|  | //===-- Execution.cpp - Implement code to simulate the program ------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file contains the actual instruction interpreter. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Interpreter.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/IntrinsicLowering.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "interpreter" | 
|  |  | 
|  | STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed"); | 
|  |  | 
|  | static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden, | 
|  | cl::desc("make the interpreter print every volatile load and store")); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                     Various Helper Functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { | 
|  | SF.Values[V] = Val; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                    Binary Instruction Implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ | 
|  | case Type::TY##TyID: \ | 
|  | Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \ | 
|  | break | 
|  |  | 
|  | static void executeFAddInst(GenericValue &Dest, GenericValue Src1, | 
|  | GenericValue Src2, Type *Ty) { | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_BINARY_OPERATOR(+, Float); | 
|  | IMPLEMENT_BINARY_OPERATOR(+, Double); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void executeFSubInst(GenericValue &Dest, GenericValue Src1, | 
|  | GenericValue Src2, Type *Ty) { | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_BINARY_OPERATOR(-, Float); | 
|  | IMPLEMENT_BINARY_OPERATOR(-, Double); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void executeFMulInst(GenericValue &Dest, GenericValue Src1, | 
|  | GenericValue Src2, Type *Ty) { | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_BINARY_OPERATOR(*, Float); | 
|  | IMPLEMENT_BINARY_OPERATOR(*, Double); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void executeFDivInst(GenericValue &Dest, GenericValue Src1, | 
|  | GenericValue Src2, Type *Ty) { | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_BINARY_OPERATOR(/, Float); | 
|  | IMPLEMENT_BINARY_OPERATOR(/, Double); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void executeFRemInst(GenericValue &Dest, GenericValue Src1, | 
|  | GenericValue Src2, Type *Ty) { | 
|  | switch (Ty->getTypeID()) { | 
|  | case Type::FloatTyID: | 
|  | Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); | 
|  | break; | 
|  | case Type::DoubleTyID: | 
|  | Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); | 
|  | break; | 
|  | default: | 
|  | dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define IMPLEMENT_INTEGER_ICMP(OP, TY) \ | 
|  | case Type::IntegerTyID:  \ | 
|  | Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \ | 
|  | break; | 
|  |  | 
|  | #define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY)                        \ | 
|  | case Type::VectorTyID: {                                           \ | 
|  | assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());    \ | 
|  | Dest.AggregateVal.resize( Src1.AggregateVal.size() );            \ | 
|  | for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++)             \ | 
|  | Dest.AggregateVal[_i].IntVal = APInt(1,                        \ | 
|  | Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\ | 
|  | } break; | 
|  |  | 
|  | // Handle pointers specially because they must be compared with only as much | 
|  | // width as the host has.  We _do not_ want to be comparing 64 bit values when | 
|  | // running on a 32-bit target, otherwise the upper 32 bits might mess up | 
|  | // comparisons if they contain garbage. | 
|  | #define IMPLEMENT_POINTER_ICMP(OP) \ | 
|  | case Type::PointerTyID: \ | 
|  | Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \ | 
|  | (void*)(intptr_t)Src2.PointerVal); \ | 
|  | break; | 
|  |  | 
|  | static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(eq,Ty); | 
|  | IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(==); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(ne,Ty); | 
|  | IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(!=); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(ult,Ty); | 
|  | IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(<); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(slt,Ty); | 
|  | IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(<); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(ugt,Ty); | 
|  | IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(>); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(sgt,Ty); | 
|  | IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(>); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(ule,Ty); | 
|  | IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(<=); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(sle,Ty); | 
|  | IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(<=); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(uge,Ty); | 
|  | IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(>=); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_INTEGER_ICMP(sge,Ty); | 
|  | IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty); | 
|  | IMPLEMENT_POINTER_ICMP(>=); | 
|  | default: | 
|  | dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | void Interpreter::visitICmpInst(ICmpInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | Type *Ty    = I.getOperand(0)->getType(); | 
|  | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
|  | GenericValue R;   // Result | 
|  |  | 
|  | switch (I.getPredicate()) { | 
|  | case ICmpInst::ICMP_EQ:  R = executeICMP_EQ(Src1,  Src2, Ty); break; | 
|  | case ICmpInst::ICMP_NE:  R = executeICMP_NE(Src1,  Src2, Ty); break; | 
|  | case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break; | 
|  | case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break; | 
|  | case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break; | 
|  | case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break; | 
|  | case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break; | 
|  | case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break; | 
|  | case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break; | 
|  | case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; | 
|  | default: | 
|  | dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  |  | 
|  | SetValue(&I, R, SF); | 
|  | } | 
|  |  | 
|  | #define IMPLEMENT_FCMP(OP, TY) \ | 
|  | case Type::TY##TyID: \ | 
|  | Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \ | 
|  | break | 
|  |  | 
|  | #define IMPLEMENT_VECTOR_FCMP_T(OP, TY)                             \ | 
|  | assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());     \ | 
|  | Dest.AggregateVal.resize( Src1.AggregateVal.size() );             \ | 
|  | for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++)              \ | 
|  | Dest.AggregateVal[_i].IntVal = APInt(1,                         \ | 
|  | Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\ | 
|  | break; | 
|  |  | 
|  | #define IMPLEMENT_VECTOR_FCMP(OP)                                   \ | 
|  | case Type::VectorTyID:                                            \ | 
|  | if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {   \ | 
|  | IMPLEMENT_VECTOR_FCMP_T(OP, Float);                           \ | 
|  | } else {                                                        \ | 
|  | IMPLEMENT_VECTOR_FCMP_T(OP, Double);                        \ | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_FCMP(==, Float); | 
|  | IMPLEMENT_FCMP(==, Double); | 
|  | IMPLEMENT_VECTOR_FCMP(==); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | #define IMPLEMENT_SCALAR_NANS(TY, X,Y)                                      \ | 
|  | if (TY->isFloatTy()) {                                                    \ | 
|  | if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) {             \ | 
|  | Dest.IntVal = APInt(1,false);                                         \ | 
|  | return Dest;                                                          \ | 
|  | }                                                                       \ | 
|  | } else {                                                                  \ | 
|  | if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) {         \ | 
|  | Dest.IntVal = APInt(1,false);                                         \ | 
|  | return Dest;                                                          \ | 
|  | }                                                                       \ | 
|  | } | 
|  |  | 
|  | #define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG)                                   \ | 
|  | assert(X.AggregateVal.size() == Y.AggregateVal.size());                   \ | 
|  | Dest.AggregateVal.resize( X.AggregateVal.size() );                        \ | 
|  | for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) {                       \ | 
|  | if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val ||         \ | 
|  | Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val)           \ | 
|  | Dest.AggregateVal[_i].IntVal = APInt(1,FLAG);                         \ | 
|  | else  {                                                                 \ | 
|  | Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG);                        \ | 
|  | }                                                                       \ | 
|  | } | 
|  |  | 
|  | #define MASK_VECTOR_NANS(TY, X,Y, FLAG)                                     \ | 
