|  | //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements semantic analysis for C++ declarations. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/ASTConsumer.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/ASTLambda.h" | 
|  | #include "clang/AST/ASTMutationListener.h" | 
|  | #include "clang/AST/CXXInheritance.h" | 
|  | #include "clang/AST/CharUnits.h" | 
|  | #include "clang/AST/ComparisonCategories.h" | 
|  | #include "clang/AST/EvaluatedExprVisitor.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/RecordLayout.h" | 
|  | #include "clang/AST/RecursiveASTVisitor.h" | 
|  | #include "clang/AST/StmtVisitor.h" | 
|  | #include "clang/AST/TypeLoc.h" | 
|  | #include "clang/AST/TypeOrdering.h" | 
|  | #include "clang/Basic/PartialDiagnostic.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Lex/LiteralSupport.h" | 
|  | #include "clang/Lex/Preprocessor.h" | 
|  | #include "clang/Sema/CXXFieldCollector.h" | 
|  | #include "clang/Sema/DeclSpec.h" | 
|  | #include "clang/Sema/Initialization.h" | 
|  | #include "clang/Sema/Lookup.h" | 
|  | #include "clang/Sema/ParsedTemplate.h" | 
|  | #include "clang/Sema/Scope.h" | 
|  | #include "clang/Sema/ScopeInfo.h" | 
|  | #include "clang/Sema/SemaInternal.h" | 
|  | #include "clang/Sema/Template.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include <map> | 
|  | #include <set> | 
|  |  | 
|  | using namespace clang; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // CheckDefaultArgumentVisitor | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses | 
|  | /// the default argument of a parameter to determine whether it | 
|  | /// contains any ill-formed subexpressions. For example, this will | 
|  | /// diagnose the use of local variables or parameters within the | 
|  | /// default argument expression. | 
|  | class CheckDefaultArgumentVisitor | 
|  | : public StmtVisitor<CheckDefaultArgumentVisitor, bool> { | 
|  | Expr *DefaultArg; | 
|  | Sema *S; | 
|  |  | 
|  | public: | 
|  | CheckDefaultArgumentVisitor(Expr *defarg, Sema *s) | 
|  | : DefaultArg(defarg), S(s) {} | 
|  |  | 
|  | bool VisitExpr(Expr *Node); | 
|  | bool VisitDeclRefExpr(DeclRefExpr *DRE); | 
|  | bool VisitCXXThisExpr(CXXThisExpr *ThisE); | 
|  | bool VisitLambdaExpr(LambdaExpr *Lambda); | 
|  | bool VisitPseudoObjectExpr(PseudoObjectExpr *POE); | 
|  | }; | 
|  |  | 
|  | /// VisitExpr - Visit all of the children of this expression. | 
|  | bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { | 
|  | bool IsInvalid = false; | 
|  | for (Stmt *SubStmt : Node->children()) | 
|  | IsInvalid |= Visit(SubStmt); | 
|  | return IsInvalid; | 
|  | } | 
|  |  | 
|  | /// VisitDeclRefExpr - Visit a reference to a declaration, to | 
|  | /// determine whether this declaration can be used in the default | 
|  | /// argument expression. | 
|  | bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { | 
|  | NamedDecl *Decl = DRE->getDecl(); | 
|  | if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) { | 
|  | // C++ [dcl.fct.default]p9 | 
|  | //   Default arguments are evaluated each time the function is | 
|  | //   called. The order of evaluation of function arguments is | 
|  | //   unspecified. Consequently, parameters of a function shall not | 
|  | //   be used in default argument expressions, even if they are not | 
|  | //   evaluated. Parameters of a function declared before a default | 
|  | //   argument expression are in scope and can hide namespace and | 
|  | //   class member names. | 
|  | return S->Diag(DRE->getBeginLoc(), | 
|  | diag::err_param_default_argument_references_param) | 
|  | << Param->getDeclName() << DefaultArg->getSourceRange(); | 
|  | } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) { | 
|  | // C++ [dcl.fct.default]p7 | 
|  | //   Local variables shall not be used in default argument | 
|  | //   expressions. | 
|  | if (VDecl->isLocalVarDecl()) | 
|  | return S->Diag(DRE->getBeginLoc(), | 
|  | diag::err_param_default_argument_references_local) | 
|  | << VDecl->getDeclName() << DefaultArg->getSourceRange(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// VisitCXXThisExpr - Visit a C++ "this" expression. | 
|  | bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) { | 
|  | // C++ [dcl.fct.default]p8: | 
|  | //   The keyword this shall not be used in a default argument of a | 
|  | //   member function. | 
|  | return S->Diag(ThisE->getBeginLoc(), | 
|  | diag::err_param_default_argument_references_this) | 
|  | << ThisE->getSourceRange(); | 
|  | } | 
|  |  | 
|  | bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) { | 
|  | bool Invalid = false; | 
|  | for (PseudoObjectExpr::semantics_iterator | 
|  | i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) { | 
|  | Expr *E = *i; | 
|  |  | 
|  | // Look through bindings. | 
|  | if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { | 
|  | E = OVE->getSourceExpr(); | 
|  | assert(E && "pseudo-object binding without source expression?"); | 
|  | } | 
|  |  | 
|  | Invalid |= Visit(E); | 
|  | } | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) { | 
|  | // C++11 [expr.lambda.prim]p13: | 
|  | //   A lambda-expression appearing in a default argument shall not | 
|  | //   implicitly or explicitly capture any entity. | 
|  | if (Lambda->capture_begin() == Lambda->capture_end()) | 
|  | return false; | 
|  |  | 
|  | return S->Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg); | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc, | 
|  | const CXXMethodDecl *Method) { | 
|  | // If we have an MSAny spec already, don't bother. | 
|  | if (!Method || ComputedEST == EST_MSAny) | 
|  | return; | 
|  |  | 
|  | const FunctionProtoType *Proto | 
|  | = Method->getType()->getAs<FunctionProtoType>(); | 
|  | Proto = Self->ResolveExceptionSpec(CallLoc, Proto); | 
|  | if (!Proto) | 
|  | return; | 
|  |  | 
|  | ExceptionSpecificationType EST = Proto->getExceptionSpecType(); | 
|  |  | 
|  | // If we have a throw-all spec at this point, ignore the function. | 
|  | if (ComputedEST == EST_None) | 
|  | return; | 
|  |  | 
|  | if (EST == EST_None && Method->hasAttr<NoThrowAttr>()) | 
|  | EST = EST_BasicNoexcept; | 
|  |  | 
|  | switch (EST) { | 
|  | case EST_Unparsed: | 
|  | case EST_Uninstantiated: | 
|  | case EST_Unevaluated: | 
|  | llvm_unreachable("should not see unresolved exception specs here"); | 
|  |  | 
|  | // If this function can throw any exceptions, make a note of that. | 
|  | case EST_MSAny: | 
|  | case EST_None: | 
|  | // FIXME: Whichever we see last of MSAny and None determines our result. | 
|  | // We should make a consistent, order-independent choice here. | 
|  | ClearExceptions(); | 
|  | ComputedEST = EST; | 
|  | return; | 
|  | case EST_NoexceptFalse: | 
|  | ClearExceptions(); | 
|  | ComputedEST = EST_None; | 
|  | return; | 
|  | // FIXME: If the call to this decl is using any of its default arguments, we | 
|  | // need to search them for potentially-throwing calls. | 
|  | // If this function has a basic noexcept, it doesn't affect the outcome. | 
|  | case EST_BasicNoexcept: | 
|  | case EST_NoexceptTrue: | 
|  | case EST_NoThrow: | 
|  | return; | 
|  | // If we're still at noexcept(true) and there's a throw() callee, | 
|  | // change to that specification. | 
|  | case EST_DynamicNone: | 
|  | if (ComputedEST == EST_BasicNoexcept) | 
|  | ComputedEST = EST_DynamicNone; | 
|  | return; | 
|  | case EST_DependentNoexcept: | 
|  | llvm_unreachable( | 
|  | "should not generate implicit declarations for dependent cases"); | 
|  | case EST_Dynamic: | 
|  | break; | 
|  | } | 
|  | assert(EST == EST_Dynamic && "EST case not considered earlier."); | 
|  | assert(ComputedEST != EST_None && | 
|  | "Shouldn't collect exceptions when throw-all is guaranteed."); | 
|  | ComputedEST = EST_Dynamic; | 
|  | // Record the exceptions in this function's exception specification. | 
|  | for (const auto &E : Proto->exceptions()) | 
|  | if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second) | 
|  | Exceptions.push_back(E); | 
|  | } | 
|  |  | 
|  | void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) { | 
|  | if (!E || ComputedEST == EST_MSAny) | 
|  | return; | 
|  |  | 
|  | // FIXME: | 
|  | // | 
|  | // C++0x [except.spec]p14: | 
|  | //   [An] implicit exception-specification specifies the type-id T if and | 
|  | // only if T is allowed by the exception-specification of a function directly | 
|  | // invoked by f's implicit definition; f shall allow all exceptions if any | 
|  | // function it directly invokes allows all exceptions, and f shall allow no | 
|  | // exceptions if every function it directly invokes allows no exceptions. | 
|  | // | 
|  | // Note in particular that if an implicit exception-specification is generated | 
|  | // for a function containing a throw-expression, that specification can still | 
|  | // be noexcept(true). | 
|  | // | 
|  | // Note also that 'directly invoked' is not defined in the standard, and there | 
|  | // is no indication that we should only consider potentially-evaluated calls. | 
|  | // | 
|  | // Ultimately we should implement the intent of the standard: the exception | 
|  | // specification should be the set of exceptions which can be thrown by the | 
|  | // implicit definition. For now, we assume that any non-nothrow expression can | 
|  | // throw any exception. | 
|  |  | 
|  | if (Self->canThrow(E)) | 
|  | ComputedEST = EST_None; | 
|  | } | 
|  |  | 
|  | bool | 
|  | Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, | 
|  | SourceLocation EqualLoc) { | 
|  | if (RequireCompleteType(Param->getLocation(), Param->getType(), | 
|  | diag::err_typecheck_decl_incomplete_type)) { | 
|  | Param->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // C++ [dcl.fct.default]p5 | 
|  | //   A default argument expression is implicitly converted (clause | 
|  | //   4) to the parameter type. The default argument expression has | 
|  | //   the same semantic constraints as the initializer expression in | 
|  | //   a declaration of a variable of the parameter type, using the | 
|  | //   copy-initialization semantics (8.5). | 
|  | InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, | 
|  | Param); | 
|  | InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), | 
|  | EqualLoc); | 
|  | InitializationSequence InitSeq(*this, Entity, Kind, Arg); | 
|  | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg); | 
|  | if (Result.isInvalid()) | 
|  | return true; | 
|  | Arg = Result.getAs<Expr>(); | 
|  |  | 
|  | CheckCompletedExpr(Arg, EqualLoc); | 
|  | Arg = MaybeCreateExprWithCleanups(Arg); | 
|  |  | 
|  | // Okay: add the default argument to the parameter | 
|  | Param->setDefaultArg(Arg); | 
|  |  | 
|  | // We have already instantiated this parameter; provide each of the | 
|  | // instantiations with the uninstantiated default argument. | 
|  | UnparsedDefaultArgInstantiationsMap::iterator InstPos | 
|  | = UnparsedDefaultArgInstantiations.find(Param); | 
|  | if (InstPos != UnparsedDefaultArgInstantiations.end()) { | 
|  | for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) | 
|  | InstPos->second[I]->setUninstantiatedDefaultArg(Arg); | 
|  |  | 
|  | // We're done tracking this parameter's instantiations. | 
|  | UnparsedDefaultArgInstantiations.erase(InstPos); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ActOnParamDefaultArgument - Check whether the default argument | 
|  | /// provided for a function parameter is well-formed. If so, attach it | 
|  | /// to the parameter declaration. | 
|  | void | 
|  | Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, | 
|  | Expr *DefaultArg) { | 
|  | if (!param || !DefaultArg) | 
|  | return; | 
|  |  | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(param); | 
|  | UnparsedDefaultArgLocs.erase(Param); | 
|  |  | 
|  | // Default arguments are only permitted in C++ | 
|  | if (!getLangOpts().CPlusPlus) { | 
|  | Diag(EqualLoc, diag::err_param_default_argument) | 
|  | << DefaultArg->getSourceRange(); | 
|  | Param->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check for unexpanded parameter packs. | 
|  | if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) { | 
|  | Param->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // C++11 [dcl.fct.default]p3 | 
|  | //   A default argument expression [...] shall not be specified for a | 
|  | //   parameter pack. | 
|  | if (Param->isParameterPack()) { | 
|  | Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack) | 
|  | << DefaultArg->getSourceRange(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check that the default argument is well-formed | 
|  | CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this); | 
|  | if (DefaultArgChecker.Visit(DefaultArg)) { | 
|  | Param->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SetParamDefaultArgument(Param, DefaultArg, EqualLoc); | 
|  | } | 
|  |  | 
|  | /// ActOnParamUnparsedDefaultArgument - We've seen a default | 
|  | /// argument for a function parameter, but we can't parse it yet | 
|  | /// because we're inside a class definition. Note that this default | 
|  | /// argument will be parsed later. | 
|  | void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, | 
|  | SourceLocation EqualLoc, | 
|  | SourceLocation ArgLoc) { | 
|  | if (!param) | 
|  | return; | 
|  |  | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(param); | 
|  | Param->setUnparsedDefaultArg(); | 
|  | UnparsedDefaultArgLocs[Param] = ArgLoc; | 
|  | } | 
|  |  | 
|  | /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of | 
|  | /// the default argument for the parameter param failed. | 
|  | void Sema::ActOnParamDefaultArgumentError(Decl *param, | 
|  | SourceLocation EqualLoc) { | 
|  | if (!param) | 
|  | return; | 
|  |  | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(param); | 
|  | Param->setInvalidDecl(); | 
|  | UnparsedDefaultArgLocs.erase(Param); | 
|  | Param->setDefaultArg(new(Context) | 
|  | OpaqueValueExpr(EqualLoc, | 
|  | Param->getType().getNonReferenceType(), | 
|  | VK_RValue)); | 
|  | } | 
|  |  | 
|  | /// CheckExtraCXXDefaultArguments - Check for any extra default | 
|  | /// arguments in the declarator, which is not a function declaration | 
|  | /// or definition and therefore is not permitted to have default | 
|  | /// arguments. This routine should be invoked for every declarator | 
|  | /// that is not a function declaration or definition. | 
|  | void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { | 
|  | // C++ [dcl.fct.default]p3 | 
|  | //   A default argument expression shall be specified only in the | 
|  | //   parameter-declaration-clause of a function declaration or in a | 
|  | //   template-parameter (14.1). It shall not be specified for a | 
|  | //   parameter pack. If it is specified in a | 
|  | //   parameter-declaration-clause, it shall not occur within a | 
|  | //   declarator or abstract-declarator of a parameter-declaration. | 
|  | bool MightBeFunction = D.isFunctionDeclarationContext(); | 
|  | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | 
|  | DeclaratorChunk &chunk = D.getTypeObject(i); | 
|  | if (chunk.Kind == DeclaratorChunk::Function) { | 
|  | if (MightBeFunction) { | 
|  | // This is a function declaration. It can have default arguments, but | 
|  | // keep looking in case its return type is a function type with default | 
|  | // arguments. | 
|  | MightBeFunction = false; | 
|  | continue; | 
|  | } | 
|  | for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e; | 
|  | ++argIdx) { | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param); | 
|  | if (Param->hasUnparsedDefaultArg()) { | 
|  | std::unique_ptr<CachedTokens> Toks = | 
|  | std::move(chunk.Fun.Params[argIdx].DefaultArgTokens); | 
|  | SourceRange SR; | 
|  | if (Toks->size() > 1) | 
|  | SR = SourceRange((*Toks)[1].getLocation(), | 
|  | Toks->back().getLocation()); | 
|  | else | 
|  | SR = UnparsedDefaultArgLocs[Param]; | 
|  | Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) | 
|  | << SR; | 
|  | } else if (Param->getDefaultArg()) { | 
|  | Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) | 
|  | << Param->getDefaultArg()->getSourceRange(); | 
|  | Param->setDefaultArg(nullptr); | 
|  | } | 
|  | } | 
|  | } else if (chunk.Kind != DeclaratorChunk::Paren) { | 
|  | MightBeFunction = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) { | 
|  | for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) { | 
|  | const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1); | 
|  | if (!PVD->hasDefaultArg()) | 
|  | return false; | 
|  | if (!PVD->hasInheritedDefaultArg()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// MergeCXXFunctionDecl - Merge two declarations of the same C++ | 
|  | /// function, once we already know that they have the same | 
|  | /// type. Subroutine of MergeFunctionDecl. Returns true if there was an | 
|  | /// error, false otherwise. | 
|  | bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, | 
|  | Scope *S) { | 
|  | bool Invalid = false; | 
|  |  | 
|  | // The declaration context corresponding to the scope is the semantic | 
|  | // parent, unless this is a local function declaration, in which case | 
|  | // it is that surrounding function. | 
|  | DeclContext *ScopeDC = New->isLocalExternDecl() | 
|  | ? New->getLexicalDeclContext() | 
|  | : New->getDeclContext(); | 
|  |  | 
|  | // Find the previous declaration for the purpose of default arguments. | 
|  | FunctionDecl *PrevForDefaultArgs = Old; | 
|  | for (/**/; PrevForDefaultArgs; | 
|  | // Don't bother looking back past the latest decl if this is a local | 
|  | // extern declaration; nothing else could work. | 
|  | PrevForDefaultArgs = New->isLocalExternDecl() | 
|  | ? nullptr | 
|  | : PrevForDefaultArgs->getPreviousDecl()) { | 
|  | // Ignore hidden declarations. | 
|  | if (!LookupResult::isVisible(*this, PrevForDefaultArgs)) | 
|  | continue; | 
|  |  | 
|  | if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) && | 
|  | !New->isCXXClassMember()) { | 
|  | // Ignore default arguments of old decl if they are not in | 
|  | // the same scope and this is not an out-of-line definition of | 
|  | // a member function. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) { | 
|  | // If only one of these is a local function declaration, then they are | 
|  | // declared in different scopes, even though isDeclInScope may think | 
|  | // they're in the same scope. (If both are local, the scope check is | 
|  | // sufficient, and if neither is local, then they are in the same scope.) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We found the right previous declaration. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // C++ [dcl.fct.default]p4: | 
|  | //   For non-template functions, default arguments can be added in | 
|  | //   later declarations of a function in the same | 
|  | //   scope. Declarations in different scopes have completely | 
|  | //   distinct sets of default arguments. That is, declarations in | 
|  | //   inner scopes do not acquire default arguments from | 
|  | //   declarations in outer scopes, and vice versa. In a given | 
|  | //   function declaration, all parameters subsequent to a | 
|  | //   parameter with a default argument shall have default | 
|  | //   arguments supplied in this or previous declarations. A | 
|  | //   default argument shall not be redefined by a later | 
|  | //   declaration (not even to the same value). | 
|  | // | 
|  | // C++ [dcl.fct.default]p6: | 
|  | //   Except for member functions of class templates, the default arguments | 
|  | //   in a member function definition that appears outside of the class | 
|  | //   definition are added to the set of default arguments provided by the | 
|  | //   member function declaration in the class definition. | 
|  | for (unsigned p = 0, NumParams = PrevForDefaultArgs | 
|  | ? PrevForDefaultArgs->getNumParams() | 
|  | : 0; | 
|  | p < NumParams; ++p) { | 
|  | ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p); | 
|  | ParmVarDecl *NewParam = New->getParamDecl(p); | 
|  |  | 
|  | bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false; | 
|  | bool NewParamHasDfl = NewParam->hasDefaultArg(); | 
|  |  | 
|  | if (OldParamHasDfl && NewParamHasDfl) { | 
|  | unsigned DiagDefaultParamID = | 
|  | diag::err_param_default_argument_redefinition; | 
|  |  | 
|  | // MSVC accepts that default parameters be redefined for member functions | 
|  | // of template class. The new default parameter's value is ignored. | 
|  | Invalid = true; | 
|  | if (getLangOpts().MicrosoftExt) { | 
|  | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New); | 
|  | if (MD && MD->getParent()->getDescribedClassTemplate()) { | 
|  | // Merge the old default argument into the new parameter. | 
|  | NewParam->setHasInheritedDefaultArg(); | 
|  | if (OldParam->hasUninstantiatedDefaultArg()) | 
|  | NewParam->setUninstantiatedDefaultArg( | 
|  | OldParam->getUninstantiatedDefaultArg()); | 
|  | else | 
|  | NewParam->setDefaultArg(OldParam->getInit()); | 
|  | DiagDefaultParamID = diag::ext_param_default_argument_redefinition; | 
|  | Invalid = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: If we knew where the '=' was, we could easily provide a fix-it | 
|  | // hint here. Alternatively, we could walk the type-source information | 
|  | // for NewParam to find the last source location in the type... but it | 
|  | // isn't worth the effort right now. This is the kind of test case that | 
|  | // is hard to get right: | 
|  | //   int f(int); | 
|  | //   void g(int (*fp)(int) = f); | 
|  | //   void g(int (*fp)(int) = &f); | 
|  | Diag(NewParam->getLocation(), DiagDefaultParamID) | 
|  | << NewParam->getDefaultArgRange(); | 
|  |  | 
|  | // Look for the function declaration where the default argument was | 
|  | // actually written, which may be a declaration prior to Old. | 
|  | for (auto Older = PrevForDefaultArgs; | 
|  | OldParam->hasInheritedDefaultArg(); /**/) { | 
|  | Older = Older->getPreviousDecl(); | 
|  | OldParam = Older->getParamDecl(p); | 
|  | } | 
|  |  | 
|  | Diag(OldParam->getLocation(), diag::note_previous_definition) | 
|  | << OldParam->getDefaultArgRange(); | 
|  | } else if (OldParamHasDfl) { | 
|  | // Merge the old default argument into the new parameter unless the new | 
|  | // function is a friend declaration in a template class. In the latter | 
|  | // case the default arguments will be inherited when the friend | 
|  | // declaration will be instantiated. | 
|  | if (New->getFriendObjectKind() == Decl::FOK_None || | 
|  | !New->getLexicalDeclContext()->isDependentContext()) { | 
|  | // It's important to use getInit() here;  getDefaultArg() | 
|  | // strips off any top-level ExprWithCleanups. | 
|  | NewParam->setHasInheritedDefaultArg(); | 
|  | if (OldParam->hasUnparsedDefaultArg()) | 
|  | NewParam->setUnparsedDefaultArg(); | 
|  | else if (OldParam->hasUninstantiatedDefaultArg()) | 
|  | NewParam->setUninstantiatedDefaultArg( | 
|  | OldParam->getUninstantiatedDefaultArg()); | 
|  | else | 
|  | NewParam->setDefaultArg(OldParam->getInit()); | 
|  | } | 
|  | } else if (NewParamHasDfl) { | 
|  | if (New->getDescribedFunctionTemplate()) { | 
|  | // Paragraph 4, quoted above, only applies to non-template functions. | 
|  | Diag(NewParam->getLocation(), | 
|  | diag::err_param_default_argument_template_redecl) | 
|  | << NewParam->getDefaultArgRange(); | 
|  | Diag(PrevForDefaultArgs->getLocation(), | 
|  | diag::note_template_prev_declaration) | 
|  | << false; | 
|  | } else if (New->getTemplateSpecializationKind() | 
|  | != TSK_ImplicitInstantiation && | 
|  | New->getTemplateSpecializationKind() != TSK_Undeclared) { | 
|  | // C++ [temp.expr.spec]p21: | 
|  | //   Default function arguments shall not be specified in a declaration | 
|  | //   or a definition for one of the following explicit specializations: | 
|  | //     - the explicit specialization of a function template; | 
|  | //     - the explicit specialization of a member function template; | 
|  | //     - the explicit specialization of a member function of a class | 
|  | //       template where the class template specialization to which the | 
|  | //       member function specialization belongs is implicitly | 
|  | //       instantiated. | 
|  | Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) | 
|  | << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) | 
|  | << New->getDeclName() | 
|  | << NewParam->getDefaultArgRange(); | 
|  | } else if (New->getDeclContext()->isDependentContext()) { | 
|  | // C++ [dcl.fct.default]p6 (DR217): | 
|  | //   Default arguments for a member function of a class template shall | 
|  | //   be specified on the initial declaration of the member function | 
|  | //   within the class template. | 
|  | // | 
|  | // Reading the tea leaves a bit in DR217 and its reference to DR205 | 
|  | // leads me to the conclusion that one cannot add default function | 
|  | // arguments for an out-of-line definition of a member function of a | 
|  | // dependent type. | 
|  | int WhichKind = 2; | 
|  | if (CXXRecordDecl *Record | 
|  | = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { | 
|  | if (Record->getDescribedClassTemplate()) | 
|  | WhichKind = 0; | 
|  | else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) | 
|  | WhichKind = 1; | 
|  | else | 
|  | WhichKind = 2; | 
|  | } | 
|  |  | 
|  | Diag(NewParam->getLocation(), | 
|  | diag::err_param_default_argument_member_template_redecl) | 
|  | << WhichKind | 
|  | << NewParam->getDefaultArgRange(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // DR1344: If a default argument is added outside a class definition and that | 
|  | // default argument makes the function a special member function, the program | 
|  | // is ill-formed. This can only happen for constructors. | 
|  | if (isa<CXXConstructorDecl>(New) && | 
|  | New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { | 
|  | CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)), | 
|  | OldSM = getSpecialMember(cast<CXXMethodDecl>(Old)); | 
|  | if (NewSM != OldSM) { | 
|  | ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments()); | 
|  | assert(NewParam->hasDefaultArg()); | 
|  | Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) | 
|  | << NewParam->getDefaultArgRange() << NewSM; | 
|  | Diag(Old->getLocation(), diag::note_previous_declaration); | 
|  | } | 
|  | } | 
|  |  | 
|  | const FunctionDecl *Def; | 
|  | // C++11 [dcl.constexpr]p1: If any declaration of a function or function | 
|  | // template has a constexpr specifier then all its declarations shall | 
|  | // contain the constexpr specifier. | 
|  | if (New->getConstexprKind() != Old->getConstexprKind()) { | 
|  | Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) | 
|  | << New << New->getConstexprKind() << Old->getConstexprKind(); | 
|  | Diag(Old->getLocation(), diag::note_previous_declaration); | 
|  | Invalid = true; | 
|  | } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() && | 
|  | Old->isDefined(Def) && | 
|  | // If a friend function is inlined but does not have 'inline' | 
|  | // specifier, it is a definition. Do not report attribute conflict | 
|  | // in this case, redefinition will be diagnosed later. | 
|  | (New->isInlineSpecified() || | 
|  | New->getFriendObjectKind() == Decl::FOK_None)) { | 
|  | // C++11 [dcl.fcn.spec]p4: | 
|  | //   If the definition of a function appears in a translation unit before its | 
|  | //   first declaration as inline, the program is ill-formed. | 
|  | Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; | 
|  | Diag(Def->getLocation(), diag::note_previous_definition); | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | // C++17 [temp.deduct.guide]p3: | 
|  | //   Two deduction guide declarations in the same translation unit | 
|  | //   for the same class template shall not have equivalent | 
|  | //   parameter-declaration-clauses. | 
|  | if (isa<CXXDeductionGuideDecl>(New) && | 
|  | !New->isFunctionTemplateSpecialization()) { | 
|  | Diag(New->getLocation(), diag::err_deduction_guide_redeclared); | 
|  | Diag(Old->getLocation(), diag::note_previous_declaration); | 
|  | } | 
|  |  | 
|  | // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default | 
|  | // argument expression, that declaration shall be a definition and shall be | 
|  | // the only declaration of the function or function template in the | 
|  | // translation unit. | 
|  | if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && | 
|  | functionDeclHasDefaultArgument(Old)) { | 
|  | Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); | 
|  | Diag(Old->getLocation(), diag::note_previous_declaration); | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | NamedDecl * | 
|  | Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D, | 
|  | MultiTemplateParamsArg TemplateParamLists) { | 
|  | assert(D.isDecompositionDeclarator()); | 
|  | const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); | 
|  |  | 
|  | // The syntax only allows a decomposition declarator as a simple-declaration, | 
|  | // a for-range-declaration, or a condition in Clang, but we parse it in more | 
|  | // cases than that. | 
|  | if (!D.mayHaveDecompositionDeclarator()) { | 
|  | Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) | 
|  | << Decomp.getSourceRange(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!TemplateParamLists.empty()) { | 
|  | // FIXME: There's no rule against this, but there are also no rules that | 
|  | // would actually make it usable, so we reject it for now. | 
|  | Diag(TemplateParamLists.front()->getTemplateLoc(), | 
|  | diag::err_decomp_decl_template); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Diag(Decomp.getLSquareLoc(), | 
|  | !getLangOpts().CPlusPlus17 | 
|  | ? diag::ext_decomp_decl | 
|  | : D.getContext() == DeclaratorContext::ConditionContext | 
|  | ? diag::ext_decomp_decl_cond | 
|  | : diag::warn_cxx14_compat_decomp_decl) | 
|  | << Decomp.getSourceRange(); | 
|  |  | 
|  | // The semantic context is always just the current context. | 
|  | DeclContext *const DC = CurContext; | 
|  |  | 
|  | // C++17 [dcl.dcl]/8: | 
|  | //   The decl-specifier-seq shall contain only the type-specifier auto | 
|  | //   and cv-qualifiers. | 
|  | // C++2a [dcl.dcl]/8: | 
|  | //   If decl-specifier-seq contains any decl-specifier other than static, | 
|  | //   thread_local, auto, or cv-qualifiers, the program is ill-formed. | 
|  | auto &DS = D.getDeclSpec(); | 
|  | { | 
|  | SmallVector<StringRef, 8> BadSpecifiers; | 
|  | SmallVector<SourceLocation, 8> BadSpecifierLocs; | 
|  | SmallVector<StringRef, 8> CPlusPlus20Specifiers; | 
|  | SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs; | 
|  | if (auto SCS = DS.getStorageClassSpec()) { | 
|  | if (SCS == DeclSpec::SCS_static) { | 
|  | CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS)); | 
|  | CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc()); | 
|  | } else { | 
|  | BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS)); | 
|  | BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc()); | 
|  | } | 
|  | } | 
|  | if (auto TSCS = DS.getThreadStorageClassSpec()) { | 
|  | CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS)); | 
|  | CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc()); | 
|  | } | 
|  | if (DS.hasConstexprSpecifier()) { | 
|  | BadSpecifiers.push_back( | 
|  | DeclSpec::getSpecifierName(DS.getConstexprSpecifier())); | 
|  | BadSpecifierLocs.push_back(DS.getConstexprSpecLoc()); | 
|  | } | 
|  | if (DS.isInlineSpecified()) { | 
|  | BadSpecifiers.push_back("inline"); | 
|  | BadSpecifierLocs.push_back(DS.getInlineSpecLoc()); | 
|  | } | 
|  | if (!BadSpecifiers.empty()) { | 
|  | auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec); | 
|  | Err << (int)BadSpecifiers.size() | 
|  | << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " "); | 
|  | // Don't add FixItHints to remove the specifiers; we do still respect | 
|  | // them when building the underlying variable. | 
|  | for (auto Loc : BadSpecifierLocs) | 
|  | Err << SourceRange(Loc, Loc); | 
|  | } else if (!CPlusPlus20Specifiers.empty()) { | 
|  | auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(), | 
|  | getLangOpts().CPlusPlus2a | 
|  | ? diag::warn_cxx17_compat_decomp_decl_spec | 
|  | : diag::ext_decomp_decl_spec); | 
|  | Warn << (int)CPlusPlus20Specifiers.size() | 
|  | << llvm::join(CPlusPlus20Specifiers.begin(), | 
|  | CPlusPlus20Specifiers.end(), " "); | 
|  | for (auto Loc : CPlusPlus20SpecifierLocs) | 
|  | Warn << SourceRange(Loc, Loc); | 
|  | } | 
|  | // We can't recover from it being declared as a typedef. | 
|  | if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
|  | QualType R = TInfo->getType(); | 
|  |  | 
|  | if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, | 
|  | UPPC_DeclarationType)) | 
|  | D.setInvalidType(); | 
|  |  | 
|  | // The syntax only allows a single ref-qualifier prior to the decomposition | 
|  | // declarator. No other declarator chunks are permitted. Also check the type | 
|  | // specifier here. | 
|  | if (DS.getTypeSpecType() != DeclSpec::TST_auto || | 
|  | D.hasGroupingParens() || D.getNumTypeObjects() > 1 || | 
|  | (D.getNumTypeObjects() == 1 && | 
|  | D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) { | 
|  | Diag(Decomp.getLSquareLoc(), | 
|  | (D.hasGroupingParens() || | 
|  | (D.getNumTypeObjects() && | 
|  | D.getTypeObject(0).Kind == DeclaratorChunk::Paren)) | 
|  | ? diag::err_decomp_decl_parens | 
|  | : diag::err_decomp_decl_type) | 
|  | << R; | 
|  |  | 
|  | // In most cases, there's no actual problem with an explicitly-specified | 
|  | // type, but a function type won't work here, and ActOnVariableDeclarator | 
|  | // shouldn't be called for such a type. | 
|  | if (R->isFunctionType()) | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Build the BindingDecls. | 
|  | SmallVector<BindingDecl*, 8> Bindings; | 
|  |  | 
|  | // Build the BindingDecls. | 
|  | for (auto &B : D.getDecompositionDeclarator().bindings()) { | 
|  | // Check for name conflicts. | 
|  | DeclarationNameInfo NameInfo(B.Name, B.NameLoc); | 
|  | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | 
|  | ForVisibleRedeclaration); | 
|  | LookupName(Previous, S, | 
|  | /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit()); | 
|  |  | 
|  | // It's not permitted to shadow a template parameter name. | 
|  | if (Previous.isSingleResult() && | 
|  | Previous.getFoundDecl()->isTemplateParameter()) { | 
|  | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), | 
|  | Previous.getFoundDecl()); | 
|  | Previous.clear(); | 
|  | } | 
|  |  | 
|  | bool ConsiderLinkage = DC->isFunctionOrMethod() && | 
|  | DS.getStorageClassSpec() == DeclSpec::SCS_extern; | 
|  | FilterLookupForScope(Previous, DC, S, ConsiderLinkage, | 
|  | /*AllowInlineNamespace*/false); | 
|  | if (!Previous.empty()) { | 
|  | auto *Old = Previous.getRepresentativeDecl(); | 
|  | Diag(B.NameLoc, diag::err_redefinition) << B.Name; | 
|  | Diag(Old->getLocation(), diag::note_previous_definition); | 
|  | } | 
|  |  | 
|  | auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name); | 
|  | PushOnScopeChains(BD, S, true); | 
|  | Bindings.push_back(BD); | 
|  | ParsingInitForAutoVars.insert(BD); | 
|  | } | 
|  |  | 
|  | // There are no prior lookup results for the variable itself, because it | 
|  | // is unnamed. | 
|  | DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr, | 
|  | Decomp.getLSquareLoc()); | 
|  | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | 
|  | ForVisibleRedeclaration); | 
|  |  | 
|  | // Build the variable that holds the non-decomposed object. | 
|  | bool AddToScope = true; | 
|  | NamedDecl *New = | 
|  | ActOnVariableDeclarator(S, D, DC, TInfo, Previous, | 
|  | MultiTemplateParamsArg(), AddToScope, Bindings); | 
|  | if (AddToScope) { | 
|  | S->AddDecl(New); | 
|  | CurContext->addHiddenDecl(New); | 
|  | } | 
|  |  | 
|  | if (isInOpenMPDeclareTargetContext()) | 
|  | checkDeclIsAllowedInOpenMPTarget(nullptr, New); | 
|  |  | 
|  | return New; | 
|  | } | 
|  |  | 
|  | static bool checkSimpleDecomposition( | 
|  | Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src, | 
|  | QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType, | 
|  | llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) { | 
|  | if ((int64_t)Bindings.size() != NumElems) { | 
|  | S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) | 
|  | << DecompType << (unsigned)Bindings.size() << NumElems.toString(10) | 
|  | << (NumElems < Bindings.size()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned I = 0; | 
|  | for (auto *B : Bindings) { | 
|  | SourceLocation Loc = B->getLocation(); | 
|  | ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); | 
|  | if (E.isInvalid()) | 
|  | return true; | 
|  | E = GetInit(Loc, E.get(), I++); | 
|  | if (E.isInvalid()) | 
|  | return true; | 
|  | B->setBinding(ElemType, E.get()); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool checkArrayLikeDecomposition(Sema &S, | 
|  | ArrayRef<BindingDecl *> Bindings, | 
|  | ValueDecl *Src, QualType DecompType, | 
|  | const llvm::APSInt &NumElems, | 
|  | QualType ElemType) { | 
|  | return checkSimpleDecomposition( | 
|  | S, Bindings, Src, DecompType, NumElems, ElemType, | 
|  | [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { | 
|  | ExprResult E = S.ActOnIntegerConstant(Loc, I); | 
|  | if (E.isInvalid()) | 
|  | return ExprError(); | 
|  | return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc); | 
|  | }); | 
|  | } | 
|  |  | 
|  | static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, | 
|  | ValueDecl *Src, QualType DecompType, | 
|  | const ConstantArrayType *CAT) { | 
|  | return checkArrayLikeDecomposition(S, Bindings, Src, DecompType, | 
|  | llvm::APSInt(CAT->getSize()), | 
|  | CAT->getElementType()); | 
|  | } | 
|  |  | 
|  | static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, | 
|  | ValueDecl *Src, QualType DecompType, | 
|  | const VectorType *VT) { | 
|  | return checkArrayLikeDecomposition( | 
|  | S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()), | 
|  | S.Context.getQualifiedType(VT->getElementType(), | 
|  | DecompType.getQualifiers())); | 
|  | } | 
|  |  | 
|  | static bool checkComplexDecomposition(Sema &S, | 
|  | ArrayRef<BindingDecl *> Bindings, | 
|  | ValueDecl *Src, QualType DecompType, | 
|  | const ComplexType *CT) { | 
|  | return checkSimpleDecomposition( | 
|  | S, Bindings, Src, DecompType, llvm::APSInt::get(2), | 
|  | S.Context.getQualifiedType(CT->getElementType(), | 
|  | DecompType.getQualifiers()), | 
|  | [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { | 
|  | return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base); | 
|  | }); | 
|  | } | 
|  |  | 
|  | static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy, | 
|  | TemplateArgumentListInfo &Args) { | 
|  | SmallString<128> SS; | 
|  | llvm::raw_svector_ostream OS(SS); | 
|  | bool First = true; | 
|  | for (auto &Arg : Args.arguments()) { | 
|  | if (!First) | 
|  | OS << ", "; | 
|  | Arg.getArgument().print(PrintingPolicy, OS); | 
|  | First = false; | 
|  | } | 
|  | return OS.str(); | 
|  | } | 
|  |  | 
|  | static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup, | 
|  | SourceLocation Loc, StringRef Trait, | 
|  | TemplateArgumentListInfo &Args, | 
|  | unsigned DiagID) { | 
|  | auto DiagnoseMissing = [&] { | 
|  | if (DiagID) | 
|  | S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(), | 
|  | Args); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine. | 
|  | NamespaceDecl *Std = S.getStdNamespace(); | 
|  | if (!Std) | 
|  | return DiagnoseMissing(); | 
|  |  | 
|  | // Look up the trait itself, within namespace std. We can diagnose various | 
|  | // problems with this lookup even if we've been asked to not diagnose a | 
|  | // missing specialization, because this can only fail if the user has been | 
|  | // declaring their own names in namespace std or we don't support the | 
|  | // standard library implementation in use. | 
|  | LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait), | 
|  | Loc, Sema::LookupOrdinaryName); | 
|  | if (!S.LookupQualifiedName(Result, Std)) | 
|  | return DiagnoseMissing(); | 
|  | if (Result.isAmbiguous()) | 
|  | return true; | 
|  |  | 
|  | ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>(); | 
|  | if (!TraitTD) { | 
|  | Result.suppressDiagnostics(); | 
|  | NamedDecl *Found = *Result.begin(); | 
|  | S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait; | 
|  | S.Diag(Found->getLocation(), diag::note_declared_at); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Build the template-id. | 
|  | QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args); | 
|  | if (TraitTy.isNull()) | 
|  | return true; | 
|  | if (!S.isCompleteType(Loc, TraitTy)) { | 
|  | if (DiagID) | 
|  | S.RequireCompleteType( | 
|  | Loc, TraitTy, DiagID, | 
|  | printTemplateArgs(S.Context.getPrintingPolicy(), Args)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl(); | 
|  | assert(RD && "specialization of class template is not a class?"); | 
|  |  | 
|  | // Look up the member of the trait type. | 
|  | S.LookupQualifiedName(TraitMemberLookup, RD); | 
|  | return TraitMemberLookup.isAmbiguous(); | 
|  | } | 
|  |  | 
|  | static TemplateArgumentLoc | 
|  | getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T, | 
|  | uint64_t I) { | 
|  | TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T); | 
|  | return S.getTrivialTemplateArgumentLoc(Arg, T, Loc); | 
|  | } | 
|  |  | 
|  | static TemplateArgumentLoc | 
|  | getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) { | 
|  | return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc); | 
|  | } | 
|  |  | 
|  | namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; } | 
|  |  | 
|  | static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T, | 
|  | llvm::APSInt &Size) { | 
|  | EnterExpressionEvaluationContext ContextRAII( | 
|  | S, Sema::ExpressionEvaluationContext::ConstantEvaluated); | 
|  |  | 
|  | DeclarationName Value = S.PP.getIdentifierInfo("value"); | 
|  | LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName); | 
|  |  | 
|  | // Form template argument list for tuple_size<T>. | 
|  | TemplateArgumentListInfo Args(Loc, Loc); | 
|  | Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); | 
|  |  | 
|  | // If there's no tuple_size specialization, it's not tuple-like. | 
|  | if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/0)) | 
|  | return IsTupleLike::NotTupleLike; | 
|  |  | 
|  | // If we get this far, we've committed to the tuple interpretation, but | 
|  | // we can still fail if there actually isn't a usable ::value. | 
|  |  | 
|  | struct ICEDiagnoser : Sema::VerifyICEDiagnoser { | 
|  | LookupResult &R; | 
|  | TemplateArgumentListInfo &Args; | 
|  | ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args) | 
|  | : R(R), Args(Args) {} | 
|  | void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) { | 
|  | S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant) | 
|  | << printTemplateArgs(S.Context.getPrintingPolicy(), Args); | 
|  | } | 
|  | } Diagnoser(R, Args); | 
|  |  | 
|  | if (R.empty()) { | 
|  | Diagnoser.diagnoseNotICE(S, Loc, SourceRange()); | 
|  | return IsTupleLike::Error; | 
|  | } | 
|  |  | 
|  | ExprResult E = | 
|  | S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false); | 
|  | if (E.isInvalid()) | 
|  | return IsTupleLike::Error; | 
|  |  | 
|  | E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser, false); | 
|  | if (E.isInvalid()) | 
|  | return IsTupleLike::Error; | 
|  |  | 
|  | return IsTupleLike::TupleLike; | 
|  | } | 
|  |  | 
|  | /// \return std::tuple_element<I, T>::type. | 
|  | static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc, | 
|  | unsigned I, QualType T) { | 
|  | // Form template argument list for tuple_element<I, T>. | 
|  | TemplateArgumentListInfo Args(Loc, Loc); | 
|  | Args.addArgument( | 
|  | getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); | 
|  | Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); | 
|  |  | 
|  | DeclarationName TypeDN = S.PP.getIdentifierInfo("type"); | 
|  | LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName); | 
|  | if (lookupStdTypeTraitMember( | 
|  | S, R, Loc, "tuple_element", Args, | 
|  | diag::err_decomp_decl_std_tuple_element_not_specialized)) | 
|  | return QualType(); | 
|  |  | 
|  | auto *TD = R.getAsSingle<TypeDecl>(); | 
|  | if (!TD) { | 
|  | R.suppressDiagnostics(); | 
|  | S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized) | 
|  | << printTemplateArgs(S.Context.getPrintingPolicy(), Args); | 
|  | if (!R.empty()) | 
|  | S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | return S.Context.getTypeDeclType(TD); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct BindingDiagnosticTrap { | 
|  | Sema &S; | 
|  | DiagnosticErrorTrap Trap; | 
|  | BindingDecl *BD; | 
|  |  | 
|  | BindingDiagnosticTrap(Sema &S, BindingDecl *BD) | 
|  | : S(S), Trap(S.Diags), BD(BD) {} | 
|  | ~BindingDiagnosticTrap() { | 
|  | if (Trap.hasErrorOccurred()) | 
|  | S.Diag(BD->getLocation(), diag::note_in_binding_decl_init) << BD; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | static bool checkTupleLikeDecomposition(Sema &S, | 
|  | ArrayRef<BindingDecl *> Bindings, | 
|  | VarDecl *Src, QualType DecompType, | 
|  | const llvm::APSInt &TupleSize) { | 
|  | if ((int64_t)Bindings.size() != TupleSize) { | 
|  | S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) | 
|  | << DecompType << (unsigned)Bindings.size() << TupleSize.toString(10) | 
|  | << (TupleSize < Bindings.size()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Bindings.empty()) | 
|  | return false; | 
|  |  | 
|  | DeclarationName GetDN = S.PP.getIdentifierInfo("get"); | 
|  |  | 
|  | // [dcl.decomp]p3: | 
|  | //   The unqualified-id get is looked up in the scope of E by class member | 
|  | //   access lookup ... | 
|  | LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName); | 
|  | bool UseMemberGet = false; | 
|  | if (S.isCompleteType(Src->getLocation(), DecompType)) { | 
|  | if (auto *RD = DecompType->getAsCXXRecordDecl()) | 
|  | S.LookupQualifiedName(MemberGet, RD); | 
|  | if (MemberGet.isAmbiguous()) | 
|  | return true; | 
|  | //   ... and if that finds at least one declaration that is a function | 
|  | //   template whose first template parameter is a non-type parameter ... | 
|  | for (NamedDecl *D : MemberGet) { | 
|  | if (FunctionTemplateDecl *FTD = | 
|  | dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) { | 
|  | TemplateParameterList *TPL = FTD->getTemplateParameters(); | 
|  | if (TPL->size() != 0 && | 
|  | isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) { | 
|  | //   ... the initializer is e.get<i>(). | 
|  | UseMemberGet = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned I = 0; | 
|  | for (auto *B : Bindings) { | 
|  | BindingDiagnosticTrap Trap(S, B); | 
|  | SourceLocation Loc = B->getLocation(); | 
|  |  | 
|  | ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); | 
|  | if (E.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | //   e is an lvalue if the type of the entity is an lvalue reference and | 
|  | //   an xvalue otherwise | 
|  | if (!Src->getType()->isLValueReferenceType()) | 
|  | E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp, | 
|  | E.get(), nullptr, VK_XValue); | 
|  |  | 
|  | TemplateArgumentListInfo Args(Loc, Loc); | 
|  | Args.addArgument( | 
|  | getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); | 
|  |  | 
|  | if (UseMemberGet) { | 
|  | //   if [lookup of member get] finds at least one declaration, the | 
|  | //   initializer is e.get<i-1>(). | 
|  | E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false, | 
|  | CXXScopeSpec(), SourceLocation(), nullptr, | 
|  | MemberGet, &Args, nullptr); | 
|  | if (E.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc); | 
|  | } else { | 
|  | //   Otherwise, the initializer is get<i-1>(e), where get is looked up | 
|  | //   in the associated namespaces. | 
|  | Expr *Get = UnresolvedLookupExpr::Create( | 
|  | S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(), | 
|  | DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args, | 
|  | UnresolvedSetIterator(), UnresolvedSetIterator()); | 
|  |  | 
|  | Expr *Arg = E.get(); | 
|  | E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc); | 
|  | } | 
|  | if (E.isInvalid()) | 
|  | return true; | 
|  | Expr *Init = E.get(); | 
|  |  | 
|  | //   Given the type T designated by std::tuple_element<i - 1, E>::type, | 
|  | QualType T = getTupleLikeElementType(S, Loc, I, DecompType); | 
|  | if (T.isNull()) | 
|  | return true; | 
|  |  | 
|  | //   each vi is a variable of type "reference to T" initialized with the | 
|  | //   initializer, where the reference is an lvalue reference if the | 
|  | //   initializer is an lvalue and an rvalue reference otherwise | 
|  | QualType RefType = | 
|  | S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName()); | 
|  | if (RefType.isNull()) | 
|  | return true; | 
|  | auto *RefVD = VarDecl::Create( | 
|  | S.Context, Src->getDeclContext(), Loc, Loc, | 
|  | B->getDeclName().getAsIdentifierInfo(), RefType, | 
|  | S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass()); | 
|  | RefVD->setLexicalDeclContext(Src->getLexicalDeclContext()); | 
|  | RefVD->setTSCSpec(Src->getTSCSpec()); | 
|  | RefVD->setImplicit(); | 
|  | if (Src->isInlineSpecified()) | 
|  | RefVD->setInlineSpecified(); | 
|  | RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD); | 
|  |  | 
|  | InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD); | 
|  | InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc); | 
|  | InitializationSequence Seq(S, Entity, Kind, Init); | 
|  | E = Seq.Perform(S, Entity, Kind, Init); | 
|  | if (E.isInvalid()) | 
|  | return true; | 
|  | E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false); | 
|  | if (E.isInvalid()) | 
|  | return true; | 
|  | RefVD->setInit(E.get()); | 
|  | RefVD->checkInitIsICE(); | 
|  |  | 
|  | E = S.BuildDeclarationNameExpr(CXXScopeSpec(), | 
|  | DeclarationNameInfo(B->getDeclName(), Loc), | 
|  | RefVD); | 
|  | if (E.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | B->setBinding(T, E.get()); | 
|  | I++; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Find the base class to decompose in a built-in decomposition of a class type. | 
|  | /// This base class search is, unfortunately, not quite like any other that we | 
|  | /// perform anywhere else in C++. | 
|  | static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc, | 
|  | const CXXRecordDecl *RD, | 
|  | CXXCastPath &BasePath) { | 
|  | auto BaseHasFields = [](const CXXBaseSpecifier *Specifier, | 
|  | CXXBasePath &Path) { | 
|  | return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields(); | 
|  | }; | 
|  |  | 
|  | const CXXRecordDecl *ClassWithFields = nullptr; | 
|  | AccessSpecifier AS = AS_public; | 
|  | if (RD->hasDirectFields()) | 
|  | // [dcl.decomp]p4: | 
|  | //   Otherwise, all of E's non-static data members shall be public direct | 
|  | //   members of E ... | 
|  | ClassWithFields = RD; | 
|  | else { | 
|  | //   ... or of ... | 
|  | CXXBasePaths Paths; | 
|  | Paths.setOrigin(const_cast<CXXRecordDecl*>(RD)); | 
|  | if (!RD->lookupInBases(BaseHasFields, Paths)) { | 
|  | // If no classes have fields, just decompose RD itself. (This will work | 
|  | // if and only if zero bindings were provided.) | 
|  | return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public); | 
|  | } | 
|  |  | 
|  | CXXBasePath *BestPath = nullptr; | 
|  | for (auto &P : Paths) { | 
|  | if (!BestPath) | 
|  | BestPath = &P; | 
|  | else if (!S.Context.hasSameType(P.back().Base->getType(), | 
|  | BestPath->back().Base->getType())) { | 
|  | //   ... the same ... | 
|  | S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) | 
|  | << false << RD << BestPath->back().Base->getType() | 
|  | << P.back().Base->getType(); | 
|  | return DeclAccessPair(); | 
|  | } else if (P.Access < BestPath->Access) { | 
|  | BestPath = &P; | 
|  | } | 
|  | } | 
|  |  | 
|  | //   ... unambiguous ... | 
|  | QualType BaseType = BestPath->back().Base->getType(); | 
|  | if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) { | 
|  | S.Diag(Loc, diag::err_decomp_decl_ambiguous_base) | 
|  | << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths); | 
|  | return DeclAccessPair(); | 
|  | } | 
|  |  | 
|  | //   ... [accessible, implied by other rules] base class of E. | 
|  | S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD), | 
|  | *BestPath, diag::err_decomp_decl_inaccessible_base); | 
|  | AS = BestPath->Access; | 
|  |  | 
|  | ClassWithFields = BaseType->getAsCXXRecordDecl(); | 
|  | S.BuildBasePathArray(Paths, BasePath); | 
|  | } | 
|  |  | 
|  | // The above search did not check whether the selected class itself has base | 
|  | // classes with fields, so check that now. | 
|  | CXXBasePaths Paths; | 
|  | if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) { | 
|  | S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) | 
|  | << (ClassWithFields == RD) << RD << ClassWithFields | 
|  | << Paths.front().back().Base->getType(); | 
|  | return DeclAccessPair(); | 
|  | } | 
|  |  | 
|  | return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS); | 
|  | } | 
|  |  | 
|  | static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, | 
|  | ValueDecl *Src, QualType DecompType, | 
|  | const CXXRecordDecl *OrigRD) { | 
|  | if (S.RequireCompleteType(Src->getLocation(), DecompType, | 
|  | diag::err_incomplete_type)) | 
|  | return true; | 
|  |  | 
|  | CXXCastPath BasePath; | 
|  | DeclAccessPair BasePair = | 
|  | findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath); | 
|  | const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl()); | 
|  | if (!RD) | 
|  | return true; | 
|  | QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD), | 
|  | DecompType.getQualifiers()); | 
|  |  | 
|  | auto DiagnoseBadNumberOfBindings = [&]() -> bool { | 
|  | unsigned NumFields = | 
|  | std::count_if(RD->field_begin(), RD->field_end(), | 
|  | [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); }); | 
|  | assert(Bindings.size() != NumFields); | 
|  | S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) | 
|  | << DecompType << (unsigned)Bindings.size() << NumFields | 
|  | << (NumFields < Bindings.size()); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | //   all of E's non-static data members shall be [...] well-formed | 
|  | //   when named as e.name in the context of the structured binding, | 
|  | //   E shall not have an anonymous union member, ... | 
|  | unsigned I = 0; | 
|  | for (auto *FD : RD->fields()) { | 
|  | if (FD->isUnnamedBitfield()) | 
|  | continue; | 
|  |  | 
|  | if (FD->isAnonymousStructOrUnion()) { | 
|  | S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member) | 
|  | << DecompType << FD->getType()->isUnionType(); | 
|  | S.Diag(FD->getLocation(), diag::note_declared_at); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We have a real field to bind. | 
|  | if (I >= Bindings.size()) | 
|  | return DiagnoseBadNumberOfBindings(); | 
|  | auto *B = Bindings[I++]; | 
|  | SourceLocation Loc = B->getLocation(); | 
|  |  | 
|  | // The field must be accessible in the context of the structured binding. | 
|  | // We already checked that the base class is accessible. | 
|  | // FIXME: Add 'const' to AccessedEntity's classes so we can remove the | 
|  | // const_cast here. | 
|  | S.CheckStructuredBindingMemberAccess( | 
|  | Loc, const_cast<CXXRecordDecl *>(OrigRD), | 
|  | DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess( | 
|  | BasePair.getAccess(), FD->getAccess()))); | 
|  |  | 
|  | // Initialize the binding to Src.FD. | 
|  | ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); | 
|  | if (E.isInvalid()) | 
|  | return true; | 
|  | E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase, | 
|  | VK_LValue, &BasePath); | 
|  | if (E.isInvalid()) | 
|  | return true; | 
|  | E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc, | 
|  | CXXScopeSpec(), FD, | 
|  | DeclAccessPair::make(FD, FD->getAccess()), | 
|  | DeclarationNameInfo(FD->getDeclName(), Loc)); | 
|  | if (E.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | // If the type of the member is T, the referenced type is cv T, where cv is | 
|  | // the cv-qualification of the decomposition expression. | 
|  | // | 
|  | // FIXME: We resolve a defect here: if the field is mutable, we do not add | 
|  | // 'const' to the type of the field. | 
|  | Qualifiers Q = DecompType.getQualifiers(); | 
|  | if (FD->isMutable()) | 
|  | Q.removeConst(); | 
|  | B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get()); | 
|  | } | 
|  |  | 
|  | if (I != Bindings.size()) | 
|  | return DiagnoseBadNumberOfBindings(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) { | 
|  | QualType DecompType = DD->getType(); | 
|  |  | 
|  | // If the type of the decomposition is dependent, then so is the type of | 
|  | // each binding. | 
|  | if (DecompType->isDependentType()) { | 
|  | for (auto *B : DD->bindings()) | 
|  | B->setType(Context.DependentTy); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DecompType = DecompType.getNonReferenceType(); | 
|  | ArrayRef<BindingDecl*> Bindings = DD->bindings(); | 
|  |  | 
|  | // C++1z [dcl.decomp]/2: | 
|  | //   If E is an array type [...] | 
|  | // As an extension, we also support decomposition of built-in complex and | 
|  | // vector types. | 
|  | if (auto *CAT = Context.getAsConstantArrayType(DecompType)) { | 
|  | if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT)) | 
|  | DD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | if (auto *VT = DecompType->getAs<VectorType>()) { | 
|  | if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT)) | 
|  | DD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | if (auto *CT = DecompType->getAs<ComplexType>()) { | 
|  | if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT)) | 
|  | DD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // C++1z [dcl.decomp]/3: | 
|  | //   if the expression std::tuple_size<E>::value is a well-formed integral | 
|  | //   constant expression, [...] | 
|  | llvm::APSInt TupleSize(32); | 
|  | switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) { | 
|  | case IsTupleLike::Error: | 
|  | DD->setInvalidDecl(); | 
|  | return; | 
|  |  | 
|  | case IsTupleLike::TupleLike: | 
|  | if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize)) | 
|  | DD->setInvalidDecl(); | 
|  | return; | 
|  |  | 
|  | case IsTupleLike::NotTupleLike: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // C++1z [dcl.dcl]/8: | 
|  | //   [E shall be of array or non-union class type] | 
|  | CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl(); | 
|  | if (!RD || RD->isUnion()) { | 
|  | Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type) | 
|  | << DD << !RD << DecompType; | 
|  | DD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // C++1z [dcl.decomp]/4: | 
|  | //   all of E's non-static data members shall be [...] direct members of | 
|  | //   E or of the same unambiguous public base class of E, ... | 
|  | if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD)) | 
|  | DD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | /// Merge the exception specifications of two variable declarations. | 
|  | /// | 
|  | /// This is called when there's a redeclaration of a VarDecl. The function | 
|  | /// checks if the redeclaration might have an exception specification and | 
|  | /// validates compatibility and merges the specs if necessary. | 
|  | void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { | 
|  | // Shortcut if exceptions are disabled. | 
|  | if (!getLangOpts().CXXExceptions) | 
|  | return; | 
|  |  | 
|  | assert(Context.hasSameType(New->getType(), Old->getType()) && | 
|  | "Should only be called if types are otherwise the same."); | 
|  |  | 
|  | QualType NewType = New->getType(); | 
|  | QualType OldType = Old->getType(); | 
|  |  | 
|  | // We're only interested in pointers and references to functions, as well | 
|  | // as pointers to member functions. | 
|  | if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { | 
|  | NewType = R->getPointeeType(); | 
|  | OldType = OldType->getAs<ReferenceType>()->getPointeeType(); | 
|  | } else if (const PointerType *P = NewType->getAs<PointerType>()) { | 
|  | NewType = P->getPointeeType(); | 
|  | OldType = OldType->getAs<PointerType>()->getPointeeType(); | 
|  | } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { | 
|  | NewType = M->getPointeeType(); | 
|  | OldType = OldType->getAs<MemberPointerType>()->getPointeeType(); | 
|  | } | 
|  |  | 
|  | if (!NewType->isFunctionProtoType()) | 
|  | return; | 
|  |  | 
|  | // There's lots of special cases for functions. For function pointers, system | 
|  | // libraries are hopefully not as broken so that we don't need these | 
|  | // workarounds. | 
|  | if (CheckEquivalentExceptionSpec( | 
|  | OldType->getAs<FunctionProtoType>(), Old->getLocation(), | 
|  | NewType->getAs<FunctionProtoType>(), New->getLocation())) { | 
|  | New->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CheckCXXDefaultArguments - Verify that the default arguments for a | 
|  | /// function declaration are well-formed according to C++ | 
|  | /// [dcl.fct.default]. | 
|  | void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { | 
|  | unsigned NumParams = FD->getNumParams(); | 
|  | unsigned p; | 
|  |  | 
|  | // Find first parameter with a default argument | 
|  | for (p = 0; p < NumParams; ++p) { | 
|  | ParmVarDecl *Param = FD->getParamDecl(p); | 
|  | if (Param->hasDefaultArg()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // C++11 [dcl.fct.default]p4: | 
|  | //   In a given function declaration, each parameter subsequent to a parameter | 
|  | //   with a default argument shall have a default argument supplied in this or | 
|  | //   a previous declaration or shall be a function parameter pack. A default | 
|  | //   argument shall not be redefined by a later declaration (not even to the | 
|  | //   same value). | 
|  | unsigned LastMissingDefaultArg = 0; | 
|  | for (; p < NumParams; ++p) { | 
|  | ParmVarDecl *Param = FD->getParamDecl(p); | 
|  | if (!Param->hasDefaultArg() && !Param->isParameterPack()) { | 
|  | if (Param->isInvalidDecl()) | 
|  | /* We already complained about this parameter. */; | 
|  | else if (Param->getIdentifier()) | 
|  | Diag(Param->getLocation(), | 
|  | diag::err_param_default_argument_missing_name) | 
|  | << Param->getIdentifier(); | 
|  | else | 
|  | Diag(Param->getLocation(), | 
|  | diag::err_param_default_argument_missing); | 
|  |  | 
|  | LastMissingDefaultArg = p; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LastMissingDefaultArg > 0) { | 
|  | // Some default arguments were missing. Clear out all of the | 
|  | // default arguments up to (and including) the last missing | 
|  | // default argument, so that we leave the function parameters | 
|  | // in a semantically valid state. | 
|  | for (p = 0; p <= LastMissingDefaultArg; ++p) { | 
|  | ParmVarDecl *Param = FD->getParamDecl(p); | 
|  | if (Param->hasDefaultArg()) { | 
|  | Param->setDefaultArg(nullptr); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check that the given type is a literal type. Issue a diagnostic if not, | 
|  | /// if Kind is Diagnose. | 
|  | /// \return \c true if a problem has been found (and optionally diagnosed). | 
|  | template <typename... Ts> | 
|  | static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind, | 
|  | SourceLocation Loc, QualType T, unsigned DiagID, | 
|  | Ts &&...DiagArgs) { | 
|  | if (T->isDependentType()) | 
|  | return false; | 
|  |  | 
|  | switch (Kind) { | 
|  | case Sema::CheckConstexprKind::Diagnose: | 
|  | return SemaRef.RequireLiteralType(Loc, T, DiagID, | 
|  | std::forward<Ts>(DiagArgs)...); | 
|  |  | 
|  | case Sema::CheckConstexprKind::CheckValid: | 
|  | return !T->isLiteralType(SemaRef.Context); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unknown CheckConstexprKind"); | 
|  | } | 
|  |  | 
|  | // CheckConstexprParameterTypes - Check whether a function's parameter types | 
|  | // are all literal types. If so, return true. If not, produce a suitable | 
|  | // diagnostic and return false. | 
|  | static bool CheckConstexprParameterTypes(Sema &SemaRef, | 
|  | const FunctionDecl *FD, | 
|  | Sema::CheckConstexprKind Kind) { | 
|  | unsigned ArgIndex = 0; | 
|  | const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>(); | 
|  | for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), | 
|  | e = FT->param_type_end(); | 
|  | i != e; ++i, ++ArgIndex) { | 
|  | const ParmVarDecl *PD = FD->getParamDecl(ArgIndex); | 
|  | SourceLocation ParamLoc = PD->getLocation(); | 
|  | if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i, | 
|  | diag::err_constexpr_non_literal_param, ArgIndex + 1, | 
|  | PD->getSourceRange(), isa<CXXConstructorDecl>(FD), | 
|  | FD->isConsteval())) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Get diagnostic %select index for tag kind for | 
|  | /// record diagnostic message. | 
|  | /// WARNING: Indexes apply to particular diagnostics only! | 
|  | /// | 
|  | /// \returns diagnostic %select index. | 
|  | static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { | 
|  | switch (Tag) { | 
|  | case TTK_Struct: return 0; | 
|  | case TTK_Interface: return 1; | 
|  | case TTK_Class:  return 2; | 
|  | default: llvm_unreachable("Invalid tag kind for record diagnostic!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, | 
|  | Stmt *Body, | 
|  | Sema::CheckConstexprKind Kind); | 
|  |  | 
|  | // Check whether a function declaration satisfies the requirements of a | 
|  | // constexpr function definition or a constexpr constructor definition. If so, | 
|  | // return true. If not, produce appropriate diagnostics (unless asked not to by | 
|  | // Kind) and return false. | 
|  | // | 
|  | // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360. | 
|  | bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD, | 
|  | CheckConstexprKind Kind) { | 
|  | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); | 
|  | if (MD && MD->isInstance()) { | 
|  | // C++11 [dcl.constexpr]p4: | 
|  | //  The definition of a constexpr constructor shall satisfy the following | 
|  | //  constraints: | 
|  | //  - the class shall not have any virtual base classes; | 
|  | // | 
|  | // FIXME: This only applies to constructors, not arbitrary member | 
|  | // functions. | 
|  | const CXXRecordDecl *RD = MD->getParent(); | 
|  | if (RD->getNumVBases()) { | 
|  | if (Kind == CheckConstexprKind::CheckValid) | 
|  | return false; | 
|  |  | 
|  | Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) | 
|  | << isa<CXXConstructorDecl>(NewFD) | 
|  | << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); | 
|  | for (const auto &I : RD->vbases()) | 
|  | Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) | 
|  | << I.getSourceRange(); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!isa<CXXConstructorDecl>(NewFD)) { | 
|  | // C++11 [dcl.constexpr]p3: | 
|  | //  The definition of a constexpr function shall satisfy the following | 
|  | //  constraints: | 
|  | // - it shall not be virtual; (removed in C++20) | 
|  | const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD); | 
|  | if (Method && Method->isVirtual()) { | 
|  | if (getLangOpts().CPlusPlus2a) { | 
|  | if (Kind == CheckConstexprKind::Diagnose) | 
|  | Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual); | 
|  | } else { | 
|  | if (Kind == CheckConstexprKind::CheckValid) | 
|  | return false; | 
|  |  | 
|  | Method = Method->getCanonicalDecl(); | 
|  | Diag(Method->getLocation(), diag::err_constexpr_virtual); | 
|  |  | 
|  | // If it's not obvious why this function is virtual, find an overridden | 
|  | // function which uses the 'virtual' keyword. | 
|  | const CXXMethodDecl *WrittenVirtual = Method; | 
|  | while (!WrittenVirtual->isVirtualAsWritten()) | 
|  | WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); | 
|  | if (WrittenVirtual != Method) | 
|  | Diag(WrittenVirtual->getLocation(), | 
|  | diag::note_overridden_virtual_function); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // - its return type shall be a literal type; | 
|  | QualType RT = NewFD->getReturnType(); | 
|  | if (CheckLiteralType(*this, Kind, NewFD->getLocation(), RT, | 
|  | diag::err_constexpr_non_literal_return, | 
|  | NewFD->isConsteval())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // - each of its parameter types shall be a literal type; | 
|  | if (!CheckConstexprParameterTypes(*this, NewFD, Kind)) | 
|  | return false; | 
|  |  | 
|  | Stmt *Body = NewFD->getBody(); | 
|  | assert(Body && | 
|  | "CheckConstexprFunctionDefinition called on function with no body"); | 
|  | return CheckConstexprFunctionBody(*this, NewFD, Body, Kind); | 
|  | } | 
|  |  | 
|  | /// Check the given declaration statement is legal within a constexpr function | 
|  | /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. | 
|  | /// | 
|  | /// \return true if the body is OK (maybe only as an extension), false if we | 
|  | ///         have diagnosed a problem. | 
|  | static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, | 
|  | DeclStmt *DS, SourceLocation &Cxx1yLoc, | 
|  | Sema::CheckConstexprKind Kind) { | 
|  | // C++11 [dcl.constexpr]p3 and p4: | 
|  | //  The definition of a constexpr function(p3) or constructor(p4) [...] shall | 
|  | //  contain only | 
|  | for (const auto *DclIt : DS->decls()) { | 
|  | switch (DclIt->getKind()) { | 
|  | case Decl::StaticAssert: | 
|  | case Decl::Using: | 
|  | case Decl::UsingShadow: | 
|  | case Decl::UsingDirective: | 
|  | case Decl::UnresolvedUsingTypename: | 
|  | case Decl::UnresolvedUsingValue: | 
|  | //   - static_assert-declarations | 
|  | //   - using-declarations, | 
|  | //   - using-directives, | 
|  | continue; | 
|  |  | 
|  | case Decl::Typedef: | 
|  | case Decl::TypeAlias: { | 
|  | //   - typedef declarations and alias-declarations that do not define | 
|  | //     classes or enumerations, | 
|  | const auto *TN = cast<TypedefNameDecl>(DclIt); | 
|  | if (TN->getUnderlyingType()->isVariablyModifiedType()) { | 
|  | // Don't allow variably-modified types in constexpr functions. | 
|  | if (Kind == Sema::CheckConstexprKind::Diagnose) { | 
|  | TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); | 
|  | SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) | 
|  | << TL.getSourceRange() << TL.getType() | 
|  | << isa<CXXConstructorDecl>(Dcl); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case Decl::Enum: | 
|  | case Decl::CXXRecord: | 
|  | // C++1y allows types to be defined, not just declared. | 
|  | if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) { | 
|  | if (Kind == Sema::CheckConstexprKind::Diagnose) { | 
|  | SemaRef.Diag(DS->getBeginLoc(), | 
|  | SemaRef.getLangOpts().CPlusPlus14 | 
|  | ? diag::warn_cxx11_compat_constexpr_type_definition | 
|  | : diag::ext_constexpr_type_definition) | 
|  | << isa<CXXConstructorDecl>(Dcl); | 
|  | } else if (!SemaRef.getLangOpts().CPlusPlus14) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | continue; | 
|  |  | 
|  | case Decl::EnumConstant: | 
|  | case Decl::IndirectField: | 
|  | case Decl::ParmVar: | 
|  | // These can only appear with other declarations which are banned in | 
|  | // C++11 and permitted in C++1y, so ignore them. | 
|  | continue; | 
|  |  | 
|  | case Decl::Var: | 
|  | case Decl::Decomposition: { | 
|  | // C++1y [dcl.constexpr]p3 allows anything except: | 
|  | //   a definition of a variable of non-literal type or of static or | 
|  | //   thread storage duration or for which no initialization is performed. | 
|  | const auto *VD = cast<VarDecl>(DclIt); | 
|  | if (VD->isThisDeclarationADefinition()) { | 
|  | if (VD->isStaticLocal()) { | 
|  | if (Kind == Sema::CheckConstexprKind::Diagnose) { | 
|  | SemaRef.Diag(VD->getLocation(), | 
|  | diag::err_constexpr_local_var_static) | 
|  | << isa<CXXConstructorDecl>(Dcl) | 
|  | << (VD->getTLSKind() == VarDecl::TLS_Dynamic); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(), | 
|  | diag::err_constexpr_local_var_non_literal_type, | 
|  | isa<CXXConstructorDecl>(Dcl))) | 
|  | return false; | 
|  | if (!VD->getType()->isDependentType() && | 
|  | !VD->hasInit() && !VD->isCXXForRangeDecl()) { | 
|  | if (Kind == Sema::CheckConstexprKind::Diagnose) { | 
|  | SemaRef.Diag(VD->getLocation(), | 
|  | diag::err_constexpr_local_var_no_init) | 
|  | << isa<CXXConstructorDecl>(Dcl); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (Kind == Sema::CheckConstexprKind::Diagnose) { | 
|  | SemaRef.Diag(VD->getLocation(), | 
|  | SemaRef.getLangOpts().CPlusPlus14 | 
|  | ? diag::warn_cxx11_compat_constexpr_local_var | 
|  | : diag::ext_constexpr_local_var) | 
|  | << isa<CXXConstructorDecl>(Dcl); | 
|  | } else if (!SemaRef.getLangOpts().CPlusPlus14) { | 
|  | return false; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case Decl::NamespaceAlias: | 
|  | case Decl::Function: | 
|  | // These are disallowed in C++11 and permitted in C++1y. Allow them | 
|  | // everywhere as an extension. | 
|  | if (!Cxx1yLoc.isValid()) | 
|  | Cxx1yLoc = DS->getBeginLoc(); | 
|  | continue; | 
|  |  | 
|  | default: | 
|  | if (Kind == Sema::CheckConstexprKind::Diagnose) { | 
|  | SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) | 
|  | << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check that the given field is initialized within a constexpr constructor. | 
|  | /// | 
|  | /// \param Dcl The constexpr constructor being checked. | 
|  | /// \param Field The field being checked. This may be a member of an anonymous | 
|  | ///        struct or union nested within the class being checked. | 
|  | /// \param Inits All declarations, including anonymous struct/union members and | 
|  | ///        indirect members, for which any initialization was provided. | 
|  | /// \param Diagnosed Whether we've emitted the error message yet. Used to attach | 
|  | ///        multiple notes for different members to the same error. | 
|  | /// \param Kind Whether we're diagnosing a constructor as written or determining | 
|  | ///        whether the formal requirements are satisfied. | 
|  | /// \return \c false if we're checking for validity and the constructor does | 
|  | ///         not satisfy the requirements on a constexpr constructor. | 
|  | static bool CheckConstexprCtorInitializer(Sema &SemaRef, | 
|  | const FunctionDecl *Dcl, | 
|  | FieldDecl *Field, | 
|  | llvm::SmallSet<Decl*, 16> &Inits, | 
|  | bool &Diagnosed, | 
|  | Sema::CheckConstexprKind Kind) { | 
|  | if (Field->isInvalidDecl()) | 
|  | return true; | 
|  |  | 
|  | if (Field->isUnnamedBitfield()) | 
|  | return true; | 
|  |  | 
|  | // Anonymous unions with no variant members and empty anonymous structs do not | 
|  | // need to be explicitly initialized. FIXME: Anonymous structs that contain no | 
|  | // indirect fields don't need initializing. | 
|  | if (Field->isAnonymousStructOrUnion() && | 
|  | (Field->getType()->isUnionType() | 
|  | ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() | 
|  | : Field->getType()->getAsCXXRecordDecl()->isEmpty())) | 
|  | return true; | 
|  |  | 
|  | if (!Inits.count(Field)) { | 
|  | if (Kind == Sema::CheckConstexprKind::Diagnose) { | 
|  | if (!Diagnosed) { | 
|  | SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init); | 
|  | Diagnosed = true; | 
|  | } | 
|  | SemaRef.Diag(Field->getLocation(), | 
|  | diag::note_constexpr_ctor_missing_init); | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } else if (Field->isAnonymousStructOrUnion()) { | 
|  | const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); | 
|  | for (auto *I : RD->fields()) | 
|  | // If an anonymous union contains an anonymous struct of which any member | 
|  | // is initialized, all members must be initialized. | 
|  | if (!RD->isUnion() || Inits.count(I)) | 
|  | if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, | 
|  | Kind)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check the provided statement is allowed in a constexpr function | 
|  | /// definition. | 
|  | static bool | 
|  | CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, | 
|  | SmallVectorImpl<SourceLocation> &ReturnStmts, | 
|  | SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc, | 
|  | Sema::CheckConstexprKind Kind) { | 
|  | // - its function-body shall be [...] a compound-statement that contains only | 
|  | switch (S->getStmtClass()) { | 
|  | case Stmt::NullStmtClass: | 
|  | //   - null statements, | 
|  | return true; | 
|  |  | 
|  | case Stmt::DeclStmtClass: | 
|  | //   - static_assert-declarations | 
|  | //   - using-declarations, | 
|  | //   - using-directives, | 
|  | //   - typedef declarations and alias-declarations that do not define | 
|  | //     classes or enumerations, | 
|  | if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind)) | 
|  | return false; | 
|  | return true; | 
|  |  | 
|  | case Stmt::ReturnStmtClass: | 
|  | //   - and exactly one return statement; | 
|  | if (isa<CXXConstructorDecl>(Dcl)) { | 
|  | // C++1y allows return statements in constexpr constructors. | 
|  | if (!Cxx1yLoc.isValid()) | 
|  | Cxx1yLoc = S->getBeginLoc(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ReturnStmts.push_back(S->getBeginLoc()); | 
|  | return true; | 
|  |  | 
|  | case Stmt::CompoundStmtClass: { | 
|  | // C++1y allows compound-statements. | 
|  | if (!Cxx1yLoc.isValid()) | 
|  | Cxx1yLoc = S->getBeginLoc(); | 
|  |  | 
|  | CompoundStmt *CompStmt = cast<CompoundStmt>(S); | 
|  | for (auto *BodyIt : CompStmt->body()) { | 
|  | if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts, | 
|  | Cxx1yLoc, Cxx2aLoc, Kind)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case Stmt::AttributedStmtClass: | 
|  | if (!Cxx1yLoc.isValid()) | 
|  | Cxx1yLoc = S->getBeginLoc(); | 
|  | return true; | 
|  |  | 
|  | case Stmt::IfStmtClass: { | 
|  | // C++1y allows if-statements. | 
