|  | //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Implementation of the MC-JIT runtime dynamic linker. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ExecutionEngine/RuntimeDyld.h" | 
|  | #include "RuntimeDyldCOFF.h" | 
|  | #include "RuntimeDyldCheckerImpl.h" | 
|  | #include "RuntimeDyldELF.h" | 
|  | #include "RuntimeDyldImpl.h" | 
|  | #include "RuntimeDyldMachO.h" | 
|  | #include "llvm/Object/COFF.h" | 
|  | #include "llvm/Object/ELFObjectFile.h" | 
|  | #include "llvm/Support/ManagedStatic.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/MutexGuard.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::object; | 
|  |  | 
|  | #define DEBUG_TYPE "dyld" | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | enum RuntimeDyldErrorCode { | 
|  | GenericRTDyldError = 1 | 
|  | }; | 
|  |  | 
|  | // FIXME: This class is only here to support the transition to llvm::Error. It | 
|  | // will be removed once this transition is complete. Clients should prefer to | 
|  | // deal with the Error value directly, rather than converting to error_code. | 
|  | class RuntimeDyldErrorCategory : public std::error_category { | 
|  | public: | 
|  | const char *name() const noexcept override { return "runtimedyld"; } | 
|  |  | 
|  | std::string message(int Condition) const override { | 
|  | switch (static_cast<RuntimeDyldErrorCode>(Condition)) { | 
|  | case GenericRTDyldError: return "Generic RuntimeDyld error"; | 
|  | } | 
|  | llvm_unreachable("Unrecognized RuntimeDyldErrorCode"); | 
|  | } | 
|  | }; | 
|  |  | 
|  | static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory; | 
|  |  | 
|  | } | 
|  |  | 
|  | char RuntimeDyldError::ID = 0; | 
|  |  | 
|  | void RuntimeDyldError::log(raw_ostream &OS) const { | 
|  | OS << ErrMsg << "\n"; | 
|  | } | 
|  |  | 
|  | std::error_code RuntimeDyldError::convertToErrorCode() const { | 
|  | return std::error_code(GenericRTDyldError, *RTDyldErrorCategory); | 
|  | } | 
|  |  | 
|  | // Empty out-of-line virtual destructor as the key function. | 
|  | RuntimeDyldImpl::~RuntimeDyldImpl() {} | 
|  |  | 
|  | // Pin LoadedObjectInfo's vtables to this file. | 
|  | void RuntimeDyld::LoadedObjectInfo::anchor() {} | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | void RuntimeDyldImpl::registerEHFrames() {} | 
|  |  | 
|  | void RuntimeDyldImpl::deregisterEHFrames() { | 
|  | MemMgr.deregisterEHFrames(); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static void dumpSectionMemory(const SectionEntry &S, StringRef State) { | 
|  | dbgs() << "----- Contents of section " << S.getName() << " " << State | 
|  | << " -----"; | 
|  |  | 
|  | if (S.getAddress() == nullptr) { | 
|  | dbgs() << "\n          <section not emitted>\n"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const unsigned ColsPerRow = 16; | 
|  |  | 
|  | uint8_t *DataAddr = S.getAddress(); | 
|  | uint64_t LoadAddr = S.getLoadAddress(); | 
|  |  | 
|  | unsigned StartPadding = LoadAddr & (ColsPerRow - 1); | 
|  | unsigned BytesRemaining = S.getSize(); | 
|  |  | 
|  | if (StartPadding) { | 
|  | dbgs() << "\n" << format("0x%016" PRIx64, | 
|  | LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":"; | 
|  | while (StartPadding--) | 
|  | dbgs() << "   "; | 
|  | } | 
|  |  | 
|  | while (BytesRemaining > 0) { | 
|  | if ((LoadAddr & (ColsPerRow - 1)) == 0) | 
|  | dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; | 
|  |  | 
|  | dbgs() << " " << format("%02x", *DataAddr); | 
|  |  | 
|  | ++DataAddr; | 
|  | ++LoadAddr; | 
|  | --BytesRemaining; | 
|  | } | 
|  |  | 
|  | dbgs() << "\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Resolve the relocations for all symbols we currently know about. | 
|  | void RuntimeDyldImpl::resolveRelocations() { | 
|  | MutexGuard locked(lock); | 
|  |  | 
|  | // Print out the sections prior to relocation. | 
|  | DEBUG( | 
|  | for (int i = 0, e = Sections.size(); i != e; ++i) | 
|  | dumpSectionMemory(Sections[i], "before relocations"); | 
|  | ); | 
|  |  | 
|  | // First, resolve relocations associated with external symbols. | 
|  | resolveExternalSymbols(); | 
|  |  | 
|  | // Iterate over all outstanding relocations | 
|  | for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) { | 
|  | // The Section here (Sections[i]) refers to the section in which the | 
|  | // symbol for the relocation is located.  The SectionID in the relocation | 
|  | // entry provides the section to which the relocation will be applied. | 
|  | int Idx = it->first; | 
|  | uint64_t Addr = Sections[Idx].getLoadAddress(); | 
|  | DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" | 
|  | << format("%p", (uintptr_t)Addr) << "\n"); | 
|  | resolveRelocationList(it->second, Addr); | 
|  | } | 
|  | Relocations.clear(); | 
|  |  | 
|  | // Print out sections after relocation. | 
|  | DEBUG( | 
|  | for (int i = 0, e = Sections.size(); i != e; ++i) | 
|  | dumpSectionMemory(Sections[i], "after relocations"); | 
|  | ); | 
|  |  | 
|  | } | 
|  |  | 
|  | void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, | 
|  | uint64_t TargetAddress) { | 
|  | MutexGuard locked(lock); | 
|  | for (unsigned i = 0, e = Sections.size(); i != e; ++i) { | 
|  | if (Sections[i].getAddress() == LocalAddress) { | 
|  | reassignSectionAddress(i, TargetAddress); | 