|  | if (TY->isVectorTy()) {                                                   \ | 
|  | if (dyn_cast<VectorType>(TY)->getElementType()->isFloatTy()) {          \ | 
|  | MASK_VECTOR_NANS_T(X, Y, Float, FLAG)                                 \ | 
|  | } else {                                                                \ | 
|  | MASK_VECTOR_NANS_T(X, Y, Double, FLAG)                                \ | 
|  | }                                                                       \ | 
|  | }                                                                         \ | 
|  |  | 
|  |  | 
|  |  | 
|  | static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) | 
|  | { | 
|  | GenericValue Dest; | 
|  | // if input is scalar value and Src1 or Src2 is NaN return false | 
|  | IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2) | 
|  | // if vector input detect NaNs and fill mask | 
|  | MASK_VECTOR_NANS(Ty, Src1, Src2, false) | 
|  | GenericValue DestMask = Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_FCMP(!=, Float); | 
|  | IMPLEMENT_FCMP(!=, Double); | 
|  | IMPLEMENT_VECTOR_FCMP(!=); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | // in vector case mask out NaN elements | 
|  | if (Ty->isVectorTy()) | 
|  | for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) | 
|  | if (DestMask.AggregateVal[_i].IntVal == false) | 
|  | Dest.AggregateVal[_i].IntVal = APInt(1,false); | 
|  |  | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_FCMP(<=, Float); | 
|  | IMPLEMENT_FCMP(<=, Double); | 
|  | IMPLEMENT_VECTOR_FCMP(<=); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_FCMP(>=, Float); | 
|  | IMPLEMENT_FCMP(>=, Double); | 
|  | IMPLEMENT_VECTOR_FCMP(>=); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_FCMP(<, Float); | 
|  | IMPLEMENT_FCMP(<, Double); | 
|  | IMPLEMENT_VECTOR_FCMP(<); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | switch (Ty->getTypeID()) { | 
|  | IMPLEMENT_FCMP(>, Float); | 
|  | IMPLEMENT_FCMP(>, Double); | 
|  | IMPLEMENT_VECTOR_FCMP(>); | 
|  | default: | 
|  | dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | #define IMPLEMENT_UNORDERED(TY, X,Y)                                     \ | 
|  | if (TY->isFloatTy()) {                                                 \ | 
|  | if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) {          \ | 
|  | Dest.IntVal = APInt(1,true);                                       \ | 
|  | return Dest;                                                       \ | 
|  | }                                                                    \ | 
|  | } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ | 
|  | Dest.IntVal = APInt(1,true);                                         \ | 
|  | return Dest;                                                         \ | 
|  | } | 
|  |  | 
|  | #define IMPLEMENT_VECTOR_UNORDERED(TY, X,Y, _FUNC)                       \ | 
|  | if (TY->isVectorTy()) {                                                \ | 
|  | GenericValue DestMask = Dest;                                        \ | 
|  | Dest = _FUNC(Src1, Src2, Ty);                                        \ | 
|  | for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)               \ | 
|  | if (DestMask.AggregateVal[_i].IntVal == true)                    \ | 
|  | Dest.AggregateVal[_i].IntVal = APInt(1,true);                  \ | 
|  | return Dest;                                                       \ | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | IMPLEMENT_UNORDERED(Ty, Src1, Src2) | 
|  | MASK_VECTOR_NANS(Ty, Src1, Src2, true) | 
|  | IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ) | 
|  | return executeFCMP_OEQ(Src1, Src2, Ty); | 
|  |  | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | IMPLEMENT_UNORDERED(Ty, Src1, Src2) | 
|  | MASK_VECTOR_NANS(Ty, Src1, Src2, true) | 
|  | IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE) | 
|  | return executeFCMP_ONE(Src1, Src2, Ty); | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | IMPLEMENT_UNORDERED(Ty, Src1, Src2) | 
|  | MASK_VECTOR_NANS(Ty, Src1, Src2, true) | 
|  | IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE) | 
|  | return executeFCMP_OLE(Src1, Src2, Ty); | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | IMPLEMENT_UNORDERED(Ty, Src1, Src2) | 
|  | MASK_VECTOR_NANS(Ty, Src1, Src2, true) | 
|  | IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE) | 
|  | return executeFCMP_OGE(Src1, Src2, Ty); | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | IMPLEMENT_UNORDERED(Ty, Src1, Src2) | 
|  | MASK_VECTOR_NANS(Ty, Src1, Src2, true) | 
|  | IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT) | 
|  | return executeFCMP_OLT(Src1, Src2, Ty); | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | IMPLEMENT_UNORDERED(Ty, Src1, Src2) | 
|  | MASK_VECTOR_NANS(Ty, Src1, Src2, true) | 
|  | IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT) | 
|  | return executeFCMP_OGT(Src1, Src2, Ty); | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | if(Ty->isVectorTy()) { | 
|  | assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); | 
|  | Dest.AggregateVal.resize( Src1.AggregateVal.size() ); | 
|  | if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) { | 
|  | for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) | 
|  | Dest.AggregateVal[_i].IntVal = APInt(1, | 
|  | ( (Src1.AggregateVal[_i].FloatVal == | 
|  | Src1.AggregateVal[_i].FloatVal) && | 
|  | (Src2.AggregateVal[_i].FloatVal == | 
|  | Src2.AggregateVal[_i].FloatVal))); | 
|  | } else { | 
|  | for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) | 
|  | Dest.AggregateVal[_i].IntVal = APInt(1, | 
|  | ( (Src1.AggregateVal[_i].DoubleVal == | 
|  | Src1.AggregateVal[_i].DoubleVal) && | 
|  | (Src2.AggregateVal[_i].DoubleVal == | 
|  | Src2.AggregateVal[_i].DoubleVal))); | 
|  | } | 
|  | } else if (Ty->isFloatTy()) | 
|  | Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && | 
|  | Src2.FloatVal == Src2.FloatVal)); | 
|  | else { | 
|  | Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && | 
|  | Src2.DoubleVal == Src2.DoubleVal)); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, | 
|  | Type *Ty) { | 
|  | GenericValue Dest; | 
|  | if(Ty->isVectorTy()) { | 
|  | assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); | 
|  | Dest.AggregateVal.resize( Src1.AggregateVal.size() ); | 
|  | if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) { | 
|  | for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) | 
|  | Dest.AggregateVal[_i].IntVal = APInt(1, | 
|  | ( (Src1.AggregateVal[_i].FloatVal != | 
|  | Src1.AggregateVal[_i].FloatVal) || | 
|  | (Src2.AggregateVal[_i].FloatVal != | 
|  | Src2.AggregateVal[_i].FloatVal))); | 
|  | } else { | 
|  | for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) | 
|  | Dest.AggregateVal[_i].IntVal = APInt(1, | 
|  | ( (Src1.AggregateVal[_i].DoubleVal != | 
|  | Src1.AggregateVal[_i].DoubleVal) || | 
|  | (Src2.AggregateVal[_i].DoubleVal != | 
|  | Src2.AggregateVal[_i].DoubleVal))); | 
|  | } | 
|  | } else if (Ty->isFloatTy()) | 
|  | Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || | 
|  | Src2.FloatVal != Src2.FloatVal)); | 
|  | else { | 
|  | Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || | 
|  | Src2.DoubleVal != Src2.DoubleVal)); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2, | 
|  | const Type *Ty, const bool val) { | 
|  | GenericValue Dest; | 
|  | if(Ty->isVectorTy()) { | 
|  | assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); | 
|  | Dest.AggregateVal.resize( Src1.AggregateVal.size() ); | 
|  | for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) | 
|  | Dest.AggregateVal[_i].IntVal = APInt(1,val); | 
|  | } else { | 
|  | Dest.IntVal = APInt(1, val); | 
|  | } | 
|  |  | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | void Interpreter::visitFCmpInst(FCmpInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | Type *Ty    = I.getOperand(0)->getType(); | 
|  | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
|  | GenericValue R;   // Result | 
|  |  | 
|  | switch (I.getPredicate()) { | 
|  | default: | 
|  | dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I; | 
|  | llvm_unreachable(nullptr); | 
|  | break; | 
|  | case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false); | 
|  | break; | 
|  | case FCmpInst::FCMP_TRUE:  R = executeFCMP_BOOL(Src1, Src2, Ty, true); | 
|  | break; | 
|  | case FCmpInst::FCMP_ORD:   R = executeFCMP_ORD(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_UNO:   R = executeFCMP_UNO(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_UEQ:   R = executeFCMP_UEQ(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_OEQ:   R = executeFCMP_OEQ(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_UNE:   R = executeFCMP_UNE(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_ONE:   R = executeFCMP_ONE(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_ULT:   R = executeFCMP_ULT(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_OLT:   R = executeFCMP_OLT(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_UGT:   R = executeFCMP_UGT(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_OGT:   R = executeFCMP_OGT(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_ULE:   R = executeFCMP_ULE(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_OLE:   R = executeFCMP_OLE(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_UGE:   R = executeFCMP_UGE(Src1, Src2, Ty); break; | 
|  | case FCmpInst::FCMP_OGE:   R = executeFCMP_OGE(Src1, Src2, Ty); break; | 
|  | } | 
|  |  | 
|  | SetValue(&I, R, SF); | 
