|  | //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass implements an idiom recognizer that transforms simple loops into a | 
|  | // non-loop form.  In cases that this kicks in, it can be a significant | 
|  | // performance win. | 
|  | // | 
|  | // If compiling for code size we avoid idiom recognition if the resulting | 
|  | // code could be larger than the code for the original loop. One way this could | 
|  | // happen is if the loop is not removable after idiom recognition due to the | 
|  | // presence of non-idiom instructions. The initial implementation of the | 
|  | // heuristics applies to idioms in multi-block loops. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // TODO List: | 
|  | // | 
|  | // Future loop memory idioms to recognize: | 
|  | //   memcmp, memmove, strlen, etc. | 
|  | // Future floating point idioms to recognize in -ffast-math mode: | 
|  | //   fpowi | 
|  | // Future integer operation idioms to recognize: | 
|  | //   ctpop | 
|  | // | 
|  | // Beware that isel's default lowering for ctpop is highly inefficient for | 
|  | // i64 and larger types when i64 is legal and the value has few bits set.  It | 
|  | // would be good to enhance isel to emit a loop for ctpop in this case. | 
|  | // | 
|  | // This could recognize common matrix multiplies and dot product idioms and | 
|  | // replace them with calls to BLAS (if linked in??). | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/MapVector.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/LoopAccessAnalysis.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/MemoryLocation.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpander.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Utils/BuildLibCalls.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/LoopUtils.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "loop-idiom" | 
|  |  | 
|  | STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); | 
|  | STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); | 
|  |  | 
|  | static cl::opt<bool> UseLIRCodeSizeHeurs( | 
|  | "use-lir-code-size-heurs", | 
|  | cl::desc("Use loop idiom recognition code size heuristics when compiling" | 
|  | "with -Os/-Oz"), | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class LoopIdiomRecognize { | 
|  | Loop *CurLoop = nullptr; | 
|  | AliasAnalysis *AA; | 
|  | DominatorTree *DT; | 
|  | LoopInfo *LI; | 
|  | ScalarEvolution *SE; | 
|  | TargetLibraryInfo *TLI; | 
|  | const TargetTransformInfo *TTI; | 
|  | const DataLayout *DL; | 
|  | OptimizationRemarkEmitter &ORE; | 
|  | bool ApplyCodeSizeHeuristics; | 
|  |  | 
|  | public: | 
|  | explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, | 
|  | LoopInfo *LI, ScalarEvolution *SE, | 
|  | TargetLibraryInfo *TLI, | 
|  | const TargetTransformInfo *TTI, | 
|  | const DataLayout *DL, | 
|  | OptimizationRemarkEmitter &ORE) | 
|  | : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {} | 
|  |  | 
|  | bool runOnLoop(Loop *L); | 
|  |  | 
|  | private: | 
|  | using StoreList = SmallVector<StoreInst *, 8>; | 
|  | using StoreListMap = MapVector<Value *, StoreList>; | 
|  |  | 
|  | StoreListMap StoreRefsForMemset; | 
|  | StoreListMap StoreRefsForMemsetPattern; | 
|  | StoreList StoreRefsForMemcpy; | 
|  | bool HasMemset; | 
|  | bool HasMemsetPattern; | 
|  | bool HasMemcpy; | 
|  |  | 
|  | /// Return code for isLegalStore() | 
|  | enum LegalStoreKind { | 
|  | None = 0, | 
|  | Memset, | 
|  | MemsetPattern, | 
|  | Memcpy, | 
|  | UnorderedAtomicMemcpy, | 
|  | DontUse // Dummy retval never to be used. Allows catching errors in retval | 
|  | // handling. | 
|  | }; | 
|  |  | 
|  | /// \name Countable Loop Idiom Handling | 
|  | /// @{ | 
|  |  | 
|  | bool runOnCountableLoop(); | 
|  | bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, | 
|  | SmallVectorImpl<BasicBlock *> &ExitBlocks); | 
|  |  | 
|  | void collectStores(BasicBlock *BB); | 
|  | LegalStoreKind isLegalStore(StoreInst *SI); | 
|  | enum class ForMemset { No, Yes }; | 
|  | bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, | 
|  | ForMemset For); | 
|  | bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); | 
|  |  | 
|  | bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, | 
|  | unsigned StoreAlignment, Value *StoredVal, | 
|  | Instruction *TheStore, | 
|  | SmallPtrSetImpl<Instruction *> &Stores, | 
|  | const SCEVAddRecExpr *Ev, const SCEV *BECount, | 
|  | bool NegStride, bool IsLoopMemset = false); | 
|  | bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); | 
|  | bool avoidLIRForMultiBlockLoop(bool IsMemset = false, | 
|  | bool IsLoopMemset = false); | 
|  |  | 
|  | /// @} | 
|  | /// \name Noncountable Loop Idiom Handling | 
|  | /// @{ | 
|  |  | 
|  | bool runOnNoncountableLoop(); | 
|  |  | 
|  | bool recognizePopcount(); | 
|  | void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, | 
|  | PHINode *CntPhi, Value *Var); | 
|  | bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz | 
|  | void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, | 
|  | Instruction *CntInst, PHINode *CntPhi, | 
|  | Value *Var, Instruction *DefX, | 
|  | const DebugLoc &DL, bool ZeroCheck, | 
|  | bool IsCntPhiUsedOutsideLoop); | 
|  |  | 
|  | /// @} | 
|  | }; | 
|  |  | 
|  | class LoopIdiomRecognizeLegacyPass : public LoopPass { | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { | 
|  | initializeLoopIdiomRecognizeLegacyPassPass( | 
|  | *PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnLoop(Loop *L, LPPassManager &LPM) override { | 
|  | if (skipLoop(L)) | 
|  | return false; | 
|  |  | 
|  | AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  | DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  | ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); | 
|  | TargetLibraryInfo *TLI = | 
|  | &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( | 
|  | *L->getHeader()->getParent()); | 
|  | const TargetTransformInfo *TTI = | 
|  | &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( | 
|  | *L->getHeader()->getParent()); | 
|  | const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); | 
|  |  | 
|  | // For the old PM, we can't use OptimizationRemarkEmitter as an analysis | 
|  | // pass.  Function analyses need to be preserved across loop transformations | 
|  | // but ORE cannot be preserved (see comment before the pass definition). | 
|  | OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); | 
|  |  | 
|  | LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL, ORE); | 
|  | return LIR.runOnLoop(L); | 
|  | } | 
|  |  | 
|  | /// This transformation requires natural loop information & requires that | 
|  | /// loop preheaders be inserted into the CFG. | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | getLoopAnalysisUsage(AU); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char LoopIdiomRecognizeLegacyPass::ID = 0; | 
|  |  | 
|  | PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, | 
|  | LoopStandardAnalysisResults &AR, | 
|  | LPMUpdater &) { | 
|  | const auto *DL = &L.getHeader()->getModule()->getDataLayout(); | 
|  |  | 
|  | const auto &FAM = | 
|  | AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); | 
|  | Function *F = L.getHeader()->getParent(); | 
|  |  | 
|  | auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); | 
|  | // FIXME: This should probably be optional rather than required. | 
|  | if (!ORE) | 
|  | report_fatal_error( | 
|  | "LoopIdiomRecognizePass: OptimizationRemarkEmitterAnalysis not cached " | 
|  | "at a higher level"); | 
|  |  | 
|  | LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL, | 
|  | *ORE); | 
|  | if (!LIR.runOnLoop(&L)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | return getLoopPassPreservedAnalyses(); | 
|  | } | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", | 
|  | "Recognize loop idioms", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", | 
|  | "Recognize loop idioms", false, false) | 
|  |  | 
|  | Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } | 
|  |  | 
|  | static void deleteDeadInstruction(Instruction *I) { | 
|  | I->replaceAllUsesWith(UndefValue::get(I->getType())); | 
|  | I->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //          Implementation of LoopIdiomRecognize | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool LoopIdiomRecognize::runOnLoop(Loop *L) { | 
|  | CurLoop = L; | 
|  | // If the loop could not be converted to canonical form, it must have an | 
|  | // indirectbr in it, just give up. | 
|  | if (!L->getLoopPreheader()) | 
|  | return false; | 
|  |  | 
|  | // Disable loop idiom recognition if the function's name is a common idiom. | 
