  | Arith < NumArithmeticTypes; ++Arith) { | 
|  | addPlusPlusMinusMinusStyleOverloads( | 
|  | getArithmeticType(Arith), | 
|  | VisibleTypeConversionsQuals.hasVolatile(), | 
|  | VisibleTypeConversionsQuals.hasRestrict()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p5: | 
|  | // | 
|  | //   For every pair (T, VQ), where T is a cv-qualified or | 
|  | //   cv-unqualified object type, and VQ is either volatile or | 
|  | //   empty, there exist candidate operator functions of the form | 
|  | // | 
|  | //       T*VQ&      operator++(T*VQ&); | 
|  | //       T*VQ&      operator--(T*VQ&); | 
|  | //       T*         operator++(T*VQ&, int); | 
|  | //       T*         operator--(T*VQ&, int); | 
|  | void addPlusPlusMinusMinusPointerOverloads() { | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Ptr = CandidateTypes[0].pointer_begin(), | 
|  | PtrEnd = CandidateTypes[0].pointer_end(); | 
|  | Ptr != PtrEnd; ++Ptr) { | 
|  | // Skip pointer types that aren't pointers to object types. | 
|  | if (!(*Ptr)->getPointeeType()->isObjectType()) | 
|  | continue; | 
|  |  | 
|  | addPlusPlusMinusMinusStyleOverloads(*Ptr, | 
|  | (!(*Ptr).isVolatileQualified() && | 
|  | VisibleTypeConversionsQuals.hasVolatile()), | 
|  | (!(*Ptr).isRestrictQualified() && | 
|  | VisibleTypeConversionsQuals.hasRestrict())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p6: | 
|  | //   For every cv-qualified or cv-unqualified object type T, there | 
|  | //   exist candidate operator functions of the form | 
|  | // | 
|  | //       T&         operator*(T*); | 
|  | // | 
|  | // C++ [over.built]p7: | 
|  | //   For every function type T that does not have cv-qualifiers or a | 
|  | //   ref-qualifier, there exist candidate operator functions of the form | 
|  | //       T&         operator*(T*); | 
|  | void addUnaryStarPointerOverloads() { | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Ptr = CandidateTypes[0].pointer_begin(), | 
|  | PtrEnd = CandidateTypes[0].pointer_end(); | 
|  | Ptr != PtrEnd; ++Ptr) { | 
|  | QualType ParamTy = *Ptr; | 
|  | QualType PointeeTy = ParamTy->getPointeeType(); | 
|  | if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) | 
|  | continue; | 
|  |  | 
|  | if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) | 
|  | if (Proto->getTypeQuals() || Proto->getRefQualifier()) | 
|  | continue; | 
|  |  | 
|  | S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy), | 
|  | &ParamTy, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p9: | 
|  | //  For every promoted arithmetic type T, there exist candidate | 
|  | //  operator functions of the form | 
|  | // | 
|  | //       T         operator+(T); | 
|  | //       T         operator-(T); | 
|  | void addUnaryPlusOrMinusArithmeticOverloads() { | 
|  | if (!HasArithmeticOrEnumeralCandidateType) | 
|  | return; | 
|  |  | 
|  | for (unsigned Arith = FirstPromotedArithmeticType; | 
|  | Arith < LastPromotedArithmeticType; ++Arith) { | 
|  | QualType ArithTy = getArithmeticType(Arith); | 
|  | S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | // Extension: We also add these operators for vector types. | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Vec = CandidateTypes[0].vector_begin(), | 
|  | VecEnd = CandidateTypes[0].vector_end(); | 
|  | Vec != VecEnd; ++Vec) { | 
|  | QualType VecTy = *Vec; | 
|  | S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p8: | 
|  | //   For every type T, there exist candidate operator functions of | 
|  | //   the form | 
|  | // | 
|  | //       T*         operator+(T*); | 
|  | void addUnaryPlusPointerOverloads() { | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Ptr = CandidateTypes[0].pointer_begin(), | 
|  | PtrEnd = CandidateTypes[0].pointer_end(); | 
|  | Ptr != PtrEnd; ++Ptr) { | 
|  | QualType ParamTy = *Ptr; | 
|  | S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p10: | 
|  | //   For every promoted integral type T, there exist candidate | 
|  | //   operator functions of the form | 
|  | // | 
|  | //        T         operator~(T); | 
|  | void addUnaryTildePromotedIntegralOverloads() { | 
|  | if (!HasArithmeticOrEnumeralCandidateType) | 
|  | return; | 
|  |  | 
|  | for (unsigned Int = FirstPromotedIntegralType; | 
|  | Int < LastPromotedIntegralType; ++Int) { | 
|  | QualType IntTy = getArithmeticType(Int); | 
|  | S.AddBuiltinCandidate(IntTy, &IntTy, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | // Extension: We also add this operator for vector types. | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Vec = CandidateTypes[0].vector_begin(), | 
|  | VecEnd = CandidateTypes[0].vector_end(); | 
|  | Vec != VecEnd; ++Vec) { | 
|  | QualType VecTy = *Vec; | 
|  | S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.match.oper]p16: | 
|  | //   For every pointer to member type T, there exist candidate operator | 
|  | //   functions of the form | 
|  | // | 
|  | //        bool operator==(T,T); | 
|  | //        bool operator!=(T,T); | 
|  | void addEqualEqualOrNotEqualMemberPointerOverloads() { | 
|  | /// Set of (canonical) types that we've already handled. | 
|  | llvm::SmallPtrSet<QualType, 8> AddedTypes; | 
|  |  | 
|  | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), | 
|  | MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); | 
|  | MemPtr != MemPtrEnd; | 
|  | ++MemPtr) { | 
|  | // Don't add the same builtin candidate twice. | 
|  | if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second) | 
|  | continue; | 
|  |  | 
|  | QualType ParamTypes[2] = { *MemPtr, *MemPtr }; | 
|  | S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p15: | 
|  | // | 
|  | //   For every T, where T is an enumeration type, a pointer type, or | 
|  | //   std::nullptr_t, there exist candidate operator functions of the form | 
|  | // | 
|  | //        bool       operator<(T, T); | 
|  | //        bool       operator>(T, T); | 
|  | //        bool       operator<=(T, T); | 
|  | //        bool       operator>=(T, T); | 
|  | //        bool       operator==(T, T); | 
|  | //        bool       operator!=(T, T); | 
|  | void addRelationalPointerOrEnumeralOverloads() { | 
|  | // C++ [over.match.oper]p3: | 
|  | //   [...]the built-in candidates include all of the candidate operator | 
|  | //   functions defined in 13.6 that, compared to the given operator, [...] | 
|  | //   do not have the same parameter-type-list as any non-template non-member | 
|  | //   candidate. | 
|  | // | 
|  | // Note that in practice, this only affects enumeration types because there | 
|  | // aren't any built-in candidates of record type, and a user-defined operator | 
|  | // must have an operand of record or enumeration type. Also, the only other | 
|  | // overloaded operator with enumeration arguments, operator=, | 
|  | // cannot be overloaded for enumeration types, so this is the only place | 
|  | // where we must suppress candidates like this. | 
|  | llvm::DenseSet<std::pair<CanQualType, CanQualType> > | 
|  | UserDefinedBinaryOperators; | 
|  |  | 
|  | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | 
|  | if (CandidateTypes[ArgIdx].enumeration_begin() != | 
|  | CandidateTypes[ArgIdx].enumeration_end()) { | 
|  | for (OverloadCandidateSet::iterator C = CandidateSet.begin(), | 
|  | CEnd = CandidateSet.end(); | 
|  | C != CEnd; ++C) { | 
|  | if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) | 
|  | continue; | 
|  |  | 
|  | if (C->Function->isFunctionTemplateSpecialization()) | 
|  | continue; | 
|  |  | 
|  | QualType FirstParamType = | 
|  | C->Function->getParamDecl(0)->getType().getUnqualifiedType(); | 
|  | QualType SecondParamType = | 
|  | C->Function->getParamDecl(1)->getType().getUnqualifiedType(); | 
|  |  | 
|  | // Skip if either parameter isn't of enumeral type. | 
|  | if (!FirstParamType->isEnumeralType() || | 
|  | !SecondParamType->isEnumeralType()) | 
|  | continue; | 
|  |  | 
|  | // Add this operator to the set of known user-defined operators. | 
|  | UserDefinedBinaryOperators.insert( | 
|  | std::make_pair(S.Context.getCanonicalType(FirstParamType), | 
|  | S.Context.getCanonicalType(SecondParamType))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Set of (canonical) types that we've already handled. | 
|  | llvm::SmallPtrSet<QualType, 8> AddedTypes; | 
|  |  | 
|  | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Ptr = CandidateTypes[ArgIdx].pointer_begin(), | 
|  | PtrEnd = CandidateTypes[ArgIdx].pointer_end(); | 
|  | Ptr != PtrEnd; ++Ptr) { | 
|  | // Don't add the same builtin candidate twice. | 
|  | if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second) | 
|  | continue; | 
|  |  | 
|  | QualType ParamTypes[2] = { *Ptr, *Ptr }; | 
|  | S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet); | 
|  | } | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Enum = CandidateTypes[ArgIdx].enumeration_begin(), | 
|  | EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); | 
|  | Enum != EnumEnd; ++Enum) { | 
|  | CanQualType CanonType = S.Context.getCanonicalType(*Enum); | 
|  |  | 
|  | // Don't add the same builtin candidate twice, or if a user defined | 
|  | // candidate exists. | 
|  | if (!AddedTypes.insert(CanonType).second || | 
|  | UserDefinedBinaryOperators.count(std::make_pair(CanonType, | 
|  | CanonType))) | 
|  | continue; | 
|  |  | 
|  | QualType ParamTypes[2] = { *Enum, *Enum }; | 
|  | S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | if (CandidateTypes[ArgIdx].hasNullPtrType()) { | 
|  | CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy); | 
|  | if (AddedTypes.insert(NullPtrTy).second && | 
|  | !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy, | 
|  | NullPtrTy))) { | 
|  | QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; | 
|  | S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, | 
|  | CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p13: | 
|  | // | 
|  | //   For every cv-qualified or cv-unqualified object type T | 
|  | //   there exist candidate operator functions of the form | 
|  | // | 
|  | //      T*         operator+(T*, ptrdiff_t); | 
|  | //      T&         operator[](T*, ptrdiff_t);    [BELOW] | 
|  | //      T*         operator-(T*, ptrdiff_t); | 
|  | //      T*         operator+(ptrdiff_t, T*); | 
|  | //      T&         operator[](ptrdiff_t, T*);    [BELOW] | 
|  | // | 
|  | // C++ [over.built]p14: | 
|  | // | 
|  | //   For every T, where T is a pointer to object type, there | 
|  | //   exist candidate operator functions of the form | 
|  | // | 
|  | //      ptrdiff_t  operator-(T, T); | 
|  | void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { | 
|  | /// Set of (canonical) types that we've already handled. | 
|  | llvm::SmallPtrSet<QualType, 8> AddedTypes; | 
|  |  | 
|  | for (int Arg = 0; Arg < 2; ++Arg) { | 
|  | QualType AsymetricParamTypes[2] = { | 
|  | S.Context.getPointerDiffType(), | 
|  | S.Context.getPointerDiffType(), | 
|  | }; | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Ptr = CandidateTypes[Arg].pointer_begin(), | 
|  | PtrEnd = CandidateTypes[Arg].pointer_end(); | 
|  | Ptr != PtrEnd; ++Ptr) { | 
|  | QualType PointeeTy = (*Ptr)->getPointeeType(); | 
|  | if (!PointeeTy->isObjectType()) | 
|  | continue; | 
|  |  | 
|  | AsymetricParamTypes[Arg] = *Ptr; | 
|  | if (Arg == 0 || Op == OO_Plus) { | 
|  | // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) | 
|  | // T* operator+(ptrdiff_t, T*); | 
|  | S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, CandidateSet); | 
|  | } | 
|  | if (Op == OO_Minus) { | 
|  | // ptrdiff_t operator-(T, T); | 
|  | if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second) | 
|  | continue; | 
|  |  | 
|  | QualType ParamTypes[2] = { *Ptr, *Ptr }; | 
|  | S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes, | 
|  | Args, CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p12: | 
|  | // | 
|  | //   For every pair of promoted arithmetic types L and R, there | 
|  | //   exist candidate operator functions of the form | 
|  | // | 
|  | //        LR         operator*(L, R); | 
|  | //        LR         operator/(L, R); | 
|  | //        LR         operator+(L, R); | 
|  | //        LR         operator-(L, R); | 
|  | //        bool       operator<(L, R); | 
|  | //        bool       operator>(L, R); | 
|  | //        bool       operator<=(L, R); | 
|  | //        bool       operator>=(L, R); | 
|  | //        bool       operator==(L, R); | 
|  | //        bool       operator!=(L, R); | 
|  | // | 
|  | //   where LR is the result of the usual arithmetic conversions | 
|  | //   between types L and R. | 
|  | // | 
|  | // C++ [over.built]p24: | 
|  | // | 
|  | //   For every pair of promoted arithmetic types L and R, there exist | 
|  | //   candidate operator functions of the form | 
|  | // | 
|  | //        LR       operator?(bool, L, R); | 
|  | // | 
|  | //   where LR is the result of the usual arithmetic conversions | 
|  | //   between types L and R. | 
|  | // Our candidates ignore the first parameter. | 
|  | void addGenericBinaryArithmeticOverloads(bool isComparison) { | 
|  | if (!HasArithmeticOrEnumeralCandidateType) | 
|  | return; | 
|  |  | 
|  | for (unsigned Left = FirstPromotedArithmeticType; | 
|  | Left < LastPromotedArithmeticType; ++Left) { | 
|  | for (unsigned Right = FirstPromotedArithmeticType; | 
|  | Right < LastPromotedArithmeticType; ++Right) { | 
|  | QualType LandR[2] = { getArithmeticType(Left), | 
|  | getArithmeticType(Right) }; | 
|  | QualType Result = | 
|  | isComparison ? S.Context.BoolTy | 
|  | : getUsualArithmeticConversions(Left, Right); | 
|  | S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the | 
|  | // conditional operator for vector types. | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Vec1 = CandidateTypes[0].vector_begin(), | 
|  | Vec1End = CandidateTypes[0].vector_end(); | 
|  | Vec1 != Vec1End; ++Vec1) { | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Vec2 = CandidateTypes[1].vector_begin(), | 
|  | Vec2End = CandidateTypes[1].vector_end(); | 
|  | Vec2 != Vec2End; ++Vec2) { | 
|  | QualType LandR[2] = { *Vec1, *Vec2 }; | 
|  | QualType Result = S.Context.BoolTy; | 
|  | if (!isComparison) { | 
|  | if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) | 
|  | Result = *Vec1; | 
|  | else | 
|  | Result = *Vec2; | 
|  | } | 
|  |  | 
|  | S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p17: | 
|  | // | 
|  | //   For every pair of promoted integral types L and R, there | 
|  | //   exist candidate operator functions of the form | 
|  | // | 
|  | //      LR         operator%(L, R); | 
|  | //      LR         operator&(L, R); | 
|  | //      LR         operator^(L, R); | 
|  | //      LR         operator|(L, R); | 
|  | //      L          operator<<(L, R); | 
|  | //      L          operator>>(L, R); | 
|  | // | 
|  | //   where LR is the result of the usual arithmetic conversions | 
|  | //   between types L and R. | 
|  | void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) { | 
|  | if (!HasArithmeticOrEnumeralCandidateType) | 
|  | return; | 
|  |  | 
|  | for (unsigned Left = FirstPromotedIntegralType; | 
|  | Left < LastPromotedIntegralType; ++Left) { | 
|  | for (unsigned Right = FirstPromotedIntegralType; | 
|  | Right < LastPromotedIntegralType; ++Right) { | 
|  | QualType LandR[2] = { getArithmeticType(Left), | 
|  | getArithmeticType(Right) }; | 
|  | QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) | 
|  | ? LandR[0] | 
|  | : getUsualArithmeticConversions(Left, Right); | 
|  | S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p20: | 
|  | // | 
|  | //   For every pair (T, VQ), where T is an enumeration or | 
|  | //   pointer to member type and VQ is either volatile or | 
|  | //   empty, there exist candidate operator functions of the form | 
|  | // | 
|  | //        VQ T&      operator=(VQ T&, T); | 
|  | void addAssignmentMemberPointerOrEnumeralOverloads() { | 
|  | /// Set of (canonical) types that we've already handled. | 
|  | llvm::SmallPtrSet<QualType, 8> AddedTypes; | 
|  |  | 
|  | for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Enum = CandidateTypes[ArgIdx].enumeration_begin(), | 
|  | EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); | 
|  | Enum != EnumEnd; ++Enum) { | 
|  | if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second) | 
|  | continue; | 
|  |  | 
|  | AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), | 
|  | MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); | 
|  | MemPtr != MemPtrEnd; ++MemPtr) { | 
|  | if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second) | 
|  | continue; | 
|  |  | 
|  | AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p19: | 
|  | // | 
|  | //   For every pair (T, VQ), where T is any type and VQ is either | 
|  | //   volatile or empty, there exist candidate operator functions | 
|  | //   of the form | 
|  | // | 
|  | //        T*VQ&      operator=(T*VQ&, T*); | 
|  | // | 
|  | // C++ [over.built]p21: | 
|  | // | 
|  | //   For every pair (T, VQ), where T is a cv-qualified or | 
|  | //   cv-unqualified object type and VQ is either volatile or | 
|  | //   empty, there exist candidate operator functions of the form | 
|  | // | 
|  | //        T*VQ&      operator+=(T*VQ&, ptrdiff_t); | 
|  | //        T*VQ&      operator-=(T*VQ&, ptrdiff_t); | 
|  | void addAssignmentPointerOverloads(bool isEqualOp) { | 
|  | /// Set of (canonical) types that we've already handled. | 
|  | llvm::SmallPtrSet<QualType, 8> AddedTypes; | 
|  |  | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Ptr = CandidateTypes[0].pointer_begin(), | 
|  | PtrEnd = CandidateTypes[0].pointer_end(); | 
|  | Ptr != PtrEnd; ++Ptr) { | 
|  | // If this is operator=, keep track of the builtin candidates we added. | 
|  | if (isEqualOp) | 
|  | AddedTypes.insert(S.Context.getCanonicalType(*Ptr)); | 
|  | else if (!(*Ptr)->getPointeeType()->isObjectType()) | 
|  | continue; | 
|  |  | 
|  | // non-volatile version | 
|  | QualType ParamTypes[2] = { | 
|  | S.Context.getLValueReferenceType(*Ptr), | 
|  | isEqualOp ? *Ptr : S.Context.getPointerDiffType(), | 
|  | }; | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet, | 
|  | /*IsAssigmentOperator=*/ isEqualOp); | 
|  |  | 
|  | bool NeedVolatile = !(*Ptr).isVolatileQualified() && | 
|  | VisibleTypeConversionsQuals.hasVolatile(); | 
|  | if (NeedVolatile) { | 
|  | // volatile version | 
|  | ParamTypes[0] = | 
|  | S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet, | 
|  | /*IsAssigmentOperator=*/isEqualOp); | 
|  | } | 
|  |  | 
|  | if (!(*Ptr).isRestrictQualified() && | 
|  | VisibleTypeConversionsQuals.hasRestrict()) { | 
|  | // restrict version | 
|  | ParamTypes[0] | 
|  | = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr)); | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet, | 
|  | /*IsAssigmentOperator=*/isEqualOp); | 
|  |  | 
|  | if (NeedVolatile) { | 
|  | // volatile restrict version | 
|  | ParamTypes[0] | 
|  | = S.Context.getLValueReferenceType( | 
|  | S.Context.getCVRQualifiedType(*Ptr, | 
|  | (Qualifiers::Volatile | | 
|  | Qualifiers::Restrict))); | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet, | 
|  | /*IsAssigmentOperator=*/isEqualOp); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isEqualOp) { | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Ptr = CandidateTypes[1].pointer_begin(), | 
|  | PtrEnd = CandidateTypes[1].pointer_end(); | 
|  | Ptr != PtrEnd; ++Ptr) { | 
|  | // Make sure we don't add the same candidate twice. | 
|  | if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second) | 
|  | continue; | 
|  |  | 
|  | QualType ParamTypes[2] = { | 
|  | S.Context.getLValueReferenceType(*Ptr), | 
|  | *Ptr, | 
|  | }; | 
|  |  | 
|  | // non-volatile version | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet, | 
|  | /*IsAssigmentOperator=*/true); | 
|  |  | 
|  | bool NeedVolatile = !(*Ptr).isVolatileQualified() && | 
|  | VisibleTypeConversionsQuals.hasVolatile(); | 
|  | if (NeedVolatile) { | 
|  | // volatile version | 
|  | ParamTypes[0] = | 
|  | S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet, | 
|  | /*IsAssigmentOperator=*/true); | 
|  | } | 
|  |  | 
|  | if (!(*Ptr).isRestrictQualified() && | 
|  | VisibleTypeConversionsQuals.hasRestrict()) { | 
|  | // restrict version | 
|  | ParamTypes[0] | 
|  | = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr)); | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet, | 
|  | /*IsAssigmentOperator=*/true); | 
|  |  | 
|  | if (NeedVolatile) { | 
|  | // volatile restrict version | 
|  | ParamTypes[0] | 
|  | = S.Context.getLValueReferenceType( | 
|  | S.Context.getCVRQualifiedType(*Ptr, | 
|  | (Qualifiers::Volatile | | 
|  | Qualifiers::Restrict))); | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet, | 
|  | /*IsAssigmentOperator=*/true); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p18: | 
|  | // | 
|  | //   For every triple (L, VQ, R), where L is an arithmetic type, | 
|  | //   VQ is either volatile or empty, and R is a promoted | 
|  | //   arithmetic type, there exist candidate operator functions of | 
|  | //   the form | 
|  | // | 
|  | //        VQ L&      operator=(VQ L&, R); | 
|  | //        VQ L&      operator*=(VQ L&, R); | 
|  | //        VQ L&      operator/=(VQ L&, R); | 
|  | //        VQ L&      operator+=(VQ L&, R); | 
|  | //        VQ L&      operator-=(VQ L&, R); | 
|  | void addAssignmentArithmeticOverloads(bool isEqualOp) { | 
|  | if (!HasArithmeticOrEnumeralCandidateType) | 
|  | return; | 
|  |  | 
|  | for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { | 
|  | for (unsigned Right = FirstPromotedArithmeticType; | 
|  | Right < LastPromotedArithmeticType; ++Right) { | 
|  | QualType ParamTypes[2]; | 
|  | ParamTypes[1] = getArithmeticType(Right); | 
|  |  | 
|  | // Add this built-in operator as a candidate (VQ is empty). | 
|  | ParamTypes[0] = | 
|  | S.Context.getLValueReferenceType(getArithmeticType(Left)); | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet, | 
|  | /*IsAssigmentOperator=*/isEqualOp); | 
|  |  | 
|  | // Add this built-in operator as a candidate (VQ is 'volatile'). | 
|  | if (VisibleTypeConversionsQuals.hasVolatile()) { | 
|  | ParamTypes[0] = | 
|  | S.Context.getVolatileType(getArithmeticType(Left)); | 
|  | ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet, | 
|  | /*IsAssigmentOperator=*/isEqualOp); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Vec1 = CandidateTypes[0].vector_begin(), | 
|  | Vec1End = CandidateTypes[0].vector_end(); | 
|  | Vec1 != Vec1End; ++Vec1) { | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Vec2 = CandidateTypes[1].vector_begin(), | 
|  | Vec2End = CandidateTypes[1].vector_end(); | 
|  | Vec2 != Vec2End; ++Vec2) { | 
|  | QualType ParamTypes[2]; | 
|  | ParamTypes[1] = *Vec2; | 
|  | // Add this built-in operator as a candidate (VQ is empty). | 
|  | ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1); | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet, | 
|  | /*IsAssigmentOperator=*/isEqualOp); | 
|  |  | 
|  | // Add this built-in operator as a candidate (VQ is 'volatile'). | 
|  | if (VisibleTypeConversionsQuals.hasVolatile()) { | 
|  | ParamTypes[0] = S.Context.getVolatileType(*Vec1); | 
|  | ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet, | 
|  | /*IsAssigmentOperator=*/isEqualOp); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p22: | 
|  | // | 
|  | //   For every triple (L, VQ, R), where L is an integral type, VQ | 
|  | //   is either volatile or empty, and R is a promoted integral | 
|  | //   type, there exist candidate operator functions of the form | 
|  | // | 
|  | //        VQ L&       operator%=(VQ L&, R); | 
|  | //        VQ L&       operator<<=(VQ L&, R); | 
|  | //        VQ L&       operator>>=(VQ L&, R); | 
|  | //        VQ L&       operator&=(VQ L&, R); | 
|  | //        VQ L&       operator^=(VQ L&, R); | 
|  | //        VQ L&       operator|=(VQ L&, R); | 
|  | void addAssignmentIntegralOverloads() { | 
|  | if (!HasArithmeticOrEnumeralCandidateType) | 
|  | return; | 
|  |  | 
|  | for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { | 
|  | for (unsigned Right = FirstPromotedIntegralType; | 
|  | Right < LastPromotedIntegralType; ++Right) { | 
|  | QualType ParamTypes[2]; | 
|  | ParamTypes[1] = getArithmeticType(Right); | 
|  |  | 
|  | // Add this built-in operator as a candidate (VQ is empty). | 
|  | ParamTypes[0] = | 
|  | S.Context.getLValueReferenceType(getArithmeticType(Left)); | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet); | 
|  | if (VisibleTypeConversionsQuals.hasVolatile()) { | 
|  | // Add this built-in operator as a candidate (VQ is 'volatile'). | 
|  | ParamTypes[0] = getArithmeticType(Left); | 
|  | ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]); | 
|  | ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); | 
|  | S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.operator]p23: | 
|  | // | 
|  | //   There also exist candidate operator functions of the form | 
|  | // | 
|  | //        bool        operator!(bool); | 
|  | //        bool        operator&&(bool, bool); | 
|  | //        bool        operator||(bool, bool); | 
|  | void addExclaimOverload() { | 
|  | QualType ParamTy = S.Context.BoolTy; | 
|  | S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/false, | 
|  | /*NumContextualBoolArguments=*/1); | 
|  | } | 
|  | void addAmpAmpOrPipePipeOverload() { | 