|  | } | 
|  |  | 
|  | static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, | 
|  | GenericValue Src2, Type *Ty) { | 
|  | GenericValue Result; | 
|  | switch (predicate) { | 
|  | case ICmpInst::ICMP_EQ:    return executeICMP_EQ(Src1, Src2, Ty); | 
|  | case ICmpInst::ICMP_NE:    return executeICMP_NE(Src1, Src2, Ty); | 
|  | case ICmpInst::ICMP_UGT:   return executeICMP_UGT(Src1, Src2, Ty); | 
|  | case ICmpInst::ICMP_SGT:   return executeICMP_SGT(Src1, Src2, Ty); | 
|  | case ICmpInst::ICMP_ULT:   return executeICMP_ULT(Src1, Src2, Ty); | 
|  | case ICmpInst::ICMP_SLT:   return executeICMP_SLT(Src1, Src2, Ty); | 
|  | case ICmpInst::ICMP_UGE:   return executeICMP_UGE(Src1, Src2, Ty); | 
|  | case ICmpInst::ICMP_SGE:   return executeICMP_SGE(Src1, Src2, Ty); | 
|  | case ICmpInst::ICMP_ULE:   return executeICMP_ULE(Src1, Src2, Ty); | 
|  | case ICmpInst::ICMP_SLE:   return executeICMP_SLE(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_ORD:   return executeFCMP_ORD(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_UNO:   return executeFCMP_UNO(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_OEQ:   return executeFCMP_OEQ(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_UEQ:   return executeFCMP_UEQ(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_ONE:   return executeFCMP_ONE(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_UNE:   return executeFCMP_UNE(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_OLT:   return executeFCMP_OLT(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_ULT:   return executeFCMP_ULT(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_OGT:   return executeFCMP_OGT(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_UGT:   return executeFCMP_UGT(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_OLE:   return executeFCMP_OLE(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_ULE:   return executeFCMP_ULE(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_OGE:   return executeFCMP_OGE(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_UGE:   return executeFCMP_UGE(Src1, Src2, Ty); | 
|  | case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false); | 
|  | case FCmpInst::FCMP_TRUE:  return executeFCMP_BOOL(Src1, Src2, Ty, true); | 
|  | default: | 
|  | dbgs() << "Unhandled Cmp predicate\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Interpreter::visitBinaryOperator(BinaryOperator &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | Type *Ty    = I.getOperand(0)->getType(); | 
|  | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
|  | GenericValue R;   // Result | 
|  |  | 
|  | // First process vector operation | 
|  | if (Ty->isVectorTy()) { | 
|  | assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); | 
|  | R.AggregateVal.resize(Src1.AggregateVal.size()); | 
|  |  | 
|  | // Macros to execute binary operation 'OP' over integer vectors | 
|  | #define INTEGER_VECTOR_OPERATION(OP)                               \ | 
|  | for (unsigned i = 0; i < R.AggregateVal.size(); ++i)           \ | 
|  | R.AggregateVal[i].IntVal =                                   \ | 
|  | Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal; | 
|  |  | 
|  | // Additional macros to execute binary operations udiv/sdiv/urem/srem since | 
|  | // they have different notation. | 
|  | #define INTEGER_VECTOR_FUNCTION(OP)                                \ | 
|  | for (unsigned i = 0; i < R.AggregateVal.size(); ++i)           \ | 
|  | R.AggregateVal[i].IntVal =                                   \ | 
|  | Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal); | 
|  |  | 
|  | // Macros to execute binary operation 'OP' over floating point type TY | 
|  | // (float or double) vectors | 
|  | #define FLOAT_VECTOR_FUNCTION(OP, TY)                               \ | 
|  | for (unsigned i = 0; i < R.AggregateVal.size(); ++i)          \ | 
|  | R.AggregateVal[i].TY =                                      \ | 
|  | Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY; | 
|  |  | 
|  | // Macros to choose appropriate TY: float or double and run operation | 
|  | // execution | 
|  | #define FLOAT_VECTOR_OP(OP) {                                         \ | 
|  | if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy())        \ | 
|  | FLOAT_VECTOR_FUNCTION(OP, FloatVal)                               \ | 
|  | else {                                                              \ | 
|  | if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy())     \ | 
|  | FLOAT_VECTOR_FUNCTION(OP, DoubleVal)                            \ | 
|  | else {                                                            \ | 
|  | dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \ | 
|  | llvm_unreachable(0);                                            \ | 
|  | }                                                                 \ | 
|  | }                                                                   \ | 
|  | } | 
|  |  | 
|  | switch(I.getOpcode()){ | 
|  | default: | 
|  | dbgs() << "Don't know how to handle this binary operator!\n-->" << I; | 
|  | llvm_unreachable(nullptr); | 
|  | break; | 
|  | case Instruction::Add:   INTEGER_VECTOR_OPERATION(+) break; | 
|  | case Instruction::Sub:   INTEGER_VECTOR_OPERATION(-) break; | 
|  | case Instruction::Mul:   INTEGER_VECTOR_OPERATION(*) break; | 
|  | case Instruction::UDiv:  INTEGER_VECTOR_FUNCTION(udiv) break; | 
|  | case Instruction::SDiv:  INTEGER_VECTOR_FUNCTION(sdiv) break; | 
|  | case Instruction::URem:  INTEGER_VECTOR_FUNCTION(urem) break; | 
|  | case Instruction::SRem:  INTEGER_VECTOR_FUNCTION(srem) break; | 
|  | case Instruction::And:   INTEGER_VECTOR_OPERATION(&) break; | 
|  | case Instruction::Or:    INTEGER_VECTOR_OPERATION(|) break; | 
|  | case Instruction::Xor:   INTEGER_VECTOR_OPERATION(^) break; | 
|  | case Instruction::FAdd:  FLOAT_VECTOR_OP(+) break; | 
|  | case Instruction::FSub:  FLOAT_VECTOR_OP(-) break; | 
|  | case Instruction::FMul:  FLOAT_VECTOR_OP(*) break; | 
|  | case Instruction::FDiv:  FLOAT_VECTOR_OP(/) break; | 
|  | case Instruction::FRem: | 
|  | if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) | 
|  | for (unsigned i = 0; i < R.AggregateVal.size(); ++i) | 
|  | R.AggregateVal[i].FloatVal = | 
|  | fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal); | 
|  | else { | 
|  | if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy()) | 
|  | for (unsigned i = 0; i < R.AggregateVal.size(); ++i) | 
|  | R.AggregateVal[i].DoubleVal = | 
|  | fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal); | 
|  | else { | 
|  | dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch (I.getOpcode()) { | 
|  | default: | 
|  | dbgs() << "Don't know how to handle this binary operator!\n-->" << I; | 
|  | llvm_unreachable(nullptr); | 
|  | break; | 
|  | case Instruction::Add:   R.IntVal = Src1.IntVal + Src2.IntVal; break; | 
|  | case Instruction::Sub:   R.IntVal = Src1.IntVal - Src2.IntVal; break; | 
|  | case Instruction::Mul:   R.IntVal = Src1.IntVal * Src2.IntVal; break; | 
|  | case Instruction::FAdd:  executeFAddInst(R, Src1, Src2, Ty); break; | 
|  | case Instruction::FSub:  executeFSubInst(R, Src1, Src2, Ty); break; | 
|  | case Instruction::FMul:  executeFMulInst(R, Src1, Src2, Ty); break; | 
|  | case Instruction::FDiv:  executeFDivInst(R, Src1, Src2, Ty); break; | 
|  | case Instruction::FRem:  executeFRemInst(R, Src1, Src2, Ty); break; | 
|  | case Instruction::UDiv:  R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break; | 
|  | case Instruction::SDiv:  R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break; | 
|  | case Instruction::URem:  R.IntVal = Src1.IntVal.urem(Src2.IntVal); break; | 
|  | case Instruction::SRem:  R.IntVal = Src1.IntVal.srem(Src2.IntVal); break; | 
|  | case Instruction::And:   R.IntVal = Src1.IntVal & Src2.IntVal; break; | 
|  | case Instruction::Or:    R.IntVal = Src1.IntVal | Src2.IntVal; break; | 
|  | case Instruction::Xor:   R.IntVal = Src1.IntVal ^ Src2.IntVal; break; | 
|  | } | 
|  | } | 
|  | SetValue(&I, R, SF); | 
|  | } | 
|  |  | 
|  | static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, | 
|  | GenericValue Src3, const Type *Ty) { | 
|  | GenericValue Dest; | 
|  | if(Ty->isVectorTy()) { | 
|  | assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); | 
|  | assert(Src2.AggregateVal.size() == Src3.AggregateVal.size()); | 
|  | Dest.AggregateVal.resize( Src1.AggregateVal.size() ); | 
|  | for (size_t i = 0; i < Src1.AggregateVal.size(); ++i) | 
|  | Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ? | 
|  | Src3.AggregateVal[i] : Src2.AggregateVal[i]; | 
|  | } else { | 
|  | Dest = (Src1.IntVal == 0) ? Src3 : Src2; | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | void Interpreter::visitSelectInst(SelectInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | const Type * Ty = I.getOperand(0)->getType(); | 
|  | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
|  | GenericValue Src3 = getOperandValue(I.getOperand(2), SF); | 
|  | GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty); | 
|  | SetValue(&I, R, SF); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                     Terminator Instruction Implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void Interpreter::exitCalled(GenericValue GV) { | 
|  | // runAtExitHandlers() assumes there are no stack frames, but | 
|  | // if exit() was called, then it had a stack frame. Blow away | 
|  | // the stack before interpreting atexit handlers. | 
|  | ECStack.clear(); | 
|  | runAtExitHandlers(); | 