|  | StringRef Name = L->getHeader()->getParent()->getName(); | 
|  | if (Name == "memset" || Name == "memcpy") | 
|  | return false; | 
|  |  | 
|  | // Determine if code size heuristics need to be applied. | 
|  | ApplyCodeSizeHeuristics = | 
|  | L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; | 
|  |  | 
|  | HasMemset = TLI->has(LibFunc_memset); | 
|  | HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); | 
|  | HasMemcpy = TLI->has(LibFunc_memcpy); | 
|  |  | 
|  | if (HasMemset || HasMemsetPattern || HasMemcpy) | 
|  | if (SE->hasLoopInvariantBackedgeTakenCount(L)) | 
|  | return runOnCountableLoop(); | 
|  |  | 
|  | return runOnNoncountableLoop(); | 
|  | } | 
|  |  | 
|  | bool LoopIdiomRecognize::runOnCountableLoop() { | 
|  | const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); | 
|  | assert(!isa<SCEVCouldNotCompute>(BECount) && | 
|  | "runOnCountableLoop() called on a loop without a predictable" | 
|  | "backedge-taken count"); | 
|  |  | 
|  | // If this loop executes exactly one time, then it should be peeled, not | 
|  | // optimized by this pass. | 
|  | if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) | 
|  | if (BECst->getAPInt() == 0) | 
|  | return false; | 
|  |  | 
|  | SmallVector<BasicBlock *, 8> ExitBlocks; | 
|  | CurLoop->getUniqueExitBlocks(ExitBlocks); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" | 
|  | << CurLoop->getHeader()->getParent()->getName() | 
|  | << "] Countable Loop %" << CurLoop->getHeader()->getName() | 
|  | << "\n"); | 
|  |  | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // The following transforms hoist stores/memsets into the loop pre-header. | 
|  | // Give up if the loop has instructions may throw. | 
|  | SimpleLoopSafetyInfo SafetyInfo; | 
|  | SafetyInfo.computeLoopSafetyInfo(CurLoop); | 
|  | if (SafetyInfo.anyBlockMayThrow()) | 
|  | return MadeChange; | 
|  |  | 
|  | // Scan all the blocks in the loop that are not in subloops. | 
|  | for (auto *BB : CurLoop->getBlocks()) { | 
|  | // Ignore blocks in subloops. | 
|  | if (LI->getLoopFor(BB) != CurLoop) | 
|  | continue; | 
|  |  | 
|  | MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { | 
|  | const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); | 
|  | return ConstStride->getAPInt(); | 
|  | } | 
|  |  | 
|  | /// getMemSetPatternValue - If a strided store of the specified value is safe to | 
|  | /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should | 
|  | /// be passed in.  Otherwise, return null. | 
|  | /// | 
|  | /// Note that we don't ever attempt to use memset_pattern8 or 4, because these | 
|  | /// just replicate their input array and then pass on to memset_pattern16. | 
|  | static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { | 
|  | // FIXME: This could check for UndefValue because it can be merged into any | 
|  | // other valid pattern. | 
|  |  | 
|  | // If the value isn't a constant, we can't promote it to being in a constant | 
|  | // array.  We could theoretically do a store to an alloca or something, but | 
|  | // that doesn't seem worthwhile. | 
|  | Constant *C = dyn_cast<Constant>(V); | 
|  | if (!C) | 
|  | return nullptr; | 
|  |  | 
|  | // Only handle simple values that are a power of two bytes in size. | 
|  | uint64_t Size = DL->getTypeSizeInBits(V->getType()); | 
|  | if (Size == 0 || (Size & 7) || (Size & (Size - 1))) | 
|  | return nullptr; | 
|  |  | 
|  | // Don't care enough about darwin/ppc to implement this. | 
|  | if (DL->isBigEndian()) | 
|  | return nullptr; | 
|  |  | 
|  | // Convert to size in bytes. | 
|  | Size /= 8; | 
|  |  | 
|  | // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see | 
|  | // if the top and bottom are the same (e.g. for vectors and large integers). | 
|  | if (Size > 16) | 
|  | return nullptr; | 
|  |  | 
|  | // If the constant is exactly 16 bytes, just use it. | 
|  | if (Size == 16) | 
|  | return C; | 
|  |  | 
|  | // Otherwise, we'll use an array of the constants. | 
|  | unsigned ArraySize = 16 / Size; | 
|  | ArrayType *AT = ArrayType::get(V->getType(), ArraySize); | 
|  | return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); | 
|  | } | 
|  |  | 
|  | LoopIdiomRecognize::LegalStoreKind | 
|  | LoopIdiomRecognize::isLegalStore(StoreInst *SI) { | 
|  | // Don't touch volatile stores. | 
|  | if (SI->isVolatile()) | 
|  | return LegalStoreKind::None; | 
|  | // We only want simple or unordered-atomic stores. | 
|  | if (!SI->isUnordered()) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | // Don't convert stores of non-integral pointer types to memsets (which stores | 
|  | // integers). | 
|  | if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType())) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | // Avoid merging nontemporal stores. | 
|  | if (SI->getMetadata(LLVMContext::MD_nontemporal)) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | Value *StoredVal = SI->getValueOperand(); | 
|  | Value *StorePtr = SI->getPointerOperand(); | 
|  |  | 
|  | // Reject stores that are so large that they overflow an unsigned. | 
|  | uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); | 
|  | if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | // See if the pointer expression is an AddRec like {base,+,1} on the current | 
|  | // loop, which indicates a strided store.  If we have something else, it's a | 
|  | // random store we can't handle. | 
|  | const SCEVAddRecExpr *StoreEv = | 
|  | dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); | 
|  | if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | // Check to see if we have a constant stride. | 
|  | if (!isa<SCEVConstant>(StoreEv->getOperand(1))) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | // See if the store can be turned into a memset. | 
|  |  | 
|  | // If the stored value is a byte-wise value (like i32 -1), then it may be | 
|  | // turned into a memset of i8 -1, assuming that all the consecutive bytes | 
|  | // are stored.  A store of i32 0x01020304 can never be turned into a memset, | 
|  | // but it can be turned into memset_pattern if the target supports it. | 
|  | Value *SplatValue = isBytewiseValue(StoredVal, *DL); | 
|  | Constant *PatternValue = nullptr; | 
|  |  | 
|  | // Note: memset and memset_pattern on unordered-atomic is yet not supported | 
|  | bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); | 
|  |  | 
|  | // If we're allowed to form a memset, and the stored value would be | 
|  | // acceptable for memset, use it. | 
|  | if (!UnorderedAtomic && HasMemset && SplatValue && | 
|  | // Verify that the stored value is loop invariant.  If not, we can't | 
|  | // promote the memset. | 
|  | CurLoop->isLoopInvariant(SplatValue)) { | 
|  | // It looks like we can use SplatValue. | 
|  | return LegalStoreKind::Memset; | 
|  | } else if (!UnorderedAtomic && HasMemsetPattern && | 
|  | // Don't create memset_pattern16s with address spaces. | 
|  | StorePtr->getType()->getPointerAddressSpace() == 0 && | 
|  | (PatternValue = getMemSetPatternValue(StoredVal, DL))) { | 
|  | // It looks like we can use PatternValue! | 
|  | return LegalStoreKind::MemsetPattern; | 
|  | } | 
|  |  | 
|  | // Otherwise, see if the store can be turned into a memcpy. | 
|  | if (HasMemcpy) { | 
|  | // Check to see if the stride matches the size of the store.  If so, then we | 
|  | // know that every byte is touched in the loop. | 
|  | APInt Stride = getStoreStride(StoreEv); | 
|  | unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); | 
|  | if (StoreSize != Stride && StoreSize != -Stride) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | // The store must be feeding a non-volatile load. | 
|  | LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); | 
|  |  | 
|  | // Only allow non-volatile loads | 
|  | if (!LI || LI->isVolatile()) | 
|  | return LegalStoreKind::None; | 
|  | // Only allow simple or unordered-atomic loads | 
|  | if (!LI->isUnordered()) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | // See if the pointer expression is an AddRec like {base,+,1} on the current | 
|  | // loop, which indicates a strided load.  If we have something else, it's a | 
|  | // random load we can't handle. | 
|  | const SCEVAddRecExpr *LoadEv = | 
|  | dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); | 
|  | if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | // The store and load must share the same stride. | 
|  | if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) | 
|  | return LegalStoreKind::None; | 
|  |  | 
|  | // Success.  This store can be converted into a memcpy. | 
|  | UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); | 
|  | return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy | 
