|  | //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements the SelectionDAGISel class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "ScheduleDAGSDNodes.h" | 
|  | #include "SelectionDAGBuilder.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/PostOrderIterator.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/Analysis/CFG.h" | 
|  | #include "llvm/Analysis/OptimizationDiagnosticInfo.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/CodeGen/FastISel.h" | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/GCMetadata.h" | 
|  | #include "llvm/CodeGen/ISDOpcodes.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachinePassRegistry.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/MachineValueType.h" | 
|  | #include "llvm/CodeGen/SchedulerRegistry.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/CodeGen/StackProtector.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/DiagnosticInfo.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/BranchProbability.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CodeGen.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Support/Timer.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetIntrinsicInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <limits> | 
|  | #include <memory> | 
|  | #include <string> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "isel" | 
|  |  | 
|  | STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); | 
|  | STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); | 
|  | STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); | 
|  | STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); | 
|  | STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); | 
|  | STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); | 
|  | STATISTIC(NumFastIselFailLowerArguments, | 
|  | "Number of entry blocks where fast isel failed to lower arguments"); | 
|  |  | 
|  | static cl::opt<int> EnableFastISelAbort( | 
|  | "fast-isel-abort", cl::Hidden, | 
|  | cl::desc("Enable abort calls when \"fast\" instruction selection " | 
|  | "fails to lower an instruction: 0 disable the abort, 1 will " | 
|  | "abort but for args, calls and terminators, 2 will also " | 
|  | "abort for argument lowering, and 3 will never fallback " | 
|  | "to SelectionDAG.")); | 
|  |  | 
|  | static cl::opt<bool> EnableFastISelFallbackReport( | 
|  | "fast-isel-report-on-fallback", cl::Hidden, | 
|  | cl::desc("Emit a diagnostic when \"fast\" instruction selection " | 
|  | "falls back to SelectionDAG.")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | UseMBPI("use-mbpi", | 
|  | cl::desc("use Machine Branch Probability Info"), | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static cl::opt<std::string> | 
|  | FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, | 
|  | cl::desc("Only display the basic block whose name " | 
|  | "matches this for all view-*-dags options")); | 
|  | static cl::opt<bool> | 
|  | ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show dags before the first " | 
|  | "dag combine pass")); | 
|  | static cl::opt<bool> | 
|  | ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show dags before legalize types")); | 
|  | static cl::opt<bool> | 
|  | ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show dags before legalize")); | 
|  | static cl::opt<bool> | 
|  | ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show dags before the second " | 
|  | "dag combine pass")); | 
|  | static cl::opt<bool> | 
|  | ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show dags before the post legalize types" | 
|  | " dag combine pass")); | 
|  | static cl::opt<bool> | 
|  | ViewISelDAGs("view-isel-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show isel dags as they are selected")); | 
|  | static cl::opt<bool> | 
|  | ViewSchedDAGs("view-sched-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show sched dags as they are processed")); | 
|  | static cl::opt<bool> | 
|  | ViewSUnitDAGs("view-sunit-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show SUnit dags after they are processed")); | 
|  | #else | 
|  | static const bool ViewDAGCombine1 = false, | 
|  | ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, | 
|  | ViewDAGCombine2 = false, | 
|  | ViewDAGCombineLT = false, | 
|  | ViewISelDAGs = false, ViewSchedDAGs = false, | 
|  | ViewSUnitDAGs = false; | 
|  | #endif | 
|  |  | 
|  | //===---------------------------------------------------------------------===// | 
|  | /// | 
|  | /// RegisterScheduler class - Track the registration of instruction schedulers. | 
|  | /// | 
|  | //===---------------------------------------------------------------------===// | 
|  | MachinePassRegistry RegisterScheduler::Registry; | 
|  |  | 
|  | //===---------------------------------------------------------------------===// | 
|  | /// | 
|  | /// ISHeuristic command line option for instruction schedulers. | 
|  | /// | 
|  | //===---------------------------------------------------------------------===// | 
|  | static cl::opt<RegisterScheduler::FunctionPassCtor, false, | 
|  | RegisterPassParser<RegisterScheduler>> | 
|  | ISHeuristic("pre-RA-sched", | 
|  | cl::init(&createDefaultScheduler), cl::Hidden, | 
|  | cl::desc("Instruction schedulers available (before register" | 
|  | " allocation):")); | 
|  |  | 
|  | static RegisterScheduler | 
|  | defaultListDAGScheduler("default", "Best scheduler for the target", | 
|  | createDefaultScheduler); | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | /// \brief This class is used by SelectionDAGISel to temporarily override | 
|  | /// the optimization level on a per-function basis. | 
|  | class OptLevelChanger { | 
|  | SelectionDAGISel &IS; | 
|  | CodeGenOpt::Level SavedOptLevel; | 
|  | bool SavedFastISel; | 
|  |  | 
|  | public: | 
|  | OptLevelChanger(SelectionDAGISel &ISel, | 
|  | CodeGenOpt::Level NewOptLevel) : IS(ISel) { | 
|  | SavedOptLevel = IS.OptLevel; | 
|  | if (NewOptLevel == SavedOptLevel) | 
|  | return; | 
|  | IS.OptLevel = NewOptLevel; | 
|  | IS.TM.setOptLevel(NewOptLevel); | 
|  | DEBUG(dbgs() << "\nChanging optimization level for Function " | 
|  | << IS.MF->getFunction()->getName() << "\n"); | 
|  | DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel | 
|  | << " ; After: -O" << NewOptLevel << "\n"); | 
|  | SavedFastISel = IS.TM.Options.EnableFastISel; | 
|  | if (NewOptLevel == CodeGenOpt::None) { | 
|  | IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); | 
|  | DEBUG(dbgs() << "\tFastISel is " | 
|  | << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled") | 
|  | << "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | ~OptLevelChanger() { | 
|  | if (IS.OptLevel == SavedOptLevel) | 
|  | return; | 
|  | DEBUG(dbgs() << "\nRestoring optimization level for Function " | 
|  | << IS.MF->getFunction()->getName() << "\n"); | 
|  | DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel | 
|  | << " ; After: -O" << SavedOptLevel << "\n"); | 
|  | IS.OptLevel = SavedOptLevel; | 
|  | IS.TM.setOptLevel(SavedOptLevel); | 
|  | IS.TM.setFastISel(SavedFastISel); | 
|  | } | 
|  | }; | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | /// createDefaultScheduler - This creates an instruction scheduler appropriate | 
|  | /// for the target. | 
|  | ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, | 
|  | CodeGenOpt::Level OptLevel) { | 
|  | const TargetLowering *TLI = IS->TLI; | 
|  | const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); | 
|  |  | 
|  | // Try first to see if the Target has its own way of selecting a scheduler | 
|  | if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { | 
|  | return SchedulerCtor(IS, OptLevel); | 
|  | } | 
|  |  | 
|  | if (OptLevel == CodeGenOpt::None || | 
|  | (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || | 
|  | TLI->getSchedulingPreference() == Sched::Source) | 
|  | return createSourceListDAGScheduler(IS, OptLevel); | 
|  | if (TLI->getSchedulingPreference() == Sched::RegPressure) | 
|  | return createBURRListDAGScheduler(IS, OptLevel); | 
|  | if (TLI->getSchedulingPreference() == Sched::Hybrid) | 
|  | return createHybridListDAGScheduler(IS, OptLevel); | 
|  | if (TLI->getSchedulingPreference() == Sched::VLIW) | 
|  | return createVLIWDAGScheduler(IS, OptLevel); | 
|  | assert(TLI->getSchedulingPreference() == Sched::ILP && | 
|  | "Unknown sched type!"); | 
|  | return createILPListDAGScheduler(IS, OptLevel); | 
|  | } | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | // EmitInstrWithCustomInserter - This method should be implemented by targets | 
|  | // that mark instructions with the 'usesCustomInserter' flag.  These | 
|  | // instructions are special in various ways, which require special support to | 
|  | // insert.  The specified MachineInstr is created but not inserted into any | 
|  | // basic blocks, and this method is called to expand it into a sequence of | 
|  | // instructions, potentially also creating new basic blocks and control flow. | 
|  | // When new basic blocks are inserted and the edges from MBB to its successors | 
|  | // are modified, the method should insert pairs of <OldSucc, NewSucc> into the | 
|  | // DenseMap. | 
|  | MachineBasicBlock * | 
|  | TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | #ifndef NDEBUG | 
|  | dbgs() << "If a target marks an instruction with " | 
|  | "'usesCustomInserter', it must implement " | 
|  | "TargetLowering::EmitInstrWithCustomInserter!"; | 
|  | #endif | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  |  | 
|  | void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, | 
|  | SDNode *Node) const { | 
|  | assert(!MI.hasPostISelHook() && | 
|  | "If a target marks an instruction with 'hasPostISelHook', " | 
|  | "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // SelectionDAGISel code | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, | 
|  | CodeGenOpt::Level OL) : | 
|  | MachineFunctionPass(ID), TM(tm), | 
|  | FuncInfo(new FunctionLoweringInfo()), | 
|  | CurDAG(new SelectionDAG(tm, OL)), | 
|  | SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)), | 
|  | AA(), GFI(), | 
|  | OptLevel(OL), | 
|  | DAGSize(0) { | 
|  | initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); | 
|  | initializeBranchProbabilityInfoWrapperPassPass( | 
|  | *PassRegistry::getPassRegistry()); | 
|  | initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); | 
|  | initializeTargetLibraryInfoWrapperPassPass( | 
|  | *PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | SelectionDAGISel::~SelectionDAGISel() { | 
|  | delete SDB; | 
|  | delete CurDAG; | 
|  | delete FuncInfo; | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | if (OptLevel != CodeGenOpt::None) | 
|  | AU.addRequired<AAResultsWrapperPass>(); | 
|  | AU.addRequired<GCModuleInfo>(); | 
|  | AU.addRequired<StackProtector>(); | 
|  | AU.addPreserved<StackProtector>(); | 
|  | AU.addPreserved<GCModuleInfo>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | if (UseMBPI && OptLevel != CodeGenOpt::None) | 
|  | AU.addRequired<BranchProbabilityInfoWrapperPass>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that | 
|  | /// may trap on it.  In this case we have to split the edge so that the path | 
|  | /// through the predecessor block that doesn't go to the phi block doesn't | 
|  | /// execute the possibly trapping instruction. If available, we pass domtree | 
|  | /// and loop info to be updated when we split critical edges. This is because | 
|  | /// SelectionDAGISel preserves these analyses. | 
|  | /// This is required for correctness, so it must be done at -O0. | 
|  | /// | 
|  | static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT, | 
|  | LoopInfo *LI) { | 
|  | // Loop for blocks with phi nodes. | 
|  | for (BasicBlock &BB : Fn) { | 
|  | PHINode *PN = dyn_cast<PHINode>(BB.begin()); | 
|  | if (!PN) continue; | 
|  |  | 
|  | ReprocessBlock: | 
|  | // For each block with a PHI node, check to see if any of the input values | 
|  | // are potentially trapping constant expressions.  Constant expressions are | 
|  | // the only potentially trapping value that can occur as the argument to a | 
|  | // PHI. | 
|  | for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I) | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); | 
|  | if (!CE || !CE->canTrap()) continue; | 
|  |  | 
|  | // The only case we have to worry about is when the edge is critical. | 
|  | // Since this block has a PHI Node, we assume it has multiple input | 
|  | // edges: check to see if the pred has multiple successors. | 
|  | BasicBlock *Pred = PN->getIncomingBlock(i); | 
|  | if (Pred->getTerminator()->getNumSuccessors() == 1) | 
|  | continue; | 
|  |  | 
|  | // Okay, we have to split this edge. | 
|  | SplitCriticalEdge( | 
|  | Pred->getTerminator(), GetSuccessorNumber(Pred, &BB), | 
|  | CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges()); | 
|  | goto ReprocessBlock; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { | 
|  | // If we already selected that function, we do not need to run SDISel. | 
|  | if (mf.getProperties().hasProperty( | 
|  | MachineFunctionProperties::Property::Selected)) | 
|  | return false; | 
|  | // Do some sanity-checking on the command-line options. | 
|  | assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && | 
|  | "-fast-isel-abort > 0 requires -fast-isel"); | 
|  |  | 
|  | const Function &Fn = *mf.getFunction(); | 
|  | MF = &mf; | 
|  |  | 
|  | // Reset the target options before resetting the optimization | 
|  | // level below. | 
|  | // FIXME: This is a horrible hack and should be processed via | 
|  | // codegen looking at the optimization level explicitly when | 
|  | // it wants to look at it. | 
|  | TM.resetTargetOptions(Fn); | 
|  | // Reset OptLevel to None for optnone functions. | 
|  | CodeGenOpt::Level NewOptLevel = OptLevel; | 
|  | if (OptLevel != CodeGenOpt::None && skipFunction(Fn)) | 
|  | NewOptLevel = CodeGenOpt::None; | 
|  | OptLevelChanger OLC(*this, NewOptLevel); | 
|  |  | 
|  | TII = MF->getSubtarget().getInstrInfo(); | 
|  | TLI = MF->getSubtarget().getTargetLowering(); | 
|  | RegInfo = &MF->getRegInfo(); | 
|  | LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); | 
|  | GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr; | 
|  | ORE = make_unique<OptimizationRemarkEmitter>(&Fn); | 
|  | auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); | 
|  | DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; | 
|  | auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); | 
|  | LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; | 
|  |  | 
|  | DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); | 
|  |  | 
|  | SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI); | 
|  |  | 
|  | CurDAG->init(*MF, *ORE, this); | 
|  | FuncInfo->set(Fn, *MF, CurDAG); | 
|  |  | 
|  | // Now get the optional analyzes if we want to. | 
|  | // This is based on the possibly changed OptLevel (after optnone is taken | 
|  | // into account).  That's unfortunate but OK because it just means we won't | 
|  | // ask for passes that have been required anyway. | 
|  |  | 
|  | if (UseMBPI && OptLevel != CodeGenOpt::None) | 
|  | FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); | 
|  | else | 
|  | FuncInfo->BPI = nullptr; | 
|  |  | 
|  | if (OptLevel != CodeGenOpt::None) | 
|  | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  | else | 
|  | AA = nullptr; | 
|  |  | 
|  | SDB->init(GFI, AA, LibInfo); | 
|  |  | 
|  | MF->setHasInlineAsm(false); | 
|  |  | 
|  | FuncInfo->SplitCSR = false; | 
|  |  | 
|  | // We split CSR if the target supports it for the given function | 
|  | // and the function has only return exits. | 
|  | if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) { | 
|  | FuncInfo->SplitCSR = true; | 
|  |  | 
|  | // Collect all the return blocks. | 
|  | for (const BasicBlock &BB : Fn) { | 
|  | if (!succ_empty(&BB)) | 
|  | continue; | 
|  |  | 
|  | const TerminatorInst *Term = BB.getTerminator(); | 
|  | if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term)) | 
|  | continue; | 
|  |  | 
|  | // Bail out if the exit block is not Return nor Unreachable. | 
|  | FuncInfo->SplitCSR = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *EntryMBB = &MF->front(); | 
|  | if (FuncInfo->SplitCSR) | 
|  | // This performs initialization so lowering for SplitCSR will be correct. | 
|  | TLI->initializeSplitCSR(EntryMBB); | 
|  |  | 
|  | SelectAllBasicBlocks(Fn); | 
|  | if (FastISelFailed && EnableFastISelFallbackReport) { | 
|  | DiagnosticInfoISelFallback DiagFallback(Fn); | 
|  | Fn.getContext().diagnose(DiagFallback); | 
|  | } | 
|  |  | 
|  | // If the first basic block in the function has live ins that need to be | 
|  | // copied into vregs, emit the copies into the top of the block before | 
|  | // emitting the code for the block. | 
|  | const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); | 
|  | RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII); | 
|  |  | 
|  | // Insert copies in the entry block and the return blocks. | 
|  | if (FuncInfo->SplitCSR) { | 
|  | SmallVector<MachineBasicBlock*, 4> Returns; | 
|  | // Collect all the return blocks. | 
|  | for (MachineBasicBlock &MBB : mf) { | 
|  | if (!MBB.succ_empty()) | 
|  | continue; | 
|  |  | 
|  | MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); | 
|  | if (Term != MBB.end() && Term->isReturn()) { | 
|  | Returns.push_back(&MBB); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | TLI->insertCopiesSplitCSR(EntryMBB, Returns); | 
|  | } | 
|  |  | 
|  | DenseMap<unsigned, unsigned> LiveInMap; | 
|  | if (!FuncInfo->ArgDbgValues.empty()) | 
|  | for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(), | 
|  | E = RegInfo->livein_end(); LI != E; ++LI) | 
|  | if (LI->second) | 
|  | LiveInMap.insert(std::make_pair(LI->first, LI->second)); | 
|  |  | 
|  | // Insert DBG_VALUE instructions for function arguments to the entry block. | 
|  | for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { | 
|  | MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; | 
|  | bool hasFI = MI->getOperand(0).isFI(); | 
|  | unsigned Reg = | 
|  | hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) | 
|  | EntryMBB->insert(EntryMBB->begin(), MI); | 
|  | else { | 
|  | MachineInstr *Def = RegInfo->getVRegDef(Reg); | 
|  | if (Def) { | 
|  | MachineBasicBlock::iterator InsertPos = Def; | 
|  | // FIXME: VR def may not be in entry block. | 