|  | if (!Cxx1yLoc.isValid()) | 
|  | Cxx1yLoc = S->getBeginLoc(); | 
|  |  | 
|  | IfStmt *If = cast<IfStmt>(S); | 
|  | if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts, | 
|  | Cxx1yLoc, Cxx2aLoc, Kind)) | 
|  | return false; | 
|  | if (If->getElse() && | 
|  | !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts, | 
|  | Cxx1yLoc, Cxx2aLoc, Kind)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case Stmt::WhileStmtClass: | 
|  | case Stmt::DoStmtClass: | 
|  | case Stmt::ForStmtClass: | 
|  | case Stmt::CXXForRangeStmtClass: | 
|  | case Stmt::ContinueStmtClass: | 
|  | // C++1y allows all of these. We don't allow them as extensions in C++11, | 
|  | // because they don't make sense without variable mutation. | 
|  | if (!SemaRef.getLangOpts().CPlusPlus14) | 
|  | break; | 
|  | if (!Cxx1yLoc.isValid()) | 
|  | Cxx1yLoc = S->getBeginLoc(); | 
|  | for (Stmt *SubStmt : S->children()) | 
|  | if (SubStmt && | 
|  | !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, | 
|  | Cxx1yLoc, Cxx2aLoc, Kind)) | 
|  | return false; | 
|  | return true; | 
|  |  | 
|  | case Stmt::SwitchStmtClass: | 
|  | case Stmt::CaseStmtClass: | 
|  | case Stmt::DefaultStmtClass: | 
|  | case Stmt::BreakStmtClass: | 
|  | // C++1y allows switch-statements, and since they don't need variable | 
|  | // mutation, we can reasonably allow them in C++11 as an extension. | 
|  | if (!Cxx1yLoc.isValid()) | 
|  | Cxx1yLoc = S->getBeginLoc(); | 
|  | for (Stmt *SubStmt : S->children()) | 
|  | if (SubStmt && | 
|  | !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, | 
|  | Cxx1yLoc, Cxx2aLoc, Kind)) | 
|  | return false; | 
|  | return true; | 
|  |  | 
|  | case Stmt::CXXTryStmtClass: | 
|  | if (Cxx2aLoc.isInvalid()) | 
|  | Cxx2aLoc = S->getBeginLoc(); | 
|  | for (Stmt *SubStmt : S->children()) { | 
|  | if (SubStmt && | 
|  | !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, | 
|  | Cxx1yLoc, Cxx2aLoc, Kind)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  |  | 
|  | case Stmt::CXXCatchStmtClass: | 
|  | // Do not bother checking the language mode (already covered by the | 
|  | // try block check). | 
|  | if (!CheckConstexprFunctionStmt(SemaRef, Dcl, | 
|  | cast<CXXCatchStmt>(S)->getHandlerBlock(), | 
|  | ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind)) | 
|  | return false; | 
|  | return true; | 
|  |  | 
|  | default: | 
|  | if (!isa<Expr>(S)) | 
|  | break; | 
|  |  | 
|  | // C++1y allows expression-statements. | 
|  | if (!Cxx1yLoc.isValid()) | 
|  | Cxx1yLoc = S->getBeginLoc(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Kind == Sema::CheckConstexprKind::Diagnose) { | 
|  | SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) | 
|  | << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check the body for the given constexpr function declaration only contains | 
|  | /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. | 
|  | /// | 
|  | /// \return true if the body is OK, false if we have found or diagnosed a | 
|  | /// problem. | 
|  | static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, | 
|  | Stmt *Body, | 
|  | Sema::CheckConstexprKind Kind) { | 
|  | SmallVector<SourceLocation, 4> ReturnStmts; | 
|  |  | 
|  | if (isa<CXXTryStmt>(Body)) { | 
|  | // C++11 [dcl.constexpr]p3: | 
|  | //  The definition of a constexpr function shall satisfy the following | 
|  | //  constraints: [...] | 
|  | // - its function-body shall be = delete, = default, or a | 
|  | //   compound-statement | 
|  | // | 
|  | // C++11 [dcl.constexpr]p4: | 
|  | //  In the definition of a constexpr constructor, [...] | 
|  | // - its function-body shall not be a function-try-block; | 
|  | // | 
|  | // This restriction is lifted in C++2a, as long as inner statements also | 
|  | // apply the general constexpr rules. | 
|  | switch (Kind) { | 
|  | case Sema::CheckConstexprKind::CheckValid: | 
|  | if (!SemaRef.getLangOpts().CPlusPlus2a) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Sema::CheckConstexprKind::Diagnose: | 
|  | SemaRef.Diag(Body->getBeginLoc(), | 
|  | !SemaRef.getLangOpts().CPlusPlus2a | 
|  | ? diag::ext_constexpr_function_try_block_cxx2a | 
|  | : diag::warn_cxx17_compat_constexpr_function_try_block) | 
|  | << isa<CXXConstructorDecl>(Dcl); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // - its function-body shall be [...] a compound-statement that contains only | 
|  | //   [... list of cases ...] | 
|  | // | 
|  | // Note that walking the children here is enough to properly check for | 
|  | // CompoundStmt and CXXTryStmt body. | 
|  | SourceLocation Cxx1yLoc, Cxx2aLoc; | 
|  | for (Stmt *SubStmt : Body->children()) { | 
|  | if (SubStmt && | 
|  | !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, | 
|  | Cxx1yLoc, Cxx2aLoc, Kind)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Kind == Sema::CheckConstexprKind::CheckValid) { | 
|  | // If this is only valid as an extension, report that we don't satisfy the | 
|  | // constraints of the current language. | 
|  | if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus2a) || | 
|  | (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17)) | 
|  | return false; | 
|  | } else if (Cxx2aLoc.isValid()) { | 
|  | SemaRef.Diag(Cxx2aLoc, | 
|  | SemaRef.getLangOpts().CPlusPlus2a | 
|  | ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt | 
|  | : diag::ext_constexpr_body_invalid_stmt_cxx2a) | 
|  | << isa<CXXConstructorDecl>(Dcl); | 
|  | } else if (Cxx1yLoc.isValid()) { | 
|  | SemaRef.Diag(Cxx1yLoc, | 
|  | SemaRef.getLangOpts().CPlusPlus14 | 
|  | ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt | 
|  | : diag::ext_constexpr_body_invalid_stmt) | 
|  | << isa<CXXConstructorDecl>(Dcl); | 
|  | } | 
|  |  | 
|  | if (const CXXConstructorDecl *Constructor | 
|  | = dyn_cast<CXXConstructorDecl>(Dcl)) { | 
|  | const CXXRecordDecl *RD = Constructor->getParent(); | 
|  | // DR1359: | 
|  | // - every non-variant non-static data member and base class sub-object | 
|  | //   shall be initialized; | 
|  | // DR1460: | 
|  | // - if the class is a union having variant members, exactly one of them | 
|  | //   shall be initialized; | 
|  | if (RD->isUnion()) { | 
|  | if (Constructor->getNumCtorInitializers() == 0 && | 
|  | RD->hasVariantMembers()) { | 
|  | if (Kind == Sema::CheckConstexprKind::Diagnose) | 
|  | SemaRef.Diag(Dcl->getLocation(), | 
|  | diag::err_constexpr_union_ctor_no_init); | 
|  | return false; | 
|  | } | 
|  | } else if (!Constructor->isDependentContext() && | 
|  | !Constructor->isDelegatingConstructor()) { | 
|  | assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"); | 
|  |  | 
|  | // Skip detailed checking if we have enough initializers, and we would | 
|  | // allow at most one initializer per member. | 
|  | bool AnyAnonStructUnionMembers = false; | 
|  | unsigned Fields = 0; | 
|  | for (CXXRecordDecl::field_iterator I = RD->field_begin(), | 
|  | E = RD->field_end(); I != E; ++I, ++Fields) { | 
|  | if (I->isAnonymousStructOrUnion()) { | 
|  | AnyAnonStructUnionMembers = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // DR1460: | 
|  | // - if the class is a union-like class, but is not a union, for each of | 
|  | //   its anonymous union members having variant members, exactly one of | 
|  | //   them shall be initialized; | 
|  | if (AnyAnonStructUnionMembers || | 
|  | Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { | 
|  | // Check initialization of non-static data members. Base classes are | 
|  | // always initialized so do not need to be checked. Dependent bases | 
|  | // might not have initializers in the member initializer list. | 
|  | llvm::SmallSet<Decl*, 16> Inits; | 
|  | for (const auto *I: Constructor->inits()) { | 
|  | if (FieldDecl *FD = I->getMember()) | 
|  | Inits.insert(FD); | 
|  | else if (IndirectFieldDecl *ID = I->getIndirectMember()) | 
|  | Inits.insert(ID->chain_begin(), ID->chain_end()); | 
|  | } | 
|  |  | 
|  | bool Diagnosed = false; | 
|  | for (auto *I : RD->fields()) | 
|  | if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, | 
|  | Kind)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (ReturnStmts.empty()) { | 
|  | // C++1y doesn't require constexpr functions to contain a 'return' | 
|  | // statement. We still do, unless the return type might be void, because | 
|  | // otherwise if there's no return statement, the function cannot | 
|  | // be used in a core constant expression. | 
|  | bool OK = SemaRef.getLangOpts().CPlusPlus14 && | 
|  | (Dcl->getReturnType()->isVoidType() || | 
|  | Dcl->getReturnType()->isDependentType()); | 
|  | switch (Kind) { | 
|  | case Sema::CheckConstexprKind::Diagnose: | 
|  | SemaRef.Diag(Dcl->getLocation(), | 
|  | OK ? diag::warn_cxx11_compat_constexpr_body_no_return | 
|  | : diag::err_constexpr_body_no_return) | 
|  | << Dcl->isConsteval(); | 
|  | if (!OK) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Sema::CheckConstexprKind::CheckValid: | 
|  | // The formal requirements don't include this rule in C++14, even | 
|  | // though the "must be able to produce a constant expression" rules | 
|  | // still imply it in some cases. | 
|  | if (!SemaRef.getLangOpts().CPlusPlus14) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | } else if (ReturnStmts.size() > 1) { | 
|  | switch (Kind) { | 
|  | case Sema::CheckConstexprKind::Diagnose: | 
|  | SemaRef.Diag( | 
|  | ReturnStmts.back(), | 
|  | SemaRef.getLangOpts().CPlusPlus14 | 
|  | ? diag::warn_cxx11_compat_constexpr_body_multiple_return | 
|  | : diag::ext_constexpr_body_multiple_return); | 
|  | for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) | 
|  | SemaRef.Diag(ReturnStmts[I], | 
|  | diag::note_constexpr_body_previous_return); | 
|  | break; | 
|  |  | 
|  | case Sema::CheckConstexprKind::CheckValid: | 
|  | if (!SemaRef.getLangOpts().CPlusPlus14) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++11 [dcl.constexpr]p5: | 
|  | //   if no function argument values exist such that the function invocation | 
|  | //   substitution would produce a constant expression, the program is | 
|  | //   ill-formed; no diagnostic required. | 
|  | // C++11 [dcl.constexpr]p3: | 
|  | //   - every constructor call and implicit conversion used in initializing the | 
|  | //     return value shall be one of those allowed in a constant expression. | 
|  | // C++11 [dcl.constexpr]p4: | 
|  | //   - every constructor involved in initializing non-static data members and | 
|  | //     base class sub-objects shall be a constexpr constructor. | 
|  | // | 
|  | // Note that this rule is distinct from the "requirements for a constexpr | 
|  | // function", so is not checked in CheckValid mode. | 
|  | SmallVector<PartialDiagnosticAt, 8> Diags; | 
|  | if (Kind == Sema::CheckConstexprKind::Diagnose && | 
|  | !Expr::isPotentialConstantExpr(Dcl, Diags)) { | 
|  | SemaRef.Diag(Dcl->getLocation(), | 
|  | diag::ext_constexpr_function_never_constant_expr) | 
|  | << isa<CXXConstructorDecl>(Dcl); | 
|  | for (size_t I = 0, N = Diags.size(); I != N; ++I) | 
|  | SemaRef.Diag(Diags[I].first, Diags[I].second); | 
|  | // Don't return false here: we allow this for compatibility in | 
|  | // system headers. | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Get the class that is directly named by the current context. This is the | 
|  | /// class for which an unqualified-id in this scope could name a constructor | 
|  | /// or destructor. | 
|  | /// | 
|  | /// If the scope specifier denotes a class, this will be that class. | 
|  | /// If the scope specifier is empty, this will be the class whose | 
|  | /// member-specification we are currently within. Otherwise, there | 
|  | /// is no such class. | 
|  | CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) { | 
|  | assert(getLangOpts().CPlusPlus && "No class names in C!"); | 
|  |  | 
|  | if (SS && SS->isInvalid()) | 
|  | return nullptr; | 
|  |  | 
|  | if (SS && SS->isNotEmpty()) { | 
|  | DeclContext *DC = computeDeclContext(*SS, true); | 
|  | return dyn_cast_or_null<CXXRecordDecl>(DC); | 
|  | } | 
|  |  | 
|  | return dyn_cast_or_null<CXXRecordDecl>(CurContext); | 
|  | } | 
|  |  | 
|  | /// isCurrentClassName - Determine whether the identifier II is the | 
|  | /// name of the class type currently being defined. In the case of | 
|  | /// nested classes, this will only return true if II is the name of | 
|  | /// the innermost class. | 
|  | bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S, | 
|  | const CXXScopeSpec *SS) { | 
|  | CXXRecordDecl *CurDecl = getCurrentClass(S, SS); | 
|  | return CurDecl && &II == CurDecl->getIdentifier(); | 
|  | } | 
|  |  | 
|  | /// Determine whether the identifier II is a typo for the name of | 
|  | /// the class type currently being defined. If so, update it to the identifier | 
|  | /// that should have been used. | 
|  | bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { | 
|  | assert(getLangOpts().CPlusPlus && "No class names in C!"); | 
|  |  | 
|  | if (!getLangOpts().SpellChecking) | 
|  | return false; | 
|  |  | 
|  | CXXRecordDecl *CurDecl; | 
|  | if (SS && SS->isSet() && !SS->isInvalid()) { | 
|  | DeclContext *DC = computeDeclContext(*SS, true); | 
|  | CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); | 
|  | } else | 
|  | CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); | 
|  |  | 
|  | if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && | 
|  | 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName()) | 
|  | < II->getLength()) { | 
|  | II = CurDecl->getIdentifier(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine whether the given class is a base class of the given | 
|  | /// class, including looking at dependent bases. | 
|  | static bool findCircularInheritance(const CXXRecordDecl *Class, | 
|  | const CXXRecordDecl *Current) { | 
|  | SmallVector<const CXXRecordDecl*, 8> Queue; | 
|  |  | 
|  | Class = Class->getCanonicalDecl(); | 
|  | while (true) { | 
|  | for (const auto &I : Current->bases()) { | 
|  | CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); | 
|  | if (!Base) | 
|  | continue; | 
|  |  | 
|  | Base = Base->getDefinition(); | 
|  | if (!Base) | 
|  | continue; | 
|  |  | 
|  | if (Base->getCanonicalDecl() == Class) | 
|  | return true; | 
|  |  | 
|  | Queue.push_back(Base); | 
|  | } | 
|  |  | 
|  | if (Queue.empty()) | 
|  | return false; | 
|  |  | 
|  | Current = Queue.pop_back_val(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check the validity of a C++ base class specifier. | 
|  | /// | 
|  | /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics | 
|  | /// and returns NULL otherwise. | 
|  | CXXBaseSpecifier * | 
|  | Sema::CheckBaseSpecifier(CXXRecordDecl *Class, | 
|  | SourceRange SpecifierRange, | 
|  | bool Virtual, AccessSpecifier Access, | 
|  | TypeSourceInfo *TInfo, | 
|  | SourceLocation EllipsisLoc) { | 
|  | QualType BaseType = TInfo->getType(); | 
|  |  | 
|  | // C++ [class.union]p1: | 
|  | //   A union shall not have base classes. | 
|  | if (Class->isUnion()) { | 
|  | Diag(Class->getLocation(), diag::err_base_clause_on_union) | 
|  | << SpecifierRange; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (EllipsisLoc.isValid() && | 
|  | !TInfo->getType()->containsUnexpandedParameterPack()) { | 
|  | Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) | 
|  | << TInfo->getTypeLoc().getSourceRange(); | 
|  | EllipsisLoc = SourceLocation(); | 
|  | } | 
|  |  | 
|  | SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); | 
|  |  | 
|  | if (BaseType->isDependentType()) { | 
|  | // Make sure that we don't have circular inheritance among our dependent | 
|  | // bases. For non-dependent bases, the check for completeness below handles | 
|  | // this. | 
|  | if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) { | 
|  | if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() || | 
|  | ((BaseDecl = BaseDecl->getDefinition()) && | 
|  | findCircularInheritance(Class, BaseDecl))) { | 
|  | Diag(BaseLoc, diag::err_circular_inheritance) | 
|  | << BaseType << Context.getTypeDeclType(Class); | 
|  |  | 
|  | if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl()) | 
|  | Diag(BaseDecl->getLocation(), diag::note_previous_decl) | 
|  | << BaseType; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, | 
|  | Class->getTagKind() == TTK_Class, | 
|  | Access, TInfo, EllipsisLoc); | 
|  | } | 
|  |  | 
|  | // Base specifiers must be record types. | 
|  | if (!BaseType->isRecordType()) { | 
|  | Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // C++ [class.union]p1: | 
|  | //   A union shall not be used as a base class. | 
|  | if (BaseType->isUnionType()) { | 
|  | Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // For the MS ABI, propagate DLL attributes to base class templates. | 
|  | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { | 
|  | if (Attr *ClassAttr = getDLLAttr(Class)) { | 
|  | if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>( | 
|  | BaseType->getAsCXXRecordDecl())) { | 
|  | propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate, | 
|  | BaseLoc); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [class.derived]p2: | 
|  | //   The class-name in a base-specifier shall not be an incompletely | 
|  | //   defined class. | 
|  | if (RequireCompleteType(BaseLoc, BaseType, | 
|  | diag::err_incomplete_base_class, SpecifierRange)) { | 
|  | Class->setInvalidDecl(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If the base class is polymorphic or isn't empty, the new one is/isn't, too. | 
|  | RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl(); | 
|  | assert(BaseDecl && "Record type has no declaration"); | 
|  | BaseDecl = BaseDecl->getDefinition(); | 
|  | assert(BaseDecl && "Base type is not incomplete, but has no definition"); | 
|  | CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); | 
|  | assert(CXXBaseDecl && "Base type is not a C++ type"); | 
|  |  | 
|  | // Microsoft docs say: | 
|  | // "If a base-class has a code_seg attribute, derived classes must have the | 
|  | // same attribute." | 
|  | const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>(); | 
|  | const auto *DerivedCSA = Class->getAttr<CodeSegAttr>(); | 
|  | if ((DerivedCSA || BaseCSA) && | 
|  | (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) { | 
|  | Diag(Class->getLocation(), diag::err_mismatched_code_seg_base); | 
|  | Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here) | 
|  | << CXXBaseDecl; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // A class which contains a flexible array member is not suitable for use as a | 
|  | // base class: | 
|  | //   - If the layout determines that a base comes before another base, | 
|  | //     the flexible array member would index into the subsequent base. | 
|  | //   - If the layout determines that base comes before the derived class, | 
|  | //     the flexible array member would index into the derived class. | 
|  | if (CXXBaseDecl->hasFlexibleArrayMember()) { | 
|  | Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) | 
|  | << CXXBaseDecl->getDeclName(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // C++ [class]p3: | 
|  | //   If a class is marked final and it appears as a base-type-specifier in | 
|  | //   base-clause, the program is ill-formed. | 
|  | if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) { | 
|  | Diag(BaseLoc, diag::err_class_marked_final_used_as_base) | 
|  | << CXXBaseDecl->getDeclName() | 
|  | << FA->isSpelledAsSealed(); | 
|  | Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at) | 
|  | << CXXBaseDecl->getDeclName() << FA->getRange(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (BaseDecl->isInvalidDecl()) | 
|  | Class->setInvalidDecl(); | 
|  |  | 
|  | // Create the base specifier. | 
|  | return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, | 
|  | Class->getTagKind() == TTK_Class, | 
|  | Access, TInfo, EllipsisLoc); | 
|  | } | 
|  |  | 
|  | /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is | 
|  | /// one entry in the base class list of a class specifier, for | 
|  | /// example: | 
|  | ///    class foo : public bar, virtual private baz { | 
|  | /// 'public bar' and 'virtual private baz' are each base-specifiers. | 
|  | BaseResult | 
|  | Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, | 
|  | ParsedAttributes &Attributes, | 
|  | bool Virtual, AccessSpecifier Access, | 
|  | ParsedType basetype, SourceLocation BaseLoc, | 
|  | SourceLocation EllipsisLoc) { | 
|  | if (!classdecl) | 
|  | return true; | 
|  |  | 
|  | AdjustDeclIfTemplate(classdecl); | 
|  | CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); | 
|  | if (!Class) | 
|  | return true; | 
|  |  | 
|  | // We haven't yet attached the base specifiers. | 
|  | Class->setIsParsingBaseSpecifiers(); | 
|  |  | 
|  | // We do not support any C++11 attributes on base-specifiers yet. | 
|  | // Diagnose any attributes we see. | 
|  | for (const ParsedAttr &AL : Attributes) { | 
|  | if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) | 
|  | continue; | 
|  | Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute | 
|  | ? (unsigned)diag::warn_unknown_attribute_ignored | 
|  | : (unsigned)diag::err_base_specifier_attribute) | 
|  | << AL.getName(); | 
|  | } | 
|  |  | 
|  | TypeSourceInfo *TInfo = nullptr; | 
|  | GetTypeFromParser(basetype, &TInfo); | 
|  |  | 
|  | if (EllipsisLoc.isInvalid() && | 
|  | DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, | 
|  | UPPC_BaseType)) | 
|  | return true; | 
|  |  | 
|  | if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, | 
|  | Virtual, Access, TInfo, | 
|  | EllipsisLoc)) | 
|  | return BaseSpec; | 
|  | else | 
|  | Class->setInvalidDecl(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Use small set to collect indirect bases.  As this is only used | 
|  | /// locally, there's no need to abstract the small size parameter. | 
|  | typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet; | 
|  |  | 
|  | /// Recursively add the bases of Type.  Don't add Type itself. | 
|  | static void | 
|  | NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set, | 
|  | const QualType &Type) | 
|  | { | 
|  | // Even though the incoming type is a base, it might not be | 
|  | // a class -- it could be a template parm, for instance. | 
|  | if (auto Rec = Type->getAs<RecordType>()) { | 
|  | auto Decl = Rec->getAsCXXRecordDecl(); | 
|  |  | 
|  | // Iterate over its bases. | 
|  | for (const auto &BaseSpec : Decl->bases()) { | 
|  | QualType Base = Context.getCanonicalType(BaseSpec.getType()) | 
|  | .getUnqualifiedType(); | 
|  | if (Set.insert(Base).second) | 
|  | // If we've not already seen it, recurse. | 
|  | NoteIndirectBases(Context, Set, Base); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Performs the actual work of attaching the given base class | 
|  | /// specifiers to a C++ class. | 
|  | bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, | 
|  | MutableArrayRef<CXXBaseSpecifier *> Bases) { | 
|  | if (Bases.empty()) | 
|  | return false; | 
|  |  | 
|  | // Used to keep track of which base types we have already seen, so | 
|  | // that we can properly diagnose redundant direct base types. Note | 
|  | // that the key is always the unqualified canonical type of the base | 
|  | // class. | 
|  | std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; | 
|  |  | 
|  | // Used to track indirect bases so we can see if a direct base is | 
|  | // ambiguous. | 
|  | IndirectBaseSet IndirectBaseTypes; | 
|  |  | 
|  | // Copy non-redundant base specifiers into permanent storage. | 
|  | unsigned NumGoodBases = 0; | 
|  | bool Invalid = false; | 
|  | for (unsigned idx = 0; idx < Bases.size(); ++idx) { | 
|  | QualType NewBaseType | 
|  | = Context.getCanonicalType(Bases[idx]->getType()); | 
|  | NewBaseType = NewBaseType.getLocalUnqualifiedType(); | 
|  |  | 
|  | CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; | 
|  | if (KnownBase) { | 
|  | // C++ [class.mi]p3: | 
|  | //   A class shall not be specified as a direct base class of a | 
|  | //   derived class more than once. | 
|  | Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class) | 
|  | << KnownBase->getType() << Bases[idx]->getSourceRange(); | 
|  |  | 
|  | // Delete the duplicate base class specifier; we're going to | 
|  | // overwrite its pointer later. | 
|  | Context.Deallocate(Bases[idx]); | 
|  |  | 
|  | Invalid = true; | 
|  | } else { | 
|  | // Okay, add this new base class. | 
|  | KnownBase = Bases[idx]; | 
|  | Bases[NumGoodBases++] = Bases[idx]; | 
|  |  | 
|  | // Note this base's direct & indirect bases, if there could be ambiguity. | 
|  | if (Bases.size() > 1) | 
|  | NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType); | 
|  |  | 
|  | if (const RecordType *Record = NewBaseType->getAs<RecordType>()) { | 
|  | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); | 
|  | if (Class->isInterface() && | 
|  | (!RD->isInterfaceLike() || | 
|  | KnownBase->getAccessSpecifier() != AS_public)) { | 
|  | // The Microsoft extension __interface does not permit bases that | 
|  | // are not themselves public interfaces. | 
|  | Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface) | 
|  | << getRecordDiagFromTagKind(RD->getTagKind()) << RD | 
|  | << RD->getSourceRange(); | 
|  | Invalid = true; | 
|  | } | 
|  | if (RD->hasAttr<WeakAttr>()) | 
|  | Class->addAttr(WeakAttr::CreateImplicit(Context)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Attach the remaining base class specifiers to the derived class. | 
|  | Class->setBases(Bases.data(), NumGoodBases); | 
|  |  | 
|  | // Check that the only base classes that are duplicate are virtual. | 
|  | for (unsigned idx = 0; idx < NumGoodBases; ++idx) { | 
|  | // Check whether this direct base is inaccessible due to ambiguity. | 
|  | QualType BaseType = Bases[idx]->getType(); | 
|  |  | 
|  | // Skip all dependent types in templates being used as base specifiers. | 
|  | // Checks below assume that the base specifier is a CXXRecord. | 
|  | if (BaseType->isDependentType()) | 
|  | continue; | 
|  |  | 
|  | CanQualType CanonicalBase = Context.getCanonicalType(BaseType) | 
|  | .getUnqualifiedType(); | 
|  |  | 
|  | if (IndirectBaseTypes.count(CanonicalBase)) { | 
|  | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
|  | /*DetectVirtual=*/true); | 
|  | bool found | 
|  | = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths); | 
|  | assert(found); | 
|  | (void)found; | 
|  |  | 
|  | if (Paths.isAmbiguous(CanonicalBase)) | 
|  | Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class) | 
|  | << BaseType << getAmbiguousPathsDisplayString(Paths) | 
|  | << Bases[idx]->getSourceRange(); | 
|  | else | 
|  | assert(Bases[idx]->isVirtual()); | 
|  | } | 
|  |  | 
|  | // Delete the base class specifier, since its data has been copied | 
|  | // into the CXXRecordDecl. | 
|  | Context.Deallocate(Bases[idx]); | 
|  | } | 
|  |  | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | /// ActOnBaseSpecifiers - Attach the given base specifiers to the | 
|  | /// class, after checking whether there are any duplicate base | 
|  | /// classes. | 
|  | void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, | 
|  | MutableArrayRef<CXXBaseSpecifier *> Bases) { | 
|  | if (!ClassDecl || Bases.empty()) | 
|  | return; | 
|  |  | 
|  | AdjustDeclIfTemplate(ClassDecl); | 
|  | AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases); | 
|  | } | 
|  |  | 
|  | /// Determine whether the type \p Derived is a C++ class that is | 
|  | /// derived from the type \p Base. | 
|  | bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) { | 
|  | if (!getLangOpts().CPlusPlus) | 
|  | return false; | 
|  |  | 
|  | CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); | 
|  | if (!DerivedRD) | 
|  | return false; | 
|  |  | 
|  | CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); | 
|  | if (!BaseRD) | 
|  | return false; | 
|  |  | 
|  | // If either the base or the derived type is invalid, don't try to | 
|  | // check whether one is derived from the other. | 
|  | if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl()) | 
|  | return false; | 
|  |  | 
|  | // FIXME: In a modules build, do we need the entire path to be visible for us | 
|  | // to be able to use the inheritance relationship? | 
|  | if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) | 
|  | return false; | 
|  |  | 
|  | return DerivedRD->isDerivedFrom(BaseRD); | 
|  | } | 
|  |  | 
|  | /// Determine whether the type \p Derived is a C++ class that is | 
|  | /// derived from the type \p Base. | 
|  | bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, | 
|  | CXXBasePaths &Paths) { | 
|  | if (!getLangOpts().CPlusPlus) | 
|  | return false; | 
|  |  | 
|  | CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); | 
|  | if (!DerivedRD) | 
|  | return false; | 
|  |  | 
|  | CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); | 
|  | if (!BaseRD) | 
|  | return false; | 
|  |  | 
|  | if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) | 
|  | return false; | 
|  |  | 
|  | return DerivedRD->isDerivedFrom(BaseRD, Paths); | 
|  | } | 
|  |  | 
|  | static void BuildBasePathArray(const CXXBasePath &Path, | 
|  | CXXCastPath &BasePathArray) { | 
|  | // We first go backward and check if we have a virtual base. | 
|  | // FIXME: It would be better if CXXBasePath had the base specifier for | 
|  | // the nearest virtual base. | 
|  | unsigned Start = 0; | 
|  | for (unsigned I = Path.size(); I != 0; --I) { | 
|  | if (Path[I - 1].Base->isVirtual()) { | 
|  | Start = I - 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now add all bases. | 
|  | for (unsigned I = Start, E = Path.size(); I != E; ++I) | 
|  | BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void Sema::BuildBasePathArray(const CXXBasePaths &Paths, | 
|  | CXXCastPath &BasePathArray) { | 
|  | assert(BasePathArray.empty() && "Base path array must be empty!"); | 
|  | assert(Paths.isRecordingPaths() && "Must record paths!"); | 
|  | return ::BuildBasePathArray(Paths.front(), BasePathArray); | 
|  | } | 
|  | /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base | 
|  | /// conversion (where Derived and Base are class types) is | 
|  | /// well-formed, meaning that the conversion is unambiguous (and | 
|  | /// that all of the base classes are accessible). Returns true | 
|  | /// and emits a diagnostic if the code is ill-formed, returns false | 
|  | /// otherwise. Loc is the location where this routine should point to | 
|  | /// if there is an error, and Range is the source range to highlight | 
|  | /// if there is an error. | 
|  | /// | 
|  | /// If either InaccessibleBaseID or AmbigiousBaseConvID are 0, then the | 
|  | /// diagnostic for the respective type of error will be suppressed, but the | 
|  | /// check for ill-formed code will still be performed. | 
|  | bool | 
|  | Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, | 
|  | unsigned InaccessibleBaseID, | 
|  | unsigned AmbigiousBaseConvID, | 
|  | SourceLocation Loc, SourceRange Range, | 
|  | DeclarationName Name, | 
|  | CXXCastPath *BasePath, | 
|  | bool IgnoreAccess) { | 
|  | // First, determine whether the path from Derived to Base is | 
|  | // ambiguous. This is slightly more expensive than checking whether | 
|  | // the Derived to Base conversion exists, because here we need to | 
|  | // explore multiple paths to determine if there is an ambiguity. | 
|  | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
|  | /*DetectVirtual=*/false); | 
|  | bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths); | 
|  | if (!DerivationOkay) | 
|  | return true; | 
|  |  | 
|  | const CXXBasePath *Path = nullptr; | 
|  | if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) | 
|  | Path = &Paths.front(); | 
|  |  | 
|  | // For MSVC compatibility, check if Derived directly inherits from Base. Clang | 
|  | // warns about this hierarchy under -Winaccessible-base, but MSVC allows the | 
|  | // user to access such bases. | 
|  | if (!Path && getLangOpts().MSVCCompat) { | 
|  | for (const CXXBasePath &PossiblePath : Paths) { | 
|  | if (PossiblePath.size() == 1) { | 
|  | Path = &PossiblePath; | 
|  | if (AmbigiousBaseConvID) | 
|  | Diag(Loc, diag::ext_ms_ambiguous_direct_base) | 
|  | << Base << Derived << Range; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Path) { | 
|  | if (!IgnoreAccess) { | 
|  | // Check that the base class can be accessed. | 
|  | switch ( | 
|  | CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) { | 
|  | case AR_inaccessible: | 
|  | return true; | 
|  | case AR_accessible: | 
|  | case AR_dependent: | 
|  | case AR_delayed: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Build a base path if necessary. | 
|  | if (BasePath) | 
|  | ::BuildBasePathArray(*Path, *BasePath); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (AmbigiousBaseConvID) { | 
|  | // We know that the derived-to-base conversion is ambiguous, and | 
|  | // we're going to produce a diagnostic. Perform the derived-to-base | 
|  | // search just one more time to compute all of the possible paths so | 
|  | // that we can print them out. This is more expensive than any of | 
|  | // the previous derived-to-base checks we've done, but at this point | 
|  | // performance isn't as much of an issue. | 
|  | Paths.clear(); | 
|  | Paths.setRecordingPaths(true); | 
|  | bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths); | 
|  | assert(StillOkay && "Can only be used with a derived-to-base conversion"); | 
|  | (void)StillOkay; | 
|  |  | 
|  | // Build up a textual representation of the ambiguous paths, e.g., | 
|  | // D -> B -> A, that will be used to illustrate the ambiguous | 
|  | // conversions in the diagnostic. We only print one of the paths | 
|  | // to each base class subobject. | 
|  | std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); | 
|  |  | 
|  | Diag(Loc, AmbigiousBaseConvID) | 
|  | << Derived << Base << PathDisplayStr << Range << Name; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, | 
|  | SourceLocation Loc, SourceRange Range, | 
|  | CXXCastPath *BasePath, | 
|  | bool IgnoreAccess) { | 
|  | return CheckDerivedToBaseConversion( | 
|  | Derived, Base, diag::err_upcast_to_inaccessible_base, | 
|  | diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), | 
|  | BasePath, IgnoreAccess); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Builds a string representing ambiguous paths from a | 
|  | /// specific derived class to different subobjects of the same base | 
|  | /// class. | 
|  | /// | 
|  | /// This function builds a string that can be used in error messages | 
|  | /// to show the different paths that one can take through the | 
|  | /// inheritance hierarchy to go from the derived class to different | 
|  | /// subobjects of a base class. The result looks something like this: | 
|  | /// @code | 
|  | /// struct D -> struct B -> struct A | 
|  | /// struct D -> struct C -> struct A | 
|  | /// @endcode | 
|  | std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { | 
|  | std::string PathDisplayStr; | 
|  | std::set<unsigned> DisplayedPaths; | 
|  | for (CXXBasePaths::paths_iterator Path = Paths.begin(); | 
|  | Path != Paths.end(); ++Path) { | 
|  | if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { | 
|  | // We haven't displayed a path to this particular base | 
|  | // class subobject yet. | 
|  | PathDisplayStr += "\n    "; | 
|  | PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); | 
|  | for (CXXBasePath::const_iterator Element = Path->begin(); | 
|  | Element != Path->end(); ++Element) | 
|  | PathDisplayStr += " -> " + Element->Base->getType().getAsString(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return PathDisplayStr; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // C++ class member Handling | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. | 
|  | bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, | 
|  | SourceLocation ColonLoc, | 
|  | const ParsedAttributesView &Attrs) { | 
|  | assert(Access != AS_none && "Invalid kind for syntactic access specifier!"); | 
|  | AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, | 
|  | ASLoc, ColonLoc); | 
|  | CurContext->addHiddenDecl(ASDecl); | 
|  | return ProcessAccessDeclAttributeList(ASDecl, Attrs); | 
|  | } | 
|  |  | 
|  | /// CheckOverrideControl - Check C++11 override control semantics. | 
|  | void Sema::CheckOverrideControl(NamedDecl *D) { | 
|  | if (D->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | // We only care about "override" and "final" declarations. | 
|  | if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>()) | 
|  | return; | 
|  |  | 
|  | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); | 
|  |  | 
|  | // We can't check dependent instance methods. | 
|  | if (MD && MD->isInstance() && | 
|  | (MD->getParent()->hasAnyDependentBases() || | 
|  | MD->getType()->isDependentType())) | 
|  | return; | 
|  |  | 
|  | if (MD && !MD->isVirtual()) { | 
|  | // If we have a non-virtual method, check if if hides a virtual method. | 
|  | // (In that case, it's most likely the method has the wrong type.) | 
|  | SmallVector<CXXMethodDecl *, 8> OverloadedMethods; | 
|  | FindHiddenVirtualMethods(MD, OverloadedMethods); | 
|  |  | 
|  | if (!OverloadedMethods.empty()) { | 
|  | if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { | 
|  | Diag(OA->getLocation(), | 
|  | diag::override_keyword_hides_virtual_member_function) | 
|  | << "override" << (OverloadedMethods.size() > 1); | 
|  | } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) { | 
|  | Diag(FA->getLocation(), | 
|  | diag::override_keyword_hides_virtual_member_function) | 
|  | << (FA->isSpelledAsSealed() ? "sealed" : "final") | 
|  | << (OverloadedMethods.size() > 1); | 
|  | } | 
|  | NoteHiddenVirtualMethods(MD, OverloadedMethods); | 
|  | MD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | // Fall through into the general case diagnostic. | 
|  | // FIXME: We might want to attempt typo correction here. | 
|  | } | 
|  |  | 
|  | if (!MD || !MD->isVirtual()) { | 
|  | if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { | 
|  | Diag(OA->getLocation(), | 
|  | diag::override_keyword_only_allowed_on_virtual_member_functions) | 
|  | << "override" << FixItHint::CreateRemoval(OA->getLocation()); | 
|  | D->dropAttr<OverrideAttr>(); | 
|  | } | 
|  | if (FinalAttr *FA = D->getAttr<FinalAttr>()) { | 
|  | Diag(FA->getLocation(), | 
|  | diag::override_keyword_only_allowed_on_virtual_member_functions) | 
|  | << (FA->isSpelledAsSealed() ? "sealed" : "final") | 
|  | << FixItHint::CreateRemoval(FA->getLocation()); | 
|  | D->dropAttr<FinalAttr>(); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // C++11 [class.virtual]p5: | 
|  | //   If a function is marked with the virt-specifier override and | 
|  | //   does not override a member function of a base class, the program is | 
|  | //   ill-formed. | 
|  | bool HasOverriddenMethods = MD->size_overridden_methods() != 0; | 
|  | if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) | 
|  | Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) | 
|  | << MD->getDeclName(); | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) { | 
|  | if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>()) | 
|  | return; | 
|  | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); | 
|  | if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>()) | 
|  | return; | 
|  |  | 
|  | SourceLocation Loc = MD->getLocation(); | 
|  | SourceLocation SpellingLoc = Loc; | 
|  | if (getSourceManager().isMacroArgExpansion(Loc)) | 
|  | SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin(); | 
|  | SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc); | 
|  | if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc)) | 
|  | return; | 
|  |  | 
|  | if (MD->size_overridden_methods() > 0) { | 
|  | unsigned DiagID = isa<CXXDestructorDecl>(MD) | 
|  | ? diag::warn_destructor_marked_not_override_overriding | 
|  | : diag::warn_function_marked_not_override_overriding; | 
|  | Diag(MD->getLocation(), DiagID) << MD->getDeclName(); | 
|  | const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); | 
|  | Diag(OMD->getLocation(), diag::note_overridden_virtual_function); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member | 
|  | /// function overrides a virtual member function marked 'final', according to | 
|  | /// C++11 [class.virtual]p4. | 
|  | bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, | 
|  | const CXXMethodDecl *Old) { | 
|  | FinalAttr *FA = Old->getAttr<FinalAttr>(); | 
|  | if (!FA) | 
|  | return false; | 
|  |  | 
|  | Diag(New->getLocation(), diag::err_final_function_overridden) | 
|  | << New->getDeclName() | 
|  | << FA->isSpelledAsSealed(); | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool InitializationHasSideEffects(const FieldDecl &FD) { | 
|  | const Type *T = FD.getType()->getBaseElementTypeUnsafe(); | 
|  | // FIXME: Destruction of ObjC lifetime types has side-effects. | 
|  | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | 
|  | return !RD->isCompleteDefinition() || | 
|  | !RD->hasTrivialDefaultConstructor() || | 
|  | !RD->hasTrivialDestructor(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) { | 
|  | ParsedAttributesView::const_iterator Itr = | 
|  | llvm::find_if(list, [](const ParsedAttr &AL) { | 
|  | return AL.isDeclspecPropertyAttribute(); | 
|  | }); | 
|  | if (Itr != list.end()) | 
|  | return &*Itr; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Check if there is a field shadowing. | 
|  | void Sema::CheckShadowInheritedFields(const SourceLocation &Loc, | 
|  | DeclarationName FieldName, | 
|  | const CXXRecordDecl *RD, | 
|  | bool DeclIsField) { | 
|  | if (Diags.isIgnored(diag::warn_shadow_field, Loc)) | 
|  | return; | 
|  |  | 
|  | // To record a shadowed field in a base | 
|  | std::map<CXXRecordDecl*, NamedDecl*> Bases; | 
|  | auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier, | 
|  | CXXBasePath &Path) { | 
|  | const auto Base = Specifier->getType()->getAsCXXRecordDecl(); | 
|  | // Record an ambiguous path directly | 
|  | if (Bases.find(Base) != Bases.end()) | 
|  | return true; | 
|  | for (const auto Field : Base->lookup(FieldName)) { | 
|  | if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) && | 
|  | Field->getAccess() != AS_private) { | 
|  | assert(Field->getAccess() != AS_none); | 
|  | assert(Bases.find(Base) == Bases.end()); | 
|  | Bases[Base] = Field; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
|  | /*DetectVirtual=*/true); | 
|  | if (!RD->lookupInBases(FieldShadowed, Paths)) | 
|  | return; | 
|  |  | 
|  | for (const auto &P : Paths) { | 
|  | auto Base = P.back().Base->getType()->getAsCXXRecordDecl(); | 
|  | auto It = Bases.find(Base); | 
|  | // Skip duplicated bases | 
|  | if (It == Bases.end()) | 
|  | continue; | 
|  | auto BaseField = It->second; | 
|  | assert(BaseField->getAccess() != AS_private); | 
|  | if (AS_none != | 
|  | CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) { | 
|  | Diag(Loc, diag::warn_shadow_field) | 
|  | << FieldName << RD << Base << DeclIsField; | 
|  | Diag(BaseField->getLocation(), diag::note_shadow_field); | 
|  | Bases.erase(It); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member | 
|  | /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the | 
|  | /// bitfield width if there is one, 'InitExpr' specifies the initializer if | 
|  | /// one has been parsed, and 'InitStyle' is set if an in-class initializer is | 
|  | /// present (but parsing it has been deferred). | 
|  | NamedDecl * | 
|  | Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, | 
|  | MultiTemplateParamsArg TemplateParameterLists, | 
|  | Expr *BW, const VirtSpecifiers &VS, | 
|  | InClassInitStyle InitStyle) { | 
|  | const DeclSpec &DS = D.getDeclSpec(); | 
|  | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | 
|  | DeclarationName Name = NameInfo.getName(); | 
|  | SourceLocation Loc = NameInfo.getLoc(); | 
|  |  | 
|  | // For anonymous bitfields, the location should point to the type. | 
|  | if (Loc.isInvalid()) | 
|  | Loc = D.getBeginLoc(); | 
|  |  | 
|  | Expr *BitWidth = static_cast<Expr*>(BW); | 
|  |  | 
|  | assert(isa<CXXRecordDecl>(CurContext)); | 
|  | assert(!DS.isFriendSpecified()); | 
|  |  | 
|  | bool isFunc = D.isDeclarationOfFunction(); | 
|  | const ParsedAttr *MSPropertyAttr = | 
|  | getMSPropertyAttr(D.getDeclSpec().getAttributes()); | 
|  |  | 
|  | if (cast<CXXRecordDecl>(CurContext)->isInterface()) { | 
|  | // The Microsoft extension __interface only permits public member functions | 
|  | // and prohibits constructors, destructors, operators, non-public member | 
|  | // functions, static methods and data members. | 
|  | unsigned InvalidDecl; | 
|  | bool ShowDeclName = true; | 
|  | if (!isFunc && | 
|  | (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr)) | 
|  | InvalidDecl = 0; | 
|  | else if (!isFunc) | 
|  | InvalidDecl = 1; | 
|  | else if (AS != AS_public) | 
|  | InvalidDecl = 2; | 
|  | else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) | 
|  | InvalidDecl = 3; | 
|  | else switch (Name.getNameKind()) { | 
|  | case DeclarationName::CXXConstructorName: | 
|  | InvalidDecl = 4; | 
|  | ShowDeclName = false; | 
|  | break; | 
|  |  | 
|  | case DeclarationName::CXXDestructorName: | 
|  | InvalidDecl = 5; | 
|  | ShowDeclName = false; | 
|  | break; | 
|  |  | 
|  | case DeclarationName::CXXOperatorName: | 
|  | case DeclarationName::CXXConversionFunctionName: | 
|  | InvalidDecl = 6; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | InvalidDecl = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (InvalidDecl) { | 
|  | if (ShowDeclName) | 
|  | Diag(Loc, diag::err_invalid_member_in_interface) | 
|  | << (InvalidDecl-1) << Name; | 
|  | else | 
|  | Diag(Loc, diag::err_invalid_member_in_interface) | 
|  | << (InvalidDecl-1) << ""; | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ 9.2p6: A member shall not be declared to have automatic storage | 
|  | // duration (auto, register) or with the extern storage-class-specifier. | 
|  | // C++ 7.1.1p8: The mutable specifier can be applied only to names of class | 
|  | // data members and cannot be applied to names declared const or static, | 
|  | // and cannot be applied to reference members. | 
|  | switch (DS.getStorageClassSpec()) { | 
|  | case DeclSpec::SCS_unspecified: | 
|  | case DeclSpec::SCS_typedef: | 
|  | case DeclSpec::SCS_static: | 
|  | break; | 
|  | case DeclSpec::SCS_mutable: | 
|  | if (isFunc) { | 
|  | Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); | 
|  |  | 
|  | // FIXME: It would be nicer if the keyword was ignored only for this | 
|  | // declarator. Otherwise we could get follow-up errors. | 
|  | D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | Diag(DS.getStorageClassSpecLoc(), | 
|  | diag::err_storageclass_invalid_for_member); | 
|  | D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || | 
|  | DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && | 
|  | !isFunc); | 
|  |  | 
|  | if (DS.hasConstexprSpecifier() && isInstField) { | 
|  | SemaDiagnosticBuilder B = | 
|  | Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); | 
|  | SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); | 
|  | if (InitStyle == ICIS_NoInit) { | 
|  | B << 0 << 0; | 
|  | if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) | 
|  | B << FixItHint::CreateRemoval(ConstexprLoc); | 
|  | else { | 
|  | B << FixItHint::CreateReplacement(ConstexprLoc, "const"); | 
|  | D.getMutableDeclSpec().ClearConstexprSpec(); | 
|  | const char *PrevSpec; | 
|  | unsigned DiagID; | 
|  | bool Failed = D.getMutableDeclSpec().SetTypeQual( | 
|  | DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts()); | 
|  | (void)Failed; | 
|  | assert(!Failed && "Making a constexpr member const shouldn't fail"); | 
|  | } | 
|  | } else { | 
|  | B << 1; | 
|  | const char *PrevSpec; | 
|  | unsigned DiagID; | 
|  | if (D.getMutableDeclSpec().SetStorageClassSpec( | 
|  | *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID, | 
|  | Context.getPrintingPolicy())) { | 
|  | assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable && | 
|  | "This is the only DeclSpec that should fail to be applied"); | 
|  | B << 1; | 
|  | } else { | 
|  | B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static "); | 
|  | isInstField = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | NamedDecl *Member; | 
|  | if (isInstField) { | 
|  | CXXScopeSpec &SS = D.getCXXScopeSpec(); | 
|  |  | 
|  | // Data members must have identifiers for names. | 
|  | if (!Name.isIdentifier()) { | 
|  | Diag(Loc, diag::err_bad_variable_name) | 
|  | << Name; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | IdentifierInfo *II = Name.getAsIdentifierInfo(); | 
|  |  | 
|  | // Member field could not be with "template" keyword. | 
|  | // So TemplateParameterLists should be empty in this case. | 
|  | if (TemplateParameterLists.size()) { | 
|  | TemplateParameterList* TemplateParams = TemplateParameterLists[0]; | 
|  | if (TemplateParams->size()) { | 
|  | // There is no such thing as a member field template. | 
|  | Diag(D.getIdentifierLoc(), diag::err_template_member) | 
|  | << II | 
|  | << SourceRange(TemplateParams->getTemplateLoc(), | 
|  | TemplateParams->getRAngleLoc()); | 
|  | } else { | 
|  | // There is an extraneous 'template<>' for this member. | 
|  | Diag(TemplateParams->getTemplateLoc(), | 
|  | diag::err_template_member_noparams) | 
|  | << II | 
|  | << SourceRange(TemplateParams->getTemplateLoc(), | 
|  | TemplateParams->getRAngleLoc()); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (SS.isSet() && !SS.isInvalid()) { | 
|  | // The user provided a superfluous scope specifier inside a class | 
|  | // definition: | 
|  | // | 
|  | // class X { | 
|  | //   int X::member; | 
|  | // }; | 
|  | if (DeclContext *DC = computeDeclContext(SS, false)) | 
|  | diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(), | 
|  | D.getName().getKind() == | 
|  | UnqualifiedIdKind::IK_TemplateId); | 
|  | else | 
|  | Diag(D.getIdentifierLoc(), diag::err_member_qualification) | 
|  | << Name << SS.getRange(); | 
|  |  | 
|  | SS.clear(); | 
|  | } | 
|  |  | 
|  | if (MSPropertyAttr) { | 
|  | Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D, | 
|  | BitWidth, InitStyle, AS, *MSPropertyAttr); | 
|  | if (!Member) | 
|  | return nullptr; | 
|  | isInstField = false; | 
|  | } else { | 
|  | Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, | 
|  | BitWidth, InitStyle, AS); | 
|  | if (!Member) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext)); | 
|  | } else { | 
|  | Member = HandleDeclarator(S, D, TemplateParameterLists); | 
|  | if (!Member) | 
|  | return nullptr; | 
|  |  | 
|  | // Non-instance-fields can't have a bitfield. | 
|  | if (BitWidth) { | 
|  | if (Member->isInvalidDecl()) { | 
|  | // don't emit another diagnostic. | 
|  | } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) { | 
|  | // C++ 9.6p3: A bit-field shall not be a static member. | 
|  | // "static member 'A' cannot be a bit-field" | 
|  | Diag(Loc, diag::err_static_not_bitfield) | 
|  | << Name << BitWidth->getSourceRange(); | 
|  | } else if (isa<TypedefDecl>(Member)) { | 
|  | // "typedef member 'x' cannot be a bit-field" | 
|  | Diag(Loc, diag::err_typedef_not_bitfield) | 
|  | << Name << BitWidth->getSourceRange(); | 
|  | } else { | 
|  | // A function typedef ("typedef int f(); f a;"). | 
|  | // C++ 9.6p3: A bit-field shall have integral or enumeration type. | 
|  | Diag(Loc, diag::err_not_integral_type_bitfield) | 
|  | << Name << cast<ValueDecl>(Member)->getType() | 
|  | << BitWidth->getSourceRange(); | 
|  | } | 
|  |  | 
|  | BitWidth = nullptr; | 
|  | Member->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | NamedDecl *NonTemplateMember = Member; | 
|  | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) | 
|  | NonTemplateMember = FunTmpl->getTemplatedDecl(); | 
|  | else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member)) | 
|  | NonTemplateMember = VarTmpl->getTemplatedDecl(); | 
|  |  | 
|  | Member->setAccess(AS); | 
|  |  | 
|  | // If we have declared a member function template or static data member | 
|  | // template, set the access of the templated declaration as well. | 
|  | if (NonTemplateMember != Member) | 
|  | NonTemplateMember->setAccess(AS); | 
|  |  | 
|  | // C++ [temp.deduct.guide]p3: | 
|  | //   A deduction guide [...] for a member class template [shall be | 
|  | //   declared] with the same access [as the template]. | 
|  | if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) { | 
|  | auto *TD = DG->getDeducedTemplate(); | 
|  | // Access specifiers are only meaningful if both the template and the | 
|  | // deduction guide are from the same scope. | 
|  | if (AS != TD->getAccess() && | 
|  | TD->getDeclContext()->getRedeclContext()->Equals( | 
|  | DG->getDeclContext()->getRedeclContext())) { | 
|  | Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access); | 
|  | Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access) | 
|  | << TD->getAccess(); | 
|  | const AccessSpecDecl *LastAccessSpec = nullptr; | 
|  | for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) { | 
|  | if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D)) | 
|  | LastAccessSpec = AccessSpec; | 
|  | } | 
|  | assert(LastAccessSpec && "differing access with no access specifier"); | 
|  | Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access) | 
|  | << AS; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VS.isOverrideSpecified()) | 
|  | Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0)); | 
|  | if (VS.isFinalSpecified()) | 
|  | Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context, | 
|  | VS.isFinalSpelledSealed())); | 
|  |  | 
|  | if (VS.getLastLocation().isValid()) { | 
|  | // Update the end location of a method that has a virt-specifiers. | 
|  | if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member)) | 
|  | MD->setRangeEnd(VS.getLastLocation()); | 
|  | } | 
|  |  | 
|  | CheckOverrideControl(Member); | 
|  |  | 
|  | assert((Name || isInstField) && "No identifier for non-field ?"); | 
|  |  | 
|  | if (isInstField) { | 
|  | FieldDecl *FD = cast<FieldDecl>(Member); | 
|  | FieldCollector->Add(FD); | 
|  |  | 
|  | if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) { | 
|  | // Remember all explicit private FieldDecls that have a name, no side | 
|  | // effects and are not part of a dependent type declaration. | 
|  | if (!FD->isImplicit() && FD->getDeclName() && | 
|  | FD->getAccess() == AS_private && | 
|  | !FD->hasAttr<UnusedAttr>() && | 
|  | !FD->getParent()->isDependentContext() && | 
|  | !InitializationHasSideEffects(*FD)) | 
|  | UnusedPrivateFields.insert(FD); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Member; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class UninitializedFieldVisitor | 
|  | : public EvaluatedExprVisitor<UninitializedFieldVisitor> { | 
|  | Sema &S; | 
|  | // List of Decls to generate a warning on.  Also remove Decls that become | 
|  | // initialized. | 
|  | llvm::SmallPtrSetImpl<ValueDecl*> &Decls; | 
|  | // List of base classes of the record.  Classes are removed after their | 
|  | // initializers. | 
|  | llvm::SmallPtrSetImpl<QualType> &BaseClasses; | 
|  | // Vector of decls to be removed from the Decl set prior to visiting the | 
|  | // nodes.  These Decls may have been initialized in the prior initializer. | 
|  | llvm::SmallVector<ValueDecl*, 4> DeclsToRemove; | 
|  | // If non-null, add a note to the warning pointing back to the constructor. | 
|  | const CXXConstructorDecl *Constructor; | 
|  | // Variables to hold state when processing an initializer list.  When | 
|  | // InitList is true, special case initialization of FieldDecls matching | 
|  | // InitListFieldDecl. | 
|  | bool InitList; | 
|  | FieldDecl *InitListFieldDecl; | 
|  | llvm::SmallVector<unsigned, 4> InitFieldIndex; | 
|  |  | 
|  | public: | 
|  | typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited; | 
|  | UninitializedFieldVisitor(Sema &S, | 
|  | llvm::SmallPtrSetImpl<ValueDecl*> &Decls, | 
|  | llvm::SmallPtrSetImpl<QualType> &BaseClasses) | 
|  | : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), | 
|  | Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} | 
|  |  | 
|  | // Returns true if the use of ME is not an uninitialized use. | 
|  | bool IsInitListMemberExprInitialized(MemberExpr *ME, | 
|  | bool CheckReferenceOnly) { | 
|  | llvm::SmallVector<FieldDecl*, 4> Fields; | 
|  | bool ReferenceField = false; | 
|  | while (ME) { | 
|  | FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); | 
|  | if (!FD) | 
|  | return false; | 
|  | Fields.push_back(FD); | 
|  | if (FD->getType()->isReferenceType()) | 
|  | ReferenceField = true; | 
|  | ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts()); | 
|  | } | 
|  |  | 
|  | // Binding a reference to an uninitialized field is not an | 
|  | // uninitialized use. | 
|  | if (CheckReferenceOnly && !ReferenceField) | 
|  | return true; | 
|  |  | 
|  | llvm::SmallVector<unsigned, 4> UsedFieldIndex; | 
|  | // Discard the first field since it is the field decl that is being | 
|  | // initialized. | 
|  | for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) { | 
|  | UsedFieldIndex.push_back((*I)->getFieldIndex()); | 
|  | } | 
|  |  | 
|  | for (auto UsedIter = UsedFieldIndex.begin(), | 
|  | UsedEnd = UsedFieldIndex.end(), | 
|  | OrigIter = InitFieldIndex.begin(), | 
|  | OrigEnd = InitFieldIndex.end(); | 
|  | UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { | 
|  | if (*UsedIter < *OrigIter) | 
|  | return true; | 
|  | if (*UsedIter > *OrigIter) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, | 
|  | bool AddressOf) { | 
|  | if (isa<EnumConstantDecl>(ME->getMemberDecl())) | 
|  | return; | 
|  |  | 
|  | // FieldME is the inner-most MemberExpr that is not an anonymous struct | 
|  | // or union. | 
|  | MemberExpr *FieldME = ME; | 
|  |  | 
|  | bool AllPODFields = FieldME->getType().isPODType(S.Context); | 
|  |  | 
|  | Expr *Base = ME; | 
|  | while (MemberExpr *SubME = | 
|  | dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) { | 
|  |  | 
|  | if (isa<VarDecl>(SubME->getMemberDecl())) | 
|  | return; | 
|  |  | 
|  | if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl())) | 
|  | if (!FD->isAnonymousStructOrUnion()) | 
|  | FieldME = SubME; | 
|  |  | 
|  | if (!FieldME->getType().isPODType(S.Context)) | 
|  | AllPODFields = false; | 
|  |  | 
|  | Base = SubME->getBase(); | 
|  | } | 
|  |  | 
|  | if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) | 
|  | return; | 
|  |  | 
|  | if (AddressOf && AllPODFields) | 
|  | return; | 
|  |  | 
|  | ValueDecl* FoundVD = FieldME->getMemberDecl(); | 
|  |  | 
|  | if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) { | 
|  | while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) { | 
|  | BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr()); | 
|  | } | 
|  |  | 
|  | if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { | 
|  | QualType T = BaseCast->getType(); | 
|  | if (T->isPointerType() && | 
|  | BaseClasses.count(T->getPointeeType())) { | 
|  | S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) | 
|  | << T->getPointeeType() << FoundVD; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Decls.count(FoundVD)) | 
|  | return; | 
|  |  | 
|  | const bool IsReference = FoundVD->getType()->isReferenceType(); | 
|  |  | 
|  | if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { | 
|  | // Special checking for initializer lists. | 
|  | if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | // Prevent double warnings on use of unbounded references. | 
|  | if (CheckReferenceOnly && !IsReference) | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned diag = IsReference | 
|  | ? diag::warn_reference_field_is_uninit | 
|  | : diag::warn_field_is_uninit; | 
|  | S.Diag(FieldME->getExprLoc(), diag) << FoundVD; | 
|  | if (Constructor) | 
|  | S.Diag(Constructor->getLocation(), | 
|  | diag::note_uninit_in_this_constructor) | 
|  | << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); | 
|  |  | 
|  | } | 
|  |  | 
|  | void HandleValue(Expr *E, bool AddressOf) { | 
|  | E = E->IgnoreParens(); | 
|  |  | 
|  | if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { | 
|  | HandleMemberExpr(ME, false /*CheckReferenceOnly*/, | 
|  | AddressOf /*AddressOf*/); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { | 
|  | Visit(CO->getCond()); | 
|  | HandleValue(CO->getTrueExpr(), AddressOf); | 
|  | HandleValue(CO->getFalseExpr(), AddressOf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (BinaryConditionalOperator *BCO = | 
|  | dyn_cast<BinaryConditionalOperator>(E)) { | 
|  | Visit(BCO->getCond()); | 
|  | HandleValue(BCO->getFalseExpr(), AddressOf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { | 
|  | HandleValue(OVE->getSourceExpr(), AddressOf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | 
|  | switch (BO->getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case(BO_PtrMemD): | 
|  | case(BO_PtrMemI): | 
|  | HandleValue(BO->getLHS(), AddressOf); | 
|  | Visit(BO->getRHS()); | 
|  | return; | 
|  | case(BO_Comma): | 
|  | Visit(BO->getLHS()); | 
|  | HandleValue(BO->getRHS(), AddressOf); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | Visit(E); | 
|  | } | 
|  |  | 
|  | void CheckInitListExpr(InitListExpr *ILE) { | 
|  | InitFieldIndex.push_back(0); | 
|  | for (auto Child : ILE->children()) { | 
|  | if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) { | 
|  | CheckInitListExpr(SubList); | 
|  | } else { | 
|  | Visit(Child); | 
|  | } | 
|  | ++InitFieldIndex.back(); | 
|  | } | 
|  | InitFieldIndex.pop_back(); | 
|  | } | 
|  |  | 
|  | void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, | 
|  | FieldDecl *Field, const Type *BaseClass) { | 
|  | // Remove Decls that may have been initialized in the previous | 
|  | // initializer. | 
|  | for (ValueDecl* VD : DeclsToRemove) | 
|  | Decls.erase(VD); | 
|  | DeclsToRemove.clear(); | 
|  |  | 
|  | Constructor = FieldConstructor; | 
|  | InitListExpr *ILE = dyn_cast<InitListExpr>(E); | 
|  |  | 
|  | if (ILE && Field) { | 
|  | InitList = true; | 
|  | InitListFieldDecl = Field; | 
|  | InitFieldIndex.clear(); | 
|  | CheckInitListExpr(ILE); | 
|  | } else { | 
|  | InitList = false; | 
|  | Visit(E); | 
|  | } | 
|  |  | 
|  | if (Field) | 
|  | Decls.erase(Field); | 
|  | if (BaseClass) | 
|  | BaseClasses.erase(BaseClass->getCanonicalTypeInternal()); | 
|  | } | 
|  |  | 
|  | void VisitMemberExpr(MemberExpr *ME) { | 
|  | // All uses of unbounded reference fields will warn. | 
|  | HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/); | 
|  | } | 
|  |  | 
|  | void VisitImplicitCastExpr(ImplicitCastExpr *E) { | 
|  | if (E->getCastKind() == CK_LValueToRValue) { | 
|  | HandleValue(E->getSubExpr(), false /*AddressOf*/); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Inherited::VisitImplicitCastExpr(E); | 
|  | } | 
|  |  | 
|  | void VisitCXXConstructExpr(CXXConstructExpr *E) { | 
|  | if (E->getConstructor()->isCopyConstructor()) { | 
|  | Expr *ArgExpr = E->getArg(0); | 
|  | if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) | 
|  | if (ILE->getNumInits() == 1) | 
|  | ArgExpr = ILE->getInit(0); | 
|  | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) | 
|  | if (ICE->getCastKind() == CK_NoOp) | 
|  | ArgExpr = ICE->getSubExpr(); | 
|  | HandleValue(ArgExpr, false /*AddressOf*/); | 
|  | return; | 
|  | } | 
|  | Inherited::VisitCXXConstructExpr(E); | 
|  | } | 
|  |  | 
|  | void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { | 
|  | Expr *Callee = E->getCallee(); | 
|  | if (isa<MemberExpr>(Callee)) { | 
|  | HandleValue(Callee, false /*AddressOf*/); | 
|  | for (auto Arg : E->arguments()) | 
|  | Visit(Arg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Inherited::VisitCXXMemberCallExpr(E); | 
|  | } | 
|  |  | 
|  | void VisitCallExpr(CallExpr *E) { | 
|  | // Treat std::move as a use. | 
|  | if (E->isCallToStdMove()) { | 
|  | HandleValue(E->getArg(0), /*AddressOf=*/false); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Inherited::VisitCallExpr(E); | 
|  | } | 
|  |  | 
|  | void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { | 
|  | Expr *Callee = E->getCallee(); | 
|  |  | 
|  | if (isa<UnresolvedLookupExpr>(Callee)) | 
|  | return Inherited::VisitCXXOperatorCallExpr(E); | 
|  |  | 
|  | Visit(Callee); | 
|  | for (auto Arg : E->arguments()) | 
|  | HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); | 
|  | } | 
|  |  | 
|  | void VisitBinaryOperator(BinaryOperator *E) { | 
|  | // If a field assignment is detected, remove the field from the | 
|  | // uninitiailized field set. | 
|  | if (E->getOpcode() == BO_Assign) | 
|  | if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS())) | 
|  | if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) | 
|  | if (!FD->getType()->isReferenceType()) | 
|  | DeclsToRemove.push_back(FD); | 
|  |  | 
|  | if (E->isCompoundAssignmentOp()) { | 
|  | HandleValue(E->getLHS(), false /*AddressOf*/); | 
|  | Visit(E->getRHS()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Inherited::VisitBinaryOperator(E); | 
|  | } | 
|  |  | 
|  | void VisitUnaryOperator(UnaryOperator *E) { | 
|  | if (E->isIncrementDecrementOp()) { | 
|  | HandleValue(E->getSubExpr(), false /*AddressOf*/); | 
|  | return; | 
|  | } | 
|  | if (E->getOpcode() == UO_AddrOf) { | 
|  | if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) { | 
|  | HandleValue(ME->getBase(), true /*AddressOf*/); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | Inherited::VisitUnaryOperator(E); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Diagnose value-uses of fields to initialize themselves, e.g. | 
|  | //   foo(foo) | 
|  | // where foo is not also a parameter to the constructor. | 
|  | // Also diagnose across field uninitialized use such as | 
|  | //   x(y), y(x) | 
|  | // TODO: implement -Wuninitialized and fold this into that framework. | 
|  | static void DiagnoseUninitializedFields( | 
|  | Sema &SemaRef, const CXXConstructorDecl *Constructor) { | 
|  |  | 
|  | if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, | 
|  | Constructor->getLocation())) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Constructor->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | const CXXRecordDecl *RD = Constructor->getParent(); | 
|  |  | 
|  | if (RD->getDescribedClassTemplate()) | 
|  | return; | 
|  |  | 
|  | // Holds fields that are uninitialized. | 
|  | llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields; | 
|  |  | 
|  | // At the beginning, all fields are uninitialized. | 
|  | for (auto *I : RD->decls()) { | 
|  | if (auto *FD = dyn_cast<FieldDecl>(I)) { | 
|  | UninitializedFields.insert(FD); | 
|  | } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) { | 
|  | UninitializedFields.insert(IFD->getAnonField()); | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses; | 
|  | for (auto I : RD->bases()) | 
|  | UninitializedBaseClasses.insert(I.getType().getCanonicalType()); | 
|  |  | 
|  | if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) | 
|  | return; | 
|  |  | 
|  | UninitializedFieldVisitor UninitializedChecker(SemaRef, | 
|  | UninitializedFields, | 
|  | UninitializedBaseClasses); | 
|  |  | 
|  | for (const auto *FieldInit : Constructor->inits()) { | 
|  | if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) | 
|  | break; | 
|  |  | 
|  | Expr *InitExpr = FieldInit->getInit(); | 
|  | if (!InitExpr) | 
|  | continue; | 
|  |  | 
|  | if (CXXDefaultInitExpr *Default = | 
|  | dyn_cast<CXXDefaultInitExpr>(InitExpr)) { | 
|  | InitExpr = Default->getExpr(); | 
|  | if (!InitExpr) | 
|  | continue; | 
|  | // In class initializers will point to the constructor. | 
|  | UninitializedChecker.CheckInitializer(InitExpr, Constructor, | 
|  | FieldInit->getAnyMember(), | 
|  | FieldInit->getBaseClass()); | 
|  | } else { | 
|  | UninitializedChecker.CheckInitializer(InitExpr, nullptr, | 
|  | FieldInit->getAnyMember(), | 
|  | FieldInit->getBaseClass()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } // namespace | 
|  |  | 
|  | /// Enter a new C++ default initializer scope. After calling this, the | 
|  | /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if | 
|  | /// parsing or instantiating the initializer failed. | 
|  | void Sema::ActOnStartCXXInClassMemberInitializer() { | 
|  | // Create a synthetic function scope to represent the call to the constructor | 
|  | // that notionally surrounds a use of this initializer. | 
|  | PushFunctionScope(); | 
|  | } | 
|  |  | 
|  | /// This is invoked after parsing an in-class initializer for a | 
|  | /// non-static C++ class member, and after instantiating an in-class initializer | 
|  | /// in a class template. Such actions are deferred until the class is complete. | 
|  | void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, | 
|  | SourceLocation InitLoc, | 
|  | Expr *InitExpr) { | 
|  | // Pop the notional constructor scope we created earlier. | 
|  | PopFunctionScopeInfo(nullptr, D); | 
|  |  | 
|  | FieldDecl *FD = dyn_cast<FieldDecl>(D); | 
|  | assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && | 
|  | "must set init style when field is created"); | 
|  |  | 
|  | if (!InitExpr) { | 
|  | D->setInvalidDecl(); | 
|  | if (FD) | 
|  | FD->removeInClassInitializer(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) { | 
|  | FD->setInvalidDecl(); | 
|  | FD->removeInClassInitializer(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ExprResult Init = InitExpr; | 
|  | if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) { | 
|  | InitializedEntity Entity = | 
|  | InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD); | 
|  | InitializationKind Kind = | 
|  | FD->getInClassInitStyle() == ICIS_ListInit | 
|  | ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(), | 
|  | InitExpr->getBeginLoc(), | 
|  | InitExpr->getEndLoc()) | 
|  | : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc); | 
|  | InitializationSequence Seq(*this, Entity, Kind, InitExpr); | 
|  | Init = Seq.Perform(*this, Entity, Kind, InitExpr); | 
|  | if (Init.isInvalid()) { | 
|  | FD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++11 [class.base.init]p7: | 
|  | //   The initialization of each base and member constitutes a | 
|  | //   full-expression. | 
|  | Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false); | 
|  | if (Init.isInvalid()) { | 
|  | FD->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | InitExpr = Init.get(); | 
|  |  | 
|  | FD->setInClassInitializer(InitExpr); | 
|  | } | 
|  |  | 
|  | /// Find the direct and/or virtual base specifiers that | 
|  | /// correspond to the given base type, for use in base initialization | 
|  | /// within a constructor. | 
|  | static bool FindBaseInitializer(Sema &SemaRef, | 
|  | CXXRecordDecl *ClassDecl, | 
|  | QualType BaseType, | 
|  | const CXXBaseSpecifier *&DirectBaseSpec, | 
|  | const CXXBaseSpecifier *&VirtualBaseSpec) { | 
|  | // First, check for a direct base class. | 
|  | DirectBaseSpec = nullptr; | 
|  | for (const auto &Base : ClassDecl->bases()) { | 
|  | if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) { | 
|  | // We found a direct base of this type. That's what we're | 
|  | // initializing. | 
|  | DirectBaseSpec = &Base; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for a virtual base class. | 
|  | // FIXME: We might be able to short-circuit this if we know in advance that | 
|  | // there are no virtual bases. | 
|  | VirtualBaseSpec = nullptr; | 
|  | if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { | 
|  | // We haven't found a base yet; search the class hierarchy for a | 
|  | // virtual base class. | 
|  | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
|  | /*DetectVirtual=*/false); | 
|  | if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(), | 
|  | SemaRef.Context.getTypeDeclType(ClassDecl), | 
|  | BaseType, Paths)) { | 
|  | for (CXXBasePaths::paths_iterator Path = Paths.begin(); | 
|  | Path != Paths.end(); ++Path) { | 
|  | if (Path->back().Base->isVirtual()) { | 
|  | VirtualBaseSpec = Path->back().Base; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return DirectBaseSpec || VirtualBaseSpec; | 
|  | } | 
|  |  | 
|  | /// Handle a C++ member initializer using braced-init-list syntax. | 
|  | MemInitResult | 
|  | Sema::ActOnMemInitializer(Decl *ConstructorD, | 
|  | Scope *S, | 
|  | CXXScopeSpec &SS, | 
|  | IdentifierInfo *MemberOrBase, | 
|  | ParsedType TemplateTypeTy, | 
|  | const DeclSpec &DS, | 
|  | SourceLocation IdLoc, | 
|  | Expr *InitList, | 
|  | SourceLocation EllipsisLoc) { | 
|  | return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, | 
|  | DS, IdLoc, InitList, | 
|  | EllipsisLoc); | 
|  | } | 
|  |  | 
|  | /// Handle a C++ member initializer using parentheses syntax. | 
|  | MemInitResult | 
|  | Sema::ActOnMemInitializer(Decl *ConstructorD, | 
|  | Scope *S, | 
|  | CXXScopeSpec &SS, | 
|  | IdentifierInfo *MemberOrBase, | 
|  | ParsedType TemplateTypeTy, | 
|  | const DeclSpec &DS, | 
|  | SourceLocation IdLoc, | 
|  | SourceLocation LParenLoc, | 
|  | ArrayRef<Expr *> Args, | 
|  | SourceLocation RParenLoc, | 
|  | SourceLocation EllipsisLoc) { | 
|  | Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc); | 
|  | return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, | 
|  | DS, IdLoc, List, EllipsisLoc); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Callback to only accept typo corrections that can be a valid C++ member | 
|  | // intializer: either a non-static field member or a base class. | 
|  | class MemInitializerValidatorCCC final : public CorrectionCandidateCallback { | 
|  | public: | 
|  | explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) | 
|  | : ClassDecl(ClassDecl) {} | 
|  |  | 
|  | bool ValidateCandidate(const TypoCorrection &candidate) override { | 
|  | if (NamedDecl *ND = candidate.getCorrectionDecl()) { | 
|  | if (FieldDecl *Member = dyn_cast<FieldDecl>(ND)) | 
|  | return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); | 
|  | return isa<TypeDecl>(ND); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<CorrectionCandidateCallback> clone() override { | 
|  | return llvm::make_unique<MemInitializerValidatorCCC>(*this); | 
|  | } | 
|  |  | 
|  | private: | 
|  | CXXRecordDecl *ClassDecl; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, | 
|  | CXXScopeSpec &SS, | 
|  | ParsedType TemplateTypeTy, | 
|  | IdentifierInfo *MemberOrBase) { | 
|  | if (SS.getScopeRep() || TemplateTypeTy) | 
|  | return nullptr; | 
|  | DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase); | 
|  | if (Result.empty()) | 
|  | return nullptr; | 
|  | ValueDecl *Member; | 
|  | if ((Member = dyn_cast<FieldDecl>(Result.front())) || | 
|  | (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) | 
|  | return Member; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Handle a C++ member initializer. | 
|  | MemInitResult | 
|  | Sema::BuildMemInitializer(Decl *ConstructorD, | 
|  | Scope *S, | 
|  | CXXScopeSpec &SS, | 
|  | IdentifierInfo *MemberOrBase, | 
|  | ParsedType TemplateTypeTy, | 
|  | const DeclSpec &DS, | 
|  | SourceLocation IdLoc, | 
|  | Expr *Init, | 
|  | SourceLocation EllipsisLoc) { | 
|  | ExprResult Res = CorrectDelayedTyposInExpr(Init); | 
|  | if (!Res.isUsable()) | 
|  | return true; | 
|  | Init = Res.get(); | 
|  |  | 
|  | if (!ConstructorD) | 
|  | return true; | 
|  |  | 
|  | AdjustDeclIfTemplate(ConstructorD); | 
|  |  | 
|  | CXXConstructorDecl *Constructor | 
|  | = dyn_cast<CXXConstructorDecl>(ConstructorD); | 
|  | if (!Constructor) { | 
|  | // The user wrote a constructor initializer on a function that is | 
|  | // not a C++ constructor. Ignore the error for now, because we may | 
|  | // have more member initializers coming; we'll diagnose it just | 
|  | // once in ActOnMemInitializers. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = Constructor->getParent(); | 
|  |  | 
|  | // C++ [class.base.init]p2: | 
|  | //   Names in a mem-initializer-id are looked up in the scope of the | 
|  | //   constructor's class and, if not found in that scope, are looked | 
|  | //   up in the scope containing the constructor's definition. | 
|  | //   [Note: if the constructor's class contains a member with the | 
|  | //   same name as a direct or virtual base class of the class, a | 
|  | //   mem-initializer-id naming the member or base class and composed | 
|  | //   of a single identifier refers to the class member. A | 
|  | //   mem-initializer-id for the hidden base class may be specified | 
|  | //   using a qualified name. ] | 
|  |  | 
|  | // Look for a member, first. | 
|  | if (ValueDecl *Member = tryLookupCtorInitMemberDecl( | 
|  | ClassDecl, SS, TemplateTypeTy, MemberOrBase)) { | 
|  | if (EllipsisLoc.isValid()) | 
|  | Diag(EllipsisLoc, diag::err_pack_expansion_member_init) | 
|  | << MemberOrBase | 
|  | << SourceRange(IdLoc, Init->getSourceRange().getEnd()); | 
|  |  | 
|  | return BuildMemberInitializer(Member, Init, IdLoc); | 
|  | } | 
|  | // It didn't name a member, so see if it names a class. | 
|  | QualType BaseType; | 
|  | TypeSourceInfo *TInfo = nullptr; | 
|  |  | 
|  | if (TemplateTypeTy) { | 
|  | BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); | 
|  | if (BaseType.isNull()) | 
|  | return true; | 
|  | } else if (DS.getTypeSpecType() == TST_decltype) { | 
|  | BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); | 
|  | } else if (DS.getTypeSpecType() == TST_decltype_auto) { | 
|  | Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); | 
|  | return true; | 
|  | } else { | 
|  | LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); | 
|  | LookupParsedName(R, S, &SS); | 
|  |  | 
|  | TypeDecl *TyD = R.getAsSingle<TypeDecl>(); | 
|  | if (!TyD) { | 
|  | if (R.isAmbiguous()) return true; | 
|  |  | 
|  | // We don't want access-control diagnostics here. | 
|  | R.suppressDiagnostics(); | 
|  |  | 
|  | if (SS.isSet() && isDependentScopeSpecifier(SS)) { | 
|  | bool NotUnknownSpecialization = false; | 