|  | : LegalStoreKind::Memcpy; | 
|  | } | 
|  | // This store can't be transformed into a memset/memcpy. | 
|  | return LegalStoreKind::None; | 
|  | } | 
|  |  | 
|  | void LoopIdiomRecognize::collectStores(BasicBlock *BB) { | 
|  | StoreRefsForMemset.clear(); | 
|  | StoreRefsForMemsetPattern.clear(); | 
|  | StoreRefsForMemcpy.clear(); | 
|  | for (Instruction &I : *BB) { | 
|  | StoreInst *SI = dyn_cast<StoreInst>(&I); | 
|  | if (!SI) | 
|  | continue; | 
|  |  | 
|  | // Make sure this is a strided store with a constant stride. | 
|  | switch (isLegalStore(SI)) { | 
|  | case LegalStoreKind::None: | 
|  | // Nothing to do | 
|  | break; | 
|  | case LegalStoreKind::Memset: { | 
|  | // Find the base pointer. | 
|  | Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); | 
|  | StoreRefsForMemset[Ptr].push_back(SI); | 
|  | } break; | 
|  | case LegalStoreKind::MemsetPattern: { | 
|  | // Find the base pointer. | 
|  | Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); | 
|  | StoreRefsForMemsetPattern[Ptr].push_back(SI); | 
|  | } break; | 
|  | case LegalStoreKind::Memcpy: | 
|  | case LegalStoreKind::UnorderedAtomicMemcpy: | 
|  | StoreRefsForMemcpy.push_back(SI); | 
|  | break; | 
|  | default: | 
|  | assert(false && "unhandled return value"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// runOnLoopBlock - Process the specified block, which lives in a counted loop | 
|  | /// with the specified backedge count.  This block is known to be in the current | 
|  | /// loop and not in any subloops. | 
|  | bool LoopIdiomRecognize::runOnLoopBlock( | 
|  | BasicBlock *BB, const SCEV *BECount, | 
|  | SmallVectorImpl<BasicBlock *> &ExitBlocks) { | 
|  | // We can only promote stores in this block if they are unconditionally | 
|  | // executed in the loop.  For a block to be unconditionally executed, it has | 
|  | // to dominate all the exit blocks of the loop.  Verify this now. | 
|  | for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) | 
|  | if (!DT->dominates(BB, ExitBlocks[i])) | 
|  | return false; | 
|  |  | 
|  | bool MadeChange = false; | 
|  | // Look for store instructions, which may be optimized to memset/memcpy. | 
|  | collectStores(BB); | 
|  |  | 
|  | // Look for a single store or sets of stores with a common base, which can be | 
|  | // optimized into a memset (memset_pattern).  The latter most commonly happens | 
|  | // with structs and handunrolled loops. | 
|  | for (auto &SL : StoreRefsForMemset) | 
|  | MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); | 
|  |  | 
|  | for (auto &SL : StoreRefsForMemsetPattern) | 
|  | MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); | 
|  |  | 
|  | // Optimize the store into a memcpy, if it feeds an similarly strided load. | 
|  | for (auto &SI : StoreRefsForMemcpy) | 
|  | MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); | 
|  |  | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { | 
|  | Instruction *Inst = &*I++; | 
|  | // Look for memset instructions, which may be optimized to a larger memset. | 
|  | if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { | 
|  | WeakTrackingVH InstPtr(&*I); | 
|  | if (!processLoopMemSet(MSI, BECount)) | 
|  | continue; | 
|  | MadeChange = true; | 
|  |  | 
|  | // If processing the memset invalidated our iterator, start over from the | 
|  | // top of the block. | 
|  | if (!InstPtr) | 
|  | I = BB->begin(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// See if this store(s) can be promoted to a memset. | 
|  | bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, | 
|  | const SCEV *BECount, ForMemset For) { | 
|  | // Try to find consecutive stores that can be transformed into memsets. | 
|  | SetVector<StoreInst *> Heads, Tails; | 
|  | SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; | 
|  |  | 
|  | // Do a quadratic search on all of the given stores and find | 
|  | // all of the pairs of stores that follow each other. | 
|  | SmallVector<unsigned, 16> IndexQueue; | 
|  | for (unsigned i = 0, e = SL.size(); i < e; ++i) { | 
|  | assert(SL[i]->isSimple() && "Expected only non-volatile stores."); | 
|  |  | 
|  | Value *FirstStoredVal = SL[i]->getValueOperand(); | 
|  | Value *FirstStorePtr = SL[i]->getPointerOperand(); | 
|  | const SCEVAddRecExpr *FirstStoreEv = | 
|  | cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); | 
|  | APInt FirstStride = getStoreStride(FirstStoreEv); | 
|  | unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); | 
|  |  | 
|  | // See if we can optimize just this store in isolation. | 
|  | if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { | 
|  | Heads.insert(SL[i]); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Value *FirstSplatValue = nullptr; | 
|  | Constant *FirstPatternValue = nullptr; | 
|  |  | 
|  | if (For == ForMemset::Yes) | 
|  | FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); | 
|  | else | 
|  | FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); | 
|  |  | 
|  | assert((FirstSplatValue || FirstPatternValue) && | 
|  | "Expected either splat value or pattern value."); | 
|  |  | 
|  | IndexQueue.clear(); | 
|  | // If a store has multiple consecutive store candidates, search Stores | 
|  | // array according to the sequence: from i+1 to e, then from i-1 to 0. | 
|  | // This is because usually pairing with immediate succeeding or preceding | 
|  | // candidate create the best chance to find memset opportunity. | 
|  | unsigned j = 0; | 
|  | for (j = i + 1; j < e; ++j) | 
|  | IndexQueue.push_back(j); | 
|  | for (j = i; j > 0; --j) | 
|  | IndexQueue.push_back(j - 1); | 
|  |  | 
|  | for (auto &k : IndexQueue) { | 
|  | assert(SL[k]->isSimple() && "Expected only non-volatile stores."); | 
|  | Value *SecondStorePtr = SL[k]->getPointerOperand(); | 
|  | const SCEVAddRecExpr *SecondStoreEv = | 
|  | cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); | 
|  | APInt SecondStride = getStoreStride(SecondStoreEv); | 
|  |  | 
|  | if (FirstStride != SecondStride) | 
|  | continue; | 
|  |  | 
|  | Value *SecondStoredVal = SL[k]->getValueOperand(); | 
|  | Value *SecondSplatValue = nullptr; | 
|  | Constant *SecondPatternValue = nullptr; | 
|  |  | 
|  | if (For == ForMemset::Yes) | 
|  | SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); | 
|  | else | 
|  | SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); | 
|  |  | 
|  | assert((SecondSplatValue || SecondPatternValue) && | 
|  | "Expected either splat value or pattern value."); | 
|  |  | 
|  | if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { | 
|  | if (For == ForMemset::Yes) { | 
|  | if (isa<UndefValue>(FirstSplatValue)) | 
|  | FirstSplatValue = SecondSplatValue; | 
|  | if (FirstSplatValue != SecondSplatValue) | 
|  | continue; | 
|  | } else { | 
|  | if (isa<UndefValue>(FirstPatternValue)) | 
|  | FirstPatternValue = SecondPatternValue; | 
|  | if (FirstPatternValue != SecondPatternValue) | 
|  | continue; | 
|  | } | 
|  | Tails.insert(SL[k]); | 
|  | Heads.insert(SL[i]); | 
|  | ConsecutiveChain[SL[i]] = SL[k]; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // We may run into multiple chains that merge into a single chain. We mark the | 
|  | // stores that we transformed so that we don't visit the same store twice. | 
|  | SmallPtrSet<Value *, 16> TransformedStores; | 
|  | bool Changed = false; | 
|  |  | 
|  | // For stores that start but don't end a link in the chain: | 
|  | for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); | 
|  | it != e; ++it) { | 
|  | if (Tails.count(*it)) | 
|  | continue; | 
|  |  | 
|  | // We found a store instr that starts a chain. Now follow the chain and try | 
|  | // to transform it. | 
|  | SmallPtrSet<Instruction *, 8> AdjacentStores; | 
|  | StoreInst *I = *it; | 
|  |  | 
|  | StoreInst *HeadStore = I; | 
|  | unsigned StoreSize = 0; | 
|  |  | 
|  | // Collect the chain into a list. | 
|  | while (Tails.count(I) || Heads.count(I)) { | 
|  | if (TransformedStores.count(I)) | 
|  | break; | 
|  | AdjacentStores.insert(I); | 
|  |  | 
|  | StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); | 
|  | // Move to the next value in the chain. | 
|  | I = ConsecutiveChain[I]; | 
|  | } | 
|  |  | 
|  | Value *StoredVal = HeadStore->getValueOperand(); | 
|  | Value *StorePtr = HeadStore->getPointerOperand(); | 
|  | const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); | 
|  | APInt Stride = getStoreStride(StoreEv); | 
|  |  | 
|  | // Check to see if the stride matches the size of the stores.  If so, then | 
|  | // we know that every byte is touched in the loop. | 
|  | if (StoreSize != Stride && StoreSize != -Stride) | 
|  | continue; | 
|  |  | 
|  | bool NegStride = StoreSize == -Stride; | 