|  | return; | 
|  | } | 
|  | } | 
|  | llvm_unreachable("Attempting to remap address of unknown section!"); | 
|  | } | 
|  |  | 
|  | static Error getOffset(const SymbolRef &Sym, SectionRef Sec, | 
|  | uint64_t &Result) { | 
|  | Expected<uint64_t> AddressOrErr = Sym.getAddress(); | 
|  | if (!AddressOrErr) | 
|  | return AddressOrErr.takeError(); | 
|  | Result = *AddressOrErr - Sec.getAddress(); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Expected<RuntimeDyldImpl::ObjSectionToIDMap> | 
|  | RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { | 
|  | MutexGuard locked(lock); | 
|  |  | 
|  | // Save information about our target | 
|  | Arch = (Triple::ArchType)Obj.getArch(); | 
|  | IsTargetLittleEndian = Obj.isLittleEndian(); | 
|  | setMipsABI(Obj); | 
|  |  | 
|  | // Compute the memory size required to load all sections to be loaded | 
|  | // and pass this information to the memory manager | 
|  | if (MemMgr.needsToReserveAllocationSpace()) { | 
|  | uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; | 
|  | uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1; | 
|  | if (auto Err = computeTotalAllocSize(Obj, | 
|  | CodeSize, CodeAlign, | 
|  | RODataSize, RODataAlign, | 
|  | RWDataSize, RWDataAlign)) | 
|  | return std::move(Err); | 
|  | MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, | 
|  | RWDataSize, RWDataAlign); | 
|  | } | 
|  |  | 
|  | // Used sections from the object file | 
|  | ObjSectionToIDMap LocalSections; | 
|  |  | 
|  | // Common symbols requiring allocation, with their sizes and alignments | 
|  | CommonSymbolList CommonSymbols; | 
|  |  | 
|  | // Parse symbols | 
|  | DEBUG(dbgs() << "Parse symbols:\n"); | 
|  | for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; | 
|  | ++I) { | 
|  | uint32_t Flags = I->getFlags(); | 
|  |  | 
|  | // Skip undefined symbols. | 
|  | if (Flags & SymbolRef::SF_Undefined) | 
|  | continue; | 
|  |  | 
|  | if (Flags & SymbolRef::SF_Common) | 
|  | CommonSymbols.push_back(*I); | 
|  | else { | 
|  |  | 
|  | // Get the symbol type. | 
|  | object::SymbolRef::Type SymType; | 
|  | if (auto SymTypeOrErr = I->getType()) | 
|  | SymType =  *SymTypeOrErr; | 
|  | else | 
|  | return SymTypeOrErr.takeError(); | 
|  |  | 
|  | // Get symbol name. | 
|  | StringRef Name; | 
|  | if (auto NameOrErr = I->getName()) | 
|  | Name = *NameOrErr; | 
|  | else | 
|  | return NameOrErr.takeError(); | 
|  |  | 
|  | // Compute JIT symbol flags. | 
|  | JITSymbolFlags JITSymFlags = JITSymbolFlags::fromObjectSymbol(*I); | 
|  |  | 
|  | // If this is a weak definition, check to see if there's a strong one. | 
|  | // If there is, skip this symbol (we won't be providing it: the strong | 
|  | // definition will). If there's no strong definition, make this definition | 
|  | // strong. | 
|  | if (JITSymFlags.isWeak()) { | 
|  | // First check whether there's already a definition in this instance. | 
|  | // FIXME: Override existing weak definitions with strong ones. | 
|  | if (GlobalSymbolTable.count(Name)) | 
|  | continue; | 
|  | // Then check the symbol resolver to see if there's a definition | 
|  | // elsewhere in this logical dylib. | 
|  | if (auto Sym = Resolver.findSymbolInLogicalDylib(Name)) | 
|  | if (Sym.getFlags().isStrongDefinition()) | 
|  | continue; | 
|  | // else | 
|  | JITSymFlags &= ~JITSymbolFlags::Weak; | 
|  | } | 
|  |  | 
|  | if (Flags & SymbolRef::SF_Absolute && | 
|  | SymType != object::SymbolRef::ST_File) { | 
|  | uint64_t Addr = 0; | 
|  | if (auto AddrOrErr = I->getAddress()) | 
|  | Addr = *AddrOrErr; | 
|  | else | 
|  | return AddrOrErr.takeError(); | 
|  |  | 
|  | unsigned SectionID = AbsoluteSymbolSection; | 
|  |  | 
|  | DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name | 
|  | << " SID: " << SectionID << " Offset: " | 
|  | << format("%p", (uintptr_t)Addr) | 
|  | << " flags: " << Flags << "\n"); | 
|  | GlobalSymbolTable[Name] = | 
|  | SymbolTableEntry(SectionID, Addr, JITSymFlags); | 
|  | } else if (SymType == object::SymbolRef::ST_Function || | 
|  | SymType == object::SymbolRef::ST_Data || | 
|  | SymType == object::SymbolRef::ST_Unknown || | 
|  | SymType == object::SymbolRef::ST_Other) { | 
|  |  | 
|  | section_iterator SI = Obj.section_end(); | 
|  | if (auto SIOrErr = I->getSection()) | 
|  | SI = *SIOrErr; | 
|  | else | 
|  | return SIOrErr.takeError(); | 
|  |  | 
|  | if (SI == Obj.section_end()) | 
|  | continue; | 
|  |  | 
|  | // Get symbol offset. | 
|  | uint64_t SectOffset; | 
|  | if (auto Err = getOffset(*I, *SI, SectOffset)) | 
|  | return std::move(Err); | 
|  |  | 
|  | bool IsCode = SI->isText(); | 
|  | unsigned SectionID; | 
|  | if (auto SectionIDOrErr = findOrEmitSection(Obj, *SI, IsCode, | 
|  | LocalSections)) | 
|  | SectionID = *SectionIDOrErr; | 
|  | else | 
|  | return SectionIDOrErr.takeError(); | 
|  |  | 
|  | DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name | 
|  | << " SID: " << SectionID << " Offset: " | 
|  | << format("%p", (uintptr_t)SectOffset) | 
|  | << " flags: " << Flags << "\n"); | 
|  | GlobalSymbolTable[Name] = | 
|  | SymbolTableEntry(SectionID, SectOffset, JITSymFlags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allocate common symbols | 
|  | if (auto Err = emitCommonSymbols(Obj, CommonSymbols)) | 