|  | Def->getParent()->insert(std::next(InsertPos), MI); | 
|  | } else | 
|  | DEBUG(dbgs() << "Dropping debug info for dead vreg" | 
|  | << TargetRegisterInfo::virtReg2Index(Reg) << "\n"); | 
|  | } | 
|  |  | 
|  | // If Reg is live-in then update debug info to track its copy in a vreg. | 
|  | DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); | 
|  | if (LDI != LiveInMap.end()) { | 
|  | assert(!hasFI && "There's no handling of frame pointer updating here yet " | 
|  | "- add if needed"); | 
|  | MachineInstr *Def = RegInfo->getVRegDef(LDI->second); | 
|  | MachineBasicBlock::iterator InsertPos = Def; | 
|  | const MDNode *Variable = MI->getDebugVariable(); | 
|  | const MDNode *Expr = MI->getDebugExpression(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | bool IsIndirect = MI->isIndirectDebugValue(); | 
|  | if (IsIndirect) | 
|  | assert(MI->getOperand(1).getImm() == 0 && | 
|  | "DBG_VALUE with nonzero offset"); | 
|  | assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && | 
|  | "Expected inlined-at fields to agree"); | 
|  | // Def is never a terminator here, so it is ok to increment InsertPos. | 
|  | BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE), | 
|  | IsIndirect, LDI->second, Variable, Expr); | 
|  |  | 
|  | // If this vreg is directly copied into an exported register then | 
|  | // that COPY instructions also need DBG_VALUE, if it is the only | 
|  | // user of LDI->second. | 
|  | MachineInstr *CopyUseMI = nullptr; | 
|  | for (MachineRegisterInfo::use_instr_iterator | 
|  | UI = RegInfo->use_instr_begin(LDI->second), | 
|  | E = RegInfo->use_instr_end(); UI != E; ) { | 
|  | MachineInstr *UseMI = &*(UI++); | 
|  | if (UseMI->isDebugValue()) continue; | 
|  | if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { | 
|  | CopyUseMI = UseMI; continue; | 
|  | } | 
|  | // Otherwise this is another use or second copy use. | 
|  | CopyUseMI = nullptr; break; | 
|  | } | 
|  | if (CopyUseMI) { | 
|  | // Use MI's debug location, which describes where Variable was | 
|  | // declared, rather than whatever is attached to CopyUseMI. | 
|  | MachineInstr *NewMI = | 
|  | BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, | 
|  | CopyUseMI->getOperand(0).getReg(), Variable, Expr); | 
|  | MachineBasicBlock::iterator Pos = CopyUseMI; | 
|  | EntryMBB->insertAfter(Pos, NewMI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine if there are any calls in this machine function. | 
|  | MachineFrameInfo &MFI = MF->getFrameInfo(); | 
|  | for (const auto &MBB : *MF) { | 
|  | if (MFI.hasCalls() && MF->hasInlineAsm()) | 
|  | break; | 
|  |  | 
|  | for (const auto &MI : MBB) { | 
|  | const MCInstrDesc &MCID = TII->get(MI.getOpcode()); | 
|  | if ((MCID.isCall() && !MCID.isReturn()) || | 
|  | MI.isStackAligningInlineAsm()) { | 
|  | MFI.setHasCalls(true); | 
|  | } | 
|  | if (MI.isInlineAsm()) { | 
|  | MF->setHasInlineAsm(true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine if there is a call to setjmp in the machine function. | 
|  | MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); | 
|  |  | 
|  | // Replace forward-declared registers with the registers containing | 
|  | // the desired value. | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | for (DenseMap<unsigned, unsigned>::iterator | 
|  | I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); | 
|  | I != E; ++I) { | 
|  | unsigned From = I->first; | 
|  | unsigned To = I->second; | 
|  | // If To is also scheduled to be replaced, find what its ultimate | 
|  | // replacement is. | 
|  | while (true) { | 
|  | DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To); | 
|  | if (J == E) break; | 
|  | To = J->second; | 
|  | } | 
|  | // Make sure the new register has a sufficiently constrained register class. | 
|  | if (TargetRegisterInfo::isVirtualRegister(From) && | 
|  | TargetRegisterInfo::isVirtualRegister(To)) | 
|  | MRI.constrainRegClass(To, MRI.getRegClass(From)); | 
|  | // Replace it. | 
|  |  | 
|  |  | 
|  | // Replacing one register with another won't touch the kill flags. | 
|  | // We need to conservatively clear the kill flags as a kill on the old | 
|  | // register might dominate existing uses of the new register. | 
|  | if (!MRI.use_empty(To)) | 
|  | MRI.clearKillFlags(From); | 
|  | MRI.replaceRegWith(From, To); | 
|  | } | 
|  |  | 
|  | TLI->finalizeLowering(*MF); | 
|  |  | 
|  | // Release function-specific state. SDB and CurDAG are already cleared | 
|  | // at this point. | 
|  | FuncInfo->clear(); | 
|  |  | 
|  | DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n"); | 
|  | DEBUG(MF->print(dbgs())); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void reportFastISelFailure(MachineFunction &MF, | 
|  | OptimizationRemarkEmitter &ORE, | 
|  | OptimizationRemarkMissed &R, | 
|  | bool ShouldAbort) { | 
|  | // Print the function name explicitly if we don't have a debug location (which | 
|  | // makes the diagnostic less useful) or if we're going to emit a raw error. | 
|  | if (!R.getLocation().isValid() || ShouldAbort) | 
|  | R << (" (in function: " + MF.getName() + ")").str(); | 
|  |  | 
|  | if (ShouldAbort) | 
|  | report_fatal_error(R.getMsg()); | 
|  |  | 
|  | ORE.emit(R); | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, | 
|  | BasicBlock::const_iterator End, | 
|  | bool &HadTailCall) { | 
|  | // Allow creating illegal types during DAG building for the basic block. | 
|  | CurDAG->NewNodesMustHaveLegalTypes = false; | 
|  |  | 
|  | // Lower the instructions. If a call is emitted as a tail call, cease emitting | 
|  | // nodes for this block. | 
|  | for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { | 
|  | if (!ElidedArgCopyInstrs.count(&*I)) | 
|  | SDB->visit(*I); | 
|  | } | 
|  |  | 
|  | // Make sure the root of the DAG is up-to-date. | 
|  | CurDAG->setRoot(SDB->getControlRoot()); | 
|  | HadTailCall = SDB->HasTailCall; | 
|  | SDB->clear(); | 
|  |  | 
|  | // Final step, emit the lowered DAG as machine code. | 
|  | CodeGenAndEmitDAG(); | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::ComputeLiveOutVRegInfo() { | 
|  | SmallPtrSet<SDNode*, 16> VisitedNodes; | 
|  | SmallVector<SDNode*, 128> Worklist; | 
|  |  | 
|  | Worklist.push_back(CurDAG->getRoot().getNode()); | 
|  |  | 
|  | KnownBits Known; | 
|  |  | 
|  | do { | 
|  | SDNode *N = Worklist.pop_back_val(); | 
|  |  | 
|  | // If we've already seen this node, ignore it. | 
|  | if (!VisitedNodes.insert(N).second) | 
|  | continue; | 
|  |  | 
|  | // Otherwise, add all chain operands to the worklist. | 
|  | for (const SDValue &Op : N->op_values()) | 
|  | if (Op.getValueType() == MVT::Other) | 
|  | Worklist.push_back(Op.getNode()); | 
|  |  | 
|  | // If this is a CopyToReg with a vreg dest, process it. | 
|  | if (N->getOpcode() != ISD::CopyToReg) | 
|  | continue; | 
|  |  | 
|  | unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(DestReg)) | 
|  | continue; | 
|  |  | 
|  | // Ignore non-scalar or non-integer values. | 
|  | SDValue Src = N->getOperand(2); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | if (!SrcVT.isInteger() || SrcVT.isVector()) | 
|  | continue; | 
|  |  | 
|  | unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); | 
|  | CurDAG->computeKnownBits(Src, Known); | 
|  | FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known); | 
|  | } while (!Worklist.empty()); | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::CodeGenAndEmitDAG() { | 
|  | StringRef GroupName = "sdag"; | 
|  | StringRef GroupDescription = "Instruction Selection and Scheduling"; | 
|  | std::string BlockName; | 
|  | int BlockNumber = -1; | 
|  | (void)BlockNumber; | 
|  | bool MatchFilterBB = false; (void)MatchFilterBB; | 
|  |  | 
|  | // Pre-type legalization allow creation of any node types. | 
|  | CurDAG->NewNodesMustHaveLegalTypes = false; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | MatchFilterBB = (FilterDAGBasicBlockName.empty() || | 
|  | FilterDAGBasicBlockName == | 
|  | FuncInfo->MBB->getBasicBlock()->getName().str()); | 
|  | #endif | 
|  | #ifdef NDEBUG | 
|  | if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || | 
|  | ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || | 
|  | ViewSUnitDAGs) | 
|  | #endif | 
|  | { | 
|  | BlockNumber = FuncInfo->MBB->getNumber(); | 
|  | BlockName = | 
|  | (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); | 
|  | } | 
|  | DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber | 
|  | << " '" << BlockName << "'\n"; CurDAG->dump()); | 
|  |  | 
|  | if (ViewDAGCombine1 && MatchFilterBB) | 
|  | CurDAG->viewGraph("dag-combine1 input for " + BlockName); | 
|  |  | 
|  | // Run the DAG combiner in pre-legalize mode. | 
|  | { | 
|  | NamedRegionTimer T("combine1", "DAG Combining 1", GroupName, | 
|  | GroupDescription, TimePassesIsEnabled); | 
|  | CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber | 
|  | << " '" << BlockName << "'\n"; CurDAG->dump()); | 
|  |  | 
|  | // Second step, hack on the DAG until it only uses operations and types that | 
|  | // the target supports. | 
|  | if (ViewLegalizeTypesDAGs && MatchFilterBB) | 
|  | CurDAG->viewGraph("legalize-types input for " + BlockName); | 
|  |  | 
|  | bool Changed; | 
|  | { | 
|  | NamedRegionTimer T("legalize_types", "Type Legalization", GroupName, | 
|  | GroupDescription, TimePassesIsEnabled); | 
|  | Changed = CurDAG->LegalizeTypes(); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber | 
|  | << " '" << BlockName << "'\n"; CurDAG->dump()); | 
|  |  | 
|  | // Only allow creation of legal node types. | 
|  | CurDAG->NewNodesMustHaveLegalTypes = true; | 
|  |  | 
|  | if (Changed) { | 
|  | if (ViewDAGCombineLT && MatchFilterBB) | 
|  | CurDAG->viewGraph("dag-combine-lt input for " + BlockName); | 
|  |  | 
|  | // Run the DAG combiner in post-type-legalize mode. | 
|  | { | 
|  | NamedRegionTimer T("combine_lt", "DAG Combining after legalize types", | 
|  | GroupName, GroupDescription, TimePassesIsEnabled); | 
|  | CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber | 
|  | << " '" << BlockName << "'\n"; CurDAG->dump()); | 
|  | } | 
|  |  | 
|  | { | 
|  | NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName, | 
|  | GroupDescription, TimePassesIsEnabled); | 
|  | Changed = CurDAG->LegalizeVectors(); | 
|  | } | 
|  |  | 
|  | if (Changed) { | 
|  | DEBUG(dbgs() << "Vector-legalized selection DAG: BB#" << BlockNumber | 
|  | << " '" << BlockName << "'\n"; CurDAG->dump()); | 
|  |  | 
|  | { | 
|  | NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName, | 
|  | GroupDescription, TimePassesIsEnabled); | 
|  | CurDAG->LegalizeTypes(); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Vector/type-legalized selection DAG: BB#" << BlockNumber | 
|  | << " '" << BlockName << "'\n"; CurDAG->dump()); | 
|  |  | 
|  | if (ViewDAGCombineLT && MatchFilterBB) | 
|  | CurDAG->viewGraph("dag-combine-lv input for " + BlockName); | 
|  |  | 
|  | // Run the DAG combiner in post-type-legalize mode. | 
|  | { | 
|  | NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors", | 
|  | GroupName, GroupDescription, TimePassesIsEnabled); | 
|  | CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#" | 
|  | << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); | 
|  | } | 
|  |  | 
|  | if (ViewLegalizeDAGs && MatchFilterBB) | 
|  | CurDAG->viewGraph("legalize input for " + BlockName); | 
|  |  | 
|  | { | 
|  | NamedRegionTimer T("legalize", "DAG Legalization", GroupName, | 
|  | GroupDescription, TimePassesIsEnabled); | 
|  | CurDAG->Legalize(); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber | 
|  | << " '" << BlockName << "'\n"; CurDAG->dump()); | 
|  |  | 
|  | if (ViewDAGCombine2 && MatchFilterBB) | 
|  | CurDAG->viewGraph("dag-combine2 input for " + BlockName); | 
|  |  | 
|  | // Run the DAG combiner in post-legalize mode. | 
|  | { | 
|  | NamedRegionTimer T("combine2", "DAG Combining 2", GroupName, | 
|  | GroupDescription, TimePassesIsEnabled); | 
|  | CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber | 
|  | << " '" << BlockName << "'\n"; CurDAG->dump()); | 
|  |  | 
|  | if (OptLevel != CodeGenOpt::None) | 
|  | ComputeLiveOutVRegInfo(); | 
|  |  | 
|  | if (ViewISelDAGs && MatchFilterBB) | 
|  | CurDAG->viewGraph("isel input for " + BlockName); | 
|  |  | 
|  | // Third, instruction select all of the operations to machine code, adding the | 
|  | // code to the MachineBasicBlock. | 
|  | { | 
|  | NamedRegionTimer T("isel", "Instruction Selection", GroupName, | 
|  | GroupDescription, TimePassesIsEnabled); | 
|  | DoInstructionSelection(); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber | 
|  | << " '" << BlockName << "'\n"; CurDAG->dump()); | 
|  |  | 
|  | if (ViewSchedDAGs && MatchFilterBB) | 
|  | CurDAG->viewGraph("scheduler input for " + BlockName); | 
|  |  | 
|  | // Schedule machine code. | 
|  | ScheduleDAGSDNodes *Scheduler = CreateScheduler(); | 
|  | { | 
|  | NamedRegionTimer T("sched", "Instruction Scheduling", GroupName, | 
|  | GroupDescription, TimePassesIsEnabled); | 
|  | Scheduler->Run(CurDAG, FuncInfo->MBB); | 
|  | } | 
|  |  | 
|  | if (ViewSUnitDAGs && MatchFilterBB) | 
|  | Scheduler->viewGraph(); | 
|  |  | 
|  | // Emit machine code to BB.  This can change 'BB' to the last block being | 
|  | // inserted into. | 
|  | MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; | 
|  | { | 
|  | NamedRegionTimer T("emit", "Instruction Creation", GroupName, | 
|  | GroupDescription, TimePassesIsEnabled); | 
|  |  | 
|  | // FuncInfo->InsertPt is passed by reference and set to the end of the | 
|  | // scheduled instructions. | 
|  | LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); | 
|  | } | 
|  |  | 
|  | // If the block was split, make sure we update any references that are used to | 
|  | // update PHI nodes later on. | 
|  | if (FirstMBB != LastMBB) | 
|  | SDB->UpdateSplitBlock(FirstMBB, LastMBB); | 
|  |  | 
|  | // Free the scheduler state. | 
|  | { | 
|  | NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName, | 
|  | GroupDescription, TimePassesIsEnabled); | 
|  | delete Scheduler; | 
|  | } | 
|  |  | 
|  | // Free the SelectionDAG state, now that we're finished with it. | 
|  | CurDAG->clear(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// ISelUpdater - helper class to handle updates of the instruction selection | 
|  | /// graph. | 
|  | class ISelUpdater : public SelectionDAG::DAGUpdateListener { | 
|  | SelectionDAG::allnodes_iterator &ISelPosition; | 
|  |  | 
|  | public: | 
|  | ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) | 
|  | : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} | 
|  |  | 
|  | /// NodeDeleted - Handle nodes deleted from the graph. If the node being | 
|  | /// deleted is the current ISelPosition node, update ISelPosition. | 
|  | /// | 
|  | void NodeDeleted(SDNode *N, SDNode *E) override { | 
|  | if (ISelPosition == SelectionDAG::allnodes_iterator(N)) | 
|  | ++ISelPosition; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | void SelectionDAGISel::DoInstructionSelection() { | 
|  | DEBUG(dbgs() << "===== Instruction selection begins: BB#" | 
|  | << FuncInfo->MBB->getNumber() | 
|  | << " '" << FuncInfo->MBB->getName() << "'\n"); | 
|  |  | 
|  | PreprocessISelDAG(); | 
|  |  | 
|  | // Select target instructions for the DAG. | 
|  | { | 
|  | // Number all nodes with a topological order and set DAGSize. | 
|  | DAGSize = CurDAG->AssignTopologicalOrder(); | 
|  |  | 
|  | // Create a dummy node (which is not added to allnodes), that adds | 
|  | // a reference to the root node, preventing it from being deleted, | 
|  | // and tracking any changes of the root. | 
|  | HandleSDNode Dummy(CurDAG->getRoot()); | 
|  | SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); | 
|  | ++ISelPosition; | 
|  |  | 
|  | // Make sure that ISelPosition gets properly updated when nodes are deleted | 
|  | // in calls made from this function. | 
|  | ISelUpdater ISU(*CurDAG, ISelPosition); | 
|  |  | 
|  | // The AllNodes list is now topological-sorted. Visit the | 
|  | // nodes by starting at the end of the list (the root of the | 
|  | // graph) and preceding back toward the beginning (the entry | 
|  | // node). | 
|  | while (ISelPosition != CurDAG->allnodes_begin()) { | 
|  | SDNode *Node = &*--ISelPosition; | 
|  | // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, | 
|  | // but there are currently some corner cases that it misses. Also, this | 
|  | // makes it theoretically possible to disable the DAGCombiner. | 
|  | if (Node->use_empty()) | 
|  | continue; | 
|  |  | 
|  | // When we are using non-default rounding modes or FP exception behavior | 
|  | // FP operations are represented by StrictFP pseudo-operations.  They | 
|  | // need to be simplified here so that the target-specific instruction | 
|  | // selectors know how to handle them. | 
|  | // | 
|  | // If the current node is a strict FP pseudo-op, the isStrictFPOp() | 
|  | // function will provide the corresponding normal FP opcode to which the | 
|  | // node should be mutated. | 
|  | // | 
|  | // FIXME: The backends need a way to handle FP constraints. | 
|  | if (Node->isStrictFPOpcode()) | 
|  | Node = CurDAG->mutateStrictFPToFP(Node); | 
|  |  | 
|  | Select(Node); | 
|  | } | 
|  |  | 
|  | CurDAG->setRoot(Dummy.getValue()); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "===== Instruction selection ends:\n"); | 
|  |  | 
|  | PostprocessISelDAG(); | 
|  | } | 
|  |  | 
|  | static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { | 
|  | for (const User *U : CPI->users()) { | 
|  | if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) { | 
|  | Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); | 
|  | if (IID == Intrinsic::eh_exceptionpointer || | 
|  | IID == Intrinsic::eh_exceptioncode) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and | 
|  | /// do other setup for EH landing-pad blocks. | 
|  | bool SelectionDAGISel::PrepareEHLandingPad() { | 
|  | MachineBasicBlock *MBB = FuncInfo->MBB; | 
|  | const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); | 
|  | const BasicBlock *LLVMBB = MBB->getBasicBlock(); | 
|  | const TargetRegisterClass *PtrRC = | 
|  | TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout())); | 
|  |  | 
|  | // Catchpads have one live-in register, which typically holds the exception | 
|  | // pointer or code. | 
|  | if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) { | 