|  | DeclContext *DC = computeDeclContext(SS, false); | 
|  | if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) | 
|  | NotUnknownSpecialization = !Record->hasAnyDependentBases(); | 
|  |  | 
|  | if (!NotUnknownSpecialization) { | 
|  | // When the scope specifier can refer to a member of an unknown | 
|  | // specialization, we take it as a type name. | 
|  | BaseType = CheckTypenameType(ETK_None, SourceLocation(), | 
|  | SS.getWithLocInContext(Context), | 
|  | *MemberOrBase, IdLoc); | 
|  | if (BaseType.isNull()) | 
|  | return true; | 
|  |  | 
|  | TInfo = Context.CreateTypeSourceInfo(BaseType); | 
|  | DependentNameTypeLoc TL = | 
|  | TInfo->getTypeLoc().castAs<DependentNameTypeLoc>(); | 
|  | if (!TL.isNull()) { | 
|  | TL.setNameLoc(IdLoc); | 
|  | TL.setElaboratedKeywordLoc(SourceLocation()); | 
|  | TL.setQualifierLoc(SS.getWithLocInContext(Context)); | 
|  | } | 
|  |  | 
|  | R.clear(); | 
|  | R.setLookupName(MemberOrBase); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If no results were found, try to correct typos. | 
|  | TypoCorrection Corr; | 
|  | MemInitializerValidatorCCC CCC(ClassDecl); | 
|  | if (R.empty() && BaseType.isNull() && | 
|  | (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, | 
|  | CCC, CTK_ErrorRecovery, ClassDecl))) { | 
|  | if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { | 
|  | // We have found a non-static data member with a similar | 
|  | // name to what was typed; complain and initialize that | 
|  | // member. | 
|  | diagnoseTypo(Corr, | 
|  | PDiag(diag::err_mem_init_not_member_or_class_suggest) | 
|  | << MemberOrBase << true); | 
|  | return BuildMemberInitializer(Member, Init, IdLoc); | 
|  | } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { | 
|  | const CXXBaseSpecifier *DirectBaseSpec; | 
|  | const CXXBaseSpecifier *VirtualBaseSpec; | 
|  | if (FindBaseInitializer(*this, ClassDecl, | 
|  | Context.getTypeDeclType(Type), | 
|  | DirectBaseSpec, VirtualBaseSpec)) { | 
|  | // We have found a direct or virtual base class with a | 
|  | // similar name to what was typed; complain and initialize | 
|  | // that base class. | 
|  | diagnoseTypo(Corr, | 
|  | PDiag(diag::err_mem_init_not_member_or_class_suggest) | 
|  | << MemberOrBase << false, | 
|  | PDiag() /*Suppress note, we provide our own.*/); | 
|  |  | 
|  | const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec | 
|  | : VirtualBaseSpec; | 
|  | Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here) | 
|  | << BaseSpec->getType() << BaseSpec->getSourceRange(); | 
|  |  | 
|  | TyD = Type; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!TyD && BaseType.isNull()) { | 
|  | Diag(IdLoc, diag::err_mem_init_not_member_or_class) | 
|  | << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BaseType.isNull()) { | 
|  | BaseType = Context.getTypeDeclType(TyD); | 
|  | MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false); | 
|  | if (SS.isSet()) { | 
|  | BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(), | 
|  | BaseType); | 
|  | TInfo = Context.CreateTypeSourceInfo(BaseType); | 
|  | ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>(); | 
|  | TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); | 
|  | TL.setElaboratedKeywordLoc(SourceLocation()); | 
|  | TL.setQualifierLoc(SS.getWithLocInContext(Context)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!TInfo) | 
|  | TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); | 
|  |  | 
|  | return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc); | 
|  | } | 
|  |  | 
|  | MemInitResult | 
|  | Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, | 
|  | SourceLocation IdLoc) { | 
|  | FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); | 
|  | IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); | 
|  | assert((DirectMember || IndirectMember) && | 
|  | "Member must be a FieldDecl or IndirectFieldDecl"); | 
|  |  | 
|  | if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) | 
|  | return true; | 
|  |  | 
|  | if (Member->isInvalidDecl()) | 
|  | return true; | 
|  |  | 
|  | MultiExprArg Args; | 
|  | if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { | 
|  | Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); | 
|  | } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { | 
|  | Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); | 
|  | } else { | 
|  | // Template instantiation doesn't reconstruct ParenListExprs for us. | 
|  | Args = Init; | 
|  | } | 
|  |  | 
|  | SourceRange InitRange = Init->getSourceRange(); | 
|  |  | 
|  | if (Member->getType()->isDependentType() || Init->isTypeDependent()) { | 
|  | // Can't check initialization for a member of dependent type or when | 
|  | // any of the arguments are type-dependent expressions. | 
|  | DiscardCleanupsInEvaluationContext(); | 
|  | } else { | 
|  | bool InitList = false; | 
|  | if (isa<InitListExpr>(Init)) { | 
|  | InitList = true; | 
|  | Args = Init; | 
|  | } | 
|  |  | 
|  | // Initialize the member. | 
|  | InitializedEntity MemberEntity = | 
|  | DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr) | 
|  | : InitializedEntity::InitializeMember(IndirectMember, | 
|  | nullptr); | 
|  | InitializationKind Kind = | 
|  | InitList ? InitializationKind::CreateDirectList( | 
|  | IdLoc, Init->getBeginLoc(), Init->getEndLoc()) | 
|  | : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(), | 
|  | InitRange.getEnd()); | 
|  |  | 
|  | InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); | 
|  | ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, | 
|  | nullptr); | 
|  | if (MemberInit.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | // C++11 [class.base.init]p7: | 
|  | //   The initialization of each base and member constitutes a | 
|  | //   full-expression. | 
|  | MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(), | 
|  | /*DiscardedValue*/ false); | 
|  | if (MemberInit.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | Init = MemberInit.get(); | 
|  | } | 
|  |  | 
|  | if (DirectMember) { | 
|  | return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, | 
|  | InitRange.getBegin(), Init, | 
|  | InitRange.getEnd()); | 
|  | } else { | 
|  | return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, | 
|  | InitRange.getBegin(), Init, | 
|  | InitRange.getEnd()); | 
|  | } | 
|  | } | 
|  |  | 
|  | MemInitResult | 
|  | Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, | 
|  | CXXRecordDecl *ClassDecl) { | 
|  | SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin(); | 
|  | if (!LangOpts.CPlusPlus11) | 
|  | return Diag(NameLoc, diag::err_delegating_ctor) | 
|  | << TInfo->getTypeLoc().getLocalSourceRange(); | 
|  | Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); | 
|  |  | 
|  | bool InitList = true; | 
|  | MultiExprArg Args = Init; | 
|  | if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { | 
|  | InitList = false; | 
|  | Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); | 
|  | } | 
|  |  | 
|  | SourceRange InitRange = Init->getSourceRange(); | 
|  | // Initialize the object. | 
|  | InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( | 
|  | QualType(ClassDecl->getTypeForDecl(), 0)); | 
|  | InitializationKind Kind = | 
|  | InitList ? InitializationKind::CreateDirectList( | 
|  | NameLoc, Init->getBeginLoc(), Init->getEndLoc()) | 
|  | : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(), | 
|  | InitRange.getEnd()); | 
|  | InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); | 
|  | ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind, | 
|  | Args, nullptr); | 
|  | if (DelegationInit.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && | 
|  | "Delegating constructor with no target?"); | 
|  |  | 
|  | // C++11 [class.base.init]p7: | 
|  | //   The initialization of each base and member constitutes a | 
|  | //   full-expression. | 
|  | DelegationInit = ActOnFinishFullExpr( | 
|  | DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false); | 
|  | if (DelegationInit.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | // If we are in a dependent context, template instantiation will | 
|  | // perform this type-checking again. Just save the arguments that we | 
|  | // received in a ParenListExpr. | 
|  | // FIXME: This isn't quite ideal, since our ASTs don't capture all | 
|  | // of the information that we have about the base | 
|  | // initializer. However, deconstructing the ASTs is a dicey process, | 
|  | // and this approach is far more likely to get the corner cases right. | 
|  | if (CurContext->isDependentContext()) | 
|  | DelegationInit = Init; | 
|  |  | 
|  | return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), | 
|  | DelegationInit.getAs<Expr>(), | 
|  | InitRange.getEnd()); | 
|  | } | 
|  |  | 
|  | MemInitResult | 
|  | Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, | 
|  | Expr *Init, CXXRecordDecl *ClassDecl, | 
|  | SourceLocation EllipsisLoc) { | 
|  | SourceLocation BaseLoc | 
|  | = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin(); | 
|  |  | 
|  | if (!BaseType->isDependentType() && !BaseType->isRecordType()) | 
|  | return Diag(BaseLoc, diag::err_base_init_does_not_name_class) | 
|  | << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); | 
|  |  | 
|  | // C++ [class.base.init]p2: | 
|  | //   [...] Unless the mem-initializer-id names a nonstatic data | 
|  | //   member of the constructor's class or a direct or virtual base | 
|  | //   of that class, the mem-initializer is ill-formed. A | 
|  | //   mem-initializer-list can initialize a base class using any | 
|  | //   name that denotes that base class type. | 
|  | bool Dependent = BaseType->isDependentType() || Init->isTypeDependent(); | 
|  |  | 
|  | SourceRange InitRange = Init->getSourceRange(); | 
|  | if (EllipsisLoc.isValid()) { | 
|  | // This is a pack expansion. | 
|  | if (!BaseType->containsUnexpandedParameterPack())  { | 
|  | Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) | 
|  | << SourceRange(BaseLoc, InitRange.getEnd()); | 
|  |  | 
|  | EllipsisLoc = SourceLocation(); | 
|  | } | 
|  | } else { | 
|  | // Check for any unexpanded parameter packs. | 
|  | if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) | 
|  | return true; | 
|  |  | 
|  | if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check for direct and virtual base classes. | 
|  | const CXXBaseSpecifier *DirectBaseSpec = nullptr; | 
|  | const CXXBaseSpecifier *VirtualBaseSpec = nullptr; | 
|  | if (!Dependent) { | 
|  | if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), | 
|  | BaseType)) | 
|  | return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl); | 
|  |  | 
|  | FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, | 
|  | VirtualBaseSpec); | 
|  |  | 
|  | // C++ [base.class.init]p2: | 
|  | // Unless the mem-initializer-id names a nonstatic data member of the | 
|  | // constructor's class or a direct or virtual base of that class, the | 
|  | // mem-initializer is ill-formed. | 
|  | if (!DirectBaseSpec && !VirtualBaseSpec) { | 
|  | // If the class has any dependent bases, then it's possible that | 
|  | // one of those types will resolve to the same type as | 
|  | // BaseType. Therefore, just treat this as a dependent base | 
|  | // class initialization.  FIXME: Should we try to check the | 
|  | // initialization anyway? It seems odd. | 
|  | if (ClassDecl->hasAnyDependentBases()) | 
|  | Dependent = true; | 
|  | else | 
|  | return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) | 
|  | << BaseType << Context.getTypeDeclType(ClassDecl) | 
|  | << BaseTInfo->getTypeLoc().getLocalSourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Dependent) { | 
|  | DiscardCleanupsInEvaluationContext(); | 
|  |  | 
|  | return new (Context) CXXCtorInitializer(Context, BaseTInfo, | 
|  | /*IsVirtual=*/false, | 
|  | InitRange.getBegin(), Init, | 
|  | InitRange.getEnd(), EllipsisLoc); | 
|  | } | 
|  |  | 
|  | // C++ [base.class.init]p2: | 
|  | //   If a mem-initializer-id is ambiguous because it designates both | 
|  | //   a direct non-virtual base class and an inherited virtual base | 
|  | //   class, the mem-initializer is ill-formed. | 
|  | if (DirectBaseSpec && VirtualBaseSpec) | 
|  | return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) | 
|  | << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); | 
|  |  | 
|  | const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; | 
|  | if (!BaseSpec) | 
|  | BaseSpec = VirtualBaseSpec; | 
|  |  | 
|  | // Initialize the base. | 
|  | bool InitList = true; | 
|  | MultiExprArg Args = Init; | 
|  | if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { | 
|  | InitList = false; | 
|  | Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); | 
|  | } | 
|  |  | 
|  | InitializedEntity BaseEntity = | 
|  | InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); | 
|  | InitializationKind Kind = | 
|  | InitList ? InitializationKind::CreateDirectList(BaseLoc) | 
|  | : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(), | 
|  | InitRange.getEnd()); | 
|  | InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); | 
|  | ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr); | 
|  | if (BaseInit.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | // C++11 [class.base.init]p7: | 
|  | //   The initialization of each base and member constitutes a | 
|  | //   full-expression. | 
|  | BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(), | 
|  | /*DiscardedValue*/ false); | 
|  | if (BaseInit.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | // If we are in a dependent context, template instantiation will | 
|  | // perform this type-checking again. Just save the arguments that we | 
|  | // received in a ParenListExpr. | 
|  | // FIXME: This isn't quite ideal, since our ASTs don't capture all | 
|  | // of the information that we have about the base | 
|  | // initializer. However, deconstructing the ASTs is a dicey process, | 
|  | // and this approach is far more likely to get the corner cases right. | 
|  | if (CurContext->isDependentContext()) | 
|  | BaseInit = Init; | 
|  |  | 
|  | return new (Context) CXXCtorInitializer(Context, BaseTInfo, | 
|  | BaseSpec->isVirtual(), | 
|  | InitRange.getBegin(), | 
|  | BaseInit.getAs<Expr>(), | 
|  | InitRange.getEnd(), EllipsisLoc); | 
|  | } | 
|  |  | 
|  | // Create a static_cast\<T&&>(expr). | 
|  | static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) { | 
|  | if (T.isNull()) T = E->getType(); | 
|  | QualType TargetType = SemaRef.BuildReferenceType( | 
|  | T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName()); | 
|  | SourceLocation ExprLoc = E->getBeginLoc(); | 
|  | TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( | 
|  | TargetType, ExprLoc); | 
|  |  | 
|  | return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, | 
|  | SourceRange(ExprLoc, ExprLoc), | 
|  | E->getSourceRange()).get(); | 
|  | } | 
|  |  | 
|  | /// ImplicitInitializerKind - How an implicit base or member initializer should | 
|  | /// initialize its base or member. | 
|  | enum ImplicitInitializerKind { | 
|  | IIK_Default, | 
|  | IIK_Copy, | 
|  | IIK_Move, | 
|  | IIK_Inherit | 
|  | }; | 
|  |  | 
|  | static bool | 
|  | BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, | 
|  | ImplicitInitializerKind ImplicitInitKind, | 
|  | CXXBaseSpecifier *BaseSpec, | 
|  | bool IsInheritedVirtualBase, | 
|  | CXXCtorInitializer *&CXXBaseInit) { | 
|  | InitializedEntity InitEntity | 
|  | = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, | 
|  | IsInheritedVirtualBase); | 
|  |  | 
|  | ExprResult BaseInit; | 
|  |  | 
|  | switch (ImplicitInitKind) { | 
|  | case IIK_Inherit: | 
|  | case IIK_Default: { | 
|  | InitializationKind InitKind | 
|  | = InitializationKind::CreateDefault(Constructor->getLocation()); | 
|  | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); | 
|  | BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case IIK_Move: | 
|  | case IIK_Copy: { | 
|  | bool Moving = ImplicitInitKind == IIK_Move; | 
|  | ParmVarDecl *Param = Constructor->getParamDecl(0); | 
|  | QualType ParamType = Param->getType().getNonReferenceType(); | 
|  |  | 
|  | Expr *CopyCtorArg = | 
|  | DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), | 
|  | SourceLocation(), Param, false, | 
|  | Constructor->getLocation(), ParamType, | 
|  | VK_LValue, nullptr); | 
|  |  | 
|  | SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg)); | 
|  |  | 
|  | // Cast to the base class to avoid ambiguities. | 
|  | QualType ArgTy = | 
|  | SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), | 
|  | ParamType.getQualifiers()); | 
|  |  | 
|  | if (Moving) { | 
|  | CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg); | 
|  | } | 
|  |  | 
|  | CXXCastPath BasePath; | 
|  | BasePath.push_back(BaseSpec); | 
|  | CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, | 
|  | CK_UncheckedDerivedToBase, | 
|  | Moving ? VK_XValue : VK_LValue, | 
|  | &BasePath).get(); | 
|  |  | 
|  | InitializationKind InitKind | 
|  | = InitializationKind::CreateDirect(Constructor->getLocation(), | 
|  | SourceLocation(), SourceLocation()); | 
|  | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); | 
|  | BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); | 
|  | if (BaseInit.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | CXXBaseInit = | 
|  | new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, | 
|  | SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), | 
|  | SourceLocation()), | 
|  | BaseSpec->isVirtual(), | 
|  | SourceLocation(), | 
|  | BaseInit.getAs<Expr>(), | 
|  | SourceLocation(), | 
|  | SourceLocation()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool RefersToRValueRef(Expr *MemRef) { | 
|  | ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl(); | 
|  | return Referenced->getType()->isRValueReferenceType(); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, | 
|  | ImplicitInitializerKind ImplicitInitKind, | 
|  | FieldDecl *Field, IndirectFieldDecl *Indirect, | 
|  | CXXCtorInitializer *&CXXMemberInit) { | 
|  | if (Field->isInvalidDecl()) | 
|  | return true; | 
|  |  | 
|  | SourceLocation Loc = Constructor->getLocation(); | 
|  |  | 
|  | if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { | 
|  | bool Moving = ImplicitInitKind == IIK_Move; | 
|  | ParmVarDecl *Param = Constructor->getParamDecl(0); | 
|  | QualType ParamType = Param->getType().getNonReferenceType(); | 
|  |  | 
|  | // Suppress copying zero-width bitfields. | 
|  | if (Field->isZeroLengthBitField(SemaRef.Context)) | 
|  | return false; | 
|  |  | 
|  | Expr *MemberExprBase = | 
|  | DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), | 
|  | SourceLocation(), Param, false, | 
|  | Loc, ParamType, VK_LValue, nullptr); | 
|  |  | 
|  | SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase)); | 
|  |  | 
|  | if (Moving) { | 
|  | MemberExprBase = CastForMoving(SemaRef, MemberExprBase); | 
|  | } | 
|  |  | 
|  | // Build a reference to this field within the parameter. | 
|  | CXXScopeSpec SS; | 
|  | LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, | 
|  | Sema::LookupMemberName); | 
|  | MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect) | 
|  | : cast<ValueDecl>(Field), AS_public); | 
|  | MemberLookup.resolveKind(); | 
|  | ExprResult CtorArg | 
|  | = SemaRef.BuildMemberReferenceExpr(MemberExprBase, | 
|  | ParamType, Loc, | 
|  | /*IsArrow=*/false, | 
|  | SS, | 
|  | /*TemplateKWLoc=*/SourceLocation(), | 
|  | /*FirstQualifierInScope=*/nullptr, | 
|  | MemberLookup, | 
|  | /*TemplateArgs=*/nullptr, | 
|  | /*S*/nullptr); | 
|  | if (CtorArg.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | // C++11 [class.copy]p15: | 
|  | //   - if a member m has rvalue reference type T&&, it is direct-initialized | 
|  | //     with static_cast<T&&>(x.m); | 
|  | if (RefersToRValueRef(CtorArg.get())) { | 
|  | CtorArg = CastForMoving(SemaRef, CtorArg.get()); | 
|  | } | 
|  |  | 
|  | InitializedEntity Entity = | 
|  | Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, | 
|  | /*Implicit*/ true) | 
|  | : InitializedEntity::InitializeMember(Field, nullptr, | 
|  | /*Implicit*/ true); | 
|  |  | 
|  | // Direct-initialize to use the copy constructor. | 
|  | InitializationKind InitKind = | 
|  | InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); | 
|  |  | 
|  | Expr *CtorArgE = CtorArg.getAs<Expr>(); | 
|  | InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE); | 
|  | ExprResult MemberInit = | 
|  | InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1)); | 
|  | MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); | 
|  | if (MemberInit.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | if (Indirect) | 
|  | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( | 
|  | SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc); | 
|  | else | 
|  | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( | 
|  | SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && | 
|  | "Unhandled implicit init kind!"); | 
|  |  | 
|  | QualType FieldBaseElementType = | 
|  | SemaRef.Context.getBaseElementType(Field->getType()); | 
|  |  | 
|  | if (FieldBaseElementType->isRecordType()) { | 
|  | InitializedEntity InitEntity = | 
|  | Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, | 
|  | /*Implicit*/ true) | 
|  | : InitializedEntity::InitializeMember(Field, nullptr, | 
|  | /*Implicit*/ true); | 
|  | InitializationKind InitKind = | 
|  | InitializationKind::CreateDefault(Loc); | 
|  |  | 
|  | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); | 
|  | ExprResult MemberInit = | 
|  | InitSeq.Perform(SemaRef, InitEntity, InitKind, None); | 
|  |  | 
|  | MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); | 
|  | if (MemberInit.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | if (Indirect) | 
|  | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, | 
|  | Indirect, Loc, | 
|  | Loc, | 
|  | MemberInit.get(), | 
|  | Loc); | 
|  | else | 
|  | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, | 
|  | Field, Loc, Loc, | 
|  | MemberInit.get(), | 
|  | Loc); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!Field->getParent()->isUnion()) { | 
|  | if (FieldBaseElementType->isReferenceType()) { | 
|  | SemaRef.Diag(Constructor->getLocation(), | 
|  | diag::err_uninitialized_member_in_ctor) | 
|  | << (int)Constructor->isImplicit() | 
|  | << SemaRef.Context.getTagDeclType(Constructor->getParent()) | 
|  | << 0 << Field->getDeclName(); | 
|  | SemaRef.Diag(Field->getLocation(), diag::note_declared_at); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (FieldBaseElementType.isConstQualified()) { | 
|  | SemaRef.Diag(Constructor->getLocation(), | 
|  | diag::err_uninitialized_member_in_ctor) | 
|  | << (int)Constructor->isImplicit() | 
|  | << SemaRef.Context.getTagDeclType(Constructor->getParent()) | 
|  | << 1 << Field->getDeclName(); | 
|  | SemaRef.Diag(Field->getLocation(), diag::note_declared_at); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FieldBaseElementType.hasNonTrivialObjCLifetime()) { | 
|  | // ARC and Weak: | 
|  | //   Default-initialize Objective-C pointers to NULL. | 
|  | CXXMemberInit | 
|  | = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, | 
|  | Loc, Loc, | 
|  | new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), | 
|  | Loc); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Nothing to initialize. | 
|  | CXXMemberInit = nullptr; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct BaseAndFieldInfo { | 
|  | Sema &S; | 
|  | CXXConstructorDecl *Ctor; | 
|  | bool AnyErrorsInInits; | 
|  | ImplicitInitializerKind IIK; | 
|  | llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; | 
|  | SmallVector<CXXCtorInitializer*, 8> AllToInit; | 
|  | llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember; | 
|  |  | 
|  | BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) | 
|  | : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { | 
|  | bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); | 
|  | if (Ctor->getInheritedConstructor()) | 
|  | IIK = IIK_Inherit; | 
|  | else if (Generated && Ctor->isCopyConstructor()) | 
|  | IIK = IIK_Copy; | 
|  | else if (Generated && Ctor->isMoveConstructor()) | 
|  | IIK = IIK_Move; | 
|  | else | 
|  | IIK = IIK_Default; | 
|  | } | 
|  |  | 
|  | bool isImplicitCopyOrMove() const { | 
|  | switch (IIK) { | 
|  | case IIK_Copy: | 
|  | case IIK_Move: | 
|  | return true; | 
|  |  | 
|  | case IIK_Default: | 
|  | case IIK_Inherit: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid ImplicitInitializerKind!"); | 
|  | } | 
|  |  | 
|  | bool addFieldInitializer(CXXCtorInitializer *Init) { | 
|  | AllToInit.push_back(Init); | 
|  |  | 
|  | // Check whether this initializer makes the field "used". | 
|  | if (Init->getInit()->HasSideEffects(S.Context)) | 
|  | S.UnusedPrivateFields.remove(Init->getAnyMember()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool isInactiveUnionMember(FieldDecl *Field) { | 
|  | RecordDecl *Record = Field->getParent(); | 
|  | if (!Record->isUnion()) | 
|  | return false; | 
|  |  | 
|  | if (FieldDecl *Active = | 
|  | ActiveUnionMember.lookup(Record->getCanonicalDecl())) | 
|  | return Active != Field->getCanonicalDecl(); | 
|  |  | 
|  | // In an implicit copy or move constructor, ignore any in-class initializer. | 
|  | if (isImplicitCopyOrMove()) | 
|  | return true; | 
|  |  | 
|  | // If there's no explicit initialization, the field is active only if it | 
|  | // has an in-class initializer... | 
|  | if (Field->hasInClassInitializer()) | 
|  | return false; | 
|  | // ... or it's an anonymous struct or union whose class has an in-class | 
|  | // initializer. | 
|  | if (!Field->isAnonymousStructOrUnion()) | 
|  | return true; | 
|  | CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); | 
|  | return !FieldRD->hasInClassInitializer(); | 
|  | } | 
|  |  | 
|  | /// Determine whether the given field is, or is within, a union member | 
|  | /// that is inactive (because there was an initializer given for a different | 
|  | /// member of the union, or because the union was not initialized at all). | 
|  | bool isWithinInactiveUnionMember(FieldDecl *Field, | 
|  | IndirectFieldDecl *Indirect) { | 
|  | if (!Indirect) | 
|  | return isInactiveUnionMember(Field); | 
|  |  | 
|  | for (auto *C : Indirect->chain()) { | 
|  | FieldDecl *Field = dyn_cast<FieldDecl>(C); | 
|  | if (Field && isInactiveUnionMember(Field)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Determine whether the given type is an incomplete or zero-lenfgth | 
|  | /// array type. | 
|  | static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { | 
|  | if (T->isIncompleteArrayType()) | 
|  | return true; | 
|  |  | 
|  | while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { | 
|  | if (!ArrayT->getSize()) | 
|  | return true; | 
|  |  | 
|  | T = ArrayT->getElementType(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, | 
|  | FieldDecl *Field, | 
|  | IndirectFieldDecl *Indirect = nullptr) { | 
|  | if (Field->isInvalidDecl()) | 
|  | return false; | 
|  |  | 
|  | // Overwhelmingly common case: we have a direct initializer for this field. | 
|  | if (CXXCtorInitializer *Init = | 
|  | Info.AllBaseFields.lookup(Field->getCanonicalDecl())) | 
|  | return Info.addFieldInitializer(Init); | 
|  |  | 
|  | // C++11 [class.base.init]p8: | 
|  | //   if the entity is a non-static data member that has a | 
|  | //   brace-or-equal-initializer and either | 
|  | //   -- the constructor's class is a union and no other variant member of that | 
|  | //      union is designated by a mem-initializer-id or | 
|  | //   -- the constructor's class is not a union, and, if the entity is a member | 
|  | //      of an anonymous union, no other member of that union is designated by | 
|  | //      a mem-initializer-id, | 
|  | //   the entity is initialized as specified in [dcl.init]. | 
|  | // | 
|  | // We also apply the same rules to handle anonymous structs within anonymous | 
|  | // unions. | 
|  | if (Info.isWithinInactiveUnionMember(Field, Indirect)) | 
|  | return false; | 
|  |  | 
|  | if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { | 
|  | ExprResult DIE = | 
|  | SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field); | 
|  | if (DIE.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true); | 
|  | SemaRef.checkInitializerLifetime(Entity, DIE.get()); | 
|  |  | 
|  | CXXCtorInitializer *Init; | 
|  | if (Indirect) | 
|  | Init = new (SemaRef.Context) | 
|  | CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), | 
|  | SourceLocation(), DIE.get(), SourceLocation()); | 
|  | else | 
|  | Init = new (SemaRef.Context) | 
|  | CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), | 
|  | SourceLocation(), DIE.get(), SourceLocation()); | 
|  | return Info.addFieldInitializer(Init); | 
|  | } | 
|  |  | 
|  | // Don't initialize incomplete or zero-length arrays. | 
|  | if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) | 
|  | return false; | 
|  |  | 
|  | // Don't try to build an implicit initializer if there were semantic | 
|  | // errors in any of the initializers (and therefore we might be | 
|  | // missing some that the user actually wrote). | 
|  | if (Info.AnyErrorsInInits) | 
|  | return false; | 
|  |  | 
|  | CXXCtorInitializer *Init = nullptr; | 
|  | if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, | 
|  | Indirect, Init)) | 
|  | return true; | 
|  |  | 
|  | if (!Init) | 
|  | return false; | 
|  |  | 
|  | return Info.addFieldInitializer(Init); | 
|  | } | 
|  |  | 
|  | bool | 
|  | Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, | 
|  | CXXCtorInitializer *Initializer) { | 
|  | assert(Initializer->isDelegatingInitializer()); | 
|  | Constructor->setNumCtorInitializers(1); | 
|  | CXXCtorInitializer **initializer = | 
|  | new (Context) CXXCtorInitializer*[1]; | 
|  | memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); | 
|  | Constructor->setCtorInitializers(initializer); | 
|  |  | 
|  | if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { | 
|  | MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); | 
|  | DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); | 
|  | } | 
|  |  | 
|  | DelegatingCtorDecls.push_back(Constructor); | 
|  |  | 
|  | DiagnoseUninitializedFields(*this, Constructor); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, | 
|  | ArrayRef<CXXCtorInitializer *> Initializers) { | 
|  | if (Constructor->isDependentContext()) { | 
|  | // Just store the initializers as written, they will be checked during | 
|  | // instantiation. | 
|  | if (!Initializers.empty()) { | 
|  | Constructor->setNumCtorInitializers(Initializers.size()); | 
|  | CXXCtorInitializer **baseOrMemberInitializers = | 
|  | new (Context) CXXCtorInitializer*[Initializers.size()]; | 
|  | memcpy(baseOrMemberInitializers, Initializers.data(), | 
|  | Initializers.size() * sizeof(CXXCtorInitializer*)); | 
|  | Constructor->setCtorInitializers(baseOrMemberInitializers); | 
|  | } | 
|  |  | 
|  | // Let template instantiation know whether we had errors. | 
|  | if (AnyErrors) | 
|  | Constructor->setInvalidDecl(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | BaseAndFieldInfo Info(*this, Constructor, AnyErrors); | 
|  |  | 
|  | // We need to build the initializer AST according to order of construction | 
|  | // and not what user specified in the Initializers list. | 
|  | CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); | 
|  | if (!ClassDecl) | 
|  | return true; | 
|  |  | 
|  | bool HadError = false; | 
|  |  | 
|  | for (unsigned i = 0; i < Initializers.size(); i++) { | 
|  | CXXCtorInitializer *Member = Initializers[i]; | 
|  |  | 
|  | if (Member->isBaseInitializer()) | 
|  | Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; | 
|  | else { | 
|  | Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; | 
|  |  | 
|  | if (IndirectFieldDecl *F = Member->getIndirectMember()) { | 
|  | for (auto *C : F->chain()) { | 
|  | FieldDecl *FD = dyn_cast<FieldDecl>(C); | 
|  | if (FD && FD->getParent()->isUnion()) | 
|  | Info.ActiveUnionMember.insert(std::make_pair( | 
|  | FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); | 
|  | } | 
|  | } else if (FieldDecl *FD = Member->getMember()) { | 
|  | if (FD->getParent()->isUnion()) | 
|  | Info.ActiveUnionMember.insert(std::make_pair( | 
|  | FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Keep track of the direct virtual bases. | 
|  | llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; | 
|  | for (auto &I : ClassDecl->bases()) { | 
|  | if (I.isVirtual()) | 
|  | DirectVBases.insert(&I); | 
|  | } | 
|  |  | 
|  | // Push virtual bases before others. | 
|  | for (auto &VBase : ClassDecl->vbases()) { | 
|  | if (CXXCtorInitializer *Value | 
|  | = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) { | 
|  | // [class.base.init]p7, per DR257: | 
|  | //   A mem-initializer where the mem-initializer-id names a virtual base | 
|  | //   class is ignored during execution of a constructor of any class that | 
|  | //   is not the most derived class. | 
|  | if (ClassDecl->isAbstract()) { | 
|  | // FIXME: Provide a fixit to remove the base specifier. This requires | 
|  | // tracking the location of the associated comma for a base specifier. | 
|  | Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) | 
|  | << VBase.getType() << ClassDecl; | 
|  | DiagnoseAbstractType(ClassDecl); | 
|  | } | 
|  |  | 
|  | Info.AllToInit.push_back(Value); | 
|  | } else if (!AnyErrors && !ClassDecl->isAbstract()) { | 
|  | // [class.base.init]p8, per DR257: | 
|  | //   If a given [...] base class is not named by a mem-initializer-id | 
|  | //   [...] and the entity is not a virtual base class of an abstract | 
|  | //   class, then [...] the entity is default-initialized. | 
|  | bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); | 
|  | CXXCtorInitializer *CXXBaseInit; | 
|  | if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, | 
|  | &VBase, IsInheritedVirtualBase, | 
|  | CXXBaseInit)) { | 
|  | HadError = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Info.AllToInit.push_back(CXXBaseInit); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Non-virtual bases. | 
|  | for (auto &Base : ClassDecl->bases()) { | 
|  | // Virtuals are in the virtual base list and already constructed. | 
|  | if (Base.isVirtual()) | 
|  | continue; | 
|  |  | 
|  | if (CXXCtorInitializer *Value | 
|  | = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) { | 
|  | Info.AllToInit.push_back(Value); | 
|  | } else if (!AnyErrors) { | 
|  | CXXCtorInitializer *CXXBaseInit; | 
|  | if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, | 
|  | &Base, /*IsInheritedVirtualBase=*/false, | 
|  | CXXBaseInit)) { | 
|  | HadError = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Info.AllToInit.push_back(CXXBaseInit); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fields. | 
|  | for (auto *Mem : ClassDecl->decls()) { | 
|  | if (auto *F = dyn_cast<FieldDecl>(Mem)) { | 
|  | // C++ [class.bit]p2: | 
|  | //   A declaration for a bit-field that omits the identifier declares an | 
|  | //   unnamed bit-field. Unnamed bit-fields are not members and cannot be | 
|  | //   initialized. | 
|  | if (F->isUnnamedBitfield()) | 
|  | continue; | 
|  |  | 
|  | // If we're not generating the implicit copy/move constructor, then we'll | 
|  | // handle anonymous struct/union fields based on their individual | 
|  | // indirect fields. | 
|  | if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) | 
|  | continue; | 
|  |  | 
|  | if (CollectFieldInitializer(*this, Info, F)) | 
|  | HadError = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Beyond this point, we only consider default initialization. | 
|  | if (Info.isImplicitCopyOrMove()) | 
|  | continue; | 
|  |  | 
|  | if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) { | 
|  | if (F->getType()->isIncompleteArrayType()) { | 
|  | assert(ClassDecl->hasFlexibleArrayMember() && | 
|  | "Incomplete array type is not valid"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Initialize each field of an anonymous struct individually. | 
|  | if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) | 
|  | HadError = true; | 
|  |  | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned NumInitializers = Info.AllToInit.size(); | 
|  | if (NumInitializers > 0) { | 
|  | Constructor->setNumCtorInitializers(NumInitializers); | 
|  | CXXCtorInitializer **baseOrMemberInitializers = | 
|  | new (Context) CXXCtorInitializer*[NumInitializers]; | 
|  | memcpy(baseOrMemberInitializers, Info.AllToInit.data(), | 
|  | NumInitializers * sizeof(CXXCtorInitializer*)); | 
|  | Constructor->setCtorInitializers(baseOrMemberInitializers); | 
|  |  | 
|  | // Constructors implicitly reference the base and member | 
|  | // destructors. | 
|  | MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), | 
|  | Constructor->getParent()); | 
|  | } | 
|  |  | 
|  | return HadError; | 
|  | } | 
|  |  | 
|  | static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) { | 
|  | if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { | 
|  | const RecordDecl *RD = RT->getDecl(); | 
|  | if (RD->isAnonymousStructOrUnion()) { | 
|  | for (auto *Field : RD->fields()) | 
|  | PopulateKeysForFields(Field, IdealInits); | 
|  | return; | 
|  | } | 
|  | } | 
|  | IdealInits.push_back(Field->getCanonicalDecl()); | 
|  | } | 
|  |  | 
|  | static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { | 
|  | return Context.getCanonicalType(BaseType).getTypePtr(); | 
|  | } | 
|  |  | 
|  | static const void *GetKeyForMember(ASTContext &Context, | 
|  | CXXCtorInitializer *Member) { | 
|  | if (!Member->isAnyMemberInitializer()) | 
|  | return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); | 
|  |  | 
|  | return Member->getAnyMember()->getCanonicalDecl(); | 
|  | } | 
|  |  | 
|  | static void DiagnoseBaseOrMemInitializerOrder( | 
|  | Sema &SemaRef, const CXXConstructorDecl *Constructor, | 
|  | ArrayRef<CXXCtorInitializer *> Inits) { | 
|  | if (Constructor->getDeclContext()->isDependentContext()) | 
|  | return; | 
|  |  | 
|  | // Don't check initializers order unless the warning is enabled at the | 
|  | // location of at least one initializer. | 
|  | bool ShouldCheckOrder = false; | 
|  | for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { | 
|  | CXXCtorInitializer *Init = Inits[InitIndex]; | 
|  | if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, | 
|  | Init->getSourceLocation())) { | 
|  | ShouldCheckOrder = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!ShouldCheckOrder) | 
|  | return; | 
|  |  | 
|  | // Build the list of bases and members in the order that they'll | 
|  | // actually be initialized.  The explicit initializers should be in | 
|  | // this same order but may be missing things. | 
|  | SmallVector<const void*, 32> IdealInitKeys; | 
|  |  | 
|  | const CXXRecordDecl *ClassDecl = Constructor->getParent(); | 
|  |  | 
|  | // 1. Virtual bases. | 
|  | for (const auto &VBase : ClassDecl->vbases()) | 
|  | IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); | 
|  |  | 
|  | // 2. Non-virtual bases. | 
|  | for (const auto &Base : ClassDecl->bases()) { | 
|  | if (Base.isVirtual()) | 
|  | continue; | 
|  | IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); | 
|  | } | 
|  |  | 
|  | // 3. Direct fields. | 
|  | for (auto *Field : ClassDecl->fields()) { | 
|  | if (Field->isUnnamedBitfield()) | 
|  | continue; | 
|  |  | 
|  | PopulateKeysForFields(Field, IdealInitKeys); | 
|  | } | 
|  |  | 
|  | unsigned NumIdealInits = IdealInitKeys.size(); | 
|  | unsigned IdealIndex = 0; | 
|  |  | 
|  | CXXCtorInitializer *PrevInit = nullptr; | 
|  | for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { | 
|  | CXXCtorInitializer *Init = Inits[InitIndex]; | 
|  | const void *InitKey = GetKeyForMember(SemaRef.Context, Init); | 
|  |  | 
|  | // Scan forward to try to find this initializer in the idealized | 
|  | // initializers list. | 
|  | for (; IdealIndex != NumIdealInits; ++IdealIndex) | 
|  | if (InitKey == IdealInitKeys[IdealIndex]) | 
|  | break; | 
|  |  | 
|  | // If we didn't find this initializer, it must be because we | 
|  | // scanned past it on a previous iteration.  That can only | 
|  | // happen if we're out of order;  emit a warning. | 
|  | if (IdealIndex == NumIdealInits && PrevInit) { | 
|  | Sema::SemaDiagnosticBuilder D = | 
|  | SemaRef.Diag(PrevInit->getSourceLocation(), | 
|  | diag::warn_initializer_out_of_order); | 
|  |  | 
|  | if (PrevInit->isAnyMemberInitializer()) | 
|  | D << 0 << PrevInit->getAnyMember()->getDeclName(); | 
|  | else | 
|  | D << 1 << PrevInit->getTypeSourceInfo()->getType(); | 
|  |  | 
|  | if (Init->isAnyMemberInitializer()) | 
|  | D << 0 << Init->getAnyMember()->getDeclName(); | 
|  | else | 
|  | D << 1 << Init->getTypeSourceInfo()->getType(); | 
|  |  | 
|  | // Move back to the initializer's location in the ideal list. | 
|  | for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) | 
|  | if (InitKey == IdealInitKeys[IdealIndex]) | 
|  | break; | 
|  |  | 
|  | assert(IdealIndex < NumIdealInits && | 
|  | "initializer not found in initializer list"); | 
|  | } | 
|  |  | 
|  | PrevInit = Init; | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | bool CheckRedundantInit(Sema &S, | 
|  | CXXCtorInitializer *Init, | 
|  | CXXCtorInitializer *&PrevInit) { | 
|  | if (!PrevInit) { | 
|  | PrevInit = Init; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (FieldDecl *Field = Init->getAnyMember()) | 
|  | S.Diag(Init->getSourceLocation(), | 
|  | diag::err_multiple_mem_initialization) | 
|  | << Field->getDeclName() | 
|  | << Init->getSourceRange(); | 
|  | else { | 
|  | const Type *BaseClass = Init->getBaseClass(); | 
|  | assert(BaseClass && "neither field nor base"); | 
|  | S.Diag(Init->getSourceLocation(), | 
|  | diag::err_multiple_base_initialization) | 
|  | << QualType(BaseClass, 0) | 
|  | << Init->getSourceRange(); | 
|  | } | 
|  | S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) | 
|  | << 0 << PrevInit->getSourceRange(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; | 
|  | typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; | 
|  |  | 
|  | bool CheckRedundantUnionInit(Sema &S, | 
|  | CXXCtorInitializer *Init, | 
|  | RedundantUnionMap &Unions) { | 
|  | FieldDecl *Field = Init->getAnyMember(); | 
|  | RecordDecl *Parent = Field->getParent(); | 
|  | NamedDecl *Child = Field; | 
|  |  | 
|  | while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { | 
|  | if (Parent->isUnion()) { | 
|  | UnionEntry &En = Unions[Parent]; | 
|  | if (En.first && En.first != Child) { | 
|  | S.Diag(Init->getSourceLocation(), | 
|  | diag::err_multiple_mem_union_initialization) | 
|  | << Field->getDeclName() | 
|  | << Init->getSourceRange(); | 
|  | S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) | 
|  | << 0 << En.second->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | if (!En.first) { | 
|  | En.first = Child; | 
|  | En.second = Init; | 
|  | } | 
|  | if (!Parent->isAnonymousStructOrUnion()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Child = Parent; | 
|  | Parent = cast<RecordDecl>(Parent->getDeclContext()); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ActOnMemInitializers - Handle the member initializers for a constructor. | 
|  | void Sema::ActOnMemInitializers(Decl *ConstructorDecl, | 
|  | SourceLocation ColonLoc, | 
|  | ArrayRef<CXXCtorInitializer*> MemInits, | 
|  | bool AnyErrors) { | 
|  | if (!ConstructorDecl) | 
|  | return; | 
|  |  | 
|  | AdjustDeclIfTemplate(ConstructorDecl); | 
|  |  | 
|  | CXXConstructorDecl *Constructor | 
|  | = dyn_cast<CXXConstructorDecl>(ConstructorDecl); | 
|  |  | 
|  | if (!Constructor) { | 
|  | Diag(ColonLoc, diag::err_only_constructors_take_base_inits); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Mapping for the duplicate initializers check. | 
|  | // For member initializers, this is keyed with a FieldDecl*. | 
|  | // For base initializers, this is keyed with a Type*. | 
|  | llvm::DenseMap<const void *, CXXCtorInitializer *> Members; | 
|  |  | 
|  | // Mapping for the inconsistent anonymous-union initializers check. | 
|  | RedundantUnionMap MemberUnions; | 
|  |  | 
|  | bool HadError = false; | 
|  | for (unsigned i = 0; i < MemInits.size(); i++) { | 
|  | CXXCtorInitializer *Init = MemInits[i]; | 
|  |  | 
|  | // Set the source order index. | 
|  | Init->setSourceOrder(i); | 
|  |  | 
|  | if (Init->isAnyMemberInitializer()) { | 
|  | const void *Key = GetKeyForMember(Context, Init); | 
|  | if (CheckRedundantInit(*this, Init, Members[Key]) || | 
|  | CheckRedundantUnionInit(*this, Init, MemberUnions)) | 
|  | HadError = true; | 
|  | } else if (Init->isBaseInitializer()) { | 
|  | const void *Key = GetKeyForMember(Context, Init); | 
|  | if (CheckRedundantInit(*this, Init, Members[Key])) | 
|  | HadError = true; | 
|  | } else { | 
|  | assert(Init->isDelegatingInitializer()); | 
|  | // This must be the only initializer | 
|  | if (MemInits.size() != 1) { | 
|  | Diag(Init->getSourceLocation(), | 
|  | diag::err_delegating_initializer_alone) | 
|  | << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); | 
|  | // We will treat this as being the only initializer. | 
|  | } | 
|  | SetDelegatingInitializer(Constructor, MemInits[i]); | 
|  | // Return immediately as the initializer is set. | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HadError) | 
|  | return; | 
|  |  | 
|  | DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits); | 
|  |  | 
|  | SetCtorInitializers(Constructor, AnyErrors, MemInits); | 
|  |  | 
|  | DiagnoseUninitializedFields(*this, Constructor); | 
|  | } | 
|  |  | 
|  | void | 
|  | Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, | 
|  | CXXRecordDecl *ClassDecl) { | 
|  | // Ignore dependent contexts. Also ignore unions, since their members never | 
|  | // have destructors implicitly called. | 
|  | if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) | 
|  | return; | 
|  |  | 
|  | // FIXME: all the access-control diagnostics are positioned on the | 
|  | // field/base declaration.  That's probably good; that said, the | 
|  | // user might reasonably want to know why the destructor is being | 
|  | // emitted, and we currently don't say. | 
|  |  | 
|  | // Non-static data members. | 
|  | for (auto *Field : ClassDecl->fields()) { | 
|  | if (Field->isInvalidDecl()) | 
|  | continue; | 
|  |  | 
|  | // Don't destroy incomplete or zero-length arrays. | 
|  | if (isIncompleteOrZeroLengthArrayType(Context, Field->getType())) | 
|  | continue; | 
|  |  | 
|  | QualType FieldType = Context.getBaseElementType(Field->getType()); | 
|  |  | 
|  | const RecordType* RT = FieldType->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | continue; | 
|  |  | 
|  | CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (FieldClassDecl->isInvalidDecl()) | 
|  | continue; | 
|  | if (FieldClassDecl->hasIrrelevantDestructor()) | 
|  | continue; | 
|  | // The destructor for an implicit anonymous union member is never invoked. | 
|  | if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) | 
|  | continue; | 
|  |  | 
|  | CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); | 
|  | assert(Dtor && "No dtor found for FieldClassDecl!"); | 
|  | CheckDestructorAccess(Field->getLocation(), Dtor, | 
|  | PDiag(diag::err_access_dtor_field) | 
|  | << Field->getDeclName() | 
|  | << FieldType); | 
|  |  | 
|  | MarkFunctionReferenced(Location, Dtor); | 
|  | DiagnoseUseOfDecl(Dtor, Location); | 
|  | } | 
|  |  | 
|  | // We only potentially invoke the destructors of potentially constructed | 
|  | // subobjects. | 
|  | bool VisitVirtualBases = !ClassDecl->isAbstract(); | 
|  |  | 
|  | llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; | 
|  |  | 
|  | // Bases. | 
|  | for (const auto &Base : ClassDecl->bases()) { | 
|  | // Bases are always records in a well-formed non-dependent class. | 
|  | const RecordType *RT = Base.getType()->getAs<RecordType>(); | 
|  |  | 
|  | // Remember direct virtual bases. | 
|  | if (Base.isVirtual()) { | 
|  | if (!VisitVirtualBases) | 
|  | continue; | 
|  | DirectVirtualBases.insert(RT); | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | // If our base class is invalid, we probably can't get its dtor anyway. | 
|  | if (BaseClassDecl->isInvalidDecl()) | 
|  | continue; | 
|  | if (BaseClassDecl->hasIrrelevantDestructor()) | 
|  | continue; | 
|  |  | 
|  | CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); | 
|  | assert(Dtor && "No dtor found for BaseClassDecl!"); | 
|  |  | 
|  | // FIXME: caret should be on the start of the class name | 
|  | CheckDestructorAccess(Base.getBeginLoc(), Dtor, | 
|  | PDiag(diag::err_access_dtor_base) | 
|  | << Base.getType() << Base.getSourceRange(), | 
|  | Context.getTypeDeclType(ClassDecl)); | 
|  |  | 
|  | MarkFunctionReferenced(Location, Dtor); | 
|  | DiagnoseUseOfDecl(Dtor, Location); | 
|  | } | 
|  |  | 
|  | if (!VisitVirtualBases) | 
|  | return; | 
|  |  | 
|  | // Virtual bases. | 
|  | for (const auto &VBase : ClassDecl->vbases()) { | 
|  | // Bases are always records in a well-formed non-dependent class. | 
|  | const RecordType *RT = VBase.getType()->castAs<RecordType>(); | 
|  |  | 
|  | // Ignore direct virtual bases. | 
|  | if (DirectVirtualBases.count(RT)) | 
|  | continue; | 
|  |  | 
|  | CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | // If our base class is invalid, we probably can't get its dtor anyway. | 
|  | if (BaseClassDecl->isInvalidDecl()) | 
|  | continue; | 
|  | if (BaseClassDecl->hasIrrelevantDestructor()) | 
|  | continue; | 
|  |  | 
|  | CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); | 
|  | assert(Dtor && "No dtor found for BaseClassDecl!"); | 
|  | if (CheckDestructorAccess( | 
|  | ClassDecl->getLocation(), Dtor, | 
|  | PDiag(diag::err_access_dtor_vbase) | 
|  | << Context.getTypeDeclType(ClassDecl) << VBase.getType(), | 
|  | Context.getTypeDeclType(ClassDecl)) == | 
|  | AR_accessible) { | 
|  | CheckDerivedToBaseConversion( | 
|  | Context.getTypeDeclType(ClassDecl), VBase.getType(), | 
|  | diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), | 
|  | SourceRange(), DeclarationName(), nullptr); | 
|  | } | 
|  |  | 
|  | MarkFunctionReferenced(Location, Dtor); | 
|  | DiagnoseUseOfDecl(Dtor, Location); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { | 
|  | if (!CDtorDecl) | 
|  | return; | 
|  |  | 
|  | if (CXXConstructorDecl *Constructor | 
|  | = dyn_cast<CXXConstructorDecl>(CDtorDecl)) { | 
|  | SetCtorInitializers(Constructor, /*AnyErrors=*/false); | 
|  | DiagnoseUninitializedFields(*this, Constructor); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Sema::isAbstractType(SourceLocation Loc, QualType T) { | 
|  | if (!getLangOpts().CPlusPlus) | 
|  | return false; | 
|  |  | 
|  | const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl(); | 
|  | if (!RD) | 
|  | return false; | 
|  |  | 
|  | // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a | 
|  | // class template specialization here, but doing so breaks a lot of code. | 
|  |  | 
|  | // We can't answer whether something is abstract until it has a | 
|  | // definition. If it's currently being defined, we'll walk back | 
|  | // over all the declarations when we have a full definition. | 
|  | const CXXRecordDecl *Def = RD->getDefinition(); | 
|  | if (!Def || Def->isBeingDefined()) | 
|  | return false; | 
|  |  | 
|  | return RD->isAbstract(); | 
|  | } | 
|  |  | 
|  | bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, | 
|  | TypeDiagnoser &Diagnoser) { | 
|  | if (!isAbstractType(Loc, T)) | 
|  | return false; | 
|  |  | 
|  | T = Context.getBaseElementType(T); | 
|  | Diagnoser.diagnose(*this, Loc, T); | 
|  | DiagnoseAbstractType(T->getAsCXXRecordDecl()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { | 
|  | // Check if we've already emitted the list of pure virtual functions | 
|  | // for this class. | 
|  | if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) | 
|  | return; | 
|  |  | 
|  | // If the diagnostic is suppressed, don't emit the notes. We're only | 
|  | // going to emit them once, so try to attach them to a diagnostic we're | 
|  | // actually going to show. | 
|  | if (Diags.isLastDiagnosticIgnored()) | 
|  | return; | 
|  |  | 
|  | CXXFinalOverriderMap FinalOverriders; | 
|  | RD->getFinalOverriders(FinalOverriders); | 
|  |  | 
|  | // Keep a set of seen pure methods so we won't diagnose the same method | 
|  | // more than once. | 
|  | llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; | 
|  |  | 
|  | for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), | 
|  | MEnd = FinalOverriders.end(); | 
|  | M != MEnd; | 
|  | ++M) { | 
|  | for (OverridingMethods::iterator SO = M->second.begin(), | 
|  | SOEnd = M->second.end(); | 
|  | SO != SOEnd; ++SO) { | 
|  | // C++ [class.abstract]p4: | 
|  | //   A class is abstract if it contains or inherits at least one | 
|  | //   pure virtual function for which the final overrider is pure | 
|  | //   virtual. | 
|  |  | 
|  | // | 
|  | if (SO->second.size() != 1) | 
|  | continue; | 
|  |  | 
|  | if (!SO->second.front().Method->isPure()) | 
|  | continue; | 
|  |  | 
|  | if (!SeenPureMethods.insert(SO->second.front().Method).second) | 
|  | continue; | 
|  |  | 
|  | Diag(SO->second.front().Method->getLocation(), | 
|  | diag::note_pure_virtual_function) | 
|  | << SO->second.front().Method->getDeclName() << RD->getDeclName(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!PureVirtualClassDiagSet) | 
|  | PureVirtualClassDiagSet.reset(new RecordDeclSetTy); | 
|  | PureVirtualClassDiagSet->insert(RD); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct AbstractUsageInfo { | 
|  | Sema &S; | 
|  | CXXRecordDecl *Record; | 
|  | CanQualType AbstractType; | 
|  | bool Invalid; | 
|  |  | 
|  | AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) | 
|  | : S(S), Record(Record), | 
|  | AbstractType(S.Context.getCanonicalType( | 
|  | S.Context.getTypeDeclType(Record))), | 
|  | Invalid(false) {} | 
|  |  | 
|  | void DiagnoseAbstractType() { | 
|  | if (Invalid) return; | 
|  | S.DiagnoseAbstractType(Record); | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); | 
|  | }; | 
|  |  | 
|  | struct CheckAbstractUsage { | 
|  | AbstractUsageInfo &Info; | 
|  | const NamedDecl *Ctx; | 
|  |  | 
|  | CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) | 
|  | : Info(Info), Ctx(Ctx) {} | 
|  |  | 
|  | void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { | 
|  | switch (TL.getTypeLocClass()) { | 
|  | #define ABSTRACT_TYPELOC(CLASS, PARENT) | 
|  | #define TYPELOC(CLASS, PARENT) \ | 
|  | case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; | 
|  | #include "clang/AST/TypeLocNodes.def" | 
|  | } | 
|  | } | 
|  |  | 
|  | void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { | 
|  | Visit(TL.getReturnLoc(), Sema::AbstractReturnType); | 
|  | for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { | 
|  | if (!TL.getParam(I)) | 
|  | continue; | 
|  |  | 
|  | TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); | 
|  | if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { | 
|  | Visit(TL.getElementLoc(), Sema::AbstractArrayType); | 
|  | } | 
|  |  | 
|  | void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { | 
|  | // Visit the type parameters from a permissive context. | 
|  | for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { | 
|  | TemplateArgumentLoc TAL = TL.getArgLoc(I); | 
|  | if (TAL.getArgument().getKind() == TemplateArgument::Type) | 
|  | if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) | 
|  | Visit(TSI->getTypeLoc(), Sema::AbstractNone); | 
|  | // TODO: other template argument types? | 
|  | } | 
|  | } | 
|  |  | 
|  | // Visit pointee types from a permissive context. | 
|  | #define CheckPolymorphic(Type) \ | 
|  | void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ | 
|  | Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ | 
|  | } | 
|  | CheckPolymorphic(PointerTypeLoc) | 
|  | CheckPolymorphic(ReferenceTypeLoc) | 
|  | CheckPolymorphic(MemberPointerTypeLoc) | 
|  | CheckPolymorphic(BlockPointerTypeLoc) | 
|  | CheckPolymorphic(AtomicTypeLoc) | 
|  |  | 
|  | /// Handle all the types we haven't given a more specific | 
|  | /// implementation for above. | 
|  | void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { | 
|  | // Every other kind of type that we haven't called out already | 
|  | // that has an inner type is either (1) sugar or (2) contains that | 
|  | // inner type in some way as a subobject. | 
|  | if (TypeLoc Next = TL.getNextTypeLoc()) | 
|  | return Visit(Next, Sel); | 
|  |  | 
|  | // If there's no inner type and we're in a permissive context, | 
|  | // don't diagnose. | 
|  | if (Sel == Sema::AbstractNone) return; | 
|  |  | 
|  | // Check whether the type matches the abstract type. | 
|  | QualType T = TL.getType(); | 
|  | if (T->isArrayType()) { | 
|  | Sel = Sema::AbstractArrayType; | 
|  | T = Info.S.Context.getBaseElementType(T); | 
|  | } | 
|  | CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); | 
|  | if (CT != Info.AbstractType) return; | 
|  |  | 
|  | // It matched; do some magic. | 
|  | if (Sel == Sema::AbstractArrayType) { | 
|  | Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) | 
|  | << T << TL.getSourceRange(); | 
|  | } else { | 
|  | Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) | 
|  | << Sel << T << TL.getSourceRange(); | 
|  | } | 
|  | Info.DiagnoseAbstractType(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, | 
|  | Sema::AbstractDiagSelID Sel) { | 
|  | CheckAbstractUsage(*this, D).Visit(TL, Sel); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /// Check for invalid uses of an abstract type in a method declaration. | 
|  | static void CheckAbstractClassUsage(AbstractUsageInfo &Info, | 
|  | CXXMethodDecl *MD) { | 
|  | // No need to do the check on definitions, which require that | 
|  | // the return/param types be complete. | 
|  | if (MD->doesThisDeclarationHaveABody()) | 
|  | return; | 
|  |  | 
|  | // For safety's sake, just ignore it if we don't have type source | 
|  | // information.  This should never happen for non-implicit methods, | 
|  | // but... | 
|  | if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) | 
|  | Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone); | 
|  | } | 
|  |  | 
|  | /// Check for invalid uses of an abstract type within a class definition. | 
|  | static void CheckAbstractClassUsage(AbstractUsageInfo &Info, | 
|  | CXXRecordDecl *RD) { | 
|  | for (auto *D : RD->decls()) { | 
|  | if (D->isImplicit()) continue; | 
|  |  | 
|  | // Methods and method templates. | 
|  | if (isa<CXXMethodDecl>(D)) { | 
|  | CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D)); | 
|  | } else if (isa<FunctionTemplateDecl>(D)) { | 
|  | FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl(); | 
|  | CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD)); | 
|  |  | 
|  | // Fields and static variables. | 
|  | } else if (isa<FieldDecl>(D)) { | 
|  | FieldDecl *FD = cast<FieldDecl>(D); | 
|  | if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) | 
|  | Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); | 
|  | } else if (isa<VarDecl>(D)) { | 
|  | VarDecl *VD = cast<VarDecl>(D); | 
|  | if (TypeSourceInfo *TSI = VD->getTypeSourceInfo()) | 
|  | Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType); | 
|  |  | 
|  | // Nested classes and class templates. | 
|  | } else if (isa<CXXRecordDecl>(D)) { | 
|  | CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D)); | 
|  | } else if (isa<ClassTemplateDecl>(D)) { | 
|  | CheckAbstractClassUsage(Info, | 
|  | cast<ClassTemplateDecl>(D)->getTemplatedDecl()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { | 
|  | Attr *ClassAttr = getDLLAttr(Class); | 
|  | if (!ClassAttr) | 
|  | return; | 
|  |  | 
|  | assert(ClassAttr->getKind() == attr::DLLExport); | 
|  |  | 
|  | TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); | 
|  |  | 
|  | if (TSK == TSK_ExplicitInstantiationDeclaration) | 
|  | // Don't go any further if this is just an explicit instantiation | 
|  | // declaration. | 
|  | return; | 
|  |  | 
|  | if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) | 
|  | S.MarkVTableUsed(Class->getLocation(), Class, true); | 
|  |  | 
|  | for (Decl *Member : Class->decls()) { | 
|  | // Defined static variables that are members of an exported base | 
|  | // class must be marked export too. | 
|  | auto *VD = dyn_cast<VarDecl>(Member); | 
|  | if (VD && Member->getAttr<DLLExportAttr>() && | 
|  | VD->getStorageClass() == SC_Static && | 
|  | TSK == TSK_ImplicitInstantiation) | 
|  | S.MarkVariableReferenced(VD->getLocation(), VD); | 
|  |  | 
|  | auto *MD = dyn_cast<CXXMethodDecl>(Member); | 
|  | if (!MD) | 
|  | continue; | 
|  |  | 
|  | if (Member->getAttr<DLLExportAttr>()) { | 
|  | if (MD->isUserProvided()) { | 
|  | // Instantiate non-default class member functions ... | 
|  |  | 
|  | // .. except for certain kinds of template specializations. | 
|  | if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) | 
|  | continue; | 
|  |  | 
|  | S.MarkFunctionReferenced(Class->getLocation(), MD); | 
|  |  | 
|  | // The function will be passed to the consumer when its definition is | 
|  | // encountered. | 
|  | } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() || | 
|  | MD->isCopyAssignmentOperator() || | 
|  | MD->isMoveAssignmentOperator()) { | 
|  | // Synthesize and instantiate non-trivial implicit methods, explicitly | 
|  | // defaulted methods, and the copy and move assignment operators. The | 
|  | // latter are exported even if they are trivial, because the address of | 
|  | // an operator can be taken and should compare equal across libraries. | 
|  | DiagnosticErrorTrap Trap(S.Diags); | 
|  | S.MarkFunctionReferenced(Class->getLocation(), MD); | 
|  | if (Trap.hasErrorOccurred()) { | 
|  | S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class) | 
|  | << Class << !S.getLangOpts().CPlusPlus11; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // There is no later point when we will see the definition of this | 
|  | // function, so pass it to the consumer now. | 
|  | S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void checkForMultipleExportedDefaultConstructors(Sema &S, | 
|  | CXXRecordDecl *Class) { | 
|  | // Only the MS ABI has default constructor closures, so we don't need to do | 
|  | // this semantic checking anywhere else. | 
|  | if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) | 
|  | return; | 
|  |  | 
|  | CXXConstructorDecl *LastExportedDefaultCtor = nullptr; | 
|  | for (Decl *Member : Class->decls()) { | 
|  | // Look for exported default constructors. | 
|  | auto *CD = dyn_cast<CXXConstructorDecl>(Member); | 
|  | if (!CD || !CD->isDefaultConstructor()) | 
|  | continue; | 
|  | auto *Attr = CD->getAttr<DLLExportAttr>(); | 
|  | if (!Attr) | 
|  | continue; | 
|  |  | 
|  | // If the class is non-dependent, mark the default arguments as ODR-used so | 
|  | // that we can properly codegen the constructor closure. | 
|  | if (!Class->isDependentContext()) { | 
|  | for (ParmVarDecl *PD : CD->parameters()) { | 
|  | (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); | 
|  | S.DiscardCleanupsInEvaluationContext(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LastExportedDefaultCtor) { | 
|  | S.Diag(LastExportedDefaultCtor->getLocation(), | 
|  | diag::err_attribute_dll_ambiguous_default_ctor) | 
|  | << Class; | 
|  | S.Diag(CD->getLocation(), diag::note_entity_declared_at) | 
|  | << CD->getDeclName(); | 
|  | return; | 
|  | } | 
|  | LastExportedDefaultCtor = CD; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { | 
|  | // Mark any compiler-generated routines with the implicit code_seg attribute. | 
|  | for (auto *Method : Class->methods()) { | 
|  | if (Method->isUserProvided()) | 
|  | continue; | 
|  | if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) | 
|  | Method->addAttr(A); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check class-level dllimport/dllexport attribute. | 
|  | void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { | 
|  | Attr *ClassAttr = getDLLAttr(Class); | 
|  |  | 
|  | // MSVC inherits DLL attributes to partial class template specializations. | 
|  | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) { | 
|  | if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) { | 
|  | if (Attr *TemplateAttr = | 
|  | getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { | 
|  | auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext())); | 
|  | A->setInherited(true); | 
|  | ClassAttr = A; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ClassAttr) | 
|  | return; | 
|  |  | 
|  | if (!Class->isExternallyVisible()) { | 
|  | Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) | 
|  | << Class << ClassAttr; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && | 
|  | !ClassAttr->isInherited()) { | 
|  | // Diagnose dll attributes on members of class with dll attribute. | 
|  | for (Decl *Member : Class->decls()) { | 
|  | if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) | 
|  | continue; | 
|  | InheritableAttr *MemberAttr = getDLLAttr(Member); | 
|  | if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) | 
|  | continue; | 
|  |  | 
|  | Diag(MemberAttr->getLocation(), | 
|  | diag::err_attribute_dll_member_of_dll_class) | 
|  | << MemberAttr << ClassAttr; | 
|  | Diag(ClassAttr->getLocation(), diag::note_previous_attribute); | 
|  | Member->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Class->getDescribedClassTemplate()) | 
|  | // Don't inherit dll attribute until the template is instantiated. | 
|  | return; | 
|  |  | 
|  | // The class is either imported or exported. | 
|  | const bool ClassExported = ClassAttr->getKind() == attr::DLLExport; | 
|  |  | 
|  | // Check if this was a dllimport attribute propagated from a derived class to | 
|  | // a base class template specialization. We don't apply these attributes to | 
|  | // static data members. | 
|  | const bool PropagatedImport = | 
|  | !ClassExported && | 
|  | cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate(); | 
|  |  | 
|  | TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); | 
|  |  | 
|  | // Ignore explicit dllexport on explicit class template instantiation | 
|  | // declarations, except in MinGW mode. | 
|  | if (ClassExported && !ClassAttr->isInherited() && | 
|  | TSK == TSK_ExplicitInstantiationDeclaration && | 
|  | !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { | 
|  | Class->dropAttr<DLLExportAttr>(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Force declaration of implicit members so they can inherit the attribute. | 
|  | ForceDeclarationOfImplicitMembers(Class); | 
|  |  | 
|  | // FIXME: MSVC's docs say all bases must be exportable, but this doesn't | 
|  | // seem to be true in practice? | 
|  |  | 
|  | for (Decl *Member : Class->decls()) { | 
|  | VarDecl *VD = dyn_cast<VarDecl>(Member); | 
|  | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); | 
|  |  | 
|  | // Only methods and static fields inherit the attributes. | 
|  | if (!VD && !MD) | 
|  | continue; | 
|  |  | 
|  | if (MD) { | 
|  | // Don't process deleted methods. | 
|  | if (MD->isDeleted()) | 
|  | continue; | 
|  |  | 
|  | if (MD->isInlined()) { | 
|  | // MinGW does not import or export inline methods. But do it for | 
|  | // template instantiations. | 
|  | if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && | 
|  | !Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment() && | 
|  | TSK != TSK_ExplicitInstantiationDeclaration && | 
|  | TSK != TSK_ExplicitInstantiationDefinition) | 
|  | continue; | 
|  |  | 
|  | // MSVC versions before 2015 don't export the move assignment operators | 
|  | // and move constructor, so don't attempt to import/export them if | 
|  | // we have a definition. | 
|  | auto *Ctor = dyn_cast<CXXConstructorDecl>(MD); | 
|  | if ((MD->isMoveAssignmentOperator() || | 
|  | (Ctor && Ctor->isMoveConstructor())) && | 
|  | !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015)) | 
|  | continue; | 
|  |  | 
|  | // MSVC2015 doesn't export trivial defaulted x-tor but copy assign | 
|  | // operator is exported anyway. | 
|  | if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && | 
|  | (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial()) | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Don't apply dllimport attributes to static data members of class template | 
|  | // instantiations when the attribute is propagated from a derived class. | 
|  | if (VD && PropagatedImport) | 
|  | continue; | 
|  |  | 
|  | if (!cast<NamedDecl>(Member)->isExternallyVisible()) | 
|  | continue; | 
|  |  | 
|  | if (!getDLLAttr(Member)) { | 
|  | InheritableAttr *NewAttr = nullptr; | 
|  |  | 
|  | // Do not export/import inline function when -fno-dllexport-inlines is | 
|  | // passed. But add attribute for later local static var check. | 
|  | if (!getLangOpts().DllExportInlines && MD && MD->isInlined() && | 
|  | TSK != TSK_ExplicitInstantiationDeclaration && | 
|  | TSK != TSK_ExplicitInstantiationDefinition) { | 
|  | if (ClassExported) { | 
|  | NewAttr = ::new (getASTContext()) | 
|  | DLLExportStaticLocalAttr(ClassAttr->getRange(), | 
|  | getASTContext(), | 
|  | ClassAttr->getSpellingListIndex()); | 
|  | } else { | 
|  | NewAttr = ::new (getASTContext()) | 
|  | DLLImportStaticLocalAttr(ClassAttr->getRange(), | 
|  | getASTContext(), | 
|  | ClassAttr->getSpellingListIndex()); | 
|  | } | 
|  | } else { | 
|  | NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); | 
|  | } | 
|  |  | 
|  | NewAttr->setInherited(true); | 
|  | Member->addAttr(NewAttr); | 
|  |  | 
|  | if (MD) { | 
|  | // Propagate DLLAttr to friend re-declarations of MD that have already | 
|  | // been constructed. | 
|  | for (FunctionDecl *FD = MD->getMostRecentDecl(); FD; | 
|  | FD = FD->getPreviousDecl()) { | 
|  | if (FD->getFriendObjectKind() == Decl::FOK_None) | 
|  | continue; | 
|  | assert(!getDLLAttr(FD) && | 
|  | "friend re-decl should not already have a DLLAttr"); | 
|  | NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); | 
|  | NewAttr->setInherited(true); | 
|  | FD->addAttr(NewAttr); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ClassExported) | 
|  | DelayedDllExportClasses.push_back(Class); | 
|  | } | 
|  |  | 
|  | /// Perform propagation of DLL attributes from a derived class to a | 
|  | /// templated base class for MS compatibility. | 
|  | void Sema::propagateDLLAttrToBaseClassTemplate( | 
|  | CXXRecordDecl *Class, Attr *ClassAttr, | 
|  | ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) { | 
|  | if (getDLLAttr( | 
|  | BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) { | 
|  | // If the base class template has a DLL attribute, don't try to change it. | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto TSK = BaseTemplateSpec->getSpecializationKind(); | 
|  | if (!getDLLAttr(BaseTemplateSpec) && | 
|  | (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration || | 
|  | TSK == TSK_ImplicitInstantiation)) { | 
|  | // The template hasn't been instantiated yet (or it has, but only as an | 
|  | // explicit instantiation declaration or implicit instantiation, which means | 
|  | // we haven't codegenned any members yet), so propagate the attribute. | 
|  | auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); | 
|  | NewAttr->setInherited(true); | 
|  | BaseTemplateSpec->addAttr(NewAttr); | 
|  |  | 
|  | // If this was an import, mark that we propagated it from a derived class to | 
|  | // a base class template specialization. | 
|  | if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr)) | 
|  | ImportAttr->setPropagatedToBaseTemplate(); | 
|  |  | 
|  | // If the template is already instantiated, checkDLLAttributeRedeclaration() | 
|  | // needs to be run again to work see the new attribute. Otherwise this will | 
|  | // get run whenever the template is instantiated. | 
|  | if (TSK != TSK_Undeclared) | 
|  | checkClassLevelDLLAttribute(BaseTemplateSpec); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (getDLLAttr(BaseTemplateSpec)) { | 
|  | // The template has already been specialized or instantiated with an | 
|  | // attribute, explicitly or through propagation. We should not try to change | 
|  | // it. | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The template was previously instantiated or explicitly specialized without | 
|  | // a dll attribute, It's too late for us to add an attribute, so warn that | 
|  | // this is unsupported. | 
|  | Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class) | 
|  | << BaseTemplateSpec->isExplicitSpecialization(); | 
|  | Diag(ClassAttr->getLocation(), diag::note_attribute); | 
|  | if (BaseTemplateSpec->isExplicitSpecialization()) { | 
|  | Diag(BaseTemplateSpec->getLocation(), | 
|  | diag::note_template_class_explicit_specialization_was_here) | 
|  | << BaseTemplateSpec; | 
|  | } else { | 
|  | Diag(BaseTemplateSpec->getPointOfInstantiation(), | 
|  | diag::note_template_class_instantiation_was_here) | 
|  | << BaseTemplateSpec; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void DefineImplicitSpecialMember(Sema &S, CXXMethodDecl *MD, | 
|  | SourceLocation DefaultLoc) { | 
|  | switch (S.getSpecialMember(MD)) { | 
|  | case Sema::CXXDefaultConstructor: | 
|  | S.DefineImplicitDefaultConstructor(DefaultLoc, | 
|  | cast<CXXConstructorDecl>(MD)); | 
|  | break; | 
|  | case Sema::CXXCopyConstructor: | 
|  | S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD)); | 
|  | break; | 
|  | case Sema::CXXCopyAssignment: | 
|  | S.DefineImplicitCopyAssignment(DefaultLoc, MD); | 
|  | break; | 
|  | case Sema::CXXDestructor: | 
|  | S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD)); | 
|  | break; | 
|  | case Sema::CXXMoveConstructor: | 
|  | S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD)); | 
|  | break; | 
|  | case Sema::CXXMoveAssignment: | 
|  | S.DefineImplicitMoveAssignment(DefaultLoc, MD); | 
|  | break; | 
|  | case Sema::CXXInvalid: | 
|  | llvm_unreachable("Invalid special member."); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Determine whether a type is permitted to be passed or returned in | 
|  | /// registers, per C++ [class.temporary]p3. | 
|  | static bool canPassInRegisters(Sema &S, CXXRecordDecl *D, | 
|  | TargetInfo::CallingConvKind CCK) { | 
|  | if (D->isDependentType() || D->isInvalidDecl()) | 
|  | return false; | 
|  |  | 
|  | // Clang <= 4 used the pre-C++11 rule, which ignores move operations. | 
|  | // The PS4 platform ABI follows the behavior of Clang 3.2. | 
|  | if (CCK == TargetInfo::CCK_ClangABI4OrPS4) | 
|  | return !D->hasNonTrivialDestructorForCall() && | 
|  | !D->hasNonTrivialCopyConstructorForCall(); | 
|  |  | 
|  | if (CCK == TargetInfo::CCK_MicrosoftWin64) { | 
|  | bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false; | 
|  | bool DtorIsTrivialForCall = false; | 
|  |  | 
|  | // If a class has at least one non-deleted, trivial copy constructor, it | 
|  | // is passed according to the C ABI. Otherwise, it is passed indirectly. | 
|  | // | 
|  | // Note: This permits classes with non-trivial copy or move ctors to be | 
|  | // passed in registers, so long as they *also* have a trivial copy ctor, | 
|  | // which is non-conforming. | 
|  | if (D->needsImplicitCopyConstructor()) { | 
|  | if (!D->defaultedCopyConstructorIsDeleted()) { | 
|  | if (D->hasTrivialCopyConstructor()) | 
|  | CopyCtorIsTrivial = true; | 
|  | if (D->hasTrivialCopyConstructorForCall()) | 
|  | CopyCtorIsTrivialForCall = true; | 
|  | } | 
|  | } else { | 
|  | for (const CXXConstructorDecl *CD : D->ctors()) { | 
|  | if (CD->isCopyConstructor() && !CD->isDeleted()) { | 
|  | if (CD->isTrivial()) | 
|  | CopyCtorIsTrivial = true; | 
|  | if (CD->isTrivialForCall()) | 
|  | CopyCtorIsTrivialForCall = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (D->needsImplicitDestructor()) { | 
|  | if (!D->defaultedDestructorIsDeleted() && | 
|  | D->hasTrivialDestructorForCall()) | 
|  | DtorIsTrivialForCall = true; | 
|  | } else if (const auto *DD = D->getDestructor()) { | 
|  | if (!DD->isDeleted() && DD->isTrivialForCall()) | 
|  | DtorIsTrivialForCall = true; | 
|  | } | 
|  |  | 
|  | // If the copy ctor and dtor are both trivial-for-calls, pass direct. | 
|  | if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall) | 
|  | return true; | 
|  |  | 
|  | // If a class has a destructor, we'd really like to pass it indirectly | 
|  | // because it allows us to elide copies.  Unfortunately, MSVC makes that | 
|  | // impossible for small types, which it will pass in a single register or | 
|  | // stack slot. Most objects with dtors are large-ish, so handle that early. | 
|  | // We can't call out all large objects as being indirect because there are | 
|  | // multiple x64 calling conventions and the C++ ABI code shouldn't dictate | 
|  | // how we pass large POD types. | 
|  |  | 
|  | // Note: This permits small classes with nontrivial destructors to be | 
|  | // passed in registers, which is non-conforming. | 
|  | bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); | 
|  | uint64_t TypeSize = isAArch64 ? 128 : 64; | 
|  |  | 
|  | if (CopyCtorIsTrivial && | 
|  | S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Per C++ [class.temporary]p3, the relevant condition is: | 
|  | //   each copy constructor, move constructor, and destructor of X is | 
|  | //   either trivial or deleted, and X has at least one non-deleted copy | 
|  | //   or move constructor | 
|  | bool HasNonDeletedCopyOrMove = false; | 
|  |  | 
|  | if (D->needsImplicitCopyConstructor() && | 
|  | !D->defaultedCopyConstructorIsDeleted()) { | 
|  | if (!D->hasTrivialCopyConstructorForCall()) | 
|  | return false; | 
|  | HasNonDeletedCopyOrMove = true; | 
|  | } | 
|  |  | 
|  | if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() && | 
|  | !D->defaultedMoveConstructorIsDeleted()) { | 
|  | if (!D->hasTrivialMoveConstructorForCall()) | 