|  | return std::move(Err); | 
|  |  | 
|  | // Parse and process relocations | 
|  | DEBUG(dbgs() << "Parse relocations:\n"); | 
|  | for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); | 
|  | SI != SE; ++SI) { | 
|  | StubMap Stubs; | 
|  | section_iterator RelocatedSection = SI->getRelocatedSection(); | 
|  |  | 
|  | if (RelocatedSection == SE) | 
|  | continue; | 
|  |  | 
|  | relocation_iterator I = SI->relocation_begin(); | 
|  | relocation_iterator E = SI->relocation_end(); | 
|  |  | 
|  | if (I == E && !ProcessAllSections) | 
|  | continue; | 
|  |  | 
|  | bool IsCode = RelocatedSection->isText(); | 
|  | unsigned SectionID = 0; | 
|  | if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode, | 
|  | LocalSections)) | 
|  | SectionID = *SectionIDOrErr; | 
|  | else | 
|  | return SectionIDOrErr.takeError(); | 
|  |  | 
|  | DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); | 
|  |  | 
|  | for (; I != E;) | 
|  | if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs)) | 
|  | I = *IOrErr; | 
|  | else | 
|  | return IOrErr.takeError(); | 
|  |  | 
|  | // If there is an attached checker, notify it about the stubs for this | 
|  | // section so that they can be verified. | 
|  | if (Checker) | 
|  | Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs); | 
|  | } | 
|  |  | 
|  | // Give the subclasses a chance to tie-up any loose ends. | 
|  | if (auto Err = finalizeLoad(Obj, LocalSections)) | 
|  | return std::move(Err); | 
|  |  | 
|  | //   for (auto E : LocalSections) | 
|  | //     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; | 
|  |  | 
|  | return LocalSections; | 
|  | } | 
|  |  | 
|  | // A helper method for computeTotalAllocSize. | 
|  | // Computes the memory size required to allocate sections with the given sizes, | 
|  | // assuming that all sections are allocated with the given alignment | 
|  | static uint64_t | 
|  | computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, | 
|  | uint64_t Alignment) { | 
|  | uint64_t TotalSize = 0; | 
|  | for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { | 
|  | uint64_t AlignedSize = | 
|  | (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; | 
|  | TotalSize += AlignedSize; | 
|  | } | 
|  | return TotalSize; | 
|  | } | 
|  |  | 
|  | static bool isRequiredForExecution(const SectionRef Section) { | 
|  | const ObjectFile *Obj = Section.getObject(); | 
|  | if (isa<object::ELFObjectFileBase>(Obj)) | 
|  | return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; | 
|  | if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) { | 
|  | const coff_section *CoffSection = COFFObj->getCOFFSection(Section); | 
|  | // Avoid loading zero-sized COFF sections. | 
|  | // In PE files, VirtualSize gives the section size, and SizeOfRawData | 
|  | // may be zero for sections with content. In Obj files, SizeOfRawData | 
|  | // gives the section size, and VirtualSize is always zero. Hence | 
|  | // the need to check for both cases below. | 
|  | bool HasContent = | 
|  | (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); | 
|  | bool IsDiscardable = | 
|  | CoffSection->Characteristics & | 
|  | (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); | 
|  | return HasContent && !IsDiscardable; | 
|  | } | 
|  |  | 
|  | assert(isa<MachOObjectFile>(Obj)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isReadOnlyData(const SectionRef Section) { | 
|  | const ObjectFile *Obj = Section.getObject(); | 
|  | if (isa<object::ELFObjectFileBase>(Obj)) | 
|  | return !(ELFSectionRef(Section).getFlags() & | 
|  | (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); | 
|  | if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) | 
|  | return ((COFFObj->getCOFFSection(Section)->Characteristics & | 
|  | (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 
|  | | COFF::IMAGE_SCN_MEM_READ | 
|  | | COFF::IMAGE_SCN_MEM_WRITE)) | 
|  | == | 
|  | (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 
|  | | COFF::IMAGE_SCN_MEM_READ)); | 
|  |  | 
|  | assert(isa<MachOObjectFile>(Obj)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isZeroInit(const SectionRef Section) { | 
|  | const ObjectFile *Obj = Section.getObject(); | 
|  | if (isa<object::ELFObjectFileBase>(Obj)) | 
|  | return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; | 
|  | if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) | 
|  | return COFFObj->getCOFFSection(Section)->Characteristics & | 
|  | COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; | 
|  |  | 
|  | auto *MachO = cast<MachOObjectFile>(Obj); | 
|  | unsigned SectionType = MachO->getSectionType(Section); | 
|  | return SectionType == MachO::S_ZEROFILL || | 
|  | SectionType == MachO::S_GB_ZEROFILL; | 
|  | } | 
|  |  | 
|  | // Compute an upper bound of the memory size that is required to load all | 
|  | // sections | 
|  | Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj, | 
|  | uint64_t &CodeSize, | 
|  | uint32_t &CodeAlign, | 
|  | uint64_t &RODataSize, | 
|  | uint32_t &RODataAlign, | 
|  | uint64_t &RWDataSize, | 
|  | uint32_t &RWDataAlign) { | 
|  | // Compute the size of all sections required for execution | 
|  | std::vector<uint64_t> CodeSectionSizes; | 
|  | std::vector<uint64_t> ROSectionSizes; | 
|  | std::vector<uint64_t> RWSectionSizes; | 