|  | exit(GV.IntVal.zextOrTrunc(32).getZExtValue()); | 
|  | } | 
|  |  | 
|  | /// Pop the last stack frame off of ECStack and then copy the result | 
|  | /// back into the result variable if we are not returning void. The | 
|  | /// result variable may be the ExitValue, or the Value of the calling | 
|  | /// CallInst if there was a previous stack frame. This method may | 
|  | /// invalidate any ECStack iterators you have. This method also takes | 
|  | /// care of switching to the normal destination BB, if we are returning | 
|  | /// from an invoke. | 
|  | /// | 
|  | void Interpreter::popStackAndReturnValueToCaller(Type *RetTy, | 
|  | GenericValue Result) { | 
|  | // Pop the current stack frame. | 
|  | ECStack.pop_back(); | 
|  |  | 
|  | if (ECStack.empty()) {  // Finished main.  Put result into exit code... | 
|  | if (RetTy && !RetTy->isVoidTy()) {          // Nonvoid return type? | 
|  | ExitValue = Result;   // Capture the exit value of the program | 
|  | } else { | 
|  | memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped)); | 
|  | } | 
|  | } else { | 
|  | // If we have a previous stack frame, and we have a previous call, | 
|  | // fill in the return value... | 
|  | ExecutionContext &CallingSF = ECStack.back(); | 
|  | if (Instruction *I = CallingSF.Caller.getInstruction()) { | 
|  | // Save result... | 
|  | if (!CallingSF.Caller.getType()->isVoidTy()) | 
|  | SetValue(I, Result, CallingSF); | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst> (I)) | 
|  | SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); | 
|  | CallingSF.Caller = CallSite();          // We returned from the call... | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Interpreter::visitReturnInst(ReturnInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | Type *RetTy = Type::getVoidTy(I.getContext()); | 
|  | GenericValue Result; | 
|  |  | 
|  | // Save away the return value... (if we are not 'ret void') | 
|  | if (I.getNumOperands()) { | 
|  | RetTy  = I.getReturnValue()->getType(); | 
|  | Result = getOperandValue(I.getReturnValue(), SF); | 
|  | } | 
|  |  | 
|  | popStackAndReturnValueToCaller(RetTy, Result); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitUnreachableInst(UnreachableInst &I) { | 
|  | report_fatal_error("Program executed an 'unreachable' instruction!"); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitBranchInst(BranchInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | BasicBlock *Dest; | 
|  |  | 
|  | Dest = I.getSuccessor(0);          // Uncond branches have a fixed dest... | 
|  | if (!I.isUnconditional()) { | 
|  | Value *Cond = I.getCondition(); | 
|  | if (getOperandValue(Cond, SF).IntVal == 0) // If false cond... | 
|  | Dest = I.getSuccessor(1); | 
|  | } | 
|  | SwitchToNewBasicBlock(Dest, SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitSwitchInst(SwitchInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | Value* Cond = I.getCondition(); | 
|  | Type *ElTy = Cond->getType(); | 
|  | GenericValue CondVal = getOperandValue(Cond, SF); | 
|  |  | 
|  | // Check to see if any of the cases match... | 
|  | BasicBlock *Dest = nullptr; | 
|  | for (SwitchInst::CaseIt i = I.case_begin(), e = I.case_end(); i != e; ++i) { | 
|  | GenericValue CaseVal = getOperandValue(i.getCaseValue(), SF); | 
|  | if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) { | 
|  | Dest = cast<BasicBlock>(i.getCaseSuccessor()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!Dest) Dest = I.getDefaultDest();   // No cases matched: use default | 
|  | SwitchToNewBasicBlock(Dest, SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitIndirectBrInst(IndirectBrInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | void *Dest = GVTOP(getOperandValue(I.getAddress(), SF)); | 
|  | SwitchToNewBasicBlock((BasicBlock*)Dest, SF); | 
|  | } | 
|  |  | 
|  |  | 
|  | // SwitchToNewBasicBlock - This method is used to jump to a new basic block. | 
|  | // This function handles the actual updating of block and instruction iterators | 
|  | // as well as execution of all of the PHI nodes in the destination block. | 
|  | // | 
|  | // This method does this because all of the PHI nodes must be executed | 
|  | // atomically, reading their inputs before any of the results are updated.  Not | 
|  | // doing this can cause problems if the PHI nodes depend on other PHI nodes for | 
|  | // their inputs.  If the input PHI node is updated before it is read, incorrect | 
|  | // results can happen.  Thus we use a two phase approach. | 
|  | // | 
|  | void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ | 
|  | BasicBlock *PrevBB = SF.CurBB;      // Remember where we came from... | 
|  | SF.CurBB   = Dest;                  // Update CurBB to branch destination | 
|  | SF.CurInst = SF.CurBB->begin();     // Update new instruction ptr... | 
|  |  | 
|  | if (!isa<PHINode>(SF.CurInst)) return;  // Nothing fancy to do | 
|  |  | 
|  | // Loop over all of the PHI nodes in the current block, reading their inputs. | 
|  | std::vector<GenericValue> ResultValues; | 
|  |  | 
|  | for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) { | 
|  | // Search for the value corresponding to this previous bb... | 
|  | int i = PN->getBasicBlockIndex(PrevBB); | 
|  | assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); | 
|  | Value *IncomingValue = PN->getIncomingValue(i); | 
|  |  | 
|  | // Save the incoming value for this PHI node... | 
|  | ResultValues.push_back(getOperandValue(IncomingValue, SF)); | 
|  | } | 
|  |  | 
|  | // Now loop over all of the PHI nodes setting their values... | 
|  | SF.CurInst = SF.CurBB->begin(); | 
|  | for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) { | 
|  | PHINode *PN = cast<PHINode>(SF.CurInst); | 
|  | SetValue(PN, ResultValues[i], SF); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                     Memory Instruction Implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void Interpreter::visitAllocaInst(AllocaInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  |  | 
|  | Type *Ty = I.getType()->getElementType();  // Type to be allocated | 
|  |  | 
|  | // Get the number of elements being allocated by the array... | 
|  | unsigned NumElements = | 
|  | getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue(); | 
|  |  | 
|  | unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty); | 
|  |  | 
|  | // Avoid malloc-ing zero bytes, use max()... | 
|  | unsigned MemToAlloc = std::max(1U, NumElements * TypeSize); | 
|  |  | 
|  | // Allocate enough memory to hold the type... | 
|  | void *Memory = malloc(MemToAlloc); | 
|  |  | 
|  | DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x " | 
|  | << NumElements << " (Total: " << MemToAlloc << ") at " | 
|  | << uintptr_t(Memory) << '\n'); | 
|  |  | 
|  | GenericValue Result = PTOGV(Memory); | 
|  | assert(Result.PointerVal && "Null pointer returned by malloc!"); | 
|  | SetValue(&I, Result, SF); | 
|  |  | 
|  | if (I.getOpcode() == Instruction::Alloca) | 
|  | ECStack.back().Allocas.add(Memory); | 
|  | } | 
|  |  | 
|  | // getElementOffset - The workhorse for getelementptr. | 
|  | // | 
|  | GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, | 
|  | gep_type_iterator E, | 
|  | ExecutionContext &SF) { | 
|  | assert(Ptr->getType()->isPointerTy() && | 
|  | "Cannot getElementOffset of a nonpointer type!"); | 
|  |  | 
|  | uint64_t Total = 0; | 
|  |  | 
|  | for (; I != E; ++I) { | 
|  | if (StructType *STy = dyn_cast<StructType>(*I)) { | 
|  | const StructLayout *SLO = TD.getStructLayout(STy); | 
|  |  | 
|  | const ConstantInt *CPU = cast<ConstantInt>(I.getOperand()); | 
|  | unsigned Index = unsigned(CPU->getZExtValue()); | 
|  |  | 
|  | Total += SLO->getElementOffset(Index); | 
|  | } else { | 
|  | SequentialType *ST = cast<SequentialType>(*I); | 
|  | // Get the index number for the array... which must be long type... | 
|  | GenericValue IdxGV = getOperandValue(I.getOperand(), SF); | 
|  |  | 
|  | int64_t Idx; | 
|  | unsigned BitWidth = | 
|  | cast<IntegerType>(I.getOperand()->getType())->getBitWidth(); | 
|  | if (BitWidth == 32) | 
|  | Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue(); | 
|  | else { | 
|  | assert(BitWidth == 64 && "Invalid index type for getelementptr"); | 
|  | Idx = (int64_t)IdxGV.IntVal.getZExtValue(); | 
|  | } | 
|  | Total += TD.getTypeAllocSize(ST->getElementType())*Idx; | 
|  | } | 
|  | } | 
|  |  | 
|  | GenericValue Result; | 
|  | Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total; | 
|  | DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeGEPOperation(I.getPointerOperand(), | 
|  | gep_type_begin(I), gep_type_end(I), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitLoadInst(LoadInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); | 
|  | GenericValue *Ptr = (GenericValue*)GVTOP(SRC); | 
|  | GenericValue Result; | 
|  | LoadValueFromMemory(Result, Ptr, I.getType()); | 
|  | SetValue(&I, Result, SF); | 
|  | if (I.isVolatile() && PrintVolatile) | 
|  | dbgs() << "Volatile load " << I; | 
|  | } | 
|  |  | 
|  | void Interpreter::visitStoreInst(StoreInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | GenericValue Val = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); | 
|  | StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), | 
|  | I.getOperand(0)->getType()); | 
|  | if (I.isVolatile() && PrintVolatile) | 
|  | dbgs() << "Volatile store: " << I; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                 Miscellaneous Instruction Implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void Interpreter::visitCallSite(CallSite CS) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  |  | 