|  | QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; | 
|  | S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/false, | 
|  | /*NumContextualBoolArguments=*/2); | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p13: | 
|  | // | 
|  | //   For every cv-qualified or cv-unqualified object type T there | 
|  | //   exist candidate operator functions of the form | 
|  | // | 
|  | //        T*         operator+(T*, ptrdiff_t);     [ABOVE] | 
|  | //        T&         operator[](T*, ptrdiff_t); | 
|  | //        T*         operator-(T*, ptrdiff_t);     [ABOVE] | 
|  | //        T*         operator+(ptrdiff_t, T*);     [ABOVE] | 
|  | //        T&         operator[](ptrdiff_t, T*); | 
|  | void addSubscriptOverloads() { | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Ptr = CandidateTypes[0].pointer_begin(), | 
|  | PtrEnd = CandidateTypes[0].pointer_end(); | 
|  | Ptr != PtrEnd; ++Ptr) { | 
|  | QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() }; | 
|  | QualType PointeeType = (*Ptr)->getPointeeType(); | 
|  | if (!PointeeType->isObjectType()) | 
|  | continue; | 
|  |  | 
|  | QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); | 
|  |  | 
|  | // T& operator[](T*, ptrdiff_t) | 
|  | S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Ptr = CandidateTypes[1].pointer_begin(), | 
|  | PtrEnd = CandidateTypes[1].pointer_end(); | 
|  | Ptr != PtrEnd; ++Ptr) { | 
|  | QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr }; | 
|  | QualType PointeeType = (*Ptr)->getPointeeType(); | 
|  | if (!PointeeType->isObjectType()) | 
|  | continue; | 
|  |  | 
|  | QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); | 
|  |  | 
|  | // T& operator[](ptrdiff_t, T*) | 
|  | S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p11: | 
|  | //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, | 
|  | //    C1 is the same type as C2 or is a derived class of C2, T is an object | 
|  | //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs, | 
|  | //    there exist candidate operator functions of the form | 
|  | // | 
|  | //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*); | 
|  | // | 
|  | //    where CV12 is the union of CV1 and CV2. | 
|  | void addArrowStarOverloads() { | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Ptr = CandidateTypes[0].pointer_begin(), | 
|  | PtrEnd = CandidateTypes[0].pointer_end(); | 
|  | Ptr != PtrEnd; ++Ptr) { | 
|  | QualType C1Ty = (*Ptr); | 
|  | QualType C1; | 
|  | QualifierCollector Q1; | 
|  | C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); | 
|  | if (!isa<RecordType>(C1)) | 
|  | continue; | 
|  | // heuristic to reduce number of builtin candidates in the set. | 
|  | // Add volatile/restrict version only if there are conversions to a | 
|  | // volatile/restrict type. | 
|  | if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) | 
|  | continue; | 
|  | if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) | 
|  | continue; | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | MemPtr = CandidateTypes[1].member_pointer_begin(), | 
|  | MemPtrEnd = CandidateTypes[1].member_pointer_end(); | 
|  | MemPtr != MemPtrEnd; ++MemPtr) { | 
|  | const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); | 
|  | QualType C2 = QualType(mptr->getClass(), 0); | 
|  | C2 = C2.getUnqualifiedType(); | 
|  | if (C1 != C2 && !S.IsDerivedFrom(C1, C2)) | 
|  | break; | 
|  | QualType ParamTypes[2] = { *Ptr, *MemPtr }; | 
|  | // build CV12 T& | 
|  | QualType T = mptr->getPointeeType(); | 
|  | if (!VisibleTypeConversionsQuals.hasVolatile() && | 
|  | T.isVolatileQualified()) | 
|  | continue; | 
|  | if (!VisibleTypeConversionsQuals.hasRestrict() && | 
|  | T.isRestrictQualified()) | 
|  | continue; | 
|  | T = Q1.apply(S.Context, T); | 
|  | QualType ResultTy = S.Context.getLValueReferenceType(T); | 
|  | S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Note that we don't consider the first argument, since it has been | 
|  | // contextually converted to bool long ago. The candidates below are | 
|  | // therefore added as binary. | 
|  | // | 
|  | // C++ [over.built]p25: | 
|  | //   For every type T, where T is a pointer, pointer-to-member, or scoped | 
|  | //   enumeration type, there exist candidate operator functions of the form | 
|  | // | 
|  | //        T        operator?(bool, T, T); | 
|  | // | 
|  | void addConditionalOperatorOverloads() { | 
|  | /// Set of (canonical) types that we've already handled. | 
|  | llvm::SmallPtrSet<QualType, 8> AddedTypes; | 
|  |  | 
|  | for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Ptr = CandidateTypes[ArgIdx].pointer_begin(), | 
|  | PtrEnd = CandidateTypes[ArgIdx].pointer_end(); | 
|  | Ptr != PtrEnd; ++Ptr) { | 
|  | if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second) | 
|  | continue; | 
|  |  | 
|  | QualType ParamTypes[2] = { *Ptr, *Ptr }; | 
|  | S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), | 
|  | MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); | 
|  | MemPtr != MemPtrEnd; ++MemPtr) { | 
|  | if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second) | 
|  | continue; | 
|  |  | 
|  | QualType ParamTypes[2] = { *MemPtr, *MemPtr }; | 
|  | S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | if (S.getLangOpts().CPlusPlus11) { | 
|  | for (BuiltinCandidateTypeSet::iterator | 
|  | Enum = CandidateTypes[ArgIdx].enumeration_begin(), | 
|  | EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); | 
|  | Enum != EnumEnd; ++Enum) { | 
|  | if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped()) | 
|  | continue; | 
|  |  | 
|  | if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second) | 
|  | continue; | 
|  |  | 
|  | QualType ParamTypes[2] = { *Enum, *Enum }; | 
|  | S.AddBuiltinCandidate(*Enum, ParamTypes, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// AddBuiltinOperatorCandidates - Add the appropriate built-in | 
|  | /// operator overloads to the candidate set (C++ [over.built]), based | 
|  | /// on the operator @p Op and the arguments given. For example, if the | 
|  | /// operator is a binary '+', this routine might add "int | 
|  | /// operator+(int, int)" to cover integer addition. | 
|  | void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, | 
|  | SourceLocation OpLoc, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet &CandidateSet) { | 
|  | // Find all of the types that the arguments can convert to, but only | 
|  | // if the operator we're looking at has built-in operator candidates | 
|  | // that make use of these types. Also record whether we encounter non-record | 
|  | // candidate types or either arithmetic or enumeral candidate types. | 
|  | Qualifiers VisibleTypeConversionsQuals; | 
|  | VisibleTypeConversionsQuals.addConst(); | 
|  | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) | 
|  | VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); | 
|  |  | 
|  | bool HasNonRecordCandidateType = false; | 
|  | bool HasArithmeticOrEnumeralCandidateType = false; | 
|  | SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; | 
|  | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | 
|  | CandidateTypes.push_back(BuiltinCandidateTypeSet(*this)); | 
|  | CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), | 
|  | OpLoc, | 
|  | true, | 
|  | (Op == OO_Exclaim || | 
|  | Op == OO_AmpAmp || | 
|  | Op == OO_PipePipe), | 
|  | VisibleTypeConversionsQuals); | 
|  | HasNonRecordCandidateType = HasNonRecordCandidateType || | 
|  | CandidateTypes[ArgIdx].hasNonRecordTypes(); | 
|  | HasArithmeticOrEnumeralCandidateType = | 
|  | HasArithmeticOrEnumeralCandidateType || | 
|  | CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); | 
|  | } | 
|  |  | 
|  | // Exit early when no non-record types have been added to the candidate set | 
|  | // for any of the arguments to the operator. | 
|  | // | 
|  | // We can't exit early for !, ||, or &&, since there we have always have | 
|  | // 'bool' overloads. | 
|  | if (!HasNonRecordCandidateType && | 
|  | !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe)) | 
|  | return; | 
|  |  | 
|  | // Setup an object to manage the common state for building overloads. | 
|  | BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, | 
|  | VisibleTypeConversionsQuals, | 
|  | HasArithmeticOrEnumeralCandidateType, | 
|  | CandidateTypes, CandidateSet); | 
|  |  | 
|  | // Dispatch over the operation to add in only those overloads which apply. | 
|  | switch (Op) { | 
|  | case OO_None: | 
|  | case NUM_OVERLOADED_OPERATORS: | 
|  | llvm_unreachable("Expected an overloaded operator"); | 
|  |  | 
|  | case OO_New: | 
|  | case OO_Delete: | 
|  | case OO_Array_New: | 
|  | case OO_Array_Delete: | 
|  | case OO_Call: | 
|  | llvm_unreachable( | 
|  | "Special operators don't use AddBuiltinOperatorCandidates"); | 
|  |  | 
|  | case OO_Comma: | 
|  | case OO_Arrow: | 
|  | // C++ [over.match.oper]p3: | 
|  | //   -- For the operator ',', the unary operator '&', or the | 
|  | //      operator '->', the built-in candidates set is empty. | 
|  | break; | 
|  |  | 
|  | case OO_Plus: // '+' is either unary or binary | 
|  | if (Args.size() == 1) | 
|  | OpBuilder.addUnaryPlusPointerOverloads(); | 
|  | // Fall through. | 
|  |  | 
|  | case OO_Minus: // '-' is either unary or binary | 
|  | if (Args.size() == 1) { | 
|  | OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); | 
|  | } else { | 
|  | OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); | 
|  | OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case OO_Star: // '*' is either unary or binary | 
|  | if (Args.size() == 1) | 
|  | OpBuilder.addUnaryStarPointerOverloads(); | 
|  | else | 
|  | OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); | 
|  | break; | 
|  |  | 
|  | case OO_Slash: | 
|  | OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); | 
|  | break; | 
|  |  | 
|  | case OO_PlusPlus: | 
|  | case OO_MinusMinus: | 
|  | OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); | 
|  | OpBuilder.addPlusPlusMinusMinusPointerOverloads(); | 
|  | break; | 
|  |  | 
|  | case OO_EqualEqual: | 
|  | case OO_ExclaimEqual: | 
|  | OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads(); | 
|  | // Fall through. | 
|  |  | 
|  | case OO_Less: | 
|  | case OO_Greater: | 
|  | case OO_LessEqual: | 
|  | case OO_GreaterEqual: | 
|  | OpBuilder.addRelationalPointerOrEnumeralOverloads(); | 
|  | OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true); | 
|  | break; | 
|  |  | 
|  | case OO_Percent: | 
|  | case OO_Caret: | 
|  | case OO_Pipe: | 
|  | case OO_LessLess: | 
|  | case OO_GreaterGreater: | 
|  | OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); | 
|  | break; | 
|  |  | 
|  | case OO_Amp: // '&' is either unary or binary | 
|  | if (Args.size() == 1) | 
|  | // C++ [over.match.oper]p3: | 
|  | //   -- For the operator ',', the unary operator '&', or the | 
|  | //      operator '->', the built-in candidates set is empty. | 
|  | break; | 
|  |  | 
|  | OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); | 
|  | break; | 
|  |  | 
|  | case OO_Tilde: | 
|  | OpBuilder.addUnaryTildePromotedIntegralOverloads(); | 
|  | break; | 
|  |  | 
|  | case OO_Equal: | 
|  | OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); | 
|  | // Fall through. | 
|  |  | 
|  | case OO_PlusEqual: | 
|  | case OO_MinusEqual: | 
|  | OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); | 
|  | // Fall through. | 
|  |  | 
|  | case OO_StarEqual: | 
|  | case OO_SlashEqual: | 
|  | OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); | 
|  | break; | 
|  |  | 
|  | case OO_PercentEqual: | 
|  | case OO_LessLessEqual: | 
|  | case OO_GreaterGreaterEqual: | 
|  | case OO_AmpEqual: | 
|  | case OO_CaretEqual: | 
|  | case OO_PipeEqual: | 
|  | OpBuilder.addAssignmentIntegralOverloads(); | 
|  | break; | 
|  |  | 
|  | case OO_Exclaim: | 
|  | OpBuilder.addExclaimOverload(); | 
|  | break; | 
|  |  | 
|  | case OO_AmpAmp: | 
|  | case OO_PipePipe: | 
|  | OpBuilder.addAmpAmpOrPipePipeOverload(); | 
|  | break; | 
|  |  | 
|  | case OO_Subscript: | 
|  | OpBuilder.addSubscriptOverloads(); | 
|  | break; | 
|  |  | 
|  | case OO_ArrowStar: | 
|  | OpBuilder.addArrowStarOverloads(); | 
|  | break; | 
|  |  | 
|  | case OO_Conditional: | 
|  | OpBuilder.addConditionalOperatorOverloads(); | 
|  | OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Add function candidates found via argument-dependent lookup | 
|  | /// to the set of overloading candidates. | 
|  | /// | 
|  | /// This routine performs argument-dependent name lookup based on the | 
|  | /// given function name (which may also be an operator name) and adds | 
|  | /// all of the overload candidates found by ADL to the overload | 
|  | /// candidate set (C++ [basic.lookup.argdep]). | 
|  | void | 
|  | Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, | 
|  | SourceLocation Loc, | 
|  | ArrayRef<Expr *> Args, | 
|  | TemplateArgumentListInfo *ExplicitTemplateArgs, | 
|  | OverloadCandidateSet& CandidateSet, | 
|  | bool PartialOverloading) { | 
|  | ADLResult Fns; | 
|  |  | 
|  | // FIXME: This approach for uniquing ADL results (and removing | 
|  | // redundant candidates from the set) relies on pointer-equality, | 
|  | // which means we need to key off the canonical decl.  However, | 
|  | // always going back to the canonical decl might not get us the | 
|  | // right set of default arguments.  What default arguments are | 
|  | // we supposed to consider on ADL candidates, anyway? | 
|  |  | 
|  | // FIXME: Pass in the explicit template arguments? | 
|  | ArgumentDependentLookup(Name, Loc, Args, Fns); | 
|  |  | 
|  | // Erase all of the candidates we already knew about. | 
|  | for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), | 
|  | CandEnd = CandidateSet.end(); | 
|  | Cand != CandEnd; ++Cand) | 
|  | if (Cand->Function) { | 
|  | Fns.erase(Cand->Function); | 
|  | if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) | 
|  | Fns.erase(FunTmpl); | 
|  | } | 
|  |  | 
|  | // For each of the ADL candidates we found, add it to the overload | 
|  | // set. | 
|  | for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { | 
|  | DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); | 
|  | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { | 
|  | if (ExplicitTemplateArgs) | 
|  | continue; | 
|  |  | 
|  | AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false, | 
|  | PartialOverloading); | 
|  | } else | 
|  | AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), | 
|  | FoundDecl, ExplicitTemplateArgs, | 
|  | Args, CandidateSet, PartialOverloading); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isBetterOverloadCandidate - Determines whether the first overload | 
|  | /// candidate is a better candidate than the second (C++ 13.3.3p1). | 
|  | bool clang::isBetterOverloadCandidate(Sema &S, const OverloadCandidate &Cand1, | 
|  | const OverloadCandidate &Cand2, | 
|  | SourceLocation Loc, | 
|  | bool UserDefinedConversion) { | 
|  | // Define viable functions to be better candidates than non-viable | 
|  | // functions. | 
|  | if (!Cand2.Viable) | 
|  | return Cand1.Viable; | 
|  | else if (!Cand1.Viable) | 
|  | return false; | 
|  |  | 
|  | // C++ [over.match.best]p1: | 
|  | // | 
|  | //   -- if F is a static member function, ICS1(F) is defined such | 
|  | //      that ICS1(F) is neither better nor worse than ICS1(G) for | 
|  | //      any function G, and, symmetrically, ICS1(G) is neither | 
|  | //      better nor worse than ICS1(F). | 
|  | unsigned StartArg = 0; | 
|  | if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) | 
|  | StartArg = 1; | 
|  |  | 
|  | // C++ [over.match.best]p1: | 
|  | //   A viable function F1 is defined to be a better function than another | 
|  | //   viable function F2 if for all arguments i, ICSi(F1) is not a worse | 
|  | //   conversion sequence than ICSi(F2), and then... | 
|  | unsigned NumArgs = Cand1.NumConversions; | 
|  | assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch"); | 
|  | bool HasBetterConversion = false; | 
|  | for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { | 
|  | switch (CompareImplicitConversionSequences(S, | 
|  | Cand1.Conversions[ArgIdx], | 
|  | Cand2.Conversions[ArgIdx])) { | 
|  | case ImplicitConversionSequence::Better: | 
|  | // Cand1 has a better conversion sequence. | 
|  | HasBetterConversion = true; | 
|  | break; | 
|  |  | 
|  | case ImplicitConversionSequence::Worse: | 
|  | // Cand1 can't be better than Cand2. | 
|  | return false; | 
|  |  | 
|  | case ImplicitConversionSequence::Indistinguishable: | 
|  | // Do nothing. | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | //    -- for some argument j, ICSj(F1) is a better conversion sequence than | 
|  | //       ICSj(F2), or, if not that, | 
|  | if (HasBetterConversion) | 
|  | return true; | 
|  |  | 
|  | //   -- the context is an initialization by user-defined conversion | 
|  | //      (see 8.5, 13.3.1.5) and the standard conversion sequence | 
|  | //      from the return type of F1 to the destination type (i.e., | 
|  | //      the type of the entity being initialized) is a better | 
|  | //      conversion sequence than the standard conversion sequence | 
|  | //      from the return type of F2 to the destination type. | 
|  | if (UserDefinedConversion && Cand1.Function && Cand2.Function && | 
|  | isa<CXXConversionDecl>(Cand1.Function) && | 
|  | isa<CXXConversionDecl>(Cand2.Function)) { | 
|  | // First check whether we prefer one of the conversion functions over the | 
|  | // other. This only distinguishes the results in non-standard, extension | 
|  | // cases such as the conversion from a lambda closure type to a function | 
|  | // pointer or block. | 
|  | ImplicitConversionSequence::CompareKind Result = | 
|  | compareConversionFunctions(S, Cand1.Function, Cand2.Function); | 
|  | if (Result == ImplicitConversionSequence::Indistinguishable) | 
|  | Result = CompareStandardConversionSequences(S, | 
|  | Cand1.FinalConversion, | 
|  | Cand2.FinalConversion); | 
|  |  | 
|  | if (Result != ImplicitConversionSequence::Indistinguishable) | 
|  | return Result == ImplicitConversionSequence::Better; | 
|  |  | 
|  | // FIXME: Compare kind of reference binding if conversion functions | 
|  | // convert to a reference type used in direct reference binding, per | 
|  | // C++14 [over.match.best]p1 section 2 bullet 3. | 
|  | } | 
|  |  | 
|  | //    -- F1 is a non-template function and F2 is a function template | 
|  | //       specialization, or, if not that, | 
|  | bool Cand1IsSpecialization = Cand1.Function && | 
|  | Cand1.Function->getPrimaryTemplate(); | 
|  | bool Cand2IsSpecialization = Cand2.Function && | 
|  | Cand2.Function->getPrimaryTemplate(); | 
|  | if (Cand1IsSpecialization != Cand2IsSpecialization) | 
|  | return Cand2IsSpecialization; | 
|  |  | 
|  | //   -- F1 and F2 are function template specializations, and the function | 
|  | //      template for F1 is more specialized than the template for F2 | 
|  | //      according to the partial ordering rules described in 14.5.5.2, or, | 
|  | //      if not that, | 
|  | if (Cand1IsSpecialization && Cand2IsSpecialization) { | 
|  | if (FunctionTemplateDecl *BetterTemplate | 
|  | = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), | 
|  | Cand2.Function->getPrimaryTemplate(), | 
|  | Loc, | 
|  | isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion | 
|  | : TPOC_Call, | 
|  | Cand1.ExplicitCallArguments, | 
|  | Cand2.ExplicitCallArguments)) | 
|  | return BetterTemplate == Cand1.Function->getPrimaryTemplate(); | 
|  | } | 
|  |  | 
|  | // Check for enable_if value-based overload resolution. | 
|  | if (Cand1.Function && Cand2.Function && | 
|  | (Cand1.Function->hasAttr<EnableIfAttr>() || | 
|  | Cand2.Function->hasAttr<EnableIfAttr>())) { | 
|  | // FIXME: The next several lines are just | 
|  | // specific_attr_iterator<EnableIfAttr> but going in declaration order, | 
|  | // instead of reverse order which is how they're stored in the AST. | 
|  | AttrVec Cand1Attrs; | 
|  | if (Cand1.Function->hasAttrs()) { | 
|  | Cand1Attrs = Cand1.Function->getAttrs(); | 
|  | Cand1Attrs.erase(std::remove_if(Cand1Attrs.begin(), Cand1Attrs.end(), | 
|  | IsNotEnableIfAttr), | 
|  | Cand1Attrs.end()); | 
|  | std::reverse(Cand1Attrs.begin(), Cand1Attrs.end()); | 
|  | } | 
|  |  | 
|  | AttrVec Cand2Attrs; | 
|  | if (Cand2.Function->hasAttrs()) { | 
|  | Cand2Attrs = Cand2.Function->getAttrs(); | 
|  | Cand2Attrs.erase(std::remove_if(Cand2Attrs.begin(), Cand2Attrs.end(), | 
|  | IsNotEnableIfAttr), | 
|  | Cand2Attrs.end()); | 
|  | std::reverse(Cand2Attrs.begin(), Cand2Attrs.end()); | 
|  | } | 
|  |  | 
|  | // Candidate 1 is better if it has strictly more attributes and | 
|  | // the common sequence is identical. | 
|  | if (Cand1Attrs.size() <= Cand2Attrs.size()) | 
|  | return false; | 
|  |  | 
|  | auto Cand1I = Cand1Attrs.begin(); | 
|  | for (auto &Cand2A : Cand2Attrs) { | 
|  | auto &Cand1A = *Cand1I++; | 
|  | llvm::FoldingSetNodeID Cand1ID, Cand2ID; | 
|  | cast<EnableIfAttr>(Cand1A)->getCond()->Profile(Cand1ID, | 
|  | S.getASTContext(), true); | 
|  | cast<EnableIfAttr>(Cand2A)->getCond()->Profile(Cand2ID, | 
|  | S.getASTContext(), true); | 
|  | if (Cand1ID != Cand2ID) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Computes the best viable function (C++ 13.3.3) | 
|  | /// within an overload candidate set. | 
|  | /// | 
|  | /// \param Loc The location of the function name (or operator symbol) for | 
|  | /// which overload resolution occurs. | 
|  | /// | 
|  | /// \param Best If overload resolution was successful or found a deleted | 
|  | /// function, \p Best points to the candidate function found. | 
|  | /// | 
|  | /// \returns The result of overload resolution. | 
|  | OverloadingResult | 
|  | OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, | 
|  | iterator &Best, | 
|  | bool UserDefinedConversion) { | 
|  | // Find the best viable function. | 
|  | Best = end(); | 
|  | for (iterator Cand = begin(); Cand != end(); ++Cand) { | 
|  | if (Cand->Viable) | 
|  | if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc, | 
|  | UserDefinedConversion)) | 
|  | Best = Cand; | 
|  | } | 
|  |  | 
|  | // If we didn't find any viable functions, abort. | 
|  | if (Best == end()) | 
|  | return OR_No_Viable_Function; | 
|  |  | 
|  | // Make sure that this function is better than every other viable | 
|  | // function. If not, we have an ambiguity. | 
|  | for (iterator Cand = begin(); Cand != end(); ++Cand) { | 
|  | if (Cand->Viable && | 
|  | Cand != Best && | 
|  | !isBetterOverloadCandidate(S, *Best, *Cand, Loc, | 
|  | UserDefinedConversion)) { | 
|  | Best = end(); | 
|  | return OR_Ambiguous; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Best is the best viable function. | 
|  | if (Best->Function && | 
|  | (Best->Function->isDeleted() || | 
|  | S.isFunctionConsideredUnavailable(Best->Function))) | 
|  | return OR_Deleted; | 
|  |  | 
|  | return OR_Success; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | enum OverloadCandidateKind { | 
|  | oc_function, | 
|  | oc_method, | 
|  | oc_constructor, | 
|  | oc_function_template, | 
|  | oc_method_template, | 
|  | oc_constructor_template, | 
|  | oc_implicit_default_constructor, | 
|  | oc_implicit_copy_constructor, | 
|  | oc_implicit_move_constructor, | 
|  | oc_implicit_copy_assignment, | 
|  | oc_implicit_move_assignment, | 
|  | oc_implicit_inherited_constructor | 
|  | }; | 
|  |  | 
|  | OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, | 
|  | FunctionDecl *Fn, | 
|  | std::string &Description) { | 
|  | bool isTemplate = false; | 
|  |  | 
|  | if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { | 
|  | isTemplate = true; | 
|  | Description = S.getTemplateArgumentBindingsText( | 
|  | FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); | 
|  | } | 
|  |  | 
|  | if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { | 
|  | if (!Ctor->isImplicit()) | 
|  | return isTemplate ? oc_constructor_template : oc_constructor; | 
|  |  | 
|  | if (Ctor->getInheritedConstructor()) | 
|  | return oc_implicit_inherited_constructor; | 
|  |  | 
|  | if (Ctor->isDefaultConstructor()) | 
|  | return oc_implicit_default_constructor; | 
|  |  | 
|  | if (Ctor->isMoveConstructor()) | 
|  | return oc_implicit_move_constructor; | 
|  |  | 
|  | assert(Ctor->isCopyConstructor() && | 
|  | "unexpected sort of implicit constructor"); | 
|  | return oc_implicit_copy_constructor; | 
|  | } | 
|  |  | 
|  | if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { | 
|  | // This actually gets spelled 'candidate function' for now, but | 
|  | // it doesn't hurt to split it out. | 
|  | if (!Meth->isImplicit()) | 
|  | return isTemplate ? oc_method_template : oc_method; | 
|  |  | 
|  | if (Meth->isMoveAssignmentOperator()) | 
|  | return oc_implicit_move_assignment; | 
|  |  | 
|  | if (Meth->isCopyAssignmentOperator()) | 
|  | return oc_implicit_copy_assignment; | 
|  |  | 
|  | assert(isa<CXXConversionDecl>(Meth) && "expected conversion"); | 
|  | return oc_method; | 
|  | } | 
|  |  | 
|  | return isTemplate ? oc_function_template : oc_function; | 
|  | } | 
|  |  | 
|  | void MaybeEmitInheritedConstructorNote(Sema &S, Decl *Fn) { | 
|  | const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn); | 
|  | if (!Ctor) return; | 
|  |  | 