|  |  | 
|  | // Collect sizes of all sections to be loaded; | 
|  | // also determine the max alignment of all sections | 
|  | for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); | 
|  | SI != SE; ++SI) { | 
|  | const SectionRef &Section = *SI; | 
|  |  | 
|  | bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections; | 
|  |  | 
|  | // Consider only the sections that are required to be loaded for execution | 
|  | if (IsRequired) { | 
|  | uint64_t DataSize = Section.getSize(); | 
|  | uint64_t Alignment64 = Section.getAlignment(); | 
|  | unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; | 
|  | bool IsCode = Section.isText(); | 
|  | bool IsReadOnly = isReadOnlyData(Section); | 
|  |  | 
|  | StringRef Name; | 
|  | if (auto EC = Section.getName(Name)) | 
|  | return errorCodeToError(EC); | 
|  |  | 
|  | uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); | 
|  | uint64_t SectionSize = DataSize + StubBufSize; | 
|  |  | 
|  | // The .eh_frame section (at least on Linux) needs an extra four bytes | 
|  | // padded | 
|  | // with zeroes added at the end.  For MachO objects, this section has a | 
|  | // slightly different name, so this won't have any effect for MachO | 
|  | // objects. | 
|  | if (Name == ".eh_frame") | 
|  | SectionSize += 4; | 
|  |  | 
|  | if (!SectionSize) | 
|  | SectionSize = 1; | 
|  |  | 
|  | if (IsCode) { | 
|  | CodeAlign = std::max(CodeAlign, Alignment); | 
|  | CodeSectionSizes.push_back(SectionSize); | 
|  | } else if (IsReadOnly) { | 
|  | RODataAlign = std::max(RODataAlign, Alignment); | 
|  | ROSectionSizes.push_back(SectionSize); | 
|  | } else { | 
|  | RWDataAlign = std::max(RWDataAlign, Alignment); | 
|  | RWSectionSizes.push_back(SectionSize); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute Global Offset Table size. If it is not zero we | 
|  | // also update alignment, which is equal to a size of a | 
|  | // single GOT entry. | 
|  | if (unsigned GotSize = computeGOTSize(Obj)) { | 
|  | RWSectionSizes.push_back(GotSize); | 
|  | RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize()); | 
|  | } | 
|  |  | 
|  | // Compute the size of all common symbols | 
|  | uint64_t CommonSize = 0; | 
|  | uint32_t CommonAlign = 1; | 
|  | for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; | 
|  | ++I) { | 
|  | uint32_t Flags = I->getFlags(); | 
|  | if (Flags & SymbolRef::SF_Common) { | 
|  | // Add the common symbols to a list.  We'll allocate them all below. | 
|  | uint64_t Size = I->getCommonSize(); | 
|  | uint32_t Align = I->getAlignment(); | 
|  | // If this is the first common symbol, use its alignment as the alignment | 
|  | // for the common symbols section. | 
|  | if (CommonSize == 0) | 
|  | CommonAlign = Align; | 
|  | CommonSize = alignTo(CommonSize, Align) + Size; | 
|  | } | 
|  | } | 
|  | if (CommonSize != 0) { | 
|  | RWSectionSizes.push_back(CommonSize); | 
|  | RWDataAlign = std::max(RWDataAlign, CommonAlign); | 
|  | } | 
|  |  | 
|  | // Compute the required allocation space for each different type of sections | 
|  | // (code, read-only data, read-write data) assuming that all sections are | 
|  | // allocated with the max alignment. Note that we cannot compute with the | 
|  | // individual alignments of the sections, because then the required size | 
|  | // depends on the order, in which the sections are allocated. | 
|  | CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign); | 
|  | RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign); | 
|  | RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign); | 
|  |  | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | // compute GOT size | 
|  | unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) { | 
|  | size_t GotEntrySize = getGOTEntrySize(); | 
|  | if (!GotEntrySize) | 
|  | return 0; | 
|  |  | 
|  | size_t GotSize = 0; | 
|  | for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); | 
|  | SI != SE; ++SI) { | 
|  |  | 
|  | for (const RelocationRef &Reloc : SI->relocations()) | 
|  | if (relocationNeedsGot(Reloc)) | 
|  | GotSize += GotEntrySize; | 
|  | } | 
|  |  | 
|  | return GotSize; | 
|  | } | 
|  |  | 
|  | // compute stub buffer size for the given section | 
|  | unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, | 
|  | const SectionRef &Section) { | 
|  | unsigned StubSize = getMaxStubSize(); | 
|  | if (StubSize == 0) { | 
|  | return 0; | 
|  | } | 
|  | // FIXME: this is an inefficient way to handle this. We should computed the | 
|  | // necessary section allocation size in loadObject by walking all the sections | 
|  | // once. | 
|  | unsigned StubBufSize = 0; | 
|  | for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); | 
|  | SI != SE; ++SI) { | 
|  | section_iterator RelSecI = SI->getRelocatedSection(); | 
|  | if (!(RelSecI == Section)) | 
|  | continue; | 
|  |  | 
|  | for (const RelocationRef &Reloc : SI->relocations()) | 
|  | if (relocationNeedsStub(Reloc)) | 
|  | StubBufSize += StubSize; | 
|  | } | 
|  |  | 
|  | // Get section data size and alignment | 
|  | uint64_t DataSize = Section.getSize(); | 
|  | uint64_t Alignment64 = Section.getAlignment(); | 
|  |  | 
|  | // Add stubbuf size alignment | 
|  | unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; | 
|  | unsigned StubAlignment = getStubAlignment(); | 