|  | // Check to see if this is an intrinsic function call... | 
|  | Function *F = CS.getCalledFunction(); | 
|  | if (F && F->isDeclaration()) | 
|  | switch (F->getIntrinsicID()) { | 
|  | case Intrinsic::not_intrinsic: | 
|  | break; | 
|  | case Intrinsic::vastart: { // va_start | 
|  | GenericValue ArgIndex; | 
|  | ArgIndex.UIntPairVal.first = ECStack.size() - 1; | 
|  | ArgIndex.UIntPairVal.second = 0; | 
|  | SetValue(CS.getInstruction(), ArgIndex, SF); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::vaend:    // va_end is a noop for the interpreter | 
|  | return; | 
|  | case Intrinsic::vacopy:   // va_copy: dest = src | 
|  | SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF); | 
|  | return; | 
|  | default: | 
|  | // If it is an unknown intrinsic function, use the intrinsic lowering | 
|  | // class to transform it into hopefully tasty LLVM code. | 
|  | // | 
|  | BasicBlock::iterator me(CS.getInstruction()); | 
|  | BasicBlock *Parent = CS.getInstruction()->getParent(); | 
|  | bool atBegin(Parent->begin() == me); | 
|  | if (!atBegin) | 
|  | --me; | 
|  | IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction())); | 
|  |  | 
|  | // Restore the CurInst pointer to the first instruction newly inserted, if | 
|  | // any. | 
|  | if (atBegin) { | 
|  | SF.CurInst = Parent->begin(); | 
|  | } else { | 
|  | SF.CurInst = me; | 
|  | ++SF.CurInst; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | SF.Caller = CS; | 
|  | std::vector<GenericValue> ArgVals; | 
|  | const unsigned NumArgs = SF.Caller.arg_size(); | 
|  | ArgVals.reserve(NumArgs); | 
|  | uint16_t pNum = 1; | 
|  | for (CallSite::arg_iterator i = SF.Caller.arg_begin(), | 
|  | e = SF.Caller.arg_end(); i != e; ++i, ++pNum) { | 
|  | Value *V = *i; | 
|  | ArgVals.push_back(getOperandValue(V, SF)); | 
|  | } | 
|  |  | 
|  | // To handle indirect calls, we must get the pointer value from the argument | 
|  | // and treat it as a function pointer. | 
|  | GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF); | 
|  | callFunction((Function*)GVTOP(SRC), ArgVals); | 
|  | } | 
|  |  | 
|  | // auxiliary function for shift operations | 
|  | static unsigned getShiftAmount(uint64_t orgShiftAmount, | 
|  | llvm::APInt valueToShift) { | 
|  | unsigned valueWidth = valueToShift.getBitWidth(); | 
|  | if (orgShiftAmount < (uint64_t)valueWidth) | 
|  | return orgShiftAmount; | 
|  | // according to the llvm documentation, if orgShiftAmount > valueWidth, | 
|  | // the result is undfeined. but we do shift by this rule: | 
|  | return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount; | 
|  | } | 
|  |  | 
|  |  | 
|  | void Interpreter::visitShl(BinaryOperator &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
|  | GenericValue Dest; | 
|  | const Type *Ty = I.getType(); | 
|  |  | 
|  | if (Ty->isVectorTy()) { | 
|  | uint32_t src1Size = uint32_t(Src1.AggregateVal.size()); | 
|  | assert(src1Size == Src2.AggregateVal.size()); | 
|  | for (unsigned i = 0; i < src1Size; i++) { | 
|  | GenericValue Result; | 
|  | uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); | 
|  | llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; | 
|  | Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift)); | 
|  | Dest.AggregateVal.push_back(Result); | 
|  | } | 
|  | } else { | 
|  | // scalar | 
|  | uint64_t shiftAmount = Src2.IntVal.getZExtValue(); | 
|  | llvm::APInt valueToShift = Src1.IntVal; | 
|  | Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift)); | 
|  | } | 
|  |  | 
|  | SetValue(&I, Dest, SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitLShr(BinaryOperator &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
|  | GenericValue Dest; | 
|  | const Type *Ty = I.getType(); | 
|  |  | 
|  | if (Ty->isVectorTy()) { | 
|  | uint32_t src1Size = uint32_t(Src1.AggregateVal.size()); | 
|  | assert(src1Size == Src2.AggregateVal.size()); | 
|  | for (unsigned i = 0; i < src1Size; i++) { | 
|  | GenericValue Result; | 
|  | uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); | 
|  | llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; | 
|  | Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift)); | 
|  | Dest.AggregateVal.push_back(Result); | 
|  | } | 
|  | } else { | 
|  | // scalar | 
|  | uint64_t shiftAmount = Src2.IntVal.getZExtValue(); | 
|  | llvm::APInt valueToShift = Src1.IntVal; | 
|  | Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift)); | 
|  | } | 
|  |  | 
|  | SetValue(&I, Dest, SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitAShr(BinaryOperator &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
|  | GenericValue Dest; | 
|  | const Type *Ty = I.getType(); | 
|  |  | 
|  | if (Ty->isVectorTy()) { | 
|  | size_t src1Size = Src1.AggregateVal.size(); | 
|  | assert(src1Size == Src2.AggregateVal.size()); | 
|  | for (unsigned i = 0; i < src1Size; i++) { | 
|  | GenericValue Result; | 
|  | uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); | 
|  | llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; | 
|  | Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift)); | 
|  | Dest.AggregateVal.push_back(Result); | 
|  | } | 
|  | } else { | 
|  | // scalar | 
|  | uint64_t shiftAmount = Src2.IntVal.getZExtValue(); | 
|  | llvm::APInt valueToShift = Src1.IntVal; | 
|  | Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift)); | 
|  | } | 
|  |  | 
|  | SetValue(&I, Dest, SF); | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  | Type *SrcTy = SrcVal->getType(); | 
|  | if (SrcTy->isVectorTy()) { | 
|  | Type *DstVecTy = DstTy->getScalarType(); | 
|  | unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); | 
|  | unsigned NumElts = Src.AggregateVal.size(); | 
|  | // the sizes of src and dst vectors must be equal | 
|  | Dest.AggregateVal.resize(NumElts); | 
|  | for (unsigned i = 0; i < NumElts; i++) | 
|  | Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth); | 
|  | } else { | 
|  | IntegerType *DITy = cast<IntegerType>(DstTy); | 
|  | unsigned DBitWidth = DITy->getBitWidth(); | 
|  | Dest.IntVal = Src.IntVal.trunc(DBitWidth); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | const Type *SrcTy = SrcVal->getType(); | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  | if (SrcTy->isVectorTy()) { | 
|  | const Type *DstVecTy = DstTy->getScalarType(); | 
|  | unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); | 
|  | unsigned size = Src.AggregateVal.size(); | 
|  | // the sizes of src and dst vectors must be equal. | 
|  | Dest.AggregateVal.resize(size); | 
|  | for (unsigned i = 0; i < size; i++) | 
|  | Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth); | 
|  | } else { | 
|  | const IntegerType *DITy = cast<IntegerType>(DstTy); | 
|  | unsigned DBitWidth = DITy->getBitWidth(); | 
|  | Dest.IntVal = Src.IntVal.sext(DBitWidth); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | const Type *SrcTy = SrcVal->getType(); | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  | if (SrcTy->isVectorTy()) { | 
|  | const Type *DstVecTy = DstTy->getScalarType(); | 
|  | unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); | 
|  |  | 
|  | unsigned size = Src.AggregateVal.size(); | 
|  | // the sizes of src and dst vectors must be equal. | 
|  | Dest.AggregateVal.resize(size); | 
|  | for (unsigned i = 0; i < size; i++) | 
|  | Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth); | 
|  | } else { | 
|  | const IntegerType *DITy = cast<IntegerType>(DstTy); | 
|  | unsigned DBitWidth = DITy->getBitWidth(); | 
|  | Dest.IntVal = Src.IntVal.zext(DBitWidth); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  |  | 
|  | if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { | 
|  | assert(SrcVal->getType()->getScalarType()->isDoubleTy() && | 
|  | DstTy->getScalarType()->isFloatTy() && | 
|  | "Invalid FPTrunc instruction"); | 
|  |  | 
|  | unsigned size = Src.AggregateVal.size(); | 
|  | // the sizes of src and dst vectors must be equal. | 
|  | Dest.AggregateVal.resize(size); | 
|  | for (unsigned i = 0; i < size; i++) | 
|  | Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal; | 
|  | } else { | 
|  | assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() && | 
|  | "Invalid FPTrunc instruction"); | 
|  | Dest.FloatVal = (float)Src.DoubleVal; | 
|  | } | 
|  |  | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  |  | 
|  | if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { | 
|  | assert(SrcVal->getType()->getScalarType()->isFloatTy() && | 
|  | DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction"); | 
|  |  | 
|  | unsigned size = Src.AggregateVal.size(); | 
|  | // the sizes of src and dst vectors must be equal. | 
|  | Dest.AggregateVal.resize(size); | 
|  | for (unsigned i = 0; i < size; i++) | 
|  | Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal; | 
|  | } else { | 
|  | assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() && | 
|  | "Invalid FPExt instruction"); | 
|  | Dest.DoubleVal = (double)Src.FloatVal; | 
|  | } | 
|  |  | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | Type *SrcTy = SrcVal->getType(); | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  |  | 
|  | if (SrcTy->getTypeID() == Type::VectorTyID) { | 
|  | const Type *DstVecTy = DstTy->getScalarType(); | 
|  | const Type *SrcVecTy = SrcTy->getScalarType(); | 
|  | uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); | 
|  | unsigned size = Src.AggregateVal.size(); | 