|  | Ctor = Ctor->getInheritedConstructor(); | 
|  | if (!Ctor) return; | 
|  |  | 
|  | S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor); | 
|  | } | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // Notes the location of an overload candidate. | 
|  | void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) { | 
|  | std::string FnDesc; | 
|  | OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); | 
|  | PartialDiagnostic PD = PDiag(diag::note_ovl_candidate) | 
|  | << (unsigned) K << FnDesc; | 
|  | HandleFunctionTypeMismatch(PD, Fn->getType(), DestType); | 
|  | Diag(Fn->getLocation(), PD); | 
|  | MaybeEmitInheritedConstructorNote(*this, Fn); | 
|  | } | 
|  |  | 
|  | // Notes the location of all overload candidates designated through | 
|  | // OverloadedExpr | 
|  | void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) { | 
|  | assert(OverloadedExpr->getType() == Context.OverloadTy); | 
|  |  | 
|  | OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); | 
|  | OverloadExpr *OvlExpr = Ovl.Expression; | 
|  |  | 
|  | for (UnresolvedSetIterator I = OvlExpr->decls_begin(), | 
|  | IEnd = OvlExpr->decls_end(); | 
|  | I != IEnd; ++I) { | 
|  | if (FunctionTemplateDecl *FunTmpl = | 
|  | dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) { | 
|  | NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType); | 
|  | } else if (FunctionDecl *Fun | 
|  | = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) { | 
|  | NoteOverloadCandidate(Fun, DestType); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Diagnoses an ambiguous conversion.  The partial diagnostic is the | 
|  | /// "lead" diagnostic; it will be given two arguments, the source and | 
|  | /// target types of the conversion. | 
|  | void ImplicitConversionSequence::DiagnoseAmbiguousConversion( | 
|  | Sema &S, | 
|  | SourceLocation CaretLoc, | 
|  | const PartialDiagnostic &PDiag) const { | 
|  | S.Diag(CaretLoc, PDiag) | 
|  | << Ambiguous.getFromType() << Ambiguous.getToType(); | 
|  | // FIXME: The note limiting machinery is borrowed from | 
|  | // OverloadCandidateSet::NoteCandidates; there's an opportunity for | 
|  | // refactoring here. | 
|  | const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); | 
|  | unsigned CandsShown = 0; | 
|  | AmbiguousConversionSequence::const_iterator I, E; | 
|  | for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { | 
|  | if (CandsShown >= 4 && ShowOverloads == Ovl_Best) | 
|  | break; | 
|  | ++CandsShown; | 
|  | S.NoteOverloadCandidate(*I); | 
|  | } | 
|  | if (I != E) | 
|  | S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I); | 
|  | } | 
|  |  | 
|  | static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, | 
|  | unsigned I) { | 
|  | const ImplicitConversionSequence &Conv = Cand->Conversions[I]; | 
|  | assert(Conv.isBad()); | 
|  | assert(Cand->Function && "for now, candidate must be a function"); | 
|  | FunctionDecl *Fn = Cand->Function; | 
|  |  | 
|  | // There's a conversion slot for the object argument if this is a | 
|  | // non-constructor method.  Note that 'I' corresponds the | 
|  | // conversion-slot index. | 
|  | bool isObjectArgument = false; | 
|  | if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { | 
|  | if (I == 0) | 
|  | isObjectArgument = true; | 
|  | else | 
|  | I--; | 
|  | } | 
|  |  | 
|  | std::string FnDesc; | 
|  | OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); | 
|  |  | 
|  | Expr *FromExpr = Conv.Bad.FromExpr; | 
|  | QualType FromTy = Conv.Bad.getFromType(); | 
|  | QualType ToTy = Conv.Bad.getToType(); | 
|  |  | 
|  | if (FromTy == S.Context.OverloadTy) { | 
|  | assert(FromExpr && "overload set argument came from implicit argument?"); | 
|  | Expr *E = FromExpr->IgnoreParens(); | 
|  | if (isa<UnaryOperator>(E)) | 
|  | E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); | 
|  | DeclarationName Name = cast<OverloadExpr>(E)->getName(); | 
|  |  | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) | 
|  | << (unsigned) FnKind << FnDesc | 
|  | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | 
|  | << ToTy << Name << I+1; | 
|  | MaybeEmitInheritedConstructorNote(S, Fn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Do some hand-waving analysis to see if the non-viability is due | 
|  | // to a qualifier mismatch. | 
|  | CanQualType CFromTy = S.Context.getCanonicalType(FromTy); | 
|  | CanQualType CToTy = S.Context.getCanonicalType(ToTy); | 
|  | if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) | 
|  | CToTy = RT->getPointeeType(); | 
|  | else { | 
|  | // TODO: detect and diagnose the full richness of const mismatches. | 
|  | if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) | 
|  | if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) | 
|  | CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); | 
|  | } | 
|  |  | 
|  | if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && | 
|  | !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { | 
|  | Qualifiers FromQs = CFromTy.getQualifiers(); | 
|  | Qualifiers ToQs = CToTy.getQualifiers(); | 
|  |  | 
|  | if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) | 
|  | << (unsigned) FnKind << FnDesc | 
|  | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | 
|  | << FromTy | 
|  | << FromQs.getAddressSpace() << ToQs.getAddressSpace() | 
|  | << (unsigned) isObjectArgument << I+1; | 
|  | MaybeEmitInheritedConstructorNote(S, Fn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership) | 
|  | << (unsigned) FnKind << FnDesc | 
|  | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | 
|  | << FromTy | 
|  | << FromQs.getObjCLifetime() << ToQs.getObjCLifetime() | 
|  | << (unsigned) isObjectArgument << I+1; | 
|  | MaybeEmitInheritedConstructorNote(S, Fn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc) | 
|  | << (unsigned) FnKind << FnDesc | 
|  | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | 
|  | << FromTy | 
|  | << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr() | 
|  | << (unsigned) isObjectArgument << I+1; | 
|  | MaybeEmitInheritedConstructorNote(S, Fn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); | 
|  | assert(CVR && "unexpected qualifiers mismatch"); | 
|  |  | 
|  | if (isObjectArgument) { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) | 
|  | << (unsigned) FnKind << FnDesc | 
|  | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | 
|  | << FromTy << (CVR - 1); | 
|  | } else { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) | 
|  | << (unsigned) FnKind << FnDesc | 
|  | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | 
|  | << FromTy << (CVR - 1) << I+1; | 
|  | } | 
|  | MaybeEmitInheritedConstructorNote(S, Fn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Special diagnostic for failure to convert an initializer list, since | 
|  | // telling the user that it has type void is not useful. | 
|  | if (FromExpr && isa<InitListExpr>(FromExpr)) { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument) | 
|  | << (unsigned) FnKind << FnDesc | 
|  | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | 
|  | << FromTy << ToTy << (unsigned) isObjectArgument << I+1; | 
|  | MaybeEmitInheritedConstructorNote(S, Fn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Diagnose references or pointers to incomplete types differently, | 
|  | // since it's far from impossible that the incompleteness triggered | 
|  | // the failure. | 
|  | QualType TempFromTy = FromTy.getNonReferenceType(); | 
|  | if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) | 
|  | TempFromTy = PTy->getPointeeType(); | 
|  | if (TempFromTy->isIncompleteType()) { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) | 
|  | << (unsigned) FnKind << FnDesc | 
|  | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | 
|  | << FromTy << ToTy << (unsigned) isObjectArgument << I+1; | 
|  | MaybeEmitInheritedConstructorNote(S, Fn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Diagnose base -> derived pointer conversions. | 
|  | unsigned BaseToDerivedConversion = 0; | 
|  | if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { | 
|  | if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { | 
|  | if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( | 
|  | FromPtrTy->getPointeeType()) && | 
|  | !FromPtrTy->getPointeeType()->isIncompleteType() && | 
|  | !ToPtrTy->getPointeeType()->isIncompleteType() && | 
|  | S.IsDerivedFrom(ToPtrTy->getPointeeType(), | 
|  | FromPtrTy->getPointeeType())) | 
|  | BaseToDerivedConversion = 1; | 
|  | } | 
|  | } else if (const ObjCObjectPointerType *FromPtrTy | 
|  | = FromTy->getAs<ObjCObjectPointerType>()) { | 
|  | if (const ObjCObjectPointerType *ToPtrTy | 
|  | = ToTy->getAs<ObjCObjectPointerType>()) | 
|  | if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) | 
|  | if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) | 
|  | if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( | 
|  | FromPtrTy->getPointeeType()) && | 
|  | FromIface->isSuperClassOf(ToIface)) | 
|  | BaseToDerivedConversion = 2; | 
|  | } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { | 
|  | if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && | 
|  | !FromTy->isIncompleteType() && | 
|  | !ToRefTy->getPointeeType()->isIncompleteType() && | 
|  | S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) { | 
|  | BaseToDerivedConversion = 3; | 
|  | } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() && | 
|  | ToTy.getNonReferenceType().getCanonicalType() == | 
|  | FromTy.getNonReferenceType().getCanonicalType()) { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue) | 
|  | << (unsigned) FnKind << FnDesc | 
|  | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | 
|  | << (unsigned) isObjectArgument << I + 1; | 
|  | MaybeEmitInheritedConstructorNote(S, Fn); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BaseToDerivedConversion) { | 
|  | S.Diag(Fn->getLocation(), | 
|  | diag::note_ovl_candidate_bad_base_to_derived_conv) | 
|  | << (unsigned) FnKind << FnDesc | 
|  | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | 
|  | << (BaseToDerivedConversion - 1) | 
|  | << FromTy << ToTy << I+1; | 
|  | MaybeEmitInheritedConstructorNote(S, Fn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isa<ObjCObjectPointerType>(CFromTy) && | 
|  | isa<PointerType>(CToTy)) { | 
|  | Qualifiers FromQs = CFromTy.getQualifiers(); | 
|  | Qualifiers ToQs = CToTy.getQualifiers(); | 
|  | if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv) | 
|  | << (unsigned) FnKind << FnDesc | 
|  | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | 
|  | << FromTy << ToTy << (unsigned) isObjectArgument << I+1; | 
|  | MaybeEmitInheritedConstructorNote(S, Fn); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit the generic diagnostic and, optionally, add the hints to it. | 
|  | PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv); | 
|  | FDiag << (unsigned) FnKind << FnDesc | 
|  | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | 
|  | << FromTy << ToTy << (unsigned) isObjectArgument << I + 1 | 
|  | << (unsigned) (Cand->Fix.Kind); | 
|  |  | 
|  | // If we can fix the conversion, suggest the FixIts. | 
|  | for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(), | 
|  | HE = Cand->Fix.Hints.end(); HI != HE; ++HI) | 
|  | FDiag << *HI; | 
|  | S.Diag(Fn->getLocation(), FDiag); | 
|  |  | 
|  | MaybeEmitInheritedConstructorNote(S, Fn); | 
|  | } | 
|  |  | 
|  | /// Additional arity mismatch diagnosis specific to a function overload | 
|  | /// candidates. This is not covered by the more general DiagnoseArityMismatch() | 
|  | /// over a candidate in any candidate set. | 
|  | static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand, | 
|  | unsigned NumArgs) { | 
|  | FunctionDecl *Fn = Cand->Function; | 
|  | unsigned MinParams = Fn->getMinRequiredArguments(); | 
|  |  | 
|  | // With invalid overloaded operators, it's possible that we think we | 
|  | // have an arity mismatch when in fact it looks like we have the | 
|  | // right number of arguments, because only overloaded operators have | 
|  | // the weird behavior of overloading member and non-member functions. | 
|  | // Just don't report anything. | 
|  | if (Fn->isInvalidDecl() && | 
|  | Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) | 
|  | return true; | 
|  |  | 
|  | if (NumArgs < MinParams) { | 
|  | assert((Cand->FailureKind == ovl_fail_too_few_arguments) || | 
|  | (Cand->FailureKind == ovl_fail_bad_deduction && | 
|  | Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); | 
|  | } else { | 
|  | assert((Cand->FailureKind == ovl_fail_too_many_arguments) || | 
|  | (Cand->FailureKind == ovl_fail_bad_deduction && | 
|  | Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// General arity mismatch diagnosis over a candidate in a candidate set. | 
|  | static void DiagnoseArityMismatch(Sema &S, Decl *D, unsigned NumFormalArgs) { | 
|  | assert(isa<FunctionDecl>(D) && | 
|  | "The templated declaration should at least be a function" | 
|  | " when diagnosing bad template argument deduction due to too many" | 
|  | " or too few arguments"); | 
|  |  | 
|  | FunctionDecl *Fn = cast<FunctionDecl>(D); | 
|  |  | 
|  | // TODO: treat calls to a missing default constructor as a special case | 
|  | const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); | 
|  | unsigned MinParams = Fn->getMinRequiredArguments(); | 
|  |  | 
|  | // at least / at most / exactly | 
|  | unsigned mode, modeCount; | 
|  | if (NumFormalArgs < MinParams) { | 
|  | if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() || | 
|  | FnTy->isTemplateVariadic()) | 
|  | mode = 0; // "at least" | 
|  | else | 
|  | mode = 2; // "exactly" | 
|  | modeCount = MinParams; | 
|  | } else { | 
|  | if (MinParams != FnTy->getNumParams()) | 
|  | mode = 1; // "at most" | 
|  | else | 
|  | mode = 2; // "exactly" | 
|  | modeCount = FnTy->getNumParams(); | 
|  | } | 
|  |  | 
|  | std::string Description; | 
|  | OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); | 
|  |  | 
|  | if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName()) | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one) | 
|  | << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr) | 
|  | << mode << Fn->getParamDecl(0) << NumFormalArgs; | 
|  | else | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) | 
|  | << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr) | 
|  | << mode << modeCount << NumFormalArgs; | 
|  | MaybeEmitInheritedConstructorNote(S, Fn); | 
|  | } | 
|  |  | 
|  | /// Arity mismatch diagnosis specific to a function overload candidate. | 
|  | static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, | 
|  | unsigned NumFormalArgs) { | 
|  | if (!CheckArityMismatch(S, Cand, NumFormalArgs)) | 
|  | DiagnoseArityMismatch(S, Cand->Function, NumFormalArgs); | 
|  | } | 
|  |  | 
|  | static TemplateDecl *getDescribedTemplate(Decl *Templated) { | 
|  | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Templated)) | 
|  | return FD->getDescribedFunctionTemplate(); | 
|  | else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Templated)) | 
|  | return RD->getDescribedClassTemplate(); | 
|  |  | 
|  | llvm_unreachable("Unsupported: Getting the described template declaration" | 
|  | " for bad deduction diagnosis"); | 
|  | } | 
|  |  | 
|  | /// Diagnose a failed template-argument deduction. | 
|  | static void DiagnoseBadDeduction(Sema &S, Decl *Templated, | 
|  | DeductionFailureInfo &DeductionFailure, | 
|  | unsigned NumArgs) { | 
|  | TemplateParameter Param = DeductionFailure.getTemplateParameter(); | 
|  | NamedDecl *ParamD; | 
|  | (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || | 
|  | (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || | 
|  | (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); | 
|  | switch (DeductionFailure.Result) { | 
|  | case Sema::TDK_Success: | 
|  | llvm_unreachable("TDK_success while diagnosing bad deduction"); | 
|  |  | 
|  | case Sema::TDK_Incomplete: { | 
|  | assert(ParamD && "no parameter found for incomplete deduction result"); | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_incomplete_deduction) | 
|  | << ParamD->getDeclName(); | 
|  | MaybeEmitInheritedConstructorNote(S, Templated); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Sema::TDK_Underqualified: { | 
|  | assert(ParamD && "no parameter found for bad qualifiers deduction result"); | 
|  | TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); | 
|  |  | 
|  | QualType Param = DeductionFailure.getFirstArg()->getAsType(); | 
|  |  | 
|  | // Param will have been canonicalized, but it should just be a | 
|  | // qualified version of ParamD, so move the qualifiers to that. | 
|  | QualifierCollector Qs; | 
|  | Qs.strip(Param); | 
|  | QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); | 
|  | assert(S.Context.hasSameType(Param, NonCanonParam)); | 
|  |  | 
|  | // Arg has also been canonicalized, but there's nothing we can do | 
|  | // about that.  It also doesn't matter as much, because it won't | 
|  | // have any template parameters in it (because deduction isn't | 
|  | // done on dependent types). | 
|  | QualType Arg = DeductionFailure.getSecondArg()->getAsType(); | 
|  |  | 
|  | S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified) | 
|  | << ParamD->getDeclName() << Arg << NonCanonParam; | 
|  | MaybeEmitInheritedConstructorNote(S, Templated); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Sema::TDK_Inconsistent: { | 
|  | assert(ParamD && "no parameter found for inconsistent deduction result"); | 
|  | int which = 0; | 
|  | if (isa<TemplateTypeParmDecl>(ParamD)) | 
|  | which = 0; | 
|  | else if (isa<NonTypeTemplateParmDecl>(ParamD)) | 
|  | which = 1; | 
|  | else { | 
|  | which = 2; | 
|  | } | 
|  |  | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_inconsistent_deduction) | 
|  | << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg() | 
|  | << *DeductionFailure.getSecondArg(); | 
|  | MaybeEmitInheritedConstructorNote(S, Templated); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Sema::TDK_InvalidExplicitArguments: | 
|  | assert(ParamD && "no parameter found for invalid explicit arguments"); | 
|  | if (ParamD->getDeclName()) | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_explicit_arg_mismatch_named) | 
|  | << ParamD->getDeclName(); | 
|  | else { | 
|  | int index = 0; | 
|  | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) | 
|  | index = TTP->getIndex(); | 
|  | else if (NonTypeTemplateParmDecl *NTTP | 
|  | = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) | 
|  | index = NTTP->getIndex(); | 
|  | else | 
|  | index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) | 
|  | << (index + 1); | 
|  | } | 
|  | MaybeEmitInheritedConstructorNote(S, Templated); | 
|  | return; | 
|  |  | 
|  | case Sema::TDK_TooManyArguments: | 
|  | case Sema::TDK_TooFewArguments: | 
|  | DiagnoseArityMismatch(S, Templated, NumArgs); | 
|  | return; | 
|  |  | 
|  | case Sema::TDK_InstantiationDepth: | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_instantiation_depth); | 
|  | MaybeEmitInheritedConstructorNote(S, Templated); | 
|  | return; | 
|  |  | 
|  | case Sema::TDK_SubstitutionFailure: { | 
|  | // Format the template argument list into the argument string. | 
|  | SmallString<128> TemplateArgString; | 
|  | if (TemplateArgumentList *Args = | 
|  | DeductionFailure.getTemplateArgumentList()) { | 
|  | TemplateArgString = " "; | 
|  | TemplateArgString += S.getTemplateArgumentBindingsText( | 
|  | getDescribedTemplate(Templated)->getTemplateParameters(), *Args); | 
|  | } | 
|  |  | 
|  | // If this candidate was disabled by enable_if, say so. | 
|  | PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic(); | 
|  | if (PDiag && PDiag->second.getDiagID() == | 
|  | diag::err_typename_nested_not_found_enable_if) { | 
|  | // FIXME: Use the source range of the condition, and the fully-qualified | 
|  | //        name of the enable_if template. These are both present in PDiag. | 
|  | S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if) | 
|  | << "'enable_if'" << TemplateArgString; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Format the SFINAE diagnostic into the argument string. | 
|  | // FIXME: Add a general mechanism to include a PartialDiagnostic *'s | 
|  | //        formatted message in another diagnostic. | 
|  | SmallString<128> SFINAEArgString; | 
|  | SourceRange R; | 
|  | if (PDiag) { | 
|  | SFINAEArgString = ": "; | 
|  | R = SourceRange(PDiag->first, PDiag->first); | 
|  | PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString); | 
|  | } | 
|  |  | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_substitution_failure) | 
|  | << TemplateArgString << SFINAEArgString << R; | 
|  | MaybeEmitInheritedConstructorNote(S, Templated); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Sema::TDK_FailedOverloadResolution: { | 
|  | OverloadExpr::FindResult R = OverloadExpr::find(DeductionFailure.getExpr()); | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_failed_overload_resolution) | 
|  | << R.Expression->getName(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Sema::TDK_NonDeducedMismatch: { | 
|  | // FIXME: Provide a source location to indicate what we couldn't match. | 
|  | TemplateArgument FirstTA = *DeductionFailure.getFirstArg(); | 
|  | TemplateArgument SecondTA = *DeductionFailure.getSecondArg(); | 
|  | if (FirstTA.getKind() == TemplateArgument::Template && | 
|  | SecondTA.getKind() == TemplateArgument::Template) { | 
|  | TemplateName FirstTN = FirstTA.getAsTemplate(); | 
|  | TemplateName SecondTN = SecondTA.getAsTemplate(); | 
|  | if (FirstTN.getKind() == TemplateName::Template && | 
|  | SecondTN.getKind() == TemplateName::Template) { | 
|  | if (FirstTN.getAsTemplateDecl()->getName() == | 
|  | SecondTN.getAsTemplateDecl()->getName()) { | 
|  | // FIXME: This fixes a bad diagnostic where both templates are named | 
|  | // the same.  This particular case is a bit difficult since: | 
|  | // 1) It is passed as a string to the diagnostic printer. | 
|  | // 2) The diagnostic printer only attempts to find a better | 
|  | //    name for types, not decls. | 
|  | // Ideally, this should folded into the diagnostic printer. | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_non_deduced_mismatch_qualified) | 
|  | << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl(); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | // FIXME: For generic lambda parameters, check if the function is a lambda | 
|  | // call operator, and if so, emit a prettier and more informative | 
|  | // diagnostic that mentions 'auto' and lambda in addition to | 
|  | // (or instead of?) the canonical template type parameters. | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_non_deduced_mismatch) | 
|  | << FirstTA << SecondTA; | 
|  | return; | 
|  | } | 
|  | // TODO: diagnose these individually, then kill off | 
|  | // note_ovl_candidate_bad_deduction, which is uselessly vague. | 
|  | case Sema::TDK_MiscellaneousDeductionFailure: | 
|  | S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction); | 
|  | MaybeEmitInheritedConstructorNote(S, Templated); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Diagnose a failed template-argument deduction, for function calls. | 
|  | static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, | 
|  | unsigned NumArgs) { | 
|  | unsigned TDK = Cand->DeductionFailure.Result; | 
|  | if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) { | 
|  | if (CheckArityMismatch(S, Cand, NumArgs)) | 
|  | return; | 
|  | } | 
|  | DiagnoseBadDeduction(S, Cand->Function, // pattern | 
|  | Cand->DeductionFailure, NumArgs); | 
|  | } | 
|  |  | 
|  | /// CUDA: diagnose an invalid call across targets. | 
|  | static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) { | 
|  | FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext); | 
|  | FunctionDecl *Callee = Cand->Function; | 
|  |  | 
|  | Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller), | 
|  | CalleeTarget = S.IdentifyCUDATarget(Callee); | 
|  |  | 
|  | std::string FnDesc; | 
|  | OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc); | 
|  |  | 
|  | S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target) | 
|  | << (unsigned)FnKind << CalleeTarget << CallerTarget; | 
|  |  | 
|  | // This could be an implicit constructor for which we could not infer the | 
|  | // target due to a collsion. Diagnose that case. | 
|  | CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee); | 
|  | if (Meth != nullptr && Meth->isImplicit()) { | 
|  | CXXRecordDecl *ParentClass = Meth->getParent(); | 
|  | Sema::CXXSpecialMember CSM; | 
|  |  | 
|  | switch (FnKind) { | 
|  | default: | 
|  | return; | 
|  | case oc_implicit_default_constructor: | 
|  | CSM = Sema::CXXDefaultConstructor; | 
|  | break; | 
|  | case oc_implicit_copy_constructor: | 
|  | CSM = Sema::CXXCopyConstructor; | 
|  | break; | 
|  | case oc_implicit_move_constructor: | 
|  | CSM = Sema::CXXMoveConstructor; | 
|  | break; | 
|  | case oc_implicit_copy_assignment: | 
|  | CSM = Sema::CXXCopyAssignment; | 
|  | break; | 
|  | case oc_implicit_move_assignment: | 
|  | CSM = Sema::CXXMoveAssignment; | 
|  | break; | 
|  | }; | 
|  |  | 
|  | bool ConstRHS = false; | 
|  | if (Meth->getNumParams()) { | 
|  | if (const ReferenceType *RT = | 
|  | Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) { | 