|  | return false; | 
|  | HasNonDeletedCopyOrMove = true; | 
|  | } | 
|  |  | 
|  | if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() && | 
|  | !D->hasTrivialDestructorForCall()) | 
|  | return false; | 
|  |  | 
|  | for (const CXXMethodDecl *MD : D->methods()) { | 
|  | if (MD->isDeleted()) | 
|  | continue; | 
|  |  | 
|  | auto *CD = dyn_cast<CXXConstructorDecl>(MD); | 
|  | if (CD && CD->isCopyOrMoveConstructor()) | 
|  | HasNonDeletedCopyOrMove = true; | 
|  | else if (!isa<CXXDestructorDecl>(MD)) | 
|  | continue; | 
|  |  | 
|  | if (!MD->isTrivialForCall()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return HasNonDeletedCopyOrMove; | 
|  | } | 
|  |  | 
|  | /// Perform semantic checks on a class definition that has been | 
|  | /// completing, introducing implicitly-declared members, checking for | 
|  | /// abstract types, etc. | 
|  | void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) { | 
|  | if (!Record) | 
|  | return; | 
|  |  | 
|  | if (Record->isAbstract() && !Record->isInvalidDecl()) { | 
|  | AbstractUsageInfo Info(*this, Record); | 
|  | CheckAbstractClassUsage(Info, Record); | 
|  | } | 
|  |  | 
|  | // If this is not an aggregate type and has no user-declared constructor, | 
|  | // complain about any non-static data members of reference or const scalar | 
|  | // type, since they will never get initializers. | 
|  | if (!Record->isInvalidDecl() && !Record->isDependentType() && | 
|  | !Record->isAggregate() && !Record->hasUserDeclaredConstructor() && | 
|  | !Record->isLambda()) { | 
|  | bool Complained = false; | 
|  | for (const auto *F : Record->fields()) { | 
|  | if (F->hasInClassInitializer() || F->isUnnamedBitfield()) | 
|  | continue; | 
|  |  | 
|  | if (F->getType()->isReferenceType() || | 
|  | (F->getType().isConstQualified() && F->getType()->isScalarType())) { | 
|  | if (!Complained) { | 
|  | Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) | 
|  | << Record->getTagKind() << Record; | 
|  | Complained = true; | 
|  | } | 
|  |  | 
|  | Diag(F->getLocation(), diag::note_refconst_member_not_initialized) | 
|  | << F->getType()->isReferenceType() | 
|  | << F->getDeclName(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Record->getIdentifier()) { | 
|  | // C++ [class.mem]p13: | 
|  | //   If T is the name of a class, then each of the following shall have a | 
|  | //   name different from T: | 
|  | //     - every member of every anonymous union that is a member of class T. | 
|  | // | 
|  | // C++ [class.mem]p14: | 
|  | //   In addition, if class T has a user-declared constructor (12.1), every | 
|  | //   non-static data member of class T shall have a name different from T. | 
|  | DeclContext::lookup_result R = Record->lookup(Record->getDeclName()); | 
|  | for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; | 
|  | ++I) { | 
|  | NamedDecl *D = (*I)->getUnderlyingDecl(); | 
|  | if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) && | 
|  | Record->hasUserDeclaredConstructor()) || | 
|  | isa<IndirectFieldDecl>(D)) { | 
|  | Diag((*I)->getLocation(), diag::err_member_name_of_class) | 
|  | << D->getDeclName(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Warn if the class has virtual methods but non-virtual public destructor. | 
|  | if (Record->isPolymorphic() && !Record->isDependentType()) { | 
|  | CXXDestructorDecl *dtor = Record->getDestructor(); | 
|  | if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) && | 
|  | !Record->hasAttr<FinalAttr>()) | 
|  | Diag(dtor ? dtor->getLocation() : Record->getLocation(), | 
|  | diag::warn_non_virtual_dtor) << Context.getRecordType(Record); | 
|  | } | 
|  |  | 
|  | if (Record->isAbstract()) { | 
|  | if (FinalAttr *FA = Record->getAttr<FinalAttr>()) { | 
|  | Diag(Record->getLocation(), diag::warn_abstract_final_class) | 
|  | << FA->isSpelledAsSealed(); | 
|  | DiagnoseAbstractType(Record); | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if trivial_abi has to be dropped. | 
|  | if (Record->hasAttr<TrivialABIAttr>()) | 
|  | checkIllFormedTrivialABIStruct(*Record); | 
|  |  | 
|  | // Set HasTrivialSpecialMemberForCall if the record has attribute | 
|  | // "trivial_abi". | 
|  | bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>(); | 
|  |  | 
|  | if (HasTrivialABI) | 
|  | Record->setHasTrivialSpecialMemberForCall(); | 
|  |  | 
|  | auto CompleteMemberFunction = [&](CXXMethodDecl *M) { | 
|  | // Check whether the explicitly-defaulted special members are valid. | 
|  | if (!M->isInvalidDecl() && M->isExplicitlyDefaulted()) | 
|  | CheckExplicitlyDefaultedSpecialMember(M); | 
|  |  | 
|  | // For an explicitly defaulted or deleted special member, we defer | 
|  | // determining triviality until the class is complete. That time is now! | 
|  | CXXSpecialMember CSM = getSpecialMember(M); | 
|  | if (!M->isImplicit() && !M->isUserProvided()) { | 
|  | if (CSM != CXXInvalid) { | 
|  | M->setTrivial(SpecialMemberIsTrivial(M, CSM)); | 
|  | // Inform the class that we've finished declaring this member. | 
|  | Record->finishedDefaultedOrDeletedMember(M); | 
|  | M->setTrivialForCall( | 
|  | HasTrivialABI || | 
|  | SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI)); | 
|  | Record->setTrivialForCallFlags(M); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set triviality for the purpose of calls if this is a user-provided | 
|  | // copy/move constructor or destructor. | 
|  | if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor || | 
|  | CSM == CXXDestructor) && M->isUserProvided()) { | 
|  | M->setTrivialForCall(HasTrivialABI); | 
|  | Record->setTrivialForCallFlags(M); | 
|  | } | 
|  |  | 
|  | if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() && | 
|  | M->hasAttr<DLLExportAttr>()) { | 
|  | if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && | 
|  | M->isTrivial() && | 
|  | (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor || | 
|  | CSM == CXXDestructor)) | 
|  | M->dropAttr<DLLExportAttr>(); | 
|  |  | 
|  | if (M->hasAttr<DLLExportAttr>()) { | 
|  | // Define after any fields with in-class initializers have been parsed. | 
|  | DelayedDllExportMemberFunctions.push_back(M); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | bool HasMethodWithOverrideControl = false, | 
|  | HasOverridingMethodWithoutOverrideControl = false; | 
|  | if (!Record->isDependentType()) { | 
|  | // Check the destructor before any other member function. We need to | 
|  | // determine whether it's trivial in order to determine whether the claas | 
|  | // type is a literal type, which is a prerequisite for determining whether | 
|  | // other special member functions are valid and whether they're implicitly | 
|  | // 'constexpr'. | 
|  | if (CXXDestructorDecl *Dtor = Record->getDestructor()) | 
|  | CompleteMemberFunction(Dtor); | 
|  |  | 
|  | for (auto *M : Record->methods()) { | 
|  | // See if a method overloads virtual methods in a base | 
|  | // class without overriding any. | 
|  | if (!M->isStatic()) | 
|  | DiagnoseHiddenVirtualMethods(M); | 
|  | if (M->hasAttr<OverrideAttr>()) | 
|  | HasMethodWithOverrideControl = true; | 
|  | else if (M->size_overridden_methods() > 0) | 
|  | HasOverridingMethodWithoutOverrideControl = true; | 
|  |  | 
|  | if (!isa<CXXDestructorDecl>(M)) | 
|  | CompleteMemberFunction(M); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HasMethodWithOverrideControl && | 
|  | HasOverridingMethodWithoutOverrideControl) { | 
|  | // At least one method has the 'override' control declared. | 
|  | // Diagnose all other overridden methods which do not have 'override' specified on them. | 
|  | for (auto *M : Record->methods()) | 
|  | DiagnoseAbsenceOfOverrideControl(M); | 
|  | } | 
|  |  | 
|  | // ms_struct is a request to use the same ABI rules as MSVC.  Check | 
|  | // whether this class uses any C++ features that are implemented | 
|  | // completely differently in MSVC, and if so, emit a diagnostic. | 
|  | // That diagnostic defaults to an error, but we allow projects to | 
|  | // map it down to a warning (or ignore it).  It's a fairly common | 
|  | // practice among users of the ms_struct pragma to mass-annotate | 
|  | // headers, sweeping up a bunch of types that the project doesn't | 
|  | // really rely on MSVC-compatible layout for.  We must therefore | 
|  | // support "ms_struct except for C++ stuff" as a secondary ABI. | 
|  | if (Record->isMsStruct(Context) && | 
|  | (Record->isPolymorphic() || Record->getNumBases())) { | 
|  | Diag(Record->getLocation(), diag::warn_cxx_ms_struct); | 
|  | } | 
|  |  | 
|  | checkClassLevelDLLAttribute(Record); | 
|  | checkClassLevelCodeSegAttribute(Record); | 
|  |  | 
|  | bool ClangABICompat4 = | 
|  | Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4; | 
|  | TargetInfo::CallingConvKind CCK = | 
|  | Context.getTargetInfo().getCallingConvKind(ClangABICompat4); | 
|  | bool CanPass = canPassInRegisters(*this, Record, CCK); | 
|  |  | 
|  | // Do not change ArgPassingRestrictions if it has already been set to | 
|  | // APK_CanNeverPassInRegs. | 
|  | if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs) | 
|  | Record->setArgPassingRestrictions(CanPass | 
|  | ? RecordDecl::APK_CanPassInRegs | 
|  | : RecordDecl::APK_CannotPassInRegs); | 
|  |  | 
|  | // If canPassInRegisters returns true despite the record having a non-trivial | 
|  | // destructor, the record is destructed in the callee. This happens only when | 
|  | // the record or one of its subobjects has a field annotated with trivial_abi | 
|  | // or a field qualified with ObjC __strong/__weak. | 
|  | if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee()) | 
|  | Record->setParamDestroyedInCallee(true); | 
|  | else if (Record->hasNonTrivialDestructor()) | 
|  | Record->setParamDestroyedInCallee(CanPass); | 
|  |  | 
|  | if (getLangOpts().ForceEmitVTables) { | 
|  | // If we want to emit all the vtables, we need to mark it as used.  This | 
|  | // is especially required for cases like vtable assumption loads. | 
|  | MarkVTableUsed(Record->getInnerLocStart(), Record); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Look up the special member function that would be called by a special | 
|  | /// member function for a subobject of class type. | 
|  | /// | 
|  | /// \param Class The class type of the subobject. | 
|  | /// \param CSM The kind of special member function. | 
|  | /// \param FieldQuals If the subobject is a field, its cv-qualifiers. | 
|  | /// \param ConstRHS True if this is a copy operation with a const object | 
|  | ///        on its RHS, that is, if the argument to the outer special member | 
|  | ///        function is 'const' and this is not a field marked 'mutable'. | 
|  | static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember( | 
|  | Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM, | 
|  | unsigned FieldQuals, bool ConstRHS) { | 
|  | unsigned LHSQuals = 0; | 
|  | if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment) | 
|  | LHSQuals = FieldQuals; | 
|  |  | 
|  | unsigned RHSQuals = FieldQuals; | 
|  | if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor) | 
|  | RHSQuals = 0; | 
|  | else if (ConstRHS) | 
|  | RHSQuals |= Qualifiers::Const; | 
|  |  | 
|  | return S.LookupSpecialMember(Class, CSM, | 
|  | RHSQuals & Qualifiers::Const, | 
|  | RHSQuals & Qualifiers::Volatile, | 
|  | false, | 
|  | LHSQuals & Qualifiers::Const, | 
|  | LHSQuals & Qualifiers::Volatile); | 
|  | } | 
|  |  | 
|  | class Sema::InheritedConstructorInfo { | 
|  | Sema &S; | 
|  | SourceLocation UseLoc; | 
|  |  | 
|  | /// A mapping from the base classes through which the constructor was | 
|  | /// inherited to the using shadow declaration in that base class (or a null | 
|  | /// pointer if the constructor was declared in that base class). | 
|  | llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *> | 
|  | InheritedFromBases; | 
|  |  | 
|  | public: | 
|  | InheritedConstructorInfo(Sema &S, SourceLocation UseLoc, | 
|  | ConstructorUsingShadowDecl *Shadow) | 
|  | : S(S), UseLoc(UseLoc) { | 
|  | bool DiagnosedMultipleConstructedBases = false; | 
|  | CXXRecordDecl *ConstructedBase = nullptr; | 
|  | UsingDecl *ConstructedBaseUsing = nullptr; | 
|  |  | 
|  | // Find the set of such base class subobjects and check that there's a | 
|  | // unique constructed subobject. | 
|  | for (auto *D : Shadow->redecls()) { | 
|  | auto *DShadow = cast<ConstructorUsingShadowDecl>(D); | 
|  | auto *DNominatedBase = DShadow->getNominatedBaseClass(); | 
|  | auto *DConstructedBase = DShadow->getConstructedBaseClass(); | 
|  |  | 
|  | InheritedFromBases.insert( | 
|  | std::make_pair(DNominatedBase->getCanonicalDecl(), | 
|  | DShadow->getNominatedBaseClassShadowDecl())); | 
|  | if (DShadow->constructsVirtualBase()) | 
|  | InheritedFromBases.insert( | 
|  | std::make_pair(DConstructedBase->getCanonicalDecl(), | 
|  | DShadow->getConstructedBaseClassShadowDecl())); | 
|  | else | 
|  | assert(DNominatedBase == DConstructedBase); | 
|  |  | 
|  | // [class.inhctor.init]p2: | 
|  | //   If the constructor was inherited from multiple base class subobjects | 
|  | //   of type B, the program is ill-formed. | 
|  | if (!ConstructedBase) { | 
|  | ConstructedBase = DConstructedBase; | 
|  | ConstructedBaseUsing = D->getUsingDecl(); | 
|  | } else if (ConstructedBase != DConstructedBase && | 
|  | !Shadow->isInvalidDecl()) { | 
|  | if (!DiagnosedMultipleConstructedBases) { | 
|  | S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor) | 
|  | << Shadow->getTargetDecl(); | 
|  | S.Diag(ConstructedBaseUsing->getLocation(), | 
|  | diag::note_ambiguous_inherited_constructor_using) | 
|  | << ConstructedBase; | 
|  | DiagnosedMultipleConstructedBases = true; | 
|  | } | 
|  | S.Diag(D->getUsingDecl()->getLocation(), | 
|  | diag::note_ambiguous_inherited_constructor_using) | 
|  | << DConstructedBase; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DiagnosedMultipleConstructedBases) | 
|  | Shadow->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | /// Find the constructor to use for inherited construction of a base class, | 
|  | /// and whether that base class constructor inherits the constructor from a | 
|  | /// virtual base class (in which case it won't actually invoke it). | 
|  | std::pair<CXXConstructorDecl *, bool> | 
|  | findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const { | 
|  | auto It = InheritedFromBases.find(Base->getCanonicalDecl()); | 
|  | if (It == InheritedFromBases.end()) | 
|  | return std::make_pair(nullptr, false); | 
|  |  | 
|  | // This is an intermediary class. | 
|  | if (It->second) | 
|  | return std::make_pair( | 
|  | S.findInheritingConstructor(UseLoc, Ctor, It->second), | 
|  | It->second->constructsVirtualBase()); | 
|  |  | 
|  | // This is the base class from which the constructor was inherited. | 
|  | return std::make_pair(Ctor, false); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Is the special member function which would be selected to perform the | 
|  | /// specified operation on the specified class type a constexpr constructor? | 
|  | static bool | 
|  | specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl, | 
|  | Sema::CXXSpecialMember CSM, unsigned Quals, | 
|  | bool ConstRHS, | 
|  | CXXConstructorDecl *InheritedCtor = nullptr, | 
|  | Sema::InheritedConstructorInfo *Inherited = nullptr) { | 
|  | // If we're inheriting a constructor, see if we need to call it for this base | 
|  | // class. | 
|  | if (InheritedCtor) { | 
|  | assert(CSM == Sema::CXXDefaultConstructor); | 
|  | auto BaseCtor = | 
|  | Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first; | 
|  | if (BaseCtor) | 
|  | return BaseCtor->isConstexpr(); | 
|  | } | 
|  |  | 
|  | if (CSM == Sema::CXXDefaultConstructor) | 
|  | return ClassDecl->hasConstexprDefaultConstructor(); | 
|  |  | 
|  | Sema::SpecialMemberOverloadResult SMOR = | 
|  | lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS); | 
|  | if (!SMOR.getMethod()) | 
|  | // A constructor we wouldn't select can't be "involved in initializing" | 
|  | // anything. | 
|  | return true; | 
|  | return SMOR.getMethod()->isConstexpr(); | 
|  | } | 
|  |  | 
|  | /// Determine whether the specified special member function would be constexpr | 
|  | /// if it were implicitly defined. | 
|  | static bool defaultedSpecialMemberIsConstexpr( | 
|  | Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM, | 
|  | bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr, | 
|  | Sema::InheritedConstructorInfo *Inherited = nullptr) { | 
|  | if (!S.getLangOpts().CPlusPlus11) | 
|  | return false; | 
|  |  | 
|  | // C++11 [dcl.constexpr]p4: | 
|  | // In the definition of a constexpr constructor [...] | 
|  | bool Ctor = true; | 
|  | switch (CSM) { | 
|  | case Sema::CXXDefaultConstructor: | 
|  | if (Inherited) | 
|  | break; | 
|  | // Since default constructor lookup is essentially trivial (and cannot | 
|  | // involve, for instance, template instantiation), we compute whether a | 
|  | // defaulted default constructor is constexpr directly within CXXRecordDecl. | 
|  | // | 
|  | // This is important for performance; we need to know whether the default | 
|  | // constructor is constexpr to determine whether the type is a literal type. | 
|  | return ClassDecl->defaultedDefaultConstructorIsConstexpr(); | 
|  |  | 
|  | case Sema::CXXCopyConstructor: | 
|  | case Sema::CXXMoveConstructor: | 
|  | // For copy or move constructors, we need to perform overload resolution. | 
|  | break; | 
|  |  | 
|  | case Sema::CXXCopyAssignment: | 
|  | case Sema::CXXMoveAssignment: | 
|  | if (!S.getLangOpts().CPlusPlus14) | 
|  | return false; | 
|  | // In C++1y, we need to perform overload resolution. | 
|  | Ctor = false; | 
|  | break; | 
|  |  | 
|  | case Sema::CXXDestructor: | 
|  | case Sema::CXXInvalid: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //   -- if the class is a non-empty union, or for each non-empty anonymous | 
|  | //      union member of a non-union class, exactly one non-static data member | 
|  | //      shall be initialized; [DR1359] | 
|  | // | 
|  | // If we squint, this is guaranteed, since exactly one non-static data member | 
|  | // will be initialized (if the constructor isn't deleted), we just don't know | 
|  | // which one. | 
|  | if (Ctor && ClassDecl->isUnion()) | 
|  | return CSM == Sema::CXXDefaultConstructor | 
|  | ? ClassDecl->hasInClassInitializer() || | 
|  | !ClassDecl->hasVariantMembers() | 
|  | : true; | 
|  |  | 
|  | //   -- the class shall not have any virtual base classes; | 
|  | if (Ctor && ClassDecl->getNumVBases()) | 
|  | return false; | 
|  |  | 
|  | // C++1y [class.copy]p26: | 
|  | //   -- [the class] is a literal type, and | 
|  | if (!Ctor && !ClassDecl->isLiteral()) | 
|  | return false; | 
|  |  | 
|  | //   -- every constructor involved in initializing [...] base class | 
|  | //      sub-objects shall be a constexpr constructor; | 
|  | //   -- the assignment operator selected to copy/move each direct base | 
|  | //      class is a constexpr function, and | 
|  | for (const auto &B : ClassDecl->bases()) { | 
|  | const RecordType *BaseType = B.getType()->getAs<RecordType>(); | 
|  | if (!BaseType) continue; | 
|  |  | 
|  | CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); | 
|  | if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg, | 
|  | InheritedCtor, Inherited)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //   -- every constructor involved in initializing non-static data members | 
|  | //      [...] shall be a constexpr constructor; | 
|  | //   -- every non-static data member and base class sub-object shall be | 
|  | //      initialized | 
|  | //   -- for each non-static data member of X that is of class type (or array | 
|  | //      thereof), the assignment operator selected to copy/move that member is | 
|  | //      a constexpr function | 
|  | for (const auto *F : ClassDecl->fields()) { | 
|  | if (F->isInvalidDecl()) | 
|  | continue; | 
|  | if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer()) | 
|  | continue; | 
|  | QualType BaseType = S.Context.getBaseElementType(F->getType()); | 
|  | if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { | 
|  | CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
|  | if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, | 
|  | BaseType.getCVRQualifiers(), | 
|  | ConstArg && !F->isMutable())) | 
|  | return false; | 
|  | } else if (CSM == Sema::CXXDefaultConstructor) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // All OK, it's constexpr! | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static Sema::ImplicitExceptionSpecification | 
|  | ComputeDefaultedSpecialMemberExceptionSpec( | 
|  | Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, | 
|  | Sema::InheritedConstructorInfo *ICI); | 
|  |  | 
|  | static Sema::ImplicitExceptionSpecification | 
|  | computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) { | 
|  | auto CSM = S.getSpecialMember(MD); | 
|  | if (CSM != Sema::CXXInvalid) | 
|  | return ComputeDefaultedSpecialMemberExceptionSpec(S, Loc, MD, CSM, nullptr); | 
|  |  | 
|  | auto *CD = cast<CXXConstructorDecl>(MD); | 
|  | assert(CD->getInheritedConstructor() && | 
|  | "only special members have implicit exception specs"); | 
|  | Sema::InheritedConstructorInfo ICI( | 
|  | S, Loc, CD->getInheritedConstructor().getShadowDecl()); | 
|  | return ComputeDefaultedSpecialMemberExceptionSpec( | 
|  | S, Loc, CD, Sema::CXXDefaultConstructor, &ICI); | 
|  | } | 
|  |  | 
|  | static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S, | 
|  | CXXMethodDecl *MD) { | 
|  | FunctionProtoType::ExtProtoInfo EPI; | 
|  |  | 
|  | // Build an exception specification pointing back at this member. | 
|  | EPI.ExceptionSpec.Type = EST_Unevaluated; | 
|  | EPI.ExceptionSpec.SourceDecl = MD; | 
|  |  | 
|  | // Set the calling convention to the default for C++ instance methods. | 
|  | EPI.ExtInfo = EPI.ExtInfo.withCallingConv( | 
|  | S.Context.getDefaultCallingConvention(/*IsVariadic=*/false, | 
|  | /*IsCXXMethod=*/true)); | 
|  | return EPI; | 
|  | } | 
|  |  | 
|  | void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) { | 
|  | const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); | 
|  | if (FPT->getExceptionSpecType() != EST_Unevaluated) | 
|  | return; | 
|  |  | 
|  | // Evaluate the exception specification. | 
|  | auto IES = computeImplicitExceptionSpec(*this, Loc, MD); | 
|  | auto ESI = IES.getExceptionSpec(); | 
|  |  | 
|  | // Update the type of the special member to use it. | 
|  | UpdateExceptionSpec(MD, ESI); | 
|  |  | 
|  | // A user-provided destructor can be defined outside the class. When that | 
|  | // happens, be sure to update the exception specification on both | 
|  | // declarations. | 
|  | const FunctionProtoType *CanonicalFPT = | 
|  | MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>(); | 
|  | if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated) | 
|  | UpdateExceptionSpec(MD->getCanonicalDecl(), ESI); | 
|  | } | 
|  |  | 
|  | void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) { | 
|  | CXXRecordDecl *RD = MD->getParent(); | 
|  | CXXSpecialMember CSM = getSpecialMember(MD); | 
|  |  | 
|  | assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid && | 
|  | "not an explicitly-defaulted special member"); | 
|  |  | 
|  | // Whether this was the first-declared instance of the constructor. | 
|  | // This affects whether we implicitly add an exception spec and constexpr. | 
|  | bool First = MD == MD->getCanonicalDecl(); | 
|  |  | 
|  | bool HadError = false; | 
|  |  | 
|  | // C++11 [dcl.fct.def.default]p1: | 
|  | //   A function that is explicitly defaulted shall | 
|  | //     -- be a special member function (checked elsewhere), | 
|  | //     -- have the same type (except for ref-qualifiers, and except that a | 
|  | //        copy operation can take a non-const reference) as an implicit | 
|  | //        declaration, and | 
|  | //     -- not have default arguments. | 
|  | // C++2a changes the second bullet to instead delete the function if it's | 
|  | // defaulted on its first declaration, unless it's "an assignment operator, | 
|  | // and its return type differs or its parameter type is not a reference". | 
|  | bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus2a && First; | 
|  | bool ShouldDeleteForTypeMismatch = false; | 
|  | unsigned ExpectedParams = 1; | 
|  | if (CSM == CXXDefaultConstructor || CSM == CXXDestructor) | 
|  | ExpectedParams = 0; | 
|  | if (MD->getNumParams() != ExpectedParams) { | 
|  | // This checks for default arguments: a copy or move constructor with a | 
|  | // default argument is classified as a default constructor, and assignment | 
|  | // operations and destructors can't have default arguments. | 
|  | Diag(MD->getLocation(), diag::err_defaulted_special_member_params) | 
|  | << CSM << MD->getSourceRange(); | 
|  | HadError = true; | 
|  | } else if (MD->isVariadic()) { | 
|  | if (DeleteOnTypeMismatch) | 
|  | ShouldDeleteForTypeMismatch = true; | 
|  | else { | 
|  | Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic) | 
|  | << CSM << MD->getSourceRange(); | 
|  | HadError = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>(); | 
|  |  | 
|  | bool CanHaveConstParam = false; | 
|  | if (CSM == CXXCopyConstructor) | 
|  | CanHaveConstParam = RD->implicitCopyConstructorHasConstParam(); | 
|  | else if (CSM == CXXCopyAssignment) | 
|  | CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam(); | 
|  |  | 
|  | QualType ReturnType = Context.VoidTy; | 
|  | if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) { | 
|  | // Check for return type matching. | 
|  | ReturnType = Type->getReturnType(); | 
|  |  | 
|  | QualType DeclType = Context.getTypeDeclType(RD); | 
|  | DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace()); | 
|  | QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType); | 
|  |  | 
|  | if (!Context.hasSameType(ReturnType, ExpectedReturnType)) { | 
|  | Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type) | 
|  | << (CSM == CXXMoveAssignment) << ExpectedReturnType; | 
|  | HadError = true; | 
|  | } | 
|  |  | 
|  | // A defaulted special member cannot have cv-qualifiers. | 
|  | if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) { | 
|  | if (DeleteOnTypeMismatch) | 
|  | ShouldDeleteForTypeMismatch = true; | 
|  | else { | 
|  | Diag(MD->getLocation(), diag::err_defaulted_special_member_quals) | 
|  | << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14; | 
|  | HadError = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for parameter type matching. | 
|  | QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType(); | 
|  | bool HasConstParam = false; | 
|  | if (ExpectedParams && ArgType->isReferenceType()) { | 
|  | // Argument must be reference to possibly-const T. | 
|  | QualType ReferentType = ArgType->getPointeeType(); | 
|  | HasConstParam = ReferentType.isConstQualified(); | 
|  |  | 
|  | if (ReferentType.isVolatileQualified()) { | 
|  | if (DeleteOnTypeMismatch) | 
|  | ShouldDeleteForTypeMismatch = true; | 
|  | else { | 
|  | Diag(MD->getLocation(), | 
|  | diag::err_defaulted_special_member_volatile_param) << CSM; | 
|  | HadError = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HasConstParam && !CanHaveConstParam) { | 
|  | if (DeleteOnTypeMismatch) | 
|  | ShouldDeleteForTypeMismatch = true; | 
|  | else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) { | 
|  | Diag(MD->getLocation(), | 
|  | diag::err_defaulted_special_member_copy_const_param) | 
|  | << (CSM == CXXCopyAssignment); | 
|  | // FIXME: Explain why this special member can't be const. | 
|  | HadError = true; | 
|  | } else { | 
|  | Diag(MD->getLocation(), | 
|  | diag::err_defaulted_special_member_move_const_param) | 
|  | << (CSM == CXXMoveAssignment); | 
|  | HadError = true; | 
|  | } | 
|  | } | 
|  | } else if (ExpectedParams) { | 
|  | // A copy assignment operator can take its argument by value, but a | 
|  | // defaulted one cannot. | 
|  | assert(CSM == CXXCopyAssignment && "unexpected non-ref argument"); | 
|  | Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); | 
|  | HadError = true; | 
|  | } | 
|  |  | 
|  | // C++11 [dcl.fct.def.default]p2: | 
|  | //   An explicitly-defaulted function may be declared constexpr only if it | 
|  | //   would have been implicitly declared as constexpr, | 
|  | // Do not apply this rule to members of class templates, since core issue 1358 | 
|  | // makes such functions always instantiate to constexpr functions. For | 
|  | // functions which cannot be constexpr (for non-constructors in C++11 and for | 
|  | // destructors in C++1y), this is checked elsewhere. | 
|  | // | 
|  | // FIXME: This should not apply if the member is deleted. | 
|  | bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM, | 
|  | HasConstParam); | 
|  | if ((getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD) | 
|  | : isa<CXXConstructorDecl>(MD)) && | 
|  | MD->isConstexpr() && !Constexpr && | 
|  | MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { | 
|  | Diag(MD->getBeginLoc(), MD->isConsteval() | 
|  | ? diag::err_incorrect_defaulted_consteval | 
|  | : diag::err_incorrect_defaulted_constexpr) | 
|  | << CSM; | 
|  | // FIXME: Explain why the special member can't be constexpr. | 
|  | HadError = true; | 
|  | } | 
|  |  | 
|  | if (First) { | 
|  | // C++2a [dcl.fct.def.default]p3: | 
|  | //   If a function is explicitly defaulted on its first declaration, it is | 
|  | //   implicitly considered to be constexpr if the implicit declaration | 
|  | //   would be. | 
|  | MD->setConstexprKind(Constexpr ? CSK_constexpr : CSK_unspecified); | 
|  |  | 
|  | if (!Type->hasExceptionSpec()) { | 
|  | // C++2a [except.spec]p3: | 
|  | //   If a declaration of a function does not have a noexcept-specifier | 
|  | //   [and] is defaulted on its first declaration, [...] the exception | 
|  | //   specification is as specified below | 
|  | FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo(); | 
|  | EPI.ExceptionSpec.Type = EST_Unevaluated; | 
|  | EPI.ExceptionSpec.SourceDecl = MD; | 
|  | MD->setType(Context.getFunctionType(ReturnType, | 
|  | llvm::makeArrayRef(&ArgType, | 
|  | ExpectedParams), | 
|  | EPI)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) { | 
|  | if (First) { | 
|  | SetDeclDeleted(MD, MD->getLocation()); | 
|  | if (!inTemplateInstantiation() && !HadError) { | 
|  | Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM; | 
|  | if (ShouldDeleteForTypeMismatch) { | 
|  | Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM; | 
|  | } else { | 
|  | ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); | 
|  | } | 
|  | } | 
|  | if (ShouldDeleteForTypeMismatch && !HadError) { | 
|  | Diag(MD->getLocation(), | 
|  | diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM; | 
|  | } | 
|  | } else { | 
|  | // C++11 [dcl.fct.def.default]p4: | 
|  | //   [For a] user-provided explicitly-defaulted function [...] if such a | 
|  | //   function is implicitly defined as deleted, the program is ill-formed. | 
|  | Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM; | 
|  | assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl"); | 
|  | ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); | 
|  | HadError = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HadError) | 
|  | MD->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | void Sema::CheckDelayedMemberExceptionSpecs() { | 
|  | decltype(DelayedOverridingExceptionSpecChecks) Overriding; | 
|  | decltype(DelayedEquivalentExceptionSpecChecks) Equivalent; | 
|  |  | 
|  | std::swap(Overriding, DelayedOverridingExceptionSpecChecks); | 
|  | std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks); | 
|  |  | 
|  | // Perform any deferred checking of exception specifications for virtual | 
|  | // destructors. | 
|  | for (auto &Check : Overriding) | 
|  | CheckOverridingFunctionExceptionSpec(Check.first, Check.second); | 
|  |  | 
|  | // Perform any deferred checking of exception specifications for befriended | 
|  | // special members. | 
|  | for (auto &Check : Equivalent) | 
|  | CheckEquivalentExceptionSpec(Check.second, Check.first); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// CRTP base class for visiting operations performed by a special member | 
|  | /// function (or inherited constructor). | 
|  | template<typename Derived> | 
|  | struct SpecialMemberVisitor { | 
|  | Sema &S; | 
|  | CXXMethodDecl *MD; | 
|  | Sema::CXXSpecialMember CSM; | 
|  | Sema::InheritedConstructorInfo *ICI; | 
|  |  | 
|  | // Properties of the special member, computed for convenience. | 
|  | bool IsConstructor = false, IsAssignment = false, ConstArg = false; | 
|  |  | 
|  | SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, | 
|  | Sema::InheritedConstructorInfo *ICI) | 
|  | : S(S), MD(MD), CSM(CSM), ICI(ICI) { | 
|  | switch (CSM) { | 
|  | case Sema::CXXDefaultConstructor: | 
|  | case Sema::CXXCopyConstructor: | 
|  | case Sema::CXXMoveConstructor: | 
|  | IsConstructor = true; | 
|  | break; | 
|  | case Sema::CXXCopyAssignment: | 
|  | case Sema::CXXMoveAssignment: | 
|  | IsAssignment = true; | 
|  | break; | 
|  | case Sema::CXXDestructor: | 
|  | break; | 
|  | case Sema::CXXInvalid: | 
|  | llvm_unreachable("invalid special member kind"); | 
|  | } | 
|  |  | 
|  | if (MD->getNumParams()) { | 
|  | if (const ReferenceType *RT = | 
|  | MD->getParamDecl(0)->getType()->getAs<ReferenceType>()) | 
|  | ConstArg = RT->getPointeeType().isConstQualified(); | 
|  | } | 
|  | } | 
|  |  | 
|  | Derived &getDerived() { return static_cast<Derived&>(*this); } | 
|  |  | 
|  | /// Is this a "move" special member? | 
|  | bool isMove() const { | 
|  | return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment; | 
|  | } | 
|  |  | 
|  | /// Look up the corresponding special member in the given class. | 
|  | Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class, | 
|  | unsigned Quals, bool IsMutable) { | 
|  | return lookupCallFromSpecialMember(S, Class, CSM, Quals, | 
|  | ConstArg && !IsMutable); | 
|  | } | 
|  |  | 
|  | /// Look up the constructor for the specified base class to see if it's | 
|  | /// overridden due to this being an inherited constructor. | 
|  | Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) { | 
|  | if (!ICI) | 
|  | return {}; | 
|  | assert(CSM == Sema::CXXDefaultConstructor); | 
|  | auto *BaseCtor = | 
|  | cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor(); | 
|  | if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first) | 
|  | return MD; | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | /// A base or member subobject. | 
|  | typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject; | 
|  |  | 
|  | /// Get the location to use for a subobject in diagnostics. | 
|  | static SourceLocation getSubobjectLoc(Subobject Subobj) { | 
|  | // FIXME: For an indirect virtual base, the direct base leading to | 
|  | // the indirect virtual base would be a more useful choice. | 
|  | if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>()) | 
|  | return B->getBaseTypeLoc(); | 
|  | else | 
|  | return Subobj.get<FieldDecl*>()->getLocation(); | 
|  | } | 
|  |  | 
|  | enum BasesToVisit { | 
|  | /// Visit all non-virtual (direct) bases. | 
|  | VisitNonVirtualBases, | 
|  | /// Visit all direct bases, virtual or not. | 
|  | VisitDirectBases, | 
|  | /// Visit all non-virtual bases, and all virtual bases if the class | 
|  | /// is not abstract. | 
|  | VisitPotentiallyConstructedBases, | 
|  | /// Visit all direct or virtual bases. | 
|  | VisitAllBases | 
|  | }; | 
|  |  | 
|  | // Visit the bases and members of the class. | 
|  | bool visit(BasesToVisit Bases) { | 
|  | CXXRecordDecl *RD = MD->getParent(); | 
|  |  | 
|  | if (Bases == VisitPotentiallyConstructedBases) | 
|  | Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases; | 
|  |  | 
|  | for (auto &B : RD->bases()) | 
|  | if ((Bases == VisitDirectBases || !B.isVirtual()) && | 
|  | getDerived().visitBase(&B)) | 
|  | return true; | 
|  |  | 
|  | if (Bases == VisitAllBases) | 
|  | for (auto &B : RD->vbases()) | 
|  | if (getDerived().visitBase(&B)) | 
|  | return true; | 
|  |  | 
|  | for (auto *F : RD->fields()) | 
|  | if (!F->isInvalidDecl() && !F->isUnnamedBitfield() && | 
|  | getDerived().visitField(F)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct SpecialMemberDeletionInfo | 
|  | : SpecialMemberVisitor<SpecialMemberDeletionInfo> { | 
|  | bool Diagnose; | 
|  |  | 
|  | SourceLocation Loc; | 
|  |  | 
|  | bool AllFieldsAreConst; | 
|  |  | 
|  | SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD, | 
|  | Sema::CXXSpecialMember CSM, | 
|  | Sema::InheritedConstructorInfo *ICI, bool Diagnose) | 
|  | : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose), | 
|  | Loc(MD->getLocation()), AllFieldsAreConst(true) {} | 
|  |  | 
|  | bool inUnion() const { return MD->getParent()->isUnion(); } | 
|  |  | 
|  | Sema::CXXSpecialMember getEffectiveCSM() { | 
|  | return ICI ? Sema::CXXInvalid : CSM; | 
|  | } | 
|  |  | 
|  | bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType); | 
|  |  | 
|  | bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); } | 
|  | bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); } | 
|  |  | 
|  | bool shouldDeleteForBase(CXXBaseSpecifier *Base); | 
|  | bool shouldDeleteForField(FieldDecl *FD); | 
|  | bool shouldDeleteForAllConstMembers(); | 
|  |  | 
|  | bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj, | 
|  | unsigned Quals); | 
|  | bool shouldDeleteForSubobjectCall(Subobject Subobj, | 
|  | Sema::SpecialMemberOverloadResult SMOR, | 
|  | bool IsDtorCallInCtor); | 
|  |  | 
|  | bool isAccessible(Subobject Subobj, CXXMethodDecl *D); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Is the given special member inaccessible when used on the given | 
|  | /// sub-object. | 
|  | bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj, | 
|  | CXXMethodDecl *target) { | 
|  | /// If we're operating on a base class, the object type is the | 
|  | /// type of this special member. | 
|  | QualType objectTy; | 
|  | AccessSpecifier access = target->getAccess(); | 
|  | if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) { | 
|  | objectTy = S.Context.getTypeDeclType(MD->getParent()); | 
|  | access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access); | 
|  |  | 
|  | // If we're operating on a field, the object type is the type of the field. | 
|  | } else { | 
|  | objectTy = S.Context.getTypeDeclType(target->getParent()); | 
|  | } | 
|  |  | 
|  | return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy); | 
|  | } | 
|  |  | 
|  | /// Check whether we should delete a special member due to the implicit | 
|  | /// definition containing a call to a special member of a subobject. | 
|  | bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall( | 
|  | Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR, | 
|  | bool IsDtorCallInCtor) { | 
|  | CXXMethodDecl *Decl = SMOR.getMethod(); | 
|  | FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); | 
|  |  | 
|  | int DiagKind = -1; | 
|  |  | 
|  | if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted) | 
|  | DiagKind = !Decl ? 0 : 1; | 
|  | else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) | 
|  | DiagKind = 2; | 
|  | else if (!isAccessible(Subobj, Decl)) | 
|  | DiagKind = 3; | 
|  | else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() && | 
|  | !Decl->isTrivial()) { | 
|  | // A member of a union must have a trivial corresponding special member. | 
|  | // As a weird special case, a destructor call from a union's constructor | 
|  | // must be accessible and non-deleted, but need not be trivial. Such a | 
|  | // destructor is never actually called, but is semantically checked as | 
|  | // if it were. | 
|  | DiagKind = 4; | 
|  | } | 
|  |  | 
|  | if (DiagKind == -1) | 
|  | return false; | 
|  |  | 
|  | if (Diagnose) { | 
|  | if (Field) { | 
|  | S.Diag(Field->getLocation(), | 
|  | diag::note_deleted_special_member_class_subobject) | 
|  | << getEffectiveCSM() << MD->getParent() << /*IsField*/true | 
|  | << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false; | 
|  | } else { | 
|  | CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>(); | 
|  | S.Diag(Base->getBeginLoc(), | 
|  | diag::note_deleted_special_member_class_subobject) | 
|  | << getEffectiveCSM() << MD->getParent() << /*IsField*/ false | 
|  | << Base->getType() << DiagKind << IsDtorCallInCtor | 
|  | << /*IsObjCPtr*/false; | 
|  | } | 
|  |  | 
|  | if (DiagKind == 1) | 
|  | S.NoteDeletedFunction(Decl); | 
|  | // FIXME: Explain inaccessibility if DiagKind == 3. | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check whether we should delete a special member function due to having a | 
|  | /// direct or virtual base class or non-static data member of class type M. | 
|  | bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject( | 
|  | CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) { | 
|  | FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); | 
|  | bool IsMutable = Field && Field->isMutable(); | 
|  |  | 
|  | // C++11 [class.ctor]p5: | 
|  | // -- any direct or virtual base class, or non-static data member with no | 
|  | //    brace-or-equal-initializer, has class type M (or array thereof) and | 
|  | //    either M has no default constructor or overload resolution as applied | 
|  | //    to M's default constructor results in an ambiguity or in a function | 
|  | //    that is deleted or inaccessible | 
|  | // C++11 [class.copy]p11, C++11 [class.copy]p23: | 
|  | // -- a direct or virtual base class B that cannot be copied/moved because | 
|  | //    overload resolution, as applied to B's corresponding special member, | 
|  | //    results in an ambiguity or a function that is deleted or inaccessible | 
|  | //    from the defaulted special member | 
|  | // C++11 [class.dtor]p5: | 
|  | // -- any direct or virtual base class [...] has a type with a destructor | 
|  | //    that is deleted or inaccessible | 
|  | if (!(CSM == Sema::CXXDefaultConstructor && | 
|  | Field && Field->hasInClassInitializer()) && | 
|  | shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable), | 
|  | false)) | 
|  | return true; | 
|  |  | 
|  | // C++11 [class.ctor]p5, C++11 [class.copy]p11: | 
|  | // -- any direct or virtual base class or non-static data member has a | 
|  | //    type with a destructor that is deleted or inaccessible | 
|  | if (IsConstructor) { | 
|  | Sema::SpecialMemberOverloadResult SMOR = | 
|  | S.LookupSpecialMember(Class, Sema::CXXDestructor, | 
|  | false, false, false, false, false); | 
|  | if (shouldDeleteForSubobjectCall(Subobj, SMOR, true)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember( | 
|  | FieldDecl *FD, QualType FieldType) { | 
|  | // The defaulted special functions are defined as deleted if this is a variant | 
|  | // member with a non-trivial ownership type, e.g., ObjC __strong or __weak | 
|  | // type under ARC. | 
|  | if (!FieldType.hasNonTrivialObjCLifetime()) | 
|  | return false; | 
|  |  | 
|  | // Don't make the defaulted default constructor defined as deleted if the | 
|  | // member has an in-class initializer. | 
|  | if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) | 
|  | return false; | 
|  |  | 
|  | if (Diagnose) { | 
|  | auto *ParentClass = cast<CXXRecordDecl>(FD->getParent()); | 
|  | S.Diag(FD->getLocation(), | 
|  | diag::note_deleted_special_member_class_subobject) | 
|  | << getEffectiveCSM() << ParentClass << /*IsField*/true | 
|  | << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check whether we should delete a special member function due to the class | 
|  | /// having a particular direct or virtual base class. | 
|  | bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) { | 
|  | CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl(); | 
|  | // If program is correct, BaseClass cannot be null, but if it is, the error | 
|  | // must be reported elsewhere. | 
|  | if (!BaseClass) | 
|  | return false; | 
|  | // If we have an inheriting constructor, check whether we're calling an | 
|  | // inherited constructor instead of a default constructor. | 
|  | Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); | 
|  | if (auto *BaseCtor = SMOR.getMethod()) { | 
|  | // Note that we do not check access along this path; other than that, | 
|  | // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false); | 
|  | // FIXME: Check that the base has a usable destructor! Sink this into | 
|  | // shouldDeleteForClassSubobject. | 
|  | if (BaseCtor->isDeleted() && Diagnose) { | 
|  | S.Diag(Base->getBeginLoc(), | 
|  | diag::note_deleted_special_member_class_subobject) | 
|  | << getEffectiveCSM() << MD->getParent() << /*IsField*/ false | 
|  | << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false | 
|  | << /*IsObjCPtr*/false; | 
|  | S.NoteDeletedFunction(BaseCtor); | 
|  | } | 
|  | return BaseCtor->isDeleted(); | 
|  | } | 
|  | return shouldDeleteForClassSubobject(BaseClass, Base, 0); | 
|  | } | 
|  |  | 
|  | /// Check whether we should delete a special member function due to the class | 
|  | /// having a particular non-static data member. | 
|  | bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) { | 
|  | QualType FieldType = S.Context.getBaseElementType(FD->getType()); | 
|  | CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); | 
|  |  | 
|  | if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType)) | 
|  | return true; | 
|  |  | 
|  | if (CSM == Sema::CXXDefaultConstructor) { | 
|  | // For a default constructor, all references must be initialized in-class | 
|  | // and, if a union, it must have a non-const member. | 
|  | if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) { | 
|  | if (Diagnose) | 
|  | S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) | 
|  | << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0; | 
|  | return true; | 
|  | } | 
|  | // C++11 [class.ctor]p5: any non-variant non-static data member of | 
|  | // const-qualified type (or array thereof) with no | 
|  | // brace-or-equal-initializer does not have a user-provided default | 
|  | // constructor. | 
|  | if (!inUnion() && FieldType.isConstQualified() && | 
|  | !FD->hasInClassInitializer() && | 
|  | (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) { | 
|  | if (Diagnose) | 
|  | S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) | 
|  | << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (inUnion() && !FieldType.isConstQualified()) | 
|  | AllFieldsAreConst = false; | 
|  | } else if (CSM == Sema::CXXCopyConstructor) { | 
|  | // For a copy constructor, data members must not be of rvalue reference | 
|  | // type. | 
|  | if (FieldType->isRValueReferenceType()) { | 
|  | if (Diagnose) | 
|  | S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference) | 
|  | << MD->getParent() << FD << FieldType; | 
|  | return true; | 
|  | } | 
|  | } else if (IsAssignment) { | 
|  | // For an assignment operator, data members must not be of reference type. | 
|  | if (FieldType->isReferenceType()) { | 
|  | if (Diagnose) | 
|  | S.Diag(FD->getLocation(), diag::note_deleted_assign_field) | 
|  | << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0; | 
|  | return true; | 
|  | } | 
|  | if (!FieldRecord && FieldType.isConstQualified()) { | 
|  | // C++11 [class.copy]p23: | 
|  | // -- a non-static data member of const non-class type (or array thereof) | 
|  | if (Diagnose) | 
|  | S.Diag(FD->getLocation(), diag::note_deleted_assign_field) | 
|  | << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FieldRecord) { | 
|  | // Some additional restrictions exist on the variant members. | 
|  | if (!inUnion() && FieldRecord->isUnion() && | 
|  | FieldRecord->isAnonymousStructOrUnion()) { | 
|  | bool AllVariantFieldsAreConst = true; | 
|  |  | 
|  | // FIXME: Handle anonymous unions declared within anonymous unions. | 
|  | for (auto *UI : FieldRecord->fields()) { | 
|  | QualType UnionFieldType = S.Context.getBaseElementType(UI->getType()); | 
|  |  | 
|  | if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType)) | 
|  | return true; | 
|  |  | 
|  | if (!UnionFieldType.isConstQualified()) | 
|  | AllVariantFieldsAreConst = false; | 
|  |  | 
|  | CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl(); | 
|  | if (UnionFieldRecord && | 
|  | shouldDeleteForClassSubobject(UnionFieldRecord, UI, | 
|  | UnionFieldType.getCVRQualifiers())) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // At least one member in each anonymous union must be non-const | 
|  | if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst && | 
|  | !FieldRecord->field_empty()) { | 
|  | if (Diagnose) | 
|  | S.Diag(FieldRecord->getLocation(), | 
|  | diag::note_deleted_default_ctor_all_const) | 
|  | << !!ICI << MD->getParent() << /*anonymous union*/1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Don't check the implicit member of the anonymous union type. | 
|  | // This is technically non-conformant, but sanity demands it. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (shouldDeleteForClassSubobject(FieldRecord, FD, | 
|  | FieldType.getCVRQualifiers())) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// C++11 [class.ctor] p5: | 
|  | ///   A defaulted default constructor for a class X is defined as deleted if | 
|  | /// X is a union and all of its variant members are of const-qualified type. | 
|  | bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() { | 
|  | // This is a silly definition, because it gives an empty union a deleted | 
|  | // default constructor. Don't do that. | 
|  | if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) { | 
|  | bool AnyFields = false; | 
|  | for (auto *F : MD->getParent()->fields()) | 
|  | if ((AnyFields = !F->isUnnamedBitfield())) | 
|  | break; | 
|  | if (!AnyFields) | 
|  | return false; | 
|  | if (Diagnose) | 
|  | S.Diag(MD->getParent()->getLocation(), | 
|  | diag::note_deleted_default_ctor_all_const) | 
|  | << !!ICI << MD->getParent() << /*not anonymous union*/0; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine whether a defaulted special member function should be defined as | 
|  | /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11, | 
|  | /// C++11 [class.copy]p23, and C++11 [class.dtor]p5. | 
|  | bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM, | 
|  | InheritedConstructorInfo *ICI, | 
|  | bool Diagnose) { | 
|  | if (MD->isInvalidDecl()) | 
|  | return false; | 
|  | CXXRecordDecl *RD = MD->getParent(); | 
|  | assert(!RD->isDependentType() && "do deletion after instantiation"); | 
|  | if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl()) | 
|  | return false; | 
|  |  | 
|  | // C++11 [expr.lambda.prim]p19: | 
|  | //   The closure type associated with a lambda-expression has a | 
|  | //   deleted (8.4.3) default constructor and a deleted copy | 
|  | //   assignment operator. | 
|  | // C++2a adds back these operators if the lambda has no lambda-capture. | 
|  | if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() && | 
|  | (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) { | 
|  | if (Diagnose) | 
|  | Diag(RD->getLocation(), diag::note_lambda_decl); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For an anonymous struct or union, the copy and assignment special members | 
|  | // will never be used, so skip the check. For an anonymous union declared at | 
|  | // namespace scope, the constructor and destructor are used. | 
|  | if (CSM != CXXDefaultConstructor && CSM != CXXDestructor && | 
|  | RD->isAnonymousStructOrUnion()) | 
|  | return false; | 
|  |  | 
|  | // C++11 [class.copy]p7, p18: | 
|  | //   If the class definition declares a move constructor or move assignment | 
|  | //   operator, an implicitly declared copy constructor or copy assignment | 
|  | //   operator is defined as deleted. | 
|  | if (MD->isImplicit() && | 
|  | (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) { | 
|  | CXXMethodDecl *UserDeclaredMove = nullptr; | 
|  |  | 
|  | // In Microsoft mode up to MSVC 2013, a user-declared move only causes the | 
|  | // deletion of the corresponding copy operation, not both copy operations. | 
|  | // MSVC 2015 has adopted the standards conforming behavior. | 
|  | bool DeletesOnlyMatchingCopy = | 
|  | getLangOpts().MSVCCompat && | 
|  | !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015); | 
|  |  | 
|  | if (RD->hasUserDeclaredMoveConstructor() && | 
|  | (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) { | 
|  | if (!Diagnose) return true; | 
|  |  | 
|  | // Find any user-declared move constructor. | 
|  | for (auto *I : RD->ctors()) { | 
|  | if (I->isMoveConstructor()) { | 
|  | UserDeclaredMove = I; | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert(UserDeclaredMove); | 
|  | } else if (RD->hasUserDeclaredMoveAssignment() && | 
|  | (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) { | 
|  | if (!Diagnose) return true; | 
|  |  | 
|  | // Find any user-declared move assignment operator. | 
|  | for (auto *I : RD->methods()) { | 
|  | if (I->isMoveAssignmentOperator()) { | 
|  | UserDeclaredMove = I; | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert(UserDeclaredMove); | 
|  | } | 
|  |  | 
|  | if (UserDeclaredMove) { | 
|  | Diag(UserDeclaredMove->getLocation(), | 
|  | diag::note_deleted_copy_user_declared_move) | 
|  | << (CSM == CXXCopyAssignment) << RD | 
|  | << UserDeclaredMove->isMoveAssignmentOperator(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Do access control from the special member function | 
|  | ContextRAII MethodContext(*this, MD); | 
|  |  | 
|  | // C++11 [class.dtor]p5: | 
|  | // -- for a virtual destructor, lookup of the non-array deallocation function | 
|  | //    results in an ambiguity or in a function that is deleted or inaccessible | 
|  | if (CSM == CXXDestructor && MD->isVirtual()) { | 
|  | FunctionDecl *OperatorDelete = nullptr; | 
|  | DeclarationName Name = | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Delete); | 
|  | if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name, | 
|  | OperatorDelete, /*Diagnose*/false)) { | 
|  | if (Diagnose) | 
|  | Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose); | 
|  |  | 
|  | // Per DR1611, do not consider virtual bases of constructors of abstract | 
|  | // classes, since we are not going to construct them. | 
|  | // Per DR1658, do not consider virtual bases of destructors of abstract | 
|  | // classes either. | 
|  | // Per DR2180, for assignment operators we only assign (and thus only | 
|  | // consider) direct bases. | 
|  | if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases | 
|  | : SMI.VisitPotentiallyConstructedBases)) | 
|  | return true; | 
|  |  | 
|  | if (SMI.shouldDeleteForAllConstMembers()) | 
|  | return true; | 
|  |  | 
|  | if (getLangOpts().CUDA) { | 
|  | // We should delete the special member in CUDA mode if target inference | 
|  | // failed. | 
|  | // For inherited constructors (non-null ICI), CSM may be passed so that MD | 
|  | // is treated as certain special member, which may not reflect what special | 
|  | // member MD really is. However inferCUDATargetForImplicitSpecialMember | 
|  | // expects CSM to match MD, therefore recalculate CSM. | 
|  | assert(ICI || CSM == getSpecialMember(MD)); | 
|  | auto RealCSM = CSM; | 
|  | if (ICI) | 
|  | RealCSM = getSpecialMember(MD); | 
|  |  | 
|  | return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD, | 
|  | SMI.ConstArg, Diagnose); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Perform lookup for a special member of the specified kind, and determine | 
|  | /// whether it is trivial. If the triviality can be determined without the | 
|  | /// lookup, skip it. This is intended for use when determining whether a | 
|  | /// special member of a containing object is trivial, and thus does not ever | 
|  | /// perform overload resolution for default constructors. | 
|  | /// | 
|  | /// If \p Selected is not \c NULL, \c *Selected will be filled in with the | 
|  | /// member that was most likely to be intended to be trivial, if any. | 
|  | /// | 
|  | /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to | 
|  | /// determine whether the special member is trivial. | 
|  | static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD, | 
|  | Sema::CXXSpecialMember CSM, unsigned Quals, | 
|  | bool ConstRHS, | 
|  | Sema::TrivialABIHandling TAH, | 
|  | CXXMethodDecl **Selected) { | 
|  | if (Selected) | 
|  | *Selected = nullptr; | 
|  |  | 
|  | switch (CSM) { | 
|  | case Sema::CXXInvalid: | 
|  | llvm_unreachable("not a special member"); | 
|  |  | 
|  | case Sema::CXXDefaultConstructor: | 
|  | // C++11 [class.ctor]p5: | 
|  | //   A default constructor is trivial if: | 
|  | //    - all the [direct subobjects] have trivial default constructors | 
|  | // | 
|  | // Note, no overload resolution is performed in this case. | 
|  | if (RD->hasTrivialDefaultConstructor()) | 
|  | return true; | 
|  |  | 
|  | if (Selected) { | 
|  | // If there's a default constructor which could have been trivial, dig it | 
|  | // out. Otherwise, if there's any user-provided default constructor, point | 
|  | // to that as an example of why there's not a trivial one. | 
|  | CXXConstructorDecl *DefCtor = nullptr; | 
|  | if (RD->needsImplicitDefaultConstructor()) | 
|  | S.DeclareImplicitDefaultConstructor(RD); | 
|  | for (auto *CI : RD->ctors()) { | 
|  | if (!CI->isDefaultConstructor()) | 
|  | continue; | 
|  | DefCtor = CI; | 
|  | if (!DefCtor->isUserProvided()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | *Selected = DefCtor; | 
|  | } | 
|  |  | 
|  | return false; | 
|  |  | 
|  | case Sema::CXXDestructor: | 
|  | // C++11 [class.dtor]p5: | 
|  | //   A destructor is trivial if: | 
|  | //    - all the direct [subobjects] have trivial destructors | 
|  | if (RD->hasTrivialDestructor() || | 
|  | (TAH == Sema::TAH_ConsiderTrivialABI && | 
|  | RD->hasTrivialDestructorForCall())) | 
|  | return true; | 
|  |  | 
|  | if (Selected) { | 
|  | if (RD->needsImplicitDestructor()) | 
|  | S.DeclareImplicitDestructor(RD); | 
|  | *Selected = RD->getDestructor(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  |  | 
|  | case Sema::CXXCopyConstructor: | 
|  | // C++11 [class.copy]p12: | 
|  | //   A copy constructor is trivial if: | 
|  | //    - the constructor selected to copy each direct [subobject] is trivial | 
|  | if (RD->hasTrivialCopyConstructor() || | 
|  | (TAH == Sema::TAH_ConsiderTrivialABI && | 
|  | RD->hasTrivialCopyConstructorForCall())) { | 
|  | if (Quals == Qualifiers::Const) | 
|  | // We must either select the trivial copy constructor or reach an | 
|  | // ambiguity; no need to actually perform overload resolution. | 
|  | return true; | 
|  | } else if (!Selected) { | 
|  | return false; | 
|  | } | 
|  | // In C++98, we are not supposed to perform overload resolution here, but we | 
|  | // treat that as a language defect, as suggested on cxx-abi-dev, to treat | 
|  | // cases like B as having a non-trivial copy constructor: | 
|  | //   struct A { template<typename T> A(T&); }; | 
|  | //   struct B { mutable A a; }; | 
|  | goto NeedOverloadResolution; | 
|  |  | 
|  | case Sema::CXXCopyAssignment: | 
|  | // C++11 [class.copy]p25: | 
|  | //   A copy assignment operator is trivial if: | 
|  | //    - the assignment operator selected to copy each direct [subobject] is | 
|  | //      trivial | 
|  | if (RD->hasTrivialCopyAssignment()) { | 
|  | if (Quals == Qualifiers::Const) | 
|  | return true; | 
|  | } else if (!Selected) { | 
|  | return false; | 
|  | } | 
|  | // In C++98, we are not supposed to perform overload resolution here, but we | 
|  | // treat that as a language defect. | 
|  | goto NeedOverloadResolution; | 
|  |  | 
|  | case Sema::CXXMoveConstructor: | 
|  | case Sema::CXXMoveAssignment: | 
|  | NeedOverloadResolution: | 
|  | Sema::SpecialMemberOverloadResult SMOR = | 
|  | lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS); | 
|  |  | 
|  | // The standard doesn't describe how to behave if the lookup is ambiguous. | 
|  | // We treat it as not making the member non-trivial, just like the standard | 
|  | // mandates for the default constructor. This should rarely matter, because | 
|  | // the member will also be deleted. | 
|  | if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) | 
|  | return true; | 
|  |  | 
|  | if (!SMOR.getMethod()) { | 
|  | assert(SMOR.getKind() == | 
|  | Sema::SpecialMemberOverloadResult::NoMemberOrDeleted); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We deliberately don't check if we found a deleted special member. We're | 
|  | // not supposed to! | 
|  | if (Selected) | 
|  | *Selected = SMOR.getMethod(); | 
|  |  | 
|  | if (TAH == Sema::TAH_ConsiderTrivialABI && | 
|  | (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor)) | 
|  | return SMOR.getMethod()->isTrivialForCall(); | 
|  | return SMOR.getMethod()->isTrivial(); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unknown special method kind"); | 
|  | } | 
|  |  | 
|  | static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) { | 
|  | for (auto *CI : RD->ctors()) | 
|  | if (!CI->isImplicit()) | 
|  | return CI; | 
|  |  | 
|  | // Look for constructor templates. | 
|  | typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter; | 
|  | for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) { | 
|  | if (CXXConstructorDecl *CD = | 
|  | dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl())) | 
|  | return CD; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// The kind of subobject we are checking for triviality. The values of this | 
|  | /// enumeration are used in diagnostics. | 
|  | enum TrivialSubobjectKind { | 
|  | /// The subobject is a base class. | 
|  | TSK_BaseClass, | 
|  | /// The subobject is a non-static data member. | 
|  | TSK_Field, | 
|  | /// The object is actually the complete object. | 
|  | TSK_CompleteObject | 
|  | }; | 
|  |  | 
|  | /// Check whether the special member selected for a given type would be trivial. | 
|  | static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc, | 
|  | QualType SubType, bool ConstRHS, | 
|  | Sema::CXXSpecialMember CSM, | 
|  | TrivialSubobjectKind Kind, | 
|  | Sema::TrivialABIHandling TAH, bool Diagnose) { | 
|  | CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl(); | 
|  | if (!SubRD) | 
|  | return true; | 
|  |  | 
|  | CXXMethodDecl *Selected; | 
|  | if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(), | 
|  | ConstRHS, TAH, Diagnose ? &Selected : nullptr)) | 
|  | return true; | 
|  |  | 
|  | if (Diagnose) { | 
|  | if (ConstRHS) | 
|  | SubType.addConst(); | 
|  |  | 
|  | if (!Selected && CSM == Sema::CXXDefaultConstructor) { | 
|  | S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor) | 
|  | << Kind << SubType.getUnqualifiedType(); | 
|  | if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD)) | 
|  | S.Diag(CD->getLocation(), diag::note_user_declared_ctor); | 
|  | } else if (!Selected) | 
|  | S.Diag(SubobjLoc, diag::note_nontrivial_no_copy) | 
|  | << Kind << SubType.getUnqualifiedType() << CSM << SubType; | 
|  | else if (Selected->isUserProvided()) { | 
|  | if (Kind == TSK_CompleteObject) | 
|  | S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided) | 
|  | << Kind << SubType.getUnqualifiedType() << CSM; | 
|  | else { | 
|  | S.Diag(SubobjLoc, diag::note_nontrivial_user_provided) | 
|  | << Kind << SubType.getUnqualifiedType() << CSM; | 
|  | S.Diag(Selected->getLocation(), diag::note_declared_at); | 
|  | } | 
|  | } else { | 
|  | if (Kind != TSK_CompleteObject) | 
|  | S.Diag(SubobjLoc, diag::note_nontrivial_subobject) | 
|  | << Kind << SubType.getUnqualifiedType() << CSM; | 
|  |  | 
|  | // Explain why the defaulted or deleted special member isn't trivial. | 
|  | S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI, | 
|  | Diagnose); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check whether the members of a class type allow a special member to be | 
|  | /// trivial. | 
|  | static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD, | 
|  | Sema::CXXSpecialMember CSM, | 
|  | bool ConstArg, | 
|  | Sema::TrivialABIHandling TAH, | 
|  | bool Diagnose) { | 
|  | for (const auto *FI : RD->fields()) { | 
|  | if (FI->isInvalidDecl() || FI->isUnnamedBitfield()) | 
|  | continue; | 
|  |  | 
|  | QualType FieldType = S.Context.getBaseElementType(FI->getType()); | 
|  |  | 
|  | // Pretend anonymous struct or union members are members of this class. | 
|  | if (FI->isAnonymousStructOrUnion()) { | 
|  | if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(), | 
|  | CSM, ConstArg, TAH, Diagnose)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // C++11 [class.ctor]p5: | 
|  | //   A default constructor is trivial if [...] | 
|  | //    -- no non-static data member of its class has a | 
|  | //       brace-or-equal-initializer | 
|  | if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) { | 
|  | if (Diagnose) | 
|  | S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Objective C ARC 4.3.5: | 
|  | //   [...] nontrivally ownership-qualified types are [...] not trivially | 
|  | //   default constructible, copy constructible, move constructible, copy | 
|  | //   assignable, move assignable, or destructible [...] | 
|  | if (FieldType.hasNonTrivialObjCLifetime()) { | 
|  | if (Diagnose) | 
|  | S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership) | 
|  | << RD << FieldType.getObjCLifetime(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ConstRHS = ConstArg && !FI->isMutable(); | 
|  | if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS, | 
|  | CSM, TSK_Field, TAH, Diagnose)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Diagnose why the specified class does not have a trivial special member of | 
|  | /// the given kind. | 
|  | void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) { | 
|  | QualType Ty = Context.getRecordType(RD); | 
|  |  | 
|  | bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment); | 
|  | checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM, | 
|  | TSK_CompleteObject, TAH_IgnoreTrivialABI, | 
|  | /*Diagnose*/true); | 
|  | } | 
|  |  | 
|  | /// Determine whether a defaulted or deleted special member function is trivial, | 
|  | /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12, | 
|  | /// C++11 [class.copy]p25, and C++11 [class.dtor]p5. | 
|  | bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM, | 
|  | TrivialABIHandling TAH, bool Diagnose) { | 
|  | assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough"); | 
|  |  | 
|  | CXXRecordDecl *RD = MD->getParent(); | 
|  |  | 
|  | bool ConstArg = false; | 
|  |  | 
|  | // C++11 [class.copy]p12, p25: [DR1593] | 
|  | //   A [special member] is trivial if [...] its parameter-type-list is | 
|  | //   equivalent to the parameter-type-list of an implicit declaration [...] | 
|  | switch (CSM) { | 
|  | case CXXDefaultConstructor: | 
|  | case CXXDestructor: | 
|  | // Trivial default constructors and destructors cannot have parameters. | 
|  | break; | 
|  |  | 
|  | case CXXCopyConstructor: | 
|  | case CXXCopyAssignment: { | 
|  | // Trivial copy operations always have const, non-volatile parameter types. | 
|  | ConstArg = true; | 
|  | const ParmVarDecl *Param0 = MD->getParamDecl(0); | 
|  | const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>(); | 
|  | if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) { | 
|  | if (Diagnose) | 
|  | Diag(Param0->getLocation(), diag::note_nontrivial_param_type) | 
|  | << Param0->getSourceRange() << Param0->getType() | 
|  | << Context.getLValueReferenceType( | 
|  | Context.getRecordType(RD).withConst()); | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case CXXMoveConstructor: | 
|  | case CXXMoveAssignment: { | 
|  | // Trivial move operations always have non-cv-qualified parameters. | 
|  | const ParmVarDecl *Param0 = MD->getParamDecl(0); | 
|  | const RValueReferenceType *RT = | 
|  | Param0->getType()->getAs<RValueReferenceType>(); | 
|  | if (!RT || RT->getPointeeType().getCVRQualifiers()) { | 
|  | if (Diagnose) | 
|  | Diag(Param0->getLocation(), diag::note_nontrivial_param_type) | 
|  | << Param0->getSourceRange() << Param0->getType() | 
|  | << Context.getRValueReferenceType(Context.getRecordType(RD)); | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case CXXInvalid: | 
|  | llvm_unreachable("not a special member"); | 
|  | } | 
|  |  | 
|  | if (MD->getMinRequiredArguments() < MD->getNumParams()) { | 
|  | if (Diagnose) | 
|  | Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(), | 
|  | diag::note_nontrivial_default_arg) | 
|  | << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange(); | 
|  | return false; | 
|  | } | 
|  | if (MD->isVariadic()) { | 
|  | if (Diagnose) | 
|  | Diag(MD->getLocation(), diag::note_nontrivial_variadic); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // C++11 [class.ctor]p5, C++11 [class.dtor]p5: | 
|  | //   A copy/move [constructor or assignment operator] is trivial if | 
|  | //    -- the [member] selected to copy/move each direct base class subobject | 
|  | //       is trivial | 
|  | // | 
|  | // C++11 [class.copy]p12, C++11 [class.copy]p25: | 
|  | //   A [default constructor or destructor] is trivial if | 
|  | //    -- all the direct base classes have trivial [default constructors or | 
|  | //       destructors] | 
|  | for (const auto &BI : RD->bases()) | 
|  | if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(), | 
|  | ConstArg, CSM, TSK_BaseClass, TAH, Diagnose)) | 
|  | return false; | 
|  |  | 
|  | // C++11 [class.ctor]p5, C++11 [class.dtor]p5: | 
|  | //   A copy/move [constructor or assignment operator] for a class X is | 
|  | //   trivial if | 
|  | //    -- for each non-static data member of X that is of class type (or array | 
|  | //       thereof), the constructor selected to copy/move that member is | 
|  | //       trivial | 
|  | // | 
|  | // C++11 [class.copy]p12, C++11 [class.copy]p25: | 
|  | //   A [default constructor or destructor] is trivial if | 
|  | //    -- for all of the non-static data members of its class that are of class | 
|  | //       type (or array thereof), each such class has a trivial [default | 
|  | //       constructor or destructor] | 
|  | if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose)) | 
|  | return false; | 
|  |  | 
|  | // C++11 [class.dtor]p5: | 
|  | //   A destructor is trivial if [...] | 
|  | //    -- the destructor is not virtual | 
|  | if (CSM == CXXDestructor && MD->isVirtual()) { | 
|  | if (Diagnose) | 
|  | Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: | 
|  | //   A [special member] for class X is trivial if [...] | 
|  | //    -- class X has no virtual functions and no virtual base classes | 
|  | if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) { | 
|  | if (!Diagnose) | 
|  | return false; | 
|  |  | 
|  | if (RD->getNumVBases()) { | 
|  | // Check for virtual bases. We already know that the corresponding | 
|  | // member in all bases is trivial, so vbases must all be direct. | 
|  | CXXBaseSpecifier &BS = *RD->vbases_begin(); | 
|  | assert(BS.isVirtual()); | 
|  | Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Must have a virtual method. | 
|  | for (const auto *MI : RD->methods()) { | 
|  | if (MI->isVirtual()) { | 
|  | SourceLocation MLoc = MI->getBeginLoc(); | 
|  | Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("dynamic class with no vbases and no virtual functions"); | 
|  | } | 
|  |  | 
|  | // Looks like it's trivial! | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct FindHiddenVirtualMethod { | 
|  | Sema *S; | 
|  | CXXMethodDecl *Method; | 
|  | llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; | 
|  | SmallVector<CXXMethodDecl *, 8> OverloadedMethods; | 
|  |  | 
|  | private: | 
|  | /// Check whether any most overridden method from MD in Methods | 
|  | static bool CheckMostOverridenMethods( | 
|  | const CXXMethodDecl *MD, | 
|  | const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) { | 
|  | if (MD->size_overridden_methods() == 0) | 
|  | return Methods.count(MD->getCanonicalDecl()); | 
|  | for (const CXXMethodDecl *O : MD->overridden_methods()) | 
|  | if (CheckMostOverridenMethods(O, Methods)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | public: | 
|  | /// Member lookup function that determines whether a given C++ | 
|  | /// method overloads virtual methods in a base class without overriding any, | 
|  | /// to be used with CXXRecordDecl::lookupInBases(). | 
|  | bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { | 
|  | RecordDecl *BaseRecord = | 
|  | Specifier->getType()->getAs<RecordType>()->getDecl(); | 
|  |  | 
|  | DeclarationName Name = Method->getDeclName(); | 
|  | assert(Name.getNameKind() == DeclarationName::Identifier); | 
|  |  | 
|  | bool foundSameNameMethod = false; | 
|  | SmallVector<CXXMethodDecl *, 8> overloadedMethods; | 
|  | for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty(); | 
|  | Path.Decls = Path.Decls.slice(1)) { | 
|  | NamedDecl *D = Path.Decls.front(); | 
|  | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { | 
|  | MD = MD->getCanonicalDecl(); | 
|  | foundSameNameMethod = true; | 
|  | // Interested only in hidden virtual methods. | 
|  | if (!MD->isVirtual()) | 
|  | continue; | 
|  | // If the method we are checking overrides a method from its base | 
|  | // don't warn about the other overloaded methods. Clang deviates from | 
|  | // GCC by only diagnosing overloads of inherited virtual functions that | 
|  | // do not override any other virtual functions in the base. GCC's | 
|  | // -Woverloaded-virtual diagnoses any derived function hiding a virtual | 
|  | // function from a base class. These cases may be better served by a | 
|  | // warning (not specific to virtual functions) on call sites when the | 
|  | // call would select a different function from the base class, were it | 
|  | // visible. | 
|  | // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example. | 
|  | if (!S->IsOverload(Method, MD, false)) | 
|  | return true; | 
|  | // Collect the overload only if its hidden. | 
|  | if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods)) | 
|  | overloadedMethods.push_back(MD); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (foundSameNameMethod) | 
|  | OverloadedMethods.append(overloadedMethods.begin(), | 
|  | overloadedMethods.end()); | 
|  | return foundSameNameMethod; | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Add the most overriden methods from MD to Methods | 
|  | static void AddMostOverridenMethods(const CXXMethodDecl *MD, | 
|  | llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) { | 
|  | if (MD->size_overridden_methods() == 0) | 
|  | Methods.insert(MD->getCanonicalDecl()); | 
|  | else | 
|  | for (const CXXMethodDecl *O : MD->overridden_methods()) | 
|  | AddMostOverridenMethods(O, Methods); | 
|  | } | 
|  |  | 
|  | /// Check if a method overloads virtual methods in a base class without | 
|  | /// overriding any. | 
|  | void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD, | 
|  | SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { | 
|  | if (!MD->getDeclName().isIdentifier()) | 
|  | return; | 
|  |  | 
|  | CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. | 
|  | /*bool RecordPaths=*/false, | 
|  | /*bool DetectVirtual=*/false); | 
|  | FindHiddenVirtualMethod FHVM; | 
|  | FHVM.Method = MD; | 
|  | FHVM.S = this; | 
|  |  | 
|  | // Keep the base methods that were overridden or introduced in the subclass | 
|  | // by 'using' in a set. A base method not in this set is hidden. | 
|  | CXXRecordDecl *DC = MD->getParent(); | 
|  | DeclContext::lookup_result R = DC->lookup(MD->getDeclName()); | 
|  | for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { | 
|  | NamedDecl *ND = *I; | 
|  | if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I)) | 
|  | ND = shad->getTargetDecl(); | 
|  | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) | 
|  | AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods); | 
|  | } | 
|  |  | 
|  | if (DC->lookupInBases(FHVM, Paths)) | 
|  | OverloadedMethods = FHVM.OverloadedMethods; | 
|  | } | 
|  |  | 
|  | void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD, | 
|  | SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { | 
|  | for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) { | 
|  | CXXMethodDecl *overloadedMD = OverloadedMethods[i]; | 
|  | PartialDiagnostic PD = PDiag( | 
|  | diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; | 
|  | HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType()); | 
|  | Diag(overloadedMD->getLocation(), PD); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Diagnose methods which overload virtual methods in a base class | 
|  | /// without overriding any. | 
|  | void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) { | 
|  | if (MD->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation())) | 
|  | return; | 
|  |  | 
|  | SmallVector<CXXMethodDecl *, 8> OverloadedMethods; | 
|  | FindHiddenVirtualMethods(MD, OverloadedMethods); | 
|  | if (!OverloadedMethods.empty()) { | 
|  | Diag(MD->getLocation(), diag::warn_overloaded_virtual) | 
|  | << MD << (OverloadedMethods.size() > 1); | 
|  |  | 
|  | NoteHiddenVirtualMethods(MD, OverloadedMethods); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) { | 
|  | auto PrintDiagAndRemoveAttr = [&]() { | 
|  | // No diagnostics if this is a template instantiation. | 
|  | if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) | 
|  | Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), | 
|  | diag::ext_cannot_use_trivial_abi) << &RD; | 
|  | RD.dropAttr<TrivialABIAttr>(); | 
|  | }; | 
|  |  | 
|  | // Ill-formed if the struct has virtual functions. | 
|  | if (RD.isPolymorphic()) { | 
|  | PrintDiagAndRemoveAttr(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (const auto &B : RD.bases()) { | 
|  | // Ill-formed if the base class is non-trivial for the purpose of calls or a | 