|  | if (hasExceptionPointerOrCodeUser(CPI)) { | 
|  | // Get or create the virtual register to hold the pointer or code.  Mark | 
|  | // the live in physreg and copy into the vreg. | 
|  | MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); | 
|  | assert(EHPhysReg && "target lacks exception pointer register"); | 
|  | MBB->addLiveIn(EHPhysReg); | 
|  | unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC); | 
|  | BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), VReg) | 
|  | .addReg(EHPhysReg, RegState::Kill); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!LLVMBB->isLandingPad()) | 
|  | return true; | 
|  |  | 
|  | // Add a label to mark the beginning of the landing pad.  Deletion of the | 
|  | // landing pad can thus be detected via the MachineModuleInfo. | 
|  | MCSymbol *Label = MF->addLandingPad(MBB); | 
|  |  | 
|  | // Assign the call site to the landing pad's begin label. | 
|  | MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); | 
|  |  | 
|  | const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL); | 
|  | BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) | 
|  | .addSym(Label); | 
|  |  | 
|  | // Mark exception register as live in. | 
|  | if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn)) | 
|  | FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); | 
|  |  | 
|  | // Mark exception selector register as live in. | 
|  | if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) | 
|  | FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isFoldedOrDeadInstruction - Return true if the specified instruction is | 
|  | /// side-effect free and is either dead or folded into a generated instruction. | 
|  | /// Return false if it needs to be emitted. | 
|  | static bool isFoldedOrDeadInstruction(const Instruction *I, | 
|  | FunctionLoweringInfo *FuncInfo) { | 
|  | return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. | 
|  | !isa<TerminatorInst>(I) &&    // Terminators aren't folded. | 
|  | !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded. | 
|  | !I->isEHPad() &&              // EH pad instructions aren't folded. | 
|  | !FuncInfo->isExportedInst(I); // Exported instrs must be computed. | 
|  | } | 
|  |  | 
|  | /// Set up SwiftErrorVals by going through the function. If the function has | 
|  | /// swifterror argument, it will be the first entry. | 
|  | static void setupSwiftErrorVals(const Function &Fn, const TargetLowering *TLI, | 
|  | FunctionLoweringInfo *FuncInfo) { | 
|  | if (!TLI->supportSwiftError()) | 
|  | return; | 
|  |  | 
|  | FuncInfo->SwiftErrorVals.clear(); | 
|  | FuncInfo->SwiftErrorVRegDefMap.clear(); | 
|  | FuncInfo->SwiftErrorVRegUpwardsUse.clear(); | 
|  | FuncInfo->SwiftErrorVRegDefUses.clear(); | 
|  | FuncInfo->SwiftErrorArg = nullptr; | 
|  |  | 
|  | // Check if function has a swifterror argument. | 
|  | bool HaveSeenSwiftErrorArg = false; | 
|  | for (Function::const_arg_iterator AI = Fn.arg_begin(), AE = Fn.arg_end(); | 
|  | AI != AE; ++AI) | 
|  | if (AI->hasSwiftErrorAttr()) { | 
|  | assert(!HaveSeenSwiftErrorArg && | 
|  | "Must have only one swifterror parameter"); | 
|  | (void)HaveSeenSwiftErrorArg; // silence warning. | 
|  | HaveSeenSwiftErrorArg = true; | 
|  | FuncInfo->SwiftErrorArg = &*AI; | 
|  | FuncInfo->SwiftErrorVals.push_back(&*AI); | 
|  | } | 
|  |  | 
|  | for (const auto &LLVMBB : Fn) | 
|  | for (const auto &Inst : LLVMBB) { | 
|  | if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(&Inst)) | 
|  | if (Alloca->isSwiftError()) | 
|  | FuncInfo->SwiftErrorVals.push_back(Alloca); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void createSwiftErrorEntriesInEntryBlock(FunctionLoweringInfo *FuncInfo, | 
|  | FastISel *FastIS, | 
|  | const TargetLowering *TLI, | 
|  | const TargetInstrInfo *TII, | 
|  | SelectionDAGBuilder *SDB) { | 
|  | if (!TLI->supportSwiftError()) | 
|  | return; | 
|  |  | 
|  | // We only need to do this when we have swifterror parameter or swifterror | 
|  | // alloc. | 
|  | if (FuncInfo->SwiftErrorVals.empty()) | 
|  | return; | 
|  |  | 
|  | assert(FuncInfo->MBB == &*FuncInfo->MF->begin() && | 
|  | "expected to insert into entry block"); | 
|  | auto &DL = FuncInfo->MF->getDataLayout(); | 
|  | auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL)); | 
|  | for (const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) { | 
|  | // We will always generate a copy from the argument. It is always used at | 
|  | // least by the 'return' of the swifterror. | 
|  | if (FuncInfo->SwiftErrorArg && FuncInfo->SwiftErrorArg == SwiftErrorVal) | 
|  | continue; | 
|  | unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC); | 
|  | // Assign Undef to Vreg. We construct MI directly to make sure it works | 
|  | // with FastISel. | 
|  | BuildMI(*FuncInfo->MBB, FuncInfo->MBB->getFirstNonPHI(), | 
|  | SDB->getCurDebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF), | 
|  | VReg); | 
|  |  | 
|  | // Keep FastIS informed about the value we just inserted. | 
|  | if (FastIS) | 
|  | FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); | 
|  |  | 
|  | FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorVal, VReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Collect llvm.dbg.declare information. This is done after argument lowering | 
|  | /// in case the declarations refer to arguments. | 
|  | static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) { | 
|  | MachineFunction *MF = FuncInfo->MF; | 
|  | const DataLayout &DL = MF->getDataLayout(); | 
|  | for (const BasicBlock &BB : *FuncInfo->Fn) { | 
|  | for (const Instruction &I : BB) { | 
|  | const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I); | 
|  | if (!DI) | 
|  | continue; | 
|  |  | 
|  | assert(DI->getVariable() && "Missing variable"); | 
|  | assert(DI->getDebugLoc() && "Missing location"); | 
|  | const Value *Address = DI->getAddress(); | 
|  | if (!Address) | 
|  | continue; | 
|  |  | 
|  | // Look through casts and constant offset GEPs. These mostly come from | 
|  | // inalloca. | 
|  | APInt Offset(DL.getPointerSizeInBits(0), 0); | 
|  | Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); | 
|  |  | 
|  | // Check if the variable is a static alloca or a byval or inalloca | 
|  | // argument passed in memory. If it is not, then we will ignore this | 
|  | // intrinsic and handle this during isel like dbg.value. | 
|  | int FI = std::numeric_limits<int>::max(); | 
|  | if (const auto *AI = dyn_cast<AllocaInst>(Address)) { | 
|  | auto SI = FuncInfo->StaticAllocaMap.find(AI); | 
|  | if (SI != FuncInfo->StaticAllocaMap.end()) | 
|  | FI = SI->second; | 
|  | } else if (const auto *Arg = dyn_cast<Argument>(Address)) | 
|  | FI = FuncInfo->getArgumentFrameIndex(Arg); | 
|  |  | 
|  | if (FI == std::numeric_limits<int>::max()) | 
|  | continue; | 
|  |  | 
|  | DIExpression *Expr = DI->getExpression(); | 
|  | if (Offset.getBoolValue()) | 
|  | Expr = DIExpression::prepend(Expr, DIExpression::NoDeref, | 
|  | Offset.getZExtValue()); | 
|  | MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Propagate swifterror values through the machine function CFG. | 
|  | static void propagateSwiftErrorVRegs(FunctionLoweringInfo *FuncInfo) { | 
|  | auto *TLI = FuncInfo->TLI; | 
|  | if (!TLI->supportSwiftError()) | 
|  | return; | 
|  |  | 
|  | // We only need to do this when we have swifterror parameter or swifterror | 
|  | // alloc. | 
|  | if (FuncInfo->SwiftErrorVals.empty()) | 
|  | return; | 
|  |  | 
|  | // For each machine basic block in reverse post order. | 
|  | ReversePostOrderTraversal<MachineFunction *> RPOT(FuncInfo->MF); | 
|  | for (MachineBasicBlock *MBB : RPOT) { | 
|  | // For each swifterror value in the function. | 
|  | for(const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) { | 
|  | auto Key = std::make_pair(MBB, SwiftErrorVal); | 
|  | auto UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key); | 
|  | auto VRegDefIt = FuncInfo->SwiftErrorVRegDefMap.find(Key); | 
|  | bool UpwardsUse = UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end(); | 
|  | unsigned UUseVReg = UpwardsUse ? UUseIt->second : 0; | 
|  | bool DownwardDef = VRegDefIt != FuncInfo->SwiftErrorVRegDefMap.end(); | 
|  | assert(!(UpwardsUse && !DownwardDef) && | 
|  | "We can't have an upwards use but no downwards def"); | 
|  |  | 
|  | // If there is no upwards exposed use and an entry for the swifterror in | 
|  | // the def map for this value we don't need to do anything: We already | 
|  | // have a downward def for this basic block. | 
|  | if (!UpwardsUse && DownwardDef) | 
|  | continue; | 
|  |  | 
|  | // Otherwise we either have an upwards exposed use vreg that we need to | 
|  | // materialize or need to forward the downward def from predecessors. | 
|  |  | 
|  | // Check whether we have a single vreg def from all predecessors. | 
|  | // Otherwise we need a phi. | 
|  | SmallVector<std::pair<MachineBasicBlock *, unsigned>, 4> VRegs; | 
|  | SmallSet<const MachineBasicBlock*, 8> Visited; | 
|  | for (auto *Pred : MBB->predecessors()) { | 
|  | if (!Visited.insert(Pred).second) | 
|  | continue; | 
|  | VRegs.push_back(std::make_pair( | 
|  | Pred, FuncInfo->getOrCreateSwiftErrorVReg(Pred, SwiftErrorVal))); | 
|  | if (Pred != MBB) | 
|  | continue; | 
|  | // We have a self-edge. | 
|  | // If there was no upwards use in this basic block there is now one: the | 
|  | // phi needs to use it self. | 
|  | if (!UpwardsUse) { | 
|  | UpwardsUse = true; | 
|  | UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key); | 
|  | assert(UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end()); | 
|  | UUseVReg = UUseIt->second; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We need a phi node if we have more than one predecessor with different | 
|  | // downward defs. | 
|  | bool needPHI = | 
|  | VRegs.size() >= 1 && | 
|  | std::find_if( | 
|  | VRegs.begin(), VRegs.end(), | 
|  | [&](const std::pair<const MachineBasicBlock *, unsigned> &V) | 
|  | -> bool { return V.second != VRegs[0].second; }) != | 
|  | VRegs.end(); | 
|  |  | 
|  | // If there is no upwards exposed used and we don't need a phi just | 
|  | // forward the swifterror vreg from the predecessor(s). | 
|  | if (!UpwardsUse && !needPHI) { | 
|  | assert(!VRegs.empty() && | 
|  | "No predecessors? The entry block should bail out earlier"); | 
|  | // Just forward the swifterror vreg from the predecessor(s). | 
|  | FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, VRegs[0].second); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | auto DLoc = isa<Instruction>(SwiftErrorVal) | 
|  | ? dyn_cast<Instruction>(SwiftErrorVal)->getDebugLoc() | 
|  | : DebugLoc(); | 
|  | const auto *TII = FuncInfo->MF->getSubtarget().getInstrInfo(); | 
|  |  | 
|  | // If we don't need a phi create a copy to the upward exposed vreg. | 
|  | if (!needPHI) { | 
|  | assert(UpwardsUse); | 
|  | assert(!VRegs.empty() && | 
|  | "No predecessors?  Is the Calling Convention correct?"); | 
|  | unsigned DestReg = UUseVReg; | 
|  | BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc, TII->get(TargetOpcode::COPY), | 
|  | DestReg) | 
|  | .addReg(VRegs[0].second); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We need a phi: if there is an upwards exposed use we already have a | 
|  | // destination virtual register number otherwise we generate a new one. | 
|  | auto &DL = FuncInfo->MF->getDataLayout(); | 
|  | auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL)); | 
|  | unsigned PHIVReg = | 
|  | UpwardsUse ? UUseVReg | 
|  | : FuncInfo->MF->getRegInfo().createVirtualRegister(RC); | 
|  | MachineInstrBuilder SwiftErrorPHI = | 
|  | BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc, | 
|  | TII->get(TargetOpcode::PHI), PHIVReg); | 
|  | for (auto BBRegPair : VRegs) { | 
|  | SwiftErrorPHI.addReg(BBRegPair.second).addMBB(BBRegPair.first); | 
|  | } | 
|  |  | 
|  | // We did not have a definition in this block before: store the phi's vreg | 
|  | // as this block downward exposed def. | 
|  | if (!UpwardsUse) | 
|  | FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, PHIVReg); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void preassignSwiftErrorRegs(const TargetLowering *TLI, | 
|  | FunctionLoweringInfo *FuncInfo, | 
|  | BasicBlock::const_iterator Begin, | 
|  | BasicBlock::const_iterator End) { | 
|  | if (!TLI->supportSwiftError() || FuncInfo->SwiftErrorVals.empty()) | 
|  | return; | 
|  |  | 
|  | // Iterator over instructions and assign vregs to swifterror defs and uses. | 
|  | for (auto It = Begin; It != End; ++It) { | 
|  | ImmutableCallSite CS(&*It); | 
|  | if (CS) { | 
|  | // A call-site with a swifterror argument is both use and def. | 
|  | const Value *SwiftErrorAddr = nullptr; | 
|  | for (auto &Arg : CS.args()) { | 
|  | if (!Arg->isSwiftError()) | 
|  | continue; | 
|  | // Use of swifterror. | 
|  | assert(!SwiftErrorAddr && "Cannot have multiple swifterror arguments"); | 
|  | SwiftErrorAddr = &*Arg; | 
|  | assert(SwiftErrorAddr->isSwiftError() && | 
|  | "Must have a swifterror value argument"); | 
|  | unsigned VReg; bool CreatedReg; | 
|  | std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt( | 
|  | &*It, FuncInfo->MBB, SwiftErrorAddr); | 
|  | assert(CreatedReg); | 
|  | } | 
|  | if (!SwiftErrorAddr) | 
|  | continue; | 
|  |  | 
|  | // Def of swifterror. | 
|  | unsigned VReg; bool CreatedReg; | 
|  | std::tie(VReg, CreatedReg) = | 
|  | FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It); | 
|  | assert(CreatedReg); | 
|  | FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg); | 
|  |  | 
|  | // A load is a use. | 
|  | } else if (const LoadInst *LI = dyn_cast<const LoadInst>(&*It)) { | 
|  | const Value *V = LI->getOperand(0); | 
|  | if (!V->isSwiftError()) | 
|  | continue; | 
|  |  | 
|  | unsigned VReg; bool CreatedReg; | 
|  | std::tie(VReg, CreatedReg) = | 
|  | FuncInfo->getOrCreateSwiftErrorVRegUseAt(LI, FuncInfo->MBB, V); | 
|  | assert(CreatedReg); | 
|  |  | 
|  | // A store is a def. | 
|  | } else if (const StoreInst *SI = dyn_cast<const StoreInst>(&*It)) { | 
|  | const Value *SwiftErrorAddr = SI->getOperand(1); | 
|  | if (!SwiftErrorAddr->isSwiftError()) | 
|  | continue; | 
|  |  | 
|  | // Def of swifterror. | 
|  | unsigned VReg; bool CreatedReg; | 
|  | std::tie(VReg, CreatedReg) = | 
|  | FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It); | 
|  | assert(CreatedReg); | 
|  | FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg); | 
|  |  | 
|  | // A return in a swiferror returning function is a use. | 
|  | } else if (const ReturnInst *R = dyn_cast<const ReturnInst>(&*It)) { | 
|  | const Function *F = R->getParent()->getParent(); | 
|  | if(!F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) | 
|  | continue; | 
|  |  | 
|  | unsigned VReg; bool CreatedReg; | 
|  | std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt( | 
|  | R, FuncInfo->MBB, FuncInfo->SwiftErrorArg); | 
|  | assert(CreatedReg); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { | 
|  | FastISelFailed = false; | 
|  | // Initialize the Fast-ISel state, if needed. | 
|  | FastISel *FastIS = nullptr; | 
|  | if (TM.Options.EnableFastISel) | 
|  | FastIS = TLI->createFastISel(*FuncInfo, LibInfo); | 
|  |  | 
|  | setupSwiftErrorVals(Fn, TLI, FuncInfo); | 
|  |  | 
|  | ReversePostOrderTraversal<const Function*> RPOT(&Fn); | 
|  |  | 
|  | // Lower arguments up front. An RPO iteration always visits the entry block | 
|  | // first. | 
|  | assert(*RPOT.begin() == &Fn.getEntryBlock()); | 
|  | ++NumEntryBlocks; | 
|  |  | 
|  | // Set up FuncInfo for ISel. Entry blocks never have PHIs. | 
|  | FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()]; | 
|  | FuncInfo->InsertPt = FuncInfo->MBB->begin(); | 
|  |  | 
|  | if (!FastIS) { | 
|  | LowerArguments(Fn); | 
|  | } else { | 
|  | // See if fast isel can lower the arguments. | 
|  | FastIS->startNewBlock(); | 
|  | if (!FastIS->lowerArguments()) { | 
|  | FastISelFailed = true; | 
|  | // Fast isel failed to lower these arguments | 
|  | ++NumFastIselFailLowerArguments; | 
|  |  | 
|  | OptimizationRemarkMissed R("sdagisel", "FastISelFailure", | 
|  | Fn.getSubprogram(), | 
|  | &Fn.getEntryBlock()); | 
|  | R << "FastISel didn't lower all arguments: " | 
|  | << ore::NV("Prototype", Fn.getType()); | 
|  | reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1); | 
|  |  | 
|  | // Use SelectionDAG argument lowering | 
|  | LowerArguments(Fn); | 
|  | CurDAG->setRoot(SDB->getControlRoot()); | 
|  | SDB->clear(); | 
|  | CodeGenAndEmitDAG(); | 
|  | } | 
|  |  | 
|  | // If we inserted any instructions at the beginning, make a note of | 
|  | // where they are, so we can be sure to emit subsequent instructions | 
|  | // after them. | 
|  | if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) | 
|  | FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); | 
|  | else | 
|  | FastIS->setLastLocalValue(nullptr); | 
|  | } | 
|  | createSwiftErrorEntriesInEntryBlock(FuncInfo, FastIS, TLI, TII, SDB); | 
|  |  | 
|  | processDbgDeclares(FuncInfo); | 
|  |  | 
|  | // Iterate over all basic blocks in the function. | 
|  | for (const BasicBlock *LLVMBB : RPOT) { | 
|  | if (OptLevel != CodeGenOpt::None) { | 
|  | bool AllPredsVisited = true; | 
|  | for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); | 
|  | PI != PE; ++PI) { | 
|  | if (!FuncInfo->VisitedBBs.count(*PI)) { | 
|  | AllPredsVisited = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (AllPredsVisited) { | 
|  | for (BasicBlock::const_iterator I = LLVMBB->begin(); | 
|  | const PHINode *PN = dyn_cast<PHINode>(I); ++I) | 
|  | FuncInfo->ComputePHILiveOutRegInfo(PN); | 
|  | } else { | 
|  | for (BasicBlock::const_iterator I = LLVMBB->begin(); | 
|  | const PHINode *PN = dyn_cast<PHINode>(I); ++I) | 
|  | FuncInfo->InvalidatePHILiveOutRegInfo(PN); | 
|  | } | 
|  |  | 
|  | FuncInfo->VisitedBBs.insert(LLVMBB); | 
|  | } | 
|  |  | 
|  | BasicBlock::const_iterator const Begin = | 
|  | LLVMBB->getFirstNonPHI()->getIterator(); | 
|  | BasicBlock::const_iterator const End = LLVMBB->end(); | 
|  | BasicBlock::const_iterator BI = End; | 
|  |  | 
|  | FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; | 
|  | if (!FuncInfo->MBB) | 
|  | continue; // Some blocks like catchpads have no code or MBB. | 
|  |  | 
|  | // Insert new instructions after any phi or argument setup code. | 
|  | FuncInfo->InsertPt = FuncInfo->MBB->end(); | 
|  |  | 
|  | // Setup an EH landing-pad block. | 