|  | ConstRHS = RT->getPointeeType().isConstQualified(); | 
|  | } | 
|  | } | 
|  |  | 
|  | S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth, | 
|  | /* ConstRHS */ ConstRHS, | 
|  | /* Diagnose */ true); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) { | 
|  | FunctionDecl *Callee = Cand->Function; | 
|  | EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data); | 
|  |  | 
|  | S.Diag(Callee->getLocation(), | 
|  | diag::note_ovl_candidate_disabled_by_enable_if_attr) | 
|  | << Attr->getCond()->getSourceRange() << Attr->getMessage(); | 
|  | } | 
|  |  | 
|  | /// Generates a 'note' diagnostic for an overload candidate.  We've | 
|  | /// already generated a primary error at the call site. | 
|  | /// | 
|  | /// It really does need to be a single diagnostic with its caret | 
|  | /// pointed at the candidate declaration.  Yes, this creates some | 
|  | /// major challenges of technical writing.  Yes, this makes pointing | 
|  | /// out problems with specific arguments quite awkward.  It's still | 
|  | /// better than generating twenty screens of text for every failed | 
|  | /// overload. | 
|  | /// | 
|  | /// It would be great to be able to express per-candidate problems | 
|  | /// more richly for those diagnostic clients that cared, but we'd | 
|  | /// still have to be just as careful with the default diagnostics. | 
|  | static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, | 
|  | unsigned NumArgs) { | 
|  | FunctionDecl *Fn = Cand->Function; | 
|  |  | 
|  | // Note deleted candidates, but only if they're viable. | 
|  | if (Cand->Viable && (Fn->isDeleted() || | 
|  | S.isFunctionConsideredUnavailable(Fn))) { | 
|  | std::string FnDesc; | 
|  | OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); | 
|  |  | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) | 
|  | << FnKind << FnDesc | 
|  | << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0); | 
|  | MaybeEmitInheritedConstructorNote(S, Fn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We don't really have anything else to say about viable candidates. | 
|  | if (Cand->Viable) { | 
|  | S.NoteOverloadCandidate(Fn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (Cand->FailureKind) { | 
|  | case ovl_fail_too_many_arguments: | 
|  | case ovl_fail_too_few_arguments: | 
|  | return DiagnoseArityMismatch(S, Cand, NumArgs); | 
|  |  | 
|  | case ovl_fail_bad_deduction: | 
|  | return DiagnoseBadDeduction(S, Cand, NumArgs); | 
|  |  | 
|  | case ovl_fail_illegal_constructor: { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor) | 
|  | << (Fn->getPrimaryTemplate() ? 1 : 0); | 
|  | MaybeEmitInheritedConstructorNote(S, Fn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ovl_fail_trivial_conversion: | 
|  | case ovl_fail_bad_final_conversion: | 
|  | case ovl_fail_final_conversion_not_exact: | 
|  | return S.NoteOverloadCandidate(Fn); | 
|  |  | 
|  | case ovl_fail_bad_conversion: { | 
|  | unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); | 
|  | for (unsigned N = Cand->NumConversions; I != N; ++I) | 
|  | if (Cand->Conversions[I].isBad()) | 
|  | return DiagnoseBadConversion(S, Cand, I); | 
|  |  | 
|  | // FIXME: this currently happens when we're called from SemaInit | 
|  | // when user-conversion overload fails.  Figure out how to handle | 
|  | // those conditions and diagnose them well. | 
|  | return S.NoteOverloadCandidate(Fn); | 
|  | } | 
|  |  | 
|  | case ovl_fail_bad_target: | 
|  | return DiagnoseBadTarget(S, Cand); | 
|  |  | 
|  | case ovl_fail_enable_if: | 
|  | return DiagnoseFailedEnableIfAttr(S, Cand); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { | 
|  | // Desugar the type of the surrogate down to a function type, | 
|  | // retaining as many typedefs as possible while still showing | 
|  | // the function type (and, therefore, its parameter types). | 
|  | QualType FnType = Cand->Surrogate->getConversionType(); | 
|  | bool isLValueReference = false; | 
|  | bool isRValueReference = false; | 
|  | bool isPointer = false; | 
|  | if (const LValueReferenceType *FnTypeRef = | 
|  | FnType->getAs<LValueReferenceType>()) { | 
|  | FnType = FnTypeRef->getPointeeType(); | 
|  | isLValueReference = true; | 
|  | } else if (const RValueReferenceType *FnTypeRef = | 
|  | FnType->getAs<RValueReferenceType>()) { | 
|  | FnType = FnTypeRef->getPointeeType(); | 
|  | isRValueReference = true; | 
|  | } | 
|  | if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { | 
|  | FnType = FnTypePtr->getPointeeType(); | 
|  | isPointer = true; | 
|  | } | 
|  | // Desugar down to a function type. | 
|  | FnType = QualType(FnType->getAs<FunctionType>(), 0); | 
|  | // Reconstruct the pointer/reference as appropriate. | 
|  | if (isPointer) FnType = S.Context.getPointerType(FnType); | 
|  | if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); | 
|  | if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); | 
|  |  | 
|  | S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) | 
|  | << FnType; | 
|  | MaybeEmitInheritedConstructorNote(S, Cand->Surrogate); | 
|  | } | 
|  |  | 
|  | static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc, | 
|  | SourceLocation OpLoc, | 
|  | OverloadCandidate *Cand) { | 
|  | assert(Cand->NumConversions <= 2 && "builtin operator is not binary"); | 
|  | std::string TypeStr("operator"); | 
|  | TypeStr += Opc; | 
|  | TypeStr += "("; | 
|  | TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); | 
|  | if (Cand->NumConversions == 1) { | 
|  | TypeStr += ")"; | 
|  | S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; | 
|  | } else { | 
|  | TypeStr += ", "; | 
|  | TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); | 
|  | TypeStr += ")"; | 
|  | S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, | 
|  | OverloadCandidate *Cand) { | 
|  | unsigned NoOperands = Cand->NumConversions; | 
|  | for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { | 
|  | const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; | 
|  | if (ICS.isBad()) break; // all meaningless after first invalid | 
|  | if (!ICS.isAmbiguous()) continue; | 
|  |  | 
|  | ICS.DiagnoseAmbiguousConversion(S, OpLoc, | 
|  | S.PDiag(diag::note_ambiguous_type_conversion)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { | 
|  | if (Cand->Function) | 
|  | return Cand->Function->getLocation(); | 
|  | if (Cand->IsSurrogate) | 
|  | return Cand->Surrogate->getLocation(); | 
|  | return SourceLocation(); | 
|  | } | 
|  |  | 
|  | static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) { | 
|  | switch ((Sema::TemplateDeductionResult)DFI.Result) { | 
|  | case Sema::TDK_Success: | 
|  | llvm_unreachable("TDK_success while diagnosing bad deduction"); | 
|  |  | 
|  | case Sema::TDK_Invalid: | 
|  | case Sema::TDK_Incomplete: | 
|  | return 1; | 
|  |  | 
|  | case Sema::TDK_Underqualified: | 
|  | case Sema::TDK_Inconsistent: | 
|  | return 2; | 
|  |  | 
|  | case Sema::TDK_SubstitutionFailure: | 
|  | case Sema::TDK_NonDeducedMismatch: | 
|  | case Sema::TDK_MiscellaneousDeductionFailure: | 
|  | return 3; | 
|  |  | 
|  | case Sema::TDK_InstantiationDepth: | 
|  | case Sema::TDK_FailedOverloadResolution: | 
|  | return 4; | 
|  |  | 
|  | case Sema::TDK_InvalidExplicitArguments: | 
|  | return 5; | 
|  |  | 
|  | case Sema::TDK_TooManyArguments: | 
|  | case Sema::TDK_TooFewArguments: | 
|  | return 6; | 
|  | } | 
|  | llvm_unreachable("Unhandled deduction result"); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct CompareOverloadCandidatesForDisplay { | 
|  | Sema &S; | 
|  | size_t NumArgs; | 
|  |  | 
|  | CompareOverloadCandidatesForDisplay(Sema &S, size_t nArgs) | 
|  | : S(S), NumArgs(nArgs) {} | 
|  |  | 
|  | bool operator()(const OverloadCandidate *L, | 
|  | const OverloadCandidate *R) { | 
|  | // Fast-path this check. | 
|  | if (L == R) return false; | 
|  |  | 
|  | // Order first by viability. | 
|  | if (L->Viable) { | 
|  | if (!R->Viable) return true; | 
|  |  | 
|  | // TODO: introduce a tri-valued comparison for overload | 
|  | // candidates.  Would be more worthwhile if we had a sort | 
|  | // that could exploit it. | 
|  | if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true; | 
|  | if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false; | 
|  | } else if (R->Viable) | 
|  | return false; | 
|  |  | 
|  | assert(L->Viable == R->Viable); | 
|  |  | 
|  | // Criteria by which we can sort non-viable candidates: | 
|  | if (!L->Viable) { | 
|  | // 1. Arity mismatches come after other candidates. | 
|  | if (L->FailureKind == ovl_fail_too_many_arguments || | 
|  | L->FailureKind == ovl_fail_too_few_arguments) { | 
|  | if (R->FailureKind == ovl_fail_too_many_arguments || | 
|  | R->FailureKind == ovl_fail_too_few_arguments) { | 
|  | int LDist = std::abs((int)L->getNumParams() - (int)NumArgs); | 
|  | int RDist = std::abs((int)R->getNumParams() - (int)NumArgs); | 
|  | if (LDist == RDist) { | 
|  | if (L->FailureKind == R->FailureKind) | 
|  | // Sort non-surrogates before surrogates. | 
|  | return !L->IsSurrogate && R->IsSurrogate; | 
|  | // Sort candidates requiring fewer parameters than there were | 
|  | // arguments given after candidates requiring more parameters | 
|  | // than there were arguments given. | 
|  | return L->FailureKind == ovl_fail_too_many_arguments; | 
|  | } | 
|  | return LDist < RDist; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | if (R->FailureKind == ovl_fail_too_many_arguments || | 
|  | R->FailureKind == ovl_fail_too_few_arguments) | 
|  | return true; | 
|  |  | 
|  | // 2. Bad conversions come first and are ordered by the number | 
|  | // of bad conversions and quality of good conversions. | 
|  | if (L->FailureKind == ovl_fail_bad_conversion) { | 
|  | if (R->FailureKind != ovl_fail_bad_conversion) | 
|  | return true; | 
|  |  | 
|  | // The conversion that can be fixed with a smaller number of changes, | 
|  | // comes first. | 
|  | unsigned numLFixes = L->Fix.NumConversionsFixed; | 
|  | unsigned numRFixes = R->Fix.NumConversionsFixed; | 
|  | numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes; | 
|  | numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes; | 
|  | if (numLFixes != numRFixes) { | 
|  | if (numLFixes < numRFixes) | 
|  | return true; | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If there's any ordering between the defined conversions... | 
|  | // FIXME: this might not be transitive. | 
|  | assert(L->NumConversions == R->NumConversions); | 
|  |  | 
|  | int leftBetter = 0; | 
|  | unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); | 
|  | for (unsigned E = L->NumConversions; I != E; ++I) { | 
|  | switch (CompareImplicitConversionSequences(S, | 
|  | L->Conversions[I], | 
|  | R->Conversions[I])) { | 
|  | case ImplicitConversionSequence::Better: | 
|  | leftBetter++; | 
|  | break; | 
|  |  | 
|  | case ImplicitConversionSequence::Worse: | 
|  | leftBetter--; | 
|  | break; | 
|  |  | 
|  | case ImplicitConversionSequence::Indistinguishable: | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (leftBetter > 0) return true; | 
|  | if (leftBetter < 0) return false; | 
|  |  | 
|  | } else if (R->FailureKind == ovl_fail_bad_conversion) | 
|  | return false; | 
|  |  | 
|  | if (L->FailureKind == ovl_fail_bad_deduction) { | 
|  | if (R->FailureKind != ovl_fail_bad_deduction) | 
|  | return true; | 
|  |  | 
|  | if (L->DeductionFailure.Result != R->DeductionFailure.Result) | 
|  | return RankDeductionFailure(L->DeductionFailure) | 
|  | < RankDeductionFailure(R->DeductionFailure); | 
|  | } else if (R->FailureKind == ovl_fail_bad_deduction) | 
|  | return false; | 
|  |  | 
|  | // TODO: others? | 
|  | } | 
|  |  | 
|  | // Sort everything else by location. | 
|  | SourceLocation LLoc = GetLocationForCandidate(L); | 
|  | SourceLocation RLoc = GetLocationForCandidate(R); | 
|  |  | 
|  | // Put candidates without locations (e.g. builtins) at the end. | 
|  | if (LLoc.isInvalid()) return false; | 
|  | if (RLoc.isInvalid()) return true; | 
|  |  | 
|  | return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// CompleteNonViableCandidate - Normally, overload resolution only | 
|  | /// computes up to the first. Produces the FixIt set if possible. | 
|  | static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, | 
|  | ArrayRef<Expr *> Args) { | 
|  | assert(!Cand->Viable); | 
|  |  | 
|  | // Don't do anything on failures other than bad conversion. | 
|  | if (Cand->FailureKind != ovl_fail_bad_conversion) return; | 
|  |  | 
|  | // We only want the FixIts if all the arguments can be corrected. | 
|  | bool Unfixable = false; | 
|  | // Use a implicit copy initialization to check conversion fixes. | 
|  | Cand->Fix.setConversionChecker(TryCopyInitialization); | 
|  |  | 
|  | // Skip forward to the first bad conversion. | 
|  | unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); | 
|  | unsigned ConvCount = Cand->NumConversions; | 
|  | while (true) { | 
|  | assert(ConvIdx != ConvCount && "no bad conversion in candidate"); | 
|  | ConvIdx++; | 
|  | if (Cand->Conversions[ConvIdx - 1].isBad()) { | 
|  | Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConvIdx == ConvCount) | 
|  | return; | 
|  |  | 
|  | assert(!Cand->Conversions[ConvIdx].isInitialized() && | 
|  | "remaining conversion is initialized?"); | 
|  |  | 
|  | // FIXME: this should probably be preserved from the overload | 
|  | // operation somehow. | 
|  | bool SuppressUserConversions = false; | 
|  |  | 
|  | const FunctionProtoType* Proto; | 
|  | unsigned ArgIdx = ConvIdx; | 
|  |  | 
|  | if (Cand->IsSurrogate) { | 
|  | QualType ConvType | 
|  | = Cand->Surrogate->getConversionType().getNonReferenceType(); | 
|  | if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) | 
|  | ConvType = ConvPtrType->getPointeeType(); | 
|  | Proto = ConvType->getAs<FunctionProtoType>(); | 
|  | ArgIdx--; | 
|  | } else if (Cand->Function) { | 
|  | Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); | 
|  | if (isa<CXXMethodDecl>(Cand->Function) && | 
|  | !isa<CXXConstructorDecl>(Cand->Function)) | 
|  | ArgIdx--; | 
|  | } else { | 
|  | // Builtin binary operator with a bad first conversion. | 
|  | assert(ConvCount <= 3); | 
|  | for (; ConvIdx != ConvCount; ++ConvIdx) | 
|  | Cand->Conversions[ConvIdx] | 
|  | = TryCopyInitialization(S, Args[ConvIdx], | 
|  | Cand->BuiltinTypes.ParamTypes[ConvIdx], | 
|  | SuppressUserConversions, | 
|  | /*InOverloadResolution*/ true, | 
|  | /*AllowObjCWritebackConversion=*/ | 
|  | S.getLangOpts().ObjCAutoRefCount); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Fill in the rest of the conversions. | 
|  | unsigned NumParams = Proto->getNumParams(); | 
|  | for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { | 
|  | if (ArgIdx < NumParams) { | 
|  | Cand->Conversions[ConvIdx] = TryCopyInitialization( | 
|  | S, Args[ArgIdx], Proto->getParamType(ArgIdx), SuppressUserConversions, | 
|  | /*InOverloadResolution=*/true, | 
|  | /*AllowObjCWritebackConversion=*/ | 
|  | S.getLangOpts().ObjCAutoRefCount); | 
|  | // Store the FixIt in the candidate if it exists. | 
|  | if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) | 
|  | Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); | 
|  | } | 
|  | else | 
|  | Cand->Conversions[ConvIdx].setEllipsis(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// PrintOverloadCandidates - When overload resolution fails, prints | 
|  | /// diagnostic messages containing the candidates in the candidate | 
|  | /// set. | 
|  | void OverloadCandidateSet::NoteCandidates(Sema &S, | 
|  | OverloadCandidateDisplayKind OCD, | 
|  | ArrayRef<Expr *> Args, | 
|  | StringRef Opc, | 
|  | SourceLocation OpLoc) { | 
|  | // Sort the candidates by viability and position.  Sorting directly would | 
|  | // be prohibitive, so we make a set of pointers and sort those. | 
|  | SmallVector<OverloadCandidate*, 32> Cands; | 
|  | if (OCD == OCD_AllCandidates) Cands.reserve(size()); | 
|  | for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { | 
|  | if (Cand->Viable) | 
|  | Cands.push_back(Cand); | 
|  | else if (OCD == OCD_AllCandidates) { | 
|  | CompleteNonViableCandidate(S, Cand, Args); | 
|  | if (Cand->Function || Cand->IsSurrogate) | 
|  | Cands.push_back(Cand); | 
|  | // Otherwise, this a non-viable builtin candidate.  We do not, in general, | 
|  | // want to list every possible builtin candidate. | 
|  | } | 
|  | } | 
|  |  | 
|  | std::sort(Cands.begin(), Cands.end(), | 
|  | CompareOverloadCandidatesForDisplay(S, Args.size())); | 
|  |  | 
|  | bool ReportedAmbiguousConversions = false; | 
|  |  | 
|  | SmallVectorImpl<OverloadCandidate*>::iterator I, E; | 
|  | const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); | 
|  | unsigned CandsShown = 0; | 
|  | for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { | 
|  | OverloadCandidate *Cand = *I; | 
|  |  | 
|  | // Set an arbitrary limit on the number of candidate functions we'll spam | 
|  | // the user with.  FIXME: This limit should depend on details of the | 
|  | // candidate list. | 
|  | if (CandsShown >= 4 && ShowOverloads == Ovl_Best) { | 
|  | break; | 
|  | } | 
|  | ++CandsShown; | 
|  |  | 
|  | if (Cand->Function) | 
|  | NoteFunctionCandidate(S, Cand, Args.size()); | 
|  | else if (Cand->IsSurrogate) | 
|  | NoteSurrogateCandidate(S, Cand); | 
|  | else { | 
|  | assert(Cand->Viable && | 
|  | "Non-viable built-in candidates are not added to Cands."); | 
|  | // Generally we only see ambiguities including viable builtin | 
|  | // operators if overload resolution got screwed up by an | 
|  | // ambiguous user-defined conversion. | 
|  | // | 
|  | // FIXME: It's quite possible for different conversions to see | 
|  | // different ambiguities, though. | 
|  | if (!ReportedAmbiguousConversions) { | 
|  | NoteAmbiguousUserConversions(S, OpLoc, Cand); | 
|  | ReportedAmbiguousConversions = true; | 
|  | } | 
|  |  | 
|  | // If this is a viable builtin, print it. | 
|  | NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (I != E) | 
|  | S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); | 
|  | } | 
|  |  | 
|  | static SourceLocation | 
|  | GetLocationForCandidate(const TemplateSpecCandidate *Cand) { | 
|  | return Cand->Specialization ? Cand->Specialization->getLocation() | 
|  | : SourceLocation(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct CompareTemplateSpecCandidatesForDisplay { | 
|  | Sema &S; | 
|  | CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {} | 
|  |  | 
|  | bool operator()(const TemplateSpecCandidate *L, | 
|  | const TemplateSpecCandidate *R) { | 
|  | // Fast-path this check. | 
|  | if (L == R) | 
|  | return false; | 
|  |  | 
|  | // Assuming that both candidates are not matches... | 
|  |  | 
|  | // Sort by the ranking of deduction failures. | 
|  | if (L->DeductionFailure.Result != R->DeductionFailure.Result) | 
|  | return RankDeductionFailure(L->DeductionFailure) < | 
|  | RankDeductionFailure(R->DeductionFailure); | 
|  |  | 
|  | // Sort everything else by location. | 
|  | SourceLocation LLoc = GetLocationForCandidate(L); | 
|  | SourceLocation RLoc = GetLocationForCandidate(R); | 
|  |  | 
|  | // Put candidates without locations (e.g. builtins) at the end. | 
|  | if (LLoc.isInvalid()) | 
|  | return false; | 
|  | if (RLoc.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Diagnose a template argument deduction failure. | 
|  | /// We are treating these failures as overload failures due to bad | 
|  | /// deductions. | 
|  | void TemplateSpecCandidate::NoteDeductionFailure(Sema &S) { | 
|  | DiagnoseBadDeduction(S, Specialization, // pattern | 
|  | DeductionFailure, /*NumArgs=*/0); | 
|  | } | 
|  |  | 
|  | void TemplateSpecCandidateSet::destroyCandidates() { | 
|  | for (iterator i = begin(), e = end(); i != e; ++i) { | 
|  | i->DeductionFailure.Destroy(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TemplateSpecCandidateSet::clear() { | 
|  | destroyCandidates(); | 
|  | Candidates.clear(); | 
|  | } | 
|  |  | 
|  | /// NoteCandidates - When no template specialization match is found, prints | 
|  | /// diagnostic messages containing the non-matching specializations that form | 
|  | /// the candidate set. | 
|  | /// This is analoguous to OverloadCandidateSet::NoteCandidates() with | 
|  | /// OCD == OCD_AllCandidates and Cand->Viable == false. | 
|  | void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) { | 
|  | // Sort the candidates by position (assuming no candidate is a match). | 
|  | // Sorting directly would be prohibitive, so we make a set of pointers | 
|  | // and sort those. | 
|  | SmallVector<TemplateSpecCandidate *, 32> Cands; | 
|  | Cands.reserve(size()); | 
|  | for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { | 
|  | if (Cand->Specialization) | 
|  | Cands.push_back(Cand); | 
|  | // Otherwise, this is a non-matching builtin candidate.  We do not, | 
|  | // in general, want to list every possible builtin candidate. | 
|  | } | 
|  |  | 
|  | std::sort(Cands.begin(), Cands.end(), | 
|  | CompareTemplateSpecCandidatesForDisplay(S)); | 
|  |  | 
|  | // FIXME: Perhaps rename OverloadsShown and getShowOverloads() | 
|  | // for generalization purposes (?). | 
|  | const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); | 
|  |  | 
|  | SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E; | 
|  | unsigned CandsShown = 0; | 
|  | for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { | 
|  | TemplateSpecCandidate *Cand = *I; | 
|  |  | 
|  | // Set an arbitrary limit on the number of candidates we'll spam | 
|  | // the user with.  FIXME: This limit should depend on details of the | 
|  | // candidate list. | 
|  | if (CandsShown >= 4 && ShowOverloads == Ovl_Best) | 
|  | break; | 
|  | ++CandsShown; | 
|  |  | 
|  | assert(Cand->Specialization && | 
|  | "Non-matching built-in candidates are not added to Cands."); | 
|  | Cand->NoteDeductionFailure(S); | 
|  | } | 
|  |  | 
|  | if (I != E) | 
|  | S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I); | 
|  | } | 
|  |  | 
|  | // [PossiblyAFunctionType]  -->   [Return] | 
|  | // NonFunctionType --> NonFunctionType | 
|  | // R (A) --> R(A) | 
|  | // R (*)(A) --> R (A) | 
|  | // R (&)(A) --> R (A) | 
|  | // R (S::*)(A) --> R (A) | 
|  | QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { | 
|  | QualType Ret = PossiblyAFunctionType; | 
|  | if (const PointerType *ToTypePtr = | 
|  | PossiblyAFunctionType->getAs<PointerType>()) | 
|  | Ret = ToTypePtr->getPointeeType(); | 
|  | else if (const ReferenceType *ToTypeRef = | 
|  | PossiblyAFunctionType->getAs<ReferenceType>()) | 
|  | Ret = ToTypeRef->getPointeeType(); | 
|  | else if (const MemberPointerType *MemTypePtr = | 
|  | PossiblyAFunctionType->getAs<MemberPointerType>()) | 
|  | Ret = MemTypePtr->getPointeeType(); | 
|  | Ret = | 
|  | Context.getCanonicalType(Ret).getUnqualifiedType(); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // A helper class to help with address of function resolution | 
|  | // - allows us to avoid passing around all those ugly parameters | 
|  | class AddressOfFunctionResolver { | 
|  | Sema& S; | 
|  | Expr* SourceExpr; | 
|  | const QualType& TargetType; | 
|  | QualType TargetFunctionType; // Extracted function type from target type | 
|  |  | 
|  | bool Complain; | 
|  | //DeclAccessPair& ResultFunctionAccessPair; | 
|  | ASTContext& Context; | 
|  |  | 
|  | bool TargetTypeIsNonStaticMemberFunction; | 
|  | bool FoundNonTemplateFunction; | 
|  | bool StaticMemberFunctionFromBoundPointer; | 
|  |  | 
|  | OverloadExpr::FindResult OvlExprInfo; | 
|  | OverloadExpr *OvlExpr; | 
|  | TemplateArgumentListInfo OvlExplicitTemplateArgs; | 
|  | SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; | 
|  | TemplateSpecCandidateSet FailedCandidates; | 
|  |  | 
|  | public: | 
|  | AddressOfFunctionResolver(Sema &S, Expr *SourceExpr, | 
|  | const QualType &TargetType, bool Complain) | 
|  | : S(S), SourceExpr(SourceExpr), TargetType(TargetType), | 
|  | Complain(Complain), Context(S.getASTContext()), | 
|  | TargetTypeIsNonStaticMemberFunction( | 
|  | !!TargetType->getAs<MemberPointerType>()), | 
|  | FoundNonTemplateFunction(false), | 
|  | StaticMemberFunctionFromBoundPointer(false), | 
|  | OvlExprInfo(OverloadExpr::find(SourceExpr)), | 
|  | OvlExpr(OvlExprInfo.Expression), | 
|  | FailedCandidates(OvlExpr->getNameLoc()) { | 
|  | ExtractUnqualifiedFunctionTypeFromTargetType(); | 
|  |  | 
|  | if (TargetFunctionType->isFunctionType()) { | 
|  | if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) | 
|  | if (!UME->isImplicitAccess() && | 
|  | !S.ResolveSingleFunctionTemplateSpecialization(UME)) | 
|  | StaticMemberFunctionFromBoundPointer = true; | 
|  | } else if (OvlExpr->hasExplicitTemplateArgs()) { | 
|  | DeclAccessPair dap; | 
|  | if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization( | 
|  | OvlExpr, false, &dap)) { | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) | 
|  | if (!Method->isStatic()) { | 
|  | // If the target type is a non-function type and the function found | 
|  | // is a non-static member function, pretend as if that was the | 
|  | // target, it's the only possible type to end up with. | 
|  | TargetTypeIsNonStaticMemberFunction = true; | 
|  |  | 
|  | // And skip adding the function if its not in the proper form. | 
|  | // We'll diagnose this due to an empty set of functions. | 
