| //===-- X86PeepholeOpt.cpp - X86 Peephole Optimizer -----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a peephole optimizer for the X86. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/Target/MRegisterInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/STLExtras.h" |
| using namespace llvm; |
| |
| namespace { |
| Statistic<> NumPHOpts("x86-peephole", |
| "Number of peephole optimization performed"); |
| Statistic<> NumPHMoves("x86-peephole", "Number of peephole moves folded"); |
| struct PH : public MachineFunctionPass { |
| virtual bool runOnMachineFunction(MachineFunction &MF); |
| |
| bool PeepholeOptimize(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator &I); |
| |
| virtual const char *getPassName() const { return "X86 Peephole Optimizer"; } |
| }; |
| } |
| |
| FunctionPass *llvm::createX86PeepholeOptimizerPass() { return new PH(); } |
| |
| bool PH::runOnMachineFunction(MachineFunction &MF) { |
| bool Changed = false; |
| |
| for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI) |
| for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); ) |
| if (PeepholeOptimize(*BI, I)) { |
| Changed = true; |
| ++NumPHOpts; |
| } else |
| ++I; |
| |
| return Changed; |
| } |
| |
| |
| bool PH::PeepholeOptimize(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator &I) { |
| assert(I != MBB.end()); |
| MachineBasicBlock::iterator NextI = next(I); |
| |
| MachineInstr *MI = I; |
| MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0; |
| unsigned Size = 0; |
| switch (MI->getOpcode()) { |
| case X86::MOV8rr: |
| case X86::MOV16rr: |
| case X86::MOV32rr: // Destroy X = X copies... |
| if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { |
| I = MBB.erase(I); |
| return true; |
| } |
| return false; |
| |
| // A large number of X86 instructions have forms which take an 8-bit |
| // immediate despite the fact that the operands are 16 or 32 bits. Because |
| // this can save three bytes of code size (and icache space), we want to |
| // shrink them if possible. |
| case X86::IMUL16rri: case X86::IMUL32rri: |
| assert(MI->getNumOperands() == 3 && "These should all have 3 operands!"); |
| if (MI->getOperand(2).isImmediate()) { |
| int Val = MI->getOperand(2).getImmedValue(); |
| // If the value is the same when signed extended from 8 bits... |
| if (Val == (signed int)(signed char)Val) { |
| unsigned Opcode; |
| switch (MI->getOpcode()) { |
| default: assert(0 && "Unknown opcode value!"); |
| case X86::IMUL16rri: Opcode = X86::IMUL16rri8; break; |
| case X86::IMUL32rri: Opcode = X86::IMUL32rri8; break; |
| } |
| unsigned R0 = MI->getOperand(0).getReg(); |
| unsigned R1 = MI->getOperand(1).getReg(); |
| I = MBB.insert(MBB.erase(I), |
| BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val)); |
| return true; |
| } |
| } |
| return false; |
| |
| case X86::ADD16ri: case X86::ADD32ri: case X86::ADC32ri: |
| case X86::SUB16ri: case X86::SUB32ri: |
| case X86::SBB16ri: case X86::SBB32ri: |
| case X86::AND16ri: case X86::AND32ri: |
| case X86::OR16ri: case X86::OR32ri: |
| case X86::XOR16ri: case X86::XOR32ri: |
| assert(MI->getNumOperands() == 2 && "These should all have 2 operands!"); |
| if (MI->getOperand(1).isImmediate()) { |
| int Val = MI->getOperand(1).getImmedValue(); |