|  | // the sizes of src and dst vectors must be equal. | 
|  | Dest.AggregateVal.resize(size); | 
|  |  | 
|  | if (SrcVecTy->getTypeID() == Type::FloatTyID) { | 
|  | assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction"); | 
|  | for (unsigned i = 0; i < size; i++) | 
|  | Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt( | 
|  | Src.AggregateVal[i].FloatVal, DBitWidth); | 
|  | } else { | 
|  | for (unsigned i = 0; i < size; i++) | 
|  | Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt( | 
|  | Src.AggregateVal[i].DoubleVal, DBitWidth); | 
|  | } | 
|  | } else { | 
|  | // scalar | 
|  | uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); | 
|  | assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction"); | 
|  |  | 
|  | if (SrcTy->getTypeID() == Type::FloatTyID) | 
|  | Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); | 
|  | else { | 
|  | Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | Type *SrcTy = SrcVal->getType(); | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  |  | 
|  | if (SrcTy->getTypeID() == Type::VectorTyID) { | 
|  | const Type *DstVecTy = DstTy->getScalarType(); | 
|  | const Type *SrcVecTy = SrcTy->getScalarType(); | 
|  | uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); | 
|  | unsigned size = Src.AggregateVal.size(); | 
|  | // the sizes of src and dst vectors must be equal | 
|  | Dest.AggregateVal.resize(size); | 
|  |  | 
|  | if (SrcVecTy->getTypeID() == Type::FloatTyID) { | 
|  | assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction"); | 
|  | for (unsigned i = 0; i < size; i++) | 
|  | Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt( | 
|  | Src.AggregateVal[i].FloatVal, DBitWidth); | 
|  | } else { | 
|  | for (unsigned i = 0; i < size; i++) | 
|  | Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt( | 
|  | Src.AggregateVal[i].DoubleVal, DBitWidth); | 
|  | } | 
|  | } else { | 
|  | // scalar | 
|  | unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); | 
|  | assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction"); | 
|  |  | 
|  | if (SrcTy->getTypeID() == Type::FloatTyID) | 
|  | Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); | 
|  | else { | 
|  | Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); | 
|  | } | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  |  | 
|  | if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { | 
|  | const Type *DstVecTy = DstTy->getScalarType(); | 
|  | unsigned size = Src.AggregateVal.size(); | 
|  | // the sizes of src and dst vectors must be equal | 
|  | Dest.AggregateVal.resize(size); | 
|  |  | 
|  | if (DstVecTy->getTypeID() == Type::FloatTyID) { | 
|  | assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction"); | 
|  | for (unsigned i = 0; i < size; i++) | 
|  | Dest.AggregateVal[i].FloatVal = | 
|  | APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal); | 
|  | } else { | 
|  | for (unsigned i = 0; i < size; i++) | 
|  | Dest.AggregateVal[i].DoubleVal = | 
|  | APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal); | 
|  | } | 
|  | } else { | 
|  | // scalar | 
|  | assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction"); | 
|  | if (DstTy->getTypeID() == Type::FloatTyID) | 
|  | Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal); | 
|  | else { | 
|  | Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal); | 
|  | } | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  |  | 
|  | if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { | 
|  | const Type *DstVecTy = DstTy->getScalarType(); | 
|  | unsigned size = Src.AggregateVal.size(); | 
|  | // the sizes of src and dst vectors must be equal | 
|  | Dest.AggregateVal.resize(size); | 
|  |  | 
|  | if (DstVecTy->getTypeID() == Type::FloatTyID) { | 
|  | assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction"); | 
|  | for (unsigned i = 0; i < size; i++) | 
|  | Dest.AggregateVal[i].FloatVal = | 
|  | APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal); | 
|  | } else { | 
|  | for (unsigned i = 0; i < size; i++) | 
|  | Dest.AggregateVal[i].DoubleVal = | 
|  | APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal); | 
|  | } | 
|  | } else { | 
|  | // scalar | 
|  | assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction"); | 
|  |  | 
|  | if (DstTy->getTypeID() == Type::FloatTyID) | 
|  | Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal); | 
|  | else { | 
|  | Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  | assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction"); | 
|  |  | 
|  | Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal); | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  | assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction"); | 
|  |  | 
|  | uint32_t PtrSize = TD.getPointerSizeInBits(); | 
|  | if (PtrSize != Src.IntVal.getBitWidth()) | 
|  | Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize); | 
|  |  | 
|  | Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue())); | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy, | 
|  | ExecutionContext &SF) { | 
|  |  | 
|  | // This instruction supports bitwise conversion of vectors to integers and | 
|  | // to vectors of other types (as long as they have the same size) | 
|  | Type *SrcTy = SrcVal->getType(); | 
|  | GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
|  |  | 
|  | if ((SrcTy->getTypeID() == Type::VectorTyID) || | 
|  | (DstTy->getTypeID() == Type::VectorTyID)) { | 
|  | // vector src bitcast to vector dst or vector src bitcast to scalar dst or | 
|  | // scalar src bitcast to vector dst | 
|  | bool isLittleEndian = TD.isLittleEndian(); | 
|  | GenericValue TempDst, TempSrc, SrcVec; | 
|  | const Type *SrcElemTy; | 
|  | const Type *DstElemTy; | 
|  | unsigned SrcBitSize; | 
|  | unsigned DstBitSize; | 
|  | unsigned SrcNum; | 
|  | unsigned DstNum; | 
|  |  | 
|  | if (SrcTy->getTypeID() == Type::VectorTyID) { | 
|  | SrcElemTy = SrcTy->getScalarType(); | 
|  | SrcBitSize = SrcTy->getScalarSizeInBits(); | 
|  | SrcNum = Src.AggregateVal.size(); | 
|  | SrcVec = Src; | 
|  | } else { | 
|  | // if src is scalar value, make it vector <1 x type> | 
|  | SrcElemTy = SrcTy; | 
|  | SrcBitSize = SrcTy->getPrimitiveSizeInBits(); | 
|  | SrcNum = 1; | 
|  | SrcVec.AggregateVal.push_back(Src); | 
|  | } | 
|  |  | 
|  | if (DstTy->getTypeID() == Type::VectorTyID) { | 
|  | DstElemTy = DstTy->getScalarType(); | 
|  | DstBitSize = DstTy->getScalarSizeInBits(); | 
|  | DstNum = (SrcNum * SrcBitSize) / DstBitSize; | 
|  | } else { | 
|  | DstElemTy = DstTy; | 
|  | DstBitSize = DstTy->getPrimitiveSizeInBits(); | 
|  | DstNum = 1; | 
|  | } | 
|  |  | 
|  | if (SrcNum * SrcBitSize != DstNum * DstBitSize) | 
|  | llvm_unreachable("Invalid BitCast"); | 
|  |  | 
|  | // If src is floating point, cast to integer first. | 
|  | TempSrc.AggregateVal.resize(SrcNum); | 
|  | if (SrcElemTy->isFloatTy()) { | 
|  | for (unsigned i = 0; i < SrcNum; i++) | 
|  | TempSrc.AggregateVal[i].IntVal = | 
|  | APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal); | 
|  |  | 
|  | } else if (SrcElemTy->isDoubleTy()) { | 
|  | for (unsigned i = 0; i < SrcNum; i++) | 
|  | TempSrc.AggregateVal[i].IntVal = | 
|  | APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal); | 
|  | } else if (SrcElemTy->isIntegerTy()) { | 
|  | for (unsigned i = 0; i < SrcNum; i++) | 
|  | TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal; | 
|  | } else { | 
|  | // Pointers are not allowed as the element type of vector. | 
|  | llvm_unreachable("Invalid Bitcast"); | 
|  | } | 
|  |  | 
|  | // now TempSrc is integer type vector | 
|  | if (DstNum < SrcNum) { | 
|  | // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64> | 
|  | unsigned Ratio = SrcNum / DstNum; | 
|  | unsigned SrcElt = 0; | 
|  | for (unsigned i = 0; i < DstNum; i++) { | 
|  | GenericValue Elt; | 
|  | Elt.IntVal = 0; | 
|  | Elt.IntVal = Elt.IntVal.zext(DstBitSize); | 
|  | unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1); | 
|  | for (unsigned j = 0; j < Ratio; j++) { | 
|  | APInt Tmp; | 
|  | Tmp = Tmp.zext(SrcBitSize); | 
|  | Tmp = TempSrc.AggregateVal[SrcElt++].IntVal; | 
|  | Tmp = Tmp.zext(DstBitSize); | 
|  | Tmp = Tmp.shl(ShiftAmt); | 
|  | ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; | 
|  | Elt.IntVal |= Tmp; | 
|  | } | 
|  | TempDst.AggregateVal.push_back(Elt); | 
|  | } | 
|  | } else { | 
|  | // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32> | 
|  | unsigned Ratio = DstNum / SrcNum; | 
|  | for (unsigned i = 0; i < SrcNum; i++) { | 
|  | unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1); | 
|  | for (unsigned j = 0; j < Ratio; j++) { | 
|  | GenericValue Elt; | 
|  | Elt.IntVal = Elt.IntVal.zext(SrcBitSize); | 
|  | Elt.IntVal = TempSrc.AggregateVal[i].IntVal; | 
|  | Elt.IntVal = Elt.IntVal.lshr(ShiftAmt); | 
|  | // it could be DstBitSize == SrcBitSize, so check it | 
|  | if (DstBitSize < SrcBitSize) | 
|  | Elt.IntVal = Elt.IntVal.trunc(DstBitSize); | 
|  | ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; | 
|  | TempDst.AggregateVal.push_back(Elt); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // convert result from integer to specified type | 
|  | if (DstTy->getTypeID() == Type::VectorTyID) { | 
|  | if (DstElemTy->isDoubleTy()) { | 
|  | Dest.AggregateVal.resize(DstNum); | 
|  | for (unsigned i = 0; i < DstNum; i++) | 
|  | Dest.AggregateVal[i].DoubleVal = | 
|  | TempDst.AggregateVal[i].IntVal.bitsToDouble(); | 
|  | } else if (DstElemTy->isFloatTy()) { | 