|  | // virtual base. | 
|  | if ((!B.getType()->isDependentType() && | 
|  | !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) || | 
|  | B.isVirtual()) { | 
|  | PrintDiagAndRemoveAttr(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const auto *FD : RD.fields()) { | 
|  | // Ill-formed if the field is an ObjectiveC pointer or of a type that is | 
|  | // non-trivial for the purpose of calls. | 
|  | QualType FT = FD->getType(); | 
|  | if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) { | 
|  | PrintDiagAndRemoveAttr(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>()) | 
|  | if (!RT->isDependentType() && | 
|  | !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) { | 
|  | PrintDiagAndRemoveAttr(); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::ActOnFinishCXXMemberSpecification( | 
|  | Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, | 
|  | SourceLocation RBrac, const ParsedAttributesView &AttrList) { | 
|  | if (!TagDecl) | 
|  | return; | 
|  |  | 
|  | AdjustDeclIfTemplate(TagDecl); | 
|  |  | 
|  | for (const ParsedAttr &AL : AttrList) { | 
|  | if (AL.getKind() != ParsedAttr::AT_Visibility) | 
|  | continue; | 
|  | AL.setInvalid(); | 
|  | Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) | 
|  | << AL.getName(); | 
|  | } | 
|  |  | 
|  | ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef( | 
|  | // strict aliasing violation! | 
|  | reinterpret_cast<Decl**>(FieldCollector->getCurFields()), | 
|  | FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList); | 
|  |  | 
|  | CheckCompletedCXXClass(cast<CXXRecordDecl>(TagDecl)); | 
|  | } | 
|  |  | 
|  | /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared | 
|  | /// special functions, such as the default constructor, copy | 
|  | /// constructor, or destructor, to the given C++ class (C++ | 
|  | /// [special]p1).  This routine can only be executed just before the | 
|  | /// definition of the class is complete. | 
|  | void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { | 
|  | if (ClassDecl->needsImplicitDefaultConstructor()) { | 
|  | ++getASTContext().NumImplicitDefaultConstructors; | 
|  |  | 
|  | if (ClassDecl->hasInheritedConstructor()) | 
|  | DeclareImplicitDefaultConstructor(ClassDecl); | 
|  | } | 
|  |  | 
|  | if (ClassDecl->needsImplicitCopyConstructor()) { | 
|  | ++getASTContext().NumImplicitCopyConstructors; | 
|  |  | 
|  | // If the properties or semantics of the copy constructor couldn't be | 
|  | // determined while the class was being declared, force a declaration | 
|  | // of it now. | 
|  | if (ClassDecl->needsOverloadResolutionForCopyConstructor() || | 
|  | ClassDecl->hasInheritedConstructor()) | 
|  | DeclareImplicitCopyConstructor(ClassDecl); | 
|  | // For the MS ABI we need to know whether the copy ctor is deleted. A | 
|  | // prerequisite for deleting the implicit copy ctor is that the class has a | 
|  | // move ctor or move assignment that is either user-declared or whose | 
|  | // semantics are inherited from a subobject. FIXME: We should provide a more | 
|  | // direct way for CodeGen to ask whether the constructor was deleted. | 
|  | else if (Context.getTargetInfo().getCXXABI().isMicrosoft() && | 
|  | (ClassDecl->hasUserDeclaredMoveConstructor() || | 
|  | ClassDecl->needsOverloadResolutionForMoveConstructor() || | 
|  | ClassDecl->hasUserDeclaredMoveAssignment() || | 
|  | ClassDecl->needsOverloadResolutionForMoveAssignment())) | 
|  | DeclareImplicitCopyConstructor(ClassDecl); | 
|  | } | 
|  |  | 
|  | if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) { | 
|  | ++getASTContext().NumImplicitMoveConstructors; | 
|  |  | 
|  | if (ClassDecl->needsOverloadResolutionForMoveConstructor() || | 
|  | ClassDecl->hasInheritedConstructor()) | 
|  | DeclareImplicitMoveConstructor(ClassDecl); | 
|  | } | 
|  |  | 
|  | if (ClassDecl->needsImplicitCopyAssignment()) { | 
|  | ++getASTContext().NumImplicitCopyAssignmentOperators; | 
|  |  | 
|  | // If we have a dynamic class, then the copy assignment operator may be | 
|  | // virtual, so we have to declare it immediately. This ensures that, e.g., | 
|  | // it shows up in the right place in the vtable and that we diagnose | 
|  | // problems with the implicit exception specification. | 
|  | if (ClassDecl->isDynamicClass() || | 
|  | ClassDecl->needsOverloadResolutionForCopyAssignment() || | 
|  | ClassDecl->hasInheritedAssignment()) | 
|  | DeclareImplicitCopyAssignment(ClassDecl); | 
|  | } | 
|  |  | 
|  | if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) { | 
|  | ++getASTContext().NumImplicitMoveAssignmentOperators; | 
|  |  | 
|  | // Likewise for the move assignment operator. | 
|  | if (ClassDecl->isDynamicClass() || | 
|  | ClassDecl->needsOverloadResolutionForMoveAssignment() || | 
|  | ClassDecl->hasInheritedAssignment()) | 
|  | DeclareImplicitMoveAssignment(ClassDecl); | 
|  | } | 
|  |  | 
|  | if (ClassDecl->needsImplicitDestructor()) { | 
|  | ++getASTContext().NumImplicitDestructors; | 
|  |  | 
|  | // If we have a dynamic class, then the destructor may be virtual, so we | 
|  | // have to declare the destructor immediately. This ensures that, e.g., it | 
|  | // shows up in the right place in the vtable and that we diagnose problems | 
|  | // with the implicit exception specification. | 
|  | if (ClassDecl->isDynamicClass() || | 
|  | ClassDecl->needsOverloadResolutionForDestructor()) | 
|  | DeclareImplicitDestructor(ClassDecl); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) { | 
|  | if (!D) | 
|  | return 0; | 
|  |  | 
|  | // The order of template parameters is not important here. All names | 
|  | // get added to the same scope. | 
|  | SmallVector<TemplateParameterList *, 4> ParameterLists; | 
|  |  | 
|  | if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) | 
|  | D = TD->getTemplatedDecl(); | 
|  |  | 
|  | if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) | 
|  | ParameterLists.push_back(PSD->getTemplateParameters()); | 
|  |  | 
|  | if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) { | 
|  | for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i) | 
|  | ParameterLists.push_back(DD->getTemplateParameterList(i)); | 
|  |  | 
|  | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) | 
|  | ParameterLists.push_back(FTD->getTemplateParameters()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TagDecl *TD = dyn_cast<TagDecl>(D)) { | 
|  | for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i) | 
|  | ParameterLists.push_back(TD->getTemplateParameterList(i)); | 
|  |  | 
|  | if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) { | 
|  | if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate()) | 
|  | ParameterLists.push_back(CTD->getTemplateParameters()); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned Count = 0; | 
|  | for (TemplateParameterList *Params : ParameterLists) { | 
|  | if (Params->size() > 0) | 
|  | // Ignore explicit specializations; they don't contribute to the template | 
|  | // depth. | 
|  | ++Count; | 
|  | for (NamedDecl *Param : *Params) { | 
|  | if (Param->getDeclName()) { | 
|  | S->AddDecl(Param); | 
|  | IdResolver.AddDecl(Param); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { | 
|  | if (!RecordD) return; | 
|  | AdjustDeclIfTemplate(RecordD); | 
|  | CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD); | 
|  | PushDeclContext(S, Record); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { | 
|  | if (!RecordD) return; | 
|  | PopDeclContext(); | 
|  | } | 
|  |  | 
|  | /// This is used to implement the constant expression evaluation part of the | 
|  | /// attribute enable_if extension. There is nothing in standard C++ which would | 
|  | /// require reentering parameters. | 
|  | void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) { | 
|  | if (!Param) | 
|  | return; | 
|  |  | 
|  | S->AddDecl(Param); | 
|  | if (Param->getDeclName()) | 
|  | IdResolver.AddDecl(Param); | 
|  | } | 
|  |  | 
|  | /// ActOnStartDelayedCXXMethodDeclaration - We have completed | 
|  | /// parsing a top-level (non-nested) C++ class, and we are now | 
|  | /// parsing those parts of the given Method declaration that could | 
|  | /// not be parsed earlier (C++ [class.mem]p2), such as default | 
|  | /// arguments. This action should enter the scope of the given | 
|  | /// Method declaration as if we had just parsed the qualified method | 
|  | /// name. However, it should not bring the parameters into scope; | 
|  | /// that will be performed by ActOnDelayedCXXMethodParameter. | 
|  | void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { | 
|  | } | 
|  |  | 
|  | /// ActOnDelayedCXXMethodParameter - We've already started a delayed | 
|  | /// C++ method declaration. We're (re-)introducing the given | 
|  | /// function parameter into scope for use in parsing later parts of | 
|  | /// the method declaration. For example, we could see an | 
|  | /// ActOnParamDefaultArgument event for this parameter. | 
|  | void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { | 
|  | if (!ParamD) | 
|  | return; | 
|  |  | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(ParamD); | 
|  |  | 
|  | // If this parameter has an unparsed default argument, clear it out | 
|  | // to make way for the parsed default argument. | 
|  | if (Param->hasUnparsedDefaultArg()) | 
|  | Param->setDefaultArg(nullptr); | 
|  |  | 
|  | S->AddDecl(Param); | 
|  | if (Param->getDeclName()) | 
|  | IdResolver.AddDecl(Param); | 
|  | } | 
|  |  | 
|  | /// ActOnFinishDelayedCXXMethodDeclaration - We have finished | 
|  | /// processing the delayed method declaration for Method. The method | 
|  | /// declaration is now considered finished. There may be a separate | 
|  | /// ActOnStartOfFunctionDef action later (not necessarily | 
|  | /// immediately!) for this method, if it was also defined inside the | 
|  | /// class body. | 
|  | void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { | 
|  | if (!MethodD) | 
|  | return; | 
|  |  | 
|  | AdjustDeclIfTemplate(MethodD); | 
|  |  | 
|  | FunctionDecl *Method = cast<FunctionDecl>(MethodD); | 
|  |  | 
|  | // Now that we have our default arguments, check the constructor | 
|  | // again. It could produce additional diagnostics or affect whether | 
|  | // the class has implicitly-declared destructors, among other | 
|  | // things. | 
|  | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) | 
|  | CheckConstructor(Constructor); | 
|  |  | 
|  | // Check the default arguments, which we may have added. | 
|  | if (!Method->isInvalidDecl()) | 
|  | CheckCXXDefaultArguments(Method); | 
|  | } | 
|  |  | 
|  | // Emit the given diagnostic for each non-address-space qualifier. | 
|  | // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator. | 
|  | static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) { | 
|  | const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); | 
|  | if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) { | 
|  | bool DiagOccured = false; | 
|  | FTI.MethodQualifiers->forEachQualifier( | 
|  | [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName, | 
|  | SourceLocation SL) { | 
|  | // This diagnostic should be emitted on any qualifier except an addr | 
|  | // space qualifier. However, forEachQualifier currently doesn't visit | 
|  | // addr space qualifiers, so there's no way to write this condition | 
|  | // right now; we just diagnose on everything. | 
|  | S.Diag(SL, DiagID) << QualName << SourceRange(SL); | 
|  | DiagOccured = true; | 
|  | }); | 
|  | if (DiagOccured) | 
|  | D.setInvalidType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CheckConstructorDeclarator - Called by ActOnDeclarator to check | 
|  | /// the well-formedness of the constructor declarator @p D with type @p | 
|  | /// R. If there are any errors in the declarator, this routine will | 
|  | /// emit diagnostics and set the invalid bit to true.  In any case, the type | 
|  | /// will be updated to reflect a well-formed type for the constructor and | 
|  | /// returned. | 
|  | QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, | 
|  | StorageClass &SC) { | 
|  | bool isVirtual = D.getDeclSpec().isVirtualSpecified(); | 
|  |  | 
|  | // C++ [class.ctor]p3: | 
|  | //   A constructor shall not be virtual (10.3) or static (9.4). A | 
|  | //   constructor can be invoked for a const, volatile or const | 
|  | //   volatile object. A constructor shall not be declared const, | 
|  | //   volatile, or const volatile (9.3.2). | 
|  | if (isVirtual) { | 
|  | if (!D.isInvalidType()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) | 
|  | << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | D.setInvalidType(); | 
|  | } | 
|  | if (SC == SC_Static) { | 
|  | if (!D.isInvalidType()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) | 
|  | << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | D.setInvalidType(); | 
|  | SC = SC_None; | 
|  | } | 
|  |  | 
|  | if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { | 
|  | diagnoseIgnoredQualifiers( | 
|  | diag::err_constructor_return_type, TypeQuals, SourceLocation(), | 
|  | D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(), | 
|  | D.getDeclSpec().getRestrictSpecLoc(), | 
|  | D.getDeclSpec().getAtomicSpecLoc()); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor); | 
|  |  | 
|  | // C++0x [class.ctor]p4: | 
|  | //   A constructor shall not be declared with a ref-qualifier. | 
|  | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); | 
|  | if (FTI.hasRefQualifier()) { | 
|  | Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) | 
|  | << FTI.RefQualifierIsLValueRef | 
|  | << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Rebuild the function type "R" without any type qualifiers (in | 
|  | // case any of the errors above fired) and with "void" as the | 
|  | // return type, since constructors don't have return types. | 
|  | const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); | 
|  | if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType()) | 
|  | return R; | 
|  |  | 
|  | FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); | 
|  | EPI.TypeQuals = Qualifiers(); | 
|  | EPI.RefQualifier = RQ_None; | 
|  |  | 
|  | return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI); | 
|  | } | 
|  |  | 
|  | /// CheckConstructor - Checks a fully-formed constructor for | 
|  | /// well-formedness, issuing any diagnostics required. Returns true if | 
|  | /// the constructor declarator is invalid. | 
|  | void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { | 
|  | CXXRecordDecl *ClassDecl | 
|  | = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); | 
|  | if (!ClassDecl) | 
|  | return Constructor->setInvalidDecl(); | 
|  |  | 
|  | // C++ [class.copy]p3: | 
|  | //   A declaration of a constructor for a class X is ill-formed if | 
|  | //   its first parameter is of type (optionally cv-qualified) X and | 
|  | //   either there are no other parameters or else all other | 
|  | //   parameters have default arguments. | 
|  | if (!Constructor->isInvalidDecl() && | 
|  | ((Constructor->getNumParams() == 1) || | 
|  | (Constructor->getNumParams() > 1 && | 
|  | Constructor->getParamDecl(1)->hasDefaultArg())) && | 
|  | Constructor->getTemplateSpecializationKind() | 
|  | != TSK_ImplicitInstantiation) { | 
|  | QualType ParamType = Constructor->getParamDecl(0)->getType(); | 
|  | QualType ClassTy = Context.getTagDeclType(ClassDecl); | 
|  | if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { | 
|  | SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); | 
|  | const char *ConstRef | 
|  | = Constructor->getParamDecl(0)->getIdentifier() ? "const &" | 
|  | : " const &"; | 
|  | Diag(ParamLoc, diag::err_constructor_byvalue_arg) | 
|  | << FixItHint::CreateInsertion(ParamLoc, ConstRef); | 
|  |  | 
|  | // FIXME: Rather that making the constructor invalid, we should endeavor | 
|  | // to fix the type. | 
|  | Constructor->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CheckDestructor - Checks a fully-formed destructor definition for | 
|  | /// well-formedness, issuing any diagnostics required.  Returns true | 
|  | /// on error. | 
|  | bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { | 
|  | CXXRecordDecl *RD = Destructor->getParent(); | 
|  |  | 
|  | if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) { | 
|  | SourceLocation Loc; | 
|  |  | 
|  | if (!Destructor->isImplicit()) | 
|  | Loc = Destructor->getLocation(); | 
|  | else | 
|  | Loc = RD->getLocation(); | 
|  |  | 
|  | // If we have a virtual destructor, look up the deallocation function | 
|  | if (FunctionDecl *OperatorDelete = | 
|  | FindDeallocationFunctionForDestructor(Loc, RD)) { | 
|  | Expr *ThisArg = nullptr; | 
|  |  | 
|  | // If the notional 'delete this' expression requires a non-trivial | 
|  | // conversion from 'this' to the type of a destroying operator delete's | 
|  | // first parameter, perform that conversion now. | 
|  | if (OperatorDelete->isDestroyingOperatorDelete()) { | 
|  | QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); | 
|  | if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) { | 
|  | // C++ [class.dtor]p13: | 
|  | //   ... as if for the expression 'delete this' appearing in a | 
|  | //   non-virtual destructor of the destructor's class. | 
|  | ContextRAII SwitchContext(*this, Destructor); | 
|  | ExprResult This = | 
|  | ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation()); | 
|  | assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?"); | 
|  | This = PerformImplicitConversion(This.get(), ParamType, AA_Passing); | 
|  | if (This.isInvalid()) { | 
|  | // FIXME: Register this as a context note so that it comes out | 
|  | // in the right order. | 
|  | Diag(Loc, diag::note_implicit_delete_this_in_destructor_here); | 
|  | return true; | 
|  | } | 
|  | ThisArg = This.get(); | 
|  | } | 
|  | } | 
|  |  | 
|  | DiagnoseUseOfDecl(OperatorDelete, Loc); | 
|  | MarkFunctionReferenced(Loc, OperatorDelete); | 
|  | Destructor->setOperatorDelete(OperatorDelete, ThisArg); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CheckDestructorDeclarator - Called by ActOnDeclarator to check | 
|  | /// the well-formednes of the destructor declarator @p D with type @p | 
|  | /// R. If there are any errors in the declarator, this routine will | 
|  | /// emit diagnostics and set the declarator to invalid.  Even if this happens, | 
|  | /// will be updated to reflect a well-formed type for the destructor and | 
|  | /// returned. | 
|  | QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, | 
|  | StorageClass& SC) { | 
|  | // C++ [class.dtor]p1: | 
|  | //   [...] A typedef-name that names a class is a class-name | 
|  | //   (7.1.3); however, a typedef-name that names a class shall not | 
|  | //   be used as the identifier in the declarator for a destructor | 
|  | //   declaration. | 
|  | QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); | 
|  | if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) | 
|  | << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl()); | 
|  | else if (const TemplateSpecializationType *TST = | 
|  | DeclaratorType->getAs<TemplateSpecializationType>()) | 
|  | if (TST->isTypeAlias()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) | 
|  | << DeclaratorType << 1; | 
|  |  | 
|  | // C++ [class.dtor]p2: | 
|  | //   A destructor is used to destroy objects of its class type. A | 
|  | //   destructor takes no parameters, and no return type can be | 
|  | //   specified for it (not even void). The address of a destructor | 
|  | //   shall not be taken. A destructor shall not be static. A | 
|  | //   destructor can be invoked for a const, volatile or const | 
|  | //   volatile object. A destructor shall not be declared const, | 
|  | //   volatile or const volatile (9.3.2). | 
|  | if (SC == SC_Static) { | 
|  | if (!D.isInvalidType()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) | 
|  | << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()) | 
|  | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | 
|  |  | 
|  | SC = SC_None; | 
|  | } | 
|  | if (!D.isInvalidType()) { | 
|  | // Destructors don't have return types, but the parser will | 
|  | // happily parse something like: | 
|  | // | 
|  | //   class X { | 
|  | //     float ~X(); | 
|  | //   }; | 
|  | // | 
|  | // The return type will be eliminated later. | 
|  | if (D.getDeclSpec().hasTypeSpecifier()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) | 
|  | << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { | 
|  | diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals, | 
|  | SourceLocation(), | 
|  | D.getDeclSpec().getConstSpecLoc(), | 
|  | D.getDeclSpec().getVolatileSpecLoc(), | 
|  | D.getDeclSpec().getRestrictSpecLoc(), | 
|  | D.getDeclSpec().getAtomicSpecLoc()); | 
|  | D.setInvalidType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor); | 
|  |  | 
|  | // C++0x [class.dtor]p2: | 
|  | //   A destructor shall not be declared with a ref-qualifier. | 
|  | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); | 
|  | if (FTI.hasRefQualifier()) { | 
|  | Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) | 
|  | << FTI.RefQualifierIsLValueRef | 
|  | << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Make sure we don't have any parameters. | 
|  | if (FTIHasNonVoidParameters(FTI)) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); | 
|  |  | 
|  | // Delete the parameters. | 
|  | FTI.freeParams(); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Make sure the destructor isn't variadic. | 
|  | if (FTI.isVariadic) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Rebuild the function type "R" without any type qualifiers or | 
|  | // parameters (in case any of the errors above fired) and with | 
|  | // "void" as the return type, since destructors don't have return | 
|  | // types. | 
|  | if (!D.isInvalidType()) | 
|  | return R; | 
|  |  | 
|  | const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); | 
|  | FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); | 
|  | EPI.Variadic = false; | 
|  | EPI.TypeQuals = Qualifiers(); | 
|  | EPI.RefQualifier = RQ_None; | 
|  | return Context.getFunctionType(Context.VoidTy, None, EPI); | 
|  | } | 
|  |  | 
|  | static void extendLeft(SourceRange &R, SourceRange Before) { | 
|  | if (Before.isInvalid()) | 
|  | return; | 
|  | R.setBegin(Before.getBegin()); | 
|  | if (R.getEnd().isInvalid()) | 
|  | R.setEnd(Before.getEnd()); | 
|  | } | 
|  |  | 
|  | static void extendRight(SourceRange &R, SourceRange After) { | 
|  | if (After.isInvalid()) | 
|  | return; | 
|  | if (R.getBegin().isInvalid()) | 
|  | R.setBegin(After.getBegin()); | 
|  | R.setEnd(After.getEnd()); | 
|  | } | 
|  |  | 
|  | /// CheckConversionDeclarator - Called by ActOnDeclarator to check the | 
|  | /// well-formednes of the conversion function declarator @p D with | 
|  | /// type @p R. If there are any errors in the declarator, this routine | 
|  | /// will emit diagnostics and return true. Otherwise, it will return | 
|  | /// false. Either way, the type @p R will be updated to reflect a | 
|  | /// well-formed type for the conversion operator. | 
|  | void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, | 
|  | StorageClass& SC) { | 
|  | // C++ [class.conv.fct]p1: | 
|  | //   Neither parameter types nor return type can be specified. The | 
|  | //   type of a conversion function (8.3.5) is "function taking no | 
|  | //   parameter returning conversion-type-id." | 
|  | if (SC == SC_Static) { | 
|  | if (!D.isInvalidType()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) | 
|  | << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | 
|  | << D.getName().getSourceRange(); | 
|  | D.setInvalidType(); | 
|  | SC = SC_None; | 
|  | } | 
|  |  | 
|  | TypeSourceInfo *ConvTSI = nullptr; | 
|  | QualType ConvType = | 
|  | GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI); | 
|  |  | 
|  | const DeclSpec &DS = D.getDeclSpec(); | 
|  | if (DS.hasTypeSpecifier() && !D.isInvalidType()) { | 
|  | // Conversion functions don't have return types, but the parser will | 
|  | // happily parse something like: | 
|  | // | 
|  | //   class X { | 
|  | //     float operator bool(); | 
|  | //   }; | 
|  | // | 
|  | // The return type will be changed later anyway. | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) | 
|  | << SourceRange(DS.getTypeSpecTypeLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | D.setInvalidType(); | 
|  | } else if (DS.getTypeQualifiers() && !D.isInvalidType()) { | 
|  | // It's also plausible that the user writes type qualifiers in the wrong | 
|  | // place, such as: | 
|  | //   struct S { const operator int(); }; | 
|  | // FIXME: we could provide a fixit to move the qualifiers onto the | 
|  | // conversion type. | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) | 
|  | << SourceRange(D.getIdentifierLoc()) << 0; | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); | 
|  |  | 
|  | // Make sure we don't have any parameters. | 
|  | if (Proto->getNumParams() > 0) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); | 
|  |  | 
|  | // Delete the parameters. | 
|  | D.getFunctionTypeInfo().freeParams(); | 
|  | D.setInvalidType(); | 
|  | } else if (Proto->isVariadic()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Diagnose "&operator bool()" and other such nonsense.  This | 
|  | // is actually a gcc extension which we don't support. | 
|  | if (Proto->getReturnType() != ConvType) { | 
|  | bool NeedsTypedef = false; | 
|  | SourceRange Before, After; | 
|  |  | 
|  | // Walk the chunks and extract information on them for our diagnostic. | 
|  | bool PastFunctionChunk = false; | 
|  | for (auto &Chunk : D.type_objects()) { | 
|  | switch (Chunk.Kind) { | 
|  | case DeclaratorChunk::Function: | 
|  | if (!PastFunctionChunk) { | 
|  | if (Chunk.Fun.HasTrailingReturnType) { | 
|  | TypeSourceInfo *TRT = nullptr; | 
|  | GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT); | 
|  | if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange()); | 
|  | } | 
|  | PastFunctionChunk = true; | 
|  | break; | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  | case DeclaratorChunk::Array: | 
|  | NeedsTypedef = true; | 
|  | extendRight(After, Chunk.getSourceRange()); | 
|  | break; | 
|  |  | 
|  | case DeclaratorChunk::Pointer: | 
|  | case DeclaratorChunk::BlockPointer: | 
|  | case DeclaratorChunk::Reference: | 
|  | case DeclaratorChunk::MemberPointer: | 
|  | case DeclaratorChunk::Pipe: | 
|  | extendLeft(Before, Chunk.getSourceRange()); | 
|  | break; | 
|  |  | 
|  | case DeclaratorChunk::Paren: | 
|  | extendLeft(Before, Chunk.Loc); | 
|  | extendRight(After, Chunk.EndLoc); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | SourceLocation Loc = Before.isValid() ? Before.getBegin() : | 
|  | After.isValid()  ? After.getBegin() : | 
|  | D.getIdentifierLoc(); | 
|  | auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl); | 
|  | DB << Before << After; | 
|  |  | 
|  | if (!NeedsTypedef) { | 
|  | DB << /*don't need a typedef*/0; | 
|  |  | 
|  | // If we can provide a correct fix-it hint, do so. | 
|  | if (After.isInvalid() && ConvTSI) { | 
|  | SourceLocation InsertLoc = | 
|  | getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc()); | 
|  | DB << FixItHint::CreateInsertion(InsertLoc, " ") | 
|  | << FixItHint::CreateInsertionFromRange( | 
|  | InsertLoc, CharSourceRange::getTokenRange(Before)) | 
|  | << FixItHint::CreateRemoval(Before); | 
|  | } | 
|  | } else if (!Proto->getReturnType()->isDependentType()) { | 
|  | DB << /*typedef*/1 << Proto->getReturnType(); | 
|  | } else if (getLangOpts().CPlusPlus11) { | 
|  | DB << /*alias template*/2 << Proto->getReturnType(); | 
|  | } else { | 
|  | DB << /*might not be fixable*/3; | 
|  | } | 
|  |  | 
|  | // Recover by incorporating the other type chunks into the result type. | 
|  | // Note, this does *not* change the name of the function. This is compatible | 
|  | // with the GCC extension: | 
|  | //   struct S { &operator int(); } s; | 
|  | //   int &r = s.operator int(); // ok in GCC | 
|  | //   S::operator int&() {} // error in GCC, function name is 'operator int'. | 
|  | ConvType = Proto->getReturnType(); | 
|  | } | 
|  |  | 
|  | // C++ [class.conv.fct]p4: | 
|  | //   The conversion-type-id shall not represent a function type nor | 
|  | //   an array type. | 
|  | if (ConvType->isArrayType()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); | 
|  | ConvType = Context.getPointerType(ConvType); | 
|  | D.setInvalidType(); | 
|  | } else if (ConvType->isFunctionType()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); | 
|  | ConvType = Context.getPointerType(ConvType); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Rebuild the function type "R" without any parameters (in case any | 
|  | // of the errors above fired) and with the conversion type as the | 
|  | // return type. | 
|  | if (D.isInvalidType()) | 
|  | R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo()); | 
|  |  | 
|  | // C++0x explicit conversion operators. | 
|  | if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus2a) | 
|  | Diag(DS.getExplicitSpecLoc(), | 
|  | getLangOpts().CPlusPlus11 | 
|  | ? diag::warn_cxx98_compat_explicit_conversion_functions | 
|  | : diag::ext_explicit_conversion_functions) | 
|  | << SourceRange(DS.getExplicitSpecRange()); | 
|  | } | 
|  |  | 
|  | /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete | 
|  | /// the declaration of the given C++ conversion function. This routine | 
|  | /// is responsible for recording the conversion function in the C++ | 
|  | /// class, if possible. | 
|  | Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { | 
|  | assert(Conversion && "Expected to receive a conversion function declaration"); | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); | 
|  |  | 
|  | // Make sure we aren't redeclaring the conversion function. | 
|  | QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); | 
|  |  | 
|  | // C++ [class.conv.fct]p1: | 
|  | //   [...] A conversion function is never used to convert a | 
|  | //   (possibly cv-qualified) object to the (possibly cv-qualified) | 
|  | //   same object type (or a reference to it), to a (possibly | 
|  | //   cv-qualified) base class of that type (or a reference to it), | 
|  | //   or to (possibly cv-qualified) void. | 
|  | // FIXME: Suppress this warning if the conversion function ends up being a | 
|  | // virtual function that overrides a virtual function in a base class. | 
|  | QualType ClassType | 
|  | = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); | 
|  | if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) | 
|  | ConvType = ConvTypeRef->getPointeeType(); | 
|  | if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && | 
|  | Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) | 
|  | /* Suppress diagnostics for instantiations. */; | 
|  | else if (ConvType->isRecordType()) { | 
|  | ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); | 
|  | if (ConvType == ClassType) | 
|  | Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) | 
|  | << ClassType; | 
|  | else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType)) | 
|  | Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) | 
|  | <<  ClassType << ConvType; | 
|  | } else if (ConvType->isVoidType()) { | 
|  | Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) | 
|  | << ClassType << ConvType; | 
|  | } | 
|  |  | 
|  | if (FunctionTemplateDecl *ConversionTemplate | 
|  | = Conversion->getDescribedFunctionTemplate()) | 
|  | return ConversionTemplate; | 
|  |  | 
|  | return Conversion; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Utility class to accumulate and print a diagnostic listing the invalid | 
|  | /// specifier(s) on a declaration. | 
|  | struct BadSpecifierDiagnoser { | 
|  | BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID) | 
|  | : S(S), Diagnostic(S.Diag(Loc, DiagID)) {} | 
|  | ~BadSpecifierDiagnoser() { | 
|  | Diagnostic << Specifiers; | 
|  | } | 
|  |  | 
|  | template<typename T> void check(SourceLocation SpecLoc, T Spec) { | 
|  | return check(SpecLoc, DeclSpec::getSpecifierName(Spec)); | 
|  | } | 
|  | void check(SourceLocation SpecLoc, DeclSpec::TST Spec) { | 
|  | return check(SpecLoc, | 
|  | DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy())); | 
|  | } | 
|  | void check(SourceLocation SpecLoc, const char *Spec) { | 
|  | if (SpecLoc.isInvalid()) return; | 
|  | Diagnostic << SourceRange(SpecLoc, SpecLoc); | 
|  | if (!Specifiers.empty()) Specifiers += " "; | 
|  | Specifiers += Spec; | 
|  | } | 
|  |  | 
|  | Sema &S; | 
|  | Sema::SemaDiagnosticBuilder Diagnostic; | 
|  | std::string Specifiers; | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Check the validity of a declarator that we parsed for a deduction-guide. | 
|  | /// These aren't actually declarators in the grammar, so we need to check that | 
|  | /// the user didn't specify any pieces that are not part of the deduction-guide | 
|  | /// grammar. | 
|  | void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R, | 
|  | StorageClass &SC) { | 
|  | TemplateName GuidedTemplate = D.getName().TemplateName.get().get(); | 
|  | TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl(); | 
|  | assert(GuidedTemplateDecl && "missing template decl for deduction guide"); | 
|  |  | 
|  | // C++ [temp.deduct.guide]p3: | 
|  | //   A deduction-gide shall be declared in the same scope as the | 
|  | //   corresponding class template. | 
|  | if (!CurContext->getRedeclContext()->Equals( | 
|  | GuidedTemplateDecl->getDeclContext()->getRedeclContext())) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope) | 
|  | << GuidedTemplateDecl; | 
|  | Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here); | 
|  | } | 
|  |  | 
|  | auto &DS = D.getMutableDeclSpec(); | 
|  | // We leave 'friend' and 'virtual' to be rejected in the normal way. | 
|  | if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() || | 
|  | DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() || | 
|  | DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) { | 
|  | BadSpecifierDiagnoser Diagnoser( | 
|  | *this, D.getIdentifierLoc(), | 
|  | diag::err_deduction_guide_invalid_specifier); | 
|  |  | 
|  | Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec()); | 
|  | DS.ClearStorageClassSpecs(); | 
|  | SC = SC_None; | 
|  |  | 
|  | // 'explicit' is permitted. | 
|  | Diagnoser.check(DS.getInlineSpecLoc(), "inline"); | 
|  | Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn"); | 
|  | Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr"); | 
|  | DS.ClearConstexprSpec(); | 
|  |  | 
|  | Diagnoser.check(DS.getConstSpecLoc(), "const"); | 
|  | Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict"); | 
|  | Diagnoser.check(DS.getVolatileSpecLoc(), "volatile"); | 
|  | Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic"); | 
|  | Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned"); | 
|  | DS.ClearTypeQualifiers(); | 
|  |  | 
|  | Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex()); | 
|  | Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign()); | 
|  | Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth()); | 
|  | Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType()); | 
|  | DS.ClearTypeSpecType(); | 
|  | } | 
|  |  | 
|  | if (D.isInvalidType()) | 
|  | return; | 
|  |  | 
|  | // Check the declarator is simple enough. | 
|  | bool FoundFunction = false; | 
|  | for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) { | 
|  | if (Chunk.Kind == DeclaratorChunk::Paren) | 
|  | continue; | 
|  | if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) { | 
|  | Diag(D.getDeclSpec().getBeginLoc(), | 
|  | diag::err_deduction_guide_with_complex_decl) | 
|  | << D.getSourceRange(); | 
|  | break; | 
|  | } | 
|  | if (!Chunk.Fun.hasTrailingReturnType()) { | 
|  | Diag(D.getName().getBeginLoc(), | 
|  | diag::err_deduction_guide_no_trailing_return_type); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check that the return type is written as a specialization of | 
|  | // the template specified as the deduction-guide's name. | 
|  | ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType(); | 
|  | TypeSourceInfo *TSI = nullptr; | 
|  | QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI); | 
|  | assert(TSI && "deduction guide has valid type but invalid return type?"); | 
|  | bool AcceptableReturnType = false; | 
|  | bool MightInstantiateToSpecialization = false; | 
|  | if (auto RetTST = | 
|  | TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) { | 
|  | TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName(); | 
|  | bool TemplateMatches = | 
|  | Context.hasSameTemplateName(SpecifiedName, GuidedTemplate); | 
|  | if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches) | 
|  | AcceptableReturnType = true; | 
|  | else { | 
|  | // This could still instantiate to the right type, unless we know it | 
|  | // names the wrong class template. | 
|  | auto *TD = SpecifiedName.getAsTemplateDecl(); | 
|  | MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) && | 
|  | !TemplateMatches); | 
|  | } | 
|  | } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) { | 
|  | MightInstantiateToSpecialization = true; | 
|  | } | 
|  |  | 
|  | if (!AcceptableReturnType) { | 
|  | Diag(TSI->getTypeLoc().getBeginLoc(), | 
|  | diag::err_deduction_guide_bad_trailing_return_type) | 
|  | << GuidedTemplate << TSI->getType() | 
|  | << MightInstantiateToSpecialization | 
|  | << TSI->getTypeLoc().getSourceRange(); | 
|  | } | 
|  |  | 
|  | // Keep going to check that we don't have any inner declarator pieces (we | 
|  | // could still have a function returning a pointer to a function). | 
|  | FoundFunction = true; | 
|  | } | 
|  |  | 
|  | if (D.isFunctionDefinition()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Namespace Handling | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Diagnose a mismatch in 'inline' qualifiers when a namespace is | 
|  | /// reopened. | 
|  | static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc, | 
|  | SourceLocation Loc, | 
|  | IdentifierInfo *II, bool *IsInline, | 
|  | NamespaceDecl *PrevNS) { | 
|  | assert(*IsInline != PrevNS->isInline()); | 
|  |  | 
|  | // HACK: Work around a bug in libstdc++4.6's <atomic>, where | 
|  | // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as | 
|  | // inline namespaces, with the intention of bringing names into namespace std. | 
|  | // | 
|  | // We support this just well enough to get that case working; this is not | 
|  | // sufficient to support reopening namespaces as inline in general. | 
|  | if (*IsInline && II && II->getName().startswith("__atomic") && | 
|  | S.getSourceManager().isInSystemHeader(Loc)) { | 
|  | // Mark all prior declarations of the namespace as inline. | 
|  | for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS; | 
|  | NS = NS->getPreviousDecl()) | 
|  | NS->setInline(*IsInline); | 
|  | // Patch up the lookup table for the containing namespace. This isn't really | 
|  | // correct, but it's good enough for this particular case. | 
|  | for (auto *I : PrevNS->decls()) | 
|  | if (auto *ND = dyn_cast<NamedDecl>(I)) | 
|  | PrevNS->getParent()->makeDeclVisibleInContext(ND); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (PrevNS->isInline()) | 
|  | // The user probably just forgot the 'inline', so suggest that it | 
|  | // be added back. | 
|  | S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline) | 
|  | << FixItHint::CreateInsertion(KeywordLoc, "inline "); | 
|  | else | 
|  | S.Diag(Loc, diag::err_inline_namespace_mismatch); | 
|  |  | 
|  | S.Diag(PrevNS->getLocation(), diag::note_previous_definition); | 
|  | *IsInline = PrevNS->isInline(); | 
|  | } | 
|  |  | 
|  | /// ActOnStartNamespaceDef - This is called at the start of a namespace | 
|  | /// definition. | 
|  | Decl *Sema::ActOnStartNamespaceDef( | 
|  | Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc, | 
|  | SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace, | 
|  | const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) { | 
|  | SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; | 
|  | // For anonymous namespace, take the location of the left brace. | 
|  | SourceLocation Loc = II ? IdentLoc : LBrace; | 
|  | bool IsInline = InlineLoc.isValid(); | 
|  | bool IsInvalid = false; | 
|  | bool IsStd = false; | 
|  | bool AddToKnown = false; | 
|  | Scope *DeclRegionScope = NamespcScope->getParent(); | 
|  |  | 
|  | NamespaceDecl *PrevNS = nullptr; | 
|  | if (II) { | 
|  | // C++ [namespace.def]p2: | 
|  | //   The identifier in an original-namespace-definition shall not | 
|  | //   have been previously defined in the declarative region in | 
|  | //   which the original-namespace-definition appears. The | 
|  | //   identifier in an original-namespace-definition is the name of | 
|  | //   the namespace. Subsequently in that declarative region, it is | 
|  | //   treated as an original-namespace-name. | 
|  | // | 
|  | // Since namespace names are unique in their scope, and we don't | 
|  | // look through using directives, just look for any ordinary names | 
|  | // as if by qualified name lookup. | 
|  | LookupResult R(*this, II, IdentLoc, LookupOrdinaryName, | 
|  | ForExternalRedeclaration); | 
|  | LookupQualifiedName(R, CurContext->getRedeclContext()); | 
|  | NamedDecl *PrevDecl = | 
|  | R.isSingleResult() ? R.getRepresentativeDecl() : nullptr; | 
|  | PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl); | 
|  |  | 
|  | if (PrevNS) { | 
|  | // This is an extended namespace definition. | 
|  | if (IsInline != PrevNS->isInline()) | 
|  | DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II, | 
|  | &IsInline, PrevNS); | 
|  | } else if (PrevDecl) { | 
|  | // This is an invalid name redefinition. | 
|  | Diag(Loc, diag::err_redefinition_different_kind) | 
|  | << II; | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_definition); | 
|  | IsInvalid = true; | 
|  | // Continue on to push Namespc as current DeclContext and return it. | 
|  | } else if (II->isStr("std") && | 
|  | CurContext->getRedeclContext()->isTranslationUnit()) { | 
|  | // This is the first "real" definition of the namespace "std", so update | 
|  | // our cache of the "std" namespace to point at this definition. | 
|  | PrevNS = getStdNamespace(); | 
|  | IsStd = true; | 
|  | AddToKnown = !IsInline; | 
|  | } else { | 
|  | // We've seen this namespace for the first time. | 
|  | AddToKnown = !IsInline; | 
|  | } | 
|  | } else { | 
|  | // Anonymous namespaces. | 
|  |  | 
|  | // Determine whether the parent already has an anonymous namespace. | 
|  | DeclContext *Parent = CurContext->getRedeclContext(); | 
|  | if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { | 
|  | PrevNS = TU->getAnonymousNamespace(); | 
|  | } else { | 
|  | NamespaceDecl *ND = cast<NamespaceDecl>(Parent); | 
|  | PrevNS = ND->getAnonymousNamespace(); | 
|  | } | 
|  |  | 
|  | if (PrevNS && IsInline != PrevNS->isInline()) | 
|  | DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II, | 
|  | &IsInline, PrevNS); | 
|  | } | 
|  |  | 
|  | NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline, | 
|  | StartLoc, Loc, II, PrevNS); | 
|  | if (IsInvalid) | 
|  | Namespc->setInvalidDecl(); | 
|  |  | 
|  | ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); | 
|  | AddPragmaAttributes(DeclRegionScope, Namespc); | 
|  |  | 
|  | // FIXME: Should we be merging attributes? | 
|  | if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) | 
|  | PushNamespaceVisibilityAttr(Attr, Loc); | 
|  |  | 
|  | if (IsStd) | 
|  | StdNamespace = Namespc; | 
|  | if (AddToKnown) | 
|  | KnownNamespaces[Namespc] = false; | 
|  |  | 
|  | if (II) { | 
|  | PushOnScopeChains(Namespc, DeclRegionScope); | 
|  | } else { | 
|  | // Link the anonymous namespace into its parent. | 
|  | DeclContext *Parent = CurContext->getRedeclContext(); | 
|  | if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { | 
|  | TU->setAnonymousNamespace(Namespc); | 
|  | } else { | 
|  | cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc); | 
|  | } | 
|  |  | 
|  | CurContext->addDecl(Namespc); | 
|  |  | 
|  | // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition | 
|  | //   behaves as if it were replaced by | 
|  | //     namespace unique { /* empty body */ } | 
|  | //     using namespace unique; | 
|  | //     namespace unique { namespace-body } | 
|  | //   where all occurrences of 'unique' in a translation unit are | 
|  | //   replaced by the same identifier and this identifier differs | 
|  | //   from all other identifiers in the entire program. | 
|  |  | 
|  | // We just create the namespace with an empty name and then add an | 
|  | // implicit using declaration, just like the standard suggests. | 
|  | // | 
|  | // CodeGen enforces the "universally unique" aspect by giving all | 
|  | // declarations semantically contained within an anonymous | 
|  | // namespace internal linkage. | 
|  |  | 
|  | if (!PrevNS) { | 
|  | UD = UsingDirectiveDecl::Create(Context, Parent, | 
|  | /* 'using' */ LBrace, | 
|  | /* 'namespace' */ SourceLocation(), | 
|  | /* qualifier */ NestedNameSpecifierLoc(), | 
|  | /* identifier */ SourceLocation(), | 
|  | Namespc, | 
|  | /* Ancestor */ Parent); | 
|  | UD->setImplicit(); | 
|  | Parent->addDecl(UD); | 
|  | } | 
|  | } | 
|  |  | 
|  | ActOnDocumentableDecl(Namespc); | 
|  |  | 
|  | // Although we could have an invalid decl (i.e. the namespace name is a | 
|  | // redefinition), push it as current DeclContext and try to continue parsing. | 
|  | // FIXME: We should be able to push Namespc here, so that the each DeclContext | 
|  | // for the namespace has the declarations that showed up in that particular | 
|  | // namespace definition. | 
|  | PushDeclContext(NamespcScope, Namespc); | 
|  | return Namespc; | 
|  | } | 
|  |  | 
|  | /// getNamespaceDecl - Returns the namespace a decl represents. If the decl | 
|  | /// is a namespace alias, returns the namespace it points to. | 
|  | static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { | 
|  | if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) | 
|  | return AD->getNamespace(); | 
|  | return dyn_cast_or_null<NamespaceDecl>(D); | 
|  | } | 
|  |  | 
|  | /// ActOnFinishNamespaceDef - This callback is called after a namespace is | 
|  | /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. | 
|  | void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { | 
|  | NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); | 
|  | assert(Namespc && "Invalid parameter, expected NamespaceDecl"); | 
|  | Namespc->setRBraceLoc(RBrace); | 
|  | PopDeclContext(); | 
|  | if (Namespc->hasAttr<VisibilityAttr>()) | 
|  | PopPragmaVisibility(true, RBrace); | 
|  | // If this namespace contains an export-declaration, export it now. | 
|  | if (DeferredExportedNamespaces.erase(Namespc)) | 
|  | Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *Sema::getStdBadAlloc() const { | 
|  | return cast_or_null<CXXRecordDecl>( | 
|  | StdBadAlloc.get(Context.getExternalSource())); | 
|  | } | 
|  |  | 
|  | EnumDecl *Sema::getStdAlignValT() const { | 
|  | return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource())); | 
|  | } | 
|  |  | 
|  | NamespaceDecl *Sema::getStdNamespace() const { | 
|  | return cast_or_null<NamespaceDecl>( | 
|  | StdNamespace.get(Context.getExternalSource())); | 
|  | } | 
|  |  | 
|  | NamespaceDecl *Sema::lookupStdExperimentalNamespace() { | 
|  | if (!StdExperimentalNamespaceCache) { | 
|  | if (auto Std = getStdNamespace()) { | 
|  | LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"), | 
|  | SourceLocation(), LookupNamespaceName); | 
|  | if (!LookupQualifiedName(Result, Std) || | 
|  | !(StdExperimentalNamespaceCache = | 
|  | Result.getAsSingle<NamespaceDecl>())) | 
|  | Result.suppressDiagnostics(); | 
|  | } | 
|  | } | 
|  | return StdExperimentalNamespaceCache; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | enum UnsupportedSTLSelect { | 
|  | USS_InvalidMember, | 
|  | USS_MissingMember, | 
|  | USS_NonTrivial, | 
|  | USS_Other | 
|  | }; | 
|  |  | 
|  | struct InvalidSTLDiagnoser { | 
|  | Sema &S; | 
|  | SourceLocation Loc; | 
|  | QualType TyForDiags; | 
|  |  | 
|  | QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "", | 
|  | const VarDecl *VD = nullptr) { | 
|  | { | 
|  | auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported) | 
|  | << TyForDiags << ((int)Sel); | 
|  | if (Sel == USS_InvalidMember || Sel == USS_MissingMember) { | 
|  | assert(!Name.empty()); | 
|  | D << Name; | 
|  | } | 
|  | } | 
|  | if (Sel == USS_InvalidMember) { | 
|  | S.Diag(VD->getLocation(), diag::note_var_declared_here) | 
|  | << VD << VD->getSourceRange(); | 
|  | } | 
|  | return QualType(); | 
|  | } | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind, | 
|  | SourceLocation Loc) { | 
|  | assert(getLangOpts().CPlusPlus && | 
|  | "Looking for comparison category type outside of C++."); | 
|  |  | 
|  | // Check if we've already successfully checked the comparison category type | 
|  | // before. If so, skip checking it again. | 
|  | ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind); | 
|  | if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) | 
|  | return Info->getType(); | 
|  |  | 
|  | // If lookup failed | 
|  | if (!Info) { | 
|  | std::string NameForDiags = "std::"; | 
|  | NameForDiags += ComparisonCategories::getCategoryString(Kind); | 
|  | Diag(Loc, diag::err_implied_comparison_category_type_not_found) | 
|  | << NameForDiags; | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | assert(Info->Kind == Kind); | 
|  | assert(Info->Record); | 
|  |  | 
|  | // Update the Record decl in case we encountered a forward declaration on our | 
|  | // first pass. FIXME: This is a bit of a hack. | 
|  | if (Info->Record->hasDefinition()) | 
|  | Info->Record = Info->Record->getDefinition(); | 
|  |  | 
|  | // Use an elaborated type for diagnostics which has a name containing the | 
|  | // prepended 'std' namespace but not any inline namespace names. | 
|  | QualType TyForDiags = [&]() { | 
|  | auto *NNS = | 
|  | NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()); | 
|  | return Context.getElaboratedType(ETK_None, NNS, Info->getType()); | 
|  | }(); | 
|  |  | 
|  | if (RequireCompleteType(Loc, TyForDiags, diag::err_incomplete_type)) | 
|  | return QualType(); | 
|  |  | 
|  | InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags}; | 
|  |  | 
|  | if (!Info->Record->isTriviallyCopyable()) | 
|  | return UnsupportedSTLError(USS_NonTrivial); | 
|  |  | 
|  | for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) { | 
|  | CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl(); | 
|  | // Tolerate empty base classes. | 
|  | if (Base->isEmpty()) | 
|  | continue; | 
|  | // Reject STL implementations which have at least one non-empty base. | 
|  | return UnsupportedSTLError(); | 
|  | } | 
|  |  | 
|  | // Check that the STL has implemented the types using a single integer field. | 
|  | // This expectation allows better codegen for builtin operators. We require: | 
|  | //   (1) The class has exactly one field. | 
|  | //   (2) The field is an integral or enumeration type. | 
|  | auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end(); | 
|  | if (std::distance(FIt, FEnd) != 1 || | 
|  | !FIt->getType()->isIntegralOrEnumerationType()) { | 
|  | return UnsupportedSTLError(); | 
|  | } | 
|  |  | 
|  | // Build each of the require values and store them in Info. | 
|  | for (ComparisonCategoryResult CCR : | 
|  | ComparisonCategories::getPossibleResultsForType(Kind)) { | 
|  | StringRef MemName = ComparisonCategories::getResultString(CCR); | 
|  | ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR); | 
|  |  | 
|  | if (!ValInfo) | 
|  | return UnsupportedSTLError(USS_MissingMember, MemName); | 
|  |  | 
|  | VarDecl *VD = ValInfo->VD; | 
|  | assert(VD && "should not be null!"); | 
|  |  | 
|  | // Attempt to diagnose reasons why the STL definition of this type | 
|  | // might be foobar, including it failing to be a constant expression. | 
|  | // TODO Handle more ways the lookup or result can be invalid. | 
|  | if (!VD->isStaticDataMember() || !VD->isConstexpr() || !VD->hasInit() || | 
|  | !VD->checkInitIsICE()) | 
|  | return UnsupportedSTLError(USS_InvalidMember, MemName, VD); | 
|  |  | 
|  | // Attempt to evaluate the var decl as a constant expression and extract | 
|  | // the value of its first field as a ICE. If this fails, the STL | 
|  | // implementation is not supported. | 
|  | if (!ValInfo->hasValidIntValue()) | 
|  | return UnsupportedSTLError(); | 
|  |  | 
|  | MarkVariableReferenced(Loc, VD); | 
|  | } | 
|  |  | 
|  | // We've successfully built the required types and expressions. Update | 
|  | // the cache and return the newly cached value. | 
|  | FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true; | 
|  | return Info->getType(); | 
|  | } | 
|  |  | 
|  | /// Retrieve the special "std" namespace, which may require us to | 
|  | /// implicitly define the namespace. | 
|  | NamespaceDecl *Sema::getOrCreateStdNamespace() { | 
|  | if (!StdNamespace) { | 
|  | // The "std" namespace has not yet been defined, so build one implicitly. | 
|  | StdNamespace = NamespaceDecl::Create(Context, | 
|  | Context.getTranslationUnitDecl(), | 
|  | /*Inline=*/false, | 
|  | SourceLocation(), SourceLocation(), | 
|  | &PP.getIdentifierTable().get("std"), | 
|  | /*PrevDecl=*/nullptr); | 
|  | getStdNamespace()->setImplicit(true); | 
|  | } | 
|  |  | 
|  | return getStdNamespace(); | 
|  | } | 
|  |  | 
|  | bool Sema::isStdInitializerList(QualType Ty, QualType *Element) { | 
|  | assert(getLangOpts().CPlusPlus && | 
|  | "Looking for std::initializer_list outside of C++."); | 
|  |  | 
|  | // We're looking for implicit instantiations of | 
|  | // template <typename E> class std::initializer_list. | 
|  |  | 
|  | if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it. | 
|  | return false; | 
|  |  | 
|  | ClassTemplateDecl *Template = nullptr; | 
|  | const TemplateArgument *Arguments = nullptr; | 
|  |  | 
|  | if (const RecordType *RT = Ty->getAs<RecordType>()) { | 
|  |  | 
|  | ClassTemplateSpecializationDecl *Specialization = | 
|  | dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); | 
|  | if (!Specialization) | 
|  | return false; | 
|  |  | 
|  | Template = Specialization->getSpecializedTemplate(); | 
|  | Arguments = Specialization->getTemplateArgs().data(); | 
|  | } else if (const TemplateSpecializationType *TST = | 
|  | Ty->getAs<TemplateSpecializationType>()) { | 
|  | Template = dyn_cast_or_null<ClassTemplateDecl>( | 
|  | TST->getTemplateName().getAsTemplateDecl()); | 
|  | Arguments = TST->getArgs(); | 
|  | } | 
|  | if (!Template) | 
|  | return false; | 
|  |  | 
|  | if (!StdInitializerList) { | 
|  | // Haven't recognized std::initializer_list yet, maybe this is it. | 
|  | CXXRecordDecl *TemplateClass = Template->getTemplatedDecl(); | 
|  | if (TemplateClass->getIdentifier() != | 
|  | &PP.getIdentifierTable().get("initializer_list") || | 
|  | !getStdNamespace()->InEnclosingNamespaceSetOf( | 
|  | TemplateClass->getDeclContext())) | 
|  | return false; | 
|  | // This is a template called std::initializer_list, but is it the right | 
|  | // template? | 
|  | TemplateParameterList *Params = Template->getTemplateParameters(); | 
|  | if (Params->getMinRequiredArguments() != 1) | 
|  | return false; | 
|  | if (!isa<TemplateTypeParmDecl>(Params->getParam(0))) | 
|  | return false; | 
|  |  | 
|  | // It's the right template. | 
|  | StdInitializerList = Template; | 
|  | } | 
|  |  | 
|  | if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl()) | 
|  | return false; | 
|  |  | 
|  | // This is an instance of std::initializer_list. Find the argument type. | 
|  | if (Element) | 
|  | *Element = Arguments[0].getAsType(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){ | 
|  | NamespaceDecl *Std = S.getStdNamespace(); | 
|  | if (!Std) { | 
|  | S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"), | 
|  | Loc, Sema::LookupOrdinaryName); | 
|  | if (!S.LookupQualifiedName(Result, Std)) { | 
|  | S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); | 
|  | return nullptr; | 
|  | } | 
|  | ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>(); | 
|  | if (!Template) { | 
|  | Result.suppressDiagnostics(); | 
|  | // We found something weird. Complain about the first thing we found. | 
|  | NamedDecl *Found = *Result.begin(); | 
|  | S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // We found some template called std::initializer_list. Now verify that it's | 
|  | // correct. | 
|  | TemplateParameterList *Params = Template->getTemplateParameters(); | 
|  | if (Params->getMinRequiredArguments() != 1 || | 
|  | !isa<TemplateTypeParmDecl>(Params->getParam(0))) { | 
|  | S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return Template; | 
|  | } | 
|  |  | 
|  | QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) { | 
|  | if (!StdInitializerList) { | 
|  | StdInitializerList = LookupStdInitializerList(*this, Loc); | 
|  | if (!StdInitializerList) | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | TemplateArgumentListInfo Args(Loc, Loc); | 
|  | Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element), | 
|  | Context.getTrivialTypeSourceInfo(Element, | 
|  | Loc))); | 
|  | return Context.getCanonicalType( | 
|  | CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args)); | 
|  | } | 
|  |  | 
|  | bool Sema::isInitListConstructor(const FunctionDecl *Ctor) { | 
|  | // C++ [dcl.init.list]p2: | 
|  | //   A constructor is an initializer-list constructor if its first parameter | 
|  | //   is of type std::initializer_list<E> or reference to possibly cv-qualified | 
|  | //   std::initializer_list<E> for some type E, and either there are no other | 
|  | //   parameters or else all other parameters have default arguments. | 
|  | if (Ctor->getNumParams() < 1 || | 
|  | (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg())) | 
|  | return false; | 
|  |  | 
|  | QualType ArgType = Ctor->getParamDecl(0)->getType(); | 
|  | if (const ReferenceType *RT = ArgType->getAs<ReferenceType>()) | 
|  | ArgType = RT->getPointeeType().getUnqualifiedType(); | 
|  |  | 
|  | return isStdInitializerList(ArgType, nullptr); | 
|  | } | 
|  |  | 
|  | /// Determine whether a using statement is in a context where it will be | 
|  | /// apply in all contexts. | 
|  | static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { | 
|  | switch (CurContext->getDeclKind()) { | 
|  | case Decl::TranslationUnit: | 
|  | return true; | 
|  | case Decl::LinkageSpec: | 
|  | return IsUsingDirectiveInToplevelContext(CurContext->getParent()); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Callback to only accept typo corrections that are namespaces. | 
|  | class NamespaceValidatorCCC final : public CorrectionCandidateCallback { | 
|  | public: | 
|  | bool ValidateCandidate(const TypoCorrection &candidate) override { | 
|  | if (NamedDecl *ND = candidate.getCorrectionDecl()) | 
|  | return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<CorrectionCandidateCallback> clone() override { | 
|  | return llvm::make_unique<NamespaceValidatorCCC>(*this); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, | 
|  | CXXScopeSpec &SS, | 
|  | SourceLocation IdentLoc, | 
|  | IdentifierInfo *Ident) { | 
|  | R.clear(); | 
|  | NamespaceValidatorCCC CCC{}; | 
|  | if (TypoCorrection Corrected = | 
|  | S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC, | 
|  | Sema::CTK_ErrorRecovery)) { | 
|  | if (DeclContext *DC = S.computeDeclContext(SS, false)) { | 
|  | std::string CorrectedStr(Corrected.getAsString(S.getLangOpts())); | 
|  | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && | 
|  | Ident->getName().equals(CorrectedStr); | 
|  | S.diagnoseTypo(Corrected, | 
|  | S.PDiag(diag::err_using_directive_member_suggest) | 
|  | << Ident << DC << DroppedSpecifier << SS.getRange(), | 
|  | S.PDiag(diag::note_namespace_defined_here)); | 
|  | } else { | 
|  | S.diagnoseTypo(Corrected, | 
|  | S.PDiag(diag::err_using_directive_suggest) << Ident, | 
|  | S.PDiag(diag::note_namespace_defined_here)); | 
|  | } | 
|  | R.addDecl(Corrected.getFoundDecl()); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, | 
|  | SourceLocation NamespcLoc, CXXScopeSpec &SS, | 
|  | SourceLocation IdentLoc, | 
|  | IdentifierInfo *NamespcName, | 
|  | const ParsedAttributesView &AttrList) { | 
|  | assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); | 
|  | assert(NamespcName && "Invalid NamespcName."); | 
|  | assert(IdentLoc.isValid() && "Invalid NamespceName location."); | 
|  |  | 
|  | // This can only happen along a recovery path. | 
|  | while (S->isTemplateParamScope()) | 
|  | S = S->getParent(); | 
|  | assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); | 
|  |  | 
|  | UsingDirectiveDecl *UDir = nullptr; | 
|  | NestedNameSpecifier *Qualifier = nullptr; | 
|  | if (SS.isSet()) | 
|  | Qualifier = SS.getScopeRep(); | 
|  |  | 
|  | // Lookup namespace name. | 
|  | LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); | 
|  | LookupParsedName(R, S, &SS); | 
|  | if (R.isAmbiguous()) | 
|  | return nullptr; | 
|  |  | 
|  | if (R.empty()) { | 
|  | R.clear(); | 
|  | // Allow "using namespace std;" or "using namespace ::std;" even if | 
|  | // "std" hasn't been defined yet, for GCC compatibility. | 
|  | if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && | 
|  | NamespcName->isStr("std")) { | 
|  | Diag(IdentLoc, diag::ext_using_undefined_std); | 
|  | R.addDecl(getOrCreateStdNamespace()); | 
|  | R.resolveKind(); | 
|  | } | 
|  | // Otherwise, attempt typo correction. | 
|  | else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName); | 
|  | } | 
|  |  | 
|  | if (!R.empty()) { | 
|  | NamedDecl *Named = R.getRepresentativeDecl(); | 
|  | NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>(); | 
|  | assert(NS && "expected namespace decl"); | 
|  |  | 
|  | // The use of a nested name specifier may trigger deprecation warnings. | 
|  | DiagnoseUseOfDecl(Named, IdentLoc); | 
|  |  | 
|  | // C++ [namespace.udir]p1: | 
|  | //   A using-directive specifies that the names in the nominated | 
|  | //   namespace can be used in the scope in which the | 
|  | //   using-directive appears after the using-directive. During | 
|  | //   unqualified name lookup (3.4.1), the names appear as if they | 
|  | //   were declared in the nearest enclosing namespace which | 
|  | //   contains both the using-directive and the nominated | 
|  | //   namespace. [Note: in this context, "contains" means "contains | 
|  | //   directly or indirectly". ] | 
|  |  | 
|  | // Find enclosing context containing both using-directive and | 
|  | // nominated namespace. | 
|  | DeclContext *CommonAncestor = NS; | 
|  | while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) | 
|  | CommonAncestor = CommonAncestor->getParent(); | 
|  |  | 
|  | UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, | 
|  | SS.getWithLocInContext(Context), | 
|  | IdentLoc, Named, CommonAncestor); | 
|  |  | 
|  | if (IsUsingDirectiveInToplevelContext(CurContext) && | 
|  | !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) { | 
|  | Diag(IdentLoc, diag::warn_using_directive_in_header); | 
|  | } | 
|  |  | 
|  | PushUsingDirective(S, UDir); | 
|  | } else { | 
|  | Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); | 
|  | } | 
|  |  | 
|  | if (UDir) | 
|  | ProcessDeclAttributeList(S, UDir, AttrList); | 
|  |  | 
|  | return UDir; | 
|  | } | 
|  |  | 
|  | void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { | 
|  | // If the scope has an associated entity and the using directive is at | 
|  | // namespace or translation unit scope, add the UsingDirectiveDecl into | 
|  | // its lookup structure so qualified name lookup can find it. | 
|  | DeclContext *Ctx = S->getEntity(); | 
|  | if (Ctx && !Ctx->isFunctionOrMethod()) | 
|  | Ctx->addDecl(UDir); | 
|  | else | 
|  | // Otherwise, it is at block scope. The using-directives will affect lookup | 
|  | // only to the end of the scope. | 
|  | S->PushUsingDirective(UDir); | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS, | 
|  | SourceLocation UsingLoc, | 
|  | SourceLocation TypenameLoc, CXXScopeSpec &SS, | 
|  | UnqualifiedId &Name, | 
|  | SourceLocation EllipsisLoc, | 
|  | const ParsedAttributesView &AttrList) { | 
|  | assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); | 
|  |  | 
|  | if (SS.isEmpty()) { | 
|  | Diag(Name.getBeginLoc(), diag::err_using_requires_qualname); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | switch (Name.getKind()) { | 
|  | case UnqualifiedIdKind::IK_ImplicitSelfParam: | 
|  | case UnqualifiedIdKind::IK_Identifier: | 
|  | case UnqualifiedIdKind::IK_OperatorFunctionId: | 
|  | case UnqualifiedIdKind::IK_LiteralOperatorId: | 
|  | case UnqualifiedIdKind::IK_ConversionFunctionId: | 
|  | break; | 
|  |  | 
|  | case UnqualifiedIdKind::IK_ConstructorName: | 
|  | case UnqualifiedIdKind::IK_ConstructorTemplateId: | 
|  | // C++11 inheriting constructors. | 
|  | Diag(Name.getBeginLoc(), | 
|  | getLangOpts().CPlusPlus11 | 
|  | ? diag::warn_cxx98_compat_using_decl_constructor | 
|  | : diag::err_using_decl_constructor) | 
|  | << SS.getRange(); | 
|  |  | 
|  | if (getLangOpts().CPlusPlus11) break; | 
|  |  | 
|  | return nullptr; | 
|  |  | 
|  | case UnqualifiedIdKind::IK_DestructorName: | 
|  | Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange(); | 
|  | return nullptr; | 
|  |  | 
|  | case UnqualifiedIdKind::IK_TemplateId: | 
|  | Diag(Name.getBeginLoc(), diag::err_using_decl_template_id) | 
|  | << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); | 
|  | return nullptr; | 
|  |  | 
|  | case UnqualifiedIdKind::IK_DeductionGuideName: | 
|  | llvm_unreachable("cannot parse qualified deduction guide name"); | 
|  | } | 
|  |  | 
|  | DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); | 
|  | DeclarationName TargetName = TargetNameInfo.getName(); | 
|  | if (!TargetName) | 
|  | return nullptr; | 
|  |  | 
|  | // Warn about access declarations. | 
|  | if (UsingLoc.isInvalid()) { | 
|  | Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11 | 
|  | ? diag::err_access_decl | 
|  | : diag::warn_access_decl_deprecated) | 
|  | << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); | 
|  | } | 
|  |  | 
|  | if (EllipsisLoc.isInvalid()) { | 
|  | if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) || | 
|  | DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration)) | 
|  | return nullptr; | 
|  | } else { | 
|  | if (!SS.getScopeRep()->containsUnexpandedParameterPack() && | 
|  | !TargetNameInfo.containsUnexpandedParameterPack()) { | 
|  | Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) | 
|  | << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc()); | 
|  | EllipsisLoc = SourceLocation(); | 
|  | } | 
|  | } | 
|  |  | 
|  | NamedDecl *UD = | 
|  | BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc, | 
|  | SS, TargetNameInfo, EllipsisLoc, AttrList, | 
|  | /*IsInstantiation*/false); | 
|  | if (UD) | 
|  | PushOnScopeChains(UD, S, /*AddToContext*/ false); | 
|  |  | 
|  | return UD; | 
|  | } | 
|  |  | 
|  | /// Determine whether a using declaration considers the given | 
|  | /// declarations as "equivalent", e.g., if they are redeclarations of | 
|  | /// the same entity or are both typedefs of the same type. | 
|  | static bool | 
|  | IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) { | 
|  | if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) | 
|  | return true; | 
|  |  | 
|  | if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1)) | 
|  | if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) | 
|  | return Context.hasSameType(TD1->getUnderlyingType(), | 
|  | TD2->getUnderlyingType()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Determines whether to create a using shadow decl for a particular | 
|  | /// decl, given the set of decls existing prior to this using lookup. | 
|  | bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig, | 
|  | const LookupResult &Previous, | 
|  | UsingShadowDecl *&PrevShadow) { | 
|  | // Diagnose finding a decl which is not from a base class of the | 
|  | // current class.  We do this now because there are cases where this | 
|  | // function will silently decide not to build a shadow decl, which | 
|  | // will pre-empt further diagnostics. | 
|  | // | 
|  | // We don't need to do this in C++11 because we do the check once on | 
|  | // the qualifier. | 
|  | // | 
|  | // FIXME: diagnose the following if we care enough: | 
|  | //   struct A { int foo; }; | 
|  | //   struct B : A { using A::foo; }; | 
|  | //   template <class T> struct C : A {}; | 
|  | //   template <class T> struct D : C<T> { using B::foo; } // <--- | 
|  | // This is invalid (during instantiation) in C++03 because B::foo | 
|  | // resolves to the using decl in B, which is not a base class of D<T>. | 
|  | // We can't diagnose it immediately because C<T> is an unknown | 
|  | // specialization.  The UsingShadowDecl in D<T> then points directly | 
|  | // to A::foo, which will look well-formed when we instantiate. | 
|  | // The right solution is to not collapse the shadow-decl chain. | 
|  | if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) { | 
|  | DeclContext *OrigDC = Orig->getDeclContext(); | 
|  |  | 
|  | // Handle enums and anonymous structs. | 
|  | if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent(); | 
|  | CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); | 
|  | while (OrigRec->isAnonymousStructOrUnion()) | 
|  | OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); | 
|  |  | 
|  | if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { | 
|  | if (OrigDC == CurContext) { | 
|  | Diag(Using->getLocation(), | 
|  | diag::err_using_decl_nested_name_specifier_is_current_class) | 
|  | << Using->getQualifierLoc().getSourceRange(); | 
|  | Diag(Orig->getLocation(), diag::note_using_decl_target); | 
|  | Using->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Diag(Using->getQualifierLoc().getBeginLoc(), | 
|  | diag::err_using_decl_nested_name_specifier_is_not_base_class) | 
|  | << Using->getQualifier() | 
|  | << cast<CXXRecordDecl>(CurContext) | 
|  | << Using->getQualifierLoc().getSourceRange(); | 
|  | Diag(Orig->getLocation(), diag::note_using_decl_target); | 
|  | Using->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Previous.empty()) return false; | 
|  |  | 
|  | NamedDecl *Target = Orig; | 
|  | if (isa<UsingShadowDecl>(Target)) | 
|  | Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); | 
|  |  | 
|  | // If the target happens to be one of the previous declarations, we | 
|  | // don't have a conflict. | 
|  | // | 
|  | // FIXME: but we might be increasing its access, in which case we | 
|  | // should redeclare it. | 
|  | NamedDecl *NonTag = nullptr, *Tag = nullptr; | 
|  | bool FoundEquivalentDecl = false; | 
|  | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); | 
|  | I != E; ++I) { | 
|  | NamedDecl *D = (*I)->getUnderlyingDecl(); | 
|  | // We can have UsingDecls in our Previous results because we use the same | 
|  | // LookupResult for checking whether the UsingDecl itself is a valid | 
|  | // redeclaration. | 
|  | if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D)) | 
|  | continue; | 
|  |  | 
|  | if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { | 
|  | // C++ [class.mem]p19: | 
|  | //   If T is the name of a class, then [every named member other than | 
|  | //   a non-static data member] shall have a name different from T | 
|  | if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) && | 
|  | !isa<IndirectFieldDecl>(Target) && | 
|  | !isa<UnresolvedUsingValueDecl>(Target) && | 
|  | DiagnoseClassNameShadow( | 
|  | CurContext, | 
|  | DeclarationNameInfo(Using->getDeclName(), Using->getLocation()))) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (IsEquivalentForUsingDecl(Context, D, Target)) { | 
|  | if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I)) | 
|  | PrevShadow = Shadow; | 
|  | FoundEquivalentDecl = true; | 
|  | } else if (isEquivalentInternalLinkageDeclaration(D, Target)) { | 
|  | // We don't conflict with an existing using shadow decl of an equivalent | 
|  | // declaration, but we're not a redeclaration of it. | 
|  | FoundEquivalentDecl = true; | 
|  | } | 
|  |  | 
|  | if (isVisible(D)) | 
|  | (isa<TagDecl>(D) ? Tag : NonTag) = D; | 
|  | } | 
|  |  | 
|  | if (FoundEquivalentDecl) | 
|  | return false; | 
|  |  | 
|  | if (FunctionDecl *FD = Target->getAsFunction()) { | 
|  | NamedDecl *OldDecl = nullptr; | 
|  | switch (CheckOverload(nullptr, FD, Previous, OldDecl, | 
|  | /*IsForUsingDecl*/ true)) { | 
|  | case Ovl_Overload: | 
|  | return false; | 
|  |  | 
|  | case Ovl_NonFunction: | 
|  | Diag(Using->getLocation(), diag::err_using_decl_conflict); | 
|  | break; | 
|  |  | 
|  | // We found a decl with the exact signature. | 
|  | case Ovl_Match: | 
|  | // If we're in a record, we want to hide the target, so we | 
|  | // return true (without a diagnostic) to tell the caller not to | 
|  | // build a shadow decl. | 
|  | if (CurContext->isRecord()) | 
|  | return true; | 
|  |  | 
|  | // If we're not in a record, this is an error. | 
|  | Diag(Using->getLocation(), diag::err_using_decl_conflict); | 
|  | break; | 
|  | } | 
|  |  | 
|  | Diag(Target->getLocation(), diag::note_using_decl_target); | 
|  | Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); | 
|  | Using->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Target is not a function. | 
|  |  | 
|  | if (isa<TagDecl>(Target)) { | 
|  | // No conflict between a tag and a non-tag. | 
|  | if (!Tag) return false; | 
|  |  | 
|  | Diag(Using->getLocation(), diag::err_using_decl_conflict); | 
|  | Diag(Target->getLocation(), diag::note_using_decl_target); | 
|  | Diag(Tag->getLocation(), diag::note_using_decl_conflict); | 
|  | Using->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // No conflict between a tag and a non-tag. | 
|  | if (!NonTag) return false; | 
|  |  | 
|  | Diag(Using->getLocation(), diag::err_using_decl_conflict); | 
|  | Diag(Target->getLocation(), diag::note_using_decl_target); | 
|  | Diag(NonTag->getLocation(), diag::note_using_decl_conflict); | 
|  | Using->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine whether a direct base class is a virtual base class. | 
|  | static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) { | 
|  | if (!Derived->getNumVBases()) | 
|  | return false; | 
|  | for (auto &B : Derived->bases()) | 
|  | if (B.getType()->getAsCXXRecordDecl() == Base) | 
|  | return B.isVirtual(); | 
|  | llvm_unreachable("not a direct base class"); | 
|  | } | 
|  |  | 
|  | /// Builds a shadow declaration corresponding to a 'using' declaration. | 
|  | UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, | 
|  | UsingDecl *UD, | 
|  | NamedDecl *Orig, | 
|  | UsingShadowDecl *PrevDecl) { | 
|  | // If we resolved to another shadow declaration, just coalesce them. | 
|  | NamedDecl *Target = Orig; | 
|  | if (isa<UsingShadowDecl>(Target)) { | 
|  | Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); | 
|  | assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); | 
|  | } | 
|  |  | 
|  | NamedDecl *NonTemplateTarget = Target; | 
|  | if (auto *TargetTD = dyn_cast<TemplateDecl>(Target)) | 
|  | NonTemplateTarget = TargetTD->getTemplatedDecl(); | 
|  |  | 
|  | UsingShadowDecl *Shadow; | 
|  | if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) { | 
|  | bool IsVirtualBase = | 
|  | isVirtualDirectBase(cast<CXXRecordDecl>(CurContext), | 
|  | UD->getQualifier()->getAsRecordDecl()); | 
|  | Shadow = ConstructorUsingShadowDecl::Create( | 
|  | Context, CurContext, UD->getLocation(), UD, Orig, IsVirtualBase); | 
|  | } else { | 
|  | Shadow = UsingShadowDecl::Create(Context, CurContext, UD->getLocation(), UD, | 
|  | Target); | 
|  | } | 
|  | UD->addShadowDecl(Shadow); | 
|  |  | 
|  | Shadow->setAccess(UD->getAccess()); | 
|  | if (Orig->isInvalidDecl() || UD->isInvalidDecl()) | 
|  | Shadow->setInvalidDecl(); | 
|  |  | 
|  | Shadow->setPreviousDecl(PrevDecl); | 
|  |  | 
|  | if (S) | 
|  | PushOnScopeChains(Shadow, S); | 
|  | else | 
|  | CurContext->addDecl(Shadow); | 
|  |  | 
|  |  | 
|  | return Shadow; | 
|  | } | 
|  |  | 
|  | /// Hides a using shadow declaration.  This is required by the current | 
|  | /// using-decl implementation when a resolvable using declaration in a | 
|  | /// class is followed by a declaration which would hide or override | 
|  | /// one or more of the using decl's targets; for example: | 
|  | /// | 
|  | ///   struct Base { void foo(int); }; | 
|  | ///   struct Derived : Base { | 
|  | ///     using Base::foo; | 
|  | ///     void foo(int); | 
|  | ///   }; | 
|  | /// | 
|  | /// The governing language is C++03 [namespace.udecl]p12: | 
|  | /// | 
|  | ///   When a using-declaration brings names from a base class into a | 
|  | ///   derived class scope, member functions in the derived class | 
|  | ///   override and/or hide member functions with the same name and | 
|  | ///   parameter types in a base class (rather than conflicting). | 
|  | /// | 
|  | /// There are two ways to implement this: | 
|  | ///   (1) optimistically create shadow decls when they're not hidden | 
|  | ///       by existing declarations, or | 
|  | ///   (2) don't create any shadow decls (or at least don't make them | 
|  | ///       visible) until we've fully parsed/instantiated the class. | 
|  | /// The problem with (1) is that we might have to retroactively remove | 
|  | /// a shadow decl, which requires several O(n) operations because the | 
|  | /// decl structures are (very reasonably) not designed for removal. | 
|  | /// (2) avoids this but is very fiddly and phase-dependent. | 
|  | void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { | 
|  | if (Shadow->getDeclName().getNameKind() == | 
|  | DeclarationName::CXXConversionFunctionName) | 