|  |  | 
|  | if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(), | 
|  | StoredVal, HeadStore, AdjacentStores, StoreEv, | 
|  | BECount, NegStride)) { | 
|  | TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// processLoopMemSet - See if this memset can be promoted to a large memset. | 
|  | bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, | 
|  | const SCEV *BECount) { | 
|  | // We can only handle non-volatile memsets with a constant size. | 
|  | if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) | 
|  | return false; | 
|  |  | 
|  | // If we're not allowed to hack on memset, we fail. | 
|  | if (!HasMemset) | 
|  | return false; | 
|  |  | 
|  | Value *Pointer = MSI->getDest(); | 
|  |  | 
|  | // See if the pointer expression is an AddRec like {base,+,1} on the current | 
|  | // loop, which indicates a strided store.  If we have something else, it's a | 
|  | // random store we can't handle. | 
|  | const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); | 
|  | if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) | 
|  | return false; | 
|  |  | 
|  | // Reject memsets that are so large that they overflow an unsigned. | 
|  | uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); | 
|  | if ((SizeInBytes >> 32) != 0) | 
|  | return false; | 
|  |  | 
|  | // Check to see if the stride matches the size of the memset.  If so, then we | 
|  | // know that every byte is touched in the loop. | 
|  | const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); | 
|  | if (!ConstStride) | 
|  | return false; | 
|  |  | 
|  | APInt Stride = ConstStride->getAPInt(); | 
|  | if (SizeInBytes != Stride && SizeInBytes != -Stride) | 
|  | return false; | 
|  |  | 
|  | // Verify that the memset value is loop invariant.  If not, we can't promote | 
|  | // the memset. | 
|  | Value *SplatValue = MSI->getValue(); | 
|  | if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) | 
|  | return false; | 
|  |  | 
|  | SmallPtrSet<Instruction *, 1> MSIs; | 
|  | MSIs.insert(MSI); | 
|  | bool NegStride = SizeInBytes == -Stride; | 
|  | return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, | 
|  | MSI->getDestAlignment(), SplatValue, MSI, MSIs, | 
|  | Ev, BECount, NegStride, /*IsLoopMemset=*/true); | 
|  | } | 
|  |  | 
|  | /// mayLoopAccessLocation - Return true if the specified loop might access the | 
|  | /// specified pointer location, which is a loop-strided access.  The 'Access' | 
|  | /// argument specifies what the verboten forms of access are (read or write). | 
|  | static bool | 
|  | mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, | 
|  | const SCEV *BECount, unsigned StoreSize, | 
|  | AliasAnalysis &AA, | 
|  | SmallPtrSetImpl<Instruction *> &IgnoredStores) { | 
|  | // Get the location that may be stored across the loop.  Since the access is | 
|  | // strided positively through memory, we say that the modified location starts | 
|  | // at the pointer and has infinite size. | 
|  | LocationSize AccessSize = LocationSize::unknown(); | 
|  |  | 
|  | // If the loop iterates a fixed number of times, we can refine the access size | 
|  | // to be exactly the size of the memset, which is (BECount+1)*StoreSize | 
|  | if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) | 
|  | AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * | 
|  | StoreSize); | 
|  |  | 
|  | // TODO: For this to be really effective, we have to dive into the pointer | 
|  | // operand in the store.  Store to &A[i] of 100 will always return may alias | 
|  | // with store of &A[100], we need to StoreLoc to be "A" with size of 100, | 
|  | // which will then no-alias a store to &A[100]. | 
|  | MemoryLocation StoreLoc(Ptr, AccessSize); | 
|  |  | 
|  | for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; | 
|  | ++BI) | 
|  | for (Instruction &I : **BI) | 
|  | if (IgnoredStores.count(&I) == 0 && | 
|  | isModOrRefSet( | 
|  | intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we have a negative stride, Start refers to the end of the memory location | 
|  | // we're trying to memset.  Therefore, we need to recompute the base pointer, | 
|  | // which is just Start - BECount*Size. | 
|  | static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, | 
|  | Type *IntPtr, unsigned StoreSize, | 
|  | ScalarEvolution *SE) { | 
|  | const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); | 
|  | if (StoreSize != 1) | 
|  | Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize), | 
|  | SCEV::FlagNUW); | 
|  | return SE->getMinusSCEV(Start, Index); | 
|  | } | 
|  |  | 
|  | /// Compute the number of bytes as a SCEV from the backedge taken count. | 
|  | /// | 
|  | /// This also maps the SCEV into the provided type and tries to handle the | 
|  | /// computation in a way that will fold cleanly. | 
|  | static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, | 
|  | unsigned StoreSize, Loop *CurLoop, | 
|  | const DataLayout *DL, ScalarEvolution *SE) { | 
|  | const SCEV *NumBytesS; | 
|  | // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to | 
|  | // pointer size if it isn't already. | 
|  | // | 
|  | // If we're going to need to zero extend the BE count, check if we can add | 
|  | // one to it prior to zero extending without overflow. Provided this is safe, | 
|  | // it allows better simplification of the +1. | 
|  | if (DL->getTypeSizeInBits(BECount->getType()) < | 
|  | DL->getTypeSizeInBits(IntPtr) && | 
|  | SE->isLoopEntryGuardedByCond( | 
|  | CurLoop, ICmpInst::ICMP_NE, BECount, | 
|  | SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { | 
|  | NumBytesS = SE->getZeroExtendExpr( | 
|  | SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), | 
|  | IntPtr); | 
|  | } else { | 
|  | NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), | 
|  | SE->getOne(IntPtr), SCEV::FlagNUW); | 
|  | } | 
|  |  | 
|  | // And scale it based on the store size. | 
|  | if (StoreSize != 1) { | 
|  | NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), | 
|  | SCEV::FlagNUW); | 
|  | } | 
|  | return NumBytesS; | 
|  | } | 
|  |  | 
|  | /// processLoopStridedStore - We see a strided store of some value.  If we can | 
|  | /// transform this into a memset or memset_pattern in the loop preheader, do so. | 
|  | bool LoopIdiomRecognize::processLoopStridedStore( | 
|  | Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment, | 
|  | Value *StoredVal, Instruction *TheStore, | 
|  | SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, | 
|  | const SCEV *BECount, bool NegStride, bool IsLoopMemset) { | 
|  | Value *SplatValue = isBytewiseValue(StoredVal, *DL); | 
|  | Constant *PatternValue = nullptr; | 
|  |  | 
|  | if (!SplatValue) | 
|  | PatternValue = getMemSetPatternValue(StoredVal, DL); | 
|  |  | 
|  | assert((SplatValue || PatternValue) && | 
|  | "Expected either splat value or pattern value."); | 
|  |  | 
|  | // The trip count of the loop and the base pointer of the addrec SCEV is | 
|  | // guaranteed to be loop invariant, which means that it should dominate the | 
|  | // header.  This allows us to insert code for it in the preheader. | 
|  | unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); | 
|  | BasicBlock *Preheader = CurLoop->getLoopPreheader(); | 
|  | IRBuilder<> Builder(Preheader->getTerminator()); | 
|  | SCEVExpander Expander(*SE, *DL, "loop-idiom"); | 
|  |  | 
|  | Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); | 
|  | Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS); | 
|  |  | 
|  | const SCEV *Start = Ev->getStart(); | 
|  | // Handle negative strided loops. | 
|  | if (NegStride) | 
|  | Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE); | 
|  |  | 
|  | // TODO: ideally we should still be able to generate memset if SCEV expander | 
|  | // is taught to generate the dependencies at the latest point. | 
|  | if (!isSafeToExpand(Start, *SE)) | 
|  | return false; | 
|  |  | 
|  | // Okay, we have a strided store "p[i]" of a splattable value.  We can turn | 
|  | // this into a memset in the loop preheader now if we want.  However, this | 
|  | // would be unsafe to do if there is anything else in the loop that may read | 
|  | // or write to the aliased location.  Check for any overlap by generating the | 
|  | // base pointer and checking the region. | 
|  | Value *BasePtr = | 
|  | Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); | 
|  | if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, | 
|  | StoreSize, *AA, Stores)) { | 
|  | Expander.clear(); | 
|  | // If we generated new code for the base pointer, clean up. | 
|  | RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) | 
|  | return false; | 
|  |  | 