|  | FuncInfo->ExceptionPointerVirtReg = 0; | 
|  | FuncInfo->ExceptionSelectorVirtReg = 0; | 
|  | if (LLVMBB->isEHPad()) | 
|  | if (!PrepareEHLandingPad()) | 
|  | continue; | 
|  |  | 
|  | // Before doing SelectionDAG ISel, see if FastISel has been requested. | 
|  | if (FastIS) { | 
|  | if (LLVMBB != &Fn.getEntryBlock()) | 
|  | FastIS->startNewBlock(); | 
|  |  | 
|  | unsigned NumFastIselRemaining = std::distance(Begin, End); | 
|  |  | 
|  | // Pre-assign swifterror vregs. | 
|  | preassignSwiftErrorRegs(TLI, FuncInfo, Begin, End); | 
|  |  | 
|  | // Do FastISel on as many instructions as possible. | 
|  | for (; BI != Begin; --BI) { | 
|  | const Instruction *Inst = &*std::prev(BI); | 
|  |  | 
|  | // If we no longer require this instruction, skip it. | 
|  | if (isFoldedOrDeadInstruction(Inst, FuncInfo) || | 
|  | ElidedArgCopyInstrs.count(Inst)) { | 
|  | --NumFastIselRemaining; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Bottom-up: reset the insert pos at the top, after any local-value | 
|  | // instructions. | 
|  | FastIS->recomputeInsertPt(); | 
|  |  | 
|  | // Try to select the instruction with FastISel. | 
|  | if (FastIS->selectInstruction(Inst)) { | 
|  | --NumFastIselRemaining; | 
|  | ++NumFastIselSuccess; | 
|  | // If fast isel succeeded, skip over all the folded instructions, and | 
|  | // then see if there is a load right before the selected instructions. | 
|  | // Try to fold the load if so. | 
|  | const Instruction *BeforeInst = Inst; | 
|  | while (BeforeInst != &*Begin) { | 
|  | BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst)); | 
|  | if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo)) | 
|  | break; | 
|  | } | 
|  | if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && | 
|  | BeforeInst->hasOneUse() && | 
|  | FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) { | 
|  | // If we succeeded, don't re-select the load. | 
|  | BI = std::next(BasicBlock::const_iterator(BeforeInst)); | 
|  | --NumFastIselRemaining; | 
|  | ++NumFastIselSuccess; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | FastISelFailed = true; | 
|  |  | 
|  | // Then handle certain instructions as single-LLVM-Instruction blocks. | 
|  | // We cannot separate out GCrelocates to their own blocks since we need | 
|  | // to keep track of gc-relocates for a particular gc-statepoint. This is | 
|  | // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before | 
|  | // visitGCRelocate. | 
|  | if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst)) { | 
|  | OptimizationRemarkMissed R("sdagisel", "FastISelFailure", | 
|  | Inst->getDebugLoc(), LLVMBB); | 
|  |  | 
|  | R << "FastISel missed call"; | 
|  |  | 
|  | if (R.isEnabled() || EnableFastISelAbort) { | 
|  | std::string InstStrStorage; | 
|  | raw_string_ostream InstStr(InstStrStorage); | 
|  | InstStr << *Inst; | 
|  |  | 
|  | R << ": " << InstStr.str(); | 
|  | } | 
|  |  | 
|  | reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2); | 
|  |  | 
|  | if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && | 
|  | !Inst->use_empty()) { | 
|  | unsigned &R = FuncInfo->ValueMap[Inst]; | 
|  | if (!R) | 
|  | R = FuncInfo->CreateRegs(Inst->getType()); | 
|  | } | 
|  |  | 
|  | bool HadTailCall = false; | 
|  | MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; | 
|  | SelectBasicBlock(Inst->getIterator(), BI, HadTailCall); | 
|  |  | 
|  | // If the call was emitted as a tail call, we're done with the block. | 
|  | // We also need to delete any previously emitted instructions. | 
|  | if (HadTailCall) { | 
|  | FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); | 
|  | --BI; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Recompute NumFastIselRemaining as Selection DAG instruction | 
|  | // selection may have handled the call, input args, etc. | 
|  | unsigned RemainingNow = std::distance(Begin, BI); | 
|  | NumFastIselFailures += NumFastIselRemaining - RemainingNow; | 
|  | NumFastIselRemaining = RemainingNow; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | OptimizationRemarkMissed R("sdagisel", "FastISelFailure", | 
|  | Inst->getDebugLoc(), LLVMBB); | 
|  |  | 
|  | bool ShouldAbort = EnableFastISelAbort; | 
|  | if (isa<TerminatorInst>(Inst)) { | 
|  | // Use a different message for terminator misses. | 
|  | R << "FastISel missed terminator"; | 
|  | // Don't abort for terminator unless the level is really high | 
|  | ShouldAbort = (EnableFastISelAbort > 2); | 
|  | } else { | 
|  | R << "FastISel missed"; | 
|  | } | 
|  |  | 
|  | if (R.isEnabled() || EnableFastISelAbort) { | 
|  | std::string InstStrStorage; | 
|  | raw_string_ostream InstStr(InstStrStorage); | 
|  | InstStr << *Inst; | 
|  | R << ": " << InstStr.str(); | 
|  | } | 
|  |  | 
|  | reportFastISelFailure(*MF, *ORE, R, ShouldAbort); | 
|  |  | 
|  | NumFastIselFailures += NumFastIselRemaining; | 
|  | break; | 
|  | } | 
|  |  | 
|  | FastIS->recomputeInsertPt(); | 
|  | } | 
|  |  | 
|  | if (getAnalysis<StackProtector>().shouldEmitSDCheck(*LLVMBB)) { | 
|  | bool FunctionBasedInstrumentation = | 
|  | TLI->getSSPStackGuardCheck(*Fn.getParent()); | 
|  | SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB], | 
|  | FunctionBasedInstrumentation); | 
|  | } | 
|  |  | 
|  | if (Begin != BI) | 
|  | ++NumDAGBlocks; | 
|  | else | 
|  | ++NumFastIselBlocks; | 
|  |  | 
|  | if (Begin != BI) { | 
|  | // Run SelectionDAG instruction selection on the remainder of the block | 
|  | // not handled by FastISel. If FastISel is not run, this is the entire | 
|  | // block. | 
|  | bool HadTailCall; | 
|  | SelectBasicBlock(Begin, BI, HadTailCall); | 
|  |  | 
|  | // But if FastISel was run, we already selected some of the block. | 
|  | // If we emitted a tail-call, we need to delete any previously emitted | 
|  | // instruction that follows it. | 
|  | if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end()) | 
|  | FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end()); | 
|  | } | 
|  |  | 
|  | FinishBasicBlock(); | 
|  | FuncInfo->PHINodesToUpdate.clear(); | 
|  | ElidedArgCopyInstrs.clear(); | 
|  | } | 
|  |  | 
|  | propagateSwiftErrorVRegs(FuncInfo); | 
|  |  | 
|  | delete FastIS; | 
|  | SDB->clearDanglingDebugInfo(); | 
|  | SDB->SPDescriptor.resetPerFunctionState(); | 
|  | } | 
|  |  | 
|  | /// Given that the input MI is before a partial terminator sequence TSeq, return | 
|  | /// true if M + TSeq also a partial terminator sequence. | 
|  | /// | 
|  | /// A Terminator sequence is a sequence of MachineInstrs which at this point in | 
|  | /// lowering copy vregs into physical registers, which are then passed into | 
|  | /// terminator instructors so we can satisfy ABI constraints. A partial | 
|  | /// terminator sequence is an improper subset of a terminator sequence (i.e. it | 
|  | /// may be the whole terminator sequence). | 
|  | static bool MIIsInTerminatorSequence(const MachineInstr &MI) { | 
|  | // If we do not have a copy or an implicit def, we return true if and only if | 
|  | // MI is a debug value. | 
|  | if (!MI.isCopy() && !MI.isImplicitDef()) | 
|  | // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the | 
|  | // physical registers if there is debug info associated with the terminator | 
|  | // of our mbb. We want to include said debug info in our terminator | 
|  | // sequence, so we return true in that case. | 
|  | return MI.isDebugValue(); | 
|  |  | 
|  | // We have left the terminator sequence if we are not doing one of the | 
|  | // following: | 
|  | // | 
|  | // 1. Copying a vreg into a physical register. | 
|  | // 2. Copying a vreg into a vreg. | 
|  | // 3. Defining a register via an implicit def. | 
|  |  | 
|  | // OPI should always be a register definition... | 
|  | MachineInstr::const_mop_iterator OPI = MI.operands_begin(); | 
|  | if (!OPI->isReg() || !OPI->isDef()) | 
|  | return false; | 
|  |  | 
|  | // Defining any register via an implicit def is always ok. | 
|  | if (MI.isImplicitDef()) | 
|  | return true; | 
|  |  | 
|  | // Grab the copy source... | 
|  | MachineInstr::const_mop_iterator OPI2 = OPI; | 
|  | ++OPI2; | 
|  | assert(OPI2 != MI.operands_end() | 
|  | && "Should have a copy implying we should have 2 arguments."); | 
|  |  | 
|  | // Make sure that the copy dest is not a vreg when the copy source is a | 
|  | // physical register. | 
|  | if (!OPI2->isReg() || | 
|  | (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) && | 
|  | TargetRegisterInfo::isPhysicalRegister(OPI2->getReg()))) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Find the split point at which to splice the end of BB into its success stack | 
|  | /// protector check machine basic block. | 
|  | /// | 
|  | /// On many platforms, due to ABI constraints, terminators, even before register | 
|  | /// allocation, use physical registers. This creates an issue for us since | 
|  | /// physical registers at this point can not travel across basic | 
|  | /// blocks. Luckily, selectiondag always moves physical registers into vregs | 
|  | /// when they enter functions and moves them through a sequence of copies back | 
|  | /// into the physical registers right before the terminator creating a | 
|  | /// ``Terminator Sequence''. This function is searching for the beginning of the | 
|  | /// terminator sequence so that we can ensure that we splice off not just the | 
|  | /// terminator, but additionally the copies that move the vregs into the | 
|  | /// physical registers. | 
|  | static MachineBasicBlock::iterator | 
|  | FindSplitPointForStackProtector(MachineBasicBlock *BB) { | 
|  | MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator(); | 
|  | // | 
|  | if (SplitPoint == BB->begin()) | 
|  | return SplitPoint; | 
|  |  | 
|  | MachineBasicBlock::iterator Start = BB->begin(); | 
|  | MachineBasicBlock::iterator Previous = SplitPoint; | 
|  | --Previous; | 
|  |  | 
|  | while (MIIsInTerminatorSequence(*Previous)) { | 
|  | SplitPoint = Previous; | 
|  | if (Previous == Start) | 
|  | break; | 
|  | --Previous; | 
|  | } | 
|  |  | 
|  | return SplitPoint; | 
|  | } | 
|  |  | 
|  | void | 
|  | SelectionDAGISel::FinishBasicBlock() { | 
|  | DEBUG(dbgs() << "Total amount of phi nodes to update: " | 
|  | << FuncInfo->PHINodesToUpdate.size() << "\n"; | 
|  | for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) | 
|  | dbgs() << "Node " << i << " : (" | 
|  | << FuncInfo->PHINodesToUpdate[i].first | 
|  | << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); | 
|  |  | 
|  | // Next, now that we know what the last MBB the LLVM BB expanded is, update | 
|  | // PHI nodes in successors. | 
|  | for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { | 
|  | MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); | 
|  | assert(PHI->isPHI() && | 
|  | "This is not a machine PHI node that we are updating!"); | 
|  | if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) | 
|  | continue; | 
|  | PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); | 
|  | } | 
|  |  | 
|  | // Handle stack protector. | 
|  | if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { | 
|  | // The target provides a guard check function. There is no need to | 
|  | // generate error handling code or to split current basic block. | 
|  | MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); | 
|  |  | 
|  | // Add load and check to the basicblock. | 
|  | FuncInfo->MBB = ParentMBB; | 
|  | FuncInfo->InsertPt = | 
|  | FindSplitPointForStackProtector(ParentMBB); | 
|  | SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); | 
|  | CurDAG->setRoot(SDB->getRoot()); | 
|  | SDB->clear(); | 
|  | CodeGenAndEmitDAG(); | 
|  |  | 
|  | // Clear the Per-BB State. | 
|  | SDB->SPDescriptor.resetPerBBState(); | 
|  | } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { | 
|  | MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); | 
|  | MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); | 
|  |  | 
|  | // Find the split point to split the parent mbb. At the same time copy all | 
|  | // physical registers used in the tail of parent mbb into virtual registers | 
|  | // before the split point and back into physical registers after the split | 
|  | // point. This prevents us needing to deal with Live-ins and many other | 
|  | // register allocation issues caused by us splitting the parent mbb. The | 
|  | // register allocator will clean up said virtual copies later on. | 
|  | MachineBasicBlock::iterator SplitPoint = | 
|  | FindSplitPointForStackProtector(ParentMBB); | 
|  |  | 
|  | // Splice the terminator of ParentMBB into SuccessMBB. | 
|  | SuccessMBB->splice(SuccessMBB->end(), ParentMBB, | 
|  | SplitPoint, | 
|  | ParentMBB->end()); | 
|  |  | 
|  | // Add compare/jump on neq/jump to the parent BB. | 
|  | FuncInfo->MBB = ParentMBB; | 
|  | FuncInfo->InsertPt = ParentMBB->end(); | 
|  | SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); | 
|  | CurDAG->setRoot(SDB->getRoot()); | 
|  | SDB->clear(); | 
|  | CodeGenAndEmitDAG(); | 
|  |  | 
|  | // CodeGen Failure MBB if we have not codegened it yet. | 
|  | MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); | 
|  | if (FailureMBB->empty()) { | 
|  | FuncInfo->MBB = FailureMBB; | 
|  | FuncInfo->InsertPt = FailureMBB->end(); | 
|  | SDB->visitSPDescriptorFailure(SDB->SPDescriptor); | 
|  | CurDAG->setRoot(SDB->getRoot()); | 
|  | SDB->clear(); | 
|  | CodeGenAndEmitDAG(); | 
|  | } | 
|  |  | 
|  | // Clear the Per-BB State. | 
|  | SDB->SPDescriptor.resetPerBBState(); | 
|  | } | 
|  |  | 
|  | // Lower each BitTestBlock. | 
|  | for (auto &BTB : SDB->BitTestCases) { | 
|  | // Lower header first, if it wasn't already lowered | 
|  | if (!BTB.Emitted) { | 
|  | // Set the current basic block to the mbb we wish to insert the code into | 
|  | FuncInfo->MBB = BTB.Parent; | 
|  | FuncInfo->InsertPt = FuncInfo->MBB->end(); | 
|  | // Emit the code | 
|  | SDB->visitBitTestHeader(BTB, FuncInfo->MBB); | 
|  | CurDAG->setRoot(SDB->getRoot()); | 
|  | SDB->clear(); | 
|  | CodeGenAndEmitDAG(); | 
|  | } | 
|  |  | 
|  | BranchProbability UnhandledProb = BTB.Prob; | 
|  | for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { | 
|  | UnhandledProb -= BTB.Cases[j].ExtraProb; | 
|  | // Set the current basic block to the mbb we wish to insert the code into | 
|  | FuncInfo->MBB = BTB.Cases[j].ThisBB; | 
|  | FuncInfo->InsertPt = FuncInfo->MBB->end(); | 
|  | // Emit the code | 
|  |  | 
|  | // If all cases cover a contiguous range, it is not necessary to jump to | 
|  | // the default block after the last bit test fails. This is because the | 
|  | // range check during bit test header creation has guaranteed that every | 
|  | // case here doesn't go outside the range. In this case, there is no need | 
|  | // to perform the last bit test, as it will always be true. Instead, make | 
|  | // the second-to-last bit-test fall through to the target of the last bit | 
|  | // test, and delete the last bit test. | 
|  |  | 
|  | MachineBasicBlock *NextMBB; | 
|  | if (BTB.ContiguousRange && j + 2 == ej) { | 
|  | // Second-to-last bit-test with contiguous range: fall through to the | 
|  | // target of the final bit test. | 
|  | NextMBB = BTB.Cases[j + 1].TargetBB; | 
|  | } else if (j + 1 == ej) { | 
|  | // For the last bit test, fall through to Default. | 
|  | NextMBB = BTB.Default; | 
|  | } else { | 
|  | // Otherwise, fall through to the next bit test. | 
|  | NextMBB = BTB.Cases[j + 1].ThisBB; | 
|  | } | 
|  |  | 
|  | SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], | 
|  | FuncInfo->MBB); | 
|  |  | 
|  | CurDAG->setRoot(SDB->getRoot()); | 
|  | SDB->clear(); | 
|  | CodeGenAndEmitDAG(); | 
|  |  | 
|  | if (BTB.ContiguousRange && j + 2 == ej) { | 
|  | // Since we're not going to use the final bit test, remove it. | 
|  | BTB.Cases.pop_back(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update PHI Nodes | 
|  | for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); | 
|  | pi != pe; ++pi) { | 
|  | MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); | 
|  | MachineBasicBlock *PHIBB = PHI->getParent(); | 
|  | assert(PHI->isPHI() && | 
|  | "This is not a machine PHI node that we are updating!"); | 
|  | // This is "default" BB. We have two jumps to it. From "header" BB and | 
|  | // from last "case" BB, unless the latter was skipped. | 
|  | if (PHIBB == BTB.Default) { | 
|  | PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent); | 
|  | if (!BTB.ContiguousRange) { | 
|  | PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) | 
|  | .addMBB(BTB.Cases.back().ThisBB); | 
|  | } | 
|  | } | 
|  | // One of "cases" BB. | 
|  | for (unsigned j = 0, ej = BTB.Cases.size(); | 
|  | j != ej; ++j) { | 
|  | MachineBasicBlock* cBB = BTB.Cases[j].ThisBB; | 
|  | if (cBB->isSuccessor(PHIBB)) | 
|  | PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); | 
|  | } | 
|  | } | 
|  | } | 
|  | SDB->BitTestCases.clear(); | 
|  |  | 
|  | // If the JumpTable record is filled in, then we need to emit a jump table. | 
|  | // Updating the PHI nodes is tricky in this case, since we need to determine | 
|  | // whether the PHI is a successor of the range check MBB or the jump table MBB | 
|  | for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { | 
|  | // Lower header first, if it wasn't already lowered | 
|  | if (!SDB->JTCases[i].first.Emitted) { | 
|  | // Set the current basic block to the mbb we wish to insert the code into | 
|  | FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB; | 
|  | FuncInfo->InsertPt = FuncInfo->MBB->end(); | 
|  | // Emit the code | 
|  | SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first, | 
|  | FuncInfo->MBB); | 
|  | CurDAG->setRoot(SDB->getRoot()); | 
|  | SDB->clear(); | 
|  | CodeGenAndEmitDAG(); | 
|  | } | 
|  |  | 
|  | // Set the current basic block to the mbb we wish to insert the code into | 
|  | FuncInfo->MBB = SDB->JTCases[i].second.MBB; | 
|  | FuncInfo->InsertPt = FuncInfo->MBB->end(); | 
|  | // Emit the code | 
|  | SDB->visitJumpTable(SDB->JTCases[i].second); | 
|  | CurDAG->setRoot(SDB->getRoot()); | 
|  | SDB->clear(); | 
|  | CodeGenAndEmitDAG(); | 
|  |  | 
|  | // Update PHI Nodes | 
|  | for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); | 
|  | pi != pe; ++pi) { | 
|  | MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); | 
|  | MachineBasicBlock *PHIBB = PHI->getParent(); | 
|  | assert(PHI->isPHI() && | 
|  | "This is not a machine PHI node that we are updating!"); | 