|  | cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); | 
|  |  | 
|  | // Remove it from the DeclContext... | 
|  | Shadow->getDeclContext()->removeDecl(Shadow); | 
|  |  | 
|  | // ...and the scope, if applicable... | 
|  | if (S) { | 
|  | S->RemoveDecl(Shadow); | 
|  | IdResolver.RemoveDecl(Shadow); | 
|  | } | 
|  |  | 
|  | // ...and the using decl. | 
|  | Shadow->getUsingDecl()->removeShadowDecl(Shadow); | 
|  |  | 
|  | // TODO: complain somehow if Shadow was used.  It shouldn't | 
|  | // be possible for this to happen, because...? | 
|  | } | 
|  |  | 
|  | /// Find the base specifier for a base class with the given type. | 
|  | static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived, | 
|  | QualType DesiredBase, | 
|  | bool &AnyDependentBases) { | 
|  | // Check whether the named type is a direct base class. | 
|  | CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified(); | 
|  | for (auto &Base : Derived->bases()) { | 
|  | CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified(); | 
|  | if (CanonicalDesiredBase == BaseType) | 
|  | return &Base; | 
|  | if (BaseType->isDependentType()) | 
|  | AnyDependentBases = true; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class UsingValidatorCCC final : public CorrectionCandidateCallback { | 
|  | public: | 
|  | UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation, | 
|  | NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf) | 
|  | : HasTypenameKeyword(HasTypenameKeyword), | 
|  | IsInstantiation(IsInstantiation), OldNNS(NNS), | 
|  | RequireMemberOf(RequireMemberOf) {} | 
|  |  | 
|  | bool ValidateCandidate(const TypoCorrection &Candidate) override { | 
|  | NamedDecl *ND = Candidate.getCorrectionDecl(); | 
|  |  | 
|  | // Keywords are not valid here. | 
|  | if (!ND || isa<NamespaceDecl>(ND)) | 
|  | return false; | 
|  |  | 
|  | // Completely unqualified names are invalid for a 'using' declaration. | 
|  | if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier()) | 
|  | return false; | 
|  |  | 
|  | // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would | 
|  | // reject. | 
|  |  | 
|  | if (RequireMemberOf) { | 
|  | auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); | 
|  | if (FoundRecord && FoundRecord->isInjectedClassName()) { | 
|  | // No-one ever wants a using-declaration to name an injected-class-name | 
|  | // of a base class, unless they're declaring an inheriting constructor. | 
|  | ASTContext &Ctx = ND->getASTContext(); | 
|  | if (!Ctx.getLangOpts().CPlusPlus11) | 
|  | return false; | 
|  | QualType FoundType = Ctx.getRecordType(FoundRecord); | 
|  |  | 
|  | // Check that the injected-class-name is named as a member of its own | 
|  | // type; we don't want to suggest 'using Derived::Base;', since that | 
|  | // means something else. | 
|  | NestedNameSpecifier *Specifier = | 
|  | Candidate.WillReplaceSpecifier() | 
|  | ? Candidate.getCorrectionSpecifier() | 
|  | : OldNNS; | 
|  | if (!Specifier->getAsType() || | 
|  | !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType)) | 
|  | return false; | 
|  |  | 
|  | // Check that this inheriting constructor declaration actually names a | 
|  | // direct base class of the current class. | 
|  | bool AnyDependentBases = false; | 
|  | if (!findDirectBaseWithType(RequireMemberOf, | 
|  | Ctx.getRecordType(FoundRecord), | 
|  | AnyDependentBases) && | 
|  | !AnyDependentBases) | 
|  | return false; | 
|  | } else { | 
|  | auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext()); | 
|  | if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD)) | 
|  | return false; | 
|  |  | 
|  | // FIXME: Check that the base class member is accessible? | 
|  | } | 
|  | } else { | 
|  | auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); | 
|  | if (FoundRecord && FoundRecord->isInjectedClassName()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (isa<TypeDecl>(ND)) | 
|  | return HasTypenameKeyword || !IsInstantiation; | 
|  |  | 
|  | return !HasTypenameKeyword; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<CorrectionCandidateCallback> clone() override { | 
|  | return llvm::make_unique<UsingValidatorCCC>(*this); | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool HasTypenameKeyword; | 
|  | bool IsInstantiation; | 
|  | NestedNameSpecifier *OldNNS; | 
|  | CXXRecordDecl *RequireMemberOf; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Builds a using declaration. | 
|  | /// | 
|  | /// \param IsInstantiation - Whether this call arises from an | 
|  | ///   instantiation of an unresolved using declaration.  We treat | 
|  | ///   the lookup differently for these declarations. | 
|  | NamedDecl *Sema::BuildUsingDeclaration( | 
|  | Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, | 
|  | bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, | 
|  | DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, | 
|  | const ParsedAttributesView &AttrList, bool IsInstantiation) { | 
|  | assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); | 
|  | SourceLocation IdentLoc = NameInfo.getLoc(); | 
|  | assert(IdentLoc.isValid() && "Invalid TargetName location."); | 
|  |  | 
|  | // FIXME: We ignore attributes for now. | 
|  |  | 
|  | // For an inheriting constructor declaration, the name of the using | 
|  | // declaration is the name of a constructor in this class, not in the | 
|  | // base class. | 
|  | DeclarationNameInfo UsingName = NameInfo; | 
|  | if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName) | 
|  | if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext)) | 
|  | UsingName.setName(Context.DeclarationNames.getCXXConstructorName( | 
|  | Context.getCanonicalType(Context.getRecordType(RD)))); | 
|  |  | 
|  | // Do the redeclaration lookup in the current scope. | 
|  | LookupResult Previous(*this, UsingName, LookupUsingDeclName, | 
|  | ForVisibleRedeclaration); | 
|  | Previous.setHideTags(false); | 
|  | if (S) { | 
|  | LookupName(Previous, S); | 
|  |  | 
|  | // It is really dumb that we have to do this. | 
|  | LookupResult::Filter F = Previous.makeFilter(); | 
|  | while (F.hasNext()) { | 
|  | NamedDecl *D = F.next(); | 
|  | if (!isDeclInScope(D, CurContext, S)) | 
|  | F.erase(); | 
|  | // If we found a local extern declaration that's not ordinarily visible, | 
|  | // and this declaration is being added to a non-block scope, ignore it. | 
|  | // We're only checking for scope conflicts here, not also for violations | 
|  | // of the linkage rules. | 
|  | else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() && | 
|  | !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary)) | 
|  | F.erase(); | 
|  | } | 
|  | F.done(); | 
|  | } else { | 
|  | assert(IsInstantiation && "no scope in non-instantiation"); | 
|  | if (CurContext->isRecord()) | 
|  | LookupQualifiedName(Previous, CurContext); | 
|  | else { | 
|  | // No redeclaration check is needed here; in non-member contexts we | 
|  | // diagnosed all possible conflicts with other using-declarations when | 
|  | // building the template: | 
|  | // | 
|  | // For a dependent non-type using declaration, the only valid case is | 
|  | // if we instantiate to a single enumerator. We check for conflicts | 
|  | // between shadow declarations we introduce, and we check in the template | 
|  | // definition for conflicts between a non-type using declaration and any | 
|  | // other declaration, which together covers all cases. | 
|  | // | 
|  | // A dependent typename using declaration will never successfully | 
|  | // instantiate, since it will always name a class member, so we reject | 
|  | // that in the template definition. | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for invalid redeclarations. | 
|  | if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword, | 
|  | SS, IdentLoc, Previous)) | 
|  | return nullptr; | 
|  |  | 
|  | // Check for bad qualifiers. | 
|  | if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo, | 
|  | IdentLoc)) | 
|  | return nullptr; | 
|  |  | 
|  | DeclContext *LookupContext = computeDeclContext(SS); | 
|  | NamedDecl *D; | 
|  | NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); | 
|  | if (!LookupContext || EllipsisLoc.isValid()) { | 
|  | if (HasTypenameKeyword) { | 
|  | // FIXME: not all declaration name kinds are legal here | 
|  | D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, | 
|  | UsingLoc, TypenameLoc, | 
|  | QualifierLoc, | 
|  | IdentLoc, NameInfo.getName(), | 
|  | EllipsisLoc); | 
|  | } else { | 
|  | D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, | 
|  | QualifierLoc, NameInfo, EllipsisLoc); | 
|  | } | 
|  | D->setAccess(AS); | 
|  | CurContext->addDecl(D); | 
|  | return D; | 
|  | } | 
|  |  | 
|  | auto Build = [&](bool Invalid) { | 
|  | UsingDecl *UD = | 
|  | UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, | 
|  | UsingName, HasTypenameKeyword); | 
|  | UD->setAccess(AS); | 
|  | CurContext->addDecl(UD); | 
|  | UD->setInvalidDecl(Invalid); | 
|  | return UD; | 
|  | }; | 
|  | auto BuildInvalid = [&]{ return Build(true); }; | 
|  | auto BuildValid = [&]{ return Build(false); }; | 
|  |  | 
|  | if (RequireCompleteDeclContext(SS, LookupContext)) | 
|  | return BuildInvalid(); | 
|  |  | 
|  | // Look up the target name. | 
|  | LookupResult R(*this, NameInfo, LookupOrdinaryName); | 
|  |  | 
|  | // Unlike most lookups, we don't always want to hide tag | 
|  | // declarations: tag names are visible through the using declaration | 
|  | // even if hidden by ordinary names, *except* in a dependent context | 
|  | // where it's important for the sanity of two-phase lookup. | 
|  | if (!IsInstantiation) | 
|  | R.setHideTags(false); | 
|  |  | 
|  | // For the purposes of this lookup, we have a base object type | 
|  | // equal to that of the current context. | 
|  | if (CurContext->isRecord()) { | 
|  | R.setBaseObjectType( | 
|  | Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))); | 
|  | } | 
|  |  | 
|  | LookupQualifiedName(R, LookupContext); | 
|  |  | 
|  | // Try to correct typos if possible. If constructor name lookup finds no | 
|  | // results, that means the named class has no explicit constructors, and we | 
|  | // suppressed declaring implicit ones (probably because it's dependent or | 
|  | // invalid). | 
|  | if (R.empty() && | 
|  | NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) { | 
|  | // HACK: Work around a bug in libstdc++'s detection of ::gets. Sometimes | 
|  | // it will believe that glibc provides a ::gets in cases where it does not, | 
|  | // and will try to pull it into namespace std with a using-declaration. | 
|  | // Just ignore the using-declaration in that case. | 
|  | auto *II = NameInfo.getName().getAsIdentifierInfo(); | 
|  | if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") && | 
|  | CurContext->isStdNamespace() && | 
|  | isa<TranslationUnitDecl>(LookupContext) && | 
|  | getSourceManager().isInSystemHeader(UsingLoc)) | 
|  | return nullptr; | 
|  | UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(), | 
|  | dyn_cast<CXXRecordDecl>(CurContext)); | 
|  | if (TypoCorrection Corrected = | 
|  | CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, | 
|  | CTK_ErrorRecovery)) { | 
|  | // We reject candidates where DroppedSpecifier == true, hence the | 
|  | // literal '0' below. | 
|  | diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) | 
|  | << NameInfo.getName() << LookupContext << 0 | 
|  | << SS.getRange()); | 
|  |  | 
|  | // If we picked a correction with no attached Decl we can't do anything | 
|  | // useful with it, bail out. | 
|  | NamedDecl *ND = Corrected.getCorrectionDecl(); | 
|  | if (!ND) | 
|  | return BuildInvalid(); | 
|  |  | 
|  | // If we corrected to an inheriting constructor, handle it as one. | 
|  | auto *RD = dyn_cast<CXXRecordDecl>(ND); | 
|  | if (RD && RD->isInjectedClassName()) { | 
|  | // The parent of the injected class name is the class itself. | 
|  | RD = cast<CXXRecordDecl>(RD->getParent()); | 
|  |  | 
|  | // Fix up the information we'll use to build the using declaration. | 
|  | if (Corrected.WillReplaceSpecifier()) { | 
|  | NestedNameSpecifierLocBuilder Builder; | 
|  | Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), | 
|  | QualifierLoc.getSourceRange()); | 
|  | QualifierLoc = Builder.getWithLocInContext(Context); | 
|  | } | 
|  |  | 
|  | // In this case, the name we introduce is the name of a derived class | 
|  | // constructor. | 
|  | auto *CurClass = cast<CXXRecordDecl>(CurContext); | 
|  | UsingName.setName(Context.DeclarationNames.getCXXConstructorName( | 
|  | Context.getCanonicalType(Context.getRecordType(CurClass)))); | 
|  | UsingName.setNamedTypeInfo(nullptr); | 
|  | for (auto *Ctor : LookupConstructors(RD)) | 
|  | R.addDecl(Ctor); | 
|  | R.resolveKind(); | 
|  | } else { | 
|  | // FIXME: Pick up all the declarations if we found an overloaded | 
|  | // function. | 
|  | UsingName.setName(ND->getDeclName()); | 
|  | R.addDecl(ND); | 
|  | } | 
|  | } else { | 
|  | Diag(IdentLoc, diag::err_no_member) | 
|  | << NameInfo.getName() << LookupContext << SS.getRange(); | 
|  | return BuildInvalid(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (R.isAmbiguous()) | 
|  | return BuildInvalid(); | 
|  |  | 
|  | if (HasTypenameKeyword) { | 
|  | // If we asked for a typename and got a non-type decl, error out. | 
|  | if (!R.getAsSingle<TypeDecl>()) { | 
|  | Diag(IdentLoc, diag::err_using_typename_non_type); | 
|  | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) | 
|  | Diag((*I)->getUnderlyingDecl()->getLocation(), | 
|  | diag::note_using_decl_target); | 
|  | return BuildInvalid(); | 
|  | } | 
|  | } else { | 
|  | // If we asked for a non-typename and we got a type, error out, | 
|  | // but only if this is an instantiation of an unresolved using | 
|  | // decl.  Otherwise just silently find the type name. | 
|  | if (IsInstantiation && R.getAsSingle<TypeDecl>()) { | 
|  | Diag(IdentLoc, diag::err_using_dependent_value_is_type); | 
|  | Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); | 
|  | return BuildInvalid(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++14 [namespace.udecl]p6: | 
|  | // A using-declaration shall not name a namespace. | 
|  | if (R.getAsSingle<NamespaceDecl>()) { | 
|  | Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) | 
|  | << SS.getRange(); | 
|  | return BuildInvalid(); | 
|  | } | 
|  |  | 
|  | // C++14 [namespace.udecl]p7: | 
|  | // A using-declaration shall not name a scoped enumerator. | 
|  | if (auto *ED = R.getAsSingle<EnumConstantDecl>()) { | 
|  | if (cast<EnumDecl>(ED->getDeclContext())->isScoped()) { | 
|  | Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_scoped_enum) | 
|  | << SS.getRange(); | 
|  | return BuildInvalid(); | 
|  | } | 
|  | } | 
|  |  | 
|  | UsingDecl *UD = BuildValid(); | 
|  |  | 
|  | // Some additional rules apply to inheriting constructors. | 
|  | if (UsingName.getName().getNameKind() == | 
|  | DeclarationName::CXXConstructorName) { | 
|  | // Suppress access diagnostics; the access check is instead performed at the | 
|  | // point of use for an inheriting constructor. | 
|  | R.suppressDiagnostics(); | 
|  | if (CheckInheritingConstructorUsingDecl(UD)) | 
|  | return UD; | 
|  | } | 
|  |  | 
|  | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { | 
|  | UsingShadowDecl *PrevDecl = nullptr; | 
|  | if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl)) | 
|  | BuildUsingShadowDecl(S, UD, *I, PrevDecl); | 
|  | } | 
|  |  | 
|  | return UD; | 
|  | } | 
|  |  | 
|  | NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom, | 
|  | ArrayRef<NamedDecl *> Expansions) { | 
|  | assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || | 
|  | isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || | 
|  | isa<UsingPackDecl>(InstantiatedFrom)); | 
|  |  | 
|  | auto *UPD = | 
|  | UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions); | 
|  | UPD->setAccess(InstantiatedFrom->getAccess()); | 
|  | CurContext->addDecl(UPD); | 
|  | return UPD; | 
|  | } | 
|  |  | 
|  | /// Additional checks for a using declaration referring to a constructor name. | 
|  | bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) { | 
|  | assert(!UD->hasTypename() && "expecting a constructor name"); | 
|  |  | 
|  | const Type *SourceType = UD->getQualifier()->getAsType(); | 
|  | assert(SourceType && | 
|  | "Using decl naming constructor doesn't have type in scope spec."); | 
|  | CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext); | 
|  |  | 
|  | // Check whether the named type is a direct base class. | 
|  | bool AnyDependentBases = false; | 
|  | auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0), | 
|  | AnyDependentBases); | 
|  | if (!Base && !AnyDependentBases) { | 
|  | Diag(UD->getUsingLoc(), | 
|  | diag::err_using_decl_constructor_not_in_direct_base) | 
|  | << UD->getNameInfo().getSourceRange() | 
|  | << QualType(SourceType, 0) << TargetClass; | 
|  | UD->setInvalidDecl(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Base) | 
|  | Base->setInheritConstructors(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Checks that the given using declaration is not an invalid | 
|  | /// redeclaration.  Note that this is checking only for the using decl | 
|  | /// itself, not for any ill-formedness among the UsingShadowDecls. | 
|  | bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, | 
|  | bool HasTypenameKeyword, | 
|  | const CXXScopeSpec &SS, | 
|  | SourceLocation NameLoc, | 
|  | const LookupResult &Prev) { | 
|  | NestedNameSpecifier *Qual = SS.getScopeRep(); | 
|  |  | 
|  | // C++03 [namespace.udecl]p8: | 
|  | // C++0x [namespace.udecl]p10: | 
|  | //   A using-declaration is a declaration and can therefore be used | 
|  | //   repeatedly where (and only where) multiple declarations are | 
|  | //   allowed. | 
|  | // | 
|  | // That's in non-member contexts. | 
|  | if (!CurContext->getRedeclContext()->isRecord()) { | 
|  | // A dependent qualifier outside a class can only ever resolve to an | 
|  | // enumeration type. Therefore it conflicts with any other non-type | 
|  | // declaration in the same scope. | 
|  | // FIXME: How should we check for dependent type-type conflicts at block | 
|  | // scope? | 
|  | if (Qual->isDependent() && !HasTypenameKeyword) { | 
|  | for (auto *D : Prev) { | 
|  | if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) { | 
|  | bool OldCouldBeEnumerator = | 
|  | isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D); | 
|  | Diag(NameLoc, | 
|  | OldCouldBeEnumerator ? diag::err_redefinition | 
|  | : diag::err_redefinition_different_kind) | 
|  | << Prev.getLookupName(); | 
|  | Diag(D->getLocation(), diag::note_previous_definition); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { | 
|  | NamedDecl *D = *I; | 
|  |  | 
|  | bool DTypename; | 
|  | NestedNameSpecifier *DQual; | 
|  | if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { | 
|  | DTypename = UD->hasTypename(); | 
|  | DQual = UD->getQualifier(); | 
|  | } else if (UnresolvedUsingValueDecl *UD | 
|  | = dyn_cast<UnresolvedUsingValueDecl>(D)) { | 
|  | DTypename = false; | 
|  | DQual = UD->getQualifier(); | 
|  | } else if (UnresolvedUsingTypenameDecl *UD | 
|  | = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { | 
|  | DTypename = true; | 
|  | DQual = UD->getQualifier(); | 
|  | } else continue; | 
|  |  | 
|  | // using decls differ if one says 'typename' and the other doesn't. | 
|  | // FIXME: non-dependent using decls? | 
|  | if (HasTypenameKeyword != DTypename) continue; | 
|  |  | 
|  | // using decls differ if they name different scopes (but note that | 
|  | // template instantiation can cause this check to trigger when it | 
|  | // didn't before instantiation). | 
|  | if (Context.getCanonicalNestedNameSpecifier(Qual) != | 
|  | Context.getCanonicalNestedNameSpecifier(DQual)) | 
|  | continue; | 
|  |  | 
|  | Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); | 
|  | Diag(D->getLocation(), diag::note_using_decl) << 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Checks that the given nested-name qualifier used in a using decl | 
|  | /// in the current context is appropriately related to the current | 
|  | /// scope.  If an error is found, diagnoses it and returns true. | 
|  | bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, | 
|  | bool HasTypename, | 
|  | const CXXScopeSpec &SS, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | SourceLocation NameLoc) { | 
|  | DeclContext *NamedContext = computeDeclContext(SS); | 
|  |  | 
|  | if (!CurContext->isRecord()) { | 
|  | // C++03 [namespace.udecl]p3: | 
|  | // C++0x [namespace.udecl]p8: | 
|  | //   A using-declaration for a class member shall be a member-declaration. | 
|  |  | 
|  | // If we weren't able to compute a valid scope, it might validly be a | 
|  | // dependent class scope or a dependent enumeration unscoped scope. If | 
|  | // we have a 'typename' keyword, the scope must resolve to a class type. | 
|  | if ((HasTypename && !NamedContext) || | 
|  | (NamedContext && NamedContext->getRedeclContext()->isRecord())) { | 
|  | auto *RD = NamedContext | 
|  | ? cast<CXXRecordDecl>(NamedContext->getRedeclContext()) | 
|  | : nullptr; | 
|  | if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD)) | 
|  | RD = nullptr; | 
|  |  | 
|  | Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member) | 
|  | << SS.getRange(); | 
|  |  | 
|  | // If we have a complete, non-dependent source type, try to suggest a | 
|  | // way to get the same effect. | 
|  | if (!RD) | 
|  | return true; | 
|  |  | 
|  | // Find what this using-declaration was referring to. | 
|  | LookupResult R(*this, NameInfo, LookupOrdinaryName); | 
|  | R.setHideTags(false); | 
|  | R.suppressDiagnostics(); | 
|  | LookupQualifiedName(R, RD); | 
|  |  | 
|  | if (R.getAsSingle<TypeDecl>()) { | 
|  | if (getLangOpts().CPlusPlus11) { | 
|  | // Convert 'using X::Y;' to 'using Y = X::Y;'. | 
|  | Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround) | 
|  | << 0 // alias declaration | 
|  | << FixItHint::CreateInsertion(SS.getBeginLoc(), | 
|  | NameInfo.getName().getAsString() + | 
|  | " = "); | 
|  | } else { | 
|  | // Convert 'using X::Y;' to 'typedef X::Y Y;'. | 
|  | SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc()); | 
|  | Diag(InsertLoc, diag::note_using_decl_class_member_workaround) | 
|  | << 1 // typedef declaration | 
|  | << FixItHint::CreateReplacement(UsingLoc, "typedef") | 
|  | << FixItHint::CreateInsertion( | 
|  | InsertLoc, " " + NameInfo.getName().getAsString()); | 
|  | } | 
|  | } else if (R.getAsSingle<VarDecl>()) { | 
|  | // Don't provide a fixit outside C++11 mode; we don't want to suggest | 
|  | // repeating the type of the static data member here. | 
|  | FixItHint FixIt; | 
|  | if (getLangOpts().CPlusPlus11) { | 
|  | // Convert 'using X::Y;' to 'auto &Y = X::Y;'. | 
|  | FixIt = FixItHint::CreateReplacement( | 
|  | UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = "); | 
|  | } | 
|  |  | 
|  | Diag(UsingLoc, diag::note_using_decl_class_member_workaround) | 
|  | << 2 // reference declaration | 
|  | << FixIt; | 
|  | } else if (R.getAsSingle<EnumConstantDecl>()) { | 
|  | // Don't provide a fixit outside C++11 mode; we don't want to suggest | 
|  | // repeating the type of the enumeration here, and we can't do so if | 
|  | // the type is anonymous. | 
|  | FixItHint FixIt; | 
|  | if (getLangOpts().CPlusPlus11) { | 
|  | // Convert 'using X::Y;' to 'auto &Y = X::Y;'. | 
|  | FixIt = FixItHint::CreateReplacement( | 
|  | UsingLoc, | 
|  | "constexpr auto " + NameInfo.getName().getAsString() + " = "); | 
|  | } | 
|  |  | 
|  | Diag(UsingLoc, diag::note_using_decl_class_member_workaround) | 
|  | << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable | 
|  | << FixIt; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, this might be valid. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The current scope is a record. | 
|  |  | 
|  | // If the named context is dependent, we can't decide much. | 
|  | if (!NamedContext) { | 
|  | // FIXME: in C++0x, we can diagnose if we can prove that the | 
|  | // nested-name-specifier does not refer to a base class, which is | 
|  | // still possible in some cases. | 
|  |  | 
|  | // Otherwise we have to conservatively report that things might be | 
|  | // okay. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!NamedContext->isRecord()) { | 
|  | // Ideally this would point at the last name in the specifier, | 
|  | // but we don't have that level of source info. | 
|  | Diag(SS.getRange().getBegin(), | 
|  | diag::err_using_decl_nested_name_specifier_is_not_class) | 
|  | << SS.getScopeRep() << SS.getRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!NamedContext->isDependentContext() && | 
|  | RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext)) | 
|  | return true; | 
|  |  | 
|  | if (getLangOpts().CPlusPlus11) { | 
|  | // C++11 [namespace.udecl]p3: | 
|  | //   In a using-declaration used as a member-declaration, the | 
|  | //   nested-name-specifier shall name a base class of the class | 
|  | //   being defined. | 
|  |  | 
|  | if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( | 
|  | cast<CXXRecordDecl>(NamedContext))) { | 
|  | if (CurContext == NamedContext) { | 
|  | Diag(NameLoc, | 
|  | diag::err_using_decl_nested_name_specifier_is_current_class) | 
|  | << SS.getRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) { | 
|  | Diag(SS.getRange().getBegin(), | 
|  | diag::err_using_decl_nested_name_specifier_is_not_base_class) | 
|  | << SS.getScopeRep() | 
|  | << cast<CXXRecordDecl>(CurContext) | 
|  | << SS.getRange(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // C++03 [namespace.udecl]p4: | 
|  | //   A using-declaration used as a member-declaration shall refer | 
|  | //   to a member of a base class of the class being defined [etc.]. | 
|  |  | 
|  | // Salient point: SS doesn't have to name a base class as long as | 
|  | // lookup only finds members from base classes.  Therefore we can | 
|  | // diagnose here only if we can prove that that can't happen, | 
|  | // i.e. if the class hierarchies provably don't intersect. | 
|  |  | 
|  | // TODO: it would be nice if "definitely valid" results were cached | 
|  | // in the UsingDecl and UsingShadowDecl so that these checks didn't | 
|  | // need to be repeated. | 
|  |  | 
|  | llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases; | 
|  | auto Collect = [&Bases](const CXXRecordDecl *Base) { | 
|  | Bases.insert(Base); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | // Collect all bases. Return false if we find a dependent base. | 
|  | if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect)) | 
|  | return false; | 
|  |  | 
|  | // Returns true if the base is dependent or is one of the accumulated base | 
|  | // classes. | 
|  | auto IsNotBase = [&Bases](const CXXRecordDecl *Base) { | 
|  | return !Bases.count(Base); | 
|  | }; | 
|  |  | 
|  | // Return false if the class has a dependent base or if it or one | 
|  | // of its bases is present in the base set of the current context. | 
|  | if (Bases.count(cast<CXXRecordDecl>(NamedContext)) || | 
|  | !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase)) | 
|  | return false; | 
|  |  | 
|  | Diag(SS.getRange().getBegin(), | 
|  | diag::err_using_decl_nested_name_specifier_is_not_base_class) | 
|  | << SS.getScopeRep() | 
|  | << cast<CXXRecordDecl>(CurContext) | 
|  | << SS.getRange(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS, | 
|  | MultiTemplateParamsArg TemplateParamLists, | 
|  | SourceLocation UsingLoc, UnqualifiedId &Name, | 
|  | const ParsedAttributesView &AttrList, | 
|  | TypeResult Type, Decl *DeclFromDeclSpec) { | 
|  | // Skip up to the relevant declaration scope. | 
|  | while (S->isTemplateParamScope()) | 
|  | S = S->getParent(); | 
|  | assert((S->getFlags() & Scope::DeclScope) && | 
|  | "got alias-declaration outside of declaration scope"); | 
|  |  | 
|  | if (Type.isInvalid()) | 
|  | return nullptr; | 
|  |  | 
|  | bool Invalid = false; | 
|  | DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); | 
|  | TypeSourceInfo *TInfo = nullptr; | 
|  | GetTypeFromParser(Type.get(), &TInfo); | 
|  |  | 
|  | if (DiagnoseClassNameShadow(CurContext, NameInfo)) | 
|  | return nullptr; | 
|  |  | 
|  | if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo, | 
|  | UPPC_DeclarationType)) { | 
|  | Invalid = true; | 
|  | TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, | 
|  | TInfo->getTypeLoc().getBeginLoc()); | 
|  | } | 
|  |  | 
|  | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | 
|  | TemplateParamLists.size() | 
|  | ? forRedeclarationInCurContext() | 
|  | : ForVisibleRedeclaration); | 
|  | LookupName(Previous, S); | 
|  |  | 
|  | // Warn about shadowing the name of a template parameter. | 
|  | if (Previous.isSingleResult() && | 
|  | Previous.getFoundDecl()->isTemplateParameter()) { | 
|  | DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl()); | 
|  | Previous.clear(); | 
|  | } | 
|  |  | 
|  | assert(Name.Kind == UnqualifiedIdKind::IK_Identifier && | 
|  | "name in alias declaration must be an identifier"); | 
|  | TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc, | 
|  | Name.StartLocation, | 
|  | Name.Identifier, TInfo); | 
|  |  | 
|  | NewTD->setAccess(AS); | 
|  |  | 
|  | if (Invalid) | 
|  | NewTD->setInvalidDecl(); | 
|  |  | 
|  | ProcessDeclAttributeList(S, NewTD, AttrList); | 
|  | AddPragmaAttributes(S, NewTD); | 
|  |  | 
|  | CheckTypedefForVariablyModifiedType(S, NewTD); | 
|  | Invalid |= NewTD->isInvalidDecl(); | 
|  |  | 
|  | bool Redeclaration = false; | 
|  |  | 
|  | NamedDecl *NewND; | 
|  | if (TemplateParamLists.size()) { | 
|  | TypeAliasTemplateDecl *OldDecl = nullptr; | 
|  | TemplateParameterList *OldTemplateParams = nullptr; | 
|  |  | 
|  | if (TemplateParamLists.size() != 1) { | 
|  | Diag(UsingLoc, diag::err_alias_template_extra_headers) | 
|  | << SourceRange(TemplateParamLists[1]->getTemplateLoc(), | 
|  | TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc()); | 
|  | } | 
|  | TemplateParameterList *TemplateParams = TemplateParamLists[0]; | 
|  |  | 
|  | // Check that we can declare a template here. | 
|  | if (CheckTemplateDeclScope(S, TemplateParams)) | 
|  | return nullptr; | 
|  |  | 
|  | // Only consider previous declarations in the same scope. | 
|  | FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false, | 
|  | /*ExplicitInstantiationOrSpecialization*/false); | 
|  | if (!Previous.empty()) { | 
|  | Redeclaration = true; | 
|  |  | 
|  | OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>(); | 
|  | if (!OldDecl && !Invalid) { | 
|  | Diag(UsingLoc, diag::err_redefinition_different_kind) | 
|  | << Name.Identifier; | 
|  |  | 
|  | NamedDecl *OldD = Previous.getRepresentativeDecl(); | 
|  | if (OldD->getLocation().isValid()) | 
|  | Diag(OldD->getLocation(), diag::note_previous_definition); | 
|  |  | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { | 
|  | if (TemplateParameterListsAreEqual(TemplateParams, | 
|  | OldDecl->getTemplateParameters(), | 
|  | /*Complain=*/true, | 
|  | TPL_TemplateMatch)) | 
|  | OldTemplateParams = | 
|  | OldDecl->getMostRecentDecl()->getTemplateParameters(); | 
|  | else | 
|  | Invalid = true; | 
|  |  | 
|  | TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); | 
|  | if (!Invalid && | 
|  | !Context.hasSameType(OldTD->getUnderlyingType(), | 
|  | NewTD->getUnderlyingType())) { | 
|  | // FIXME: The C++0x standard does not clearly say this is ill-formed, | 
|  | // but we can't reasonably accept it. | 
|  | Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) | 
|  | << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); | 
|  | if (OldTD->getLocation().isValid()) | 
|  | Diag(OldTD->getLocation(), diag::note_previous_definition); | 
|  | Invalid = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Merge any previous default template arguments into our parameters, | 
|  | // and check the parameter list. | 
|  | if (CheckTemplateParameterList(TemplateParams, OldTemplateParams, | 
|  | TPC_TypeAliasTemplate)) | 
|  | return nullptr; | 
|  |  | 
|  | TypeAliasTemplateDecl *NewDecl = | 
|  | TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, | 
|  | Name.Identifier, TemplateParams, | 
|  | NewTD); | 
|  | NewTD->setDescribedAliasTemplate(NewDecl); | 
|  |  | 
|  | NewDecl->setAccess(AS); | 
|  |  | 
|  | if (Invalid) | 
|  | NewDecl->setInvalidDecl(); | 
|  | else if (OldDecl) { | 
|  | NewDecl->setPreviousDecl(OldDecl); | 
|  | CheckRedeclarationModuleOwnership(NewDecl, OldDecl); | 
|  | } | 
|  |  | 
|  | NewND = NewDecl; | 
|  | } else { | 
|  | if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) { | 
|  | setTagNameForLinkagePurposes(TD, NewTD); | 
|  | handleTagNumbering(TD, S); | 
|  | } | 
|  | ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); | 
|  | NewND = NewTD; | 
|  | } | 
|  |  | 
|  | PushOnScopeChains(NewND, S); | 
|  | ActOnDocumentableDecl(NewND); | 
|  | return NewND; | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, | 
|  | SourceLocation AliasLoc, | 
|  | IdentifierInfo *Alias, CXXScopeSpec &SS, | 
|  | SourceLocation IdentLoc, | 
|  | IdentifierInfo *Ident) { | 
|  |  | 
|  | // Lookup the namespace name. | 
|  | LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); | 
|  | LookupParsedName(R, S, &SS); | 
|  |  | 
|  | if (R.isAmbiguous()) | 
|  | return nullptr; | 
|  |  | 
|  | if (R.empty()) { | 
|  | if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) { | 
|  | Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | assert(!R.isAmbiguous() && !R.empty()); | 
|  | NamedDecl *ND = R.getRepresentativeDecl(); | 
|  |  | 
|  | // Check if we have a previous declaration with the same name. | 
|  | LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName, | 
|  | ForVisibleRedeclaration); | 
|  | LookupName(PrevR, S); | 
|  |  | 
|  | // Check we're not shadowing a template parameter. | 
|  | if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) { | 
|  | DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl()); | 
|  | PrevR.clear(); | 
|  | } | 
|  |  | 
|  | // Filter out any other lookup result from an enclosing scope. | 
|  | FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false, | 
|  | /*AllowInlineNamespace*/false); | 
|  |  | 
|  | // Find the previous declaration and check that we can redeclare it. | 
|  | NamespaceAliasDecl *Prev = nullptr; | 
|  | if (PrevR.isSingleResult()) { | 
|  | NamedDecl *PrevDecl = PrevR.getRepresentativeDecl(); | 
|  | if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { | 
|  | // We already have an alias with the same name that points to the same | 
|  | // namespace; check that it matches. | 
|  | if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) { | 
|  | Prev = AD; | 
|  | } else if (isVisible(PrevDecl)) { | 
|  | Diag(AliasLoc, diag::err_redefinition_different_namespace_alias) | 
|  | << Alias; | 
|  | Diag(AD->getLocation(), diag::note_previous_namespace_alias) | 
|  | << AD->getNamespace(); | 
|  | return nullptr; | 
|  | } | 
|  | } else if (isVisible(PrevDecl)) { | 
|  | unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl()) | 
|  | ? diag::err_redefinition | 
|  | : diag::err_redefinition_different_kind; | 
|  | Diag(AliasLoc, DiagID) << Alias; | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_definition); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The use of a nested name specifier may trigger deprecation warnings. | 
|  | DiagnoseUseOfDecl(ND, IdentLoc); | 
|  |  | 
|  | NamespaceAliasDecl *AliasDecl = | 
|  | NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, | 
|  | Alias, SS.getWithLocInContext(Context), | 
|  | IdentLoc, ND); | 
|  | if (Prev) | 
|  | AliasDecl->setPreviousDecl(Prev); | 
|  |  | 
|  | PushOnScopeChains(AliasDecl, S); | 
|  | return AliasDecl; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct SpecialMemberExceptionSpecInfo | 
|  | : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> { | 
|  | SourceLocation Loc; | 
|  | Sema::ImplicitExceptionSpecification ExceptSpec; | 
|  |  | 
|  | SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD, | 
|  | Sema::CXXSpecialMember CSM, | 
|  | Sema::InheritedConstructorInfo *ICI, | 
|  | SourceLocation Loc) | 
|  | : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {} | 
|  |  | 
|  | bool visitBase(CXXBaseSpecifier *Base); | 
|  | bool visitField(FieldDecl *FD); | 
|  |  | 
|  | void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj, | 
|  | unsigned Quals); | 
|  |  | 
|  | void visitSubobjectCall(Subobject Subobj, | 
|  | Sema::SpecialMemberOverloadResult SMOR); | 
|  | }; | 
|  | } | 
|  |  | 
|  | bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) { | 
|  | auto *RT = Base->getType()->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | return false; | 
|  |  | 
|  | auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); | 
|  | if (auto *BaseCtor = SMOR.getMethod()) { | 
|  | visitSubobjectCall(Base, BaseCtor); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | visitClassSubobject(BaseClass, Base, 0); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) { | 
|  | if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) { | 
|  | Expr *E = FD->getInClassInitializer(); | 
|  | if (!E) | 
|  | // FIXME: It's a little wasteful to build and throw away a | 
|  | // CXXDefaultInitExpr here. | 
|  | // FIXME: We should have a single context note pointing at Loc, and | 
|  | // this location should be MD->getLocation() instead, since that's | 
|  | // the location where we actually use the default init expression. | 
|  | E = S.BuildCXXDefaultInitExpr(Loc, FD).get(); | 
|  | if (E) | 
|  | ExceptSpec.CalledExpr(E); | 
|  | } else if (auto *RT = S.Context.getBaseElementType(FD->getType()) | 
|  | ->getAs<RecordType>()) { | 
|  | visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD, | 
|  | FD->getType().getCVRQualifiers()); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class, | 
|  | Subobject Subobj, | 
|  | unsigned Quals) { | 
|  | FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); | 
|  | bool IsMutable = Field && Field->isMutable(); | 
|  | visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable)); | 
|  | } | 
|  |  | 
|  | void SpecialMemberExceptionSpecInfo::visitSubobjectCall( | 
|  | Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) { | 
|  | // Note, if lookup fails, it doesn't matter what exception specification we | 
|  | // choose because the special member will be deleted. | 
|  | if (CXXMethodDecl *MD = SMOR.getMethod()) | 
|  | ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// RAII object to register a special member as being currently declared. | 
|  | struct ComputingExceptionSpec { | 
|  | Sema &S; | 
|  |  | 
|  | ComputingExceptionSpec(Sema &S, CXXMethodDecl *MD, SourceLocation Loc) | 
|  | : S(S) { | 
|  | Sema::CodeSynthesisContext Ctx; | 
|  | Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation; | 
|  | Ctx.PointOfInstantiation = Loc; | 
|  | Ctx.Entity = MD; | 
|  | S.pushCodeSynthesisContext(Ctx); | 
|  | } | 
|  | ~ComputingExceptionSpec() { | 
|  | S.popCodeSynthesisContext(); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) { | 
|  | llvm::APSInt Result; | 
|  | ExprResult Converted = CheckConvertedConstantExpression( | 
|  | ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool); | 
|  | ExplicitSpec.setExpr(Converted.get()); | 
|  | if (Converted.isUsable() && !Converted.get()->isValueDependent()) { | 
|  | ExplicitSpec.setKind(Result.getBoolValue() | 
|  | ? ExplicitSpecKind::ResolvedTrue | 
|  | : ExplicitSpecKind::ResolvedFalse); | 
|  | return true; | 
|  | } | 
|  | ExplicitSpec.setKind(ExplicitSpecKind::Unresolved); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) { | 
|  | ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved); | 
|  | if (!ExplicitExpr->isTypeDependent()) | 
|  | tryResolveExplicitSpecifier(ES); | 
|  | return ES; | 
|  | } | 
|  |  | 
|  | static Sema::ImplicitExceptionSpecification | 
|  | ComputeDefaultedSpecialMemberExceptionSpec( | 
|  | Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, | 
|  | Sema::InheritedConstructorInfo *ICI) { | 
|  | ComputingExceptionSpec CES(S, MD, Loc); | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = MD->getParent(); | 
|  |  | 
|  | // C++ [except.spec]p14: | 
|  | //   An implicitly declared special member function (Clause 12) shall have an | 
|  | //   exception-specification. [...] | 
|  | SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation()); | 
|  | if (ClassDecl->isInvalidDecl()) | 
|  | return Info.ExceptSpec; | 
|  |  | 
|  | // FIXME: If this diagnostic fires, we're probably missing a check for | 
|  | // attempting to resolve an exception specification before it's known | 
|  | // at a higher level. | 
|  | if (S.RequireCompleteType(MD->getLocation(), | 
|  | S.Context.getRecordType(ClassDecl), | 
|  | diag::err_exception_spec_incomplete_type)) | 
|  | return Info.ExceptSpec; | 
|  |  | 
|  | // C++1z [except.spec]p7: | 
|  | //   [Look for exceptions thrown by] a constructor selected [...] to | 
|  | //   initialize a potentially constructed subobject, | 
|  | // C++1z [except.spec]p8: | 
|  | //   The exception specification for an implicitly-declared destructor, or a | 
|  | //   destructor without a noexcept-specifier, is potentially-throwing if and | 
|  | //   only if any of the destructors for any of its potentially constructed | 
|  | //   subojects is potentially throwing. | 
|  | // FIXME: We respect the first rule but ignore the "potentially constructed" | 
|  | // in the second rule to resolve a core issue (no number yet) that would have | 
|  | // us reject: | 
|  | //   struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; }; | 
|  | //   struct B : A {}; | 
|  | //   struct C : B { void f(); }; | 
|  | // ... due to giving B::~B() a non-throwing exception specification. | 
|  | Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases | 
|  | : Info.VisitAllBases); | 
|  |  | 
|  | return Info.ExceptSpec; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// RAII object to register a special member as being currently declared. | 
|  | struct DeclaringSpecialMember { | 
|  | Sema &S; | 
|  | Sema::SpecialMemberDecl D; | 
|  | Sema::ContextRAII SavedContext; | 
|  | bool WasAlreadyBeingDeclared; | 
|  |  | 
|  | DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM) | 
|  | : S(S), D(RD, CSM), SavedContext(S, RD) { | 
|  | WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second; | 
|  | if (WasAlreadyBeingDeclared) | 
|  | // This almost never happens, but if it does, ensure that our cache | 
|  | // doesn't contain a stale result. | 
|  | S.SpecialMemberCache.clear(); | 
|  | else { | 
|  | // Register a note to be produced if we encounter an error while | 
|  | // declaring the special member. | 
|  | Sema::CodeSynthesisContext Ctx; | 
|  | Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember; | 
|  | // FIXME: We don't have a location to use here. Using the class's | 
|  | // location maintains the fiction that we declare all special members | 
|  | // with the class, but (1) it's not clear that lying about that helps our | 
|  | // users understand what's going on, and (2) there may be outer contexts | 
|  | // on the stack (some of which are relevant) and printing them exposes | 
|  | // our lies. | 
|  | Ctx.PointOfInstantiation = RD->getLocation(); | 
|  | Ctx.Entity = RD; | 
|  | Ctx.SpecialMember = CSM; | 
|  | S.pushCodeSynthesisContext(Ctx); | 
|  | } | 
|  | } | 
|  | ~DeclaringSpecialMember() { | 
|  | if (!WasAlreadyBeingDeclared) { | 
|  | S.SpecialMembersBeingDeclared.erase(D); | 
|  | S.popCodeSynthesisContext(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Are we already trying to declare this special member? | 
|  | bool isAlreadyBeingDeclared() const { | 
|  | return WasAlreadyBeingDeclared; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) { | 
|  | // Look up any existing declarations, but don't trigger declaration of all | 
|  | // implicit special members with this name. | 
|  | DeclarationName Name = FD->getDeclName(); | 
|  | LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName, | 
|  | ForExternalRedeclaration); | 
|  | for (auto *D : FD->getParent()->lookup(Name)) | 
|  | if (auto *Acceptable = R.getAcceptableDecl(D)) | 
|  | R.addDecl(Acceptable); | 
|  | R.resolveKind(); | 
|  | R.suppressDiagnostics(); | 
|  |  | 
|  | CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/false); | 
|  | } | 
|  |  | 
|  | void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, | 
|  | QualType ResultTy, | 
|  | ArrayRef<QualType> Args) { | 
|  | // Build an exception specification pointing back at this constructor. | 
|  | FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem); | 
|  |  | 
|  | if (getLangOpts().OpenCLCPlusPlus) { | 
|  | // OpenCL: Implicitly defaulted special member are of the generic address | 
|  | // space. | 
|  | EPI.TypeQuals.addAddressSpace(LangAS::opencl_generic); | 
|  | } | 
|  |  | 
|  | auto QT = Context.getFunctionType(ResultTy, Args, EPI); | 
|  | SpecialMem->setType(QT); | 
|  | } | 
|  |  | 
|  | CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( | 
|  | CXXRecordDecl *ClassDecl) { | 
|  | // C++ [class.ctor]p5: | 
|  | //   A default constructor for a class X is a constructor of class X | 
|  | //   that can be called without an argument. If there is no | 
|  | //   user-declared constructor for class X, a default constructor is | 
|  | //   implicitly declared. An implicitly-declared default constructor | 
|  | //   is an inline public member of its class. | 
|  | assert(ClassDecl->needsImplicitDefaultConstructor() && | 
|  | "Should not build implicit default constructor!"); | 
|  |  | 
|  | DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor); | 
|  | if (DSM.isAlreadyBeingDeclared()) | 
|  | return nullptr; | 
|  |  | 
|  | bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, | 
|  | CXXDefaultConstructor, | 
|  | false); | 
|  |  | 
|  | // Create the actual constructor declaration. | 
|  | CanQualType ClassType | 
|  | = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); | 
|  | SourceLocation ClassLoc = ClassDecl->getLocation(); | 
|  | DeclarationName Name | 
|  | = Context.DeclarationNames.getCXXConstructorName(ClassType); | 
|  | DeclarationNameInfo NameInfo(Name, ClassLoc); | 
|  | CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create( | 
|  | Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(), | 
|  | /*TInfo=*/nullptr, ExplicitSpecifier(), | 
|  | /*isInline=*/true, /*isImplicitlyDeclared=*/true, | 
|  | Constexpr ? CSK_constexpr : CSK_unspecified); | 
|  | DefaultCon->setAccess(AS_public); | 
|  | DefaultCon->setDefaulted(); | 
|  |  | 
|  | if (getLangOpts().CUDA) { | 
|  | inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor, | 
|  | DefaultCon, | 
|  | /* ConstRHS */ false, | 
|  | /* Diagnose */ false); | 
|  | } | 
|  |  | 
|  | setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, None); | 
|  |  | 
|  | // We don't need to use SpecialMemberIsTrivial here; triviality for default | 
|  | // constructors is easy to compute. | 
|  | DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); | 
|  |  | 
|  | // Note that we have declared this constructor. | 
|  | ++getASTContext().NumImplicitDefaultConstructorsDeclared; | 
|  |  | 
|  | Scope *S = getScopeForContext(ClassDecl); | 
|  | CheckImplicitSpecialMemberDeclaration(S, DefaultCon); | 
|  |  | 
|  | if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor)) | 
|  | SetDeclDeleted(DefaultCon, ClassLoc); | 
|  |  | 
|  | if (S) | 
|  | PushOnScopeChains(DefaultCon, S, false); | 
|  | ClassDecl->addDecl(DefaultCon); | 
|  |  | 
|  | return DefaultCon; | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, | 
|  | CXXConstructorDecl *Constructor) { | 
|  | assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() && | 
|  | !Constructor->doesThisDeclarationHaveABody() && | 
|  | !Constructor->isDeleted()) && | 
|  | "DefineImplicitDefaultConstructor - call it for implicit default ctor"); | 
|  | if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = Constructor->getParent(); | 
|  | assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); | 
|  |  | 
|  | SynthesizedFunctionScope Scope(*this, Constructor); | 
|  |  | 
|  | // The exception specification is needed because we are defining the | 
|  | // function. | 
|  | ResolveExceptionSpec(CurrentLocation, | 
|  | Constructor->getType()->castAs<FunctionProtoType>()); | 
|  | MarkVTableUsed(CurrentLocation, ClassDecl); | 
|  |  | 
|  | // Add a context note for diagnostics produced after this point. | 
|  | Scope.addContextNote(CurrentLocation); | 
|  |  | 
|  | if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) { | 
|  | Constructor->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SourceLocation Loc = Constructor->getEndLoc().isValid() | 
|  | ? Constructor->getEndLoc() | 
|  | : Constructor->getLocation(); | 
|  | Constructor->setBody(new (Context) CompoundStmt(Loc)); | 
|  | Constructor->markUsed(Context); | 
|  |  | 
|  | if (ASTMutationListener *L = getASTMutationListener()) { | 
|  | L->CompletedImplicitDefinition(Constructor); | 
|  | } | 
|  |  | 
|  | DiagnoseUninitializedFields(*this, Constructor); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { | 
|  | // Perform any delayed checks on exception specifications. | 
|  | CheckDelayedMemberExceptionSpecs(); | 
|  | } | 
|  |  | 
|  | /// Find or create the fake constructor we synthesize to model constructing an | 
|  | /// object of a derived class via a constructor of a base class. | 
|  | CXXConstructorDecl * | 
|  | Sema::findInheritingConstructor(SourceLocation Loc, | 
|  | CXXConstructorDecl *BaseCtor, | 
|  | ConstructorUsingShadowDecl *Shadow) { | 
|  | CXXRecordDecl *Derived = Shadow->getParent(); | 
|  | SourceLocation UsingLoc = Shadow->getLocation(); | 
|  |  | 
|  | // FIXME: Add a new kind of DeclarationName for an inherited constructor. | 
|  | // For now we use the name of the base class constructor as a member of the | 
|  | // derived class to indicate a (fake) inherited constructor name. | 
|  | DeclarationName Name = BaseCtor->getDeclName(); | 
|  |  | 
|  | // Check to see if we already have a fake constructor for this inherited | 
|  | // constructor call. | 
|  | for (NamedDecl *Ctor : Derived->lookup(Name)) | 
|  | if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor) | 
|  | ->getInheritedConstructor() | 
|  | .getConstructor(), | 
|  | BaseCtor)) | 
|  | return cast<CXXConstructorDecl>(Ctor); | 
|  |  | 
|  | DeclarationNameInfo NameInfo(Name, UsingLoc); | 
|  | TypeSourceInfo *TInfo = | 
|  | Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc); | 
|  | FunctionProtoTypeLoc ProtoLoc = | 
|  | TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>(); | 
|  |  | 
|  | // Check the inherited constructor is valid and find the list of base classes | 
|  | // from which it was inherited. | 
|  | InheritedConstructorInfo ICI(*this, Loc, Shadow); | 
|  |  | 
|  | bool Constexpr = | 
|  | BaseCtor->isConstexpr() && | 
|  | defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor, | 
|  | false, BaseCtor, &ICI); | 
|  |  | 
|  | CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create( | 
|  | Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo, | 
|  | BaseCtor->getExplicitSpecifier(), /*isInline=*/true, | 
|  | /*isImplicitlyDeclared=*/true, | 
|  | Constexpr ? BaseCtor->getConstexprKind() : CSK_unspecified, | 
|  | InheritedConstructor(Shadow, BaseCtor)); | 
|  | if (Shadow->isInvalidDecl()) | 
|  | DerivedCtor->setInvalidDecl(); | 
|  |  | 
|  | // Build an unevaluated exception specification for this fake constructor. | 
|  | const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>(); | 
|  | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | 
|  | EPI.ExceptionSpec.Type = EST_Unevaluated; | 
|  | EPI.ExceptionSpec.SourceDecl = DerivedCtor; | 
|  | DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(), | 
|  | FPT->getParamTypes(), EPI)); | 
|  |  | 
|  | // Build the parameter declarations. | 
|  | SmallVector<ParmVarDecl *, 16> ParamDecls; | 
|  | for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) { | 
|  | TypeSourceInfo *TInfo = | 
|  | Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc); | 
|  | ParmVarDecl *PD = ParmVarDecl::Create( | 
|  | Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr, | 
|  | FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr); | 
|  | PD->setScopeInfo(0, I); | 
|  | PD->setImplicit(); | 
|  | // Ensure attributes are propagated onto parameters (this matters for | 
|  | // format, pass_object_size, ...). | 
|  | mergeDeclAttributes(PD, BaseCtor->getParamDecl(I)); | 
|  | ParamDecls.push_back(PD); | 
|  | ProtoLoc.setParam(I, PD); | 
|  | } | 
|  |  | 
|  | // Set up the new constructor. | 
|  | assert(!BaseCtor->isDeleted() && "should not use deleted constructor"); | 
|  | DerivedCtor->setAccess(BaseCtor->getAccess()); | 
|  | DerivedCtor->setParams(ParamDecls); | 
|  | Derived->addDecl(DerivedCtor); | 
|  |  | 
|  | if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI)) | 
|  | SetDeclDeleted(DerivedCtor, UsingLoc); | 
|  |  | 
|  | return DerivedCtor; | 
|  | } | 
|  |  | 
|  | void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) { | 
|  | InheritedConstructorInfo ICI(*this, Ctor->getLocation(), | 
|  | Ctor->getInheritedConstructor().getShadowDecl()); | 
|  | ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI, | 
|  | /*Diagnose*/true); | 
|  | } | 
|  |  | 
|  | void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation, | 
|  | CXXConstructorDecl *Constructor) { | 
|  | CXXRecordDecl *ClassDecl = Constructor->getParent(); | 
|  | assert(Constructor->getInheritedConstructor() && | 
|  | !Constructor->doesThisDeclarationHaveABody() && | 
|  | !Constructor->isDeleted()); | 
|  | if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | // Initializations are performed "as if by a defaulted default constructor", | 
|  | // so enter the appropriate scope. | 
|  | SynthesizedFunctionScope Scope(*this, Constructor); | 
|  |  | 
|  | // The exception specification is needed because we are defining the | 
|  | // function. | 
|  | ResolveExceptionSpec(CurrentLocation, | 
|  | Constructor->getType()->castAs<FunctionProtoType>()); | 
|  | MarkVTableUsed(CurrentLocation, ClassDecl); | 
|  |  | 
|  | // Add a context note for diagnostics produced after this point. | 
|  | Scope.addContextNote(CurrentLocation); | 
|  |  | 
|  | ConstructorUsingShadowDecl *Shadow = | 
|  | Constructor->getInheritedConstructor().getShadowDecl(); | 
|  | CXXConstructorDecl *InheritedCtor = | 
|  | Constructor->getInheritedConstructor().getConstructor(); | 
|  |  | 
|  | // [class.inhctor.init]p1: | 
|  | //   initialization proceeds as if a defaulted default constructor is used to | 
|  | //   initialize the D object and each base class subobject from which the | 
|  | //   constructor was inherited | 
|  |  | 
|  | InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow); | 
|  | CXXRecordDecl *RD = Shadow->getParent(); | 
|  | SourceLocation InitLoc = Shadow->getLocation(); | 
|  |  | 
|  | // Build explicit initializers for all base classes from which the | 
|  | // constructor was inherited. | 
|  | SmallVector<CXXCtorInitializer*, 8> Inits; | 
|  | for (bool VBase : {false, true}) { | 
|  | for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) { | 
|  | if (B.isVirtual() != VBase) | 
|  | continue; | 
|  |  | 
|  | auto *BaseRD = B.getType()->getAsCXXRecordDecl(); | 
|  | if (!BaseRD) | 
|  | continue; | 
|  |  | 
|  | auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor); | 
|  | if (!BaseCtor.first) | 
|  | continue; | 
|  |  | 
|  | MarkFunctionReferenced(CurrentLocation, BaseCtor.first); | 
|  | ExprResult Init = new (Context) CXXInheritedCtorInitExpr( | 
|  | InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second); | 
|  |  | 
|  | auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc); | 
|  | Inits.push_back(new (Context) CXXCtorInitializer( | 
|  | Context, TInfo, VBase, InitLoc, Init.get(), InitLoc, | 
|  | SourceLocation())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We now proceed as if for a defaulted default constructor, with the relevant | 
|  | // initializers replaced. | 
|  |  | 
|  | if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) { | 
|  | Constructor->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Constructor->setBody(new (Context) CompoundStmt(InitLoc)); | 
|  | Constructor->markUsed(Context); | 
|  |  | 
|  | if (ASTMutationListener *L = getASTMutationListener()) { | 
|  | L->CompletedImplicitDefinition(Constructor); | 
|  | } | 
|  |  | 
|  | DiagnoseUninitializedFields(*this, Constructor); | 
|  | } | 
|  |  | 
|  | CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { | 
|  | // C++ [class.dtor]p2: | 
|  | //   If a class has no user-declared destructor, a destructor is | 
|  | //   declared implicitly. An implicitly-declared destructor is an | 
|  | //   inline public member of its class. | 
|  | assert(ClassDecl->needsImplicitDestructor()); | 
|  |  | 
|  | DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor); | 
|  | if (DSM.isAlreadyBeingDeclared()) | 
|  | return nullptr; | 
|  |  | 
|  | // Create the actual destructor declaration. | 
|  | CanQualType ClassType | 
|  | = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); | 
|  | SourceLocation ClassLoc = ClassDecl->getLocation(); | 
|  | DeclarationName Name | 
|  | = Context.DeclarationNames.getCXXDestructorName(ClassType); | 
|  | DeclarationNameInfo NameInfo(Name, ClassLoc); | 
|  | CXXDestructorDecl *Destructor | 
|  | = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, | 
|  | QualType(), nullptr, /*isInline=*/true, | 
|  | /*isImplicitlyDeclared=*/true); | 
|  | Destructor->setAccess(AS_public); | 
|  | Destructor->setDefaulted(); | 
|  |  | 
|  | if (getLangOpts().CUDA) { | 
|  | inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor, | 
|  | Destructor, | 
|  | /* ConstRHS */ false, | 
|  | /* Diagnose */ false); | 
|  | } | 
|  |  | 
|  | setupImplicitSpecialMemberType(Destructor, Context.VoidTy, None); | 
|  |  | 
|  | // We don't need to use SpecialMemberIsTrivial here; triviality for | 
|  | // destructors is easy to compute. | 
|  | Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); | 
|  | Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() || | 
|  | ClassDecl->hasTrivialDestructorForCall()); | 
|  |  | 
|  | // Note that we have declared this destructor. | 
|  | ++getASTContext().NumImplicitDestructorsDeclared; | 
|  |  | 
|  | Scope *S = getScopeForContext(ClassDecl); | 
|  | CheckImplicitSpecialMemberDeclaration(S, Destructor); | 
|  |  | 
|  | // We can't check whether an implicit destructor is deleted before we complete | 
|  | // the definition of the class, because its validity depends on the alignment | 
|  | // of the class. We'll check this from ActOnFields once the class is complete. | 
|  | if (ClassDecl->isCompleteDefinition() && | 
|  | ShouldDeleteSpecialMember(Destructor, CXXDestructor)) | 
|  | SetDeclDeleted(Destructor, ClassLoc); | 
|  |  | 
|  | // Introduce this destructor into its scope. | 
|  | if (S) | 
|  | PushOnScopeChains(Destructor, S, false); | 
|  | ClassDecl->addDecl(Destructor); | 
|  |  | 
|  | return Destructor; | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, | 
|  | CXXDestructorDecl *Destructor) { | 
|  | assert((Destructor->isDefaulted() && | 
|  | !Destructor->doesThisDeclarationHaveABody() && | 
|  | !Destructor->isDeleted()) && | 
|  | "DefineImplicitDestructor - call it for implicit default dtor"); | 
|  | if (Destructor->willHaveBody() || Destructor->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = Destructor->getParent(); | 
|  | assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); | 
|  |  | 
|  | SynthesizedFunctionScope Scope(*this, Destructor); | 
|  |  | 
|  | // The exception specification is needed because we are defining the | 
|  | // function. | 
|  | ResolveExceptionSpec(CurrentLocation, | 
|  | Destructor->getType()->castAs<FunctionProtoType>()); | 
|  | MarkVTableUsed(CurrentLocation, ClassDecl); | 
|  |  | 
|  | // Add a context note for diagnostics produced after this point. | 
|  | Scope.addContextNote(CurrentLocation); | 
|  |  | 
|  | MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), | 
|  | Destructor->getParent()); | 
|  |  | 
|  | if (CheckDestructor(Destructor)) { | 
|  | Destructor->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SourceLocation Loc = Destructor->getEndLoc().isValid() | 
|  | ? Destructor->getEndLoc() | 
|  | : Destructor->getLocation(); | 
|  | Destructor->setBody(new (Context) CompoundStmt(Loc)); | 
|  | Destructor->markUsed(Context); | 
|  |  | 
|  | if (ASTMutationListener *L = getASTMutationListener()) { | 
|  | L->CompletedImplicitDefinition(Destructor); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Perform any semantic analysis which needs to be delayed until all | 
|  | /// pending class member declarations have been parsed. | 
|  | void Sema::ActOnFinishCXXMemberDecls() { | 
|  | // If the context is an invalid C++ class, just suppress these checks. | 
|  | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) { | 
|  | if (Record->isInvalidDecl()) { | 
|  | DelayedOverridingExceptionSpecChecks.clear(); | 
|  | DelayedEquivalentExceptionSpecChecks.clear(); | 
|  | return; | 
|  | } | 
|  | checkForMultipleExportedDefaultConstructors(*this, Record); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::ActOnFinishCXXNonNestedClass(Decl *D) { | 
|  | referenceDLLExportedClassMethods(); | 
|  |  | 
|  | if (!DelayedDllExportMemberFunctions.empty()) { | 
|  | SmallVector<CXXMethodDecl*, 4> WorkList; | 
|  | std::swap(DelayedDllExportMemberFunctions, WorkList); | 
|  | for (CXXMethodDecl *M : WorkList) { | 
|  | DefineImplicitSpecialMember(*this, M, M->getLocation()); | 
|  |  | 
|  | // Pass the method to the consumer to get emitted. This is not necessary | 
|  | // for explicit instantiation definitions, as they will get emitted | 
|  | // anyway. | 
|  | if (M->getParent()->getTemplateSpecializationKind() != | 
|  | TSK_ExplicitInstantiationDefinition) | 
|  | ActOnFinishInlineFunctionDef(M); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::referenceDLLExportedClassMethods() { | 
|  | if (!DelayedDllExportClasses.empty()) { | 
|  | // Calling ReferenceDllExportedMembers might cause the current function to | 
|  | // be called again, so use a local copy of DelayedDllExportClasses. | 
|  | SmallVector<CXXRecordDecl *, 4> WorkList; | 
|  | std::swap(DelayedDllExportClasses, WorkList); | 
|  | for (CXXRecordDecl *Class : WorkList) | 
|  | ReferenceDllExportedMembers(*this, Class); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) { | 
|  | assert(getLangOpts().CPlusPlus11 && | 
|  | "adjusting dtor exception specs was introduced in c++11"); | 
|  |  | 
|  | if (Destructor->isDependentContext()) | 
|  | return; | 
|  |  | 
|  | // C++11 [class.dtor]p3: | 
|  | //   A declaration of a destructor that does not have an exception- | 
|  | //   specification is implicitly considered to have the same exception- | 
|  | //   specification as an implicit declaration. | 
|  | const FunctionProtoType *DtorType = Destructor->getType()-> | 
|  | getAs<FunctionProtoType>(); | 
|  | if (DtorType->hasExceptionSpec()) | 
|  | return; | 
|  |  | 
|  | // Replace the destructor's type, building off the existing one. Fortunately, | 
|  | // the only thing of interest in the destructor type is its extended info. | 
|  | // The return and arguments are fixed. | 
|  | FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo(); | 
|  | EPI.ExceptionSpec.Type = EST_Unevaluated; | 
|  | EPI.ExceptionSpec.SourceDecl = Destructor; | 
|  | Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI)); | 
|  |  | 
|  | // FIXME: If the destructor has a body that could throw, and the newly created | 
|  | // spec doesn't allow exceptions, we should emit a warning, because this | 
|  | // change in behavior can break conforming C++03 programs at runtime. | 
|  | // However, we don't have a body or an exception specification yet, so it | 
|  | // needs to be done somewhere else. | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// An abstract base class for all helper classes used in building the | 
|  | //  copy/move operators. These classes serve as factory functions and help us | 
|  | //  avoid using the same Expr* in the AST twice. | 
|  | class ExprBuilder { | 
|  | ExprBuilder(const ExprBuilder&) = delete; | 
|  | ExprBuilder &operator=(const ExprBuilder&) = delete; | 
|  |  | 
|  | protected: | 
|  | static Expr *assertNotNull(Expr *E) { | 
|  | assert(E && "Expression construction must not fail."); | 
|  | return E; | 
|  | } | 
|  |  | 
|  | public: | 
|  | ExprBuilder() {} | 
|  | virtual ~ExprBuilder() {} | 
|  |  | 
|  | virtual Expr *build(Sema &S, SourceLocation Loc) const = 0; | 
|  | }; | 
|  |  | 
|  | class RefBuilder: public ExprBuilder { | 
|  | VarDecl *Var; | 
|  | QualType VarType; | 
|  |  | 
|  | public: | 
|  | Expr *build(Sema &S, SourceLocation Loc) const override { | 
|  | return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc)); | 
|  | } | 
|  |  | 
|  | RefBuilder(VarDecl *Var, QualType VarType) | 
|  | : Var(Var), VarType(VarType) {} | 
|  | }; | 
|  |  | 
|  | class ThisBuilder: public ExprBuilder { | 
|  | public: | 
|  | Expr *build(Sema &S, SourceLocation Loc) const override { | 
|  | return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class CastBuilder: public ExprBuilder { | 
|  | const ExprBuilder &Builder; | 
|  | QualType Type; | 
|  | ExprValueKind Kind; | 
|  | const CXXCastPath &Path; | 
|  |  | 
|  | public: | 
|  | Expr *build(Sema &S, SourceLocation Loc) const override { | 
|  | return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type, | 
|  | CK_UncheckedDerivedToBase, Kind, | 
|  | &Path).get()); | 
|  | } | 
|  |  | 
|  | CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind, | 
|  | const CXXCastPath &Path) | 
|  | : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {} | 
|  | }; | 
|  |  | 
|  | class DerefBuilder: public ExprBuilder { | 
|  | const ExprBuilder &Builder; | 
|  |  | 
|  | public: | 
|  | Expr *build(Sema &S, SourceLocation Loc) const override { | 
|  | return assertNotNull( | 
|  | S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get()); | 
|  | } | 
|  |  | 
|  | DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {} | 
|  | }; | 
|  |  | 
|  | class MemberBuilder: public ExprBuilder { | 
|  | const ExprBuilder &Builder; | 
|  | QualType Type; | 
|  | CXXScopeSpec SS; | 
|  | bool IsArrow; | 
|  | LookupResult &MemberLookup; | 
|  |  | 
|  | public: | 
|  | Expr *build(Sema &S, SourceLocation Loc) const override { | 
|  | return assertNotNull(S.BuildMemberReferenceExpr( | 
|  | Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), | 
|  | nullptr, MemberLookup, nullptr, nullptr).get()); | 
|  | } | 
|  |  | 
|  | MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow, | 
|  | LookupResult &MemberLookup) | 
|  | : Builder(Builder), Type(Type), IsArrow(IsArrow), | 
|  | MemberLookup(MemberLookup) {} | 
|  | }; | 
|  |  | 
|  | class MoveCastBuilder: public ExprBuilder { | 
|  | const ExprBuilder &Builder; | 
|  |  | 
|  | public: | 
|  | Expr *build(Sema &S, SourceLocation Loc) const override { | 
|  | return assertNotNull(CastForMoving(S, Builder.build(S, Loc))); | 
|  | } | 
|  |  | 
|  | MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {} | 
|  | }; | 
|  |  | 
|  | class LvalueConvBuilder: public ExprBuilder { | 
|  | const ExprBuilder &Builder; | 
|  |  | 
|  | public: | 
|  | Expr *build(Sema &S, SourceLocation Loc) const override { | 
|  | return assertNotNull( | 
|  | S.DefaultLvalueConversion(Builder.build(S, Loc)).get()); | 
|  | } | 
|  |  | 
|  | LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {} | 
|  | }; | 
|  |  | 
|  | class SubscriptBuilder: public ExprBuilder { | 
|  | const ExprBuilder &Base; | 
|  | const ExprBuilder &Index; | 
|  |  | 
|  | public: | 
|  | Expr *build(Sema &S, SourceLocation Loc) const override { | 
|  | return assertNotNull(S.CreateBuiltinArraySubscriptExpr( | 
|  | Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get()); | 
|  | } | 
|  |  | 
|  | SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index) | 
|  | : Base(Base), Index(Index) {} | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// When generating a defaulted copy or move assignment operator, if a field | 
|  | /// should be copied with __builtin_memcpy rather than via explicit assignments, | 
|  | /// do so. This optimization only applies for arrays of scalars, and for arrays | 
|  | /// of class type where the selected copy/move-assignment operator is trivial. | 
|  | static StmtResult | 
|  | buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T, | 
|  | const ExprBuilder &ToB, const ExprBuilder &FromB) { | 
|  | // Compute the size of the memory buffer to be copied. | 
|  | QualType SizeType = S.Context.getSizeType(); | 
|  | llvm::APInt Size(S.Context.getTypeSize(SizeType), | 
|  | S.Context.getTypeSizeInChars(T).getQuantity()); | 
|  |  | 
|  | // Take the address of the field references for "from" and "to". We | 
|  | // directly construct UnaryOperators here because semantic analysis | 
|  | // does not permit us to take the address of an xvalue. | 
|  | Expr *From = FromB.build(S, Loc); | 
|  | From = new (S.Context) UnaryOperator(From, UO_AddrOf, | 
|  | S.Context.getPointerType(From->getType()), | 
|  | VK_RValue, OK_Ordinary, Loc, false); | 
|  | Expr *To = ToB.build(S, Loc); | 
|  | To = new (S.Context) UnaryOperator(To, UO_AddrOf, | 
|  | S.Context.getPointerType(To->getType()), | 
|  | VK_RValue, OK_Ordinary, Loc, false); | 
|  |  | 
|  | const Type *E = T->getBaseElementTypeUnsafe(); | 
|  | bool NeedsCollectableMemCpy = | 
|  | E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember(); | 
|  |  | 
|  | // Create a reference to the __builtin_objc_memmove_collectable function | 
|  | StringRef MemCpyName = NeedsCollectableMemCpy ? | 
|  | "__builtin_objc_memmove_collectable" : | 
|  | "__builtin_memcpy"; | 
|  | LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc, | 
|  | Sema::LookupOrdinaryName); | 
|  | S.LookupName(R, S.TUScope, true); | 
|  |  | 
|  | FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>(); | 
|  | if (!MemCpy) | 
|  | // Something went horribly wrong earlier, and we will have complained | 
|  | // about it. | 
|  | return StmtError(); | 
|  |  | 
|  | ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy, | 
|  | VK_RValue, Loc, nullptr); | 
|  | assert(MemCpyRef.isUsable() && "Builtin reference cannot fail"); | 
|  |  | 
|  | Expr *CallArgs[] = { | 
|  | To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc) | 
|  | }; | 
|  | ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(), | 
|  | Loc, CallArgs, Loc); | 
|  |  | 
|  | assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); | 
|  | return Call.getAs<Stmt>(); | 
|  | } | 
|  |  | 
|  | /// Builds a statement that copies/moves the given entity from \p From to | 
|  | /// \c To. | 
|  | /// | 
|  | /// This routine is used to copy/move the members of a class with an | 
|  | /// implicitly-declared copy/move assignment operator. When the entities being | 
|  | /// copied are arrays, this routine builds for loops to copy them. | 
|  | /// | 
|  | /// \param S The Sema object used for type-checking. | 
|  | /// | 
|  | /// \param Loc The location where the implicit copy/move is being generated. | 
|  | /// | 
|  | /// \param T The type of the expressions being copied/moved. Both expressions | 
|  | /// must have this type. | 
|  | /// | 
|  | /// \param To The expression we are copying/moving to. | 
|  | /// | 
|  | /// \param From The expression we are copying/moving from. | 
|  | /// | 
|  | /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject. | 
|  | /// Otherwise, it's a non-static member subobject. | 
|  | /// | 
|  | /// \param Copying Whether we're copying or moving. | 
|  | /// | 
|  | /// \param Depth Internal parameter recording the depth of the recursion. | 
|  | /// | 
|  | /// \returns A statement or a loop that copies the expressions, or StmtResult(0) | 
|  | /// if a memcpy should be used instead. | 
|  | static StmtResult | 
|  | buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T, | 
|  | const ExprBuilder &To, const ExprBuilder &From, | 
|  | bool CopyingBaseSubobject, bool Copying, | 
|  | unsigned Depth = 0) { | 
|  | // C++11 [class.copy]p28: | 
|  | //   Each subobject is assigned in the manner appropriate to its type: | 
|  | // | 
|  | //     - if the subobject is of class type, as if by a call to operator= with | 
|  | //       the subobject as the object expression and the corresponding | 
|  | //       subobject of x as a single function argument (as if by explicit | 
|  | //       qualification; that is, ignoring any possible virtual overriding | 
|  | //       functions in more derived classes); | 
|  | // | 
|  | // C++03 [class.copy]p13: | 
|  | //     - if the subobject is of class type, the copy assignment operator for | 
|  | //       the class is used (as if by explicit qualification; that is, | 
|  | //       ignoring any possible virtual overriding functions in more derived | 
|  | //       classes); | 
|  | if (const RecordType *RecordTy = T->getAs<RecordType>()) { | 
|  | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
|  |  | 
|  | // Look for operator=. | 
|  | DeclarationName Name | 
|  | = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); | 
|  | LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); | 
|  | S.LookupQualifiedName(OpLookup, ClassDecl, false); | 
|  |  | 
|  | // Prior to C++11, filter out any result that isn't a copy/move-assignment | 
|  | // operator. | 
|  | if (!S.getLangOpts().CPlusPlus11) { | 
|  | LookupResult::Filter F = OpLookup.makeFilter(); | 
|  | while (F.hasNext()) { | 
|  | NamedDecl *D = F.next(); | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) | 
|  | if (Method->isCopyAssignmentOperator() || | 
|  | (!Copying && Method->isMoveAssignmentOperator())) | 
|  | continue; | 
|  |  | 
|  | F.erase(); | 
|  | } | 
|  | F.done(); | 
|  | } | 
|  |  | 
|  | // Suppress the protected check (C++ [class.protected]) for each of the | 
|  | // assignment operators we found. This strange dance is required when | 
|  | // we're assigning via a base classes's copy-assignment operator. To | 
|  | // ensure that we're getting the right base class subobject (without | 
|  | // ambiguities), we need to cast "this" to that subobject type; to | 
|  | // ensure that we don't go through the virtual call mechanism, we need | 
|  | // to qualify the operator= name with the base class (see below). However, | 
|  | // this means that if the base class has a protected copy assignment | 
|  | // operator, the protected member access check will fail. So, we | 
|  | // rewrite "protected" access to "public" access in this case, since we | 
|  | // know by construction that we're calling from a derived class. | 
|  | if (CopyingBaseSubobject) { | 
|  | for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); | 
|  | L != LEnd; ++L) { | 
|  | if (L.getAccess() == AS_protected) | 
|  | L.setAccess(AS_public); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create the nested-name-specifier that will be used to qualify the | 
|  | // reference to operator=; this is required to suppress the virtual | 
|  | // call mechanism. | 
|  | CXXScopeSpec SS; | 
|  | const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr()); | 
|  | SS.MakeTrivial(S.Context, | 
|  | NestedNameSpecifier::Create(S.Context, nullptr, false, | 
|  | CanonicalT), | 
|  | Loc); | 
|  |  | 
|  | // Create the reference to operator=. | 
|  | ExprResult OpEqualRef | 
|  | = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false, | 
|  | SS, /*TemplateKWLoc=*/SourceLocation(), | 
|  | /*FirstQualifierInScope=*/nullptr, | 
|  | OpLookup, | 
|  | /*TemplateArgs=*/nullptr, /*S*/nullptr, | 
|  | /*SuppressQualifierCheck=*/true); | 
|  | if (OpEqualRef.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | // Build the call to the assignment operator. | 
|  |  | 
|  | Expr *FromInst = From.build(S, Loc); | 
|  | ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr, | 
|  | OpEqualRef.getAs<Expr>(), | 
|  | Loc, FromInst, Loc); | 
|  | if (Call.isInvalid()) | 
|  | return StmtError(); | 
|  |  | 
|  | // If we built a call to a trivial 'operator=' while copying an array, | 
|  | // bail out. We'll replace the whole shebang with a memcpy. | 
|  | CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get()); | 
|  | if (CE && CE->getMethodDecl()->isTrivial() && Depth) | 
|  | return StmtResult((Stmt*)nullptr); | 
|  |  | 
|  | // Convert to an expression-statement, and clean up any produced | 
|  | // temporaries. | 
|  | return S.ActOnExprStmt(Call); | 
|  | } | 
|  |  | 
|  | //     - if the subobject is of scalar type, the built-in assignment | 
|  | //       operator is used. | 
|  | const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); | 
|  | if (!ArrayTy) { | 
|  | ExprResult Assignment = S.CreateBuiltinBinOp( | 
|  | Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc)); | 
|  | if (Assignment.isInvalid()) | 
|  | return StmtError(); | 
|  | return S.ActOnExprStmt(Assignment); | 
|  | } | 
|  |  | 
|  | //     - if the subobject is an array, each element is assigned, in the | 
|  | //       manner appropriate to the element type; | 
|  |  | 
|  | // Construct a loop over the array bounds, e.g., | 
|  | // | 
|  | //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) | 
|  | // | 
|  | // that will copy each of the array elements. | 
|  | QualType SizeType = S.Context.getSizeType(); | 
|  |  | 
|  | // Create the iteration variable. | 
|  | IdentifierInfo *IterationVarName = nullptr; | 
|  | { | 
|  | SmallString<8> Str; | 
|  | llvm::raw_svector_ostream OS(Str); | 
|  | OS << "__i" << Depth; | 
|  | IterationVarName = &S.Context.Idents.get(OS.str()); | 
|  | } | 