|  | // Okay, everything looks good, insert the memset. | 
|  |  | 
|  | const SCEV *NumBytesS = | 
|  | getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE); | 
|  |  | 
|  | // TODO: ideally we should still be able to generate memset if SCEV expander | 
|  | // is taught to generate the dependencies at the latest point. | 
|  | if (!isSafeToExpand(NumBytesS, *SE)) | 
|  | return false; | 
|  |  | 
|  | Value *NumBytes = | 
|  | Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); | 
|  |  | 
|  | CallInst *NewCall; | 
|  | if (SplatValue) { | 
|  | NewCall = | 
|  | Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment); | 
|  | } else { | 
|  | // Everything is emitted in default address space | 
|  | Type *Int8PtrTy = DestInt8PtrTy; | 
|  |  | 
|  | Module *M = TheStore->getModule(); | 
|  | StringRef FuncName = "memset_pattern16"; | 
|  | FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(), | 
|  | Int8PtrTy, Int8PtrTy, IntPtr); | 
|  | inferLibFuncAttributes(M, FuncName, *TLI); | 
|  |  | 
|  | // Otherwise we should form a memset_pattern16.  PatternValue is known to be | 
|  | // an constant array of 16-bytes.  Plop the value into a mergable global. | 
|  | GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, | 
|  | GlobalValue::PrivateLinkage, | 
|  | PatternValue, ".memset_pattern"); | 
|  | GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. | 
|  | GV->setAlignment(16); | 
|  | Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); | 
|  | NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n" | 
|  | << "    from store to: " << *Ev << " at: " << *TheStore | 
|  | << "\n"); | 
|  | NewCall->setDebugLoc(TheStore->getDebugLoc()); | 
|  |  | 
|  | ORE.emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore", | 
|  | NewCall->getDebugLoc(), Preheader) | 
|  | << "Transformed loop-strided store into a call to " | 
|  | << ore::NV("NewFunction", NewCall->getCalledFunction()) | 
|  | << "() function"; | 
|  | }); | 
|  |  | 
|  | // Okay, the memset has been formed.  Zap the original store and anything that | 
|  | // feeds into it. | 
|  | for (auto *I : Stores) | 
|  | deleteDeadInstruction(I); | 
|  | ++NumMemSet; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// If the stored value is a strided load in the same loop with the same stride | 
|  | /// this may be transformable into a memcpy.  This kicks in for stuff like | 
|  | /// for (i) A[i] = B[i]; | 
|  | bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, | 
|  | const SCEV *BECount) { | 
|  | assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); | 
|  |  | 
|  | Value *StorePtr = SI->getPointerOperand(); | 
|  | const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); | 
|  | APInt Stride = getStoreStride(StoreEv); | 
|  | unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); | 
|  | bool NegStride = StoreSize == -Stride; | 
|  |  | 
|  | // The store must be feeding a non-volatile load. | 
|  | LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); | 
|  | assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); | 
|  |  | 
|  | // See if the pointer expression is an AddRec like {base,+,1} on the current | 
|  | // loop, which indicates a strided load.  If we have something else, it's a | 
|  | // random load we can't handle. | 
|  | const SCEVAddRecExpr *LoadEv = | 
|  | cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); | 
|  |  | 
|  | // The trip count of the loop and the base pointer of the addrec SCEV is | 
|  | // guaranteed to be loop invariant, which means that it should dominate the | 
|  | // header.  This allows us to insert code for it in the preheader. | 
|  | BasicBlock *Preheader = CurLoop->getLoopPreheader(); | 
|  | IRBuilder<> Builder(Preheader->getTerminator()); | 
|  | SCEVExpander Expander(*SE, *DL, "loop-idiom"); | 
|  |  | 
|  | const SCEV *StrStart = StoreEv->getStart(); | 
|  | unsigned StrAS = SI->getPointerAddressSpace(); | 
|  | Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS); | 
|  |  | 
|  | // Handle negative strided loops. | 
|  | if (NegStride) | 
|  | StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE); | 
|  |  | 
|  | // Okay, we have a strided store "p[i]" of a loaded value.  We can turn | 
|  | // this into a memcpy in the loop preheader now if we want.  However, this | 
|  | // would be unsafe to do if there is anything else in the loop that may read | 
|  | // or write the memory region we're storing to.  This includes the load that | 
|  | // feeds the stores.  Check for an alias by generating the base address and | 
|  | // checking everything. | 
|  | Value *StoreBasePtr = Expander.expandCodeFor( | 
|  | StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); | 
|  |  | 
|  | SmallPtrSet<Instruction *, 1> Stores; | 
|  | Stores.insert(SI); | 
|  | if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, | 
|  | StoreSize, *AA, Stores)) { | 
|  | Expander.clear(); | 
|  | // If we generated new code for the base pointer, clean up. | 
|  | RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const SCEV *LdStart = LoadEv->getStart(); | 
|  | unsigned LdAS = LI->getPointerAddressSpace(); | 
|  |  | 
|  | // Handle negative strided loops. | 
|  | if (NegStride) | 
|  | LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE); | 
|  |  | 
|  | // For a memcpy, we have to make sure that the input array is not being | 
|  | // mutated by the loop. | 
|  | Value *LoadBasePtr = Expander.expandCodeFor( | 
|  | LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); | 
|  |  | 
|  | if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, | 
|  | StoreSize, *AA, Stores)) { | 
|  | Expander.clear(); | 
|  | // If we generated new code for the base pointer, clean up. | 
|  | RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); | 
|  | RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (avoidLIRForMultiBlockLoop()) | 
|  | return false; | 
|  |  | 
|  | // Okay, everything is safe, we can transform this! | 
|  |  | 
|  | const SCEV *NumBytesS = | 
|  | getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE); | 
|  |  | 
|  | Value *NumBytes = | 
|  | Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator()); | 
|  |  | 
|  | CallInst *NewCall = nullptr; | 
|  | // Check whether to generate an unordered atomic memcpy: | 
|  | //  If the load or store are atomic, then they must necessarily be unordered | 
|  | //  by previous checks. | 
|  | if (!SI->isAtomic() && !LI->isAtomic()) | 
|  | NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(), | 
|  | LoadBasePtr, LI->getAlignment(), NumBytes); | 
|  | else { | 
|  | // We cannot allow unaligned ops for unordered load/store, so reject | 
|  | // anything where the alignment isn't at least the element size. | 
|  | unsigned Align = std::min(SI->getAlignment(), LI->getAlignment()); | 
|  | if (Align < StoreSize) | 
|  | return false; | 
|  |  | 
|  | // If the element.atomic memcpy is not lowered into explicit | 
|  | // loads/stores later, then it will be lowered into an element-size | 
|  | // specific lib call. If the lib call doesn't exist for our store size, then | 
|  | // we shouldn't generate the memcpy. | 
|  | if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) | 
|  | return false; | 
|  |  | 
|  | // Create the call. | 
|  | // Note that unordered atomic loads/stores are *required* by the spec to | 
|  | // have an alignment but non-atomic loads/stores may not. | 
|  | NewCall = Builder.CreateElementUnorderedAtomicMemCpy( | 
|  | StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(), | 
|  | NumBytes, StoreSize); | 
|  | } | 
|  | NewCall->setDebugLoc(SI->getDebugLoc()); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n" | 
|  | << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n" | 
|  | << "    from store ptr=" << *StoreEv << " at: " << *SI | 
|  | << "\n"); | 
|  |  | 
|  | ORE.emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", | 
|  | NewCall->getDebugLoc(), Preheader) | 
|  | << "Formed a call to " | 
|  | << ore::NV("NewFunction", NewCall->getCalledFunction()) | 
|  | << "() function"; | 
|  | }); | 
|  |  | 
|  | // Okay, the memcpy has been formed.  Zap the original store and anything that | 
|  | // feeds into it. | 
|  | deleteDeadInstruction(SI); | 
|  | ++NumMemCpy; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // When compiling for codesize we avoid idiom recognition for a multi-block loop | 
|  | // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. | 
|  | // | 
|  | bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, | 
|  | bool IsLoopMemset) { | 
|  | if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { | 
|  | if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) { | 