|  | unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); | 
|  | if (StubAlignment > EndAlignment) | 
|  | StubBufSize += StubAlignment - EndAlignment; | 
|  | return StubBufSize; | 
|  | } | 
|  |  | 
|  | uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, | 
|  | unsigned Size) const { | 
|  | uint64_t Result = 0; | 
|  | if (IsTargetLittleEndian) { | 
|  | Src += Size - 1; | 
|  | while (Size--) | 
|  | Result = (Result << 8) | *Src--; | 
|  | } else | 
|  | while (Size--) | 
|  | Result = (Result << 8) | *Src++; | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, | 
|  | unsigned Size) const { | 
|  | if (IsTargetLittleEndian) { | 
|  | while (Size--) { | 
|  | *Dst++ = Value & 0xFF; | 
|  | Value >>= 8; | 
|  | } | 
|  | } else { | 
|  | Dst += Size - 1; | 
|  | while (Size--) { | 
|  | *Dst-- = Value & 0xFF; | 
|  | Value >>= 8; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, | 
|  | CommonSymbolList &CommonSymbols) { | 
|  | if (CommonSymbols.empty()) | 
|  | return Error::success(); | 
|  |  | 
|  | uint64_t CommonSize = 0; | 
|  | uint32_t CommonAlign = CommonSymbols.begin()->getAlignment(); | 
|  | CommonSymbolList SymbolsToAllocate; | 
|  |  | 
|  | DEBUG(dbgs() << "Processing common symbols...\n"); | 
|  |  | 
|  | for (const auto &Sym : CommonSymbols) { | 
|  | StringRef Name; | 
|  | if (auto NameOrErr = Sym.getName()) | 
|  | Name = *NameOrErr; | 
|  | else | 
|  | return NameOrErr.takeError(); | 
|  |  | 
|  | // Skip common symbols already elsewhere. | 
|  | if (GlobalSymbolTable.count(Name)) { | 
|  | DEBUG(dbgs() << "\tSkipping already emitted common symbol '" << Name | 
|  | << "'\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (auto Sym = Resolver.findSymbolInLogicalDylib(Name)) { | 
|  | if (!Sym.getFlags().isCommon()) { | 
|  | DEBUG(dbgs() << "\tSkipping common symbol '" << Name | 
|  | << "' in favor of stronger definition.\n"); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | uint32_t Align = Sym.getAlignment(); | 
|  | uint64_t Size = Sym.getCommonSize(); | 
|  |  | 
|  | CommonSize = alignTo(CommonSize, Align) + Size; | 
|  |  | 
|  | SymbolsToAllocate.push_back(Sym); | 
|  | } | 
|  |  | 
|  | // Allocate memory for the section | 
|  | unsigned SectionID = Sections.size(); | 
|  | uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID, | 
|  | "<common symbols>", false); | 
|  | if (!Addr) | 
|  | report_fatal_error("Unable to allocate memory for common symbols!"); | 
|  | uint64_t Offset = 0; | 
|  | Sections.push_back( | 
|  | SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0)); | 
|  | memset(Addr, 0, CommonSize); | 
|  |  | 
|  | DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: " | 
|  | << format("%p", Addr) << " DataSize: " << CommonSize << "\n"); | 
|  |  | 
|  | // Assign the address of each symbol | 
|  | for (auto &Sym : SymbolsToAllocate) { | 
|  | uint32_t Align = Sym.getAlignment(); | 
|  | uint64_t Size = Sym.getCommonSize(); | 
|  | StringRef Name; | 
|  | if (auto NameOrErr = Sym.getName()) | 
|  | Name = *NameOrErr; | 
|  | else | 
|  | return NameOrErr.takeError(); | 
|  | if (Align) { | 
|  | // This symbol has an alignment requirement. | 
|  | uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align); | 
|  | Addr += AlignOffset; | 
|  | Offset += AlignOffset; | 
|  | } | 
|  | JITSymbolFlags JITSymFlags = JITSymbolFlags::fromObjectSymbol(Sym); | 
|  | DEBUG(dbgs() << "Allocating common symbol " << Name << " address " | 
|  | << format("%p", Addr) << "\n"); | 
|  | GlobalSymbolTable[Name] = | 
|  | SymbolTableEntry(SectionID, Offset, JITSymFlags); | 
|  | Offset += Size; | 
|  | Addr += Size; | 
|  | } | 
|  |  | 
|  | if (Checker) | 
|  | Checker->registerSection(Obj.getFileName(), SectionID); | 
|  |  | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Expected<unsigned> | 
|  | RuntimeDyldImpl::emitSection(const ObjectFile &Obj, | 
|  | const SectionRef &Section, | 
|  | bool IsCode) { | 
|  | StringRef data; | 
|  | uint64_t Alignment64 = Section.getAlignment(); | 
|  |  | 
|  | unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; | 
|  | unsigned PaddingSize = 0; | 
|  | unsigned StubBufSize = 0; | 
|  | bool IsRequired = isRequiredForExecution(Section); | 
|  | bool IsVirtual = Section.isVirtual(); | 
|  | bool IsZeroInit = isZeroInit(Section); | 
|  | bool IsReadOnly = isReadOnlyData(Section); | 
|  | uint64_t DataSize = Section.getSize(); | 
|  |  | 
|  | StringRef Name; | 
|  | if (auto EC = Section.getName(Name)) | 
|  | return errorCodeToError(EC); | 
|  |  | 
|  | StubBufSize = computeSectionStubBufSize(Obj, Section); | 
|  |  | 
|  | // The .eh_frame section (at least on Linux) needs an extra four bytes padded | 
|  | // with zeroes added at the end.  For MachO objects, this section has a | 
|  | // slightly different name, so this won't have any effect for MachO objects. | 
|  | if (Name == ".eh_frame") | 
|  | PaddingSize = 4; | 
|  |  | 
|  | uintptr_t Allocate; | 
|  | unsigned SectionID = Sections.size(); | 
|  | uint8_t *Addr; | 
|  | const char *pData = nullptr; | 
|  |  | 
|  | // If this section contains any bits (i.e. isn't a virtual or bss section), | 
|  | // grab a reference to them. | 
|  | if (!IsVirtual && !IsZeroInit) { | 