|  | VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, | 
|  | IterationVarName, SizeType, | 
|  | S.Context.getTrivialTypeSourceInfo(SizeType, Loc), | 
|  | SC_None); | 
|  |  | 
|  | // Initialize the iteration variable to zero. | 
|  | llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); | 
|  | IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); | 
|  |  | 
|  | // Creates a reference to the iteration variable. | 
|  | RefBuilder IterationVarRef(IterationVar, SizeType); | 
|  | LvalueConvBuilder IterationVarRefRVal(IterationVarRef); | 
|  |  | 
|  | // Create the DeclStmt that holds the iteration variable. | 
|  | Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); | 
|  |  | 
|  | // Subscript the "from" and "to" expressions with the iteration variable. | 
|  | SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal); | 
|  | MoveCastBuilder FromIndexMove(FromIndexCopy); | 
|  | const ExprBuilder *FromIndex; | 
|  | if (Copying) | 
|  | FromIndex = &FromIndexCopy; | 
|  | else | 
|  | FromIndex = &FromIndexMove; | 
|  |  | 
|  | SubscriptBuilder ToIndex(To, IterationVarRefRVal); | 
|  |  | 
|  | // Build the copy/move for an individual element of the array. | 
|  | StmtResult Copy = | 
|  | buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(), | 
|  | ToIndex, *FromIndex, CopyingBaseSubobject, | 
|  | Copying, Depth + 1); | 
|  | // Bail out if copying fails or if we determined that we should use memcpy. | 
|  | if (Copy.isInvalid() || !Copy.get()) | 
|  | return Copy; | 
|  |  | 
|  | // Create the comparison against the array bound. | 
|  | llvm::APInt Upper | 
|  | = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType)); | 
|  | Expr *Comparison | 
|  | = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc), | 
|  | IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), | 
|  | BO_NE, S.Context.BoolTy, | 
|  | VK_RValue, OK_Ordinary, Loc, FPOptions()); | 
|  |  | 
|  | // Create the pre-increment of the iteration variable. We can determine | 
|  | // whether the increment will overflow based on the value of the array | 
|  | // bound. | 
|  | Expr *Increment = new (S.Context) | 
|  | UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc, SizeType, | 
|  | VK_LValue, OK_Ordinary, Loc, Upper.isMaxValue()); | 
|  |  | 
|  | // Construct the loop that copies all elements of this array. | 
|  | return S.ActOnForStmt( | 
|  | Loc, Loc, InitStmt, | 
|  | S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean), | 
|  | S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get()); | 
|  | } | 
|  |  | 
|  | static StmtResult | 
|  | buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, | 
|  | const ExprBuilder &To, const ExprBuilder &From, | 
|  | bool CopyingBaseSubobject, bool Copying) { | 
|  | // Maybe we should use a memcpy? | 
|  | if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() && | 
|  | T.isTriviallyCopyableType(S.Context)) | 
|  | return buildMemcpyForAssignmentOp(S, Loc, T, To, From); | 
|  |  | 
|  | StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From, | 
|  | CopyingBaseSubobject, | 
|  | Copying, 0)); | 
|  |  | 
|  | // If we ended up picking a trivial assignment operator for an array of a | 
|  | // non-trivially-copyable class type, just emit a memcpy. | 
|  | if (!Result.isInvalid() && !Result.get()) | 
|  | return buildMemcpyForAssignmentOp(S, Loc, T, To, From); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { | 
|  | // Note: The following rules are largely analoguous to the copy | 
|  | // constructor rules. Note that virtual bases are not taken into account | 
|  | // for determining the argument type of the operator. Note also that | 
|  | // operators taking an object instead of a reference are allowed. | 
|  | assert(ClassDecl->needsImplicitCopyAssignment()); | 
|  |  | 
|  | DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment); | 
|  | if (DSM.isAlreadyBeingDeclared()) | 
|  | return nullptr; | 
|  |  | 
|  | QualType ArgType = Context.getTypeDeclType(ClassDecl); | 
|  | if (Context.getLangOpts().OpenCLCPlusPlus) | 
|  | ArgType = Context.getAddrSpaceQualType(ArgType, LangAS::opencl_generic); | 
|  | QualType RetType = Context.getLValueReferenceType(ArgType); | 
|  | bool Const = ClassDecl->implicitCopyAssignmentHasConstParam(); | 
|  | if (Const) | 
|  | ArgType = ArgType.withConst(); | 
|  |  | 
|  | ArgType = Context.getLValueReferenceType(ArgType); | 
|  |  | 
|  | bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, | 
|  | CXXCopyAssignment, | 
|  | Const); | 
|  |  | 
|  | //   An implicitly-declared copy assignment operator is an inline public | 
|  | //   member of its class. | 
|  | DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); | 
|  | SourceLocation ClassLoc = ClassDecl->getLocation(); | 
|  | DeclarationNameInfo NameInfo(Name, ClassLoc); | 
|  | CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create( | 
|  | Context, ClassDecl, ClassLoc, NameInfo, QualType(), | 
|  | /*TInfo=*/nullptr, /*StorageClass=*/SC_None, | 
|  | /*isInline=*/true, Constexpr ? CSK_constexpr : CSK_unspecified, | 
|  | SourceLocation()); | 
|  | CopyAssignment->setAccess(AS_public); | 
|  | CopyAssignment->setDefaulted(); | 
|  | CopyAssignment->setImplicit(); | 
|  |  | 
|  | if (getLangOpts().CUDA) { | 
|  | inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment, | 
|  | CopyAssignment, | 
|  | /* ConstRHS */ Const, | 
|  | /* Diagnose */ false); | 
|  | } | 
|  |  | 
|  | setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType); | 
|  |  | 
|  | // Add the parameter to the operator. | 
|  | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, | 
|  | ClassLoc, ClassLoc, | 
|  | /*Id=*/nullptr, ArgType, | 
|  | /*TInfo=*/nullptr, SC_None, | 
|  | nullptr); | 
|  | CopyAssignment->setParams(FromParam); | 
|  |  | 
|  | CopyAssignment->setTrivial( | 
|  | ClassDecl->needsOverloadResolutionForCopyAssignment() | 
|  | ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment) | 
|  | : ClassDecl->hasTrivialCopyAssignment()); | 
|  |  | 
|  | // Note that we have added this copy-assignment operator. | 
|  | ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared; | 
|  |  | 
|  | Scope *S = getScopeForContext(ClassDecl); | 
|  | CheckImplicitSpecialMemberDeclaration(S, CopyAssignment); | 
|  |  | 
|  | if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) | 
|  | SetDeclDeleted(CopyAssignment, ClassLoc); | 
|  |  | 
|  | if (S) | 
|  | PushOnScopeChains(CopyAssignment, S, false); | 
|  | ClassDecl->addDecl(CopyAssignment); | 
|  |  | 
|  | return CopyAssignment; | 
|  | } | 
|  |  | 
|  | /// Diagnose an implicit copy operation for a class which is odr-used, but | 
|  | /// which is deprecated because the class has a user-declared copy constructor, | 
|  | /// copy assignment operator, or destructor. | 
|  | static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) { | 
|  | assert(CopyOp->isImplicit()); | 
|  |  | 
|  | CXXRecordDecl *RD = CopyOp->getParent(); | 
|  | CXXMethodDecl *UserDeclaredOperation = nullptr; | 
|  |  | 
|  | // In Microsoft mode, assignment operations don't affect constructors and | 
|  | // vice versa. | 
|  | if (RD->hasUserDeclaredDestructor()) { | 
|  | UserDeclaredOperation = RD->getDestructor(); | 
|  | } else if (!isa<CXXConstructorDecl>(CopyOp) && | 
|  | RD->hasUserDeclaredCopyConstructor() && | 
|  | !S.getLangOpts().MSVCCompat) { | 
|  | // Find any user-declared copy constructor. | 
|  | for (auto *I : RD->ctors()) { | 
|  | if (I->isCopyConstructor()) { | 
|  | UserDeclaredOperation = I; | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert(UserDeclaredOperation); | 
|  | } else if (isa<CXXConstructorDecl>(CopyOp) && | 
|  | RD->hasUserDeclaredCopyAssignment() && | 
|  | !S.getLangOpts().MSVCCompat) { | 
|  | // Find any user-declared move assignment operator. | 
|  | for (auto *I : RD->methods()) { | 
|  | if (I->isCopyAssignmentOperator()) { | 
|  | UserDeclaredOperation = I; | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert(UserDeclaredOperation); | 
|  | } | 
|  |  | 
|  | if (UserDeclaredOperation) { | 
|  | S.Diag(UserDeclaredOperation->getLocation(), | 
|  | diag::warn_deprecated_copy_operation) | 
|  | << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp) | 
|  | << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, | 
|  | CXXMethodDecl *CopyAssignOperator) { | 
|  | assert((CopyAssignOperator->isDefaulted() && | 
|  | CopyAssignOperator->isOverloadedOperator() && | 
|  | CopyAssignOperator->getOverloadedOperator() == OO_Equal && | 
|  | !CopyAssignOperator->doesThisDeclarationHaveABody() && | 
|  | !CopyAssignOperator->isDeleted()) && | 
|  | "DefineImplicitCopyAssignment called for wrong function"); | 
|  | if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); | 
|  | if (ClassDecl->isInvalidDecl()) { | 
|  | CopyAssignOperator->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SynthesizedFunctionScope Scope(*this, CopyAssignOperator); | 
|  |  | 
|  | // The exception specification is needed because we are defining the | 
|  | // function. | 
|  | ResolveExceptionSpec(CurrentLocation, | 
|  | CopyAssignOperator->getType()->castAs<FunctionProtoType>()); | 
|  |  | 
|  | // Add a context note for diagnostics produced after this point. | 
|  | Scope.addContextNote(CurrentLocation); | 
|  |  | 
|  | // C++11 [class.copy]p18: | 
|  | //   The [definition of an implicitly declared copy assignment operator] is | 
|  | //   deprecated if the class has a user-declared copy constructor or a | 
|  | //   user-declared destructor. | 
|  | if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit()) | 
|  | diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator); | 
|  |  | 
|  | // C++0x [class.copy]p30: | 
|  | //   The implicitly-defined or explicitly-defaulted copy assignment operator | 
|  | //   for a non-union class X performs memberwise copy assignment of its | 
|  | //   subobjects. The direct base classes of X are assigned first, in the | 
|  | //   order of their declaration in the base-specifier-list, and then the | 
|  | //   immediate non-static data members of X are assigned, in the order in | 
|  | //   which they were declared in the class definition. | 
|  |  | 
|  | // The statements that form the synthesized function body. | 
|  | SmallVector<Stmt*, 8> Statements; | 
|  |  | 
|  | // The parameter for the "other" object, which we are copying from. | 
|  | ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0); | 
|  | Qualifiers OtherQuals = Other->getType().getQualifiers(); | 
|  | QualType OtherRefType = Other->getType(); | 
|  | if (const LValueReferenceType *OtherRef | 
|  | = OtherRefType->getAs<LValueReferenceType>()) { | 
|  | OtherRefType = OtherRef->getPointeeType(); | 
|  | OtherQuals = OtherRefType.getQualifiers(); | 
|  | } | 
|  |  | 
|  | // Our location for everything implicitly-generated. | 
|  | SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid() | 
|  | ? CopyAssignOperator->getEndLoc() | 
|  | : CopyAssignOperator->getLocation(); | 
|  |  | 
|  | // Builds a DeclRefExpr for the "other" object. | 
|  | RefBuilder OtherRef(Other, OtherRefType); | 
|  |  | 
|  | // Builds the "this" pointer. | 
|  | ThisBuilder This; | 
|  |  | 
|  | // Assign base classes. | 
|  | bool Invalid = false; | 
|  | for (auto &Base : ClassDecl->bases()) { | 
|  | // Form the assignment: | 
|  | //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); | 
|  | QualType BaseType = Base.getType().getUnqualifiedType(); | 
|  | if (!BaseType->isRecordType()) { | 
|  | Invalid = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | CXXCastPath BasePath; | 
|  | BasePath.push_back(&Base); | 
|  |  | 
|  | // Construct the "from" expression, which is an implicit cast to the | 
|  | // appropriately-qualified base type. | 
|  | CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals), | 
|  | VK_LValue, BasePath); | 
|  |  | 
|  | // Dereference "this". | 
|  | DerefBuilder DerefThis(This); | 
|  | CastBuilder To(DerefThis, | 
|  | Context.getQualifiedType( | 
|  | BaseType, CopyAssignOperator->getMethodQualifiers()), | 
|  | VK_LValue, BasePath); | 
|  |  | 
|  | // Build the copy. | 
|  | StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType, | 
|  | To, From, | 
|  | /*CopyingBaseSubobject=*/true, | 
|  | /*Copying=*/true); | 
|  | if (Copy.isInvalid()) { | 
|  | CopyAssignOperator->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Success! Record the copy. | 
|  | Statements.push_back(Copy.getAs<Expr>()); | 
|  | } | 
|  |  | 
|  | // Assign non-static members. | 
|  | for (auto *Field : ClassDecl->fields()) { | 
|  | // FIXME: We should form some kind of AST representation for the implied | 
|  | // memcpy in a union copy operation. | 
|  | if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) | 
|  | continue; | 
|  |  | 
|  | if (Field->isInvalidDecl()) { | 
|  | Invalid = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check for members of reference type; we can't copy those. | 
|  | if (Field->getType()->isReferenceType()) { | 
|  | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) | 
|  | << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); | 
|  | Diag(Field->getLocation(), diag::note_declared_at); | 
|  | Invalid = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check for members of const-qualified, non-class type. | 
|  | QualType BaseType = Context.getBaseElementType(Field->getType()); | 
|  | if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { | 
|  | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) | 
|  | << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); | 
|  | Diag(Field->getLocation(), diag::note_declared_at); | 
|  | Invalid = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Suppress assigning zero-width bitfields. | 
|  | if (Field->isZeroLengthBitField(Context)) | 
|  | continue; | 
|  |  | 
|  | QualType FieldType = Field->getType().getNonReferenceType(); | 
|  | if (FieldType->isIncompleteArrayType()) { | 
|  | assert(ClassDecl->hasFlexibleArrayMember() && | 
|  | "Incomplete array type is not valid"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Build references to the field in the object we're copying from and to. | 
|  | CXXScopeSpec SS; // Intentionally empty | 
|  | LookupResult MemberLookup(*this, Field->getDeclName(), Loc, | 
|  | LookupMemberName); | 
|  | MemberLookup.addDecl(Field); | 
|  | MemberLookup.resolveKind(); | 
|  |  | 
|  | MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup); | 
|  |  | 
|  | MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup); | 
|  |  | 
|  | // Build the copy of this field. | 
|  | StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType, | 
|  | To, From, | 
|  | /*CopyingBaseSubobject=*/false, | 
|  | /*Copying=*/true); | 
|  | if (Copy.isInvalid()) { | 
|  | CopyAssignOperator->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Success! Record the copy. | 
|  | Statements.push_back(Copy.getAs<Stmt>()); | 
|  | } | 
|  |  | 
|  | if (!Invalid) { | 
|  | // Add a "return *this;" | 
|  | ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); | 
|  |  | 
|  | StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); | 
|  | if (Return.isInvalid()) | 
|  | Invalid = true; | 
|  | else | 
|  | Statements.push_back(Return.getAs<Stmt>()); | 
|  | } | 
|  |  | 
|  | if (Invalid) { | 
|  | CopyAssignOperator->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | StmtResult Body; | 
|  | { | 
|  | CompoundScopeRAII CompoundScope(*this); | 
|  | Body = ActOnCompoundStmt(Loc, Loc, Statements, | 
|  | /*isStmtExpr=*/false); | 
|  | assert(!Body.isInvalid() && "Compound statement creation cannot fail"); | 
|  | } | 
|  | CopyAssignOperator->setBody(Body.getAs<Stmt>()); | 
|  | CopyAssignOperator->markUsed(Context); | 
|  |  | 
|  | if (ASTMutationListener *L = getASTMutationListener()) { | 
|  | L->CompletedImplicitDefinition(CopyAssignOperator); | 
|  | } | 
|  | } | 
|  |  | 
|  | CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) { | 
|  | assert(ClassDecl->needsImplicitMoveAssignment()); | 
|  |  | 
|  | DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment); | 
|  | if (DSM.isAlreadyBeingDeclared()) | 
|  | return nullptr; | 
|  |  | 
|  | // Note: The following rules are largely analoguous to the move | 
|  | // constructor rules. | 
|  |  | 
|  | QualType ArgType = Context.getTypeDeclType(ClassDecl); | 
|  | if (Context.getLangOpts().OpenCLCPlusPlus) | 
|  | ArgType = Context.getAddrSpaceQualType(ArgType, LangAS::opencl_generic); | 
|  | QualType RetType = Context.getLValueReferenceType(ArgType); | 
|  | ArgType = Context.getRValueReferenceType(ArgType); | 
|  |  | 
|  | bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, | 
|  | CXXMoveAssignment, | 
|  | false); | 
|  |  | 
|  | //   An implicitly-declared move assignment operator is an inline public | 
|  | //   member of its class. | 
|  | DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); | 
|  | SourceLocation ClassLoc = ClassDecl->getLocation(); | 
|  | DeclarationNameInfo NameInfo(Name, ClassLoc); | 
|  | CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create( | 
|  | Context, ClassDecl, ClassLoc, NameInfo, QualType(), | 
|  | /*TInfo=*/nullptr, /*StorageClass=*/SC_None, | 
|  | /*isInline=*/true, Constexpr ? CSK_constexpr : CSK_unspecified, | 
|  | SourceLocation()); | 
|  | MoveAssignment->setAccess(AS_public); | 
|  | MoveAssignment->setDefaulted(); | 
|  | MoveAssignment->setImplicit(); | 
|  |  | 
|  | if (getLangOpts().CUDA) { | 
|  | inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment, | 
|  | MoveAssignment, | 
|  | /* ConstRHS */ false, | 
|  | /* Diagnose */ false); | 
|  | } | 
|  |  | 
|  | // Build an exception specification pointing back at this member. | 
|  | FunctionProtoType::ExtProtoInfo EPI = | 
|  | getImplicitMethodEPI(*this, MoveAssignment); | 
|  | MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI)); | 
|  |  | 
|  | // Add the parameter to the operator. | 
|  | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment, | 
|  | ClassLoc, ClassLoc, | 
|  | /*Id=*/nullptr, ArgType, | 
|  | /*TInfo=*/nullptr, SC_None, | 
|  | nullptr); | 
|  | MoveAssignment->setParams(FromParam); | 
|  |  | 
|  | MoveAssignment->setTrivial( | 
|  | ClassDecl->needsOverloadResolutionForMoveAssignment() | 
|  | ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment) | 
|  | : ClassDecl->hasTrivialMoveAssignment()); | 
|  |  | 
|  | // Note that we have added this copy-assignment operator. | 
|  | ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared; | 
|  |  | 
|  | Scope *S = getScopeForContext(ClassDecl); | 
|  | CheckImplicitSpecialMemberDeclaration(S, MoveAssignment); | 
|  |  | 
|  | if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) { | 
|  | ClassDecl->setImplicitMoveAssignmentIsDeleted(); | 
|  | SetDeclDeleted(MoveAssignment, ClassLoc); | 
|  | } | 
|  |  | 
|  | if (S) | 
|  | PushOnScopeChains(MoveAssignment, S, false); | 
|  | ClassDecl->addDecl(MoveAssignment); | 
|  |  | 
|  | return MoveAssignment; | 
|  | } | 
|  |  | 
|  | /// Check if we're implicitly defining a move assignment operator for a class | 
|  | /// with virtual bases. Such a move assignment might move-assign the virtual | 
|  | /// base multiple times. | 
|  | static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class, | 
|  | SourceLocation CurrentLocation) { | 
|  | assert(!Class->isDependentContext() && "should not define dependent move"); | 
|  |  | 
|  | // Only a virtual base could get implicitly move-assigned multiple times. | 
|  | // Only a non-trivial move assignment can observe this. We only want to | 
|  | // diagnose if we implicitly define an assignment operator that assigns | 
|  | // two base classes, both of which move-assign the same virtual base. | 
|  | if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() || | 
|  | Class->getNumBases() < 2) | 
|  | return; | 
|  |  | 
|  | llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist; | 
|  | typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap; | 
|  | VBaseMap VBases; | 
|  |  | 
|  | for (auto &BI : Class->bases()) { | 
|  | Worklist.push_back(&BI); | 
|  | while (!Worklist.empty()) { | 
|  | CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val(); | 
|  | CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl(); | 
|  |  | 
|  | // If the base has no non-trivial move assignment operators, | 
|  | // we don't care about moves from it. | 
|  | if (!Base->hasNonTrivialMoveAssignment()) | 
|  | continue; | 
|  |  | 
|  | // If there's nothing virtual here, skip it. | 
|  | if (!BaseSpec->isVirtual() && !Base->getNumVBases()) | 
|  | continue; | 
|  |  | 
|  | // If we're not actually going to call a move assignment for this base, | 
|  | // or the selected move assignment is trivial, skip it. | 
|  | Sema::SpecialMemberOverloadResult SMOR = | 
|  | S.LookupSpecialMember(Base, Sema::CXXMoveAssignment, | 
|  | /*ConstArg*/false, /*VolatileArg*/false, | 
|  | /*RValueThis*/true, /*ConstThis*/false, | 
|  | /*VolatileThis*/false); | 
|  | if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() || | 
|  | !SMOR.getMethod()->isMoveAssignmentOperator()) | 
|  | continue; | 
|  |  | 
|  | if (BaseSpec->isVirtual()) { | 
|  | // We're going to move-assign this virtual base, and its move | 
|  | // assignment operator is not trivial. If this can happen for | 
|  | // multiple distinct direct bases of Class, diagnose it. (If it | 
|  | // only happens in one base, we'll diagnose it when synthesizing | 
|  | // that base class's move assignment operator.) | 
|  | CXXBaseSpecifier *&Existing = | 
|  | VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI)) | 
|  | .first->second; | 
|  | if (Existing && Existing != &BI) { | 
|  | S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times) | 
|  | << Class << Base; | 
|  | S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here) | 
|  | << (Base->getCanonicalDecl() == | 
|  | Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl()) | 
|  | << Base << Existing->getType() << Existing->getSourceRange(); | 
|  | S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here) | 
|  | << (Base->getCanonicalDecl() == | 
|  | BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl()) | 
|  | << Base << BI.getType() << BaseSpec->getSourceRange(); | 
|  |  | 
|  | // Only diagnose each vbase once. | 
|  | Existing = nullptr; | 
|  | } | 
|  | } else { | 
|  | // Only walk over bases that have defaulted move assignment operators. | 
|  | // We assume that any user-provided move assignment operator handles | 
|  | // the multiple-moves-of-vbase case itself somehow. | 
|  | if (!SMOR.getMethod()->isDefaulted()) | 
|  | continue; | 
|  |  | 
|  | // We're going to move the base classes of Base. Add them to the list. | 
|  | for (auto &BI : Base->bases()) | 
|  | Worklist.push_back(&BI); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation, | 
|  | CXXMethodDecl *MoveAssignOperator) { | 
|  | assert((MoveAssignOperator->isDefaulted() && | 
|  | MoveAssignOperator->isOverloadedOperator() && | 
|  | MoveAssignOperator->getOverloadedOperator() == OO_Equal && | 
|  | !MoveAssignOperator->doesThisDeclarationHaveABody() && | 
|  | !MoveAssignOperator->isDeleted()) && | 
|  | "DefineImplicitMoveAssignment called for wrong function"); | 
|  | if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent(); | 
|  | if (ClassDecl->isInvalidDecl()) { | 
|  | MoveAssignOperator->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // C++0x [class.copy]p28: | 
|  | //   The implicitly-defined or move assignment operator for a non-union class | 
|  | //   X performs memberwise move assignment of its subobjects. The direct base | 
|  | //   classes of X are assigned first, in the order of their declaration in the | 
|  | //   base-specifier-list, and then the immediate non-static data members of X | 
|  | //   are assigned, in the order in which they were declared in the class | 
|  | //   definition. | 
|  |  | 
|  | // Issue a warning if our implicit move assignment operator will move | 
|  | // from a virtual base more than once. | 
|  | checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation); | 
|  |  | 
|  | SynthesizedFunctionScope Scope(*this, MoveAssignOperator); | 
|  |  | 
|  | // The exception specification is needed because we are defining the | 
|  | // function. | 
|  | ResolveExceptionSpec(CurrentLocation, | 
|  | MoveAssignOperator->getType()->castAs<FunctionProtoType>()); | 
|  |  | 
|  | // Add a context note for diagnostics produced after this point. | 
|  | Scope.addContextNote(CurrentLocation); | 
|  |  | 
|  | // The statements that form the synthesized function body. | 
|  | SmallVector<Stmt*, 8> Statements; | 
|  |  | 
|  | // The parameter for the "other" object, which we are move from. | 
|  | ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0); | 
|  | QualType OtherRefType = Other->getType()-> | 
|  | getAs<RValueReferenceType>()->getPointeeType(); | 
|  |  | 
|  | // Our location for everything implicitly-generated. | 
|  | SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid() | 
|  | ? MoveAssignOperator->getEndLoc() | 
|  | : MoveAssignOperator->getLocation(); | 
|  |  | 
|  | // Builds a reference to the "other" object. | 
|  | RefBuilder OtherRef(Other, OtherRefType); | 
|  | // Cast to rvalue. | 
|  | MoveCastBuilder MoveOther(OtherRef); | 
|  |  | 
|  | // Builds the "this" pointer. | 
|  | ThisBuilder This; | 
|  |  | 
|  | // Assign base classes. | 
|  | bool Invalid = false; | 
|  | for (auto &Base : ClassDecl->bases()) { | 
|  | // C++11 [class.copy]p28: | 
|  | //   It is unspecified whether subobjects representing virtual base classes | 
|  | //   are assigned more than once by the implicitly-defined copy assignment | 
|  | //   operator. | 
|  | // FIXME: Do not assign to a vbase that will be assigned by some other base | 
|  | // class. For a move-assignment, this can result in the vbase being moved | 
|  | // multiple times. | 
|  |  | 
|  | // Form the assignment: | 
|  | //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other)); | 
|  | QualType BaseType = Base.getType().getUnqualifiedType(); | 
|  | if (!BaseType->isRecordType()) { | 
|  | Invalid = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | CXXCastPath BasePath; | 
|  | BasePath.push_back(&Base); | 
|  |  | 
|  | // Construct the "from" expression, which is an implicit cast to the | 
|  | // appropriately-qualified base type. | 
|  | CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath); | 
|  |  | 
|  | // Dereference "this". | 
|  | DerefBuilder DerefThis(This); | 
|  |  | 
|  | // Implicitly cast "this" to the appropriately-qualified base type. | 
|  | CastBuilder To(DerefThis, | 
|  | Context.getQualifiedType( | 
|  | BaseType, MoveAssignOperator->getMethodQualifiers()), | 
|  | VK_LValue, BasePath); | 
|  |  | 
|  | // Build the move. | 
|  | StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType, | 
|  | To, From, | 
|  | /*CopyingBaseSubobject=*/true, | 
|  | /*Copying=*/false); | 
|  | if (Move.isInvalid()) { | 
|  | MoveAssignOperator->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Success! Record the move. | 
|  | Statements.push_back(Move.getAs<Expr>()); | 
|  | } | 
|  |  | 
|  | // Assign non-static members. | 
|  | for (auto *Field : ClassDecl->fields()) { | 
|  | // FIXME: We should form some kind of AST representation for the implied | 
|  | // memcpy in a union copy operation. | 
|  | if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) | 
|  | continue; | 
|  |  | 
|  | if (Field->isInvalidDecl()) { | 
|  | Invalid = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check for members of reference type; we can't move those. | 
|  | if (Field->getType()->isReferenceType()) { | 
|  | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) | 
|  | << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); | 
|  | Diag(Field->getLocation(), diag::note_declared_at); | 
|  | Invalid = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check for members of const-qualified, non-class type. | 
|  | QualType BaseType = Context.getBaseElementType(Field->getType()); | 
|  | if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { | 
|  | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) | 
|  | << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); | 
|  | Diag(Field->getLocation(), diag::note_declared_at); | 
|  | Invalid = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Suppress assigning zero-width bitfields. | 
|  | if (Field->isZeroLengthBitField(Context)) | 
|  | continue; | 
|  |  | 
|  | QualType FieldType = Field->getType().getNonReferenceType(); | 
|  | if (FieldType->isIncompleteArrayType()) { | 
|  | assert(ClassDecl->hasFlexibleArrayMember() && | 
|  | "Incomplete array type is not valid"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Build references to the field in the object we're copying from and to. | 
|  | LookupResult MemberLookup(*this, Field->getDeclName(), Loc, | 
|  | LookupMemberName); | 
|  | MemberLookup.addDecl(Field); | 
|  | MemberLookup.resolveKind(); | 
|  | MemberBuilder From(MoveOther, OtherRefType, | 
|  | /*IsArrow=*/false, MemberLookup); | 
|  | MemberBuilder To(This, getCurrentThisType(), | 
|  | /*IsArrow=*/true, MemberLookup); | 
|  |  | 
|  | assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue | 
|  | "Member reference with rvalue base must be rvalue except for reference " | 
|  | "members, which aren't allowed for move assignment."); | 
|  |  | 
|  | // Build the move of this field. | 
|  | StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType, | 
|  | To, From, | 
|  | /*CopyingBaseSubobject=*/false, | 
|  | /*Copying=*/false); | 
|  | if (Move.isInvalid()) { | 
|  | MoveAssignOperator->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Success! Record the copy. | 
|  | Statements.push_back(Move.getAs<Stmt>()); | 
|  | } | 
|  |  | 
|  | if (!Invalid) { | 
|  | // Add a "return *this;" | 
|  | ExprResult ThisObj = | 
|  | CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); | 
|  |  | 
|  | StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); | 
|  | if (Return.isInvalid()) | 
|  | Invalid = true; | 
|  | else | 
|  | Statements.push_back(Return.getAs<Stmt>()); | 
|  | } | 
|  |  | 
|  | if (Invalid) { | 
|  | MoveAssignOperator->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | StmtResult Body; | 
|  | { | 
|  | CompoundScopeRAII CompoundScope(*this); | 
|  | Body = ActOnCompoundStmt(Loc, Loc, Statements, | 
|  | /*isStmtExpr=*/false); | 
|  | assert(!Body.isInvalid() && "Compound statement creation cannot fail"); | 
|  | } | 
|  | MoveAssignOperator->setBody(Body.getAs<Stmt>()); | 
|  | MoveAssignOperator->markUsed(Context); | 
|  |  | 
|  | if (ASTMutationListener *L = getASTMutationListener()) { | 
|  | L->CompletedImplicitDefinition(MoveAssignOperator); | 
|  | } | 
|  | } | 
|  |  | 
|  | CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( | 
|  | CXXRecordDecl *ClassDecl) { | 
|  | // C++ [class.copy]p4: | 
|  | //   If the class definition does not explicitly declare a copy | 
|  | //   constructor, one is declared implicitly. | 
|  | assert(ClassDecl->needsImplicitCopyConstructor()); | 
|  |  | 
|  | DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor); | 
|  | if (DSM.isAlreadyBeingDeclared()) | 
|  | return nullptr; | 
|  |  | 
|  | QualType ClassType = Context.getTypeDeclType(ClassDecl); | 
|  | QualType ArgType = ClassType; | 
|  | bool Const = ClassDecl->implicitCopyConstructorHasConstParam(); | 
|  | if (Const) | 
|  | ArgType = ArgType.withConst(); | 
|  |  | 
|  | if (Context.getLangOpts().OpenCLCPlusPlus) | 
|  | ArgType = Context.getAddrSpaceQualType(ArgType, LangAS::opencl_generic); | 
|  |  | 
|  | ArgType = Context.getLValueReferenceType(ArgType); | 
|  |  | 
|  | bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, | 
|  | CXXCopyConstructor, | 
|  | Const); | 
|  |  | 
|  | DeclarationName Name | 
|  | = Context.DeclarationNames.getCXXConstructorName( | 
|  | Context.getCanonicalType(ClassType)); | 
|  | SourceLocation ClassLoc = ClassDecl->getLocation(); | 
|  | DeclarationNameInfo NameInfo(Name, ClassLoc); | 
|  |  | 
|  | //   An implicitly-declared copy constructor is an inline public | 
|  | //   member of its class. | 
|  | CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create( | 
|  | Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, | 
|  | ExplicitSpecifier(), | 
|  | /*isInline=*/true, | 
|  | /*isImplicitlyDeclared=*/true, | 
|  | Constexpr ? CSK_constexpr : CSK_unspecified); | 
|  | CopyConstructor->setAccess(AS_public); | 
|  | CopyConstructor->setDefaulted(); | 
|  |  | 
|  | if (getLangOpts().CUDA) { | 
|  | inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor, | 
|  | CopyConstructor, | 
|  | /* ConstRHS */ Const, | 
|  | /* Diagnose */ false); | 
|  | } | 
|  |  | 
|  | setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType); | 
|  |  | 
|  | // Add the parameter to the constructor. | 
|  | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, | 
|  | ClassLoc, ClassLoc, | 
|  | /*IdentifierInfo=*/nullptr, | 
|  | ArgType, /*TInfo=*/nullptr, | 
|  | SC_None, nullptr); | 
|  | CopyConstructor->setParams(FromParam); | 
|  |  | 
|  | CopyConstructor->setTrivial( | 
|  | ClassDecl->needsOverloadResolutionForCopyConstructor() | 
|  | ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor) | 
|  | : ClassDecl->hasTrivialCopyConstructor()); | 
|  |  | 
|  | CopyConstructor->setTrivialForCall( | 
|  | ClassDecl->hasAttr<TrivialABIAttr>() || | 
|  | (ClassDecl->needsOverloadResolutionForCopyConstructor() | 
|  | ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor, | 
|  | TAH_ConsiderTrivialABI) | 
|  | : ClassDecl->hasTrivialCopyConstructorForCall())); | 
|  |  | 
|  | // Note that we have declared this constructor. | 
|  | ++getASTContext().NumImplicitCopyConstructorsDeclared; | 
|  |  | 
|  | Scope *S = getScopeForContext(ClassDecl); | 
|  | CheckImplicitSpecialMemberDeclaration(S, CopyConstructor); | 
|  |  | 
|  | if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) { | 
|  | ClassDecl->setImplicitCopyConstructorIsDeleted(); | 
|  | SetDeclDeleted(CopyConstructor, ClassLoc); | 
|  | } | 
|  |  | 
|  | if (S) | 
|  | PushOnScopeChains(CopyConstructor, S, false); | 
|  | ClassDecl->addDecl(CopyConstructor); | 
|  |  | 
|  | return CopyConstructor; | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, | 
|  | CXXConstructorDecl *CopyConstructor) { | 
|  | assert((CopyConstructor->isDefaulted() && | 
|  | CopyConstructor->isCopyConstructor() && | 
|  | !CopyConstructor->doesThisDeclarationHaveABody() && | 
|  | !CopyConstructor->isDeleted()) && | 
|  | "DefineImplicitCopyConstructor - call it for implicit copy ctor"); | 
|  | if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); | 
|  | assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); | 
|  |  | 
|  | SynthesizedFunctionScope Scope(*this, CopyConstructor); | 
|  |  | 
|  | // The exception specification is needed because we are defining the | 
|  | // function. | 
|  | ResolveExceptionSpec(CurrentLocation, | 
|  | CopyConstructor->getType()->castAs<FunctionProtoType>()); | 
|  | MarkVTableUsed(CurrentLocation, ClassDecl); | 
|  |  | 
|  | // Add a context note for diagnostics produced after this point. | 
|  | Scope.addContextNote(CurrentLocation); | 
|  |  | 
|  | // C++11 [class.copy]p7: | 
|  | //   The [definition of an implicitly declared copy constructor] is | 
|  | //   deprecated if the class has a user-declared copy assignment operator | 
|  | //   or a user-declared destructor. | 
|  | if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit()) | 
|  | diagnoseDeprecatedCopyOperation(*this, CopyConstructor); | 
|  |  | 
|  | if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) { | 
|  | CopyConstructor->setInvalidDecl(); | 
|  | }  else { | 
|  | SourceLocation Loc = CopyConstructor->getEndLoc().isValid() | 
|  | ? CopyConstructor->getEndLoc() | 
|  | : CopyConstructor->getLocation(); | 
|  | Sema::CompoundScopeRAII CompoundScope(*this); | 
|  | CopyConstructor->setBody( | 
|  | ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>()); | 
|  | CopyConstructor->markUsed(Context); | 
|  | } | 
|  |  | 
|  | if (ASTMutationListener *L = getASTMutationListener()) { | 
|  | L->CompletedImplicitDefinition(CopyConstructor); | 
|  | } | 
|  | } | 
|  |  | 
|  | CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor( | 
|  | CXXRecordDecl *ClassDecl) { | 
|  | assert(ClassDecl->needsImplicitMoveConstructor()); | 
|  |  | 
|  | DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor); | 
|  | if (DSM.isAlreadyBeingDeclared()) | 
|  | return nullptr; | 
|  |  | 
|  | QualType ClassType = Context.getTypeDeclType(ClassDecl); | 
|  |  | 
|  | QualType ArgType = ClassType; | 
|  | if (Context.getLangOpts().OpenCLCPlusPlus) | 
|  | ArgType = Context.getAddrSpaceQualType(ClassType, LangAS::opencl_generic); | 
|  | ArgType = Context.getRValueReferenceType(ArgType); | 
|  |  | 
|  | bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, | 
|  | CXXMoveConstructor, | 
|  | false); | 
|  |  | 
|  | DeclarationName Name | 
|  | = Context.DeclarationNames.getCXXConstructorName( | 
|  | Context.getCanonicalType(ClassType)); | 
|  | SourceLocation ClassLoc = ClassDecl->getLocation(); | 
|  | DeclarationNameInfo NameInfo(Name, ClassLoc); | 
|  |  | 
|  | // C++11 [class.copy]p11: | 
|  | //   An implicitly-declared copy/move constructor is an inline public | 
|  | //   member of its class. | 
|  | CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create( | 
|  | Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, | 
|  | ExplicitSpecifier(), | 
|  | /*isInline=*/true, | 
|  | /*isImplicitlyDeclared=*/true, | 
|  | Constexpr ? CSK_constexpr : CSK_unspecified); | 
|  | MoveConstructor->setAccess(AS_public); | 
|  | MoveConstructor->setDefaulted(); | 
|  |  | 
|  | if (getLangOpts().CUDA) { | 
|  | inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor, | 
|  | MoveConstructor, | 
|  | /* ConstRHS */ false, | 
|  | /* Diagnose */ false); | 
|  | } | 
|  |  | 
|  | setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType); | 
|  |  | 
|  | // Add the parameter to the constructor. | 
|  | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor, | 
|  | ClassLoc, ClassLoc, | 
|  | /*IdentifierInfo=*/nullptr, | 
|  | ArgType, /*TInfo=*/nullptr, | 
|  | SC_None, nullptr); | 
|  | MoveConstructor->setParams(FromParam); | 
|  |  | 
|  | MoveConstructor->setTrivial( | 
|  | ClassDecl->needsOverloadResolutionForMoveConstructor() | 
|  | ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor) | 
|  | : ClassDecl->hasTrivialMoveConstructor()); | 
|  |  | 
|  | MoveConstructor->setTrivialForCall( | 
|  | ClassDecl->hasAttr<TrivialABIAttr>() || | 
|  | (ClassDecl->needsOverloadResolutionForMoveConstructor() | 
|  | ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor, | 
|  | TAH_ConsiderTrivialABI) | 
|  | : ClassDecl->hasTrivialMoveConstructorForCall())); | 
|  |  | 
|  | // Note that we have declared this constructor. | 
|  | ++getASTContext().NumImplicitMoveConstructorsDeclared; | 
|  |  | 
|  | Scope *S = getScopeForContext(ClassDecl); | 
|  | CheckImplicitSpecialMemberDeclaration(S, MoveConstructor); | 
|  |  | 
|  | if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) { | 
|  | ClassDecl->setImplicitMoveConstructorIsDeleted(); | 
|  | SetDeclDeleted(MoveConstructor, ClassLoc); | 
|  | } | 
|  |  | 
|  | if (S) | 
|  | PushOnScopeChains(MoveConstructor, S, false); | 
|  | ClassDecl->addDecl(MoveConstructor); | 
|  |  | 
|  | return MoveConstructor; | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation, | 
|  | CXXConstructorDecl *MoveConstructor) { | 
|  | assert((MoveConstructor->isDefaulted() && | 
|  | MoveConstructor->isMoveConstructor() && | 
|  | !MoveConstructor->doesThisDeclarationHaveABody() && | 
|  | !MoveConstructor->isDeleted()) && | 
|  | "DefineImplicitMoveConstructor - call it for implicit move ctor"); | 
|  | if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = MoveConstructor->getParent(); | 
|  | assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"); | 
|  |  | 
|  | SynthesizedFunctionScope Scope(*this, MoveConstructor); | 
|  |  | 
|  | // The exception specification is needed because we are defining the | 
|  | // function. | 
|  | ResolveExceptionSpec(CurrentLocation, | 
|  | MoveConstructor->getType()->castAs<FunctionProtoType>()); | 
|  | MarkVTableUsed(CurrentLocation, ClassDecl); | 
|  |  | 
|  | // Add a context note for diagnostics produced after this point. | 
|  | Scope.addContextNote(CurrentLocation); | 
|  |  | 
|  | if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) { | 
|  | MoveConstructor->setInvalidDecl(); | 
|  | } else { | 
|  | SourceLocation Loc = MoveConstructor->getEndLoc().isValid() | 
|  | ? MoveConstructor->getEndLoc() | 
|  | : MoveConstructor->getLocation(); | 
|  | Sema::CompoundScopeRAII CompoundScope(*this); | 
|  | MoveConstructor->setBody(ActOnCompoundStmt( | 
|  | Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>()); | 
|  | MoveConstructor->markUsed(Context); | 
|  | } | 
|  |  | 
|  | if (ASTMutationListener *L = getASTMutationListener()) { | 
|  | L->CompletedImplicitDefinition(MoveConstructor); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Sema::isImplicitlyDeleted(FunctionDecl *FD) { | 
|  | return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD); | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitLambdaToFunctionPointerConversion( | 
|  | SourceLocation CurrentLocation, | 
|  | CXXConversionDecl *Conv) { | 
|  | SynthesizedFunctionScope Scope(*this, Conv); | 
|  | assert(!Conv->getReturnType()->isUndeducedType()); | 
|  |  | 
|  | CXXRecordDecl *Lambda = Conv->getParent(); | 
|  | FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); | 
|  | FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker(); | 
|  |  | 
|  | if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) { | 
|  | CallOp = InstantiateFunctionDeclaration( | 
|  | CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); | 
|  | if (!CallOp) | 
|  | return; | 
|  |  | 
|  | Invoker = InstantiateFunctionDeclaration( | 
|  | Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); | 
|  | if (!Invoker) | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (CallOp->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | // Mark the call operator referenced (and add to pending instantiations | 
|  | // if necessary). | 
|  | // For both the conversion and static-invoker template specializations | 
|  | // we construct their body's in this function, so no need to add them | 
|  | // to the PendingInstantiations. | 
|  | MarkFunctionReferenced(CurrentLocation, CallOp); | 
|  |  | 
|  | // Fill in the __invoke function with a dummy implementation. IR generation | 
|  | // will fill in the actual details. Update its type in case it contained | 
|  | // an 'auto'. | 
|  | Invoker->markUsed(Context); | 
|  | Invoker->setReferenced(); | 
|  | Invoker->setType(Conv->getReturnType()->getPointeeType()); | 
|  | Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation())); | 
|  |  | 
|  | // Construct the body of the conversion function { return __invoke; }. | 
|  | Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), | 
|  | VK_LValue, Conv->getLocation()); | 
|  | assert(FunctionRef && "Can't refer to __invoke function?"); | 
|  | Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get(); | 
|  | Conv->setBody(CompoundStmt::Create(Context, Return, Conv->getLocation(), | 
|  | Conv->getLocation())); | 
|  | Conv->markUsed(Context); | 
|  | Conv->setReferenced(); | 
|  |  | 
|  | if (ASTMutationListener *L = getASTMutationListener()) { | 
|  | L->CompletedImplicitDefinition(Conv); | 
|  | L->CompletedImplicitDefinition(Invoker); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | void Sema::DefineImplicitLambdaToBlockPointerConversion( | 
|  | SourceLocation CurrentLocation, | 
|  | CXXConversionDecl *Conv) | 
|  | { | 
|  | assert(!Conv->getParent()->isGenericLambda()); | 
|  |  | 
|  | SynthesizedFunctionScope Scope(*this, Conv); | 
|  |  | 
|  | // Copy-initialize the lambda object as needed to capture it. | 
|  | Expr *This = ActOnCXXThis(CurrentLocation).get(); | 
|  | Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get(); | 
|  |  | 
|  | ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation, | 
|  | Conv->getLocation(), | 
|  | Conv, DerefThis); | 
|  |  | 
|  | // If we're not under ARC, make sure we still get the _Block_copy/autorelease | 
|  | // behavior.  Note that only the general conversion function does this | 
|  | // (since it's unusable otherwise); in the case where we inline the | 
|  | // block literal, it has block literal lifetime semantics. | 
|  | if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount) | 
|  | BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(), | 
|  | CK_CopyAndAutoreleaseBlockObject, | 
|  | BuildBlock.get(), nullptr, VK_RValue); | 
|  |  | 
|  | if (BuildBlock.isInvalid()) { | 
|  | Diag(CurrentLocation, diag::note_lambda_to_block_conv); | 
|  | Conv->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Create the return statement that returns the block from the conversion | 
|  | // function. | 
|  | StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get()); | 
|  | if (Return.isInvalid()) { | 
|  | Diag(CurrentLocation, diag::note_lambda_to_block_conv); | 
|  | Conv->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Set the body of the conversion function. | 
|  | Stmt *ReturnS = Return.get(); | 
|  | Conv->setBody(CompoundStmt::Create(Context, ReturnS, Conv->getLocation(), | 
|  | Conv->getLocation())); | 
|  | Conv->markUsed(Context); | 
|  |  | 
|  | // We're done; notify the mutation listener, if any. | 
|  | if (ASTMutationListener *L = getASTMutationListener()) { | 
|  | L->CompletedImplicitDefinition(Conv); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Determine whether the given list arguments contains exactly one | 
|  | /// "real" (non-default) argument. | 
|  | static bool hasOneRealArgument(MultiExprArg Args) { | 
|  | switch (Args.size()) { | 
|  | case 0: | 
|  | return false; | 
|  |  | 
|  | default: | 
|  | if (!Args[1]->isDefaultArgument()) | 
|  | return false; | 
|  |  | 
|  | LLVM_FALLTHROUGH; | 
|  | case 1: | 
|  | return !Args[0]->isDefaultArgument(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, | 
|  | NamedDecl *FoundDecl, | 
|  | CXXConstructorDecl *Constructor, | 
|  | MultiExprArg ExprArgs, | 
|  | bool HadMultipleCandidates, | 
|  | bool IsListInitialization, | 
|  | bool IsStdInitListInitialization, | 
|  | bool RequiresZeroInit, | 
|  | unsigned ConstructKind, | 
|  | SourceRange ParenRange) { | 
|  | bool Elidable = false; | 
|  |  | 
|  | // C++0x [class.copy]p34: | 
|  | //   When certain criteria are met, an implementation is allowed to | 
|  | //   omit the copy/move construction of a class object, even if the | 
|  | //   copy/move constructor and/or destructor for the object have | 
|  | //   side effects. [...] | 
|  | //     - when a temporary class object that has not been bound to a | 
|  | //       reference (12.2) would be copied/moved to a class object | 
|  | //       with the same cv-unqualified type, the copy/move operation | 
|  | //       can be omitted by constructing the temporary object | 
|  | //       directly into the target of the omitted copy/move | 
|  | if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor && | 
|  | Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) { | 
|  | Expr *SubExpr = ExprArgs[0]; | 
|  | Elidable = SubExpr->isTemporaryObject( | 
|  | Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext())); | 
|  | } | 
|  |  | 
|  | return BuildCXXConstructExpr(ConstructLoc, DeclInitType, | 
|  | FoundDecl, Constructor, | 
|  | Elidable, ExprArgs, HadMultipleCandidates, | 
|  | IsListInitialization, | 
|  | IsStdInitListInitialization, RequiresZeroInit, | 
|  | ConstructKind, ParenRange); | 
|  | } | 
|  |  | 
|  | ExprResult | 
|  | Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, | 
|  | NamedDecl *FoundDecl, | 
|  | CXXConstructorDecl *Constructor, | 
|  | bool Elidable, | 
|  | MultiExprArg ExprArgs, | 
|  | bool HadMultipleCandidates, | 
|  | bool IsListInitialization, | 
|  | bool IsStdInitListInitialization, | 
|  | bool RequiresZeroInit, | 
|  | unsigned ConstructKind, | 
|  | SourceRange ParenRange) { | 
|  | if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) { | 
|  | Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow); | 
|  | if (DiagnoseUseOfDecl(Constructor, ConstructLoc)) | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | return BuildCXXConstructExpr( | 
|  | ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs, | 
|  | HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, | 
|  | RequiresZeroInit, ConstructKind, ParenRange); | 
|  | } | 
|  |  | 
|  | /// BuildCXXConstructExpr - Creates a complete call to a constructor, | 
|  | /// including handling of its default argument expressions. | 
|  | ExprResult | 
|  | Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, | 
|  | CXXConstructorDecl *Constructor, | 
|  | bool Elidable, | 
|  | MultiExprArg ExprArgs, | 
|  | bool HadMultipleCandidates, | 
|  | bool IsListInitialization, | 
|  | bool IsStdInitListInitialization, | 
|  | bool RequiresZeroInit, | 
|  | unsigned ConstructKind, | 
|  | SourceRange ParenRange) { | 
|  | assert(declaresSameEntity( | 
|  | Constructor->getParent(), | 
|  | DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && | 
|  | "given constructor for wrong type"); | 
|  | MarkFunctionReferenced(ConstructLoc, Constructor); | 
|  | if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor)) | 
|  | return ExprError(); | 
|  |  | 
|  | return CXXConstructExpr::Create( | 
|  | Context, DeclInitType, ConstructLoc, Constructor, Elidable, | 
|  | ExprArgs, HadMultipleCandidates, IsListInitialization, | 
|  | IsStdInitListInitialization, RequiresZeroInit, | 
|  | static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind), | 
|  | ParenRange); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) { | 
|  | assert(Field->hasInClassInitializer()); | 
|  |  | 
|  | // If we already have the in-class initializer nothing needs to be done. | 
|  | if (Field->getInClassInitializer()) | 
|  | return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext); | 
|  |  | 
|  | // If we might have already tried and failed to instantiate, don't try again. | 
|  | if (Field->isInvalidDecl()) | 
|  | return ExprError(); | 
|  |  | 
|  | // Maybe we haven't instantiated the in-class initializer. Go check the | 
|  | // pattern FieldDecl to see if it has one. | 
|  | CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent()); | 
|  |  | 
|  | if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) { | 
|  | CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern(); | 
|  | DeclContext::lookup_result Lookup = | 
|  | ClassPattern->lookup(Field->getDeclName()); | 
|  |  | 
|  | // Lookup can return at most two results: the pattern for the field, or the | 
|  | // injected class name of the parent record. No other member can have the | 
|  | // same name as the field. | 
|  | // In modules mode, lookup can return multiple results (coming from | 
|  | // different modules). | 
|  | assert((getLangOpts().Modules || (!Lookup.empty() && Lookup.size() <= 2)) && | 
|  | "more than two lookup results for field name"); | 
|  | FieldDecl *Pattern = dyn_cast<FieldDecl>(Lookup[0]); | 
|  | if (!Pattern) { | 
|  | assert(isa<CXXRecordDecl>(Lookup[0]) && | 
|  | "cannot have other non-field member with same name"); | 
|  | for (auto L : Lookup) | 
|  | if (isa<FieldDecl>(L)) { | 
|  | Pattern = cast<FieldDecl>(L); | 
|  | break; | 
|  | } | 
|  | assert(Pattern && "We must have set the Pattern!"); | 
|  | } | 
|  |  | 
|  | if (!Pattern->hasInClassInitializer() || | 
|  | InstantiateInClassInitializer(Loc, Field, Pattern, | 
|  | getTemplateInstantiationArgs(Field))) { | 
|  | // Don't diagnose this again. | 
|  | Field->setInvalidDecl(); | 
|  | return ExprError(); | 
|  | } | 
|  | return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext); | 
|  | } | 
|  |  | 
|  | // DR1351: | 
|  | //   If the brace-or-equal-initializer of a non-static data member | 
|  | //   invokes a defaulted default constructor of its class or of an | 
|  | //   enclosing class in a potentially evaluated subexpression, the | 
|  | //   program is ill-formed. | 
|  | // | 
|  | // This resolution is unworkable: the exception specification of the | 
|  | // default constructor can be needed in an unevaluated context, in | 
|  | // particular, in the operand of a noexcept-expression, and we can be | 
|  | // unable to compute an exception specification for an enclosed class. | 
|  | // | 
|  | // Any attempt to resolve the exception specification of a defaulted default | 
|  | // constructor before the initializer is lexically complete will ultimately | 
|  | // come here at which point we can diagnose it. | 
|  | RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext(); | 
|  | Diag(Loc, diag::err_in_class_initializer_not_yet_parsed) | 
|  | << OutermostClass << Field; | 
|  | Diag(Field->getEndLoc(), diag::note_in_class_initializer_not_yet_parsed); | 
|  | // Recover by marking the field invalid, unless we're in a SFINAE context. | 
|  | if (!isSFINAEContext()) | 
|  | Field->setInvalidDecl(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { | 
|  | if (VD->isInvalidDecl()) return; | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); | 
|  | if (ClassDecl->isInvalidDecl()) return; | 
|  | if (ClassDecl->hasIrrelevantDestructor()) return; | 
|  | if (ClassDecl->isDependentContext()) return; | 
|  |  | 
|  | if (VD->isNoDestroy(getASTContext())) | 
|  | return; | 
|  |  | 
|  | CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); | 
|  |  | 
|  | // If this is an array, we'll require the destructor during initialization, so | 
|  | // we can skip over this. We still want to emit exit-time destructor warnings | 
|  | // though. | 
|  | if (!VD->getType()->isArrayType()) { | 
|  | MarkFunctionReferenced(VD->getLocation(), Destructor); | 
|  | CheckDestructorAccess(VD->getLocation(), Destructor, | 
|  | PDiag(diag::err_access_dtor_var) | 
|  | << VD->getDeclName() << VD->getType()); | 
|  | DiagnoseUseOfDecl(Destructor, VD->getLocation()); | 
|  | } | 
|  |  | 
|  | if (Destructor->isTrivial()) return; | 
|  | if (!VD->hasGlobalStorage()) return; | 
|  |  | 
|  | // Emit warning for non-trivial dtor in global scope (a real global, | 
|  | // class-static, function-static). | 
|  | Diag(VD->getLocation(), diag::warn_exit_time_destructor); | 
|  |  | 
|  | // TODO: this should be re-enabled for static locals by !CXAAtExit | 
|  | if (!VD->isStaticLocal()) | 
|  | Diag(VD->getLocation(), diag::warn_global_destructor); | 
|  | } | 
|  |  | 
|  | /// Given a constructor and the set of arguments provided for the | 
|  | /// constructor, convert the arguments and add any required default arguments | 
|  | /// to form a proper call to this constructor. | 
|  | /// | 
|  | /// \returns true if an error occurred, false otherwise. | 
|  | bool | 
|  | Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, | 
|  | MultiExprArg ArgsPtr, | 
|  | SourceLocation Loc, | 
|  | SmallVectorImpl<Expr*> &ConvertedArgs, | 
|  | bool AllowExplicit, | 
|  | bool IsListInitialization) { | 
|  | // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. | 
|  | unsigned NumArgs = ArgsPtr.size(); | 
|  | Expr **Args = ArgsPtr.data(); | 
|  |  | 
|  | const FunctionProtoType *Proto | 
|  | = Constructor->getType()->getAs<FunctionProtoType>(); | 
|  | assert(Proto && "Constructor without a prototype?"); | 
|  | unsigned NumParams = Proto->getNumParams(); | 
|  |  | 
|  | // If too few arguments are available, we'll fill in the rest with defaults. | 
|  | if (NumArgs < NumParams) | 
|  | ConvertedArgs.reserve(NumParams); | 
|  | else | 
|  | ConvertedArgs.reserve(NumArgs); | 
|  |  | 
|  | VariadicCallType CallType = | 
|  | Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; | 
|  | SmallVector<Expr *, 8> AllArgs; | 
|  | bool Invalid = GatherArgumentsForCall(Loc, Constructor, | 
|  | Proto, 0, | 
|  | llvm::makeArrayRef(Args, NumArgs), | 
|  | AllArgs, | 
|  | CallType, AllowExplicit, | 
|  | IsListInitialization); | 
|  | ConvertedArgs.append(AllArgs.begin(), AllArgs.end()); | 
|  |  | 
|  | DiagnoseSentinelCalls(Constructor, Loc, AllArgs); | 
|  |  | 
|  | CheckConstructorCall(Constructor, | 
|  | llvm::makeArrayRef(AllArgs.data(), AllArgs.size()), | 
|  | Proto, Loc); | 
|  |  | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, | 
|  | const FunctionDecl *FnDecl) { | 
|  | const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); | 
|  | if (isa<NamespaceDecl>(DC)) { | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_delete_declared_in_namespace) | 
|  | << FnDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | if (isa<TranslationUnitDecl>(DC) && | 
|  | FnDecl->getStorageClass() == SC_Static) { | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_delete_declared_static) | 
|  | << FnDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static QualType | 
|  | RemoveAddressSpaceFromPtr(Sema &SemaRef, const PointerType *PtrTy) { | 
|  | QualType QTy = PtrTy->getPointeeType(); | 
|  | QTy = SemaRef.Context.removeAddrSpaceQualType(QTy); | 
|  | return SemaRef.Context.getPointerType(QTy); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, | 
|  | CanQualType ExpectedResultType, | 
|  | CanQualType ExpectedFirstParamType, | 
|  | unsigned DependentParamTypeDiag, | 
|  | unsigned InvalidParamTypeDiag) { | 
|  | QualType ResultType = | 
|  | FnDecl->getType()->getAs<FunctionType>()->getReturnType(); | 
|  |  | 
|  | // Check that the result type is not dependent. | 
|  | if (ResultType->isDependentType()) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_delete_dependent_result_type) | 
|  | << FnDecl->getDeclName() << ExpectedResultType; | 
|  |  | 
|  | // The operator is valid on any address space for OpenCL. | 
|  | if (SemaRef.getLangOpts().OpenCLCPlusPlus) { | 
|  | if (auto *PtrTy = ResultType->getAs<PointerType>()) { | 
|  | ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that the result type is what we expect. | 
|  | if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_delete_invalid_result_type) | 
|  | << FnDecl->getDeclName() << ExpectedResultType; | 
|  |  | 
|  | // A function template must have at least 2 parameters. | 
|  | if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_delete_template_too_few_parameters) | 
|  | << FnDecl->getDeclName(); | 
|  |  | 
|  | // The function decl must have at least 1 parameter. | 
|  | if (FnDecl->getNumParams() == 0) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_delete_too_few_parameters) | 
|  | << FnDecl->getDeclName(); | 
|  |  | 
|  | // Check the first parameter type is not dependent. | 
|  | QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); | 
|  | if (FirstParamType->isDependentType()) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag) | 
|  | << FnDecl->getDeclName() << ExpectedFirstParamType; | 
|  |  | 
|  | // Check that the first parameter type is what we expect. | 
|  | if (SemaRef.getLangOpts().OpenCLCPlusPlus) { | 
|  | // The operator is valid on any address space for OpenCL. | 
|  | if (auto *PtrTy = | 
|  | FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) { | 
|  | FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); | 
|  | } | 
|  | } | 
|  | if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != | 
|  | ExpectedFirstParamType) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag) | 
|  | << FnDecl->getDeclName() << ExpectedFirstParamType; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { | 
|  | // C++ [basic.stc.dynamic.allocation]p1: | 
|  | //   A program is ill-formed if an allocation function is declared in a | 
|  | //   namespace scope other than global scope or declared static in global | 
|  | //   scope. | 
|  | if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) | 
|  | return true; | 
|  |  | 
|  | CanQualType SizeTy = | 
|  | SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); | 
|  |  | 
|  | // C++ [basic.stc.dynamic.allocation]p1: | 
|  | //  The return type shall be void*. The first parameter shall have type | 
|  | //  std::size_t. | 
|  | if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, | 
|  | SizeTy, | 
|  | diag::err_operator_new_dependent_param_type, | 
|  | diag::err_operator_new_param_type)) | 
|  | return true; | 
|  |  | 
|  | // C++ [basic.stc.dynamic.allocation]p1: | 
|  | //  The first parameter shall not have an associated default argument. | 
|  | if (FnDecl->getParamDecl(0)->hasDefaultArg()) | 
|  | return SemaRef.Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_new_default_arg) | 
|  | << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { | 
|  | // C++ [basic.stc.dynamic.deallocation]p1: | 
|  | //   A program is ill-formed if deallocation functions are declared in a | 
|  | //   namespace scope other than global scope or declared static in global | 
|  | //   scope. | 
|  | if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) | 
|  | return true; | 
|  |  | 
|  | auto *MD = dyn_cast<CXXMethodDecl>(FnDecl); | 
|  |  | 
|  | // C++ P0722: | 
|  | //   Within a class C, the first parameter of a destroying operator delete | 
|  | //   shall be of type C *. The first parameter of any other deallocation | 
|  | //   function shall be of type void *. | 
|  | CanQualType ExpectedFirstParamType = | 
|  | MD && MD->isDestroyingOperatorDelete() | 
|  | ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType( | 
|  | SemaRef.Context.getRecordType(MD->getParent()))) | 
|  | : SemaRef.Context.VoidPtrTy; | 
|  |  | 
|  | // C++ [basic.stc.dynamic.deallocation]p2: | 
|  | //   Each deallocation function shall return void | 
|  | if (CheckOperatorNewDeleteTypes( | 
|  | SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType, | 
|  | diag::err_operator_delete_dependent_param_type, | 
|  | diag::err_operator_delete_param_type)) | 
|  | return true; | 
|  |  | 
|  | // C++ P0722: | 
|  | //   A destroying operator delete shall be a usual deallocation function. | 
|  | if (MD && !MD->getParent()->isDependentContext() && | 
|  | MD->isDestroyingOperatorDelete() && | 
|  | !SemaRef.isUsualDeallocationFunction(MD)) { | 
|  | SemaRef.Diag(MD->getLocation(), | 
|  | diag::err_destroying_operator_delete_not_usual); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CheckOverloadedOperatorDeclaration - Check whether the declaration | 
|  | /// of this overloaded operator is well-formed. If so, returns false; | 
|  | /// otherwise, emits appropriate diagnostics and returns true. | 
|  | bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { | 
|  | assert(FnDecl && FnDecl->isOverloadedOperator() && | 
|  | "Expected an overloaded operator declaration"); | 
|  |  | 
|  | OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); | 
|  |  | 
|  | // C++ [over.oper]p5: | 
|  | //   The allocation and deallocation functions, operator new, | 
|  | //   operator new[], operator delete and operator delete[], are | 
|  | //   described completely in 3.7.3. The attributes and restrictions | 
|  | //   found in the rest of this subclause do not apply to them unless | 
|  | //   explicitly stated in 3.7.3. | 
|  | if (Op == OO_Delete || Op == OO_Array_Delete) | 
|  | return CheckOperatorDeleteDeclaration(*this, FnDecl); | 
|  |  | 
|  | if (Op == OO_New || Op == OO_Array_New) | 
|  | return CheckOperatorNewDeclaration(*this, FnDecl); | 
|  |  | 
|  | // C++ [over.oper]p6: | 
|  | //   An operator function shall either be a non-static member | 
|  | //   function or be a non-member function and have at least one | 
|  | //   parameter whose type is a class, a reference to a class, an | 
|  | //   enumeration, or a reference to an enumeration. | 
|  | if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { | 
|  | if (MethodDecl->isStatic()) | 
|  | return Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_overload_static) << FnDecl->getDeclName(); | 
|  | } else { | 
|  | bool ClassOrEnumParam = false; | 
|  | for (auto Param : FnDecl->parameters()) { | 
|  | QualType ParamType = Param->getType().getNonReferenceType(); | 
|  | if (ParamType->isDependentType() || ParamType->isRecordType() || | 
|  | ParamType->isEnumeralType()) { | 
|  | ClassOrEnumParam = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ClassOrEnumParam) | 
|  | return Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_overload_needs_class_or_enum) | 
|  | << FnDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | // C++ [over.oper]p8: | 
|  | //   An operator function cannot have default arguments (8.3.6), | 
|  | //   except where explicitly stated below. | 
|  | // | 
|  | // Only the function-call operator allows default arguments | 
|  | // (C++ [over.call]p1). | 
|  | if (Op != OO_Call) { | 
|  | for (auto Param : FnDecl->parameters()) { | 
|  | if (Param->hasDefaultArg()) | 
|  | return Diag(Param->getLocation(), | 
|  | diag::err_operator_overload_default_arg) | 
|  | << FnDecl->getDeclName() << Param->getDefaultArgRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { | 
|  | { false, false, false } | 
|  | #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ | 
|  | , { Unary, Binary, MemberOnly } | 
|  | #include "clang/Basic/OperatorKinds.def" | 
|  | }; | 
|  |  | 
|  | bool CanBeUnaryOperator = OperatorUses[Op][0]; | 
|  | bool CanBeBinaryOperator = OperatorUses[Op][1]; | 
|  | bool MustBeMemberOperator = OperatorUses[Op][2]; | 
|  |  | 
|  | // C++ [over.oper]p8: | 
|  | //   [...] Operator functions cannot have more or fewer parameters | 
|  | //   than the number required for the corresponding operator, as | 
|  | //   described in the rest of this subclause. | 
|  | unsigned NumParams = FnDecl->getNumParams() | 
|  | + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); | 
|  | if (Op != OO_Call && | 
|  | ((NumParams == 1 && !CanBeUnaryOperator) || | 
|  | (NumParams == 2 && !CanBeBinaryOperator) || | 
|  | (NumParams < 1) || (NumParams > 2))) { | 
|  | // We have the wrong number of parameters. | 
|  | unsigned ErrorKind; | 
|  | if (CanBeUnaryOperator && CanBeBinaryOperator) { | 
|  | ErrorKind = 2;  // 2 -> unary or binary. | 
|  | } else if (CanBeUnaryOperator) { | 
|  | ErrorKind = 0;  // 0 -> unary | 
|  | } else { | 
|  | assert(CanBeBinaryOperator && | 
|  | "All non-call overloaded operators are unary or binary!"); | 
|  | ErrorKind = 1;  // 1 -> binary | 
|  | } | 
|  |  | 
|  | return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) | 
|  | << FnDecl->getDeclName() << NumParams << ErrorKind; | 
|  | } | 
|  |  | 
|  | // Overloaded operators other than operator() cannot be variadic. | 
|  | if (Op != OO_Call && | 
|  | FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) { | 
|  | return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) | 
|  | << FnDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | // Some operators must be non-static member functions. | 
|  | if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { | 
|  | return Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_overload_must_be_member) | 
|  | << FnDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | // C++ [over.inc]p1: | 
|  | //   The user-defined function called operator++ implements the | 
|  | //   prefix and postfix ++ operator. If this function is a member | 
|  | //   function with no parameters, or a non-member function with one | 
|  | //   parameter of class or enumeration type, it defines the prefix | 
|  | //   increment operator ++ for objects of that type. If the function | 
|  | //   is a member function with one parameter (which shall be of type | 
|  | //   int) or a non-member function with two parameters (the second | 
|  | //   of which shall be of type int), it defines the postfix | 
|  | //   increment operator ++ for objects of that type. | 
|  | if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { | 
|  | ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); | 
|  | QualType ParamType = LastParam->getType(); | 
|  |  | 
|  | if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) && | 
|  | !ParamType->isDependentType()) | 
|  | return Diag(LastParam->getLocation(), | 
|  | diag::err_operator_overload_post_incdec_must_be_int) | 
|  | << LastParam->getType() << (Op == OO_MinusMinus); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | checkLiteralOperatorTemplateParameterList(Sema &SemaRef, | 
|  | FunctionTemplateDecl *TpDecl) { | 
|  | TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters(); | 
|  |  | 
|  | // Must have one or two template parameters. | 
|  | if (TemplateParams->size() == 1) { | 
|  | NonTypeTemplateParmDecl *PmDecl = | 
|  | dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0)); | 
|  |  | 
|  | // The template parameter must be a char parameter pack. | 
|  | if (PmDecl && PmDecl->isTemplateParameterPack() && | 
|  | SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy)) | 
|  | return false; | 
|  |  | 
|  | } else if (TemplateParams->size() == 2) { | 
|  | TemplateTypeParmDecl *PmType = | 
|  | dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0)); | 
|  | NonTypeTemplateParmDecl *PmArgs = | 
|  | dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1)); | 
|  |  | 
|  | // The second template parameter must be a parameter pack with the | 
|  | // first template parameter as its type. | 
|  | if (PmType && PmArgs && !PmType->isTemplateParameterPack() && | 
|  | PmArgs->isTemplateParameterPack()) { | 
|  | const TemplateTypeParmType *TArgs = | 
|  | PmArgs->getType()->getAs<TemplateTypeParmType>(); | 
|  | if (TArgs && TArgs->getDepth() == PmType->getDepth() && | 
|  | TArgs->getIndex() == PmType->getIndex()) { | 
|  | if (!SemaRef.inTemplateInstantiation()) | 
|  | SemaRef.Diag(TpDecl->getLocation(), | 
|  | diag::ext_string_literal_operator_template); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(), | 
|  | diag::err_literal_operator_template) | 
|  | << TpDecl->getTemplateParameters()->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// CheckLiteralOperatorDeclaration - Check whether the declaration | 
|  | /// of this literal operator function is well-formed. If so, returns | 
|  | /// false; otherwise, emits appropriate diagnostics and returns true. | 
|  | bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { | 
|  | if (isa<CXXMethodDecl>(FnDecl)) { | 
|  | Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) | 
|  | << FnDecl->getDeclName(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (FnDecl->isExternC()) { | 
|  | Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c); | 
|  | if (const LinkageSpecDecl *LSD = | 
|  | FnDecl->getDeclContext()->getExternCContext()) | 
|  | Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This might be the definition of a literal operator template. | 
|  | FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate(); | 
|  |  | 
|  | // This might be a specialization of a literal operator template. | 
|  | if (!TpDecl) | 
|  | TpDecl = FnDecl->getPrimaryTemplate(); | 
|  |  | 
|  | // template <char...> type operator "" name() and | 
|  | // template <class T, T...> type operator "" name() are the only valid | 
|  | // template signatures, and the only valid signatures with no parameters. | 
|  | if (TpDecl) { | 
|  | if (FnDecl->param_size() != 0) { | 
|  | Diag(FnDecl->getLocation(), | 
|  | diag::err_literal_operator_template_with_params); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (checkLiteralOperatorTemplateParameterList(*this, TpDecl)) | 
|  | return true; | 
|  |  | 
|  | } else if (FnDecl->param_size() == 1) { | 
|  | const ParmVarDecl *Param = FnDecl->getParamDecl(0); | 
|  |  | 
|  | QualType ParamType = Param->getType().getUnqualifiedType(); | 
|  |  | 
|  | // Only unsigned long long int, long double, any character type, and const | 
|  | // char * are allowed as the only parameters. | 
|  | if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) || | 
|  | ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) || | 
|  | Context.hasSameType(ParamType, Context.CharTy) || | 
|  | Context.hasSameType(ParamType, Context.WideCharTy) || | 
|  | Context.hasSameType(ParamType, Context.Char8Ty) || | 
|  | Context.hasSameType(ParamType, Context.Char16Ty) || | 
|  | Context.hasSameType(ParamType, Context.Char32Ty)) { | 
|  | } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) { | 
|  | QualType InnerType = Ptr->getPointeeType(); | 
|  |  | 
|  | // Pointer parameter must be a const char *. | 
|  | if (!(Context.hasSameType(InnerType.getUnqualifiedType(), | 
|  | Context.CharTy) && | 
|  | InnerType.isConstQualified() && !InnerType.isVolatileQualified())) { | 
|  | Diag(Param->getSourceRange().getBegin(), | 
|  | diag::err_literal_operator_param) | 
|  | << ParamType << "'const char *'" << Param->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | } else if (ParamType->isRealFloatingType()) { | 
|  | Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) | 
|  | << ParamType << Context.LongDoubleTy << Param->getSourceRange(); | 
|  | return true; | 
|  |  | 
|  | } else if (ParamType->isIntegerType()) { | 
|  | Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) | 
|  | << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange(); | 
|  | return true; | 
|  |  | 
|  | } else { | 
|  | Diag(Param->getSourceRange().getBegin(), | 
|  | diag::err_literal_operator_invalid_param) | 
|  | << ParamType << Param->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | } else if (FnDecl->param_size() == 2) { | 
|  | FunctionDecl::param_iterator Param = FnDecl->param_begin(); | 
|  |  | 
|  | // First, verify that the first parameter is correct. | 
|  |  | 
|  | QualType FirstParamType = (*Param)->getType().getUnqualifiedType(); | 
|  |  | 
|  | // Two parameter function must have a pointer to const as a | 
|  | // first parameter; let's strip those qualifiers. | 
|  | const PointerType *PT = FirstParamType->getAs<PointerType>(); | 
|  |  | 
|  | if (!PT) { | 
|  | Diag((*Param)->getSourceRange().getBegin(), | 
|  | diag::err_literal_operator_param) | 
|  | << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | QualType PointeeType = PT->getPointeeType(); | 
|  | // First parameter must be const | 
|  | if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) { | 
|  | Diag((*Param)->getSourceRange().getBegin(), | 
|  | diag::err_literal_operator_param) | 
|  | << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | QualType InnerType = PointeeType.getUnqualifiedType(); | 
|  | // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and | 
|  | // const char32_t* are allowed as the first parameter to a two-parameter | 
|  | // function | 
|  | if (!(Context.hasSameType(InnerType, Context.CharTy) || | 
|  | Context.hasSameType(InnerType, Context.WideCharTy) || | 
|  | Context.hasSameType(InnerType, Context.Char8Ty) || | 
|  | Context.hasSameType(InnerType, Context.Char16Ty) || | 
|  | Context.hasSameType(InnerType, Context.Char32Ty))) { | 
|  | Diag((*Param)->getSourceRange().getBegin(), | 
|  | diag::err_literal_operator_param) | 
|  | << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Move on to the second and final parameter. | 
|  | ++Param; | 
|  |  | 
|  | // The second parameter must be a std::size_t. | 
|  | QualType SecondParamType = (*Param)->getType().getUnqualifiedType(); | 
|  | if (!Context.hasSameType(SecondParamType, Context.getSizeType())) { | 
|  | Diag((*Param)->getSourceRange().getBegin(), | 
|  | diag::err_literal_operator_param) | 
|  | << SecondParamType << Context.getSizeType() | 
|  | << (*Param)->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Parameters are good. | 
|  |  | 
|  | // A parameter-declaration-clause containing a default argument is not | 
|  | // equivalent to any of the permitted forms. | 
|  | for (auto Param : FnDecl->parameters()) { | 
|  | if (Param->hasDefaultArg()) { | 
|  | Diag(Param->getDefaultArgRange().getBegin(), | 
|  | diag::err_literal_operator_default_argument) | 
|  | << Param->getDefaultArgRange(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | StringRef LiteralName | 
|  | = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName(); | 
|  | if (LiteralName[0] != '_' && | 
|  | !getSourceManager().isInSystemHeader(FnDecl->getLocation())) { | 
|  | // C++11 [usrlit.suffix]p1: | 
|  | //   Literal suffix identifiers that do not start with an underscore | 
|  | //   are reserved for future standardization. | 
|  | Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved) | 
|  | << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ | 
|  | /// linkage specification, including the language and (if present) | 
|  | /// the '{'. ExternLoc is the location of the 'extern', Lang is the | 
|  | /// language string literal. LBraceLoc, if valid, provides the location of | 
|  | /// the '{' brace. Otherwise, this linkage specification does not | 
|  | /// have any braces. | 
|  | Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, | 
|  | Expr *LangStr, | 
|  | SourceLocation LBraceLoc) { | 
|  | StringLiteral *Lit = cast<StringLiteral>(LangStr); | 
|  | if (!Lit->isAscii()) { | 
|  | Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii) | 
|  | << LangStr->getSourceRange(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | StringRef Lang = Lit->getString(); | 
|  | LinkageSpecDecl::LanguageIDs Language; | 
|  | if (Lang == "C") | 
|  | Language = LinkageSpecDecl::lang_c; | 
|  | else if (Lang == "C++") | 
|  | Language = LinkageSpecDecl::lang_cxx; | 
|  | else { | 
|  | Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown) | 
|  | << LangStr->getSourceRange(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // FIXME: Add all the various semantics of linkage specifications | 
|  |  | 
|  | LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc, | 
|  | LangStr->getExprLoc(), Language, | 
|  | LBraceLoc.isValid()); | 
|  | CurContext->addDecl(D); | 
|  | PushDeclContext(S, D); | 
|  | return D; | 
|  | } | 
|  |  | 
|  | /// ActOnFinishLinkageSpecification - Complete the definition of | 
|  | /// the C++ linkage specification LinkageSpec. If RBraceLoc is | 