|  | if (!OvlExprInfo.HasFormOfMemberPointer) | 
|  | return; | 
|  | } | 
|  |  | 
|  | Matches.push_back(std::make_pair(dap, Fn)); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (OvlExpr->hasExplicitTemplateArgs()) | 
|  | OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs); | 
|  |  | 
|  | if (FindAllFunctionsThatMatchTargetTypeExactly()) { | 
|  | // C++ [over.over]p4: | 
|  | //   If more than one function is selected, [...] | 
|  | if (Matches.size() > 1) { | 
|  | if (FoundNonTemplateFunction) | 
|  | EliminateAllTemplateMatches(); | 
|  | else | 
|  | EliminateAllExceptMostSpecializedTemplate(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool isTargetTypeAFunction() const { | 
|  | return TargetFunctionType->isFunctionType(); | 
|  | } | 
|  |  | 
|  | // [ToType]     [Return] | 
|  |  | 
|  | // R (*)(A) --> R (A), IsNonStaticMemberFunction = false | 
|  | // R (&)(A) --> R (A), IsNonStaticMemberFunction = false | 
|  | // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true | 
|  | void inline ExtractUnqualifiedFunctionTypeFromTargetType() { | 
|  | TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); | 
|  | } | 
|  |  | 
|  | // return true if any matching specializations were found | 
|  | bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, | 
|  | const DeclAccessPair& CurAccessFunPair) { | 
|  | if (CXXMethodDecl *Method | 
|  | = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { | 
|  | // Skip non-static function templates when converting to pointer, and | 
|  | // static when converting to member pointer. | 
|  | if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) | 
|  | return false; | 
|  | } | 
|  | else if (TargetTypeIsNonStaticMemberFunction) | 
|  | return false; | 
|  |  | 
|  | // C++ [over.over]p2: | 
|  | //   If the name is a function template, template argument deduction is | 
|  | //   done (14.8.2.2), and if the argument deduction succeeds, the | 
|  | //   resulting template argument list is used to generate a single | 
|  | //   function template specialization, which is added to the set of | 
|  | //   overloaded functions considered. | 
|  | FunctionDecl *Specialization = nullptr; | 
|  | TemplateDeductionInfo Info(FailedCandidates.getLocation()); | 
|  | if (Sema::TemplateDeductionResult Result | 
|  | = S.DeduceTemplateArguments(FunctionTemplate, | 
|  | &OvlExplicitTemplateArgs, | 
|  | TargetFunctionType, Specialization, | 
|  | Info, /*InOverloadResolution=*/true)) { | 
|  | // Make a note of the failed deduction for diagnostics. | 
|  | FailedCandidates.addCandidate() | 
|  | .set(FunctionTemplate->getTemplatedDecl(), | 
|  | MakeDeductionFailureInfo(Context, Result, Info)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Template argument deduction ensures that we have an exact match or | 
|  | // compatible pointer-to-function arguments that would be adjusted by ICS. | 
|  | // This function template specicalization works. | 
|  | Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl()); | 
|  | assert(S.isSameOrCompatibleFunctionType( | 
|  | Context.getCanonicalType(Specialization->getType()), | 
|  | Context.getCanonicalType(TargetFunctionType))); | 
|  | Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AddMatchingNonTemplateFunction(NamedDecl* Fn, | 
|  | const DeclAccessPair& CurAccessFunPair) { | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { | 
|  | // Skip non-static functions when converting to pointer, and static | 
|  | // when converting to member pointer. | 
|  | if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) | 
|  | return false; | 
|  | } | 
|  | else if (TargetTypeIsNonStaticMemberFunction) | 
|  | return false; | 
|  |  | 
|  | if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { | 
|  | if (S.getLangOpts().CUDA) | 
|  | if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) | 
|  | if (!Caller->isImplicit() && S.CheckCUDATarget(Caller, FunDecl)) | 
|  | return false; | 
|  |  | 
|  | // If any candidate has a placeholder return type, trigger its deduction | 
|  | // now. | 
|  | if (S.getLangOpts().CPlusPlus14 && | 
|  | FunDecl->getReturnType()->isUndeducedType() && | 
|  | S.DeduceReturnType(FunDecl, SourceExpr->getLocStart(), Complain)) | 
|  | return false; | 
|  |  | 
|  | QualType ResultTy; | 
|  | if (Context.hasSameUnqualifiedType(TargetFunctionType, | 
|  | FunDecl->getType()) || | 
|  | S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType, | 
|  | ResultTy)) { | 
|  | Matches.push_back(std::make_pair(CurAccessFunPair, | 
|  | cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); | 
|  | FoundNonTemplateFunction = true; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool FindAllFunctionsThatMatchTargetTypeExactly() { | 
|  | bool Ret = false; | 
|  |  | 
|  | // If the overload expression doesn't have the form of a pointer to | 
|  | // member, don't try to convert it to a pointer-to-member type. | 
|  | if (IsInvalidFormOfPointerToMemberFunction()) | 
|  | return false; | 
|  |  | 
|  | for (UnresolvedSetIterator I = OvlExpr->decls_begin(), | 
|  | E = OvlExpr->decls_end(); | 
|  | I != E; ++I) { | 
|  | // Look through any using declarations to find the underlying function. | 
|  | NamedDecl *Fn = (*I)->getUnderlyingDecl(); | 
|  |  | 
|  | // C++ [over.over]p3: | 
|  | //   Non-member functions and static member functions match | 
|  | //   targets of type "pointer-to-function" or "reference-to-function." | 
|  | //   Nonstatic member functions match targets of | 
|  | //   type "pointer-to-member-function." | 
|  | // Note that according to DR 247, the containing class does not matter. | 
|  | if (FunctionTemplateDecl *FunctionTemplate | 
|  | = dyn_cast<FunctionTemplateDecl>(Fn)) { | 
|  | if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) | 
|  | Ret = true; | 
|  | } | 
|  | // If we have explicit template arguments supplied, skip non-templates. | 
|  | else if (!OvlExpr->hasExplicitTemplateArgs() && | 
|  | AddMatchingNonTemplateFunction(Fn, I.getPair())) | 
|  | Ret = true; | 
|  | } | 
|  | assert(Ret || Matches.empty()); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | void EliminateAllExceptMostSpecializedTemplate() { | 
|  | //   [...] and any given function template specialization F1 is | 
|  | //   eliminated if the set contains a second function template | 
|  | //   specialization whose function template is more specialized | 
|  | //   than the function template of F1 according to the partial | 
|  | //   ordering rules of 14.5.5.2. | 
|  |  | 
|  | // The algorithm specified above is quadratic. We instead use a | 
|  | // two-pass algorithm (similar to the one used to identify the | 
|  | // best viable function in an overload set) that identifies the | 
|  | // best function template (if it exists). | 
|  |  | 
|  | UnresolvedSet<4> MatchesCopy; // TODO: avoid! | 
|  | for (unsigned I = 0, E = Matches.size(); I != E; ++I) | 
|  | MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); | 
|  |  | 
|  | // TODO: It looks like FailedCandidates does not serve much purpose | 
|  | // here, since the no_viable diagnostic has index 0. | 
|  | UnresolvedSetIterator Result = S.getMostSpecialized( | 
|  | MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates, | 
|  | SourceExpr->getLocStart(), S.PDiag(), | 
|  | S.PDiag(diag::err_addr_ovl_ambiguous) << Matches[0] | 
|  | .second->getDeclName(), | 
|  | S.PDiag(diag::note_ovl_candidate) << (unsigned)oc_function_template, | 
|  | Complain, TargetFunctionType); | 
|  |  | 
|  | if (Result != MatchesCopy.end()) { | 
|  | // Make it the first and only element | 
|  | Matches[0].first = Matches[Result - MatchesCopy.begin()].first; | 
|  | Matches[0].second = cast<FunctionDecl>(*Result); | 
|  | Matches.resize(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | void EliminateAllTemplateMatches() { | 
|  | //   [...] any function template specializations in the set are | 
|  | //   eliminated if the set also contains a non-template function, [...] | 
|  | for (unsigned I = 0, N = Matches.size(); I != N; ) { | 
|  | if (Matches[I].second->getPrimaryTemplate() == nullptr) | 
|  | ++I; | 
|  | else { | 
|  | Matches[I] = Matches[--N]; | 
|  | Matches.set_size(N); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | public: | 
|  | void ComplainNoMatchesFound() const { | 
|  | assert(Matches.empty()); | 
|  | S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable) | 
|  | << OvlExpr->getName() << TargetFunctionType | 
|  | << OvlExpr->getSourceRange(); | 
|  | if (FailedCandidates.empty()) | 
|  | S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType); | 
|  | else { | 
|  | // We have some deduction failure messages. Use them to diagnose | 
|  | // the function templates, and diagnose the non-template candidates | 
|  | // normally. | 
|  | for (UnresolvedSetIterator I = OvlExpr->decls_begin(), | 
|  | IEnd = OvlExpr->decls_end(); | 
|  | I != IEnd; ++I) | 
|  | if (FunctionDecl *Fun = | 
|  | dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) | 
|  | S.NoteOverloadCandidate(Fun, TargetFunctionType); | 
|  | FailedCandidates.NoteCandidates(S, OvlExpr->getLocStart()); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool IsInvalidFormOfPointerToMemberFunction() const { | 
|  | return TargetTypeIsNonStaticMemberFunction && | 
|  | !OvlExprInfo.HasFormOfMemberPointer; | 
|  | } | 
|  |  | 
|  | void ComplainIsInvalidFormOfPointerToMemberFunction() const { | 
|  | // TODO: Should we condition this on whether any functions might | 
|  | // have matched, or is it more appropriate to do that in callers? | 
|  | // TODO: a fixit wouldn't hurt. | 
|  | S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) | 
|  | << TargetType << OvlExpr->getSourceRange(); | 
|  | } | 
|  |  | 
|  | bool IsStaticMemberFunctionFromBoundPointer() const { | 
|  | return StaticMemberFunctionFromBoundPointer; | 
|  | } | 
|  |  | 
|  | void ComplainIsStaticMemberFunctionFromBoundPointer() const { | 
|  | S.Diag(OvlExpr->getLocStart(), | 
|  | diag::err_invalid_form_pointer_member_function) | 
|  | << OvlExpr->getSourceRange(); | 
|  | } | 
|  |  | 
|  | void ComplainOfInvalidConversion() const { | 
|  | S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref) | 
|  | << OvlExpr->getName() << TargetType; | 
|  | } | 
|  |  | 
|  | void ComplainMultipleMatchesFound() const { | 
|  | assert(Matches.size() > 1); | 
|  | S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous) | 
|  | << OvlExpr->getName() | 
|  | << OvlExpr->getSourceRange(); | 
|  | S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType); | 
|  | } | 
|  |  | 
|  | bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); } | 
|  |  | 
|  | int getNumMatches() const { return Matches.size(); } | 
|  |  | 
|  | FunctionDecl* getMatchingFunctionDecl() const { | 
|  | if (Matches.size() != 1) return nullptr; | 
|  | return Matches[0].second; | 
|  | } | 
|  |  | 
|  | const DeclAccessPair* getMatchingFunctionAccessPair() const { | 
|  | if (Matches.size() != 1) return nullptr; | 
|  | return &Matches[0].first; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// ResolveAddressOfOverloadedFunction - Try to resolve the address of | 
|  | /// an overloaded function (C++ [over.over]), where @p From is an | 
|  | /// expression with overloaded function type and @p ToType is the type | 
|  | /// we're trying to resolve to. For example: | 
|  | /// | 
|  | /// @code | 
|  | /// int f(double); | 
|  | /// int f(int); | 
|  | /// | 
|  | /// int (*pfd)(double) = f; // selects f(double) | 
|  | /// @endcode | 
|  | /// | 
|  | /// This routine returns the resulting FunctionDecl if it could be | 
|  | /// resolved, and NULL otherwise. When @p Complain is true, this | 
|  | /// routine will emit diagnostics if there is an error. | 
|  | FunctionDecl * | 
|  | Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, | 
|  | QualType TargetType, | 
|  | bool Complain, | 
|  | DeclAccessPair &FoundResult, | 
|  | bool *pHadMultipleCandidates) { | 
|  | assert(AddressOfExpr->getType() == Context.OverloadTy); | 
|  |  | 
|  | AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, | 
|  | Complain); | 
|  | int NumMatches = Resolver.getNumMatches(); | 
|  | FunctionDecl *Fn = nullptr; | 
|  | if (NumMatches == 0 && Complain) { | 
|  | if (Resolver.IsInvalidFormOfPointerToMemberFunction()) | 
|  | Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); | 
|  | else | 
|  | Resolver.ComplainNoMatchesFound(); | 
|  | } | 
|  | else if (NumMatches > 1 && Complain) | 
|  | Resolver.ComplainMultipleMatchesFound(); | 
|  | else if (NumMatches == 1) { | 
|  | Fn = Resolver.getMatchingFunctionDecl(); | 
|  | assert(Fn); | 
|  | FoundResult = *Resolver.getMatchingFunctionAccessPair(); | 
|  | if (Complain) { | 
|  | if (Resolver.IsStaticMemberFunctionFromBoundPointer()) | 
|  | Resolver.ComplainIsStaticMemberFunctionFromBoundPointer(); | 
|  | else | 
|  | CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pHadMultipleCandidates) | 
|  | *pHadMultipleCandidates = Resolver.hadMultipleCandidates(); | 
|  | return Fn; | 
|  | } | 
|  |  | 
|  | /// \brief Given an expression that refers to an overloaded function, try to | 
|  | /// resolve that overloaded function expression down to a single function. | 
|  | /// | 
|  | /// This routine can only resolve template-ids that refer to a single function | 
|  | /// template, where that template-id refers to a single template whose template | 
|  | /// arguments are either provided by the template-id or have defaults, | 
|  | /// as described in C++0x [temp.arg.explicit]p3. | 
|  | /// | 
|  | /// If no template-ids are found, no diagnostics are emitted and NULL is | 
|  | /// returned. | 
|  | FunctionDecl * | 
|  | Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, | 
|  | bool Complain, | 
|  | DeclAccessPair *FoundResult) { | 
|  | // C++ [over.over]p1: | 
|  | //   [...] [Note: any redundant set of parentheses surrounding the | 
|  | //   overloaded function name is ignored (5.1). ] | 
|  | // C++ [over.over]p1: | 
|  | //   [...] The overloaded function name can be preceded by the & | 
|  | //   operator. | 
|  |  | 
|  | // If we didn't actually find any template-ids, we're done. | 
|  | if (!ovl->hasExplicitTemplateArgs()) | 
|  | return nullptr; | 
|  |  | 
|  | TemplateArgumentListInfo ExplicitTemplateArgs; | 
|  | ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); | 
|  | TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc()); | 
|  |  | 
|  | // Look through all of the overloaded functions, searching for one | 
|  | // whose type matches exactly. | 
|  | FunctionDecl *Matched = nullptr; | 
|  | for (UnresolvedSetIterator I = ovl->decls_begin(), | 
|  | E = ovl->decls_end(); I != E; ++I) { | 
|  | // C++0x [temp.arg.explicit]p3: | 
|  | //   [...] In contexts where deduction is done and fails, or in contexts | 
|  | //   where deduction is not done, if a template argument list is | 
|  | //   specified and it, along with any default template arguments, | 
|  | //   identifies a single function template specialization, then the | 
|  | //   template-id is an lvalue for the function template specialization. | 
|  | FunctionTemplateDecl *FunctionTemplate | 
|  | = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); | 
|  |  | 
|  | // C++ [over.over]p2: | 
|  | //   If the name is a function template, template argument deduction is | 
|  | //   done (14.8.2.2), and if the argument deduction succeeds, the | 
|  | //   resulting template argument list is used to generate a single | 
|  | //   function template specialization, which is added to the set of | 
|  | //   overloaded functions considered. | 
|  | FunctionDecl *Specialization = nullptr; | 
|  | TemplateDeductionInfo Info(FailedCandidates.getLocation()); | 
|  | if (TemplateDeductionResult Result | 
|  | = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, | 
|  | Specialization, Info, | 
|  | /*InOverloadResolution=*/true)) { | 
|  | // Make a note of the failed deduction for diagnostics. | 
|  | // TODO: Actually use the failed-deduction info? | 
|  | FailedCandidates.addCandidate() | 
|  | .set(FunctionTemplate->getTemplatedDecl(), | 
|  | MakeDeductionFailureInfo(Context, Result, Info)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(Specialization && "no specialization and no error?"); | 
|  |  | 
|  | // Multiple matches; we can't resolve to a single declaration. | 
|  | if (Matched) { | 
|  | if (Complain) { | 
|  | Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous) | 
|  | << ovl->getName(); | 
|  | NoteAllOverloadCandidates(ovl); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Matched = Specialization; | 
|  | if (FoundResult) *FoundResult = I.getPair(); | 
|  | } | 
|  |  | 
|  | if (Matched && getLangOpts().CPlusPlus14 && | 
|  | Matched->getReturnType()->isUndeducedType() && | 
|  | DeduceReturnType(Matched, ovl->getExprLoc(), Complain)) | 
|  | return nullptr; | 
|  |  | 
|  | return Matched; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | // Resolve and fix an overloaded expression that can be resolved | 
|  | // because it identifies a single function template specialization. | 
|  | // | 
|  | // Last three arguments should only be supplied if Complain = true | 
|  | // | 
|  | // Return true if it was logically possible to so resolve the | 
|  | // expression, regardless of whether or not it succeeded.  Always | 
|  | // returns true if 'complain' is set. | 
|  | bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization( | 
|  | ExprResult &SrcExpr, bool doFunctionPointerConverion, | 
|  | bool complain, const SourceRange& OpRangeForComplaining, | 
|  | QualType DestTypeForComplaining, | 
|  | unsigned DiagIDForComplaining) { | 
|  | assert(SrcExpr.get()->getType() == Context.OverloadTy); | 
|  |  | 
|  | OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get()); | 
|  |  | 
|  | DeclAccessPair found; | 
|  | ExprResult SingleFunctionExpression; | 
|  | if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( | 
|  | ovl.Expression, /*complain*/ false, &found)) { | 
|  | if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) { | 
|  | SrcExpr = ExprError(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // It is only correct to resolve to an instance method if we're | 
|  | // resolving a form that's permitted to be a pointer to member. | 
|  | // Otherwise we'll end up making a bound member expression, which | 
|  | // is illegal in all the contexts we resolve like this. | 
|  | if (!ovl.HasFormOfMemberPointer && | 
|  | isa<CXXMethodDecl>(fn) && | 
|  | cast<CXXMethodDecl>(fn)->isInstance()) { | 
|  | if (!complain) return false; | 
|  |  | 
|  | Diag(ovl.Expression->getExprLoc(), | 
|  | diag::err_bound_member_function) | 
|  | << 0 << ovl.Expression->getSourceRange(); | 
|  |  | 
|  | // TODO: I believe we only end up here if there's a mix of | 
|  | // static and non-static candidates (otherwise the expression | 
|  | // would have 'bound member' type, not 'overload' type). | 
|  | // Ideally we would note which candidate was chosen and why | 
|  | // the static candidates were rejected. | 
|  | SrcExpr = ExprError(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Fix the expression to refer to 'fn'. | 
|  | SingleFunctionExpression = | 
|  | FixOverloadedFunctionReference(SrcExpr.get(), found, fn); | 
|  |  | 
|  | // If desired, do function-to-pointer decay. | 
|  | if (doFunctionPointerConverion) { | 
|  | SingleFunctionExpression = | 
|  | DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get()); | 
|  | if (SingleFunctionExpression.isInvalid()) { | 
|  | SrcExpr = ExprError(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!SingleFunctionExpression.isUsable()) { | 
|  | if (complain) { | 
|  | Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining) | 
|  | << ovl.Expression->getName() | 
|  | << DestTypeForComplaining | 
|  | << OpRangeForComplaining | 
|  | << ovl.Expression->getQualifierLoc().getSourceRange(); | 
|  | NoteAllOverloadCandidates(SrcExpr.get()); | 
|  |  | 
|  | SrcExpr = ExprError(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SrcExpr = SingleFunctionExpression; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Add a single candidate to the overload set. | 
|  | static void AddOverloadedCallCandidate(Sema &S, | 
|  | DeclAccessPair FoundDecl, | 
|  | TemplateArgumentListInfo *ExplicitTemplateArgs, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet &CandidateSet, | 
|  | bool PartialOverloading, | 
|  | bool KnownValid) { | 
|  | NamedDecl *Callee = FoundDecl.getDecl(); | 
|  | if (isa<UsingShadowDecl>(Callee)) | 
|  | Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); | 
|  |  | 
|  | if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { | 
|  | if (ExplicitTemplateArgs) { | 
|  | assert(!KnownValid && "Explicit template arguments?"); | 
|  | return; | 
|  | } | 
|  | S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, | 
|  | /*SuppressUsedConversions=*/false, | 
|  | PartialOverloading); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (FunctionTemplateDecl *FuncTemplate | 
|  | = dyn_cast<FunctionTemplateDecl>(Callee)) { | 
|  | S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, | 
|  | ExplicitTemplateArgs, Args, CandidateSet, | 
|  | /*SuppressUsedConversions=*/false, | 
|  | PartialOverloading); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(!KnownValid && "unhandled case in overloaded call candidate"); | 
|  | } | 
|  |  | 
|  | /// \brief Add the overload candidates named by callee and/or found by argument | 
|  | /// dependent lookup to the given overload set. | 
|  | void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet &CandidateSet, | 
|  | bool PartialOverloading) { | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Verify that ArgumentDependentLookup is consistent with the rules | 
|  | // in C++0x [basic.lookup.argdep]p3: | 
|  | // | 
|  | //   Let X be the lookup set produced by unqualified lookup (3.4.1) | 
|  | //   and let Y be the lookup set produced by argument dependent | 
|  | //   lookup (defined as follows). If X contains | 
|  | // | 
|  | //     -- a declaration of a class member, or | 
|  | // | 
|  | //     -- a block-scope function declaration that is not a | 
|  | //        using-declaration, or | 
|  | // | 
|  | //     -- a declaration that is neither a function or a function | 
|  | //        template | 
|  | // | 
|  | //   then Y is empty. | 
|  |  | 
|  | if (ULE->requiresADL()) { | 
|  | for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), | 
|  | E = ULE->decls_end(); I != E; ++I) { | 
|  | assert(!(*I)->getDeclContext()->isRecord()); | 
|  | assert(isa<UsingShadowDecl>(*I) || | 
|  | !(*I)->getDeclContext()->isFunctionOrMethod()); | 
|  | assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // It would be nice to avoid this copy. | 
|  | TemplateArgumentListInfo TABuffer; | 
|  | TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; | 
|  | if (ULE->hasExplicitTemplateArgs()) { | 
|  | ULE->copyTemplateArgumentsInto(TABuffer); | 
|  | ExplicitTemplateArgs = &TABuffer; | 
|  | } | 
|  |  | 
|  | for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), | 
|  | E = ULE->decls_end(); I != E; ++I) | 
|  | AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, | 
|  | CandidateSet, PartialOverloading, | 
|  | /*KnownValid*/ true); | 
|  |  | 
|  | if (ULE->requiresADL()) | 
|  | AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(), | 
|  | Args, ExplicitTemplateArgs, | 
|  | CandidateSet, PartialOverloading); | 
|  | } | 
|  |  | 
|  | /// Determine whether a declaration with the specified name could be moved into | 
|  | /// a different namespace. | 
|  | static bool canBeDeclaredInNamespace(const DeclarationName &Name) { | 
|  | switch (Name.getCXXOverloadedOperator()) { | 
|  | case OO_New: case OO_Array_New: | 
|  | case OO_Delete: case OO_Array_Delete: | 
|  | return false; | 
|  |  | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Attempt to recover from an ill-formed use of a non-dependent name in a | 
|  | /// template, where the non-dependent name was declared after the template | 
|  | /// was defined. This is common in code written for a compilers which do not | 
|  | /// correctly implement two-stage name lookup. | 
|  | /// | 
|  | /// Returns true if a viable candidate was found and a diagnostic was issued. | 
|  | static bool | 
|  | DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc, | 
|  | const CXXScopeSpec &SS, LookupResult &R, | 
|  | OverloadCandidateSet::CandidateSetKind CSK, | 
|  | TemplateArgumentListInfo *ExplicitTemplateArgs, | 
|  | ArrayRef<Expr *> Args) { | 
|  | if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty()) | 
|  | return false; | 
|  |  | 
|  | for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { | 
|  | if (DC->isTransparentContext()) | 
|  | continue; | 
|  |  | 
|  | SemaRef.LookupQualifiedName(R, DC); | 
|  |  | 
|  | if (!R.empty()) { | 
|  | R.suppressDiagnostics(); | 
|  |  | 
|  | if (isa<CXXRecordDecl>(DC)) { | 
|  | // Don't diagnose names we find in classes; we get much better | 
|  | // diagnostics for these from DiagnoseEmptyLookup. | 
|  | R.clear(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | OverloadCandidateSet Candidates(FnLoc, CSK); | 
|  | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) | 
|  | AddOverloadedCallCandidate(SemaRef, I.getPair(), | 
|  | ExplicitTemplateArgs, Args, | 