| // If the value is the same when signed extended from 8 bits... |
| if (Val == (signed int)(signed char)Val) { |
| unsigned Opcode; |
| switch (MI->getOpcode()) { |
| default: assert(0 && "Unknown opcode value!"); |
| case X86::ADD16ri: Opcode = X86::ADD16ri8; break; |
| case X86::ADD32ri: Opcode = X86::ADD32ri8; break; |
| case X86::ADC32ri: Opcode = X86::ADC32ri8; break; |
| case X86::SUB16ri: Opcode = X86::SUB16ri8; break; |
| case X86::SUB32ri: Opcode = X86::SUB32ri8; break; |
| case X86::SBB16ri: Opcode = X86::SBB16ri8; break; |
| case X86::SBB32ri: Opcode = X86::SBB32ri8; break; |
| case X86::AND16ri: Opcode = X86::AND16ri8; break; |
| case X86::AND32ri: Opcode = X86::AND32ri8; break; |
| case X86::OR16ri: Opcode = X86::OR16ri8; break; |
| case X86::OR32ri: Opcode = X86::OR32ri8; break; |
| case X86::XOR16ri: Opcode = X86::XOR16ri8; break; |
| case X86::XOR32ri: Opcode = X86::XOR32ri8; break; |
| } |
| unsigned R0 = MI->getOperand(0).getReg(); |
| I = MBB.insert(MBB.erase(I), |
| BuildMI(Opcode, 1, R0, MachineOperand::UseAndDef) |
| .addZImm((char)Val)); |
| return true; |
| } |
| } |
| return false; |
| |
| case X86::ADD16mi: case X86::ADD32mi: case X86::ADC32mi: |
| case X86::SUB16mi: case X86::SUB32mi: |
| case X86::SBB16mi: case X86::SBB32mi: |
| case X86::AND16mi: case X86::AND32mi: |
| case X86::OR16mi: case X86::OR32mi: |
| case X86::XOR16mi: case X86::XOR32mi: |
| assert(MI->getNumOperands() == 5 && "These should all have 5 operands!"); |
| if (MI->getOperand(4).isImmediate()) { |
| int Val = MI->getOperand(4).getImmedValue(); |
| // If the value is the same when signed extended from 8 bits... |
| if (Val == (signed int)(signed char)Val) { |
| unsigned Opcode; |
| switch (MI->getOpcode()) { |
| default: assert(0 && "Unknown opcode value!"); |
| case X86::ADD16mi: Opcode = X86::ADD16mi8; break; |
| case X86::ADD32mi: Opcode = X86::ADD32mi8; break; |
| case X86::ADC32mi: Opcode = X86::ADC32mi8; break; |
| case X86::SUB16mi: Opcode = X86::SUB16mi8; break; |
| case X86::SUB32mi: Opcode = X86::SUB32mi8; break; |
| case X86::SBB16mi: Opcode = X86::SBB16mi8; break; |
| case X86::SBB32mi: Opcode = X86::SBB32mi8; break; |
| case X86::AND16mi: Opcode = X86::AND16mi8; break; |
| case X86::AND32mi: Opcode = X86::AND32mi8; break; |
| case X86::OR16mi: Opcode = X86::OR16mi8; break; |
| case X86::OR32mi: Opcode = X86::OR32mi8; break; |
| case X86::XOR16mi: Opcode = X86::XOR16mi8; break; |
| case X86::XOR32mi: Opcode = X86::XOR32mi8; break; |
| } |
| unsigned R0 = MI->getOperand(0).getReg(); |
| unsigned Scale = MI->getOperand(1).getImmedValue(); |
| unsigned R1 = MI->getOperand(2).getReg(); |
| if (MI->getOperand(3).isImmediate()) { |
| unsigned Offset = MI->getOperand(3).getImmedValue(); |
| I = MBB.insert(MBB.erase(I), |
| BuildMI(Opcode, 5).addReg(R0).addZImm(Scale). |
| addReg(R1).addSImm(Offset).addZImm((char)Val)); |
| } else if (MI->getOperand(3).isGlobalAddress()) { |
| GlobalValue *GA = MI->getOperand(3).getGlobal(); |
| int Offset = MI->getOperand(3).getOffset(); |
| I = MBB.insert(MBB.erase(I), |
| BuildMI(Opcode, 5).addReg(R0).addZImm(Scale). |
| addReg(R1).addGlobalAddress(GA, false, Offset). |
| addZImm((char)Val)); |
| } |
| return true; |
| } |
| } |
| return false; |
| default: |
| return false; |
| } |
| } |