|  | LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName() | 
|  | << " : LIR " << (IsMemset ? "Memset" : "Memcpy") | 
|  | << " avoided: multi-block top-level loop\n"); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool LoopIdiomRecognize::runOnNoncountableLoop() { | 
|  | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" | 
|  | << CurLoop->getHeader()->getParent()->getName() | 
|  | << "] Noncountable Loop %" | 
|  | << CurLoop->getHeader()->getName() << "\n"); | 
|  |  | 
|  | return recognizePopcount() || recognizeAndInsertFFS(); | 
|  | } | 
|  |  | 
|  | /// Check if the given conditional branch is based on the comparison between | 
|  | /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is | 
|  | /// true), the control yields to the loop entry. If the branch matches the | 
|  | /// behavior, the variable involved in the comparison is returned. This function | 
|  | /// will be called to see if the precondition and postcondition of the loop are | 
|  | /// in desirable form. | 
|  | static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, | 
|  | bool JmpOnZero = false) { | 
|  | if (!BI || !BI->isConditional()) | 
|  | return nullptr; | 
|  |  | 
|  | ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); | 
|  | if (!Cond) | 
|  | return nullptr; | 
|  |  | 
|  | ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); | 
|  | if (!CmpZero || !CmpZero->isZero()) | 
|  | return nullptr; | 
|  |  | 
|  | BasicBlock *TrueSucc = BI->getSuccessor(0); | 
|  | BasicBlock *FalseSucc = BI->getSuccessor(1); | 
|  | if (JmpOnZero) | 
|  | std::swap(TrueSucc, FalseSucc); | 
|  |  | 
|  | ICmpInst::Predicate Pred = Cond->getPredicate(); | 
|  | if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || | 
|  | (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) | 
|  | return Cond->getOperand(0); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Check if the recurrence variable `VarX` is in the right form to create | 
|  | // the idiom. Returns the value coerced to a PHINode if so. | 
|  | static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, | 
|  | BasicBlock *LoopEntry) { | 
|  | auto *PhiX = dyn_cast<PHINode>(VarX); | 
|  | if (PhiX && PhiX->getParent() == LoopEntry && | 
|  | (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) | 
|  | return PhiX; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Return true iff the idiom is detected in the loop. | 
|  | /// | 
|  | /// Additionally: | 
|  | /// 1) \p CntInst is set to the instruction counting the population bit. | 
|  | /// 2) \p CntPhi is set to the corresponding phi node. | 
|  | /// 3) \p Var is set to the value whose population bits are being counted. | 
|  | /// | 
|  | /// The core idiom we are trying to detect is: | 
|  | /// \code | 
|  | ///    if (x0 != 0) | 
|  | ///      goto loop-exit // the precondition of the loop | 
|  | ///    cnt0 = init-val; | 
|  | ///    do { | 
|  | ///       x1 = phi (x0, x2); | 
|  | ///       cnt1 = phi(cnt0, cnt2); | 
|  | /// | 
|  | ///       cnt2 = cnt1 + 1; | 
|  | ///        ... | 
|  | ///       x2 = x1 & (x1 - 1); | 
|  | ///        ... | 
|  | ///    } while(x != 0); | 
|  | /// | 
|  | /// loop-exit: | 
|  | /// \endcode | 
|  | static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, | 
|  | Instruction *&CntInst, PHINode *&CntPhi, | 
|  | Value *&Var) { | 
|  | // step 1: Check to see if the look-back branch match this pattern: | 
|  | //    "if (a!=0) goto loop-entry". | 
|  | BasicBlock *LoopEntry; | 
|  | Instruction *DefX2, *CountInst; | 
|  | Value *VarX1, *VarX0; | 
|  | PHINode *PhiX, *CountPhi; | 
|  |  | 
|  | DefX2 = CountInst = nullptr; | 
|  | VarX1 = VarX0 = nullptr; | 
|  | PhiX = CountPhi = nullptr; | 
|  | LoopEntry = *(CurLoop->block_begin()); | 
|  |  | 
|  | // step 1: Check if the loop-back branch is in desirable form. | 
|  | { | 
|  | if (Value *T = matchCondition( | 
|  | dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) | 
|  | DefX2 = dyn_cast<Instruction>(T); | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" | 
|  | { | 
|  | if (!DefX2 || DefX2->getOpcode() != Instruction::And) | 
|  | return false; | 
|  |  | 
|  | BinaryOperator *SubOneOp; | 
|  |  | 
|  | if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) | 
|  | VarX1 = DefX2->getOperand(1); | 
|  | else { | 
|  | VarX1 = DefX2->getOperand(0); | 
|  | SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); | 
|  | } | 
|  | if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) | 
|  | return false; | 
|  |  | 
|  | ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); | 
|  | if (!Dec || | 
|  | !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || | 
|  | (SubOneOp->getOpcode() == Instruction::Add && | 
|  | Dec->isMinusOne()))) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // step 3: Check the recurrence of variable X | 
|  | PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); | 
|  | if (!PhiX) | 
|  | return false; | 
|  |  | 
|  | // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 | 
|  | { | 
|  | CountInst = nullptr; | 
|  | for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), | 
|  | IterE = LoopEntry->end(); | 
|  | Iter != IterE; Iter++) { | 
|  | Instruction *Inst = &*Iter; | 
|  | if (Inst->getOpcode() != Instruction::Add) | 
|  | continue; | 
|  |  | 
|  | ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); | 
|  | if (!Inc || !Inc->isOne()) | 
|  | continue; | 
|  |  | 
|  | PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); | 
|  | if (!Phi) | 
|  | continue; | 
|  |  | 
|  | // Check if the result of the instruction is live of the loop. | 
|  | bool LiveOutLoop = false; | 
|  | for (User *U : Inst->users()) { | 
|  | if ((cast<Instruction>(U))->getParent() != LoopEntry) { | 
|  | LiveOutLoop = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LiveOutLoop) { | 
|  | CountInst = Inst; | 
|  | CountPhi = Phi; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!CountInst) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // step 5: check if the precondition is in this form: | 
|  | //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" | 
|  | { | 
|  | auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); | 
|  | Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); | 
|  | if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) | 
|  | return false; | 
|  |  | 
|  | CntInst = CountInst; | 
|  | CntPhi = CountPhi; | 
|  | Var = T; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if the idiom is detected in the loop. | 
|  | /// | 
|  | /// Additionally: | 
|  | /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) | 
|  | ///       or nullptr if there is no such. | 
|  | /// 2) \p CntPhi is set to the corresponding phi node | 
|  | ///       or nullptr if there is no such. | 
|  | /// 3) \p Var is set to the value whose CTLZ could be used. | 
|  | /// 4) \p DefX is set to the instruction calculating Loop exit condition. | 
|  | /// | 
|  | /// The core idiom we are trying to detect is: | 
|  | /// \code | 
|  | ///    if (x0 == 0) | 
|  | ///      goto loop-exit // the precondition of the loop | 
|  | ///    cnt0 = init-val; | 
|  | ///    do { | 
|  | ///       x = phi (x0, x.next);   //PhiX | 
|  | ///       cnt = phi(cnt0, cnt.next); | 
|  | /// | 
|  | ///       cnt.next = cnt + 1; | 
|  | ///        ... | 
|  | ///       x.next = x >> 1;   // DefX | 
|  | ///        ... | 
|  | ///    } while(x.next != 0); | 
|  | /// | 
|  | /// loop-exit: | 
|  | /// \endcode | 
|  | static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, | 
|  | Intrinsic::ID &IntrinID, Value *&InitX, | 
|  | Instruction *&CntInst, PHINode *&CntPhi, | 
|  | Instruction *&DefX) { | 
|  | BasicBlock *LoopEntry; | 
|  | Value *VarX = nullptr; | 
|  |  | 
|  | DefX = nullptr; | 
|  | CntInst = nullptr; | 
|  | CntPhi = nullptr; | 
|  | LoopEntry = *(CurLoop->block_begin()); | 
|  |  | 
|  | // step 1: Check if the loop-back branch is in desirable form. | 
|  | if (Value *T = matchCondition( | 
|  | dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) | 
|  | DefX = dyn_cast<Instruction>(T); | 
|  | else | 
|  | return false; | 
|  |  | 
|  | // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" | 
|  | if (!DefX || !DefX->isShift()) | 
|  | return false; | 
|  | IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : | 
|  | Intrinsic::ctlz; | 
|  | ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); | 
|  | if (!Shft || !Shft->isOne()) | 
|  | return false; | 
|  | VarX = DefX->getOperand(0); | 
|  |  | 
|  | // step 3: Check the recurrence of variable X | 
|  | PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); | 
|  | if (!PhiX) | 
|  | return false; | 
|  |  | 