|  | Candidates, false, /*KnownValid*/ false); | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) { | 
|  | // No viable functions. Don't bother the user with notes for functions | 
|  | // which don't work and shouldn't be found anyway. | 
|  | R.clear(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Find the namespaces where ADL would have looked, and suggest | 
|  | // declaring the function there instead. | 
|  | Sema::AssociatedNamespaceSet AssociatedNamespaces; | 
|  | Sema::AssociatedClassSet AssociatedClasses; | 
|  | SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args, | 
|  | AssociatedNamespaces, | 
|  | AssociatedClasses); | 
|  | Sema::AssociatedNamespaceSet SuggestedNamespaces; | 
|  | if (canBeDeclaredInNamespace(R.getLookupName())) { | 
|  | DeclContext *Std = SemaRef.getStdNamespace(); | 
|  | for (Sema::AssociatedNamespaceSet::iterator | 
|  | it = AssociatedNamespaces.begin(), | 
|  | end = AssociatedNamespaces.end(); it != end; ++it) { | 
|  | // Never suggest declaring a function within namespace 'std'. | 
|  | if (Std && Std->Encloses(*it)) | 
|  | continue; | 
|  |  | 
|  | // Never suggest declaring a function within a namespace with a | 
|  | // reserved name, like __gnu_cxx. | 
|  | NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it); | 
|  | if (NS && | 
|  | NS->getQualifiedNameAsString().find("__") != std::string::npos) | 
|  | continue; | 
|  |  | 
|  | SuggestedNamespaces.insert(*it); | 
|  | } | 
|  | } | 
|  |  | 
|  | SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup) | 
|  | << R.getLookupName(); | 
|  | if (SuggestedNamespaces.empty()) { | 
|  | SemaRef.Diag(Best->Function->getLocation(), | 
|  | diag::note_not_found_by_two_phase_lookup) | 
|  | << R.getLookupName() << 0; | 
|  | } else if (SuggestedNamespaces.size() == 1) { | 
|  | SemaRef.Diag(Best->Function->getLocation(), | 
|  | diag::note_not_found_by_two_phase_lookup) | 
|  | << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); | 
|  | } else { | 
|  | // FIXME: It would be useful to list the associated namespaces here, | 
|  | // but the diagnostics infrastructure doesn't provide a way to produce | 
|  | // a localized representation of a list of items. | 
|  | SemaRef.Diag(Best->Function->getLocation(), | 
|  | diag::note_not_found_by_two_phase_lookup) | 
|  | << R.getLookupName() << 2; | 
|  | } | 
|  |  | 
|  | // Try to recover by calling this function. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | R.clear(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Attempt to recover from ill-formed use of a non-dependent operator in a | 
|  | /// template, where the non-dependent operator was declared after the template | 
|  | /// was defined. | 
|  | /// | 
|  | /// Returns true if a viable candidate was found and a diagnostic was issued. | 
|  | static bool | 
|  | DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, | 
|  | SourceLocation OpLoc, | 
|  | ArrayRef<Expr *> Args) { | 
|  | DeclarationName OpName = | 
|  | SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); | 
|  | LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); | 
|  | return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R, | 
|  | OverloadCandidateSet::CSK_Operator, | 
|  | /*ExplicitTemplateArgs=*/nullptr, Args); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class BuildRecoveryCallExprRAII { | 
|  | Sema &SemaRef; | 
|  | public: | 
|  | BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) { | 
|  | assert(SemaRef.IsBuildingRecoveryCallExpr == false); | 
|  | SemaRef.IsBuildingRecoveryCallExpr = true; | 
|  | } | 
|  |  | 
|  | ~BuildRecoveryCallExprRAII() { | 
|  | SemaRef.IsBuildingRecoveryCallExpr = false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<CorrectionCandidateCallback> | 
|  | MakeValidator(Sema &SemaRef, MemberExpr *ME, size_t NumArgs, | 
|  | bool HasTemplateArgs, bool AllowTypoCorrection) { | 
|  | if (!AllowTypoCorrection) | 
|  | return llvm::make_unique<NoTypoCorrectionCCC>(); | 
|  | return llvm::make_unique<FunctionCallFilterCCC>(SemaRef, NumArgs, | 
|  | HasTemplateArgs, ME); | 
|  | } | 
|  |  | 
|  | /// Attempts to recover from a call where no functions were found. | 
|  | /// | 
|  | /// Returns true if new candidates were found. | 
|  | static ExprResult | 
|  | BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, | 
|  | UnresolvedLookupExpr *ULE, | 
|  | SourceLocation LParenLoc, | 
|  | MutableArrayRef<Expr *> Args, | 
|  | SourceLocation RParenLoc, | 
|  | bool EmptyLookup, bool AllowTypoCorrection) { | 
|  | // Do not try to recover if it is already building a recovery call. | 
|  | // This stops infinite loops for template instantiations like | 
|  | // | 
|  | // template <typename T> auto foo(T t) -> decltype(foo(t)) {} | 
|  | // template <typename T> auto foo(T t) -> decltype(foo(&t)) {} | 
|  | // | 
|  | if (SemaRef.IsBuildingRecoveryCallExpr) | 
|  | return ExprError(); | 
|  | BuildRecoveryCallExprRAII RCE(SemaRef); | 
|  |  | 
|  | CXXScopeSpec SS; | 
|  | SS.Adopt(ULE->getQualifierLoc()); | 
|  | SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc(); | 
|  |  | 
|  | TemplateArgumentListInfo TABuffer; | 
|  | TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; | 
|  | if (ULE->hasExplicitTemplateArgs()) { | 
|  | ULE->copyTemplateArgumentsInto(TABuffer); | 
|  | ExplicitTemplateArgs = &TABuffer; | 
|  | } | 
|  |  | 
|  | LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), | 
|  | Sema::LookupOrdinaryName); | 
|  | if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R, | 
|  | OverloadCandidateSet::CSK_Normal, | 
|  | ExplicitTemplateArgs, Args) && | 
|  | (!EmptyLookup || | 
|  | SemaRef.DiagnoseEmptyLookup( | 
|  | S, SS, R, | 
|  | MakeValidator(SemaRef, dyn_cast<MemberExpr>(Fn), Args.size(), | 
|  | ExplicitTemplateArgs != nullptr, AllowTypoCorrection), | 
|  | ExplicitTemplateArgs, Args))) | 
|  | return ExprError(); | 
|  |  | 
|  | assert(!R.empty() && "lookup results empty despite recovery"); | 
|  |  | 
|  | // Build an implicit member call if appropriate.  Just drop the | 
|  | // casts and such from the call, we don't really care. | 
|  | ExprResult NewFn = ExprError(); | 
|  | if ((*R.begin())->isCXXClassMember()) | 
|  | NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, | 
|  | R, ExplicitTemplateArgs); | 
|  | else if (ExplicitTemplateArgs || TemplateKWLoc.isValid()) | 
|  | NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, | 
|  | ExplicitTemplateArgs); | 
|  | else | 
|  | NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); | 
|  |  | 
|  | if (NewFn.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | // This shouldn't cause an infinite loop because we're giving it | 
|  | // an expression with viable lookup results, which should never | 
|  | // end up here. | 
|  | return SemaRef.ActOnCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc, | 
|  | MultiExprArg(Args.data(), Args.size()), | 
|  | RParenLoc); | 
|  | } | 
|  |  | 
|  | /// \brief Constructs and populates an OverloadedCandidateSet from | 
|  | /// the given function. | 
|  | /// \returns true when an the ExprResult output parameter has been set. | 
|  | bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn, | 
|  | UnresolvedLookupExpr *ULE, | 
|  | MultiExprArg Args, | 
|  | SourceLocation RParenLoc, | 
|  | OverloadCandidateSet *CandidateSet, | 
|  | ExprResult *Result) { | 
|  | #ifndef NDEBUG | 
|  | if (ULE->requiresADL()) { | 
|  | // To do ADL, we must have found an unqualified name. | 
|  | assert(!ULE->getQualifier() && "qualified name with ADL"); | 
|  |  | 
|  | // We don't perform ADL for implicit declarations of builtins. | 
|  | // Verify that this was correctly set up. | 
|  | FunctionDecl *F; | 
|  | if (ULE->decls_begin() + 1 == ULE->decls_end() && | 
|  | (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && | 
|  | F->getBuiltinID() && F->isImplicit()) | 
|  | llvm_unreachable("performing ADL for builtin"); | 
|  |  | 
|  | // We don't perform ADL in C. | 
|  | assert(getLangOpts().CPlusPlus && "ADL enabled in C"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | UnbridgedCastsSet UnbridgedCasts; | 
|  | if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) { | 
|  | *Result = ExprError(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Add the functions denoted by the callee to the set of candidate | 
|  | // functions, including those from argument-dependent lookup. | 
|  | AddOverloadedCallCandidates(ULE, Args, *CandidateSet); | 
|  |  | 
|  | // If we found nothing, try to recover. | 
|  | // BuildRecoveryCallExpr diagnoses the error itself, so we just bail | 
|  | // out if it fails. | 
|  | if (CandidateSet->empty()) { | 
|  | // In Microsoft mode, if we are inside a template class member function then | 
|  | // create a type dependent CallExpr. The goal is to postpone name lookup | 
|  | // to instantiation time to be able to search into type dependent base | 
|  | // classes. | 
|  | if (getLangOpts().MSVCCompat && CurContext->isDependentContext() && | 
|  | (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) { | 
|  | CallExpr *CE = new (Context) CallExpr(Context, Fn, Args, | 
|  | Context.DependentTy, VK_RValue, | 
|  | RParenLoc); | 
|  | CE->setTypeDependent(true); | 
|  | *Result = CE; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | UnbridgedCasts.restore(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns | 
|  | /// the completed call expression. If overload resolution fails, emits | 
|  | /// diagnostics and returns ExprError() | 
|  | static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, | 
|  | UnresolvedLookupExpr *ULE, | 
|  | SourceLocation LParenLoc, | 
|  | MultiExprArg Args, | 
|  | SourceLocation RParenLoc, | 
|  | Expr *ExecConfig, | 
|  | OverloadCandidateSet *CandidateSet, | 
|  | OverloadCandidateSet::iterator *Best, | 
|  | OverloadingResult OverloadResult, | 
|  | bool AllowTypoCorrection) { | 
|  | if (CandidateSet->empty()) | 
|  | return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args, | 
|  | RParenLoc, /*EmptyLookup=*/true, | 
|  | AllowTypoCorrection); | 
|  |  | 
|  | switch (OverloadResult) { | 
|  | case OR_Success: { | 
|  | FunctionDecl *FDecl = (*Best)->Function; | 
|  | SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl); | 
|  | if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc())) | 
|  | return ExprError(); | 
|  | Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); | 
|  | return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc, | 
|  | ExecConfig); | 
|  | } | 
|  |  | 
|  | case OR_No_Viable_Function: { | 
|  | // Try to recover by looking for viable functions which the user might | 
|  | // have meant to call. | 
|  | ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, | 
|  | Args, RParenLoc, | 
|  | /*EmptyLookup=*/false, | 
|  | AllowTypoCorrection); | 
|  | if (!Recovery.isInvalid()) | 
|  | return Recovery; | 
|  |  | 
|  | SemaRef.Diag(Fn->getLocStart(), | 
|  | diag::err_ovl_no_viable_function_in_call) | 
|  | << ULE->getName() << Fn->getSourceRange(); | 
|  | CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call) | 
|  | << ULE->getName() << Fn->getSourceRange(); | 
|  | CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args); | 
|  | break; | 
|  |  | 
|  | case OR_Deleted: { | 
|  | SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call) | 
|  | << (*Best)->Function->isDeleted() | 
|  | << ULE->getName() | 
|  | << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function) | 
|  | << Fn->getSourceRange(); | 
|  | CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args); | 
|  |  | 
|  | // We emitted an error for the unvailable/deleted function call but keep | 
|  | // the call in the AST. | 
|  | FunctionDecl *FDecl = (*Best)->Function; | 
|  | Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); | 
|  | return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc, | 
|  | ExecConfig); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Overload resolution failed. | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | /// BuildOverloadedCallExpr - Given the call expression that calls Fn | 
|  | /// (which eventually refers to the declaration Func) and the call | 
|  | /// arguments Args/NumArgs, attempt to resolve the function call down | 
|  | /// to a specific function. If overload resolution succeeds, returns | 
|  | /// the call expression produced by overload resolution. | 
|  | /// Otherwise, emits diagnostics and returns ExprError. | 
|  | ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, | 
|  | UnresolvedLookupExpr *ULE, | 
|  | SourceLocation LParenLoc, | 
|  | MultiExprArg Args, | 
|  | SourceLocation RParenLoc, | 
|  | Expr *ExecConfig, | 
|  | bool AllowTypoCorrection) { | 
|  | OverloadCandidateSet CandidateSet(Fn->getExprLoc(), | 
|  | OverloadCandidateSet::CSK_Normal); | 
|  | ExprResult result; | 
|  |  | 
|  | if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet, | 
|  | &result)) | 
|  | return result; | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | OverloadingResult OverloadResult = | 
|  | CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best); | 
|  |  | 
|  | return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, | 
|  | RParenLoc, ExecConfig, &CandidateSet, | 
|  | &Best, OverloadResult, | 
|  | AllowTypoCorrection); | 
|  | } | 
|  |  | 
|  | static bool IsOverloaded(const UnresolvedSetImpl &Functions) { | 
|  | return Functions.size() > 1 || | 
|  | (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); | 
|  | } | 
|  |  | 
|  | /// \brief Create a unary operation that may resolve to an overloaded | 
|  | /// operator. | 
|  | /// | 
|  | /// \param OpLoc The location of the operator itself (e.g., '*'). | 
|  | /// | 
|  | /// \param OpcIn The UnaryOperator::Opcode that describes this | 
|  | /// operator. | 
|  | /// | 
|  | /// \param Fns The set of non-member functions that will be | 
|  | /// considered by overload resolution. The caller needs to build this | 
|  | /// set based on the context using, e.g., | 
|  | /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This | 
|  | /// set should not contain any member functions; those will be added | 
|  | /// by CreateOverloadedUnaryOp(). | 
|  | /// | 
|  | /// \param Input The input argument. | 
|  | ExprResult | 
|  | Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, | 
|  | const UnresolvedSetImpl &Fns, | 
|  | Expr *Input) { | 
|  | UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); | 
|  |  | 
|  | OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); | 
|  | assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); | 
|  | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | 
|  | // TODO: provide better source location info. | 
|  | DeclarationNameInfo OpNameInfo(OpName, OpLoc); | 
|  |  | 
|  | if (checkPlaceholderForOverload(*this, Input)) | 
|  | return ExprError(); | 
|  |  | 
|  | Expr *Args[2] = { Input, nullptr }; | 
|  | unsigned NumArgs = 1; | 
|  |  | 
|  | // For post-increment and post-decrement, add the implicit '0' as | 
|  | // the second argument, so that we know this is a post-increment or | 
|  | // post-decrement. | 
|  | if (Opc == UO_PostInc || Opc == UO_PostDec) { | 
|  | llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); | 
|  | Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, | 
|  | SourceLocation()); | 
|  | NumArgs = 2; | 
|  | } | 
|  |  | 
|  | ArrayRef<Expr *> ArgsArray(Args, NumArgs); | 
|  |  | 
|  | if (Input->isTypeDependent()) { | 
|  | if (Fns.empty()) | 
|  | return new (Context) UnaryOperator(Input, Opc, Context.DependentTy, | 
|  | VK_RValue, OK_Ordinary, OpLoc); | 
|  |  | 
|  | CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators | 
|  | UnresolvedLookupExpr *Fn | 
|  | = UnresolvedLookupExpr::Create(Context, NamingClass, | 
|  | NestedNameSpecifierLoc(), OpNameInfo, | 
|  | /*ADL*/ true, IsOverloaded(Fns), | 
|  | Fns.begin(), Fns.end()); | 
|  | return new (Context) | 
|  | CXXOperatorCallExpr(Context, Op, Fn, ArgsArray, Context.DependentTy, | 
|  | VK_RValue, OpLoc, false); | 
|  | } | 
|  |  | 
|  | // Build an empty overload set. | 
|  | OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator); | 
|  |  | 
|  | // Add the candidates from the given function set. | 
|  | AddFunctionCandidates(Fns, ArgsArray, CandidateSet); | 
|  |  | 
|  | // Add operator candidates that are member functions. | 
|  | AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); | 
|  |  | 
|  | // Add candidates from ADL. | 
|  | AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray, | 
|  | /*ExplicitTemplateArgs*/nullptr, | 
|  | CandidateSet); | 
|  |  | 
|  | // Add builtin operator candidates. | 
|  | AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); | 
|  |  | 
|  | bool HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | // Perform overload resolution. | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { | 
|  | case OR_Success: { | 
|  | // We found a built-in operator or an overloaded operator. | 
|  | FunctionDecl *FnDecl = Best->Function; | 
|  |  | 
|  | if (FnDecl) { | 
|  | // We matched an overloaded operator. Build a call to that | 
|  | // operator. | 
|  |  | 
|  | // Convert the arguments. | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { | 
|  | CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl); | 
|  |  | 
|  | ExprResult InputRes = | 
|  | PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr, | 
|  | Best->FoundDecl, Method); | 
|  | if (InputRes.isInvalid()) | 
|  | return ExprError(); | 
|  | Input = InputRes.get(); | 
|  | } else { | 
|  | // Convert the arguments. | 
|  | ExprResult InputInit | 
|  | = PerformCopyInitialization(InitializedEntity::InitializeParameter( | 
|  | Context, | 
|  | FnDecl->getParamDecl(0)), | 
|  | SourceLocation(), | 
|  | Input); | 
|  | if (InputInit.isInvalid()) | 
|  | return ExprError(); | 
|  | Input = InputInit.get(); | 
|  | } | 
|  |  | 
|  | // Build the actual expression node. | 
|  | ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl, | 
|  | HadMultipleCandidates, OpLoc); | 
|  | if (FnExpr.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | // Determine the result type. | 
|  | QualType ResultTy = FnDecl->getReturnType(); | 
|  | ExprValueKind VK = Expr::getValueKindForType(ResultTy); | 
|  | ResultTy = ResultTy.getNonLValueExprType(Context); | 
|  |  | 
|  | Args[0] = Input; | 
|  | CallExpr *TheCall = | 
|  | new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(), ArgsArray, | 
|  | ResultTy, VK, OpLoc, false); | 
|  |  | 
|  | if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl)) | 
|  | return ExprError(); | 
|  |  | 
|  | return MaybeBindToTemporary(TheCall); | 
|  | } else { | 
|  | // We matched a built-in operator. Convert the arguments, then | 
|  | // break out so that we will build the appropriate built-in | 
|  | // operator node. | 
|  | ExprResult InputRes = | 
|  | PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], | 
|  | Best->Conversions[0], AA_Passing); | 
|  | if (InputRes.isInvalid()) | 
|  | return ExprError(); | 
|  | Input = InputRes.get(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | // This is an erroneous use of an operator which can be overloaded by | 
|  | // a non-member function. Check for non-member operators which were | 
|  | // defined too late to be candidates. | 
|  | if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray)) | 
|  | // FIXME: Recover by calling the found function. | 
|  | return ExprError(); | 
|  |  | 
|  | // No viable function; fall through to handling this as a | 
|  | // built-in operator, which will produce an error message for us. | 
|  | break; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary) | 
|  | << UnaryOperator::getOpcodeStr(Opc) | 
|  | << Input->getType() | 
|  | << Input->getSourceRange(); | 
|  | CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray, | 
|  | UnaryOperator::getOpcodeStr(Opc), OpLoc); | 
|  | return ExprError(); | 
|  |  | 
|  | case OR_Deleted: | 
|  | Diag(OpLoc, diag::err_ovl_deleted_oper) | 
|  | << Best->Function->isDeleted() | 
|  | << UnaryOperator::getOpcodeStr(Opc) | 
|  | << getDeletedOrUnavailableSuffix(Best->Function) | 
|  | << Input->getSourceRange(); | 
|  | CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray, | 
|  | UnaryOperator::getOpcodeStr(Opc), OpLoc); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // Either we found no viable overloaded operator or we matched a | 
|  | // built-in operator. In either case, fall through to trying to | 
|  | // build a built-in operation. | 
|  | return CreateBuiltinUnaryOp(OpLoc, Opc, Input); | 
|  | } | 
|  |  | 
|  | /// \brief Create a binary operation that may resolve to an overloaded | 
|  | /// operator. | 
|  | /// | 
|  | /// \param OpLoc The location of the operator itself (e.g., '+'). | 
|  | /// | 
|  | /// \param OpcIn The BinaryOperator::Opcode that describes this | 
|  | /// operator. | 
|  | /// | 
|  | /// \param Fns The set of non-member functions that will be | 
|  | /// considered by overload resolution. The caller needs to build this | 
|  | /// set based on the context using, e.g., | 
|  | /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This | 
|  | /// set should not contain any member functions; those will be added | 
|  | /// by CreateOverloadedBinOp(). | 
|  | /// | 
|  | /// \param LHS Left-hand argument. | 
|  | /// \param RHS Right-hand argument. | 
|  | ExprResult | 
|  | Sema::CreateOverloadedBinOp(SourceLocation OpLoc, | 
|  | unsigned OpcIn, | 
|  | const UnresolvedSetImpl &Fns, | 
|  | Expr *LHS, Expr *RHS) { | 
|  | Expr *Args[2] = { LHS, RHS }; | 
|  | LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple | 
|  |  | 
|  | BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); | 
|  | OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); | 
|  | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | 
|  |  | 
|  | // If either side is type-dependent, create an appropriate dependent | 
|  | // expression. | 
|  | if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { | 
|  | if (Fns.empty()) { | 
|  | // If there are no functions to store, just build a dependent | 
|  | // BinaryOperator or CompoundAssignment. | 
|  | if (Opc <= BO_Assign || Opc > BO_OrAssign) | 
|  | return new (Context) BinaryOperator( | 
|  | Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary, | 
|  | OpLoc, FPFeatures.fp_contract); | 
|  |  | 
|  | return new (Context) CompoundAssignOperator( | 
|  | Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary, | 
|  | Context.DependentTy, Context.DependentTy, OpLoc, | 
|  | FPFeatures.fp_contract); | 
|  | } | 
|  |  | 
|  | // FIXME: save results of ADL from here? | 
|  | CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators | 
|  | // TODO: provide better source location info in DNLoc component. | 
|  | DeclarationNameInfo OpNameInfo(OpName, OpLoc); | 
|  | UnresolvedLookupExpr *Fn | 
|  | = UnresolvedLookupExpr::Create(Context, NamingClass, | 
|  | NestedNameSpecifierLoc(), OpNameInfo, | 
|  | /*ADL*/ true, IsOverloaded(Fns), | 
|  | Fns.begin(), Fns.end()); | 
|  | return new (Context) | 
|  | CXXOperatorCallExpr(Context, Op, Fn, Args, Context.DependentTy, | 
|  | VK_RValue, OpLoc, FPFeatures.fp_contract); | 
|  | } | 
|  |  | 
|  | // Always do placeholder-like conversions on the RHS. | 
|  | if (checkPlaceholderForOverload(*this, Args[1])) | 
|  | return ExprError(); | 
|  |  | 
|  | // Do placeholder-like conversion on the LHS; note that we should | 
|  | // not get here with a PseudoObject LHS. | 
|  | assert(Args[0]->getObjectKind() != OK_ObjCProperty); | 
|  | if (checkPlaceholderForOverload(*this, Args[0])) | 
|  | return ExprError(); | 
|  |  | 
|  | // If this is the assignment operator, we only perform overload resolution | 
|  | // if the left-hand side is a class or enumeration type. This is actually | 
|  | // a hack. The standard requires that we do overload resolution between the | 
|  | // various built-in candidates, but as DR507 points out, this can lead to | 
|  | // problems. So we do it this way, which pretty much follows what GCC does. | 
|  | // Note that we go the traditional code path for compound assignment forms. | 
|  | if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) | 
|  | return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); | 
|  |  | 
|  | // If this is the .* operator, which is not overloadable, just | 
|  | // create a built-in binary operator. | 
|  | if (Opc == BO_PtrMemD) | 
|  | return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); | 
|  |  | 
|  | // Build an empty overload set. | 
|  | OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator); | 
|  |  | 
|  | // Add the candidates from the given function set. | 
|  | AddFunctionCandidates(Fns, Args, CandidateSet); | 
|  |  | 
|  | // Add operator candidates that are member functions. | 
|  | AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet); | 
|  |  | 
|  | // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not | 
|  | // performed for an assignment operator (nor for operator[] nor operator->, | 
|  | // which don't get here). | 
|  | if (Opc != BO_Assign) | 
|  | AddArgumentDependentLookupCandidates(OpName, OpLoc, Args, | 
|  | /*ExplicitTemplateArgs*/ nullptr, | 
|  | CandidateSet); | 
|  |  | 
|  | // Add builtin operator candidates. | 
|  | AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet); | 
|  |  | 