|  | Dest.AggregateVal.resize(DstNum); | 
|  | for (unsigned i = 0; i < DstNum; i++) | 
|  | Dest.AggregateVal[i].FloatVal = | 
|  | TempDst.AggregateVal[i].IntVal.bitsToFloat(); | 
|  | } else { | 
|  | Dest = TempDst; | 
|  | } | 
|  | } else { | 
|  | if (DstElemTy->isDoubleTy()) | 
|  | Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble(); | 
|  | else if (DstElemTy->isFloatTy()) { | 
|  | Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat(); | 
|  | } else { | 
|  | Dest.IntVal = TempDst.AggregateVal[0].IntVal; | 
|  | } | 
|  | } | 
|  | } else { //  if ((SrcTy->getTypeID() == Type::VectorTyID) || | 
|  | //     (DstTy->getTypeID() == Type::VectorTyID)) | 
|  |  | 
|  | // scalar src bitcast to scalar dst | 
|  | if (DstTy->isPointerTy()) { | 
|  | assert(SrcTy->isPointerTy() && "Invalid BitCast"); | 
|  | Dest.PointerVal = Src.PointerVal; | 
|  | } else if (DstTy->isIntegerTy()) { | 
|  | if (SrcTy->isFloatTy()) | 
|  | Dest.IntVal = APInt::floatToBits(Src.FloatVal); | 
|  | else if (SrcTy->isDoubleTy()) { | 
|  | Dest.IntVal = APInt::doubleToBits(Src.DoubleVal); | 
|  | } else if (SrcTy->isIntegerTy()) { | 
|  | Dest.IntVal = Src.IntVal; | 
|  | } else { | 
|  | llvm_unreachable("Invalid BitCast"); | 
|  | } | 
|  | } else if (DstTy->isFloatTy()) { | 
|  | if (SrcTy->isIntegerTy()) | 
|  | Dest.FloatVal = Src.IntVal.bitsToFloat(); | 
|  | else { | 
|  | Dest.FloatVal = Src.FloatVal; | 
|  | } | 
|  | } else if (DstTy->isDoubleTy()) { | 
|  | if (SrcTy->isIntegerTy()) | 
|  | Dest.DoubleVal = Src.IntVal.bitsToDouble(); | 
|  | else { | 
|  | Dest.DoubleVal = Src.DoubleVal; | 
|  | } | 
|  | } else { | 
|  | llvm_unreachable("Invalid Bitcast"); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | void Interpreter::visitTruncInst(TruncInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitSExtInst(SExtInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitZExtInst(ZExtInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitFPTruncInst(FPTruncInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitFPExtInst(FPExtInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitUIToFPInst(UIToFPInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitSIToFPInst(SIToFPInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitFPToUIInst(FPToUIInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitFPToSIInst(FPToSIInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitPtrToIntInst(PtrToIntInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitIntToPtrInst(IntToPtrInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitBitCastInst(BitCastInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF); | 
|  | } | 
|  |  | 
|  | #define IMPLEMENT_VAARG(TY) \ | 
|  | case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break | 
|  |  | 
|  | void Interpreter::visitVAArgInst(VAArgInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  |  | 
|  | // Get the incoming valist parameter.  LLI treats the valist as a | 
|  | // (ec-stack-depth var-arg-index) pair. | 
|  | GenericValue VAList = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Dest; | 
|  | GenericValue Src = ECStack[VAList.UIntPairVal.first] | 
|  | .VarArgs[VAList.UIntPairVal.second]; | 
|  | Type *Ty = I.getType(); | 
|  | switch (Ty->getTypeID()) { | 
|  | case Type::IntegerTyID: | 
|  | Dest.IntVal = Src.IntVal; | 
|  | break; | 
|  | IMPLEMENT_VAARG(Pointer); | 
|  | IMPLEMENT_VAARG(Float); | 
|  | IMPLEMENT_VAARG(Double); | 
|  | default: | 
|  | dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  |  | 
|  | // Set the Value of this Instruction. | 
|  | SetValue(&I, Dest, SF); | 
|  |  | 
|  | // Move the pointer to the next vararg. | 
|  | ++VAList.UIntPairVal.second; | 
|  | } | 
|  |  | 
|  | void Interpreter::visitExtractElementInst(ExtractElementInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
|  | GenericValue Dest; | 
|  |  | 
|  | Type *Ty = I.getType(); | 
|  | const unsigned indx = unsigned(Src2.IntVal.getZExtValue()); | 
|  |  | 
|  | if(Src1.AggregateVal.size() > indx) { | 
|  | switch (Ty->getTypeID()) { | 
|  | default: | 
|  | dbgs() << "Unhandled destination type for extractelement instruction: " | 
|  | << *Ty << "\n"; | 
|  | llvm_unreachable(nullptr); | 
|  | break; | 
|  | case Type::IntegerTyID: | 
|  | Dest.IntVal = Src1.AggregateVal[indx].IntVal; | 
|  | break; | 
|  | case Type::FloatTyID: | 
|  | Dest.FloatVal = Src1.AggregateVal[indx].FloatVal; | 
|  | break; | 
|  | case Type::DoubleTyID: | 
|  | Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | dbgs() << "Invalid index in extractelement instruction\n"; | 
|  | } | 
|  |  | 
|  | SetValue(&I, Dest, SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitInsertElementInst(InsertElementInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | Type *Ty = I.getType(); | 
|  |  | 
|  | if(!(Ty->isVectorTy()) ) | 
|  | llvm_unreachable("Unhandled dest type for insertelement instruction"); | 
|  |  | 
|  | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
|  | GenericValue Src3 = getOperandValue(I.getOperand(2), SF); | 
|  | GenericValue Dest; | 
|  |  | 
|  | Type *TyContained = Ty->getContainedType(0); | 
|  |  | 
|  | const unsigned indx = unsigned(Src3.IntVal.getZExtValue()); | 
|  | Dest.AggregateVal = Src1.AggregateVal; | 
|  |  | 
|  | if(Src1.AggregateVal.size() <= indx) | 
|  | llvm_unreachable("Invalid index in insertelement instruction"); | 
|  | switch (TyContained->getTypeID()) { | 
|  | default: | 
|  | llvm_unreachable("Unhandled dest type for insertelement instruction"); | 
|  | case Type::IntegerTyID: | 
|  | Dest.AggregateVal[indx].IntVal = Src2.IntVal; | 
|  | break; | 
|  | case Type::FloatTyID: | 
|  | Dest.AggregateVal[indx].FloatVal = Src2.FloatVal; | 
|  | break; | 
|  | case Type::DoubleTyID: | 
|  | Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal; | 
|  | break; | 
|  | } | 
|  | SetValue(&I, Dest, SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){ | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  |  | 
|  | Type *Ty = I.getType(); | 
|  | if(!(Ty->isVectorTy())) | 
|  | llvm_unreachable("Unhandled dest type for shufflevector instruction"); | 
|  |  | 
|  | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
|  | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
|  | GenericValue Src3 = getOperandValue(I.getOperand(2), SF); | 
|  | GenericValue Dest; | 
|  |  | 
|  | // There is no need to check types of src1 and src2, because the compiled | 
|  | // bytecode can't contain different types for src1 and src2 for a | 
|  | // shufflevector instruction. | 
|  |  | 
|  | Type *TyContained = Ty->getContainedType(0); | 
|  | unsigned src1Size = (unsigned)Src1.AggregateVal.size(); | 
|  | unsigned src2Size = (unsigned)Src2.AggregateVal.size(); | 
|  | unsigned src3Size = (unsigned)Src3.AggregateVal.size(); | 
|  |  | 
|  | Dest.AggregateVal.resize(src3Size); | 
|  |  | 
|  | switch (TyContained->getTypeID()) { | 
|  | default: | 
|  | llvm_unreachable("Unhandled dest type for insertelement instruction"); | 
|  | break; | 
|  | case Type::IntegerTyID: | 
|  | for( unsigned i=0; i<src3Size; i++) { | 
|  | unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue(); | 
|  | if(j < src1Size) | 
|  | Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal; | 
|  | else if(j < src1Size + src2Size) | 
|  | Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal; | 
|  | else | 
|  | // The selector may not be greater than sum of lengths of first and | 
|  | // second operands and llasm should not allow situation like | 
|  | // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef, | 
|  | //                      <2 x i32> < i32 0, i32 5 >, | 
|  | // where i32 5 is invalid, but let it be additional check here: | 
|  | llvm_unreachable("Invalid mask in shufflevector instruction"); | 
|  | } | 
|  | break; | 
|  | case Type::FloatTyID: | 
|  | for( unsigned i=0; i<src3Size; i++) { | 
|  | unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue(); | 
|  | if(j < src1Size) | 
|  | Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal; | 
|  | else if(j < src1Size + src2Size) | 
|  | Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal; | 
|  | else | 
|  | llvm_unreachable("Invalid mask in shufflevector instruction"); | 
|  | } | 
|  | break; | 
|  | case Type::DoubleTyID: | 
|  | for( unsigned i=0; i<src3Size; i++) { | 
|  | unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue(); | 
|  | if(j < src1Size) | 
|  | Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal; | 
|  | else if(j < src1Size + src2Size) | 
|  | Dest.AggregateVal[i].DoubleVal = | 
|  | Src2.AggregateVal[j-src1Size].DoubleVal; | 
|  | else | 
|  | llvm_unreachable("Invalid mask in shufflevector instruction"); | 
|  | } | 
|  | break; | 
|  | } | 
|  | SetValue(&I, Dest, SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitExtractValueInst(ExtractValueInst &I) { | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | Value *Agg = I.getAggregateOperand(); | 
|  | GenericValue Dest; | 
|  | GenericValue Src = getOperandValue(Agg, SF); | 
|  |  | 
|  | ExtractValueInst::idx_iterator IdxBegin = I.idx_begin(); | 
|  | unsigned Num = I.getNumIndices(); | 
|  | GenericValue *pSrc = &Src; | 
|  |  | 
|  | for (unsigned i = 0 ; i < Num; ++i) { | 
|  | pSrc = &pSrc->AggregateVal[*IdxBegin]; | 
|  | ++IdxBegin; | 
|  | } | 
|  |  | 
|  | Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices()); | 
|  | switch (IndexedType->getTypeID()) { | 
|  | default: | 
|  | llvm_unreachable("Unhandled dest type for extractelement instruction"); | 
|  | break; | 