|  | // "default" BB. We can go there only from header BB. | 
|  | if (PHIBB == SDB->JTCases[i].second.Default) | 
|  | PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) | 
|  | .addMBB(SDB->JTCases[i].first.HeaderBB); | 
|  | // JT BB. Just iterate over successors here | 
|  | if (FuncInfo->MBB->isSuccessor(PHIBB)) | 
|  | PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); | 
|  | } | 
|  | } | 
|  | SDB->JTCases.clear(); | 
|  |  | 
|  | // If we generated any switch lowering information, build and codegen any | 
|  | // additional DAGs necessary. | 
|  | for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { | 
|  | // Set the current basic block to the mbb we wish to insert the code into | 
|  | FuncInfo->MBB = SDB->SwitchCases[i].ThisBB; | 
|  | FuncInfo->InsertPt = FuncInfo->MBB->end(); | 
|  |  | 
|  | // Determine the unique successors. | 
|  | SmallVector<MachineBasicBlock *, 2> Succs; | 
|  | Succs.push_back(SDB->SwitchCases[i].TrueBB); | 
|  | if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB) | 
|  | Succs.push_back(SDB->SwitchCases[i].FalseBB); | 
|  |  | 
|  | // Emit the code. Note that this could result in FuncInfo->MBB being split. | 
|  | SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB); | 
|  | CurDAG->setRoot(SDB->getRoot()); | 
|  | SDB->clear(); | 
|  | CodeGenAndEmitDAG(); | 
|  |  | 
|  | // Remember the last block, now that any splitting is done, for use in | 
|  | // populating PHI nodes in successors. | 
|  | MachineBasicBlock *ThisBB = FuncInfo->MBB; | 
|  |  | 
|  | // Handle any PHI nodes in successors of this chunk, as if we were coming | 
|  | // from the original BB before switch expansion.  Note that PHI nodes can | 
|  | // occur multiple times in PHINodesToUpdate.  We have to be very careful to | 
|  | // handle them the right number of times. | 
|  | for (unsigned i = 0, e = Succs.size(); i != e; ++i) { | 
|  | FuncInfo->MBB = Succs[i]; | 
|  | FuncInfo->InsertPt = FuncInfo->MBB->end(); | 
|  | // FuncInfo->MBB may have been removed from the CFG if a branch was | 
|  | // constant folded. | 
|  | if (ThisBB->isSuccessor(FuncInfo->MBB)) { | 
|  | for (MachineBasicBlock::iterator | 
|  | MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); | 
|  | MBBI != MBBE && MBBI->isPHI(); ++MBBI) { | 
|  | MachineInstrBuilder PHI(*MF, MBBI); | 
|  | // This value for this PHI node is recorded in PHINodesToUpdate. | 
|  | for (unsigned pn = 0; ; ++pn) { | 
|  | assert(pn != FuncInfo->PHINodesToUpdate.size() && | 
|  | "Didn't find PHI entry!"); | 
|  | if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { | 
|  | PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | SDB->SwitchCases.clear(); | 
|  | } | 
|  |  | 
|  | /// Create the scheduler. If a specific scheduler was specified | 
|  | /// via the SchedulerRegistry, use it, otherwise select the | 
|  | /// one preferred by the target. | 
|  | /// | 
|  | ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { | 
|  | return ISHeuristic(this, OptLevel); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Helper functions used by the generated instruction selector. | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Calls to these methods are generated by tblgen. | 
|  |  | 
|  | /// CheckAndMask - The isel is trying to match something like (and X, 255).  If | 
|  | /// the dag combiner simplified the 255, we still want to match.  RHS is the | 
|  | /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value | 
|  | /// specified in the .td file (e.g. 255). | 
|  | bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, | 
|  | int64_t DesiredMaskS) const { | 
|  | const APInt &ActualMask = RHS->getAPIntValue(); | 
|  | const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); | 
|  |  | 
|  | // If the actual mask exactly matches, success! | 
|  | if (ActualMask == DesiredMask) | 
|  | return true; | 
|  |  | 
|  | // If the actual AND mask is allowing unallowed bits, this doesn't match. | 
|  | if (ActualMask.intersects(~DesiredMask)) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, the DAG Combiner may have proven that the value coming in is | 
|  | // either already zero or is not demanded.  Check for known zero input bits. | 
|  | APInt NeededMask = DesiredMask & ~ActualMask; | 
|  | if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) | 
|  | return true; | 
|  |  | 
|  | // TODO: check to see if missing bits are just not demanded. | 
|  |  | 
|  | // Otherwise, this pattern doesn't match. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CheckOrMask - The isel is trying to match something like (or X, 255).  If | 
|  | /// the dag combiner simplified the 255, we still want to match.  RHS is the | 
|  | /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value | 
|  | /// specified in the .td file (e.g. 255). | 
|  | bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, | 
|  | int64_t DesiredMaskS) const { | 
|  | const APInt &ActualMask = RHS->getAPIntValue(); | 
|  | const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); | 
|  |  | 
|  | // If the actual mask exactly matches, success! | 
|  | if (ActualMask == DesiredMask) | 
|  | return true; | 
|  |  | 
|  | // If the actual AND mask is allowing unallowed bits, this doesn't match. | 
|  | if (ActualMask.intersects(~DesiredMask)) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, the DAG Combiner may have proven that the value coming in is | 
|  | // either already zero or is not demanded.  Check for known zero input bits. | 
|  | APInt NeededMask = DesiredMask & ~ActualMask; | 
|  |  | 
|  | KnownBits Known; | 
|  | CurDAG->computeKnownBits(LHS, Known); | 
|  |  | 
|  | // If all the missing bits in the or are already known to be set, match! | 
|  | if (NeededMask.isSubsetOf(Known.One)) | 
|  | return true; | 
|  |  | 
|  | // TODO: check to see if missing bits are just not demanded. | 
|  |  | 
|  | // Otherwise, this pattern doesn't match. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated | 
|  | /// by tblgen.  Others should not call it. | 
|  | void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, | 
|  | const SDLoc &DL) { | 
|  | std::vector<SDValue> InOps; | 
|  | std::swap(InOps, Ops); | 
|  |  | 
|  | Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 | 
|  | Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1 | 
|  | Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc | 
|  | Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack) | 
|  |  | 
|  | unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); | 
|  | if (InOps[e-1].getValueType() == MVT::Glue) | 
|  | --e;  // Don't process a glue operand if it is here. | 
|  |  | 
|  | while (i != e) { | 
|  | unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); | 
|  | if (!InlineAsm::isMemKind(Flags)) { | 
|  | // Just skip over this operand, copying the operands verbatim. | 
|  | Ops.insert(Ops.end(), InOps.begin()+i, | 
|  | InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); | 
|  | i += InlineAsm::getNumOperandRegisters(Flags) + 1; | 
|  | } else { | 
|  | assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && | 
|  | "Memory operand with multiple values?"); | 
|  |  | 
|  | unsigned TiedToOperand; | 
|  | if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) { | 
|  | // We need the constraint ID from the operand this is tied to. | 
|  | unsigned CurOp = InlineAsm::Op_FirstOperand; | 
|  | Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); | 
|  | for (; TiedToOperand; --TiedToOperand) { | 
|  | CurOp += InlineAsm::getNumOperandRegisters(Flags)+1; | 
|  | Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, this is a memory operand.  Ask the target to select it. | 
|  | std::vector<SDValue> SelOps; | 
|  | unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags); | 
|  | if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps)) | 
|  | report_fatal_error("Could not match memory address.  Inline asm" | 
|  | " failure!"); | 
|  |  | 
|  | // Add this to the output node. | 
|  | unsigned NewFlags = | 
|  | InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); | 
|  | NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID); | 
|  | Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32)); | 
|  | Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); | 
|  | i += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add the glue input back if present. | 
|  | if (e != InOps.size()) | 
|  | Ops.push_back(InOps.back()); | 
|  | } | 
|  |  | 
|  | /// findGlueUse - Return use of MVT::Glue value produced by the specified | 
|  | /// SDNode. | 
|  | /// | 
|  | static SDNode *findGlueUse(SDNode *N) { | 
|  | unsigned FlagResNo = N->getNumValues()-1; | 
|  | for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { | 
|  | SDUse &Use = I.getUse(); | 
|  | if (Use.getResNo() == FlagResNo) | 
|  | return Use.getUser(); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def". | 
|  | /// This function iteratively traverses up the operand chain, ignoring | 
|  | /// certain nodes. | 
|  | static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse, | 
|  | SDNode *Root, SmallPtrSetImpl<SDNode*> &Visited, | 
|  | bool IgnoreChains) { | 
|  | // The NodeID's are given uniques ID's where a node ID is guaranteed to be | 
|  | // greater than all of its (recursive) operands.  If we scan to a point where | 
|  | // 'use' is smaller than the node we're scanning for, then we know we will | 
|  | // never find it. | 
|  | // | 
|  | // The Use may be -1 (unassigned) if it is a newly allocated node.  This can | 
|  | // happen because we scan down to newly selected nodes in the case of glue | 
|  | // uses. | 
|  | std::vector<SDNode *> WorkList; | 
|  | WorkList.push_back(Use); | 
|  |  | 
|  | while (!WorkList.empty()) { | 
|  | Use = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  | if (Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1) | 
|  | continue; | 
|  |  | 
|  | // Don't revisit nodes if we already scanned it and didn't fail, we know we | 
|  | // won't fail if we scan it again. | 
|  | if (!Visited.insert(Use).second) | 
|  | continue; | 
|  |  | 
|  | for (const SDValue &Op : Use->op_values()) { | 
|  | // Ignore chain uses, they are validated by HandleMergeInputChains. | 
|  | if (Op.getValueType() == MVT::Other && IgnoreChains) | 
|  | continue; | 
|  |  | 
|  | SDNode *N = Op.getNode(); | 
|  | if (N == Def) { | 
|  | if (Use == ImmedUse || Use == Root) | 
|  | continue;  // We are not looking for immediate use. | 
|  | assert(N != Root); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Traverse up the operand chain. | 
|  | WorkList.push_back(N); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// IsProfitableToFold - Returns true if it's profitable to fold the specific | 
|  | /// operand node N of U during instruction selection that starts at Root. | 
|  | bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, | 
|  | SDNode *Root) const { | 
|  | if (OptLevel == CodeGenOpt::None) return false; | 
|  | return N.hasOneUse(); | 
|  | } | 
|  |  | 
|  | /// IsLegalToFold - Returns true if the specific operand node N of | 
|  | /// U can be folded during instruction selection that starts at Root. | 
|  | bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, | 
|  | CodeGenOpt::Level OptLevel, | 
|  | bool IgnoreChains) { | 
|  | if (OptLevel == CodeGenOpt::None) return false; | 
|  |  | 
|  | // If Root use can somehow reach N through a path that that doesn't contain | 
|  | // U then folding N would create a cycle. e.g. In the following | 
|  | // diagram, Root can reach N through X. If N is folded into into Root, then | 
|  | // X is both a predecessor and a successor of U. | 
|  | // | 
|  | //          [N*]           // | 
|  | //         ^   ^           // | 
|  | //        /     \          // | 
|  | //      [U*]    [X]?       // | 
|  | //        ^     ^          // | 
|  | //         \   /           // | 
|  | //          \ /            // | 
|  | //         [Root*]         // | 
|  | // | 
|  | // * indicates nodes to be folded together. | 
|  | // | 
|  | // If Root produces glue, then it gets (even more) interesting. Since it | 
|  | // will be "glued" together with its glue use in the scheduler, we need to | 
|  | // check if it might reach N. | 
|  | // | 
|  | //          [N*]           // | 
|  | //         ^   ^           // | 
|  | //        /     \          // | 
|  | //      [U*]    [X]?       // | 
|  | //        ^       ^        // | 
|  | //         \       \       // | 
|  | //          \      |       // | 
|  | //         [Root*] |       // | 
|  | //          ^      |       // | 
|  | //          f      |       // | 
|  | //          |      /       // | 
|  | //         [Y]    /        // | 
|  | //           ^   /         // | 
|  | //           f  /          // | 
|  | //           | /           // | 
|  | //          [GU]           // | 
|  | // | 
|  | // If GU (glue use) indirectly reaches N (the load), and Root folds N | 
|  | // (call it Fold), then X is a predecessor of GU and a successor of | 
|  | // Fold. But since Fold and GU are glued together, this will create | 
|  | // a cycle in the scheduling graph. | 
|  |  | 
|  | // If the node has glue, walk down the graph to the "lowest" node in the | 
|  | // glueged set. | 
|  | EVT VT = Root->getValueType(Root->getNumValues()-1); | 
|  | while (VT == MVT::Glue) { | 
|  | SDNode *GU = findGlueUse(Root); | 
|  | if (!GU) | 
|  | break; | 
|  | Root = GU; | 
|  | VT = Root->getValueType(Root->getNumValues()-1); | 
|  |  | 
|  | // If our query node has a glue result with a use, we've walked up it.  If | 
|  | // the user (which has already been selected) has a chain or indirectly uses | 
|  | // the chain, our WalkChainUsers predicate will not consider it.  Because of | 
|  | // this, we cannot ignore chains in this predicate. | 
|  | IgnoreChains = false; | 
|  | } | 
|  |  | 
|  | SmallPtrSet<SDNode*, 16> Visited; | 
|  | return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains); | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::Select_INLINEASM(SDNode *N) { | 
|  | SDLoc DL(N); | 
|  |  | 
|  | std::vector<SDValue> Ops(N->op_begin(), N->op_end()); | 
|  | SelectInlineAsmMemoryOperands(Ops, DL); | 
|  |  | 
|  | const EVT VTs[] = {MVT::Other, MVT::Glue}; | 
|  | SDValue New = CurDAG->getNode(ISD::INLINEASM, DL, VTs, Ops); | 
|  | New->setNodeId(-1); | 
|  | ReplaceUses(N, New.getNode()); | 
|  | CurDAG->RemoveDeadNode(N); | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { | 
|  | SDLoc dl(Op); | 
|  | MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); | 
|  | const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); | 
|  | unsigned Reg = | 
|  | TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0), | 
|  | *CurDAG); | 
|  | SDValue New = CurDAG->getCopyFromReg( | 
|  | Op->getOperand(0), dl, Reg, Op->getValueType(0)); | 
|  | New->setNodeId(-1); | 
|  | ReplaceUses(Op, New.getNode()); | 
|  | CurDAG->RemoveDeadNode(Op); | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { | 
|  | SDLoc dl(Op); | 
|  | MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); | 
|  | const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); | 
|  | unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(), | 
|  | Op->getOperand(2).getValueType(), | 
|  | *CurDAG); | 
|  | SDValue New = CurDAG->getCopyToReg( | 
|  | Op->getOperand(0), dl, Reg, Op->getOperand(2)); | 
|  | New->setNodeId(-1); | 
|  | ReplaceUses(Op, New.getNode()); | 
|  | CurDAG->RemoveDeadNode(Op); | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::Select_UNDEF(SDNode *N) { | 
|  | CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// GetVBR - decode a vbr encoding whose top bit is set. | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t | 
|  | GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { | 
|  | assert(Val >= 128 && "Not a VBR"); | 
|  | Val &= 127;  // Remove first vbr bit. | 
|  |  | 
|  | unsigned Shift = 7; | 
|  | uint64_t NextBits; | 
|  | do { | 
|  | NextBits = MatcherTable[Idx++]; | 
|  | Val |= (NextBits&127) << Shift; | 
|  | Shift += 7; | 
|  | } while (NextBits & 128); | 
|  |  | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | /// When a match is complete, this method updates uses of interior chain results | 
|  | /// to use the new results. | 
|  | void SelectionDAGISel::UpdateChains( | 
|  | SDNode *NodeToMatch, SDValue InputChain, | 
|  | SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) { | 
|  | SmallVector<SDNode*, 4> NowDeadNodes; | 
|  |  | 
|  | // Now that all the normal results are replaced, we replace the chain and | 
|  | // glue results if present. | 
|  | if (!ChainNodesMatched.empty()) { | 
|  | assert(InputChain.getNode() && | 
|  | "Matched input chains but didn't produce a chain"); | 
|  | // Loop over all of the nodes we matched that produced a chain result. | 
|  | // Replace all the chain results with the final chain we ended up with. | 
|  | for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { | 
|  | SDNode *ChainNode = ChainNodesMatched[i]; | 
|  | // If ChainNode is null, it's because we replaced it on a previous | 
|  | // iteration and we cleared it out of the map. Just skip it. | 
|  | if (!ChainNode) | 
|  | continue; | 
|  |  | 
|  | assert(ChainNode->getOpcode() != ISD::DELETED_NODE && | 
|  | "Deleted node left in chain"); | 
|  |  | 
|  | // Don't replace the results of the root node if we're doing a | 
|  | // MorphNodeTo. | 
|  | if (ChainNode == NodeToMatch && isMorphNodeTo) | 
|  | continue; | 
|  |  | 
|  | SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); | 
|  | if (ChainVal.getValueType() == MVT::Glue) | 
|  | ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); | 
|  | assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); | 
|  | SelectionDAG::DAGNodeDeletedListener NDL( | 
|  | *CurDAG, [&](SDNode *N, SDNode *E) { | 
|  | std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N, | 
|  | static_cast<SDNode *>(nullptr)); | 
|  | }); | 
|  | CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain); | 
|  |  | 
|  | // If the node became dead and we haven't already seen it, delete it. | 
|  | if (ChainNode != NodeToMatch && ChainNode->use_empty() && | 
|  | !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) | 
|  | NowDeadNodes.push_back(ChainNode); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!NowDeadNodes.empty()) | 
|  | CurDAG->RemoveDeadNodes(NowDeadNodes); | 
|  |  | 