|  | bool HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | // Perform overload resolution. | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { | 
|  | case OR_Success: { | 
|  | // We found a built-in operator or an overloaded operator. | 
|  | FunctionDecl *FnDecl = Best->Function; | 
|  |  | 
|  | if (FnDecl) { | 
|  | // We matched an overloaded operator. Build a call to that | 
|  | // operator. | 
|  |  | 
|  | // Convert the arguments. | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { | 
|  | // Best->Access is only meaningful for class members. | 
|  | CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); | 
|  |  | 
|  | ExprResult Arg1 = | 
|  | PerformCopyInitialization( | 
|  | InitializedEntity::InitializeParameter(Context, | 
|  | FnDecl->getParamDecl(0)), | 
|  | SourceLocation(), Args[1]); | 
|  | if (Arg1.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | ExprResult Arg0 = | 
|  | PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr, | 
|  | Best->FoundDecl, Method); | 
|  | if (Arg0.isInvalid()) | 
|  | return ExprError(); | 
|  | Args[0] = Arg0.getAs<Expr>(); | 
|  | Args[1] = RHS = Arg1.getAs<Expr>(); | 
|  | } else { | 
|  | // Convert the arguments. | 
|  | ExprResult Arg0 = PerformCopyInitialization( | 
|  | InitializedEntity::InitializeParameter(Context, | 
|  | FnDecl->getParamDecl(0)), | 
|  | SourceLocation(), Args[0]); | 
|  | if (Arg0.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | ExprResult Arg1 = | 
|  | PerformCopyInitialization( | 
|  | InitializedEntity::InitializeParameter(Context, | 
|  | FnDecl->getParamDecl(1)), | 
|  | SourceLocation(), Args[1]); | 
|  | if (Arg1.isInvalid()) | 
|  | return ExprError(); | 
|  | Args[0] = LHS = Arg0.getAs<Expr>(); | 
|  | Args[1] = RHS = Arg1.getAs<Expr>(); | 
|  | } | 
|  |  | 
|  | // Build the actual expression node. | 
|  | ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, | 
|  | Best->FoundDecl, | 
|  | HadMultipleCandidates, OpLoc); | 
|  | if (FnExpr.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | // Determine the result type. | 
|  | QualType ResultTy = FnDecl->getReturnType(); | 
|  | ExprValueKind VK = Expr::getValueKindForType(ResultTy); | 
|  | ResultTy = ResultTy.getNonLValueExprType(Context); | 
|  |  | 
|  | CXXOperatorCallExpr *TheCall = | 
|  | new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(), | 
|  | Args, ResultTy, VK, OpLoc, | 
|  | FPFeatures.fp_contract); | 
|  |  | 
|  | if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, | 
|  | FnDecl)) | 
|  | return ExprError(); | 
|  |  | 
|  | ArrayRef<const Expr *> ArgsArray(Args, 2); | 
|  | // Cut off the implicit 'this'. | 
|  | if (isa<CXXMethodDecl>(FnDecl)) | 
|  | ArgsArray = ArgsArray.slice(1); | 
|  |  | 
|  | // Check for a self move. | 
|  | if (Op == OO_Equal) | 
|  | DiagnoseSelfMove(Args[0], Args[1], OpLoc); | 
|  |  | 
|  | checkCall(FnDecl, ArgsArray, 0, isa<CXXMethodDecl>(FnDecl), OpLoc, | 
|  | TheCall->getSourceRange(), VariadicDoesNotApply); | 
|  |  | 
|  | return MaybeBindToTemporary(TheCall); | 
|  | } else { | 
|  | // We matched a built-in operator. Convert the arguments, then | 
|  | // break out so that we will build the appropriate built-in | 
|  | // operator node. | 
|  | ExprResult ArgsRes0 = | 
|  | PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], | 
|  | Best->Conversions[0], AA_Passing); | 
|  | if (ArgsRes0.isInvalid()) | 
|  | return ExprError(); | 
|  | Args[0] = ArgsRes0.get(); | 
|  |  | 
|  | ExprResult ArgsRes1 = | 
|  | PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], | 
|  | Best->Conversions[1], AA_Passing); | 
|  | if (ArgsRes1.isInvalid()) | 
|  | return ExprError(); | 
|  | Args[1] = ArgsRes1.get(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | case OR_No_Viable_Function: { | 
|  | // C++ [over.match.oper]p9: | 
|  | //   If the operator is the operator , [...] and there are no | 
|  | //   viable functions, then the operator is assumed to be the | 
|  | //   built-in operator and interpreted according to clause 5. | 
|  | if (Opc == BO_Comma) | 
|  | break; | 
|  |  | 
|  | // For class as left operand for assignment or compound assigment | 
|  | // operator do not fall through to handling in built-in, but report that | 
|  | // no overloaded assignment operator found | 
|  | ExprResult Result = ExprError(); | 
|  | if (Args[0]->getType()->isRecordType() && | 
|  | Opc >= BO_Assign && Opc <= BO_OrAssign) { | 
|  | Diag(OpLoc,  diag::err_ovl_no_viable_oper) | 
|  | << BinaryOperator::getOpcodeStr(Opc) | 
|  | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
|  | if (Args[0]->getType()->isIncompleteType()) { | 
|  | Diag(OpLoc, diag::note_assign_lhs_incomplete) | 
|  | << Args[0]->getType() | 
|  | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
|  | } | 
|  | } else { | 
|  | // This is an erroneous use of an operator which can be overloaded by | 
|  | // a non-member function. Check for non-member operators which were | 
|  | // defined too late to be candidates. | 
|  | if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args)) | 
|  | // FIXME: Recover by calling the found function. | 
|  | return ExprError(); | 
|  |  | 
|  | // No viable function; try to create a built-in operation, which will | 
|  | // produce an error. Then, show the non-viable candidates. | 
|  | Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); | 
|  | } | 
|  | assert(Result.isInvalid() && | 
|  | "C++ binary operator overloading is missing candidates!"); | 
|  | if (Result.isInvalid()) | 
|  | CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, | 
|  | BinaryOperator::getOpcodeStr(Opc), OpLoc); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary) | 
|  | << BinaryOperator::getOpcodeStr(Opc) | 
|  | << Args[0]->getType() << Args[1]->getType() | 
|  | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
|  | CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, | 
|  | BinaryOperator::getOpcodeStr(Opc), OpLoc); | 
|  | return ExprError(); | 
|  |  | 
|  | case OR_Deleted: | 
|  | if (isImplicitlyDeleted(Best->Function)) { | 
|  | CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); | 
|  | Diag(OpLoc, diag::err_ovl_deleted_special_oper) | 
|  | << Context.getRecordType(Method->getParent()) | 
|  | << getSpecialMember(Method); | 
|  |  | 
|  | // The user probably meant to call this special member. Just | 
|  | // explain why it's deleted. | 
|  | NoteDeletedFunction(Method); | 
|  | return ExprError(); | 
|  | } else { | 
|  | Diag(OpLoc, diag::err_ovl_deleted_oper) | 
|  | << Best->Function->isDeleted() | 
|  | << BinaryOperator::getOpcodeStr(Opc) | 
|  | << getDeletedOrUnavailableSuffix(Best->Function) | 
|  | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
|  | } | 
|  | CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, | 
|  | BinaryOperator::getOpcodeStr(Opc), OpLoc); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // We matched a built-in operator; build it. | 
|  | return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, | 
|  | SourceLocation RLoc, | 
|  | Expr *Base, Expr *Idx) { | 
|  | Expr *Args[2] = { Base, Idx }; | 
|  | DeclarationName OpName = | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Subscript); | 
|  |  | 
|  | // If either side is type-dependent, create an appropriate dependent | 
|  | // expression. | 
|  | if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { | 
|  |  | 
|  | CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators | 
|  | // CHECKME: no 'operator' keyword? | 
|  | DeclarationNameInfo OpNameInfo(OpName, LLoc); | 
|  | OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); | 
|  | UnresolvedLookupExpr *Fn | 
|  | = UnresolvedLookupExpr::Create(Context, NamingClass, | 
|  | NestedNameSpecifierLoc(), OpNameInfo, | 
|  | /*ADL*/ true, /*Overloaded*/ false, | 
|  | UnresolvedSetIterator(), | 
|  | UnresolvedSetIterator()); | 
|  | // Can't add any actual overloads yet | 
|  |  | 
|  | return new (Context) | 
|  | CXXOperatorCallExpr(Context, OO_Subscript, Fn, Args, | 
|  | Context.DependentTy, VK_RValue, RLoc, false); | 
|  | } | 
|  |  | 
|  | // Handle placeholders on both operands. | 
|  | if (checkPlaceholderForOverload(*this, Args[0])) | 
|  | return ExprError(); | 
|  | if (checkPlaceholderForOverload(*this, Args[1])) | 
|  | return ExprError(); | 
|  |  | 
|  | // Build an empty overload set. | 
|  | OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator); | 
|  |  | 
|  | // Subscript can only be overloaded as a member function. | 
|  |  | 
|  | // Add operator candidates that are member functions. | 
|  | AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); | 
|  |  | 
|  | // Add builtin operator candidates. | 
|  | AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); | 
|  |  | 
|  | bool HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | // Perform overload resolution. | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { | 
|  | case OR_Success: { | 
|  | // We found a built-in operator or an overloaded operator. | 
|  | FunctionDecl *FnDecl = Best->Function; | 
|  |  | 
|  | if (FnDecl) { | 
|  | // We matched an overloaded operator. Build a call to that | 
|  | // operator. | 
|  |  | 
|  | CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); | 
|  |  | 
|  | // Convert the arguments. | 
|  | CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); | 
|  | ExprResult Arg0 = | 
|  | PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr, | 
|  | Best->FoundDecl, Method); | 
|  | if (Arg0.isInvalid()) | 
|  | return ExprError(); | 
|  | Args[0] = Arg0.get(); | 
|  |  | 
|  | // Convert the arguments. | 
|  | ExprResult InputInit | 
|  | = PerformCopyInitialization(InitializedEntity::InitializeParameter( | 
|  | Context, | 
|  | FnDecl->getParamDecl(0)), | 
|  | SourceLocation(), | 
|  | Args[1]); | 
|  | if (InputInit.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | Args[1] = InputInit.getAs<Expr>(); | 
|  |  | 
|  | // Build the actual expression node. | 
|  | DeclarationNameInfo OpLocInfo(OpName, LLoc); | 
|  | OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); | 
|  | ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, | 
|  | Best->FoundDecl, | 
|  | HadMultipleCandidates, | 
|  | OpLocInfo.getLoc(), | 
|  | OpLocInfo.getInfo()); | 
|  | if (FnExpr.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | // Determine the result type | 
|  | QualType ResultTy = FnDecl->getReturnType(); | 
|  | ExprValueKind VK = Expr::getValueKindForType(ResultTy); | 
|  | ResultTy = ResultTy.getNonLValueExprType(Context); | 
|  |  | 
|  | CXXOperatorCallExpr *TheCall = | 
|  | new (Context) CXXOperatorCallExpr(Context, OO_Subscript, | 
|  | FnExpr.get(), Args, | 
|  | ResultTy, VK, RLoc, | 
|  | false); | 
|  |  | 
|  | if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl)) | 
|  | return ExprError(); | 
|  |  | 
|  | return MaybeBindToTemporary(TheCall); | 
|  | } else { | 
|  | // We matched a built-in operator. Convert the arguments, then | 
|  | // break out so that we will build the appropriate built-in | 
|  | // operator node. | 
|  | ExprResult ArgsRes0 = | 
|  | PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], | 
|  | Best->Conversions[0], AA_Passing); | 
|  | if (ArgsRes0.isInvalid()) | 
|  | return ExprError(); | 
|  | Args[0] = ArgsRes0.get(); | 
|  |  | 
|  | ExprResult ArgsRes1 = | 
|  | PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], | 
|  | Best->Conversions[1], AA_Passing); | 
|  | if (ArgsRes1.isInvalid()) | 
|  | return ExprError(); | 
|  | Args[1] = ArgsRes1.get(); | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | case OR_No_Viable_Function: { | 
|  | if (CandidateSet.empty()) | 
|  | Diag(LLoc, diag::err_ovl_no_oper) | 
|  | << Args[0]->getType() << /*subscript*/ 0 | 
|  | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
|  | else | 
|  | Diag(LLoc, diag::err_ovl_no_viable_subscript) | 
|  | << Args[0]->getType() | 
|  | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
|  | CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, | 
|  | "[]", LLoc); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary) | 
|  | << "[]" | 
|  | << Args[0]->getType() << Args[1]->getType() | 
|  | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
|  | CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, | 
|  | "[]", LLoc); | 
|  | return ExprError(); | 
|  |  | 
|  | case OR_Deleted: | 
|  | Diag(LLoc, diag::err_ovl_deleted_oper) | 
|  | << Best->Function->isDeleted() << "[]" | 
|  | << getDeletedOrUnavailableSuffix(Best->Function) | 
|  | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
|  | CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, | 
|  | "[]", LLoc); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // We matched a built-in operator; build it. | 
|  | return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); | 
|  | } | 
|  |  | 
|  | /// BuildCallToMemberFunction - Build a call to a member | 
|  | /// function. MemExpr is the expression that refers to the member | 
|  | /// function (and includes the object parameter), Args/NumArgs are the | 
|  | /// arguments to the function call (not including the object | 
|  | /// parameter). The caller needs to validate that the member | 
|  | /// expression refers to a non-static member function or an overloaded | 
|  | /// member function. | 
|  | ExprResult | 
|  | Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, | 
|  | SourceLocation LParenLoc, | 
|  | MultiExprArg Args, | 
|  | SourceLocation RParenLoc) { | 
|  | assert(MemExprE->getType() == Context.BoundMemberTy || | 
|  | MemExprE->getType() == Context.OverloadTy); | 
|  |  | 
|  | // Dig out the member expression. This holds both the object | 
|  | // argument and the member function we're referring to. | 
|  | Expr *NakedMemExpr = MemExprE->IgnoreParens(); | 
|  |  | 
|  | // Determine whether this is a call to a pointer-to-member function. | 
|  | if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) { | 
|  | assert(op->getType() == Context.BoundMemberTy); | 
|  | assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI); | 
|  |  | 
|  | QualType fnType = | 
|  | op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType(); | 
|  |  | 
|  | const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>(); | 
|  | QualType resultType = proto->getCallResultType(Context); | 
|  | ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType()); | 
|  |  | 
|  | // Check that the object type isn't more qualified than the | 
|  | // member function we're calling. | 
|  | Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals()); | 
|  |  | 
|  | QualType objectType = op->getLHS()->getType(); | 
|  | if (op->getOpcode() == BO_PtrMemI) | 
|  | objectType = objectType->castAs<PointerType>()->getPointeeType(); | 
|  | Qualifiers objectQuals = objectType.getQualifiers(); | 
|  |  | 
|  | Qualifiers difference = objectQuals - funcQuals; | 
|  | difference.removeObjCGCAttr(); | 
|  | difference.removeAddressSpace(); | 
|  | if (difference) { | 
|  | std::string qualsString = difference.getAsString(); | 
|  | Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) | 
|  | << fnType.getUnqualifiedType() | 
|  | << qualsString | 
|  | << (qualsString.find(' ') == std::string::npos ? 1 : 2); | 
|  | } | 
|  |  | 
|  | if (resultType->isMemberPointerType()) | 
|  | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) | 
|  | RequireCompleteType(LParenLoc, resultType, 0); | 
|  |  | 
|  | CXXMemberCallExpr *call | 
|  | = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, | 
|  | resultType, valueKind, RParenLoc); | 
|  |  | 
|  | if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getLocStart(), | 
|  | call, nullptr)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (CheckOtherCall(call, proto)) | 
|  | return ExprError(); | 
|  |  | 
|  | return MaybeBindToTemporary(call); | 
|  | } | 
|  |  | 
|  | UnbridgedCastsSet UnbridgedCasts; | 
|  | if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) | 
|  | return ExprError(); | 
|  |  | 
|  | MemberExpr *MemExpr; | 
|  | CXXMethodDecl *Method = nullptr; | 
|  | DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public); | 
|  | NestedNameSpecifier *Qualifier = nullptr; | 
|  | if (isa<MemberExpr>(NakedMemExpr)) { | 
|  | MemExpr = cast<MemberExpr>(NakedMemExpr); | 
|  | Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); | 
|  | FoundDecl = MemExpr->getFoundDecl(); | 
|  | Qualifier = MemExpr->getQualifier(); | 
|  | UnbridgedCasts.restore(); | 
|  | } else { | 
|  | UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); | 
|  | Qualifier = UnresExpr->getQualifier(); | 
|  |  | 
|  | QualType ObjectType = UnresExpr->getBaseType(); | 
|  | Expr::Classification ObjectClassification | 
|  | = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() | 
|  | : UnresExpr->getBase()->Classify(Context); | 
|  |  | 
|  | // Add overload candidates | 
|  | OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(), | 
|  | OverloadCandidateSet::CSK_Normal); | 
|  |  | 
|  | // FIXME: avoid copy. | 
|  | TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; | 
|  | if (UnresExpr->hasExplicitTemplateArgs()) { | 
|  | UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); | 
|  | TemplateArgs = &TemplateArgsBuffer; | 
|  | } | 
|  |  | 
|  | for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), | 
|  | E = UnresExpr->decls_end(); I != E; ++I) { | 
|  |  | 
|  | NamedDecl *Func = *I; | 
|  | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); | 
|  | if (isa<UsingShadowDecl>(Func)) | 
|  | Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); | 
|  |  | 
|  |  | 
|  | // Microsoft supports direct constructor calls. | 
|  | if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) { | 
|  | AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), | 
|  | Args, CandidateSet); | 
|  | } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { | 
|  | // If explicit template arguments were provided, we can't call a | 
|  | // non-template member function. | 
|  | if (TemplateArgs) | 
|  | continue; | 
|  |  | 
|  | AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, | 
|  | ObjectClassification, Args, CandidateSet, | 
|  | /*SuppressUserConversions=*/false); | 
|  | } else { | 
|  | AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), | 
|  | I.getPair(), ActingDC, TemplateArgs, | 
|  | ObjectType,  ObjectClassification, | 
|  | Args, CandidateSet, | 
|  | /*SuppressUsedConversions=*/false); | 
|  | } | 
|  | } | 
|  |  | 
|  | DeclarationName DeclName = UnresExpr->getMemberName(); | 
|  |  | 
|  | UnbridgedCasts.restore(); | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(), | 
|  | Best)) { | 
|  | case OR_Success: | 
|  | Method = cast<CXXMethodDecl>(Best->Function); | 
|  | FoundDecl = Best->FoundDecl; | 
|  | CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); | 
|  | if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc())) | 
|  | return ExprError(); | 
|  | // If FoundDecl is different from Method (such as if one is a template | 
|  | // and the other a specialization), make sure DiagnoseUseOfDecl is | 
|  | // called on both. | 
|  | // FIXME: This would be more comprehensively addressed by modifying | 
|  | // DiagnoseUseOfDecl to accept both the FoundDecl and the decl | 
|  | // being used. | 
|  | if (Method != FoundDecl.getDecl() && | 
|  | DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc())) | 
|  | return ExprError(); | 
|  | break; | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | Diag(UnresExpr->getMemberLoc(), | 
|  | diag::err_ovl_no_viable_member_function_in_call) | 
|  | << DeclName << MemExprE->getSourceRange(); | 
|  | CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args); | 
|  | // FIXME: Leaking incoming expressions! | 
|  | return ExprError(); | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) | 
|  | << DeclName << MemExprE->getSourceRange(); | 
|  | CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args); | 
|  | // FIXME: Leaking incoming expressions! | 
|  | return ExprError(); | 
|  |  | 
|  | case OR_Deleted: | 
|  | Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) | 
|  | << Best->Function->isDeleted() | 
|  | << DeclName | 
|  | << getDeletedOrUnavailableSuffix(Best->Function) | 
|  | << MemExprE->getSourceRange(); | 
|  | CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args); | 
|  | // FIXME: Leaking incoming expressions! | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); | 
|  |  | 
|  | // If overload resolution picked a static member, build a | 
|  | // non-member call based on that function. | 
|  | if (Method->isStatic()) { | 
|  | return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args, | 
|  | RParenLoc); | 
|  | } | 
|  |  | 
|  | MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); | 
|  | } | 
|  |  | 
|  | QualType ResultType = Method->getReturnType(); | 
|  | ExprValueKind VK = Expr::getValueKindForType(ResultType); | 
|  | ResultType = ResultType.getNonLValueExprType(Context); | 
|  |  | 
|  | assert(Method && "Member call to something that isn't a method?"); | 
|  | CXXMemberCallExpr *TheCall = | 
|  | new (Context) CXXMemberCallExpr(Context, MemExprE, Args, | 
|  | ResultType, VK, RParenLoc); | 
|  |  | 
|  | // (CUDA B.1): Check for invalid calls between targets. | 
|  | if (getLangOpts().CUDA) { | 
|  | if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) { | 
|  | if (CheckCUDATarget(Caller, Method)) { | 
|  | Diag(MemExpr->getMemberLoc(), diag::err_ref_bad_target) | 
|  | << IdentifyCUDATarget(Method) << Method->getIdentifier() | 
|  | << IdentifyCUDATarget(Caller); | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for a valid return type. | 
|  | if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(), | 
|  | TheCall, Method)) | 
|  | return ExprError(); | 
|  |  | 
|  | // Convert the object argument (for a non-static member function call). | 
|  | // We only need to do this if there was actually an overload; otherwise | 
|  | // it was done at lookup. | 
|  | if (!Method->isStatic()) { | 
|  | ExprResult ObjectArg = | 
|  | PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier, | 
|  | FoundDecl, Method); | 
|  | if (ObjectArg.isInvalid()) | 
|  | return ExprError(); | 
|  | MemExpr->setBase(ObjectArg.get()); | 
|  | } | 
|  |  | 
|  | // Convert the rest of the arguments | 
|  | const FunctionProtoType *Proto = | 
|  | Method->getType()->getAs<FunctionProtoType>(); | 
|  | if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, | 
|  | RParenLoc)) | 
|  | return ExprError(); | 
|  |  | 
|  | DiagnoseSentinelCalls(Method, LParenLoc, Args); | 
|  |  | 
|  | if (CheckFunctionCall(Method, TheCall, Proto)) | 
|  | return ExprError(); | 
|  |  | 
|  | if ((isa<CXXConstructorDecl>(CurContext) || | 
|  | isa<CXXDestructorDecl>(CurContext)) && | 
|  | TheCall->getMethodDecl()->isPure()) { | 
|  | const CXXMethodDecl *MD = TheCall->getMethodDecl(); | 
|  |  | 
|  | if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) { | 
|  | Diag(MemExpr->getLocStart(), | 
|  | diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) | 
|  | << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext) | 
|  | << MD->getParent()->getDeclName(); | 
|  |  | 
|  | Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName(); | 
|  | } | 
|  | } | 
|  | return MaybeBindToTemporary(TheCall); | 
|  | } | 
|  |  | 
|  | /// BuildCallToObjectOfClassType - Build a call to an object of class | 
|  | /// type (C++ [over.call.object]), which can end up invoking an | 
|  | /// overloaded function call operator (@c operator()) or performing a | 
|  | /// user-defined conversion on the object argument. | 
|  | ExprResult | 
|  | Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, | 
|  | SourceLocation LParenLoc, | 
|  | MultiExprArg Args, | 
|  | SourceLocation RParenLoc) { | 
|  | if (checkPlaceholderForOverload(*this, Obj)) | 
|  | return ExprError(); | 
|  | ExprResult Object = Obj; | 
|  |  | 
|  | UnbridgedCastsSet UnbridgedCasts; | 
|  | if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) | 
|  | return ExprError(); | 
|  |  | 
|  | assert(Object.get()->getType()->isRecordType() && | 
|  | "Requires object type argument"); | 
|  | const RecordType *Record = Object.get()->getType()->getAs<RecordType>(); | 
|  |  | 
|  | // C++ [over.call.object]p1: | 
|  | //  If the primary-expression E in the function call syntax | 
|  | //  evaluates to a class object of type "cv T", then the set of | 
|  | //  candidate functions includes at least the function call | 
|  | //  operators of T. The function call operators of T are obtained by | 
|  | //  ordinary lookup of the name operator() in the context of | 
|  | //  (E).operator(). | 
|  | OverloadCandidateSet CandidateSet(LParenLoc, | 
|  | OverloadCandidateSet::CSK_Operator); | 
|  | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); | 
|  |  | 
|  | if (RequireCompleteType(LParenLoc, Object.get()->getType(), | 
|  | diag::err_incomplete_object_call, Object.get())) | 
|  | return true; | 
|  |  | 
|  | LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); | 
|  | LookupQualifiedName(R, Record->getDecl()); | 
|  | R.suppressDiagnostics(); | 
|  |  | 
|  | for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); | 
|  | Oper != OperEnd; ++Oper) { | 
|  | AddMethodCandidate(Oper.getPair(), Object.get()->getType(), | 
|  | Object.get()->Classify(Context), | 
|  | Args, CandidateSet, | 
|  | /*SuppressUserConversions=*/ false); | 