|  | /// valid, it's the position of the closing '}' brace in a linkage | 
|  | /// specification that uses braces. | 
|  | Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, | 
|  | Decl *LinkageSpec, | 
|  | SourceLocation RBraceLoc) { | 
|  | if (RBraceLoc.isValid()) { | 
|  | LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec); | 
|  | LSDecl->setRBraceLoc(RBraceLoc); | 
|  | } | 
|  | PopDeclContext(); | 
|  | return LinkageSpec; | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnEmptyDeclaration(Scope *S, | 
|  | const ParsedAttributesView &AttrList, | 
|  | SourceLocation SemiLoc) { | 
|  | Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc); | 
|  | // Attribute declarations appertain to empty declaration so we handle | 
|  | // them here. | 
|  | ProcessDeclAttributeList(S, ED, AttrList); | 
|  |  | 
|  | CurContext->addDecl(ED); | 
|  | return ED; | 
|  | } | 
|  |  | 
|  | /// Perform semantic analysis for the variable declaration that | 
|  | /// occurs within a C++ catch clause, returning the newly-created | 
|  | /// variable. | 
|  | VarDecl *Sema::BuildExceptionDeclaration(Scope *S, | 
|  | TypeSourceInfo *TInfo, | 
|  | SourceLocation StartLoc, | 
|  | SourceLocation Loc, | 
|  | IdentifierInfo *Name) { | 
|  | bool Invalid = false; | 
|  | QualType ExDeclType = TInfo->getType(); | 
|  |  | 
|  | // Arrays and functions decay. | 
|  | if (ExDeclType->isArrayType()) | 
|  | ExDeclType = Context.getArrayDecayedType(ExDeclType); | 
|  | else if (ExDeclType->isFunctionType()) | 
|  | ExDeclType = Context.getPointerType(ExDeclType); | 
|  |  | 
|  | // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. | 
|  | // The exception-declaration shall not denote a pointer or reference to an | 
|  | // incomplete type, other than [cv] void*. | 
|  | // N2844 forbids rvalue references. | 
|  | if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { | 
|  | Diag(Loc, diag::err_catch_rvalue_ref); | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | if (ExDeclType->isVariablyModifiedType()) { | 
|  | Diag(Loc, diag::err_catch_variably_modified) << ExDeclType; | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | QualType BaseType = ExDeclType; | 
|  | int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference | 
|  | unsigned DK = diag::err_catch_incomplete; | 
|  | if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { | 
|  | BaseType = Ptr->getPointeeType(); | 
|  | Mode = 1; | 
|  | DK = diag::err_catch_incomplete_ptr; | 
|  | } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { | 
|  | // For the purpose of error recovery, we treat rvalue refs like lvalue refs. | 
|  | BaseType = Ref->getPointeeType(); | 
|  | Mode = 2; | 
|  | DK = diag::err_catch_incomplete_ref; | 
|  | } | 
|  | if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && | 
|  | !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) | 
|  | Invalid = true; | 
|  |  | 
|  | if (!Invalid && !ExDeclType->isDependentType() && | 
|  | RequireNonAbstractType(Loc, ExDeclType, | 
|  | diag::err_abstract_type_in_decl, | 
|  | AbstractVariableType)) | 
|  | Invalid = true; | 
|  |  | 
|  | // Only the non-fragile NeXT runtime currently supports C++ catches | 
|  | // of ObjC types, and no runtime supports catching ObjC types by value. | 
|  | if (!Invalid && getLangOpts().ObjC) { | 
|  | QualType T = ExDeclType; | 
|  | if (const ReferenceType *RT = T->getAs<ReferenceType>()) | 
|  | T = RT->getPointeeType(); | 
|  |  | 
|  | if (T->isObjCObjectType()) { | 
|  | Diag(Loc, diag::err_objc_object_catch); | 
|  | Invalid = true; | 
|  | } else if (T->isObjCObjectPointerType()) { | 
|  | // FIXME: should this be a test for macosx-fragile specifically? | 
|  | if (getLangOpts().ObjCRuntime.isFragile()) | 
|  | Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); | 
|  | } | 
|  | } | 
|  |  | 
|  | VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name, | 
|  | ExDeclType, TInfo, SC_None); | 
|  | ExDecl->setExceptionVariable(true); | 
|  |  | 
|  | // In ARC, infer 'retaining' for variables of retainable type. | 
|  | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl)) | 
|  | Invalid = true; | 
|  |  | 
|  | if (!Invalid && !ExDeclType->isDependentType()) { | 
|  | if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) { | 
|  | // Insulate this from anything else we might currently be parsing. | 
|  | EnterExpressionEvaluationContext scope( | 
|  | *this, ExpressionEvaluationContext::PotentiallyEvaluated); | 
|  |  | 
|  | // C++ [except.handle]p16: | 
|  | //   The object declared in an exception-declaration or, if the | 
|  | //   exception-declaration does not specify a name, a temporary (12.2) is | 
|  | //   copy-initialized (8.5) from the exception object. [...] | 
|  | //   The object is destroyed when the handler exits, after the destruction | 
|  | //   of any automatic objects initialized within the handler. | 
|  | // | 
|  | // We just pretend to initialize the object with itself, then make sure | 
|  | // it can be destroyed later. | 
|  | QualType initType = Context.getExceptionObjectType(ExDeclType); | 
|  |  | 
|  | InitializedEntity entity = | 
|  | InitializedEntity::InitializeVariable(ExDecl); | 
|  | InitializationKind initKind = | 
|  | InitializationKind::CreateCopy(Loc, SourceLocation()); | 
|  |  | 
|  | Expr *opaqueValue = | 
|  | new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); | 
|  | InitializationSequence sequence(*this, entity, initKind, opaqueValue); | 
|  | ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue); | 
|  | if (result.isInvalid()) | 
|  | Invalid = true; | 
|  | else { | 
|  | // If the constructor used was non-trivial, set this as the | 
|  | // "initializer". | 
|  | CXXConstructExpr *construct = result.getAs<CXXConstructExpr>(); | 
|  | if (!construct->getConstructor()->isTrivial()) { | 
|  | Expr *init = MaybeCreateExprWithCleanups(construct); | 
|  | ExDecl->setInit(init); | 
|  | } | 
|  |  | 
|  | // And make sure it's destructable. | 
|  | FinalizeVarWithDestructor(ExDecl, recordType); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Invalid) | 
|  | ExDecl->setInvalidDecl(); | 
|  |  | 
|  | return ExDecl; | 
|  | } | 
|  |  | 
|  | /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch | 
|  | /// handler. | 
|  | Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
|  | bool Invalid = D.isInvalidType(); | 
|  |  | 
|  | // Check for unexpanded parameter packs. | 
|  | if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, | 
|  | UPPC_ExceptionType)) { | 
|  | TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, | 
|  | D.getIdentifierLoc()); | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | IdentifierInfo *II = D.getIdentifier(); | 
|  | if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), | 
|  | LookupOrdinaryName, | 
|  | ForVisibleRedeclaration)) { | 
|  | // The scope should be freshly made just for us. There is just no way | 
|  | // it contains any previous declaration, except for function parameters in | 
|  | // a function-try-block's catch statement. | 
|  | assert(!S->isDeclScope(PrevDecl)); | 
|  | if (isDeclInScope(PrevDecl, CurContext, S)) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_redefinition) | 
|  | << D.getIdentifier(); | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_definition); | 
|  | Invalid = true; | 
|  | } else if (PrevDecl->isTemplateParameter()) | 
|  | // Maybe we will complain about the shadowed template parameter. | 
|  | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | 
|  | } | 
|  |  | 
|  | if (D.getCXXScopeSpec().isSet() && !Invalid) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) | 
|  | << D.getCXXScopeSpec().getRange(); | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | VarDecl *ExDecl = BuildExceptionDeclaration( | 
|  | S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier()); | 
|  | if (Invalid) | 
|  | ExDecl->setInvalidDecl(); | 
|  |  | 
|  | // Add the exception declaration into this scope. | 
|  | if (II) | 
|  | PushOnScopeChains(ExDecl, S); | 
|  | else | 
|  | CurContext->addDecl(ExDecl); | 
|  |  | 
|  | ProcessDeclAttributes(S, ExDecl, D); | 
|  | return ExDecl; | 
|  | } | 
|  |  | 
|  | Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, | 
|  | Expr *AssertExpr, | 
|  | Expr *AssertMessageExpr, | 
|  | SourceLocation RParenLoc) { | 
|  | StringLiteral *AssertMessage = | 
|  | AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr; | 
|  |  | 
|  | if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression)) | 
|  | return nullptr; | 
|  |  | 
|  | return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr, | 
|  | AssertMessage, RParenLoc, false); | 
|  | } | 
|  |  | 
|  | Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, | 
|  | Expr *AssertExpr, | 
|  | StringLiteral *AssertMessage, | 
|  | SourceLocation RParenLoc, | 
|  | bool Failed) { | 
|  | assert(AssertExpr != nullptr && "Expected non-null condition"); | 
|  | if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() && | 
|  | !Failed) { | 
|  | // In a static_assert-declaration, the constant-expression shall be a | 
|  | // constant expression that can be contextually converted to bool. | 
|  | ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr); | 
|  | if (Converted.isInvalid()) | 
|  | Failed = true; | 
|  |  | 
|  | llvm::APSInt Cond; | 
|  | if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond, | 
|  | diag::err_static_assert_expression_is_not_constant, | 
|  | /*AllowFold=*/false).isInvalid()) | 
|  | Failed = true; | 
|  |  | 
|  | if (!Failed && !Cond) { | 
|  | SmallString<256> MsgBuffer; | 
|  | llvm::raw_svector_ostream Msg(MsgBuffer); | 
|  | if (AssertMessage) | 
|  | AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy()); | 
|  |  | 
|  | Expr *InnerCond = nullptr; | 
|  | std::string InnerCondDescription; | 
|  | std::tie(InnerCond, InnerCondDescription) = | 
|  | findFailedBooleanCondition(Converted.get()); | 
|  | if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond) | 
|  | && !isa<IntegerLiteral>(InnerCond)) { | 
|  | Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed) | 
|  | << InnerCondDescription << !AssertMessage | 
|  | << Msg.str() << InnerCond->getSourceRange(); | 
|  | } else { | 
|  | Diag(StaticAssertLoc, diag::err_static_assert_failed) | 
|  | << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); | 
|  | } | 
|  | Failed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc, | 
|  | /*DiscardedValue*/false, | 
|  | /*IsConstexpr*/true); | 
|  | if (FullAssertExpr.isInvalid()) | 
|  | Failed = true; | 
|  | else | 
|  | AssertExpr = FullAssertExpr.get(); | 
|  |  | 
|  | Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc, | 
|  | AssertExpr, AssertMessage, RParenLoc, | 
|  | Failed); | 
|  |  | 
|  | CurContext->addDecl(Decl); | 
|  | return Decl; | 
|  | } | 
|  |  | 
|  | /// Perform semantic analysis of the given friend type declaration. | 
|  | /// | 
|  | /// \returns A friend declaration that. | 
|  | FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart, | 
|  | SourceLocation FriendLoc, | 
|  | TypeSourceInfo *TSInfo) { | 
|  | assert(TSInfo && "NULL TypeSourceInfo for friend type declaration"); | 
|  |  | 
|  | QualType T = TSInfo->getType(); | 
|  | SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange(); | 
|  |  | 
|  | // C++03 [class.friend]p2: | 
|  | //   An elaborated-type-specifier shall be used in a friend declaration | 
|  | //   for a class.* | 
|  | // | 
|  | //   * The class-key of the elaborated-type-specifier is required. | 
|  | if (!CodeSynthesisContexts.empty()) { | 
|  | // Do not complain about the form of friend template types during any kind | 
|  | // of code synthesis. For template instantiation, we will have complained | 
|  | // when the template was defined. | 
|  | } else { | 
|  | if (!T->isElaboratedTypeSpecifier()) { | 
|  | // If we evaluated the type to a record type, suggest putting | 
|  | // a tag in front. | 
|  | if (const RecordType *RT = T->getAs<RecordType>()) { | 
|  | RecordDecl *RD = RT->getDecl(); | 
|  |  | 
|  | SmallString<16> InsertionText(" "); | 
|  | InsertionText += RD->getKindName(); | 
|  |  | 
|  | Diag(TypeRange.getBegin(), | 
|  | getLangOpts().CPlusPlus11 ? | 
|  | diag::warn_cxx98_compat_unelaborated_friend_type : | 
|  | diag::ext_unelaborated_friend_type) | 
|  | << (unsigned) RD->getTagKind() | 
|  | << T | 
|  | << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc), | 
|  | InsertionText); | 
|  | } else { | 
|  | Diag(FriendLoc, | 
|  | getLangOpts().CPlusPlus11 ? | 
|  | diag::warn_cxx98_compat_nonclass_type_friend : | 
|  | diag::ext_nonclass_type_friend) | 
|  | << T | 
|  | << TypeRange; | 
|  | } | 
|  | } else if (T->getAs<EnumType>()) { | 
|  | Diag(FriendLoc, | 
|  | getLangOpts().CPlusPlus11 ? | 
|  | diag::warn_cxx98_compat_enum_friend : | 
|  | diag::ext_enum_friend) | 
|  | << T | 
|  | << TypeRange; | 
|  | } | 
|  |  | 
|  | // C++11 [class.friend]p3: | 
|  | //   A friend declaration that does not declare a function shall have one | 
|  | //   of the following forms: | 
|  | //     friend elaborated-type-specifier ; | 
|  | //     friend simple-type-specifier ; | 
|  | //     friend typename-specifier ; | 
|  | if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc) | 
|  | Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T; | 
|  | } | 
|  |  | 
|  | //   If the type specifier in a friend declaration designates a (possibly | 
|  | //   cv-qualified) class type, that class is declared as a friend; otherwise, | 
|  | //   the friend declaration is ignored. | 
|  | return FriendDecl::Create(Context, CurContext, | 
|  | TSInfo->getTypeLoc().getBeginLoc(), TSInfo, | 
|  | FriendLoc); | 
|  | } | 
|  |  | 
|  | /// Handle a friend tag declaration where the scope specifier was | 
|  | /// templated. | 
|  | Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc, | 
|  | unsigned TagSpec, SourceLocation TagLoc, | 
|  | CXXScopeSpec &SS, IdentifierInfo *Name, | 
|  | SourceLocation NameLoc, | 
|  | const ParsedAttributesView &Attr, | 
|  | MultiTemplateParamsArg TempParamLists) { | 
|  | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); | 
|  |  | 
|  | bool IsMemberSpecialization = false; | 
|  | bool Invalid = false; | 
|  |  | 
|  | if (TemplateParameterList *TemplateParams = | 
|  | MatchTemplateParametersToScopeSpecifier( | 
|  | TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true, | 
|  | IsMemberSpecialization, Invalid)) { | 
|  | if (TemplateParams->size() > 0) { | 
|  | // This is a declaration of a class template. | 
|  | if (Invalid) | 
|  | return nullptr; | 
|  |  | 
|  | return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name, | 
|  | NameLoc, Attr, TemplateParams, AS_public, | 
|  | /*ModulePrivateLoc=*/SourceLocation(), | 
|  | FriendLoc, TempParamLists.size() - 1, | 
|  | TempParamLists.data()).get(); | 
|  | } else { | 
|  | // The "template<>" header is extraneous. | 
|  | Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) | 
|  | << TypeWithKeyword::getTagTypeKindName(Kind) << Name; | 
|  | IsMemberSpecialization = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Invalid) return nullptr; | 
|  |  | 
|  | bool isAllExplicitSpecializations = true; | 
|  | for (unsigned I = TempParamLists.size(); I-- > 0; ) { | 
|  | if (TempParamLists[I]->size()) { | 
|  | isAllExplicitSpecializations = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: don't ignore attributes. | 
|  |  | 
|  | // If it's explicit specializations all the way down, just forget | 
|  | // about the template header and build an appropriate non-templated | 
|  | // friend.  TODO: for source fidelity, remember the headers. | 
|  | if (isAllExplicitSpecializations) { | 
|  | if (SS.isEmpty()) { | 
|  | bool Owned = false; | 
|  | bool IsDependent = false; | 
|  | return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc, | 
|  | Attr, AS_public, | 
|  | /*ModulePrivateLoc=*/SourceLocation(), | 
|  | MultiTemplateParamsArg(), Owned, IsDependent, | 
|  | /*ScopedEnumKWLoc=*/SourceLocation(), | 
|  | /*ScopedEnumUsesClassTag=*/false, | 
|  | /*UnderlyingType=*/TypeResult(), | 
|  | /*IsTypeSpecifier=*/false, | 
|  | /*IsTemplateParamOrArg=*/false); | 
|  | } | 
|  |  | 
|  | NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); | 
|  | ElaboratedTypeKeyword Keyword | 
|  | = TypeWithKeyword::getKeywordForTagTypeKind(Kind); | 
|  | QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc, | 
|  | *Name, NameLoc); | 
|  | if (T.isNull()) | 
|  | return nullptr; | 
|  |  | 
|  | TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); | 
|  | if (isa<DependentNameType>(T)) { | 
|  | DependentNameTypeLoc TL = | 
|  | TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); | 
|  | TL.setElaboratedKeywordLoc(TagLoc); | 
|  | TL.setQualifierLoc(QualifierLoc); | 
|  | TL.setNameLoc(NameLoc); | 
|  | } else { | 
|  | ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); | 
|  | TL.setElaboratedKeywordLoc(TagLoc); | 
|  | TL.setQualifierLoc(QualifierLoc); | 
|  | TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc); | 
|  | } | 
|  |  | 
|  | FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, | 
|  | TSI, FriendLoc, TempParamLists); | 
|  | Friend->setAccess(AS_public); | 
|  | CurContext->addDecl(Friend); | 
|  | return Friend; | 
|  | } | 
|  |  | 
|  | assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?"); | 
|  |  | 
|  |  | 
|  |  | 
|  | // Handle the case of a templated-scope friend class.  e.g. | 
|  | //   template <class T> class A<T>::B; | 
|  | // FIXME: we don't support these right now. | 
|  | Diag(NameLoc, diag::warn_template_qualified_friend_unsupported) | 
|  | << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext); | 
|  | ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind); | 
|  | QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name); | 
|  | TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); | 
|  | DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); | 
|  | TL.setElaboratedKeywordLoc(TagLoc); | 
|  | TL.setQualifierLoc(SS.getWithLocInContext(Context)); | 
|  | TL.setNameLoc(NameLoc); | 
|  |  | 
|  | FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, | 
|  | TSI, FriendLoc, TempParamLists); | 
|  | Friend->setAccess(AS_public); | 
|  | Friend->setUnsupportedFriend(true); | 
|  | CurContext->addDecl(Friend); | 
|  | return Friend; | 
|  | } | 
|  |  | 
|  | /// Handle a friend type declaration.  This works in tandem with | 
|  | /// ActOnTag. | 
|  | /// | 
|  | /// Notes on friend class templates: | 
|  | /// | 
|  | /// We generally treat friend class declarations as if they were | 
|  | /// declaring a class.  So, for example, the elaborated type specifier | 
|  | /// in a friend declaration is required to obey the restrictions of a | 
|  | /// class-head (i.e. no typedefs in the scope chain), template | 
|  | /// parameters are required to match up with simple template-ids, &c. | 
|  | /// However, unlike when declaring a template specialization, it's | 
|  | /// okay to refer to a template specialization without an empty | 
|  | /// template parameter declaration, e.g. | 
|  | ///   friend class A<T>::B<unsigned>; | 
|  | /// We permit this as a special case; if there are any template | 
|  | /// parameters present at all, require proper matching, i.e. | 
|  | ///   template <> template \<class T> friend class A<int>::B; | 
|  | Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, | 
|  | MultiTemplateParamsArg TempParams) { | 
|  | SourceLocation Loc = DS.getBeginLoc(); | 
|  |  | 
|  | assert(DS.isFriendSpecified()); | 
|  | assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); | 
|  |  | 
|  | // C++ [class.friend]p3: | 
|  | // A friend declaration that does not declare a function shall have one of | 
|  | // the following forms: | 
|  | //     friend elaborated-type-specifier ; | 
|  | //     friend simple-type-specifier ; | 
|  | //     friend typename-specifier ; | 
|  | // | 
|  | // Any declaration with a type qualifier does not have that form. (It's | 
|  | // legal to specify a qualified type as a friend, you just can't write the | 
|  | // keywords.) | 
|  | if (DS.getTypeQualifiers()) { | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_const) | 
|  | Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const"; | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) | 
|  | Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile"; | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) | 
|  | Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict"; | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) | 
|  | Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic"; | 
|  | if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) | 
|  | Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned"; | 
|  | } | 
|  |  | 
|  | // Try to convert the decl specifier to a type.  This works for | 
|  | // friend templates because ActOnTag never produces a ClassTemplateDecl | 
|  | // for a TUK_Friend. | 
|  | Declarator TheDeclarator(DS, DeclaratorContext::MemberContext); | 
|  | TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S); | 
|  | QualType T = TSI->getType(); | 
|  | if (TheDeclarator.isInvalidType()) | 
|  | return nullptr; | 
|  |  | 
|  | if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration)) | 
|  | return nullptr; | 
|  |  | 
|  | // This is definitely an error in C++98.  It's probably meant to | 
|  | // be forbidden in C++0x, too, but the specification is just | 
|  | // poorly written. | 
|  | // | 
|  | // The problem is with declarations like the following: | 
|  | //   template <T> friend A<T>::foo; | 
|  | // where deciding whether a class C is a friend or not now hinges | 
|  | // on whether there exists an instantiation of A that causes | 
|  | // 'foo' to equal C.  There are restrictions on class-heads | 
|  | // (which we declare (by fiat) elaborated friend declarations to | 
|  | // be) that makes this tractable. | 
|  | // | 
|  | // FIXME: handle "template <> friend class A<T>;", which | 
|  | // is possibly well-formed?  Who even knows? | 
|  | if (TempParams.size() && !T->isElaboratedTypeSpecifier()) { | 
|  | Diag(Loc, diag::err_tagless_friend_type_template) | 
|  | << DS.getSourceRange(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // C++98 [class.friend]p1: A friend of a class is a function | 
|  | //   or class that is not a member of the class . . . | 
|  | // This is fixed in DR77, which just barely didn't make the C++03 | 
|  | // deadline.  It's also a very silly restriction that seriously | 
|  | // affects inner classes and which nobody else seems to implement; | 
|  | // thus we never diagnose it, not even in -pedantic. | 
|  | // | 
|  | // But note that we could warn about it: it's always useless to | 
|  | // friend one of your own members (it's not, however, worthless to | 
|  | // friend a member of an arbitrary specialization of your template). | 
|  |  | 
|  | Decl *D; | 
|  | if (!TempParams.empty()) | 
|  | D = FriendTemplateDecl::Create(Context, CurContext, Loc, | 
|  | TempParams, | 
|  | TSI, | 
|  | DS.getFriendSpecLoc()); | 
|  | else | 
|  | D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI); | 
|  |  | 
|  | if (!D) | 
|  | return nullptr; | 
|  |  | 
|  | D->setAccess(AS_public); | 
|  | CurContext->addDecl(D); | 
|  |  | 
|  | return D; | 
|  | } | 
|  |  | 
|  | NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, | 
|  | MultiTemplateParamsArg TemplateParams) { | 
|  | const DeclSpec &DS = D.getDeclSpec(); | 
|  |  | 
|  | assert(DS.isFriendSpecified()); | 
|  | assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); | 
|  |  | 
|  | SourceLocation Loc = D.getIdentifierLoc(); | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
|  |  | 
|  | // C++ [class.friend]p1 | 
|  | //   A friend of a class is a function or class.... | 
|  | // Note that this sees through typedefs, which is intended. | 
|  | // It *doesn't* see through dependent types, which is correct | 
|  | // according to [temp.arg.type]p3: | 
|  | //   If a declaration acquires a function type through a | 
|  | //   type dependent on a template-parameter and this causes | 
|  | //   a declaration that does not use the syntactic form of a | 
|  | //   function declarator to have a function type, the program | 
|  | //   is ill-formed. | 
|  | if (!TInfo->getType()->isFunctionType()) { | 
|  | Diag(Loc, diag::err_unexpected_friend); | 
|  |  | 
|  | // It might be worthwhile to try to recover by creating an | 
|  | // appropriate declaration. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // C++ [namespace.memdef]p3 | 
|  | //  - If a friend declaration in a non-local class first declares a | 
|  | //    class or function, the friend class or function is a member | 
|  | //    of the innermost enclosing namespace. | 
|  | //  - The name of the friend is not found by simple name lookup | 
|  | //    until a matching declaration is provided in that namespace | 
|  | //    scope (either before or after the class declaration granting | 
|  | //    friendship). | 
|  | //  - If a friend function is called, its name may be found by the | 
|  | //    name lookup that considers functions from namespaces and | 
|  | //    classes associated with the types of the function arguments. | 
|  | //  - When looking for a prior declaration of a class or a function | 
|  | //    declared as a friend, scopes outside the innermost enclosing | 
|  | //    namespace scope are not considered. | 
|  |  | 
|  | CXXScopeSpec &SS = D.getCXXScopeSpec(); | 
|  | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | 
|  | assert(NameInfo.getName()); | 
|  |  | 
|  | // Check for unexpanded parameter packs. | 
|  | if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) || | 
|  | DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) || | 
|  | DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration)) | 
|  | return nullptr; | 
|  |  | 
|  | // The context we found the declaration in, or in which we should | 
|  | // create the declaration. | 
|  | DeclContext *DC; | 
|  | Scope *DCScope = S; | 
|  | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | 
|  | ForExternalRedeclaration); | 
|  |  | 
|  | // There are five cases here. | 
|  | //   - There's no scope specifier and we're in a local class. Only look | 
|  | //     for functions declared in the immediately-enclosing block scope. | 
|  | // We recover from invalid scope qualifiers as if they just weren't there. | 
|  | FunctionDecl *FunctionContainingLocalClass = nullptr; | 
|  | if ((SS.isInvalid() || !SS.isSet()) && | 
|  | (FunctionContainingLocalClass = | 
|  | cast<CXXRecordDecl>(CurContext)->isLocalClass())) { | 
|  | // C++11 [class.friend]p11: | 
|  | //   If a friend declaration appears in a local class and the name | 
|  | //   specified is an unqualified name, a prior declaration is | 
|  | //   looked up without considering scopes that are outside the | 
|  | //   innermost enclosing non-class scope. For a friend function | 
|  | //   declaration, if there is no prior declaration, the program is | 
|  | //   ill-formed. | 
|  |  | 
|  | // Find the innermost enclosing non-class scope. This is the block | 
|  | // scope containing the local class definition (or for a nested class, | 
|  | // the outer local class). | 
|  | DCScope = S->getFnParent(); | 
|  |  | 
|  | // Look up the function name in the scope. | 
|  | Previous.clear(LookupLocalFriendName); | 
|  | LookupName(Previous, S, /*AllowBuiltinCreation*/false); | 
|  |  | 
|  | if (!Previous.empty()) { | 
|  | // All possible previous declarations must have the same context: | 
|  | // either they were declared at block scope or they are members of | 
|  | // one of the enclosing local classes. | 
|  | DC = Previous.getRepresentativeDecl()->getDeclContext(); | 
|  | } else { | 
|  | // This is ill-formed, but provide the context that we would have | 
|  | // declared the function in, if we were permitted to, for error recovery. | 
|  | DC = FunctionContainingLocalClass; | 
|  | } | 
|  | adjustContextForLocalExternDecl(DC); | 
|  |  | 
|  | // C++ [class.friend]p6: | 
|  | //   A function can be defined in a friend declaration of a class if and | 
|  | //   only if the class is a non-local class (9.8), the function name is | 
|  | //   unqualified, and the function has namespace scope. | 
|  | if (D.isFunctionDefinition()) { | 
|  | Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class); | 
|  | } | 
|  |  | 
|  | //   - There's no scope specifier, in which case we just go to the | 
|  | //     appropriate scope and look for a function or function template | 
|  | //     there as appropriate. | 
|  | } else if (SS.isInvalid() || !SS.isSet()) { | 
|  | // C++11 [namespace.memdef]p3: | 
|  | //   If the name in a friend declaration is neither qualified nor | 
|  | //   a template-id and the declaration is a function or an | 
|  | //   elaborated-type-specifier, the lookup to determine whether | 
|  | //   the entity has been previously declared shall not consider | 
|  | //   any scopes outside the innermost enclosing namespace. | 
|  | bool isTemplateId = | 
|  | D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId; | 
|  |  | 
|  | // Find the appropriate context according to the above. | 
|  | DC = CurContext; | 
|  |  | 
|  | // Skip class contexts.  If someone can cite chapter and verse | 
|  | // for this behavior, that would be nice --- it's what GCC and | 
|  | // EDG do, and it seems like a reasonable intent, but the spec | 
|  | // really only says that checks for unqualified existing | 
|  | // declarations should stop at the nearest enclosing namespace, | 
|  | // not that they should only consider the nearest enclosing | 
|  | // namespace. | 
|  | while (DC->isRecord()) | 
|  | DC = DC->getParent(); | 
|  |  | 
|  | DeclContext *LookupDC = DC; | 
|  | while (LookupDC->isTransparentContext()) | 
|  | LookupDC = LookupDC->getParent(); | 
|  |  | 
|  | while (true) { | 
|  | LookupQualifiedName(Previous, LookupDC); | 
|  |  | 
|  | if (!Previous.empty()) { | 
|  | DC = LookupDC; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (isTemplateId) { | 
|  | if (isa<TranslationUnitDecl>(LookupDC)) break; | 
|  | } else { | 
|  | if (LookupDC->isFileContext()) break; | 
|  | } | 
|  | LookupDC = LookupDC->getParent(); | 
|  | } | 
|  |  | 
|  | DCScope = getScopeForDeclContext(S, DC); | 
|  |  | 
|  | //   - There's a non-dependent scope specifier, in which case we | 
|  | //     compute it and do a previous lookup there for a function | 
|  | //     or function template. | 
|  | } else if (!SS.getScopeRep()->isDependent()) { | 
|  | DC = computeDeclContext(SS); | 
|  | if (!DC) return nullptr; | 
|  |  | 
|  | if (RequireCompleteDeclContext(SS, DC)) return nullptr; | 
|  |  | 
|  | LookupQualifiedName(Previous, DC); | 
|  |  | 
|  | // C++ [class.friend]p1: A friend of a class is a function or | 
|  | //   class that is not a member of the class . . . | 
|  | if (DC->Equals(CurContext)) | 
|  | Diag(DS.getFriendSpecLoc(), | 
|  | getLangOpts().CPlusPlus11 ? | 
|  | diag::warn_cxx98_compat_friend_is_member : | 
|  | diag::err_friend_is_member); | 
|  |  | 
|  | if (D.isFunctionDefinition()) { | 
|  | // C++ [class.friend]p6: | 
|  | //   A function can be defined in a friend declaration of a class if and | 
|  | //   only if the class is a non-local class (9.8), the function name is | 
|  | //   unqualified, and the function has namespace scope. | 
|  | // | 
|  | // FIXME: We should only do this if the scope specifier names the | 
|  | // innermost enclosing namespace; otherwise the fixit changes the | 
|  | // meaning of the code. | 
|  | SemaDiagnosticBuilder DB | 
|  | = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def); | 
|  |  | 
|  | DB << SS.getScopeRep(); | 
|  | if (DC->isFileContext()) | 
|  | DB << FixItHint::CreateRemoval(SS.getRange()); | 
|  | SS.clear(); | 
|  | } | 
|  |  | 
|  | //   - There's a scope specifier that does not match any template | 
|  | //     parameter lists, in which case we use some arbitrary context, | 
|  | //     create a method or method template, and wait for instantiation. | 
|  | //   - There's a scope specifier that does match some template | 
|  | //     parameter lists, which we don't handle right now. | 
|  | } else { | 
|  | if (D.isFunctionDefinition()) { | 
|  | // C++ [class.friend]p6: | 
|  | //   A function can be defined in a friend declaration of a class if and | 
|  | //   only if the class is a non-local class (9.8), the function name is | 
|  | //   unqualified, and the function has namespace scope. | 
|  | Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def) | 
|  | << SS.getScopeRep(); | 
|  | } | 
|  |  | 
|  | DC = CurContext; | 
|  | assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?"); | 
|  | } | 
|  |  | 
|  | if (!DC->isRecord()) { | 
|  | int DiagArg = -1; | 
|  | switch (D.getName().getKind()) { | 
|  | case UnqualifiedIdKind::IK_ConstructorTemplateId: | 
|  | case UnqualifiedIdKind::IK_ConstructorName: | 
|  | DiagArg = 0; | 
|  | break; | 
|  | case UnqualifiedIdKind::IK_DestructorName: | 
|  | DiagArg = 1; | 
|  | break; | 
|  | case UnqualifiedIdKind::IK_ConversionFunctionId: | 
|  | DiagArg = 2; | 
|  | break; | 
|  | case UnqualifiedIdKind::IK_DeductionGuideName: | 
|  | DiagArg = 3; | 
|  | break; | 
|  | case UnqualifiedIdKind::IK_Identifier: | 
|  | case UnqualifiedIdKind::IK_ImplicitSelfParam: | 
|  | case UnqualifiedIdKind::IK_LiteralOperatorId: | 
|  | case UnqualifiedIdKind::IK_OperatorFunctionId: | 
|  | case UnqualifiedIdKind::IK_TemplateId: | 
|  | break; | 
|  | } | 
|  | // This implies that it has to be an operator or function. | 
|  | if (DiagArg >= 0) { | 
|  | Diag(Loc, diag::err_introducing_special_friend) << DiagArg; | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: This is an egregious hack to cope with cases where the scope stack | 
|  | // does not contain the declaration context, i.e., in an out-of-line | 
|  | // definition of a class. | 
|  | Scope FakeDCScope(S, Scope::DeclScope, Diags); | 
|  | if (!DCScope) { | 
|  | FakeDCScope.setEntity(DC); | 
|  | DCScope = &FakeDCScope; | 
|  | } | 
|  |  | 
|  | bool AddToScope = true; | 
|  | NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous, | 
|  | TemplateParams, AddToScope); | 
|  | if (!ND) return nullptr; | 
|  |  | 
|  | assert(ND->getLexicalDeclContext() == CurContext); | 
|  |  | 
|  | // If we performed typo correction, we might have added a scope specifier | 
|  | // and changed the decl context. | 
|  | DC = ND->getDeclContext(); | 
|  |  | 
|  | // Add the function declaration to the appropriate lookup tables, | 
|  | // adjusting the redeclarations list as necessary.  We don't | 
|  | // want to do this yet if the friending class is dependent. | 
|  | // | 
|  | // Also update the scope-based lookup if the target context's | 
|  | // lookup context is in lexical scope. | 
|  | if (!CurContext->isDependentContext()) { | 
|  | DC = DC->getRedeclContext(); | 
|  | DC->makeDeclVisibleInContext(ND); | 
|  | if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) | 
|  | PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); | 
|  | } | 
|  |  | 
|  | FriendDecl *FrD = FriendDecl::Create(Context, CurContext, | 
|  | D.getIdentifierLoc(), ND, | 
|  | DS.getFriendSpecLoc()); | 
|  | FrD->setAccess(AS_public); | 
|  | CurContext->addDecl(FrD); | 
|  |  | 
|  | if (ND->isInvalidDecl()) { | 
|  | FrD->setInvalidDecl(); | 
|  | } else { | 
|  | if (DC->isRecord()) CheckFriendAccess(ND); | 
|  |  | 
|  | FunctionDecl *FD; | 
|  | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) | 
|  | FD = FTD->getTemplatedDecl(); | 
|  | else | 
|  | FD = cast<FunctionDecl>(ND); | 
|  |  | 
|  | // C++11 [dcl.fct.default]p4: If a friend declaration specifies a | 
|  | // default argument expression, that declaration shall be a definition | 
|  | // and shall be the only declaration of the function or function | 
|  | // template in the translation unit. | 
|  | if (functionDeclHasDefaultArgument(FD)) { | 
|  | // We can't look at FD->getPreviousDecl() because it may not have been set | 
|  | // if we're in a dependent context. If the function is known to be a | 
|  | // redeclaration, we will have narrowed Previous down to the right decl. | 
|  | if (D.isRedeclaration()) { | 
|  | Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); | 
|  | Diag(Previous.getRepresentativeDecl()->getLocation(), | 
|  | diag::note_previous_declaration); | 
|  | } else if (!D.isFunctionDefinition()) | 
|  | Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def); | 
|  | } | 
|  |  | 
|  | // Mark templated-scope function declarations as unsupported. | 
|  | if (FD->getNumTemplateParameterLists() && SS.isValid()) { | 
|  | Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported) | 
|  | << SS.getScopeRep() << SS.getRange() | 
|  | << cast<CXXRecordDecl>(CurContext); | 
|  | FrD->setUnsupportedFriend(true); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ND; | 
|  | } | 
|  |  | 
|  | void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) { | 
|  | AdjustDeclIfTemplate(Dcl); | 
|  |  | 
|  | FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl); | 
|  | if (!Fn) { | 
|  | Diag(DelLoc, diag::err_deleted_non_function); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Deleted function does not have a body. | 
|  | Fn->setWillHaveBody(false); | 
|  |  | 
|  | if (const FunctionDecl *Prev = Fn->getPreviousDecl()) { | 
|  | // Don't consider the implicit declaration we generate for explicit | 
|  | // specializations. FIXME: Do not generate these implicit declarations. | 
|  | if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization || | 
|  | Prev->getPreviousDecl()) && | 
|  | !Prev->isDefined()) { | 
|  | Diag(DelLoc, diag::err_deleted_decl_not_first); | 
|  | Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(), | 
|  | Prev->isImplicit() ? diag::note_previous_implicit_declaration | 
|  | : diag::note_previous_declaration); | 
|  | } | 
|  | // If the declaration wasn't the first, we delete the function anyway for | 
|  | // recovery. | 
|  | Fn = Fn->getCanonicalDecl(); | 
|  | } | 
|  |  | 
|  | // dllimport/dllexport cannot be deleted. | 
|  | if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) { | 
|  | Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr; | 
|  | Fn->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | if (Fn->isDeleted()) | 
|  | return; | 
|  |  | 
|  | // See if we're deleting a function which is already known to override a | 
|  | // non-deleted virtual function. | 
|  | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) { | 
|  | bool IssuedDiagnostic = false; | 
|  | for (const CXXMethodDecl *O : MD->overridden_methods()) { | 
|  | if (!(*MD->begin_overridden_methods())->isDeleted()) { | 
|  | if (!IssuedDiagnostic) { | 
|  | Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName(); | 
|  | IssuedDiagnostic = true; | 
|  | } | 
|  | Diag(O->getLocation(), diag::note_overridden_virtual_function); | 
|  | } | 
|  | } | 
|  | // If this function was implicitly deleted because it was defaulted, | 
|  | // explain why it was deleted. | 
|  | if (IssuedDiagnostic && MD->isDefaulted()) | 
|  | ShouldDeleteSpecialMember(MD, getSpecialMember(MD), nullptr, | 
|  | /*Diagnose*/true); | 
|  | } | 
|  |  | 
|  | // C++11 [basic.start.main]p3: | 
|  | //   A program that defines main as deleted [...] is ill-formed. | 
|  | if (Fn->isMain()) | 
|  | Diag(DelLoc, diag::err_deleted_main); | 
|  |  | 
|  | // C++11 [dcl.fct.def.delete]p4: | 
|  | //  A deleted function is implicitly inline. | 
|  | Fn->setImplicitlyInline(); | 
|  | Fn->setDeletedAsWritten(); | 
|  | } | 
|  |  | 
|  | void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { | 
|  | CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl); | 
|  |  | 
|  | if (MD) { | 
|  | if (MD->getParent()->isDependentType()) { | 
|  | MD->setDefaulted(); | 
|  | MD->setExplicitlyDefaulted(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | CXXSpecialMember Member = getSpecialMember(MD); | 
|  | if (Member == CXXInvalid) { | 
|  | if (!MD->isInvalidDecl()) | 
|  | Diag(DefaultLoc, diag::err_default_special_members); | 
|  | return; | 
|  | } | 
|  |  | 
|  | MD->setDefaulted(); | 
|  | MD->setExplicitlyDefaulted(); | 
|  |  | 
|  | // Unset that we will have a body for this function. We might not, | 
|  | // if it turns out to be trivial, and we don't need this marking now | 
|  | // that we've marked it as defaulted. | 
|  | MD->setWillHaveBody(false); | 
|  |  | 
|  | // If this definition appears within the record, do the checking when | 
|  | // the record is complete. | 
|  | const FunctionDecl *Primary = MD; | 
|  | if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern()) | 
|  | // Ask the template instantiation pattern that actually had the | 
|  | // '= default' on it. | 
|  | Primary = Pattern; | 
|  |  | 
|  | // If the method was defaulted on its first declaration, we will have | 
|  | // already performed the checking in CheckCompletedCXXClass. Such a | 
|  | // declaration doesn't trigger an implicit definition. | 
|  | if (Primary->getCanonicalDecl()->isDefaulted()) | 
|  | return; | 
|  |  | 
|  | CheckExplicitlyDefaultedSpecialMember(MD); | 
|  |  | 
|  | if (!MD->isInvalidDecl()) | 
|  | DefineImplicitSpecialMember(*this, MD, DefaultLoc); | 
|  | } else { | 
|  | Diag(DefaultLoc, diag::err_default_special_members); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void SearchForReturnInStmt(Sema &Self, Stmt *S) { | 
|  | for (Stmt *SubStmt : S->children()) { | 
|  | if (!SubStmt) | 
|  | continue; | 
|  | if (isa<ReturnStmt>(SubStmt)) | 
|  | Self.Diag(SubStmt->getBeginLoc(), | 
|  | diag::err_return_in_constructor_handler); | 
|  | if (!isa<Expr>(SubStmt)) | 
|  | SearchForReturnInStmt(Self, SubStmt); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { | 
|  | for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { | 
|  | CXXCatchStmt *Handler = TryBlock->getHandler(I); | 
|  | SearchForReturnInStmt(*this, Handler); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New, | 
|  | const CXXMethodDecl *Old) { | 
|  | const auto *NewFT = New->getType()->getAs<FunctionProtoType>(); | 
|  | const auto *OldFT = Old->getType()->getAs<FunctionProtoType>(); | 
|  |  | 
|  | if (OldFT->hasExtParameterInfos()) { | 
|  | for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I) | 
|  | // A parameter of the overriding method should be annotated with noescape | 
|  | // if the corresponding parameter of the overridden method is annotated. | 
|  | if (OldFT->getExtParameterInfo(I).isNoEscape() && | 
|  | !NewFT->getExtParameterInfo(I).isNoEscape()) { | 
|  | Diag(New->getParamDecl(I)->getLocation(), | 
|  | diag::warn_overriding_method_missing_noescape); | 
|  | Diag(Old->getParamDecl(I)->getLocation(), | 
|  | diag::note_overridden_marked_noescape); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Virtual overrides must have the same code_seg. | 
|  | const auto *OldCSA = Old->getAttr<CodeSegAttr>(); | 
|  | const auto *NewCSA = New->getAttr<CodeSegAttr>(); | 
|  | if ((NewCSA || OldCSA) && | 
|  | (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) { | 
|  | Diag(New->getLocation(), diag::err_mismatched_code_seg_override); | 
|  | Diag(Old->getLocation(), diag::note_previous_declaration); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv(); | 
|  |  | 
|  | // If the calling conventions match, everything is fine | 
|  | if (NewCC == OldCC) | 
|  | return false; | 
|  |  | 
|  | // If the calling conventions mismatch because the new function is static, | 
|  | // suppress the calling convention mismatch error; the error about static | 
|  | // function override (err_static_overrides_virtual from | 
|  | // Sema::CheckFunctionDeclaration) is more clear. | 
|  | if (New->getStorageClass() == SC_Static) | 
|  | return false; | 
|  |  | 
|  | Diag(New->getLocation(), | 
|  | diag::err_conflicting_overriding_cc_attributes) | 
|  | << New->getDeclName() << New->getType() << Old->getType(); | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, | 
|  | const CXXMethodDecl *Old) { | 
|  | QualType NewTy = New->getType()->getAs<FunctionType>()->getReturnType(); | 
|  | QualType OldTy = Old->getType()->getAs<FunctionType>()->getReturnType(); | 
|  |  | 
|  | if (Context.hasSameType(NewTy, OldTy) || | 
|  | NewTy->isDependentType() || OldTy->isDependentType()) | 
|  | return false; | 
|  |  | 
|  | // Check if the return types are covariant | 
|  | QualType NewClassTy, OldClassTy; | 
|  |  | 
|  | /// Both types must be pointers or references to classes. | 
|  | if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { | 
|  | if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { | 
|  | NewClassTy = NewPT->getPointeeType(); | 
|  | OldClassTy = OldPT->getPointeeType(); | 
|  | } | 
|  | } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { | 
|  | if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { | 
|  | if (NewRT->getTypeClass() == OldRT->getTypeClass()) { | 
|  | NewClassTy = NewRT->getPointeeType(); | 
|  | OldClassTy = OldRT->getPointeeType(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The return types aren't either both pointers or references to a class type. | 
|  | if (NewClassTy.isNull()) { | 
|  | Diag(New->getLocation(), | 
|  | diag::err_different_return_type_for_overriding_virtual_function) | 
|  | << New->getDeclName() << NewTy << OldTy | 
|  | << New->getReturnTypeSourceRange(); | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function) | 
|  | << Old->getReturnTypeSourceRange(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { | 
|  | // C++14 [class.virtual]p8: | 
|  | //   If the class type in the covariant return type of D::f differs from | 
|  | //   that of B::f, the class type in the return type of D::f shall be | 
|  | //   complete at the point of declaration of D::f or shall be the class | 
|  | //   type D. | 
|  | if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { | 
|  | if (!RT->isBeingDefined() && | 
|  | RequireCompleteType(New->getLocation(), NewClassTy, | 
|  | diag::err_covariant_return_incomplete, | 
|  | New->getDeclName())) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check if the new class derives from the old class. | 
|  | if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) { | 
|  | Diag(New->getLocation(), diag::err_covariant_return_not_derived) | 
|  | << New->getDeclName() << NewTy << OldTy | 
|  | << New->getReturnTypeSourceRange(); | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function) | 
|  | << Old->getReturnTypeSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check if we the conversion from derived to base is valid. | 
|  | if (CheckDerivedToBaseConversion( | 
|  | NewClassTy, OldClassTy, | 
|  | diag::err_covariant_return_inaccessible_base, | 
|  | diag::err_covariant_return_ambiguous_derived_to_base_conv, | 
|  | New->getLocation(), New->getReturnTypeSourceRange(), | 
|  | New->getDeclName(), nullptr)) { | 
|  | // FIXME: this note won't trigger for delayed access control | 
|  | // diagnostics, and it's impossible to get an undelayed error | 
|  | // here from access control during the original parse because | 
|  | // the ParsingDeclSpec/ParsingDeclarator are still in scope. | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function) | 
|  | << Old->getReturnTypeSourceRange(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The qualifiers of the return types must be the same. | 
|  | if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { | 
|  | Diag(New->getLocation(), | 
|  | diag::err_covariant_return_type_different_qualifications) | 
|  | << New->getDeclName() << NewTy << OldTy | 
|  | << New->getReturnTypeSourceRange(); | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function) | 
|  | << Old->getReturnTypeSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | // The new class type must have the same or less qualifiers as the old type. | 
|  | if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { | 
|  | Diag(New->getLocation(), | 
|  | diag::err_covariant_return_type_class_type_more_qualified) | 
|  | << New->getDeclName() << NewTy << OldTy | 
|  | << New->getReturnTypeSourceRange(); | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function) | 
|  | << Old->getReturnTypeSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Mark the given method pure. | 
|  | /// | 
|  | /// \param Method the method to be marked pure. | 
|  | /// | 
|  | /// \param InitRange the source range that covers the "0" initializer. | 
|  | bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { | 
|  | SourceLocation EndLoc = InitRange.getEnd(); | 
|  | if (EndLoc.isValid()) | 
|  | Method->setRangeEnd(EndLoc); | 
|  |  | 
|  | if (Method->isVirtual() || Method->getParent()->isDependentContext()) { | 
|  | Method->setPure(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!Method->isInvalidDecl()) | 
|  | Diag(Method->getLocation(), diag::err_non_virtual_pure) | 
|  | << Method->getDeclName() << InitRange; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) { | 
|  | if (D->getFriendObjectKind()) | 
|  | Diag(D->getLocation(), diag::err_pure_friend); | 
|  | else if (auto *M = dyn_cast<CXXMethodDecl>(D)) | 
|  | CheckPureMethod(M, ZeroLoc); | 
|  | else | 
|  | Diag(D->getLocation(), diag::err_illegal_initializer); | 
|  | } | 
|  |  | 
|  | /// Determine whether the given declaration is a global variable or | 
|  | /// static data member. | 
|  | static bool isNonlocalVariable(const Decl *D) { | 
|  | if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D)) | 
|  | return Var->hasGlobalStorage(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Invoked when we are about to parse an initializer for the declaration | 
|  | /// 'Dcl'. | 
|  | /// | 
|  | /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a | 
|  | /// static data member of class X, names should be looked up in the scope of | 
|  | /// class X. If the declaration had a scope specifier, a scope will have | 
|  | /// been created and passed in for this purpose. Otherwise, S will be null. | 
|  | void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { | 
|  | // If there is no declaration, there was an error parsing it. | 
|  | if (!D || D->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | // We will always have a nested name specifier here, but this declaration | 
|  | // might not be out of line if the specifier names the current namespace: | 
|  | //   extern int n; | 
|  | //   int ::n = 0; | 
|  | if (S && D->isOutOfLine()) | 
|  | EnterDeclaratorContext(S, D->getDeclContext()); | 
|  |  | 
|  | // If we are parsing the initializer for a static data member, push a | 
|  | // new expression evaluation context that is associated with this static | 
|  | // data member. | 
|  | if (isNonlocalVariable(D)) | 
|  | PushExpressionEvaluationContext( | 
|  | ExpressionEvaluationContext::PotentiallyEvaluated, D); | 
|  | } | 
|  |  | 
|  | /// Invoked after we are finished parsing an initializer for the declaration D. | 
|  | void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { | 
|  | // If there is no declaration, there was an error parsing it. | 
|  | if (!D || D->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | if (isNonlocalVariable(D)) | 
|  | PopExpressionEvaluationContext(); | 
|  |  | 
|  | if (S && D->isOutOfLine()) | 
|  | ExitDeclaratorContext(S); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a | 
|  | /// C++ if/switch/while/for statement. | 
|  | /// e.g: "if (int x = f()) {...}" | 
|  | DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { | 
|  | // C++ 6.4p2: | 
|  | // The declarator shall not specify a function or an array. | 
|  | // The type-specifier-seq shall not contain typedef and shall not declare a | 
|  | // new class or enumeration. | 
|  | assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && | 
|  | "Parser allowed 'typedef' as storage class of condition decl."); | 
|  |  | 
|  | Decl *Dcl = ActOnDeclarator(S, D); | 
|  | if (!Dcl) | 
|  | return true; | 
|  |  | 
|  | if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function. | 
|  | Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) | 
|  | << D.getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return Dcl; | 
|  | } | 
|  |  | 
|  | void Sema::LoadExternalVTableUses() { | 
|  | if (!ExternalSource) | 
|  | return; | 
|  |  | 
|  | SmallVector<ExternalVTableUse, 4> VTables; | 
|  | ExternalSource->ReadUsedVTables(VTables); | 
|  | SmallVector<VTableUse, 4> NewUses; | 
|  | for (unsigned I = 0, N = VTables.size(); I != N; ++I) { | 
|  | llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos | 
|  | = VTablesUsed.find(VTables[I].Record); | 
|  | // Even if a definition wasn't required before, it may be required now. | 
|  | if (Pos != VTablesUsed.end()) { | 
|  | if (!Pos->second && VTables[I].DefinitionRequired) | 
|  | Pos->second = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired; | 
|  | NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location)); | 
|  | } | 
|  |  | 
|  | VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end()); | 
|  | } | 
|  |  | 
|  | void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, | 
|  | bool DefinitionRequired) { | 
|  | // Ignore any vtable uses in unevaluated operands or for classes that do | 
|  | // not have a vtable. | 
|  | if (!Class->isDynamicClass() || Class->isDependentContext() || | 
|  | CurContext->isDependentContext() || isUnevaluatedContext()) | 
|  | return; | 
|  | // Do not mark as used if compiling for the device outside of the target | 
|  | // region. | 
|  | if (LangOpts.OpenMP && LangOpts.OpenMPIsDevice && | 
|  | !isInOpenMPDeclareTargetContext() && | 
|  | !isInOpenMPTargetExecutionDirective()) { | 
|  | if (!DefinitionRequired) | 
|  | MarkVirtualMembersReferenced(Loc, Class); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Try to insert this class into the map. | 
|  | LoadExternalVTableUses(); | 
|  | Class = Class->getCanonicalDecl(); | 
|  | std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> | 
|  | Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); | 
|  | if (!Pos.second) { | 
|  | // If we already had an entry, check to see if we are promoting this vtable | 
|  | // to require a definition. If so, we need to reappend to the VTableUses | 
|  | // list, since we may have already processed the first entry. | 
|  | if (DefinitionRequired && !Pos.first->second) { | 
|  | Pos.first->second = true; | 
|  | } else { | 
|  | // Otherwise, we can early exit. | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | // The Microsoft ABI requires that we perform the destructor body | 
|  | // checks (i.e. operator delete() lookup) when the vtable is marked used, as | 
|  | // the deleting destructor is emitted with the vtable, not with the | 
|  | // destructor definition as in the Itanium ABI. | 
|  | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { | 
|  | CXXDestructorDecl *DD = Class->getDestructor(); | 
|  | if (DD && DD->isVirtual() && !DD->isDeleted()) { | 
|  | if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) { | 
|  | // If this is an out-of-line declaration, marking it referenced will | 
|  | // not do anything. Manually call CheckDestructor to look up operator | 
|  | // delete(). | 
|  | ContextRAII SavedContext(*this, DD); | 
|  | CheckDestructor(DD); | 
|  | } else { | 
|  | MarkFunctionReferenced(Loc, Class->getDestructor()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Local classes need to have their virtual members marked | 
|  | // immediately. For all other classes, we mark their virtual members | 
|  | // at the end of the translation unit. | 
|  | if (Class->isLocalClass()) | 
|  | MarkVirtualMembersReferenced(Loc, Class); | 
|  | else | 
|  | VTableUses.push_back(std::make_pair(Class, Loc)); | 
|  | } | 
|  |  | 
|  | bool Sema::DefineUsedVTables() { | 
|  | LoadExternalVTableUses(); | 
|  | if (VTableUses.empty()) | 
|  | return false; | 
|  |  | 
|  | // Note: The VTableUses vector could grow as a result of marking | 
|  | // the members of a class as "used", so we check the size each | 
|  | // time through the loop and prefer indices (which are stable) to | 
|  | // iterators (which are not). | 
|  | bool DefinedAnything = false; | 
|  | for (unsigned I = 0; I != VTableUses.size(); ++I) { | 
|  | CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); | 
|  | if (!Class) | 
|  | continue; | 
|  | TemplateSpecializationKind ClassTSK = | 
|  | Class->getTemplateSpecializationKind(); | 
|  |  | 
|  | SourceLocation Loc = VTableUses[I].second; | 
|  |  | 
|  | bool DefineVTable = true; | 
|  |  | 
|  | // If this class has a key function, but that key function is | 
|  | // defined in another translation unit, we don't need to emit the | 
|  | // vtable even though we're using it. | 
|  | const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class); | 
|  | if (KeyFunction && !KeyFunction->hasBody()) { | 
|  | // The key function is in another translation unit. | 
|  | DefineVTable = false; | 
|  | TemplateSpecializationKind TSK = | 
|  | KeyFunction->getTemplateSpecializationKind(); | 
|  | assert(TSK != TSK_ExplicitInstantiationDefinition && | 
|  | TSK != TSK_ImplicitInstantiation && | 
|  | "Instantiations don't have key functions"); | 
|  | (void)TSK; | 
|  | } else if (!KeyFunction) { | 
|  | // If we have a class with no key function that is the subject | 
|  | // of an explicit instantiation declaration, suppress the | 
|  | // vtable; it will live with the explicit instantiation | 
|  | // definition. | 
|  | bool IsExplicitInstantiationDeclaration = | 
|  | ClassTSK == TSK_ExplicitInstantiationDeclaration; | 
|  | for (auto R : Class->redecls()) { | 
|  | TemplateSpecializationKind TSK | 
|  | = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind(); | 
|  | if (TSK == TSK_ExplicitInstantiationDeclaration) | 
|  | IsExplicitInstantiationDeclaration = true; | 
|  | else if (TSK == TSK_ExplicitInstantiationDefinition) { | 
|  | IsExplicitInstantiationDeclaration = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IsExplicitInstantiationDeclaration) | 
|  | DefineVTable = false; | 
|  | } | 
|  |  | 
|  | // The exception specifications for all virtual members may be needed even | 
|  | // if we are not providing an authoritative form of the vtable in this TU. | 
|  | // We may choose to emit it available_externally anyway. | 
|  | if (!DefineVTable) { | 
|  | MarkVirtualMemberExceptionSpecsNeeded(Loc, Class); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Mark all of the virtual members of this class as referenced, so | 
|  | // that we can build a vtable. Then, tell the AST consumer that a | 
|  | // vtable for this class is required. | 
|  | DefinedAnything = true; | 
|  | MarkVirtualMembersReferenced(Loc, Class); | 
|  | CXXRecordDecl *Canonical = Class->getCanonicalDecl(); | 
|  | if (VTablesUsed[Canonical]) | 
|  | Consumer.HandleVTable(Class); | 
|  |  | 
|  | // Warn if we're emitting a weak vtable. The vtable will be weak if there is | 
|  | // no key function or the key function is inlined. Don't warn in C++ ABIs | 
|  | // that lack key functions, since the user won't be able to make one. | 
|  | if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() && | 
|  | Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation) { | 
|  | const FunctionDecl *KeyFunctionDef = nullptr; | 
|  | if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) && | 
|  | KeyFunctionDef->isInlined())) { | 
|  | Diag(Class->getLocation(), | 
|  | ClassTSK == TSK_ExplicitInstantiationDefinition | 
|  | ? diag::warn_weak_template_vtable | 
|  | : diag::warn_weak_vtable) | 
|  | << Class; | 
|  | } | 
|  | } | 
|  | } | 
|  | VTableUses.clear(); | 
|  |  | 
|  | return DefinedAnything; | 
|  | } | 
|  |  | 
|  | void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, | 
|  | const CXXRecordDecl *RD) { | 
|  | for (const auto *I : RD->methods()) | 
|  | if (I->isVirtual() && !I->isPure()) | 
|  | ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>()); | 
|  | } | 
|  |  | 
|  | void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, | 
|  | const CXXRecordDecl *RD, | 
|  | bool ConstexprOnly) { | 
|  | // Mark all functions which will appear in RD's vtable as used. | 
|  | CXXFinalOverriderMap FinalOverriders; | 
|  | RD->getFinalOverriders(FinalOverriders); | 
|  | for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(), | 
|  | E = FinalOverriders.end(); | 
|  | I != E; ++I) { | 
|  | for (OverridingMethods::const_iterator OI = I->second.begin(), | 
|  | OE = I->second.end(); | 
|  | OI != OE; ++OI) { | 
|  | assert(OI->second.size() > 0 && "no final overrider"); | 
|  | CXXMethodDecl *Overrider = OI->second.front().Method; | 
|  |  | 
|  | // C++ [basic.def.odr]p2: | 
|  | //   [...] A virtual member function is used if it is not pure. [...] | 
|  | if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr())) | 
|  | MarkFunctionReferenced(Loc, Overrider); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Only classes that have virtual bases need a VTT. | 
|  | if (RD->getNumVBases() == 0) | 
|  | return; | 
|  |  | 
|  | for (const auto &I : RD->bases()) { | 
|  | const CXXRecordDecl *Base = | 
|  | cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); | 
|  | if (Base->getNumVBases() == 0) | 
|  | continue; | 
|  | MarkVirtualMembersReferenced(Loc, Base); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// SetIvarInitializers - This routine builds initialization ASTs for the | 
|  | /// Objective-C implementation whose ivars need be initialized. | 
|  | void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { | 
|  | if (!getLangOpts().CPlusPlus) | 
|  | return; | 
|  | if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { | 
|  | SmallVector<ObjCIvarDecl*, 8> ivars; | 
|  | CollectIvarsToConstructOrDestruct(OID, ivars); | 
|  | if (ivars.empty()) | 
|  | return; | 
|  | SmallVector<CXXCtorInitializer*, 32> AllToInit; | 
|  | for (unsigned i = 0; i < ivars.size(); i++) { | 
|  | FieldDecl *Field = ivars[i]; | 
|  | if (Field->isInvalidDecl()) | 
|  | continue; | 
|  |  | 
|  | CXXCtorInitializer *Member; | 
|  | InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); | 
|  | InitializationKind InitKind = | 
|  | InitializationKind::CreateDefault(ObjCImplementation->getLocation()); | 
|  |  | 
|  | InitializationSequence InitSeq(*this, InitEntity, InitKind, None); | 
|  | ExprResult MemberInit = | 
|  | InitSeq.Perform(*this, InitEntity, InitKind, None); | 
|  | MemberInit = MaybeCreateExprWithCleanups(MemberInit); | 
|  | // Note, MemberInit could actually come back empty if no initialization | 
|  | // is required (e.g., because it would call a trivial default constructor) | 
|  | if (!MemberInit.get() || MemberInit.isInvalid()) | 
|  | continue; | 
|  |  | 
|  | Member = | 
|  | new (Context) CXXCtorInitializer(Context, Field, SourceLocation(), | 
|  | SourceLocation(), | 
|  | MemberInit.getAs<Expr>(), | 
|  | SourceLocation()); | 
|  | AllToInit.push_back(Member); | 
|  |  | 
|  | // Be sure that the destructor is accessible and is marked as referenced. | 
|  | if (const RecordType *RecordTy = | 
|  | Context.getBaseElementType(Field->getType()) | 
|  | ->getAs<RecordType>()) { | 
|  | CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
|  | if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { | 
|  | MarkFunctionReferenced(Field->getLocation(), Destructor); | 
|  | CheckDestructorAccess(Field->getLocation(), Destructor, | 
|  | PDiag(diag::err_access_dtor_ivar) | 
|  | << Context.getBaseElementType(Field->getType())); | 
|  | } | 
|  | } | 
|  | } | 
|  | ObjCImplementation->setIvarInitializers(Context, | 
|  | AllToInit.data(), AllToInit.size()); | 
|  | } | 
|  | } | 
|  |  | 
|  | static | 
|  | void DelegatingCycleHelper(CXXConstructorDecl* Ctor, | 
|  | llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid, | 
|  | llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid, | 
|  | llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current, | 
|  | Sema &S) { | 
|  | if (Ctor->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | CXXConstructorDecl *Target = Ctor->getTargetConstructor(); | 
|  |  | 
|  | // Target may not be determinable yet, for instance if this is a dependent | 
|  | // call in an uninstantiated template. | 
|  | if (Target) { | 
|  | const FunctionDecl *FNTarget = nullptr; | 
|  | (void)Target->hasBody(FNTarget); | 
|  | Target = const_cast<CXXConstructorDecl*>( | 
|  | cast_or_null<CXXConstructorDecl>(FNTarget)); | 
|  | } | 
|  |  | 
|  | CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), | 
|  | // Avoid dereferencing a null pointer here. | 
|  | *TCanonical = Target? Target->getCanonicalDecl() : nullptr; | 
|  |  | 
|  | if (!Current.insert(Canonical).second) | 
|  | return; | 
|  |  | 
|  | // We know that beyond here, we aren't chaining into a cycle. | 
|  | if (!Target || !Target->isDelegatingConstructor() || | 
|  | Target->isInvalidDecl() || Valid.count(TCanonical)) { | 
|  | Valid.insert(Current.begin(), Current.end()); | 
|  | Current.clear(); | 
|  | // We've hit a cycle. | 
|  | } else if (TCanonical == Canonical || Invalid.count(TCanonical) || | 
|  | Current.count(TCanonical)) { | 
|  | // If we haven't diagnosed this cycle yet, do so now. | 
|  | if (!Invalid.count(TCanonical)) { | 
|  | S.Diag((*Ctor->init_begin())->getSourceLocation(), | 
|  | diag::warn_delegating_ctor_cycle) | 
|  | << Ctor; | 
|  |  | 
|  | // Don't add a note for a function delegating directly to itself. | 
|  | if (TCanonical != Canonical) | 
|  | S.Diag(Target->getLocation(), diag::note_it_delegates_to); | 
|  |  | 
|  | CXXConstructorDecl *C = Target; | 
|  | while (C->getCanonicalDecl() != Canonical) { | 
|  | const FunctionDecl *FNTarget = nullptr; | 
|  | (void)C->getTargetConstructor()->hasBody(FNTarget); | 
|  | assert(FNTarget && "Ctor cycle through bodiless function"); | 
|  |  | 
|  | C = const_cast<CXXConstructorDecl*>( | 
|  | cast<CXXConstructorDecl>(FNTarget)); | 
|  | S.Diag(C->getLocation(), diag::note_which_delegates_to); | 
|  | } | 
|  | } | 
|  |  | 
|  | Invalid.insert(Current.begin(), Current.end()); | 
|  | Current.clear(); | 
|  | } else { | 
|  | DelegatingCycleHelper(Target, Valid, Invalid, Current, S); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void Sema::CheckDelegatingCtorCycles() { | 
|  | llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current; | 
|  |  | 
|  | for (DelegatingCtorDeclsType::iterator | 
|  | I = DelegatingCtorDecls.begin(ExternalSource), | 
|  | E = DelegatingCtorDecls.end(); | 
|  | I != E; ++I) | 
|  | DelegatingCycleHelper(*I, Valid, Invalid, Current, *this); | 
|  |  | 
|  | for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI) | 
|  | (*CI)->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// AST visitor that finds references to the 'this' expression. | 
|  | class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> { | 
|  | Sema &S; | 
|  |  | 
|  | public: | 
|  | explicit FindCXXThisExpr(Sema &S) : S(S) { } | 
|  |  | 
|  | bool VisitCXXThisExpr(CXXThisExpr *E) { | 
|  | S.Diag(E->getLocation(), diag::err_this_static_member_func) | 
|  | << E->isImplicit(); | 
|  | return false; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) { | 
|  | TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); | 
|  | if (!TSInfo) | 
|  | return false; | 
|  |  | 
|  | TypeLoc TL = TSInfo->getTypeLoc(); | 
|  | FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); | 
|  | if (!ProtoTL) | 
|  | return false; | 
|  |  | 
|  | // C++11 [expr.prim.general]p3: | 
|  | //   [The expression this] shall not appear before the optional | 
|  | //   cv-qualifier-seq and it shall not appear within the declaration of a | 
|  | //   static member function (although its type and value category are defined | 
|  | //   within a static member function as they are within a non-static member | 
|  | //   function). [ Note: this is because declaration matching does not occur | 
|  | //  until the complete declarator is known. - end note ] | 
|  | const FunctionProtoType *Proto = ProtoTL.getTypePtr(); | 
|  | FindCXXThisExpr Finder(*this); | 
|  |  | 
|  | // If the return type came after the cv-qualifier-seq, check it now. | 
|  | if (Proto->hasTrailingReturn() && | 
|  | !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc())) | 
|  | return true; | 
|  |  | 
|  | // Check the exception specification. | 
|  | if (checkThisInStaticMemberFunctionExceptionSpec(Method)) | 
|  | return true; | 
|  |  | 
|  | return checkThisInStaticMemberFunctionAttributes(Method); | 
|  | } | 
|  |  | 
|  | bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) { | 
|  | TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); | 
|  | if (!TSInfo) | 
|  | return false; | 
|  |  | 
|  | TypeLoc TL = TSInfo->getTypeLoc(); | 
|  | FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); | 
|  | if (!ProtoTL) | 
|  | return false; | 
|  |  | 
|  | const FunctionProtoType *Proto = ProtoTL.getTypePtr(); | 
|  | FindCXXThisExpr Finder(*this); | 
|  |  | 
|  | switch (Proto->getExceptionSpecType()) { | 
|  | case EST_Unparsed: | 
|  | case EST_Uninstantiated: | 
|  | case EST_Unevaluated: | 
|  | case EST_BasicNoexcept: | 
|  | case EST_NoThrow: | 
|  | case EST_DynamicNone: | 
|  | case EST_MSAny: | 
|  | case EST_None: | 
|  | break; | 
|  |  | 
|  | case EST_DependentNoexcept: | 
|  | case EST_NoexceptFalse: | 
|  | case EST_NoexceptTrue: | 
|  | if (!Finder.TraverseStmt(Proto->getNoexceptExpr())) | 
|  | return true; | 
|  | LLVM_FALLTHROUGH; | 
|  |  | 
|  | case EST_Dynamic: | 
|  | for (const auto &E : Proto->exceptions()) { | 
|  | if (!Finder.TraverseType(E)) | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) { | 
|  | FindCXXThisExpr Finder(*this); | 
|  |  | 
|  | // Check attributes. | 
|  | for (const auto *A : Method->attrs()) { | 
|  | // FIXME: This should be emitted by tblgen. | 
|  | Expr *Arg = nullptr; | 
|  | ArrayRef<Expr *> Args; | 
|  | if (const auto *G = dyn_cast<GuardedByAttr>(A)) | 
|  | Arg = G->getArg(); | 
|  | else if (const auto *G = dyn_cast<PtGuardedByAttr>(A)) | 
|  | Arg = G->getArg(); | 
|  | else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A)) | 
|  | Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size()); | 
|  | else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A)) | 
|  | Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size()); | 
|  | else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) { | 
|  | Arg = ETLF->getSuccessValue(); | 
|  | Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size()); | 
|  | } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) { | 
|  | Arg = STLF->getSuccessValue(); | 
|  | Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size()); | 
|  | } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A)) | 
|  | Arg = LR->getArg(); | 
|  | else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A)) | 
|  | Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size()); | 
|  | else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A)) | 
|  | Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); | 
|  | else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A)) | 
|  | Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); | 
|  | else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A)) | 
|  | Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); | 
|  | else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A)) | 
|  | Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); | 
|  |  | 
|  | if (Arg && !Finder.TraverseStmt(Arg)) | 
|  | return true; | 
|  |  | 
|  | for (unsigned I = 0, N = Args.size(); I != N; ++I) { | 
|  | if (!Finder.TraverseStmt(Args[I])) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Sema::checkExceptionSpecification( | 
|  | bool IsTopLevel, ExceptionSpecificationType EST, | 
|  | ArrayRef<ParsedType> DynamicExceptions, | 
|  | ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr, | 
|  | SmallVectorImpl<QualType> &Exceptions, | 
|  | FunctionProtoType::ExceptionSpecInfo &ESI) { | 
|  | Exceptions.clear(); | 
|  | ESI.Type = EST; | 
|  | if (EST == EST_Dynamic) { | 
|  | Exceptions.reserve(DynamicExceptions.size()); | 
|  | for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) { | 
|  | // FIXME: Preserve type source info. | 
|  | QualType ET = GetTypeFromParser(DynamicExceptions[ei]); | 
|  |  | 
|  | if (IsTopLevel) { | 
|  | SmallVector<UnexpandedParameterPack, 2> Unexpanded; | 
|  | collectUnexpandedParameterPacks(ET, Unexpanded); | 
|  | if (!Unexpanded.empty()) { | 
|  | DiagnoseUnexpandedParameterPacks( | 
|  | DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType, | 
|  | Unexpanded); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that the type is valid for an exception spec, and | 
|  | // drop it if not. | 
|  | if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei])) | 
|  | Exceptions.push_back(ET); | 
|  | } | 
|  | ESI.Exceptions = Exceptions; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isComputedNoexcept(EST)) { | 
|  | assert((NoexceptExpr->isTypeDependent() || | 
|  | NoexceptExpr->getType()->getCanonicalTypeUnqualified() == | 
|  | Context.BoolTy) && | 
|  | "Parser should have made sure that the expression is boolean"); | 
|  | if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) { | 
|  | ESI.Type = EST_BasicNoexcept; | 
|  | return; | 
|  | } | 
|  |  | 
|  | ESI.NoexceptExpr = NoexceptExpr; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::actOnDelayedExceptionSpecification(Decl *MethodD, | 
|  | ExceptionSpecificationType EST, | 
|  | SourceRange SpecificationRange, | 
|  | ArrayRef<ParsedType> DynamicExceptions, | 
|  | ArrayRef<SourceRange> DynamicExceptionRanges, | 
|  | Expr *NoexceptExpr) { | 
|  | if (!MethodD) | 
|  | return; | 
|  |  | 
|  | // Dig out the method we're referring to. | 
|  | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD)) | 
|  | MethodD = FunTmpl->getTemplatedDecl(); | 
|  |  | 
|  | CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD); | 
|  | if (!Method) | 
|  | return; | 
|  |  | 
|  | // Check the exception specification. | 
|  | llvm::SmallVector<QualType, 4> Exceptions; | 
|  | FunctionProtoType::ExceptionSpecInfo ESI; | 
|  | checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions, | 
|  | DynamicExceptionRanges, NoexceptExpr, Exceptions, | 
|  | ESI); | 
|  |  | 
|  | // Update the exception specification on the function type. | 
|  | Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true); | 
|  |  | 
|  | if (Method->isStatic()) | 
|  | checkThisInStaticMemberFunctionExceptionSpec(Method); | 
|  |  | 
|  | if (Method->isVirtual()) { | 
|  | // Check overrides, which we previously had to delay. | 
|  | for (const CXXMethodDecl *O : Method->overridden_methods()) | 
|  | CheckOverridingFunctionExceptionSpec(Method, O); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class. | 
|  | /// | 
|  | MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record, | 
|  | SourceLocation DeclStart, Declarator &D, | 
|  | Expr *BitWidth, | 
|  | InClassInitStyle InitStyle, | 
|  | AccessSpecifier AS, | 
|  | const ParsedAttr &MSPropertyAttr) { | 
|  | IdentifierInfo *II = D.getIdentifier(); | 
|  | if (!II) { | 
|  | Diag(DeclStart, diag::err_anonymous_property); | 
|  | return nullptr; | 
|  | } | 
|  | SourceLocation Loc = D.getIdentifierLoc(); | 
|  |  | 
|  | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
|  | QualType T = TInfo->getType(); | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | CheckExtraCXXDefaultArguments(D); | 
|  |  | 
|  | if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, | 
|  | UPPC_DataMemberType)) { | 
|  | D.setInvalidType(); | 
|  | T = Context.IntTy; | 
|  | TInfo = Context.getTrivialTypeSourceInfo(T, Loc); | 
|  | } | 
|  | } | 
|  |  | 
|  | DiagnoseFunctionSpecifiers(D.getDeclSpec()); | 
|  |  | 
|  | if (D.getDeclSpec().isInlineSpecified()) | 
|  | Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) | 
|  | << getLangOpts().CPlusPlus17; | 
|  | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) | 
|  | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | 
|  | diag::err_invalid_thread) | 
|  | << DeclSpec::getSpecifierName(TSCS); | 
|  |  | 
|  | // Check to see if this name was declared as a member previously | 
|  | NamedDecl *PrevDecl = nullptr; | 
|  | LookupResult Previous(*this, II, Loc, LookupMemberName, | 
|  | ForVisibleRedeclaration); | 
|  | LookupName(Previous, S); | 
|  | switch (Previous.getResultKind()) { | 
|  | case LookupResult::Found: | 
|  | case LookupResult::FoundUnresolvedValue: | 
|  | PrevDecl = Previous.getAsSingle<NamedDecl>(); | 
|  | break; | 
|  |  | 
|  | case LookupResult::FoundOverloaded: | 
|  | PrevDecl = Previous.getRepresentativeDecl(); | 
|  | break; | 
|  |  | 
|  | case LookupResult::NotFound: | 
|  | case LookupResult::NotFoundInCurrentInstantiation: | 
|  | case LookupResult::Ambiguous: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (PrevDecl && PrevDecl->isTemplateParameter()) { | 
|  | // Maybe we will complain about the shadowed template parameter. | 
|  | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | 
|  | // Just pretend that we didn't see the previous declaration. | 
|  | PrevDecl = nullptr; | 
|  | } | 
|  |  | 
|  | if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) | 
|  | PrevDecl = nullptr; | 
|  |  | 
|  | SourceLocation TSSL = D.getBeginLoc(); | 
|  | MSPropertyDecl *NewPD = | 
|  | MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL, | 
|  | MSPropertyAttr.getPropertyDataGetter(), | 
|  | MSPropertyAttr.getPropertyDataSetter()); | 
|  | ProcessDeclAttributes(TUScope, NewPD, D); | 
|  | NewPD->setAccess(AS); | 
|  |  | 
|  | if (NewPD->isInvalidDecl()) | 
|  | Record->setInvalidDecl(); | 
|  |  | 
|  | if (D.getDeclSpec().isModulePrivateSpecified()) | 
|  | NewPD->setModulePrivate(); | 
|  |  | 
|  | if (NewPD->isInvalidDecl() && PrevDecl) { | 
|  | // Don't introduce NewFD into scope; there's already something | 
|  | // with the same name in the same scope. | 
|  | } else if (II) { | 
|  | PushOnScopeChains(NewPD, S); | 
|  | } else | 
|  | Record->addDecl(NewPD); | 
|  |  | 
|  | return NewPD; | 
|  | } |