|  | case Type::IntegerTyID: | 
|  | Dest.IntVal = pSrc->IntVal; | 
|  | break; | 
|  | case Type::FloatTyID: | 
|  | Dest.FloatVal = pSrc->FloatVal; | 
|  | break; | 
|  | case Type::DoubleTyID: | 
|  | Dest.DoubleVal = pSrc->DoubleVal; | 
|  | break; | 
|  | case Type::ArrayTyID: | 
|  | case Type::StructTyID: | 
|  | case Type::VectorTyID: | 
|  | Dest.AggregateVal = pSrc->AggregateVal; | 
|  | break; | 
|  | case Type::PointerTyID: | 
|  | Dest.PointerVal = pSrc->PointerVal; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SetValue(&I, Dest, SF); | 
|  | } | 
|  |  | 
|  | void Interpreter::visitInsertValueInst(InsertValueInst &I) { | 
|  |  | 
|  | ExecutionContext &SF = ECStack.back(); | 
|  | Value *Agg = I.getAggregateOperand(); | 
|  |  | 
|  | GenericValue Src1 = getOperandValue(Agg, SF); | 
|  | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
|  | GenericValue Dest = Src1; // Dest is a slightly changed Src1 | 
|  |  | 
|  | ExtractValueInst::idx_iterator IdxBegin = I.idx_begin(); | 
|  | unsigned Num = I.getNumIndices(); | 
|  |  | 
|  | GenericValue *pDest = &Dest; | 
|  | for (unsigned i = 0 ; i < Num; ++i) { | 
|  | pDest = &pDest->AggregateVal[*IdxBegin]; | 
|  | ++IdxBegin; | 
|  | } | 
|  | // pDest points to the target value in the Dest now | 
|  |  | 
|  | Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices()); | 
|  |  | 
|  | switch (IndexedType->getTypeID()) { | 
|  | default: | 
|  | llvm_unreachable("Unhandled dest type for insertelement instruction"); | 
|  | break; | 
|  | case Type::IntegerTyID: | 
|  | pDest->IntVal = Src2.IntVal; | 
|  | break; | 
|  | case Type::FloatTyID: | 
|  | pDest->FloatVal = Src2.FloatVal; | 
|  | break; | 
|  | case Type::DoubleTyID: | 
|  | pDest->DoubleVal = Src2.DoubleVal; | 
|  | break; | 
|  | case Type::ArrayTyID: | 
|  | case Type::StructTyID: | 
|  | case Type::VectorTyID: | 
|  | pDest->AggregateVal = Src2.AggregateVal; | 
|  | break; | 
|  | case Type::PointerTyID: | 
|  | pDest->PointerVal = Src2.PointerVal; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SetValue(&I, Dest, SF); | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, | 
|  | ExecutionContext &SF) { | 
|  | switch (CE->getOpcode()) { | 
|  | case Instruction::Trunc: | 
|  | return executeTruncInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::ZExt: | 
|  | return executeZExtInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::SExt: | 
|  | return executeSExtInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::FPTrunc: | 
|  | return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::FPExt: | 
|  | return executeFPExtInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::UIToFP: | 
|  | return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::SIToFP: | 
|  | return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::FPToUI: | 
|  | return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::FPToSI: | 
|  | return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::PtrToInt: | 
|  | return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::IntToPtr: | 
|  | return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::BitCast: | 
|  | return executeBitCastInst(CE->getOperand(0), CE->getType(), SF); | 
|  | case Instruction::GetElementPtr: | 
|  | return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), | 
|  | gep_type_end(CE), SF); | 
|  | case Instruction::FCmp: | 
|  | case Instruction::ICmp: | 
|  | return executeCmpInst(CE->getPredicate(), | 
|  | getOperandValue(CE->getOperand(0), SF), | 
|  | getOperandValue(CE->getOperand(1), SF), | 
|  | CE->getOperand(0)->getType()); | 
|  | case Instruction::Select: | 
|  | return executeSelectInst(getOperandValue(CE->getOperand(0), SF), | 
|  | getOperandValue(CE->getOperand(1), SF), | 
|  | getOperandValue(CE->getOperand(2), SF), | 
|  | CE->getOperand(0)->getType()); | 
|  | default : | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The cases below here require a GenericValue parameter for the result | 
|  | // so we initialize one, compute it and then return it. | 
|  | GenericValue Op0 = getOperandValue(CE->getOperand(0), SF); | 
|  | GenericValue Op1 = getOperandValue(CE->getOperand(1), SF); | 
|  | GenericValue Dest; | 
|  | Type * Ty = CE->getOperand(0)->getType(); | 
|  | switch (CE->getOpcode()) { | 
|  | case Instruction::Add:  Dest.IntVal = Op0.IntVal + Op1.IntVal; break; | 
|  | case Instruction::Sub:  Dest.IntVal = Op0.IntVal - Op1.IntVal; break; | 
|  | case Instruction::Mul:  Dest.IntVal = Op0.IntVal * Op1.IntVal; break; | 
|  | case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break; | 
|  | case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break; | 
|  | case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break; | 
|  | case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break; | 
|  | case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break; | 
|  | case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break; | 
|  | case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break; | 
|  | case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break; | 
|  | case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break; | 
|  | case Instruction::And:  Dest.IntVal = Op0.IntVal & Op1.IntVal; break; | 
|  | case Instruction::Or:   Dest.IntVal = Op0.IntVal | Op1.IntVal; break; | 
|  | case Instruction::Xor:  Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break; | 
|  | case Instruction::Shl: | 
|  | Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue()); | 
|  | break; | 
|  | case Instruction::LShr: | 
|  | Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue()); | 
|  | break; | 
|  | case Instruction::AShr: | 
|  | Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue()); | 
|  | break; | 
|  | default: | 
|  | dbgs() << "Unhandled ConstantExpr: " << *CE << "\n"; | 
|  | llvm_unreachable("Unhandled ConstantExpr"); | 
|  | } | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
|  | return getConstantExprValue(CE, SF); | 
|  | } else if (Constant *CPV = dyn_cast<Constant>(V)) { | 
|  | return getConstantValue(CPV); | 
|  | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | 
|  | return PTOGV(getPointerToGlobal(GV)); | 
|  | } else { | 
|  | return SF.Values[V]; | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        Dispatch and Execution Code | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // callFunction - Execute the specified function... | 
|  | // | 
|  | void Interpreter::callFunction(Function *F, | 
|  | const std::vector<GenericValue> &ArgVals) { | 
|  | assert((ECStack.empty() || !ECStack.back().Caller.getInstruction() || | 
|  | ECStack.back().Caller.arg_size() == ArgVals.size()) && | 
|  | "Incorrect number of arguments passed into function call!"); | 
|  | // Make a new stack frame... and fill it in. | 
|  | ECStack.push_back(ExecutionContext()); | 
|  | ExecutionContext &StackFrame = ECStack.back(); | 
|  | StackFrame.CurFunction = F; | 
|  |  | 
|  | // Special handling for external functions. | 
|  | if (F->isDeclaration()) { | 
|  | GenericValue Result = callExternalFunction (F, ArgVals); | 
|  | // Simulate a 'ret' instruction of the appropriate type. | 
|  | popStackAndReturnValueToCaller (F->getReturnType (), Result); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Get pointers to first LLVM BB & Instruction in function. | 
|  | StackFrame.CurBB     = F->begin(); | 
|  | StackFrame.CurInst   = StackFrame.CurBB->begin(); | 
|  |  | 
|  | // Run through the function arguments and initialize their values... | 
|  | assert((ArgVals.size() == F->arg_size() || | 
|  | (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&& | 
|  | "Invalid number of values passed to function invocation!"); | 
|  |  | 
|  | // Handle non-varargs arguments... | 
|  | unsigned i = 0; | 
|  | for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); | 
|  | AI != E; ++AI, ++i) | 
|  | SetValue(AI, ArgVals[i], StackFrame); | 
|  |  | 
|  | // Handle varargs arguments... | 
|  | StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); | 
|  | } | 
|  |  | 
|  |  | 
|  | void Interpreter::run() { | 
|  | while (!ECStack.empty()) { | 
|  | // Interpret a single instruction & increment the "PC". | 
|  | ExecutionContext &SF = ECStack.back();  // Current stack frame | 
|  | Instruction &I = *SF.CurInst++;         // Increment before execute | 
|  |  | 
|  | // Track the number of dynamic instructions executed. | 
|  | ++NumDynamicInsts; | 
|  |  | 
|  | DEBUG(dbgs() << "About to interpret: " << I); | 
|  | visit(I);   // Dispatch to one of the visit* methods... | 
|  | #if 0 | 
|  | // This is not safe, as visiting the instruction could lower it and free I. | 
|  | DEBUG( | 
|  | if (!isa<CallInst>(I) && !isa<InvokeInst>(I) && | 
|  | I.getType() != Type::VoidTy) { | 
|  | dbgs() << "  --> "; | 
|  | const GenericValue &Val = SF.Values[&I]; | 
|  | switch (I.getType()->getTypeID()) { | 
|  | default: llvm_unreachable("Invalid GenericValue Type"); | 
|  | case Type::VoidTyID:    dbgs() << "void"; break; | 
|  | case Type::FloatTyID:   dbgs() << "float " << Val.FloatVal; break; | 
|  | case Type::DoubleTyID:  dbgs() << "double " << Val.DoubleVal; break; | 
|  | case Type::PointerTyID: dbgs() << "void* " << intptr_t(Val.PointerVal); | 
|  | break; | 
|  | case Type::IntegerTyID: | 
|  | dbgs() << "i" << Val.IntVal.getBitWidth() << " " | 
|  | << Val.IntVal.toStringUnsigned(10) | 
|  | << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n"; | 
|  | break; | 
|  | } | 
|  | }); | 
|  | #endif | 
|  | } | 
|  | } |