|  | InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); | 
|  |  | 
|  | // Make sure the initial value can't be negative otherwise the ashr in the | 
|  | // loop might never reach zero which would make the loop infinite. | 
|  | if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) | 
|  | return false; | 
|  |  | 
|  | // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 | 
|  | // TODO: We can skip the step. If loop trip count is known (CTLZ), | 
|  | //       then all uses of "cnt.next" could be optimized to the trip count | 
|  | //       plus "cnt0". Currently it is not optimized. | 
|  | //       This step could be used to detect POPCNT instruction: | 
|  | //       cnt.next = cnt + (x.next & 1) | 
|  | for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), | 
|  | IterE = LoopEntry->end(); | 
|  | Iter != IterE; Iter++) { | 
|  | Instruction *Inst = &*Iter; | 
|  | if (Inst->getOpcode() != Instruction::Add) | 
|  | continue; | 
|  |  | 
|  | ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); | 
|  | if (!Inc || !Inc->isOne()) | 
|  | continue; | 
|  |  | 
|  | PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); | 
|  | if (!Phi) | 
|  | continue; | 
|  |  | 
|  | CntInst = Inst; | 
|  | CntPhi = Phi; | 
|  | break; | 
|  | } | 
|  | if (!CntInst) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop | 
|  | /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new | 
|  | /// trip count returns true; otherwise, returns false. | 
|  | bool LoopIdiomRecognize::recognizeAndInsertFFS() { | 
|  | // Give up if the loop has multiple blocks or multiple backedges. | 
|  | if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) | 
|  | return false; | 
|  |  | 
|  | Intrinsic::ID IntrinID; | 
|  | Value *InitX; | 
|  | Instruction *DefX = nullptr; | 
|  | PHINode *CntPhi = nullptr; | 
|  | Instruction *CntInst = nullptr; | 
|  | // Help decide if transformation is profitable. For ShiftUntilZero idiom, | 
|  | // this is always 6. | 
|  | size_t IdiomCanonicalSize = 6; | 
|  |  | 
|  | if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, | 
|  | CntInst, CntPhi, DefX)) | 
|  | return false; | 
|  |  | 
|  | bool IsCntPhiUsedOutsideLoop = false; | 
|  | for (User *U : CntPhi->users()) | 
|  | if (!CurLoop->contains(cast<Instruction>(U))) { | 
|  | IsCntPhiUsedOutsideLoop = true; | 
|  | break; | 
|  | } | 
|  | bool IsCntInstUsedOutsideLoop = false; | 
|  | for (User *U : CntInst->users()) | 
|  | if (!CurLoop->contains(cast<Instruction>(U))) { | 
|  | IsCntInstUsedOutsideLoop = true; | 
|  | break; | 
|  | } | 
|  | // If both CntInst and CntPhi are used outside the loop the profitability | 
|  | // is questionable. | 
|  | if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) | 
|  | return false; | 
|  |  | 
|  | // For some CPUs result of CTLZ(X) intrinsic is undefined | 
|  | // when X is 0. If we can not guarantee X != 0, we need to check this | 
|  | // when expand. | 
|  | bool ZeroCheck = false; | 
|  | // It is safe to assume Preheader exist as it was checked in | 
|  | // parent function RunOnLoop. | 
|  | BasicBlock *PH = CurLoop->getLoopPreheader(); | 
|  |  | 
|  | // If we are using the count instruction outside the loop, make sure we | 
|  | // have a zero check as a precondition. Without the check the loop would run | 
|  | // one iteration for before any check of the input value. This means 0 and 1 | 
|  | // would have identical behavior in the original loop and thus | 
|  | if (!IsCntPhiUsedOutsideLoop) { | 
|  | auto *PreCondBB = PH->getSinglePredecessor(); | 
|  | if (!PreCondBB) | 
|  | return false; | 
|  | auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); | 
|  | if (!PreCondBI) | 
|  | return false; | 
|  | if (matchCondition(PreCondBI, PH) != InitX) | 
|  | return false; | 
|  | ZeroCheck = true; | 
|  | } | 
|  |  | 
|  | // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always | 
|  | // profitable if we delete the loop. | 
|  |  | 
|  | // the loop has only 6 instructions: | 
|  | //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] | 
|  | //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] | 
|  | //  %shr = ashr %n.addr.0, 1 | 
|  | //  %tobool = icmp eq %shr, 0 | 
|  | //  %inc = add nsw %i.0, 1 | 
|  | //  br i1 %tobool | 
|  |  | 
|  | const Value *Args[] = | 
|  | {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext()) | 
|  | : ConstantInt::getFalse(InitX->getContext())}; | 
|  |  | 
|  | // @llvm.dbg doesn't count as they have no semantic effect. | 
|  | auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); | 
|  | uint32_t HeaderSize = | 
|  | std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); | 
|  |  | 
|  | if (HeaderSize != IdiomCanonicalSize && | 
|  | TTI->getIntrinsicCost(IntrinID, InitX->getType(), Args) > | 
|  | TargetTransformInfo::TCC_Basic) | 
|  | return false; | 
|  |  | 
|  | transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, | 
|  | DefX->getDebugLoc(), ZeroCheck, | 
|  | IsCntPhiUsedOutsideLoop); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Recognizes a population count idiom in a non-countable loop. | 
|  | /// | 
|  | /// If detected, transforms the relevant code to issue the popcount intrinsic | 
|  | /// function call, and returns true; otherwise, returns false. | 
|  | bool LoopIdiomRecognize::recognizePopcount() { | 
|  | if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) | 
|  | return false; | 
|  |  | 
|  | // Counting population are usually conducted by few arithmetic instructions. | 
|  | // Such instructions can be easily "absorbed" by vacant slots in a | 
|  | // non-compact loop. Therefore, recognizing popcount idiom only makes sense | 
|  | // in a compact loop. | 
|  |  | 
|  | // Give up if the loop has multiple blocks or multiple backedges. | 
|  | if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) | 
|  | return false; | 
|  |  | 
|  | BasicBlock *LoopBody = *(CurLoop->block_begin()); | 
|  | if (LoopBody->size() >= 20) { | 
|  | // The loop is too big, bail out. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // It should have a preheader containing nothing but an unconditional branch. | 
|  | BasicBlock *PH = CurLoop->getLoopPreheader(); | 
|  | if (!PH || &PH->front() != PH->getTerminator()) | 
|  | return false; | 
|  | auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); | 
|  | if (!EntryBI || EntryBI->isConditional()) | 
|  | return false; | 
|  |  | 
|  | // It should have a precondition block where the generated popcount intrinsic | 
|  | // function can be inserted. | 
|  | auto *PreCondBB = PH->getSinglePredecessor(); | 
|  | if (!PreCondBB) | 
|  | return false; | 
|  | auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); | 
|  | if (!PreCondBI || PreCondBI->isUnconditional()) | 
|  | return false; | 
|  |  | 
|  | Instruction *CntInst; | 
|  | PHINode *CntPhi; | 
|  | Value *Val; | 
|  | if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) | 
|  | return false; | 
|  |  | 
|  | transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, | 
|  | const DebugLoc &DL) { | 
|  | Value *Ops[] = {Val}; | 
|  | Type *Tys[] = {Val->getType()}; | 
|  |  | 
|  | Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); | 
|  | Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); | 
|  | CallInst *CI = IRBuilder.CreateCall(Func, Ops); | 
|  | CI->setDebugLoc(DL); | 
|  |  | 
|  | return CI; | 
|  | } | 
|  |  | 
|  | static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, | 
|  | const DebugLoc &DL, bool ZeroCheck, | 
|  | Intrinsic::ID IID) { | 
|  | Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()}; | 
|  | Type *Tys[] = {Val->getType()}; | 
|  |  | 
|  | Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); | 
|  | Function *Func = Intrinsic::getDeclaration(M, IID, Tys); | 
|  | CallInst *CI = IRBuilder.CreateCall(Func, Ops); | 
|  | CI->setDebugLoc(DL); | 
|  |  | 
|  | return CI; | 
|  | } | 
|  |  | 
|  | /// Transform the following loop (Using CTLZ, CTTZ is similar): | 
|  | /// loop: | 
|  | ///   CntPhi = PHI [Cnt0, CntInst] | 
|  | ///   PhiX = PHI [InitX, DefX] | 
|  | ///   CntInst = CntPhi + 1 | 
|  | ///   DefX = PhiX >> 1 | 
|  | ///   LOOP_BODY | 
|  | ///   Br: loop if (DefX != 0) | 
|  | /// Use(CntPhi) or Use(CntInst) | 
|  | /// | 
|  | /// Into: | 
|  | /// If CntPhi used outside the loop: | 
|  | ///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) | 
|  | ///   Count = CountPrev + 1 | 
|  | /// else | 
|  | ///   Count = BitWidth(InitX) - CTLZ(InitX) | 
|  | /// loop: | 
|  | ///   CntPhi = PHI [Cnt0, CntInst] | 
|  | ///   PhiX = PHI [InitX, DefX] | 
|  | ///   PhiCount = PHI [Count, Dec] | 
|  | ///   CntInst = CntPhi + 1 | 
|  | ///   DefX = PhiX >> 1 | 
|  | ///   Dec = PhiCount - 1 | 