|  | // In either case, set the location of the unrelocated section in memory, | 
|  | // since we still process relocations for it even if we're not applying them. | 
|  | if (auto EC = Section.getContents(data)) | 
|  | return errorCodeToError(EC); | 
|  | pData = data.data(); | 
|  | } | 
|  |  | 
|  | // Code section alignment needs to be at least as high as stub alignment or | 
|  | // padding calculations may by incorrect when the section is remapped to a | 
|  | // higher alignment. | 
|  | if (IsCode) | 
|  | Alignment = std::max(Alignment, getStubAlignment()); | 
|  |  | 
|  | // Some sections, such as debug info, don't need to be loaded for execution. | 
|  | // Process those only if explicitly requested. | 
|  | if (IsRequired || ProcessAllSections) { | 
|  | Allocate = DataSize + PaddingSize + StubBufSize; | 
|  | if (!Allocate) | 
|  | Allocate = 1; | 
|  | Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, | 
|  | Name) | 
|  | : MemMgr.allocateDataSection(Allocate, Alignment, SectionID, | 
|  | Name, IsReadOnly); | 
|  | if (!Addr) | 
|  | report_fatal_error("Unable to allocate section memory!"); | 
|  |  | 
|  | // Zero-initialize or copy the data from the image | 
|  | if (IsZeroInit || IsVirtual) | 
|  | memset(Addr, 0, DataSize); | 
|  | else | 
|  | memcpy(Addr, pData, DataSize); | 
|  |  | 
|  | // Fill in any extra bytes we allocated for padding | 
|  | if (PaddingSize != 0) { | 
|  | memset(Addr + DataSize, 0, PaddingSize); | 
|  | // Update the DataSize variable so that the stub offset is set correctly. | 
|  | DataSize += PaddingSize; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name | 
|  | << " obj addr: " << format("%p", pData) | 
|  | << " new addr: " << format("%p", Addr) | 
|  | << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize | 
|  | << " Allocate: " << Allocate << "\n"); | 
|  | } else { | 
|  | // Even if we didn't load the section, we need to record an entry for it | 
|  | // to handle later processing (and by 'handle' I mean don't do anything | 
|  | // with these sections). | 
|  | Allocate = 0; | 
|  | Addr = nullptr; | 
|  | DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name | 
|  | << " obj addr: " << format("%p", data.data()) << " new addr: 0" | 
|  | << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize | 
|  | << " Allocate: " << Allocate << "\n"); | 
|  | } | 
|  |  | 
|  | Sections.push_back( | 
|  | SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); | 
|  |  | 
|  | // Debug info sections are linked as if their load address was zero | 
|  | if (!IsRequired) | 
|  | Sections.back().setLoadAddress(0); | 
|  |  | 
|  | if (Checker) | 
|  | Checker->registerSection(Obj.getFileName(), SectionID); | 
|  |  | 
|  | return SectionID; | 
|  | } | 
|  |  | 
|  | Expected<unsigned> | 
|  | RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, | 
|  | const SectionRef &Section, | 
|  | bool IsCode, | 
|  | ObjSectionToIDMap &LocalSections) { | 
|  |  | 
|  | unsigned SectionID = 0; | 
|  | ObjSectionToIDMap::iterator i = LocalSections.find(Section); | 
|  | if (i != LocalSections.end()) | 
|  | SectionID = i->second; | 
|  | else { | 
|  | if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) | 
|  | SectionID = *SectionIDOrErr; | 
|  | else | 
|  | return SectionIDOrErr.takeError(); | 
|  | LocalSections[Section] = SectionID; | 
|  | } | 
|  | return SectionID; | 
|  | } | 
|  |  | 
|  | void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, | 
|  | unsigned SectionID) { | 
|  | Relocations[SectionID].push_back(RE); | 
|  | } | 
|  |  | 
|  | void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, | 
|  | StringRef SymbolName) { | 
|  | // Relocation by symbol.  If the symbol is found in the global symbol table, | 
|  | // create an appropriate section relocation.  Otherwise, add it to | 
|  | // ExternalSymbolRelocations. | 
|  | RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName); | 
|  | if (Loc == GlobalSymbolTable.end()) { | 
|  | ExternalSymbolRelocations[SymbolName].push_back(RE); | 
|  | } else { | 
|  | // Copy the RE since we want to modify its addend. | 
|  | RelocationEntry RECopy = RE; | 
|  | const auto &SymInfo = Loc->second; | 
|  | RECopy.Addend += SymInfo.getOffset(); | 
|  | Relocations[SymInfo.getSectionID()].push_back(RECopy); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, | 
|  | unsigned AbiVariant) { | 
|  | if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) { | 
|  | // This stub has to be able to access the full address space, | 
|  | // since symbol lookup won't necessarily find a handy, in-range, | 
|  | // PLT stub for functions which could be anywhere. | 
|  | // Stub can use ip0 (== x16) to calculate address | 
|  | writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr> | 
|  | writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr> | 
|  | writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr> | 
|  | writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr> | 
|  | writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0 | 
|  |  | 
|  | return Addr; | 
|  | } else if (Arch == Triple::arm || Arch == Triple::armeb) { | 
|  | // TODO: There is only ARM far stub now. We should add the Thumb stub, | 
|  | // and stubs for branches Thumb - ARM and ARM - Thumb. | 
|  | writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label> | 