|  | DEBUG(dbgs() << "ISEL: Match complete!\n"); | 
|  | } | 
|  |  | 
|  | enum ChainResult { | 
|  | CR_Simple, | 
|  | CR_InducesCycle, | 
|  | CR_LeadsToInteriorNode | 
|  | }; | 
|  |  | 
|  | /// WalkChainUsers - Walk down the users of the specified chained node that is | 
|  | /// part of the pattern we're matching, looking at all of the users we find. | 
|  | /// This determines whether something is an interior node, whether we have a | 
|  | /// non-pattern node in between two pattern nodes (which prevent folding because | 
|  | /// it would induce a cycle) and whether we have a TokenFactor node sandwiched | 
|  | /// between pattern nodes (in which case the TF becomes part of the pattern). | 
|  | /// | 
|  | /// The walk we do here is guaranteed to be small because we quickly get down to | 
|  | /// already selected nodes "below" us. | 
|  | static ChainResult | 
|  | WalkChainUsers(const SDNode *ChainedNode, | 
|  | SmallVectorImpl<SDNode *> &ChainedNodesInPattern, | 
|  | DenseMap<const SDNode *, ChainResult> &TokenFactorResult, | 
|  | SmallVectorImpl<SDNode *> &InteriorChainedNodes) { | 
|  | ChainResult Result = CR_Simple; | 
|  |  | 
|  | for (SDNode::use_iterator UI = ChainedNode->use_begin(), | 
|  | E = ChainedNode->use_end(); UI != E; ++UI) { | 
|  | // Make sure the use is of the chain, not some other value we produce. | 
|  | if (UI.getUse().getValueType() != MVT::Other) continue; | 
|  |  | 
|  | SDNode *User = *UI; | 
|  |  | 
|  | if (User->getOpcode() == ISD::HANDLENODE)  // Root of the graph. | 
|  | continue; | 
|  |  | 
|  | // If we see an already-selected machine node, then we've gone beyond the | 
|  | // pattern that we're selecting down into the already selected chunk of the | 
|  | // DAG. | 
|  | unsigned UserOpcode = User->getOpcode(); | 
|  | if (User->isMachineOpcode() || | 
|  | UserOpcode == ISD::CopyToReg || | 
|  | UserOpcode == ISD::CopyFromReg || | 
|  | UserOpcode == ISD::INLINEASM || | 
|  | UserOpcode == ISD::EH_LABEL || | 
|  | UserOpcode == ISD::LIFETIME_START || | 
|  | UserOpcode == ISD::LIFETIME_END) { | 
|  | // If their node ID got reset to -1 then they've already been selected. | 
|  | // Treat them like a MachineOpcode. | 
|  | if (User->getNodeId() == -1) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we have a TokenFactor, we handle it specially. | 
|  | if (User->getOpcode() != ISD::TokenFactor) { | 
|  | // If the node isn't a token factor and isn't part of our pattern, then it | 
|  | // must be a random chained node in between two nodes we're selecting. | 
|  | // This happens when we have something like: | 
|  | //   x = load ptr | 
|  | //   call | 
|  | //   y = x+4 | 
|  | //   store y -> ptr | 
|  | // Because we structurally match the load/store as a read/modify/write, | 
|  | // but the call is chained between them.  We cannot fold in this case | 
|  | // because it would induce a cycle in the graph. | 
|  | if (!std::count(ChainedNodesInPattern.begin(), | 
|  | ChainedNodesInPattern.end(), User)) | 
|  | return CR_InducesCycle; | 
|  |  | 
|  | // Otherwise we found a node that is part of our pattern.  For example in: | 
|  | //   x = load ptr | 
|  | //   y = x+4 | 
|  | //   store y -> ptr | 
|  | // This would happen when we're scanning down from the load and see the | 
|  | // store as a user.  Record that there is a use of ChainedNode that is | 
|  | // part of the pattern and keep scanning uses. | 
|  | Result = CR_LeadsToInteriorNode; | 
|  | InteriorChainedNodes.push_back(User); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we found a TokenFactor, there are two cases to consider: first if the | 
|  | // TokenFactor is just hanging "below" the pattern we're matching (i.e. no | 
|  | // uses of the TF are in our pattern) we just want to ignore it.  Second, | 
|  | // the TokenFactor can be sandwiched in between two chained nodes, like so: | 
|  | //     [Load chain] | 
|  | //         ^ | 
|  | //         | | 
|  | //       [Load] | 
|  | //       ^    ^ | 
|  | //       |    \                    DAG's like cheese | 
|  | //      /       \                       do you? | 
|  | //     /         | | 
|  | // [TokenFactor] [Op] | 
|  | //     ^          ^ | 
|  | //     |          | | 
|  | //      \        / | 
|  | //       \      / | 
|  | //       [Store] | 
|  | // | 
|  | // In this case, the TokenFactor becomes part of our match and we rewrite it | 
|  | // as a new TokenFactor. | 
|  | // | 
|  | // To distinguish these two cases, do a recursive walk down the uses. | 
|  | auto MemoizeResult = TokenFactorResult.find(User); | 
|  | bool Visited = MemoizeResult != TokenFactorResult.end(); | 
|  | // Recursively walk chain users only if the result is not memoized. | 
|  | if (!Visited) { | 
|  | auto Res = WalkChainUsers(User, ChainedNodesInPattern, TokenFactorResult, | 
|  | InteriorChainedNodes); | 
|  | MemoizeResult = TokenFactorResult.insert(std::make_pair(User, Res)).first; | 
|  | } | 
|  | switch (MemoizeResult->second) { | 
|  | case CR_Simple: | 
|  | // If the uses of the TokenFactor are just already-selected nodes, ignore | 
|  | // it, it is "below" our pattern. | 
|  | continue; | 
|  | case CR_InducesCycle: | 
|  | // If the uses of the TokenFactor lead to nodes that are not part of our | 
|  | // pattern that are not selected, folding would turn this into a cycle, | 
|  | // bail out now. | 
|  | return CR_InducesCycle; | 
|  | case CR_LeadsToInteriorNode: | 
|  | break;  // Otherwise, keep processing. | 
|  | } | 
|  |  | 
|  | // Okay, we know we're in the interesting interior case.  The TokenFactor | 
|  | // is now going to be considered part of the pattern so that we rewrite its | 
|  | // uses (it may have uses that are not part of the pattern) with the | 
|  | // ultimate chain result of the generated code.  We will also add its chain | 
|  | // inputs as inputs to the ultimate TokenFactor we create. | 
|  | Result = CR_LeadsToInteriorNode; | 
|  | if (!Visited) { | 
|  | ChainedNodesInPattern.push_back(User); | 
|  | InteriorChainedNodes.push_back(User); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains | 
|  | /// operation for when the pattern matched at least one node with a chains.  The | 
|  | /// input vector contains a list of all of the chained nodes that we match.  We | 
|  | /// must determine if this is a valid thing to cover (i.e. matching it won't | 
|  | /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will | 
|  | /// be used as the input node chain for the generated nodes. | 
|  | static SDValue | 
|  | HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, | 
|  | SelectionDAG *CurDAG) { | 
|  | // Used for memoization. Without it WalkChainUsers could take exponential | 
|  | // time to run. | 
|  | DenseMap<const SDNode *, ChainResult> TokenFactorResult; | 
|  | // Walk all of the chained nodes we've matched, recursively scanning down the | 
|  | // users of the chain result. This adds any TokenFactor nodes that are caught | 
|  | // in between chained nodes to the chained and interior nodes list. | 
|  | SmallVector<SDNode*, 3> InteriorChainedNodes; | 
|  | for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { | 
|  | if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched, | 
|  | TokenFactorResult, | 
|  | InteriorChainedNodes) == CR_InducesCycle) | 
|  | return SDValue(); // Would induce a cycle. | 
|  | } | 
|  |  | 
|  | // Okay, we have walked all the matched nodes and collected TokenFactor nodes | 
|  | // that we are interested in.  Form our input TokenFactor node. | 
|  | SmallVector<SDValue, 3> InputChains; | 
|  | for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { | 
|  | // Add the input chain of this node to the InputChains list (which will be | 
|  | // the operands of the generated TokenFactor) if it's not an interior node. | 
|  | SDNode *N = ChainNodesMatched[i]; | 
|  | if (N->getOpcode() != ISD::TokenFactor) { | 
|  | if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N)) | 
|  | continue; | 
|  |  | 
|  | // Otherwise, add the input chain. | 
|  | SDValue InChain = ChainNodesMatched[i]->getOperand(0); | 
|  | assert(InChain.getValueType() == MVT::Other && "Not a chain"); | 
|  | InputChains.push_back(InChain); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we have a token factor, we want to add all inputs of the token factor | 
|  | // that are not part of the pattern we're matching. | 
|  | for (const SDValue &Op : N->op_values()) { | 
|  | if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(), | 
|  | Op.getNode())) | 
|  | InputChains.push_back(Op); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (InputChains.size() == 1) | 
|  | return InputChains[0]; | 
|  | return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), | 
|  | MVT::Other, InputChains); | 
|  | } | 
|  |  | 
|  | /// MorphNode - Handle morphing a node in place for the selector. | 
|  | SDNode *SelectionDAGISel:: | 
|  | MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, | 
|  | ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { | 
|  | // It is possible we're using MorphNodeTo to replace a node with no | 
|  | // normal results with one that has a normal result (or we could be | 
|  | // adding a chain) and the input could have glue and chains as well. | 
|  | // In this case we need to shift the operands down. | 
|  | // FIXME: This is a horrible hack and broken in obscure cases, no worse | 
|  | // than the old isel though. | 
|  | int OldGlueResultNo = -1, OldChainResultNo = -1; | 
|  |  | 
|  | unsigned NTMNumResults = Node->getNumValues(); | 
|  | if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { | 
|  | OldGlueResultNo = NTMNumResults-1; | 
|  | if (NTMNumResults != 1 && | 
|  | Node->getValueType(NTMNumResults-2) == MVT::Other) | 
|  | OldChainResultNo = NTMNumResults-2; | 
|  | } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) | 
|  | OldChainResultNo = NTMNumResults-1; | 
|  |  | 
|  | // Call the underlying SelectionDAG routine to do the transmogrification. Note | 
|  | // that this deletes operands of the old node that become dead. | 
|  | SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); | 
|  |  | 
|  | // MorphNodeTo can operate in two ways: if an existing node with the | 
|  | // specified operands exists, it can just return it.  Otherwise, it | 
|  | // updates the node in place to have the requested operands. | 
|  | if (Res == Node) { | 
|  | // If we updated the node in place, reset the node ID.  To the isel, | 
|  | // this should be just like a newly allocated machine node. | 
|  | Res->setNodeId(-1); | 
|  | } | 
|  |  | 
|  | unsigned ResNumResults = Res->getNumValues(); | 
|  | // Move the glue if needed. | 
|  | if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && | 
|  | (unsigned)OldGlueResultNo != ResNumResults-1) | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo), | 
|  | SDValue(Res, ResNumResults-1)); | 
|  |  | 
|  | if ((EmitNodeInfo & OPFL_GlueOutput) != 0) | 
|  | --ResNumResults; | 
|  |  | 
|  | // Move the chain reference if needed. | 
|  | if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && | 
|  | (unsigned)OldChainResultNo != ResNumResults-1) | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo), | 
|  | SDValue(Res, ResNumResults-1)); | 
|  |  | 
|  | // Otherwise, no replacement happened because the node already exists. Replace | 
|  | // Uses of the old node with the new one. | 
|  | if (Res != Node) { | 
|  | CurDAG->ReplaceAllUsesWith(Node, Res); | 
|  | CurDAG->RemoveDeadNode(Node); | 
|  | } | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | /// CheckSame - Implements OP_CheckSame. | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool | 
|  | CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, | 
|  | const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { | 
|  | // Accept if it is exactly the same as a previously recorded node. | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); | 
|  | return N == RecordedNodes[RecNo].first; | 
|  | } | 
|  |  | 
|  | /// CheckChildSame - Implements OP_CheckChildXSame. | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool | 
|  | CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, | 
|  | const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes, | 
|  | unsigned ChildNo) { | 
|  | if (ChildNo >= N.getNumOperands()) | 
|  | return false;  // Match fails if out of range child #. | 
|  | return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), | 
|  | RecordedNodes); | 
|  | } | 
|  |  | 
|  | /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool | 
|  | CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | const SelectionDAGISel &SDISel) { | 
|  | return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); | 
|  | } | 
|  |  | 
|  | /// CheckNodePredicate - Implements OP_CheckNodePredicate. | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool | 
|  | CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | const SelectionDAGISel &SDISel, SDNode *N) { | 
|  | return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool | 
|  | CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDNode *N) { | 
|  | uint16_t Opc = MatcherTable[MatcherIndex++]; | 
|  | Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; | 
|  | return N->getOpcode() == Opc; | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool | 
|  | CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, | 
|  | const TargetLowering *TLI, const DataLayout &DL) { | 
|  | MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | if (N.getValueType() == VT) return true; | 
|  |  | 
|  | // Handle the case when VT is iPTR. | 
|  | return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool | 
|  | CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, const TargetLowering *TLI, const DataLayout &DL, | 
|  | unsigned ChildNo) { | 
|  | if (ChildNo >= N.getNumOperands()) | 
|  | return false;  // Match fails if out of range child #. | 
|  | return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI, | 
|  | DL); | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool | 
|  | CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N) { | 
|  | return cast<CondCodeSDNode>(N)->get() == | 
|  | (ISD::CondCode)MatcherTable[MatcherIndex++]; | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool | 
|  | CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, const TargetLowering *TLI, const DataLayout &DL) { | 
|  | MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | if (cast<VTSDNode>(N)->getVT() == VT) | 
|  | return true; | 
|  |  | 
|  | // Handle the case when VT is iPTR. | 
|  | return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL); | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool | 
|  | CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N) { | 
|  | int64_t Val = MatcherTable[MatcherIndex++]; | 
|  | if (Val & 128) | 
|  | Val = GetVBR(Val, MatcherTable, MatcherIndex); | 
|  |  | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); | 
|  | return C && C->getSExtValue() == Val; | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool | 
|  | CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, unsigned ChildNo) { | 
|  | if (ChildNo >= N.getNumOperands()) | 
|  | return false;  // Match fails if out of range child #. | 
|  | return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool | 
|  | CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, const SelectionDAGISel &SDISel) { | 
|  | int64_t Val = MatcherTable[MatcherIndex++]; | 
|  | if (Val & 128) | 
|  | Val = GetVBR(Val, MatcherTable, MatcherIndex); | 
|  |  | 
|  | if (N->getOpcode() != ISD::AND) return false; | 
|  |  | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool | 
|  | CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, const SelectionDAGISel &SDISel) { | 
|  | int64_t Val = MatcherTable[MatcherIndex++]; | 
|  | if (Val & 128) | 
|  | Val = GetVBR(Val, MatcherTable, MatcherIndex); | 
|  |  | 
|  | if (N->getOpcode() != ISD::OR) return false; | 
|  |  | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); | 
|  | } | 
|  |  | 
|  | /// IsPredicateKnownToFail - If we know how and can do so without pushing a | 
|  | /// scope, evaluate the current node.  If the current predicate is known to | 
|  | /// fail, set Result=true and return anything.  If the current predicate is | 
|  | /// known to pass, set Result=false and return the MatcherIndex to continue | 
|  | /// with.  If the current predicate is unknown, set Result=false and return the | 
|  | /// MatcherIndex to continue with. | 
|  | static unsigned IsPredicateKnownToFail(const unsigned char *Table, | 
|  | unsigned Index, SDValue N, | 
|  | bool &Result, | 
|  | const SelectionDAGISel &SDISel, | 
|  | SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { | 
|  | switch (Table[Index++]) { | 
|  | default: | 
|  | Result = false; | 
|  | return Index-1;  // Could not evaluate this predicate. | 
|  | case SelectionDAGISel::OPC_CheckSame: | 
|  | Result = !::CheckSame(Table, Index, N, RecordedNodes); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckChild0Same: | 
|  | case SelectionDAGISel::OPC_CheckChild1Same: | 
|  | case SelectionDAGISel::OPC_CheckChild2Same: | 
|  | case SelectionDAGISel::OPC_CheckChild3Same: | 
|  | Result = !::CheckChildSame(Table, Index, N, RecordedNodes, | 
|  | Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckPatternPredicate: | 
|  | Result = !::CheckPatternPredicate(Table, Index, SDISel); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckPredicate: | 
|  | Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckOpcode: | 
|  | Result = !::CheckOpcode(Table, Index, N.getNode()); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckType: | 
|  | Result = !::CheckType(Table, Index, N, SDISel.TLI, | 
|  | SDISel.CurDAG->getDataLayout()); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckChild0Type: | 
|  | case SelectionDAGISel::OPC_CheckChild1Type: | 
|  | case SelectionDAGISel::OPC_CheckChild2Type: | 
|  | case SelectionDAGISel::OPC_CheckChild3Type: | 
|  | case SelectionDAGISel::OPC_CheckChild4Type: | 
|  | case SelectionDAGISel::OPC_CheckChild5Type: | 
|  | case SelectionDAGISel::OPC_CheckChild6Type: | 
|  | case SelectionDAGISel::OPC_CheckChild7Type: | 
|  | Result = !::CheckChildType( | 
|  | Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(), | 
|  | Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckCondCode: | 
|  | Result = !::CheckCondCode(Table, Index, N); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckValueType: | 