|  | } | 
|  |  | 
|  | // C++ [over.call.object]p2: | 
|  | //   In addition, for each (non-explicit in C++0x) conversion function | 
|  | //   declared in T of the form | 
|  | // | 
|  | //        operator conversion-type-id () cv-qualifier; | 
|  | // | 
|  | //   where cv-qualifier is the same cv-qualification as, or a | 
|  | //   greater cv-qualification than, cv, and where conversion-type-id | 
|  | //   denotes the type "pointer to function of (P1,...,Pn) returning | 
|  | //   R", or the type "reference to pointer to function of | 
|  | //   (P1,...,Pn) returning R", or the type "reference to function | 
|  | //   of (P1,...,Pn) returning R", a surrogate call function [...] | 
|  | //   is also considered as a candidate function. Similarly, | 
|  | //   surrogate call functions are added to the set of candidate | 
|  | //   functions for each conversion function declared in an | 
|  | //   accessible base class provided the function is not hidden | 
|  | //   within T by another intervening declaration. | 
|  | const auto &Conversions = | 
|  | cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); | 
|  | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | 
|  | NamedDecl *D = *I; | 
|  | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); | 
|  | if (isa<UsingShadowDecl>(D)) | 
|  | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
|  |  | 
|  | // Skip over templated conversion functions; they aren't | 
|  | // surrogates. | 
|  | if (isa<FunctionTemplateDecl>(D)) | 
|  | continue; | 
|  |  | 
|  | CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); | 
|  | if (!Conv->isExplicit()) { | 
|  | // Strip the reference type (if any) and then the pointer type (if | 
|  | // any) to get down to what might be a function type. | 
|  | QualType ConvType = Conv->getConversionType().getNonReferenceType(); | 
|  | if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) | 
|  | ConvType = ConvPtrType->getPointeeType(); | 
|  |  | 
|  | if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) | 
|  | { | 
|  | AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, | 
|  | Object.get(), Args, CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | // Perform overload resolution. | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(), | 
|  | Best)) { | 
|  | case OR_Success: | 
|  | // Overload resolution succeeded; we'll build the appropriate call | 
|  | // below. | 
|  | break; | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | if (CandidateSet.empty()) | 
|  | Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper) | 
|  | << Object.get()->getType() << /*call*/ 1 | 
|  | << Object.get()->getSourceRange(); | 
|  | else | 
|  | Diag(Object.get()->getLocStart(), | 
|  | diag::err_ovl_no_viable_object_call) | 
|  | << Object.get()->getType() << Object.get()->getSourceRange(); | 
|  | CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args); | 
|  | break; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | Diag(Object.get()->getLocStart(), | 
|  | diag::err_ovl_ambiguous_object_call) | 
|  | << Object.get()->getType() << Object.get()->getSourceRange(); | 
|  | CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args); | 
|  | break; | 
|  |  | 
|  | case OR_Deleted: | 
|  | Diag(Object.get()->getLocStart(), | 
|  | diag::err_ovl_deleted_object_call) | 
|  | << Best->Function->isDeleted() | 
|  | << Object.get()->getType() | 
|  | << getDeletedOrUnavailableSuffix(Best->Function) | 
|  | << Object.get()->getSourceRange(); | 
|  | CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Best == CandidateSet.end()) | 
|  | return true; | 
|  |  | 
|  | UnbridgedCasts.restore(); | 
|  |  | 
|  | if (Best->Function == nullptr) { | 
|  | // Since there is no function declaration, this is one of the | 
|  | // surrogate candidates. Dig out the conversion function. | 
|  | CXXConversionDecl *Conv | 
|  | = cast<CXXConversionDecl>( | 
|  | Best->Conversions[0].UserDefined.ConversionFunction); | 
|  |  | 
|  | CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, | 
|  | Best->FoundDecl); | 
|  | if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc)) | 
|  | return ExprError(); | 
|  | assert(Conv == Best->FoundDecl.getDecl() && | 
|  | "Found Decl & conversion-to-functionptr should be same, right?!"); | 
|  | // We selected one of the surrogate functions that converts the | 
|  | // object parameter to a function pointer. Perform the conversion | 
|  | // on the object argument, then let ActOnCallExpr finish the job. | 
|  |  | 
|  | // Create an implicit member expr to refer to the conversion operator. | 
|  | // and then call it. | 
|  | ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, | 
|  | Conv, HadMultipleCandidates); | 
|  | if (Call.isInvalid()) | 
|  | return ExprError(); | 
|  | // Record usage of conversion in an implicit cast. | 
|  | Call = ImplicitCastExpr::Create(Context, Call.get()->getType(), | 
|  | CK_UserDefinedConversion, Call.get(), | 
|  | nullptr, VK_RValue); | 
|  |  | 
|  | return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc); | 
|  | } | 
|  |  | 
|  | CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl); | 
|  |  | 
|  | // We found an overloaded operator(). Build a CXXOperatorCallExpr | 
|  | // that calls this method, using Object for the implicit object | 
|  | // parameter and passing along the remaining arguments. | 
|  | CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); | 
|  |  | 
|  | // An error diagnostic has already been printed when parsing the declaration. | 
|  | if (Method->isInvalidDecl()) | 
|  | return ExprError(); | 
|  |  | 
|  | const FunctionProtoType *Proto = | 
|  | Method->getType()->getAs<FunctionProtoType>(); | 
|  |  | 
|  | unsigned NumParams = Proto->getNumParams(); | 
|  |  | 
|  | DeclarationNameInfo OpLocInfo( | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc); | 
|  | OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc)); | 
|  | ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, | 
|  | HadMultipleCandidates, | 
|  | OpLocInfo.getLoc(), | 
|  | OpLocInfo.getInfo()); | 
|  | if (NewFn.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | // Build the full argument list for the method call (the implicit object | 
|  | // parameter is placed at the beginning of the list). | 
|  | std::unique_ptr<Expr * []> MethodArgs(new Expr *[Args.size() + 1]); | 
|  | MethodArgs[0] = Object.get(); | 
|  | std::copy(Args.begin(), Args.end(), &MethodArgs[1]); | 
|  |  | 
|  | // Once we've built TheCall, all of the expressions are properly | 
|  | // owned. | 
|  | QualType ResultTy = Method->getReturnType(); | 
|  | ExprValueKind VK = Expr::getValueKindForType(ResultTy); | 
|  | ResultTy = ResultTy.getNonLValueExprType(Context); | 
|  |  | 
|  | CXXOperatorCallExpr *TheCall = new (Context) | 
|  | CXXOperatorCallExpr(Context, OO_Call, NewFn.get(), | 
|  | llvm::makeArrayRef(MethodArgs.get(), Args.size() + 1), | 
|  | ResultTy, VK, RParenLoc, false); | 
|  | MethodArgs.reset(); | 
|  |  | 
|  | if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method)) | 
|  | return true; | 
|  |  | 
|  | // We may have default arguments. If so, we need to allocate more | 
|  | // slots in the call for them. | 
|  | if (Args.size() < NumParams) | 
|  | TheCall->setNumArgs(Context, NumParams + 1); | 
|  |  | 
|  | bool IsError = false; | 
|  |  | 
|  | // Initialize the implicit object parameter. | 
|  | ExprResult ObjRes = | 
|  | PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr, | 
|  | Best->FoundDecl, Method); | 
|  | if (ObjRes.isInvalid()) | 
|  | IsError = true; | 
|  | else | 
|  | Object = ObjRes; | 
|  | TheCall->setArg(0, Object.get()); | 
|  |  | 
|  | // Check the argument types. | 
|  | for (unsigned i = 0; i != NumParams; i++) { | 
|  | Expr *Arg; | 
|  | if (i < Args.size()) { | 
|  | Arg = Args[i]; | 
|  |  | 
|  | // Pass the argument. | 
|  |  | 
|  | ExprResult InputInit | 
|  | = PerformCopyInitialization(InitializedEntity::InitializeParameter( | 
|  | Context, | 
|  | Method->getParamDecl(i)), | 
|  | SourceLocation(), Arg); | 
|  |  | 
|  | IsError |= InputInit.isInvalid(); | 
|  | Arg = InputInit.getAs<Expr>(); | 
|  | } else { | 
|  | ExprResult DefArg | 
|  | = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); | 
|  | if (DefArg.isInvalid()) { | 
|  | IsError = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Arg = DefArg.getAs<Expr>(); | 
|  | } | 
|  |  | 
|  | TheCall->setArg(i + 1, Arg); | 
|  | } | 
|  |  | 
|  | // If this is a variadic call, handle args passed through "...". | 
|  | if (Proto->isVariadic()) { | 
|  | // Promote the arguments (C99 6.5.2.2p7). | 
|  | for (unsigned i = NumParams, e = Args.size(); i < e; i++) { | 
|  | ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, | 
|  | nullptr); | 
|  | IsError |= Arg.isInvalid(); | 
|  | TheCall->setArg(i + 1, Arg.get()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IsError) return true; | 
|  |  | 
|  | DiagnoseSentinelCalls(Method, LParenLoc, Args); | 
|  |  | 
|  | if (CheckFunctionCall(Method, TheCall, Proto)) | 
|  | return true; | 
|  |  | 
|  | return MaybeBindToTemporary(TheCall); | 
|  | } | 
|  |  | 
|  | /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> | 
|  | ///  (if one exists), where @c Base is an expression of class type and | 
|  | /// @c Member is the name of the member we're trying to find. | 
|  | ExprResult | 
|  | Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, | 
|  | bool *NoArrowOperatorFound) { | 
|  | assert(Base->getType()->isRecordType() && | 
|  | "left-hand side must have class type"); | 
|  |  | 
|  | if (checkPlaceholderForOverload(*this, Base)) | 
|  | return ExprError(); | 
|  |  | 
|  | SourceLocation Loc = Base->getExprLoc(); | 
|  |  | 
|  | // C++ [over.ref]p1: | 
|  | // | 
|  | //   [...] An expression x->m is interpreted as (x.operator->())->m | 
|  | //   for a class object x of type T if T::operator->() exists and if | 
|  | //   the operator is selected as the best match function by the | 
|  | //   overload resolution mechanism (13.3). | 
|  | DeclarationName OpName = | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Arrow); | 
|  | OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator); | 
|  | const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); | 
|  |  | 
|  | if (RequireCompleteType(Loc, Base->getType(), | 
|  | diag::err_typecheck_incomplete_tag, Base)) | 
|  | return ExprError(); | 
|  |  | 
|  | LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); | 
|  | LookupQualifiedName(R, BaseRecord->getDecl()); | 
|  | R.suppressDiagnostics(); | 
|  |  | 
|  | for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); | 
|  | Oper != OperEnd; ++Oper) { | 
|  | AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), | 
|  | None, CandidateSet, /*SuppressUserConversions=*/false); | 
|  | } | 
|  |  | 
|  | bool HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | // Perform overload resolution. | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { | 
|  | case OR_Success: | 
|  | // Overload resolution succeeded; we'll build the call below. | 
|  | break; | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | if (CandidateSet.empty()) { | 
|  | QualType BaseType = Base->getType(); | 
|  | if (NoArrowOperatorFound) { | 
|  | // Report this specific error to the caller instead of emitting a | 
|  | // diagnostic, as requested. | 
|  | *NoArrowOperatorFound = true; | 
|  | return ExprError(); | 
|  | } | 
|  | Diag(OpLoc, diag::err_typecheck_member_reference_arrow) | 
|  | << BaseType << Base->getSourceRange(); | 
|  | if (BaseType->isRecordType() && !BaseType->isPointerType()) { | 
|  | Diag(OpLoc, diag::note_typecheck_member_reference_suggestion) | 
|  | << FixItHint::CreateReplacement(OpLoc, "."); | 
|  | } | 
|  | } else | 
|  | Diag(OpLoc, diag::err_ovl_no_viable_oper) | 
|  | << "operator->" << Base->getSourceRange(); | 
|  | CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base); | 
|  | return ExprError(); | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary) | 
|  | << "->" << Base->getType() << Base->getSourceRange(); | 
|  | CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base); | 
|  | return ExprError(); | 
|  |  | 
|  | case OR_Deleted: | 
|  | Diag(OpLoc,  diag::err_ovl_deleted_oper) | 
|  | << Best->Function->isDeleted() | 
|  | << "->" | 
|  | << getDeletedOrUnavailableSuffix(Best->Function) | 
|  | << Base->getSourceRange(); | 
|  | CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl); | 
|  |  | 
|  | // Convert the object parameter. | 
|  | CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); | 
|  | ExprResult BaseResult = | 
|  | PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr, | 
|  | Best->FoundDecl, Method); | 
|  | if (BaseResult.isInvalid()) | 
|  | return ExprError(); | 
|  | Base = BaseResult.get(); | 
|  |  | 
|  | // Build the operator call. | 
|  | ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, | 
|  | HadMultipleCandidates, OpLoc); | 
|  | if (FnExpr.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | QualType ResultTy = Method->getReturnType(); | 
|  | ExprValueKind VK = Expr::getValueKindForType(ResultTy); | 
|  | ResultTy = ResultTy.getNonLValueExprType(Context); | 
|  | CXXOperatorCallExpr *TheCall = | 
|  | new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.get(), | 
|  | Base, ResultTy, VK, OpLoc, false); | 
|  |  | 
|  | if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method)) | 
|  | return ExprError(); | 
|  |  | 
|  | return MaybeBindToTemporary(TheCall); | 
|  | } | 
|  |  | 
|  | /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to | 
|  | /// a literal operator described by the provided lookup results. | 
|  | ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R, | 
|  | DeclarationNameInfo &SuffixInfo, | 
|  | ArrayRef<Expr*> Args, | 
|  | SourceLocation LitEndLoc, | 
|  | TemplateArgumentListInfo *TemplateArgs) { | 
|  | SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc(); | 
|  |  | 
|  | OverloadCandidateSet CandidateSet(UDSuffixLoc, | 
|  | OverloadCandidateSet::CSK_Normal); | 
|  | AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, TemplateArgs, | 
|  | /*SuppressUserConversions=*/true); | 
|  |  | 
|  | bool HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | // Perform overload resolution. This will usually be trivial, but might need | 
|  | // to perform substitutions for a literal operator template. | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) { | 
|  | case OR_Success: | 
|  | case OR_Deleted: | 
|  | break; | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call) | 
|  | << R.getLookupName(); | 
|  | CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args); | 
|  | return ExprError(); | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName(); | 
|  | CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | FunctionDecl *FD = Best->Function; | 
|  | ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl, | 
|  | HadMultipleCandidates, | 
|  | SuffixInfo.getLoc(), | 
|  | SuffixInfo.getInfo()); | 
|  | if (Fn.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | // Check the argument types. This should almost always be a no-op, except | 
|  | // that array-to-pointer decay is applied to string literals. | 
|  | Expr *ConvArgs[2]; | 
|  | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | 
|  | ExprResult InputInit = PerformCopyInitialization( | 
|  | InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)), | 
|  | SourceLocation(), Args[ArgIdx]); | 
|  | if (InputInit.isInvalid()) | 
|  | return true; | 
|  | ConvArgs[ArgIdx] = InputInit.get(); | 
|  | } | 
|  |  | 
|  | QualType ResultTy = FD->getReturnType(); | 
|  | ExprValueKind VK = Expr::getValueKindForType(ResultTy); | 
|  | ResultTy = ResultTy.getNonLValueExprType(Context); | 
|  |  | 
|  | UserDefinedLiteral *UDL = | 
|  | new (Context) UserDefinedLiteral(Context, Fn.get(), | 
|  | llvm::makeArrayRef(ConvArgs, Args.size()), | 
|  | ResultTy, VK, LitEndLoc, UDSuffixLoc); | 
|  |  | 
|  | if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (CheckFunctionCall(FD, UDL, nullptr)) | 
|  | return ExprError(); | 
|  |  | 
|  | return MaybeBindToTemporary(UDL); | 
|  | } | 
|  |  | 
|  | /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the | 
|  | /// given LookupResult is non-empty, it is assumed to describe a member which | 
|  | /// will be invoked. Otherwise, the function will be found via argument | 
|  | /// dependent lookup. | 
|  | /// CallExpr is set to a valid expression and FRS_Success returned on success, | 
|  | /// otherwise CallExpr is set to ExprError() and some non-success value | 
|  | /// is returned. | 
|  | Sema::ForRangeStatus | 
|  | Sema::BuildForRangeBeginEndCall(Scope *S, SourceLocation Loc, | 
|  | SourceLocation RangeLoc, VarDecl *Decl, | 
|  | BeginEndFunction BEF, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | LookupResult &MemberLookup, | 
|  | OverloadCandidateSet *CandidateSet, | 
|  | Expr *Range, ExprResult *CallExpr) { | 
|  | CandidateSet->clear(); | 
|  | if (!MemberLookup.empty()) { | 
|  | ExprResult MemberRef = | 
|  | BuildMemberReferenceExpr(Range, Range->getType(), Loc, | 
|  | /*IsPtr=*/false, CXXScopeSpec(), | 
|  | /*TemplateKWLoc=*/SourceLocation(), | 
|  | /*FirstQualifierInScope=*/nullptr, | 
|  | MemberLookup, | 
|  | /*TemplateArgs=*/nullptr); | 
|  | if (MemberRef.isInvalid()) { | 
|  | *CallExpr = ExprError(); | 
|  | Diag(Range->getLocStart(), diag::note_in_for_range) | 
|  | << RangeLoc << BEF << Range->getType(); | 
|  | return FRS_DiagnosticIssued; | 
|  | } | 
|  | *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr); | 
|  | if (CallExpr->isInvalid()) { | 
|  | *CallExpr = ExprError(); | 
|  | Diag(Range->getLocStart(), diag::note_in_for_range) | 
|  | << RangeLoc << BEF << Range->getType(); | 
|  | return FRS_DiagnosticIssued; | 
|  | } | 
|  | } else { | 
|  | UnresolvedSet<0> FoundNames; | 
|  | UnresolvedLookupExpr *Fn = | 
|  | UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr, | 
|  | NestedNameSpecifierLoc(), NameInfo, | 
|  | /*NeedsADL=*/true, /*Overloaded=*/false, | 
|  | FoundNames.begin(), FoundNames.end()); | 
|  |  | 
|  | bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc, | 
|  | CandidateSet, CallExpr); | 
|  | if (CandidateSet->empty() || CandidateSetError) { | 
|  | *CallExpr = ExprError(); | 
|  | return FRS_NoViableFunction; | 
|  | } | 
|  | OverloadCandidateSet::iterator Best; | 
|  | OverloadingResult OverloadResult = | 
|  | CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best); | 
|  |  | 
|  | if (OverloadResult == OR_No_Viable_Function) { | 
|  | *CallExpr = ExprError(); | 
|  | return FRS_NoViableFunction; | 
|  | } | 
|  | *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range, | 
|  | Loc, nullptr, CandidateSet, &Best, | 
|  | OverloadResult, | 
|  | /*AllowTypoCorrection=*/false); | 
|  | if (CallExpr->isInvalid() || OverloadResult != OR_Success) { | 
|  | *CallExpr = ExprError(); | 
|  | Diag(Range->getLocStart(), diag::note_in_for_range) | 
|  | << RangeLoc << BEF << Range->getType(); | 
|  | return FRS_DiagnosticIssued; | 
|  | } | 
|  | } | 
|  | return FRS_Success; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// FixOverloadedFunctionReference - E is an expression that refers to | 
|  | /// a C++ overloaded function (possibly with some parentheses and | 
|  | /// perhaps a '&' around it). We have resolved the overloaded function | 
|  | /// to the function declaration Fn, so patch up the expression E to | 
|  | /// refer (possibly indirectly) to Fn. Returns the new expr. | 
|  | Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, | 
|  | FunctionDecl *Fn) { | 
|  | if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { | 
|  | Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), | 
|  | Found, Fn); | 
|  | if (SubExpr == PE->getSubExpr()) | 
|  | return PE; | 
|  |  | 
|  | return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); | 
|  | } | 
|  |  | 
|  | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), | 
|  | Found, Fn); | 
|  | assert(Context.hasSameType(ICE->getSubExpr()->getType(), | 
|  | SubExpr->getType()) && | 
|  | "Implicit cast type cannot be determined from overload"); | 
|  | assert(ICE->path_empty() && "fixing up hierarchy conversion?"); | 
|  | if (SubExpr == ICE->getSubExpr()) | 
|  | return ICE; | 
|  |  | 
|  | return ImplicitCastExpr::Create(Context, ICE->getType(), | 
|  | ICE->getCastKind(), | 
|  | SubExpr, nullptr, | 
|  | ICE->getValueKind()); | 
|  | } | 
|  |  | 
|  | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { | 
|  | assert(UnOp->getOpcode() == UO_AddrOf && | 
|  | "Can only take the address of an overloaded function"); | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { | 
|  | if (Method->isStatic()) { | 
|  | // Do nothing: static member functions aren't any different | 
|  | // from non-member functions. | 
|  | } else { | 
|  | // Fix the subexpression, which really has to be an | 
|  | // UnresolvedLookupExpr holding an overloaded member function | 
|  | // or template. | 
|  | Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), | 
|  | Found, Fn); | 
|  | if (SubExpr == UnOp->getSubExpr()) | 
|  | return UnOp; | 
|  |  | 
|  | assert(isa<DeclRefExpr>(SubExpr) | 
|  | && "fixed to something other than a decl ref"); | 
|  | assert(cast<DeclRefExpr>(SubExpr)->getQualifier() | 
|  | && "fixed to a member ref with no nested name qualifier"); | 
|  |  | 
|  | // We have taken the address of a pointer to member | 
|  | // function. Perform the computation here so that we get the | 
|  | // appropriate pointer to member type. | 
|  | QualType ClassType | 
|  | = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); | 
|  | QualType MemPtrType | 
|  | = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); | 
|  |  | 
|  | return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType, | 
|  | VK_RValue, OK_Ordinary, | 
|  | UnOp->getOperatorLoc()); | 
|  | } | 
|  | } | 
|  | Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), | 
|  | Found, Fn); | 
|  | if (SubExpr == UnOp->getSubExpr()) | 
|  | return UnOp; | 
|  |  | 
|  | return new (Context) UnaryOperator(SubExpr, UO_AddrOf, | 
|  | Context.getPointerType(SubExpr->getType()), | 
|  | VK_RValue, OK_Ordinary, | 
|  | UnOp->getOperatorLoc()); | 
|  | } | 
|  |  | 
|  | if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { | 
|  | // FIXME: avoid copy. | 
|  | TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; | 
|  | if (ULE->hasExplicitTemplateArgs()) { | 
|  | ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); | 
|  | TemplateArgs = &TemplateArgsBuffer; | 
|  | } | 
|  |  | 
|  | DeclRefExpr *DRE = DeclRefExpr::Create(Context, | 
|  | ULE->getQualifierLoc(), | 
|  | ULE->getTemplateKeywordLoc(), | 
|  | Fn, | 
|  | /*enclosing*/ false, // FIXME? | 
|  | ULE->getNameLoc(), | 
|  | Fn->getType(), | 
|  | VK_LValue, | 
|  | Found.getDecl(), | 
|  | TemplateArgs); | 
|  | MarkDeclRefReferenced(DRE); | 
|  | DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1); | 
|  | return DRE; | 
|  | } | 
|  |  | 
|  | if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { | 
|  | // FIXME: avoid copy. | 
|  | TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; | 
|  | if (MemExpr->hasExplicitTemplateArgs()) { | 
|  | MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); | 
|  | TemplateArgs = &TemplateArgsBuffer; | 
|  | } | 
|  |  | 
|  | Expr *Base; | 
|  |  | 
|  | // If we're filling in a static method where we used to have an | 
|  | // implicit member access, rewrite to a simple decl ref. | 
|  | if (MemExpr->isImplicitAccess()) { | 
|  | if (cast<CXXMethodDecl>(Fn)->isStatic()) { | 
|  | DeclRefExpr *DRE = DeclRefExpr::Create(Context, | 
|  | MemExpr->getQualifierLoc(), | 
|  | MemExpr->getTemplateKeywordLoc(), | 
|  | Fn, | 
|  | /*enclosing*/ false, | 
|  | MemExpr->getMemberLoc(), | 
|  | Fn->getType(), | 
|  | VK_LValue, | 
|  | Found.getDecl(), | 
|  | TemplateArgs); | 
|  | MarkDeclRefReferenced(DRE); | 
|  | DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1); | 
|  | return DRE; | 
|  | } else { | 
|  | SourceLocation Loc = MemExpr->getMemberLoc(); | 
|  | if (MemExpr->getQualifier()) | 
|  | Loc = MemExpr->getQualifierLoc().getBeginLoc(); | 
|  | CheckCXXThisCapture(Loc); | 
|  | Base = new (Context) CXXThisExpr(Loc, | 
|  | MemExpr->getBaseType(), | 
|  | /*isImplicit=*/true); | 
|  | } | 
|  | } else | 
|  | Base = MemExpr->getBase(); | 
|  |  | 
|  | ExprValueKind valueKind; | 
|  | QualType type; | 
|  | if (cast<CXXMethodDecl>(Fn)->isStatic()) { | 
|  | valueKind = VK_LValue; | 
|  | type = Fn->getType(); | 
|  | } else { | 
|  | valueKind = VK_RValue; | 
|  | type = Context.BoundMemberTy; | 
|  | } | 
|  |  | 
|  | MemberExpr *ME = MemberExpr::Create(Context, Base, | 
|  | MemExpr->isArrow(), | 
|  | MemExpr->getQualifierLoc(), | 
|  | MemExpr->getTemplateKeywordLoc(), | 
|  | Fn, | 
|  | Found, | 
|  | MemExpr->getMemberNameInfo(), | 
|  | TemplateArgs, | 
|  | type, valueKind, OK_Ordinary); | 
|  | ME->setHadMultipleCandidates(true); | 
|  | MarkMemberReferenced(ME); | 
|  | return ME; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid reference to overloaded function"); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, | 
|  | DeclAccessPair Found, | 
|  | FunctionDecl *Fn) { | 
|  | return FixOverloadedFunctionReference(E.get(), Found, Fn); | 
|  | } |