|  | return Addr + 4; | 
|  | } else if (IsMipsO32ABI) { | 
|  | // 0:   3c190000        lui     t9,%hi(addr). | 
|  | // 4:   27390000        addiu   t9,t9,%lo(addr). | 
|  | // 8:   03200008        jr      t9. | 
|  | // c:   00000000        nop. | 
|  | const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; | 
|  | const unsigned NopInstr = 0x0; | 
|  | unsigned JrT9Instr = 0x03200008; | 
|  | if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6) | 
|  | JrT9Instr = 0x03200009; | 
|  |  | 
|  | writeBytesUnaligned(LuiT9Instr, Addr, 4); | 
|  | writeBytesUnaligned(AdduiT9Instr, Addr+4, 4); | 
|  | writeBytesUnaligned(JrT9Instr, Addr+8, 4); | 
|  | writeBytesUnaligned(NopInstr, Addr+12, 4); | 
|  | return Addr; | 
|  | } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { | 
|  | // Depending on which version of the ELF ABI is in use, we need to | 
|  | // generate one of two variants of the stub.  They both start with | 
|  | // the same sequence to load the target address into r12. | 
|  | writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr) | 
|  | writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr) | 
|  | writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32 | 
|  | writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr) | 
|  | writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr) | 
|  | if (AbiVariant == 2) { | 
|  | // PowerPC64 stub ELFv2 ABI: The address points to the function itself. | 
|  | // The address is already in r12 as required by the ABI.  Branch to it. | 
|  | writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1) | 
|  | writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 | 
|  | writeInt32BE(Addr+28, 0x4E800420); // bctr | 
|  | } else { | 
|  | // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. | 
|  | // Load the function address on r11 and sets it to control register. Also | 
|  | // loads the function TOC in r2 and environment pointer to r11. | 
|  | writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1) | 
|  | writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12) | 
|  | writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12) | 
|  | writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 | 
|  | writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2) | 
|  | writeInt32BE(Addr+40, 0x4E800420); // bctr | 
|  | } | 
|  | return Addr; | 
|  | } else if (Arch == Triple::systemz) { | 
|  | writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8 | 
|  | writeInt16BE(Addr+2,  0x0000); | 
|  | writeInt16BE(Addr+4,  0x0004); | 
|  | writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1 | 
|  | // 8-byte address stored at Addr + 8 | 
|  | return Addr; | 
|  | } else if (Arch == Triple::x86_64) { | 
|  | *Addr      = 0xFF; // jmp | 
|  | *(Addr+1)  = 0x25; // rip | 
|  | // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 | 
|  | } else if (Arch == Triple::x86) { | 
|  | *Addr      = 0xE9; // 32-bit pc-relative jump. | 
|  | } | 
|  | return Addr; | 
|  | } | 
|  |  | 
|  | // Assign an address to a symbol name and resolve all the relocations | 
|  | // associated with it. | 
|  | void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, | 
|  | uint64_t Addr) { | 
|  | // The address to use for relocation resolution is not | 
|  | // the address of the local section buffer. We must be doing | 
|  | // a remote execution environment of some sort. Relocations can't | 
|  | // be applied until all the sections have been moved.  The client must | 
|  | // trigger this with a call to MCJIT::finalize() or | 
|  | // RuntimeDyld::resolveRelocations(). | 
|  | // | 
|  | // Addr is a uint64_t because we can't assume the pointer width | 
|  | // of the target is the same as that of the host. Just use a generic | 
|  | // "big enough" type. | 
|  | DEBUG(dbgs() << "Reassigning address for section " << SectionID << " (" | 
|  | << Sections[SectionID].getName() << "): " | 
|  | << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) | 
|  | << " -> " << format("0x%016" PRIx64, Addr) << "\n"); | 
|  | Sections[SectionID].setLoadAddress(Addr); | 
|  | } | 
|  |  | 
|  | void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, | 
|  | uint64_t Value) { | 
|  | for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { | 
|  | const RelocationEntry &RE = Relocs[i]; | 
|  | // Ignore relocations for sections that were not loaded | 
|  | if (Sections[RE.SectionID].getAddress() == nullptr) | 
|  | continue; | 
|  | resolveRelocation(RE, Value); | 
|  | } | 
|  | } | 
|  |  | 
|  | void RuntimeDyldImpl::resolveExternalSymbols() { | 
|  | while (!ExternalSymbolRelocations.empty()) { | 
|  | StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(); | 
|  |  | 
|  | StringRef Name = i->first(); | 
|  | if (Name.size() == 0) { | 
|  | // This is an absolute symbol, use an address of zero. | 
|  | DEBUG(dbgs() << "Resolving absolute relocations." | 
|  | << "\n"); | 
|  | RelocationList &Relocs = i->second; | 
|  | resolveRelocationList(Relocs, 0); | 
|  | } else { | 
|  | uint64_t Addr = 0; | 
|  | RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name); | 
|  | if (Loc == GlobalSymbolTable.end()) { | 
|  | // This is an external symbol, try to get its address from the symbol | 
|  | // resolver. | 