|  | Result = !::CheckValueType(Table, Index, N, SDISel.TLI, | 
|  | SDISel.CurDAG->getDataLayout()); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckInteger: | 
|  | Result = !::CheckInteger(Table, Index, N); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckChild0Integer: | 
|  | case SelectionDAGISel::OPC_CheckChild1Integer: | 
|  | case SelectionDAGISel::OPC_CheckChild2Integer: | 
|  | case SelectionDAGISel::OPC_CheckChild3Integer: | 
|  | case SelectionDAGISel::OPC_CheckChild4Integer: | 
|  | Result = !::CheckChildInteger(Table, Index, N, | 
|  | Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckAndImm: | 
|  | Result = !::CheckAndImm(Table, Index, N, SDISel); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckOrImm: | 
|  | Result = !::CheckOrImm(Table, Index, N, SDISel); | 
|  | return Index; | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct MatchScope { | 
|  | /// FailIndex - If this match fails, this is the index to continue with. | 
|  | unsigned FailIndex; | 
|  |  | 
|  | /// NodeStack - The node stack when the scope was formed. | 
|  | SmallVector<SDValue, 4> NodeStack; | 
|  |  | 
|  | /// NumRecordedNodes - The number of recorded nodes when the scope was formed. | 
|  | unsigned NumRecordedNodes; | 
|  |  | 
|  | /// NumMatchedMemRefs - The number of matched memref entries. | 
|  | unsigned NumMatchedMemRefs; | 
|  |  | 
|  | /// InputChain/InputGlue - The current chain/glue | 
|  | SDValue InputChain, InputGlue; | 
|  |  | 
|  | /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. | 
|  | bool HasChainNodesMatched; | 
|  | }; | 
|  |  | 
|  | /// \\brief A DAG update listener to keep the matching state | 
|  | /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to | 
|  | /// change the DAG while matching.  X86 addressing mode matcher is an example | 
|  | /// for this. | 
|  | class MatchStateUpdater : public SelectionDAG::DAGUpdateListener | 
|  | { | 
|  | SDNode **NodeToMatch; | 
|  | SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes; | 
|  | SmallVectorImpl<MatchScope> &MatchScopes; | 
|  |  | 
|  | public: | 
|  | MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch, | 
|  | SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN, | 
|  | SmallVectorImpl<MatchScope> &MS) | 
|  | : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch), | 
|  | RecordedNodes(RN), MatchScopes(MS) {} | 
|  |  | 
|  | void NodeDeleted(SDNode *N, SDNode *E) override { | 
|  | // Some early-returns here to avoid the search if we deleted the node or | 
|  | // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we | 
|  | // do, so it's unnecessary to update matching state at that point). | 
|  | // Neither of these can occur currently because we only install this | 
|  | // update listener during matching a complex patterns. | 
|  | if (!E || E->isMachineOpcode()) | 
|  | return; | 
|  | // Check if NodeToMatch was updated. | 
|  | if (N == *NodeToMatch) | 
|  | *NodeToMatch = E; | 
|  | // Performing linear search here does not matter because we almost never | 
|  | // run this code.  You'd have to have a CSE during complex pattern | 
|  | // matching. | 
|  | for (auto &I : RecordedNodes) | 
|  | if (I.first.getNode() == N) | 
|  | I.first.setNode(E); | 
|  |  | 
|  | for (auto &I : MatchScopes) | 
|  | for (auto &J : I.NodeStack) | 
|  | if (J.getNode() == N) | 
|  | J.setNode(E); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, | 
|  | const unsigned char *MatcherTable, | 
|  | unsigned TableSize) { | 
|  | // FIXME: Should these even be selected?  Handle these cases in the caller? | 
|  | switch (NodeToMatch->getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case ISD::EntryToken:       // These nodes remain the same. | 
|  | case ISD::BasicBlock: | 
|  | case ISD::Register: | 
|  | case ISD::RegisterMask: | 
|  | case ISD::HANDLENODE: | 
|  | case ISD::MDNODE_SDNODE: | 
|  | case ISD::TargetConstant: | 
|  | case ISD::TargetConstantFP: | 
|  | case ISD::TargetConstantPool: | 
|  | case ISD::TargetFrameIndex: | 
|  | case ISD::TargetExternalSymbol: | 
|  | case ISD::MCSymbol: | 
|  | case ISD::TargetBlockAddress: | 
|  | case ISD::TargetJumpTable: | 
|  | case ISD::TargetGlobalTLSAddress: | 
|  | case ISD::TargetGlobalAddress: | 
|  | case ISD::TokenFactor: | 
|  | case ISD::CopyFromReg: | 
|  | case ISD::CopyToReg: | 
|  | case ISD::EH_LABEL: | 
|  | case ISD::ANNOTATION_LABEL: | 
|  | case ISD::LIFETIME_START: | 
|  | case ISD::LIFETIME_END: | 
|  | NodeToMatch->setNodeId(-1); // Mark selected. | 
|  | return; | 
|  | case ISD::AssertSext: | 
|  | case ISD::AssertZext: | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0), | 
|  | NodeToMatch->getOperand(0)); | 
|  | CurDAG->RemoveDeadNode(NodeToMatch); | 
|  | return; | 
|  | case ISD::INLINEASM: | 
|  | Select_INLINEASM(NodeToMatch); | 
|  | return; | 
|  | case ISD::READ_REGISTER: | 
|  | Select_READ_REGISTER(NodeToMatch); | 
|  | return; | 
|  | case ISD::WRITE_REGISTER: | 
|  | Select_WRITE_REGISTER(NodeToMatch); | 
|  | return; | 
|  | case ISD::UNDEF: | 
|  | Select_UNDEF(NodeToMatch); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); | 
|  |  | 
|  | // Set up the node stack with NodeToMatch as the only node on the stack. | 
|  | SmallVector<SDValue, 8> NodeStack; | 
|  | SDValue N = SDValue(NodeToMatch, 0); | 
|  | NodeStack.push_back(N); | 
|  |  | 
|  | // MatchScopes - Scopes used when matching, if a match failure happens, this | 
|  | // indicates where to continue checking. | 
|  | SmallVector<MatchScope, 8> MatchScopes; | 
|  |  | 
|  | // RecordedNodes - This is the set of nodes that have been recorded by the | 
|  | // state machine.  The second value is the parent of the node, or null if the | 
|  | // root is recorded. | 
|  | SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; | 
|  |  | 
|  | // MatchedMemRefs - This is the set of MemRef's we've seen in the input | 
|  | // pattern. | 
|  | SmallVector<MachineMemOperand*, 2> MatchedMemRefs; | 
|  |  | 
|  | // These are the current input chain and glue for use when generating nodes. | 
|  | // Various Emit operations change these.  For example, emitting a copytoreg | 
|  | // uses and updates these. | 
|  | SDValue InputChain, InputGlue; | 
|  |  | 
|  | // ChainNodesMatched - If a pattern matches nodes that have input/output | 
|  | // chains, the OPC_EmitMergeInputChains operation is emitted which indicates | 
|  | // which ones they are.  The result is captured into this list so that we can | 
|  | // update the chain results when the pattern is complete. | 
|  | SmallVector<SDNode*, 3> ChainNodesMatched; | 
|  |  | 
|  | DEBUG(dbgs() << "ISEL: Starting pattern match on root node: "; | 
|  | NodeToMatch->dump(CurDAG); | 
|  | dbgs() << '\n'); | 
|  |  | 
|  | // Determine where to start the interpreter.  Normally we start at opcode #0, | 
|  | // but if the state machine starts with an OPC_SwitchOpcode, then we | 
|  | // accelerate the first lookup (which is guaranteed to be hot) with the | 
|  | // OpcodeOffset table. | 
|  | unsigned MatcherIndex = 0; | 
|  |  | 
|  | if (!OpcodeOffset.empty()) { | 
|  | // Already computed the OpcodeOffset table, just index into it. | 
|  | if (N.getOpcode() < OpcodeOffset.size()) | 
|  | MatcherIndex = OpcodeOffset[N.getOpcode()]; | 
|  | DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n"); | 
|  |  | 
|  | } else if (MatcherTable[0] == OPC_SwitchOpcode) { | 
|  | // Otherwise, the table isn't computed, but the state machine does start | 
|  | // with an OPC_SwitchOpcode instruction.  Populate the table now, since this | 
|  | // is the first time we're selecting an instruction. | 
|  | unsigned Idx = 1; | 
|  | while (true) { | 
|  | // Get the size of this case. | 
|  | unsigned CaseSize = MatcherTable[Idx++]; | 
|  | if (CaseSize & 128) | 
|  | CaseSize = GetVBR(CaseSize, MatcherTable, Idx); | 
|  | if (CaseSize == 0) break; | 
|  |  | 
|  | // Get the opcode, add the index to the table. | 
|  | uint16_t Opc = MatcherTable[Idx++]; | 
|  | Opc |= (unsigned short)MatcherTable[Idx++] << 8; | 
|  | if (Opc >= OpcodeOffset.size()) | 
|  | OpcodeOffset.resize((Opc+1)*2); | 
|  | OpcodeOffset[Opc] = Idx; | 
|  | Idx += CaseSize; | 
|  | } | 
|  |  | 
|  | // Okay, do the lookup for the first opcode. | 
|  | if (N.getOpcode() < OpcodeOffset.size()) | 
|  | MatcherIndex = OpcodeOffset[N.getOpcode()]; | 
|  | } | 
|  |  | 
|  | while (true) { | 
|  | assert(MatcherIndex < TableSize && "Invalid index"); | 
|  | #ifndef NDEBUG | 
|  | unsigned CurrentOpcodeIndex = MatcherIndex; | 
|  | #endif | 
|  | BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; | 
|  | switch (Opcode) { | 
|  | case OPC_Scope: { | 
|  | // Okay, the semantics of this operation are that we should push a scope | 
|  | // then evaluate the first child.  However, pushing a scope only to have | 
|  | // the first check fail (which then pops it) is inefficient.  If we can | 
|  | // determine immediately that the first check (or first several) will | 
|  | // immediately fail, don't even bother pushing a scope for them. | 
|  | unsigned FailIndex; | 
|  |  | 
|  | while (true) { | 
|  | unsigned NumToSkip = MatcherTable[MatcherIndex++]; | 
|  | if (NumToSkip & 128) | 
|  | NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); | 
|  | // Found the end of the scope with no match. | 
|  | if (NumToSkip == 0) { | 
|  | FailIndex = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | FailIndex = MatcherIndex+NumToSkip; | 
|  |  | 
|  | unsigned MatcherIndexOfPredicate = MatcherIndex; | 
|  | (void)MatcherIndexOfPredicate; // silence warning. | 
|  |  | 
|  | // If we can't evaluate this predicate without pushing a scope (e.g. if | 
|  | // it is a 'MoveParent') or if the predicate succeeds on this node, we | 
|  | // push the scope and evaluate the full predicate chain. | 
|  | bool Result; | 
|  | MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, | 
|  | Result, *this, RecordedNodes); | 
|  | if (!Result) | 
|  | break; | 
|  |  | 
|  | DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at " | 
|  | << "index " << MatcherIndexOfPredicate | 
|  | << ", continuing at " << FailIndex << "\n"); | 
|  | ++NumDAGIselRetries; | 
|  |  | 
|  | // Otherwise, we know that this case of the Scope is guaranteed to fail, | 
|  | // move to the next case. | 
|  | MatcherIndex = FailIndex; | 
|  | } | 
|  |  | 
|  | // If the whole scope failed to match, bail. | 
|  | if (FailIndex == 0) break; | 
|  |  | 
|  | // Push a MatchScope which indicates where to go if the first child fails | 
|  | // to match. | 
|  | MatchScope NewEntry; | 
|  | NewEntry.FailIndex = FailIndex; | 
|  | NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); | 
|  | NewEntry.NumRecordedNodes = RecordedNodes.size(); | 
|  | NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); | 
|  | NewEntry.InputChain = InputChain; | 
|  | NewEntry.InputGlue = InputGlue; | 
|  | NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); | 
|  | MatchScopes.push_back(NewEntry); | 
|  | continue; | 
|  | } | 
|  | case OPC_RecordNode: { | 
|  | // Remember this node, it may end up being an operand in the pattern. | 
|  | SDNode *Parent = nullptr; | 
|  | if (NodeStack.size() > 1) | 
|  | Parent = NodeStack[NodeStack.size()-2].getNode(); | 
|  | RecordedNodes.push_back(std::make_pair(N, Parent)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_RecordChild0: case OPC_RecordChild1: | 
|  | case OPC_RecordChild2: case OPC_RecordChild3: | 
|  | case OPC_RecordChild4: case OPC_RecordChild5: | 
|  | case OPC_RecordChild6: case OPC_RecordChild7: { | 
|  | unsigned ChildNo = Opcode-OPC_RecordChild0; | 
|  | if (ChildNo >= N.getNumOperands()) | 
|  | break;  // Match fails if out of range child #. | 
|  |  | 
|  | RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), | 
|  | N.getNode())); | 
|  | continue; | 
|  | } | 
|  | case OPC_RecordMemRef: | 
|  | MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand()); | 
|  | continue; | 
|  |  | 
|  | case OPC_CaptureGlueInput: | 
|  | // If the current node has an input glue, capture it in InputGlue. | 
|  | if (N->getNumOperands() != 0 && | 
|  | N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) | 
|  | InputGlue = N->getOperand(N->getNumOperands()-1); | 
|  | continue; | 
|  |  | 
|  | case OPC_MoveChild: { | 
|  | unsigned ChildNo = MatcherTable[MatcherIndex++]; | 
|  | if (ChildNo >= N.getNumOperands()) | 
|  | break;  // Match fails if out of range child #. | 
|  | N = N.getOperand(ChildNo); | 
|  | NodeStack.push_back(N); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_MoveChild0: case OPC_MoveChild1: | 
|  | case OPC_MoveChild2: case OPC_MoveChild3: | 
|  | case OPC_MoveChild4: case OPC_MoveChild5: | 
|  | case OPC_MoveChild6: case OPC_MoveChild7: { | 
|  | unsigned ChildNo = Opcode-OPC_MoveChild0; | 
|  | if (ChildNo >= N.getNumOperands()) | 
|  | break;  // Match fails if out of range child #. | 
|  | N = N.getOperand(ChildNo); | 
|  | NodeStack.push_back(N); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_MoveParent: | 
|  | // Pop the current node off the NodeStack. | 
|  | NodeStack.pop_back(); | 
|  | assert(!NodeStack.empty() && "Node stack imbalance!"); | 
|  | N = NodeStack.back(); | 
|  | continue; | 
|  |  | 
|  | case OPC_CheckSame: | 
|  | if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; | 
|  | continue; | 
|  |  | 
|  | case OPC_CheckChild0Same: case OPC_CheckChild1Same: | 
|  | case OPC_CheckChild2Same: case OPC_CheckChild3Same: | 
|  | if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, | 
|  | Opcode-OPC_CheckChild0Same)) | 
|  | break; | 
|  | continue; | 
|  |  | 
|  | case OPC_CheckPatternPredicate: | 
|  | if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; | 
|  | continue; | 
|  | case OPC_CheckPredicate: | 
|  | if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, | 
|  | N.getNode())) | 
|  | break; | 
|  | continue; | 
|  | case OPC_CheckComplexPat: { | 
|  | unsigned CPNum = MatcherTable[MatcherIndex++]; | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); | 
|  |  | 
|  | // If target can modify DAG during matching, keep the matching state | 
|  | // consistent. | 
|  | std::unique_ptr<MatchStateUpdater> MSU; | 
|  | if (ComplexPatternFuncMutatesDAG()) | 
|  | MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes, | 
|  | MatchScopes)); | 
|  |  | 
|  | if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, | 
|  | RecordedNodes[RecNo].first, CPNum, | 
|  | RecordedNodes)) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  | case OPC_CheckOpcode: | 
|  | if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; | 
|  | continue; | 
|  |  | 
|  | case OPC_CheckType: | 
|  | if (!::CheckType(MatcherTable, MatcherIndex, N, TLI, | 
|  | CurDAG->getDataLayout())) | 
|  | break; | 
|  | continue; | 
|  |  | 
|  | case OPC_SwitchOpcode: { | 
|  | unsigned CurNodeOpcode = N.getOpcode(); | 
|  | unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; | 
|  | unsigned CaseSize; | 
|  | while (true) { | 
|  | // Get the size of this case. | 
|  | CaseSize = MatcherTable[MatcherIndex++]; | 
|  | if (CaseSize & 128) | 
|  | CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); | 
|  | if (CaseSize == 0) break; | 
|  |  | 
|  | uint16_t Opc = MatcherTable[MatcherIndex++]; | 
|  | Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; | 
|  |  | 
|  | // If the opcode matches, then we will execute this case. | 
|  | if (CurNodeOpcode == Opc) | 
|  | break; | 
|  |  | 
|  | // Otherwise, skip over this case. | 
|  | MatcherIndex += CaseSize; | 
|  | } | 
|  |  | 
|  | // If no cases matched, bail out. | 
|  | if (CaseSize == 0) break; | 
|  |  | 
|  | // Otherwise, execute the case we found. | 
|  | DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart | 
|  | << " to " << MatcherIndex << "\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_SwitchType: { | 
|  | MVT CurNodeVT = N.getSimpleValueType(); | 
|  | unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; | 
|  | unsigned CaseSize; | 
|  | while (true) { | 
|  | // Get the size of this case. | 
|  | CaseSize = MatcherTable[MatcherIndex++]; | 
|  | if (CaseSize & 128) | 
|  | CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); | 
|  | if (CaseSize == 0) break; | 
|  |  | 
|  | MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | if (CaseVT == MVT::iPTR) | 
|  | CaseVT = TLI->getPointerTy(CurDAG->getDataLayout()); | 
|  |  | 
|  | // If the VT matches, then we will execute this case. | 
|  | if (CurNodeVT == CaseVT) | 
|  | break; | 
|  |  | 
|  | // Otherwise, skip over this case. | 
|  | MatcherIndex += CaseSize; | 
|  | } | 
|  |  | 
|  | // If no cases matched, bail out. | 
|  | if (CaseSize == 0) break; | 
|  |  | 
|  | // Otherwise, execute the case we found. | 
|  | DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString() | 
|  | << "] from " << SwitchStart << " to " << MatcherIndex<<'\n'); | 
|  | continue; | 
|  | } | 
|  | case OPC_CheckChild0Type: case OPC_CheckChild1Type: | 
|  | case OPC_CheckChild2Type: case OPC_CheckChild3Type: | 
|  | case OPC_CheckChild4Type: case OPC_CheckChild5Type: | 
|  | case OPC_CheckChild6Type: case OPC_CheckChild7Type: | 
|  | if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, | 
|  | CurDAG->getDataLayout(), | 
|  | Opcode - OPC_CheckChild0Type)) | 
|  | break; | 
|  | continue; | 
|  | case OPC_CheckCondCode: | 
|  | if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; | 
|  | continue; | 
|  | case OPC_CheckValueType: | 
|  | if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, | 
|  | CurDAG->getDataLayout())) | 
|  | break; | 
|  | continue; | 
|  | case OPC_CheckInteger: | 
|  | if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; | 
|  | continue; | 
|  | case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: | 
|  | case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: | 
|  | case OPC_CheckChild4Integer: | 
|  | if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, | 
|  | Opcode-OPC_CheckChild0Integer)) break; | 
|  | continue; | 
|  | case OPC_CheckAndImm: | 
|  | if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; | 
|  | continue; | 
|  | case OPC_CheckOrImm: | 
|  | if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; | 
|  | continue; | 
|  |  | 
|  | case OPC_CheckFoldableChainNode: { | 
|  | assert(NodeStack.size() != 1 && "No parent node"); | 
|  | // Verify that all intermediate nodes between the root and this one have | 