|  | ///   LOOP_BODY | 
|  | ///   Br: loop if (Dec != 0) | 
|  | /// Use(CountPrev + Cnt0) // Use(CntPhi) | 
|  | /// or | 
|  | /// Use(Count + Cnt0) // Use(CntInst) | 
|  | /// | 
|  | /// If LOOP_BODY is empty the loop will be deleted. | 
|  | /// If CntInst and DefX are not used in LOOP_BODY they will be removed. | 
|  | void LoopIdiomRecognize::transformLoopToCountable( | 
|  | Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, | 
|  | PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, | 
|  | bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { | 
|  | BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); | 
|  |  | 
|  | // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block | 
|  | IRBuilder<> Builder(PreheaderBr); | 
|  | Builder.SetCurrentDebugLocation(DL); | 
|  | Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext; | 
|  |  | 
|  | //   Count = BitWidth - CTLZ(InitX); | 
|  | // If there are uses of CntPhi create: | 
|  | //   CountPrev = BitWidth - CTLZ(InitX >> 1); | 
|  | if (IsCntPhiUsedOutsideLoop) { | 
|  | if (DefX->getOpcode() == Instruction::AShr) | 
|  | InitXNext = | 
|  | Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1)); | 
|  | else if (DefX->getOpcode() == Instruction::LShr) | 
|  | InitXNext = | 
|  | Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1)); | 
|  | else if (DefX->getOpcode() == Instruction::Shl) // cttz | 
|  | InitXNext = | 
|  | Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1)); | 
|  | else | 
|  | llvm_unreachable("Unexpected opcode!"); | 
|  | } else | 
|  | InitXNext = InitX; | 
|  | FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); | 
|  | Count = Builder.CreateSub( | 
|  | ConstantInt::get(FFS->getType(), | 
|  | FFS->getType()->getIntegerBitWidth()), | 
|  | FFS); | 
|  | if (IsCntPhiUsedOutsideLoop) { | 
|  | CountPrev = Count; | 
|  | Count = Builder.CreateAdd( | 
|  | CountPrev, | 
|  | ConstantInt::get(CountPrev->getType(), 1)); | 
|  | } | 
|  |  | 
|  | NewCount = Builder.CreateZExtOrTrunc( | 
|  | IsCntPhiUsedOutsideLoop ? CountPrev : Count, | 
|  | cast<IntegerType>(CntInst->getType())); | 
|  |  | 
|  | // If the counter's initial value is not zero, insert Add Inst. | 
|  | Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); | 
|  | ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); | 
|  | if (!InitConst || !InitConst->isZero()) | 
|  | NewCount = Builder.CreateAdd(NewCount, CntInitVal); | 
|  |  | 
|  | // Step 2: Insert new IV and loop condition: | 
|  | // loop: | 
|  | //   ... | 
|  | //   PhiCount = PHI [Count, Dec] | 
|  | //   ... | 
|  | //   Dec = PhiCount - 1 | 
|  | //   ... | 
|  | //   Br: loop if (Dec != 0) | 
|  | BasicBlock *Body = *(CurLoop->block_begin()); | 
|  | auto *LbBr = cast<BranchInst>(Body->getTerminator()); | 
|  | ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); | 
|  | Type *Ty = Count->getType(); | 
|  |  | 
|  | PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); | 
|  |  | 
|  | Builder.SetInsertPoint(LbCond); | 
|  | Instruction *TcDec = cast<Instruction>( | 
|  | Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), | 
|  | "tcdec", false, true)); | 
|  |  | 
|  | TcPhi->addIncoming(Count, Preheader); | 
|  | TcPhi->addIncoming(TcDec, Body); | 
|  |  | 
|  | CmpInst::Predicate Pred = | 
|  | (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; | 
|  | LbCond->setPredicate(Pred); | 
|  | LbCond->setOperand(0, TcDec); | 
|  | LbCond->setOperand(1, ConstantInt::get(Ty, 0)); | 
|  |  | 
|  | // Step 3: All the references to the original counter outside | 
|  | //  the loop are replaced with the NewCount | 
|  | if (IsCntPhiUsedOutsideLoop) | 
|  | CntPhi->replaceUsesOutsideBlock(NewCount, Body); | 
|  | else | 
|  | CntInst->replaceUsesOutsideBlock(NewCount, Body); | 
|  |  | 
|  | // step 4: Forget the "non-computable" trip-count SCEV associated with the | 
|  | //   loop. The loop would otherwise not be deleted even if it becomes empty. | 
|  | SE->forgetLoop(CurLoop); | 
|  | } | 
|  |  | 
|  | void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, | 
|  | Instruction *CntInst, | 
|  | PHINode *CntPhi, Value *Var) { | 
|  | BasicBlock *PreHead = CurLoop->getLoopPreheader(); | 
|  | auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); | 
|  | const DebugLoc &DL = CntInst->getDebugLoc(); | 
|  |  | 
|  | // Assuming before transformation, the loop is following: | 
|  | //  if (x) // the precondition | 
|  | //     do { cnt++; x &= x - 1; } while(x); | 
|  |  | 
|  | // Step 1: Insert the ctpop instruction at the end of the precondition block | 
|  | IRBuilder<> Builder(PreCondBr); | 
|  | Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; | 
|  | { | 
|  | PopCnt = createPopcntIntrinsic(Builder, Var, DL); | 
|  | NewCount = PopCntZext = | 
|  | Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); | 
|  |  | 
|  | if (NewCount != PopCnt) | 
|  | (cast<Instruction>(NewCount))->setDebugLoc(DL); | 
|  |  | 
|  | // TripCnt is exactly the number of iterations the loop has | 
|  | TripCnt = NewCount; | 
|  |  | 
|  | // If the population counter's initial value is not zero, insert Add Inst. | 
|  | Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); | 
|  | ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); | 
|  | if (!InitConst || !InitConst->isZero()) { | 
|  | NewCount = Builder.CreateAdd(NewCount, CntInitVal); | 
|  | (cast<Instruction>(NewCount))->setDebugLoc(DL); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to | 
|  | //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic | 
|  | //   function would be partial dead code, and downstream passes will drag | 
|  | //   it back from the precondition block to the preheader. | 
|  | { | 
|  | ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); | 
|  |  | 
|  | Value *Opnd0 = PopCntZext; | 
|  | Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); | 
|  | if (PreCond->getOperand(0) != Var) | 
|  | std::swap(Opnd0, Opnd1); | 
|  |  | 
|  | ICmpInst *NewPreCond = cast<ICmpInst>( | 
|  | Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); | 
|  | PreCondBr->setCondition(NewPreCond); | 
|  |  | 
|  | RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); | 
|  | } | 
|  |  | 
|  | // Step 3: Note that the population count is exactly the trip count of the | 
|  | // loop in question, which enable us to convert the loop from noncountable | 
|  | // loop into a countable one. The benefit is twofold: | 
|  | // | 
|  | //  - If the loop only counts population, the entire loop becomes dead after | 
|  | //    the transformation. It is a lot easier to prove a countable loop dead | 
|  | //    than to prove a noncountable one. (In some C dialects, an infinite loop | 
|  | //    isn't dead even if it computes nothing useful. In general, DCE needs | 
|  | //    to prove a noncountable loop finite before safely delete it.) | 
|  | // | 
|  | //  - If the loop also performs something else, it remains alive. | 
|  | //    Since it is transformed to countable form, it can be aggressively | 
|  | //    optimized by some optimizations which are in general not applicable | 
|  | //    to a noncountable loop. | 
|  | // | 
|  | // After this step, this loop (conceptually) would look like following: | 
|  | //   newcnt = __builtin_ctpop(x); | 
|  | //   t = newcnt; | 
|  | //   if (x) | 
|  | //     do { cnt++; x &= x-1; t--) } while (t > 0); | 
|  | BasicBlock *Body = *(CurLoop->block_begin()); | 
|  | { | 
|  | auto *LbBr = cast<BranchInst>(Body->getTerminator()); | 
|  | ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); | 
|  | Type *Ty = TripCnt->getType(); | 
|  |  | 
|  | PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); | 
|  |  | 
|  | Builder.SetInsertPoint(LbCond); | 
|  | Instruction *TcDec = cast<Instruction>( | 
|  | Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), | 
|  | "tcdec", false, true)); | 
|  |  | 
|  | TcPhi->addIncoming(TripCnt, PreHead); | 
|  | TcPhi->addIncoming(TcDec, Body); | 
|  |  | 
|  | CmpInst::Predicate Pred = | 
|  | (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; | 
|  | LbCond->setPredicate(Pred); | 
|  | LbCond->setOperand(0, TcDec); | 
|  | LbCond->setOperand(1, ConstantInt::get(Ty, 0)); | 
|  | } | 
|  |  | 
|  | // Step 4: All the references to the original population counter outside | 
|  | //  the loop are replaced with the NewCount -- the value returned from | 
|  | //  __builtin_ctpop(). | 
|  | CntInst->replaceUsesOutsideBlock(NewCount, Body); | 
|  |  | 
|  | // step 5: Forget the "non-computable" trip-count SCEV associated with the | 
|  | //   loop. The loop would otherwise not be deleted even if it becomes empty. | 
|  | SE->forgetLoop(CurLoop); | 
|  | } |