|  | // a single use. | 
|  | bool HasMultipleUses = false; | 
|  | for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) | 
|  | if (!NodeStack[i].getNode()->hasOneUse()) { | 
|  | HasMultipleUses = true; | 
|  | break; | 
|  | } | 
|  | if (HasMultipleUses) break; | 
|  |  | 
|  | // Check to see that the target thinks this is profitable to fold and that | 
|  | // we can fold it without inducing cycles in the graph. | 
|  | if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), | 
|  | NodeToMatch) || | 
|  | !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), | 
|  | NodeToMatch, OptLevel, | 
|  | true/*We validate our own chains*/)) | 
|  | break; | 
|  |  | 
|  | continue; | 
|  | } | 
|  | case OPC_EmitInteger: { | 
|  | MVT::SimpleValueType VT = | 
|  | (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | int64_t Val = MatcherTable[MatcherIndex++]; | 
|  | if (Val & 128) | 
|  | Val = GetVBR(Val, MatcherTable, MatcherIndex); | 
|  | RecordedNodes.push_back(std::pair<SDValue, SDNode*>( | 
|  | CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), | 
|  | VT), nullptr)); | 
|  | continue; | 
|  | } | 
|  | case OPC_EmitRegister: { | 
|  | MVT::SimpleValueType VT = | 
|  | (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | unsigned RegNo = MatcherTable[MatcherIndex++]; | 
|  | RecordedNodes.push_back(std::pair<SDValue, SDNode*>( | 
|  | CurDAG->getRegister(RegNo, VT), nullptr)); | 
|  | continue; | 
|  | } | 
|  | case OPC_EmitRegister2: { | 
|  | // For targets w/ more than 256 register names, the register enum | 
|  | // values are stored in two bytes in the matcher table (just like | 
|  | // opcodes). | 
|  | MVT::SimpleValueType VT = | 
|  | (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | unsigned RegNo = MatcherTable[MatcherIndex++]; | 
|  | RegNo |= MatcherTable[MatcherIndex++] << 8; | 
|  | RecordedNodes.push_back(std::pair<SDValue, SDNode*>( | 
|  | CurDAG->getRegister(RegNo, VT), nullptr)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_EmitConvertToTarget:  { | 
|  | // Convert from IMM/FPIMM to target version. | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); | 
|  | SDValue Imm = RecordedNodes[RecNo].first; | 
|  |  | 
|  | if (Imm->getOpcode() == ISD::Constant) { | 
|  | const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue(); | 
|  | Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch), | 
|  | Imm.getValueType()); | 
|  | } else if (Imm->getOpcode() == ISD::ConstantFP) { | 
|  | const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); | 
|  | Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch), | 
|  | Imm.getValueType()); | 
|  | } | 
|  |  | 
|  | RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0 | 
|  | case OPC_EmitMergeInputChains1_1:    // OPC_EmitMergeInputChains, 1, 1 | 
|  | case OPC_EmitMergeInputChains1_2: {  // OPC_EmitMergeInputChains, 1, 2 | 
|  | // These are space-optimized forms of OPC_EmitMergeInputChains. | 
|  | assert(!InputChain.getNode() && | 
|  | "EmitMergeInputChains should be the first chain producing node"); | 
|  | assert(ChainNodesMatched.empty() && | 
|  | "Should only have one EmitMergeInputChains per match"); | 
|  |  | 
|  | // Read all of the chained nodes. | 
|  | unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); | 
|  | ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); | 
|  |  | 
|  | // FIXME: What if other value results of the node have uses not matched | 
|  | // by this pattern? | 
|  | if (ChainNodesMatched.back() != NodeToMatch && | 
|  | !RecordedNodes[RecNo].first.hasOneUse()) { | 
|  | ChainNodesMatched.clear(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Merge the input chains if they are not intra-pattern references. | 
|  | InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); | 
|  |  | 
|  | if (!InputChain.getNode()) | 
|  | break;  // Failed to merge. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_EmitMergeInputChains: { | 
|  | assert(!InputChain.getNode() && | 
|  | "EmitMergeInputChains should be the first chain producing node"); | 
|  | // This node gets a list of nodes we matched in the input that have | 
|  | // chains.  We want to token factor all of the input chains to these nodes | 
|  | // together.  However, if any of the input chains is actually one of the | 
|  | // nodes matched in this pattern, then we have an intra-match reference. | 
|  | // Ignore these because the newly token factored chain should not refer to | 
|  | // the old nodes. | 
|  | unsigned NumChains = MatcherTable[MatcherIndex++]; | 
|  | assert(NumChains != 0 && "Can't TF zero chains"); | 
|  |  | 
|  | assert(ChainNodesMatched.empty() && | 
|  | "Should only have one EmitMergeInputChains per match"); | 
|  |  | 
|  | // Read all of the chained nodes. | 
|  | for (unsigned i = 0; i != NumChains; ++i) { | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); | 
|  | ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); | 
|  |  | 
|  | // FIXME: What if other value results of the node have uses not matched | 
|  | // by this pattern? | 
|  | if (ChainNodesMatched.back() != NodeToMatch && | 
|  | !RecordedNodes[RecNo].first.hasOneUse()) { | 
|  | ChainNodesMatched.clear(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the inner loop broke out, the match fails. | 
|  | if (ChainNodesMatched.empty()) | 
|  | break; | 
|  |  | 
|  | // Merge the input chains if they are not intra-pattern references. | 
|  | InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); | 
|  |  | 
|  | if (!InputChain.getNode()) | 
|  | break;  // Failed to merge. | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_EmitCopyToReg: { | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); | 
|  | unsigned DestPhysReg = MatcherTable[MatcherIndex++]; | 
|  |  | 
|  | if (!InputChain.getNode()) | 
|  | InputChain = CurDAG->getEntryNode(); | 
|  |  | 
|  | InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), | 
|  | DestPhysReg, RecordedNodes[RecNo].first, | 
|  | InputGlue); | 
|  |  | 
|  | InputGlue = InputChain.getValue(1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_EmitNodeXForm: { | 
|  | unsigned XFormNo = MatcherTable[MatcherIndex++]; | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); | 
|  | SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); | 
|  | RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr)); | 
|  | continue; | 
|  | } | 
|  | case OPC_Coverage: { | 
|  | // This is emitted right before MorphNode/EmitNode. | 
|  | // So it should be safe to assume that this node has been selected | 
|  | unsigned index = MatcherTable[MatcherIndex++]; | 
|  | index |= (MatcherTable[MatcherIndex++] << 8); | 
|  | dbgs() << "COVERED: " << getPatternForIndex(index) << "\n"; | 
|  | dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n"; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_EmitNode:     case OPC_MorphNodeTo: | 
|  | case OPC_EmitNode0:    case OPC_EmitNode1:    case OPC_EmitNode2: | 
|  | case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: { | 
|  | uint16_t TargetOpc = MatcherTable[MatcherIndex++]; | 
|  | TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; | 
|  | unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; | 
|  | // Get the result VT list. | 
|  | unsigned NumVTs; | 
|  | // If this is one of the compressed forms, get the number of VTs based | 
|  | // on the Opcode. Otherwise read the next byte from the table. | 
|  | if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) | 
|  | NumVTs = Opcode - OPC_MorphNodeTo0; | 
|  | else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) | 
|  | NumVTs = Opcode - OPC_EmitNode0; | 
|  | else | 
|  | NumVTs = MatcherTable[MatcherIndex++]; | 
|  | SmallVector<EVT, 4> VTs; | 
|  | for (unsigned i = 0; i != NumVTs; ++i) { | 
|  | MVT::SimpleValueType VT = | 
|  | (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | if (VT == MVT::iPTR) | 
|  | VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy; | 
|  | VTs.push_back(VT); | 
|  | } | 
|  |  | 
|  | if (EmitNodeInfo & OPFL_Chain) | 
|  | VTs.push_back(MVT::Other); | 
|  | if (EmitNodeInfo & OPFL_GlueOutput) | 
|  | VTs.push_back(MVT::Glue); | 
|  |  | 
|  | // This is hot code, so optimize the two most common cases of 1 and 2 | 
|  | // results. | 
|  | SDVTList VTList; | 
|  | if (VTs.size() == 1) | 
|  | VTList = CurDAG->getVTList(VTs[0]); | 
|  | else if (VTs.size() == 2) | 
|  | VTList = CurDAG->getVTList(VTs[0], VTs[1]); | 
|  | else | 
|  | VTList = CurDAG->getVTList(VTs); | 
|  |  | 
|  | // Get the operand list. | 
|  | unsigned NumOps = MatcherTable[MatcherIndex++]; | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | if (RecNo & 128) | 
|  | RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); | 
|  |  | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); | 
|  | Ops.push_back(RecordedNodes[RecNo].first); | 
|  | } | 
|  |  | 
|  | // If there are variadic operands to add, handle them now. | 
|  | if (EmitNodeInfo & OPFL_VariadicInfo) { | 
|  | // Determine the start index to copy from. | 
|  | unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); | 
|  | FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; | 
|  | assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && | 
|  | "Invalid variadic node"); | 
|  | // Copy all of the variadic operands, not including a potential glue | 
|  | // input. | 
|  | for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); | 
|  | i != e; ++i) { | 
|  | SDValue V = NodeToMatch->getOperand(i); | 
|  | if (V.getValueType() == MVT::Glue) break; | 
|  | Ops.push_back(V); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this has chain/glue inputs, add them. | 
|  | if (EmitNodeInfo & OPFL_Chain) | 
|  | Ops.push_back(InputChain); | 
|  | if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) | 
|  | Ops.push_back(InputGlue); | 
|  |  | 
|  | // Create the node. | 
|  | SDNode *Res = nullptr; | 
|  | bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo || | 
|  | (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2); | 
|  | if (!IsMorphNodeTo) { | 
|  | // If this is a normal EmitNode command, just create the new node and | 
|  | // add the results to the RecordedNodes list. | 
|  | Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), | 
|  | VTList, Ops); | 
|  |  | 
|  | // Add all the non-glue/non-chain results to the RecordedNodes list. | 
|  | for (unsigned i = 0, e = VTs.size(); i != e; ++i) { | 
|  | if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; | 
|  | RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), | 
|  | nullptr)); | 
|  | } | 
|  | } else { | 
|  | assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && | 
|  | "NodeToMatch was removed partway through selection"); | 
|  | SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, | 
|  | SDNode *E) { | 
|  | auto &Chain = ChainNodesMatched; | 
|  | assert((!E || !is_contained(Chain, N)) && | 
|  | "Chain node replaced during MorphNode"); | 
|  | Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end()); | 
|  | }); | 
|  | Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops, EmitNodeInfo); | 
|  | } | 
|  |  | 
|  | // If the node had chain/glue results, update our notion of the current | 
|  | // chain and glue. | 
|  | if (EmitNodeInfo & OPFL_GlueOutput) { | 
|  | InputGlue = SDValue(Res, VTs.size()-1); | 
|  | if (EmitNodeInfo & OPFL_Chain) | 
|  | InputChain = SDValue(Res, VTs.size()-2); | 
|  | } else if (EmitNodeInfo & OPFL_Chain) | 
|  | InputChain = SDValue(Res, VTs.size()-1); | 
|  |  | 
|  | // If the OPFL_MemRefs glue is set on this node, slap all of the | 
|  | // accumulated memrefs onto it. | 
|  | // | 
|  | // FIXME: This is vastly incorrect for patterns with multiple outputs | 
|  | // instructions that access memory and for ComplexPatterns that match | 
|  | // loads. | 
|  | if (EmitNodeInfo & OPFL_MemRefs) { | 
|  | // Only attach load or store memory operands if the generated | 
|  | // instruction may load or store. | 
|  | const MCInstrDesc &MCID = TII->get(TargetOpc); | 
|  | bool mayLoad = MCID.mayLoad(); | 
|  | bool mayStore = MCID.mayStore(); | 
|  |  | 
|  | unsigned NumMemRefs = 0; | 
|  | for (SmallVectorImpl<MachineMemOperand *>::const_iterator I = | 
|  | MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { | 
|  | if ((*I)->isLoad()) { | 
|  | if (mayLoad) | 
|  | ++NumMemRefs; | 
|  | } else if ((*I)->isStore()) { | 
|  | if (mayStore) | 
|  | ++NumMemRefs; | 
|  | } else { | 
|  | ++NumMemRefs; | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineSDNode::mmo_iterator MemRefs = | 
|  | MF->allocateMemRefsArray(NumMemRefs); | 
|  |  | 
|  | MachineSDNode::mmo_iterator MemRefsPos = MemRefs; | 
|  | for (SmallVectorImpl<MachineMemOperand *>::const_iterator I = | 
|  | MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { | 
|  | if ((*I)->isLoad()) { | 
|  | if (mayLoad) | 
|  | *MemRefsPos++ = *I; | 
|  | } else if ((*I)->isStore()) { | 
|  | if (mayStore) | 
|  | *MemRefsPos++ = *I; | 
|  | } else { | 
|  | *MemRefsPos++ = *I; | 
|  | } | 
|  | } | 
|  |  | 
|  | cast<MachineSDNode>(Res) | 
|  | ->setMemRefs(MemRefs, MemRefs + NumMemRefs); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "  " | 
|  | << (IsMorphNodeTo ? "Morphed" : "Created") | 
|  | << " node: "; Res->dump(CurDAG); dbgs() << "\n"); | 
|  |  | 
|  | // If this was a MorphNodeTo then we're completely done! | 
|  | if (IsMorphNodeTo) { | 
|  | // Update chain uses. | 
|  | UpdateChains(Res, InputChain, ChainNodesMatched, true); | 
|  | return; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_CompleteMatch: { | 
|  | // The match has been completed, and any new nodes (if any) have been | 
|  | // created.  Patch up references to the matched dag to use the newly | 
|  | // created nodes. | 
|  | unsigned NumResults = MatcherTable[MatcherIndex++]; | 
|  |  | 
|  | for (unsigned i = 0; i != NumResults; ++i) { | 
|  | unsigned ResSlot = MatcherTable[MatcherIndex++]; | 
|  | if (ResSlot & 128) | 
|  | ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); | 
|  |  | 
|  | assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); | 
|  | SDValue Res = RecordedNodes[ResSlot].first; | 
|  |  | 
|  | assert(i < NodeToMatch->getNumValues() && | 
|  | NodeToMatch->getValueType(i) != MVT::Other && | 
|  | NodeToMatch->getValueType(i) != MVT::Glue && | 
|  | "Invalid number of results to complete!"); | 
|  | assert((NodeToMatch->getValueType(i) == Res.getValueType() || | 
|  | NodeToMatch->getValueType(i) == MVT::iPTR || | 
|  | Res.getValueType() == MVT::iPTR || | 
|  | NodeToMatch->getValueType(i).getSizeInBits() == | 
|  | Res.getValueSizeInBits()) && | 
|  | "invalid replacement"); | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res); | 
|  | } | 
|  |  | 
|  | // Update chain uses. | 
|  | UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false); | 
|  |  | 
|  | // If the root node defines glue, we need to update it to the glue result. | 
|  | // TODO: This never happens in our tests and I think it can be removed / | 
|  | // replaced with an assert, but if we do it this the way the change is | 
|  | // NFC. | 
|  | if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) == | 
|  | MVT::Glue && | 
|  | InputGlue.getNode()) | 
|  | CurDAG->ReplaceAllUsesOfValueWith( | 
|  | SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), InputGlue); | 
|  |  | 
|  | assert(NodeToMatch->use_empty() && | 
|  | "Didn't replace all uses of the node?"); | 
|  | CurDAG->RemoveDeadNode(NodeToMatch); | 
|  |  | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the code reached this point, then the match failed.  See if there is | 
|  | // another child to try in the current 'Scope', otherwise pop it until we | 
|  | // find a case to check. | 
|  | DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n"); | 
|  | ++NumDAGIselRetries; | 
|  | while (true) { | 
|  | if (MatchScopes.empty()) { | 
|  | CannotYetSelect(NodeToMatch); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Restore the interpreter state back to the point where the scope was | 
|  | // formed. | 
|  | MatchScope &LastScope = MatchScopes.back(); | 
|  | RecordedNodes.resize(LastScope.NumRecordedNodes); | 
|  | NodeStack.clear(); | 
|  | NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); | 
|  | N = NodeStack.back(); | 
|  |  | 
|  | if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) | 
|  | MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); | 
|  | MatcherIndex = LastScope.FailIndex; | 
|  |  | 
|  | DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n"); | 
|  |  | 
|  | InputChain = LastScope.InputChain; | 
|  | InputGlue = LastScope.InputGlue; | 
|  | if (!LastScope.HasChainNodesMatched) | 
|  | ChainNodesMatched.clear(); | 
|  |  | 
|  | // Check to see what the offset is at the new MatcherIndex.  If it is zero | 
|  | // we have reached the end of this scope, otherwise we have another child | 
|  | // in the current scope to try. | 
|  | unsigned NumToSkip = MatcherTable[MatcherIndex++]; | 
|  | if (NumToSkip & 128) | 
|  | NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); | 
|  |  | 
|  | // If we have another child in this scope to match, update FailIndex and | 
|  | // try it. | 
|  | if (NumToSkip != 0) { | 
|  | LastScope.FailIndex = MatcherIndex+NumToSkip; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // End of this scope, pop it and try the next child in the containing | 
|  | // scope. | 
|  | MatchScopes.pop_back(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::CannotYetSelect(SDNode *N) { | 
|  | std::string msg; | 
|  | raw_string_ostream Msg(msg); | 
|  | Msg << "Cannot select: "; | 
|  |  | 
|  | if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && | 
|  | N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && | 
|  | N->getOpcode() != ISD::INTRINSIC_VOID) { | 
|  | N->printrFull(Msg, CurDAG); | 
|  | Msg << "\nIn function: " << MF->getName(); | 
|  | } else { | 
|  | bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; | 
|  | unsigned iid = | 
|  | cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); | 
|  | if (iid < Intrinsic::num_intrinsics) | 
|  | Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None); | 
|  | else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) | 
|  | Msg << "target intrinsic %" << TII->getName(iid); | 
|  | else | 
|  | Msg << "unknown intrinsic #" << iid; | 
|  | } | 
|  | report_fatal_error(Msg.str()); | 
|  | } | 
|  |  | 
|  | char SelectionDAGISel::ID = 0; |