|  | // First search for the symbol in this logical dylib. | 
|  | Addr = Resolver.findSymbolInLogicalDylib(Name.data()).getAddress(); | 
|  | // If that fails, try searching for an external symbol. | 
|  | if (!Addr) | 
|  | Addr = Resolver.findSymbol(Name.data()).getAddress(); | 
|  | // The call to getSymbolAddress may have caused additional modules to | 
|  | // be loaded, which may have added new entries to the | 
|  | // ExternalSymbolRelocations map.  Consquently, we need to update our | 
|  | // iterator.  This is also why retrieval of the relocation list | 
|  | // associated with this symbol is deferred until below this point. | 
|  | // New entries may have been added to the relocation list. | 
|  | i = ExternalSymbolRelocations.find(Name); | 
|  | } else { | 
|  | // We found the symbol in our global table.  It was probably in a | 
|  | // Module that we loaded previously. | 
|  | const auto &SymInfo = Loc->second; | 
|  | Addr = getSectionLoadAddress(SymInfo.getSectionID()) + | 
|  | SymInfo.getOffset(); | 
|  | } | 
|  |  | 
|  | // FIXME: Implement error handling that doesn't kill the host program! | 
|  | if (!Addr) | 
|  | report_fatal_error("Program used external function '" + Name + | 
|  | "' which could not be resolved!"); | 
|  |  | 
|  | // If Resolver returned UINT64_MAX, the client wants to handle this symbol | 
|  | // manually and we shouldn't resolve its relocations. | 
|  | if (Addr != UINT64_MAX) { | 
|  | DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" | 
|  | << format("0x%lx", Addr) << "\n"); | 
|  | // This list may have been updated when we called getSymbolAddress, so | 
|  | // don't change this code to get the list earlier. | 
|  | RelocationList &Relocs = i->second; | 
|  | resolveRelocationList(Relocs, Addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | ExternalSymbolRelocations.erase(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // RuntimeDyld class implementation | 
|  |  | 
|  | uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( | 
|  | const object::SectionRef &Sec) const { | 
|  |  | 
|  | auto I = ObjSecToIDMap.find(Sec); | 
|  | if (I != ObjSecToIDMap.end()) | 
|  | return RTDyld.Sections[I->second].getLoadAddress(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void RuntimeDyld::MemoryManager::anchor() {} | 
|  | void JITSymbolResolver::anchor() {} | 
|  |  | 
|  | RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, | 
|  | JITSymbolResolver &Resolver) | 
|  | : MemMgr(MemMgr), Resolver(Resolver) { | 
|  | // FIXME: There's a potential issue lurking here if a single instance of | 
|  | // RuntimeDyld is used to load multiple objects.  The current implementation | 
|  | // associates a single memory manager with a RuntimeDyld instance.  Even | 
|  | // though the public class spawns a new 'impl' instance for each load, | 
|  | // they share a single memory manager.  This can become a problem when page | 
|  | // permissions are applied. | 
|  | Dyld = nullptr; | 
|  | ProcessAllSections = false; | 
|  | Checker = nullptr; | 
|  | } | 
|  |  | 
|  | RuntimeDyld::~RuntimeDyld() {} | 
|  |  | 
|  | static std::unique_ptr<RuntimeDyldCOFF> | 
|  | createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, | 
|  | JITSymbolResolver &Resolver, bool ProcessAllSections, | 
|  | RuntimeDyldCheckerImpl *Checker) { | 
|  | std::unique_ptr<RuntimeDyldCOFF> Dyld = | 
|  | RuntimeDyldCOFF::create(Arch, MM, Resolver); | 
|  | Dyld->setProcessAllSections(ProcessAllSections); | 
|  | Dyld->setRuntimeDyldChecker(Checker); | 
|  | return Dyld; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<RuntimeDyldELF> | 
|  | createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, | 
|  | JITSymbolResolver &Resolver, bool ProcessAllSections, | 
|  | RuntimeDyldCheckerImpl *Checker) { | 
|  | std::unique_ptr<RuntimeDyldELF> Dyld = | 
|  | RuntimeDyldELF::create(Arch, MM, Resolver); | 
|  | Dyld->setProcessAllSections(ProcessAllSections); | 
|  | Dyld->setRuntimeDyldChecker(Checker); | 
|  | return Dyld; | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<RuntimeDyldMachO> | 
|  | createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, | 
|  | JITSymbolResolver &Resolver, | 
|  | bool ProcessAllSections, | 
|  | RuntimeDyldCheckerImpl *Checker) { | 
|  | std::unique_ptr<RuntimeDyldMachO> Dyld = | 
|  | RuntimeDyldMachO::create(Arch, MM, Resolver); | 
|  | Dyld->setProcessAllSections(ProcessAllSections); | 
|  | Dyld->setRuntimeDyldChecker(Checker); | 
|  | return Dyld; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<RuntimeDyld::LoadedObjectInfo> | 
|  | RuntimeDyld::loadObject(const ObjectFile &Obj) { | 
|  | if (!Dyld) { | 
|  | if (Obj.isELF()) | 
|  | Dyld = | 
|  | createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()), | 
|  | MemMgr, Resolver, ProcessAllSections, Checker); | 
|  | else if (Obj.isMachO()) | 
|  | Dyld = createRuntimeDyldMachO( | 
|  | static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, | 
|  | ProcessAllSections, Checker); | 
|  | else if (Obj.isCOFF()) | 
|  | Dyld = createRuntimeDyldCOFF( | 
|  | static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, | 
|  | ProcessAllSections, Checker); | 
|  | else | 
|  | report_fatal_error("Incompatible object format!"); | 
|  | } | 
|  |  | 
|  | if (!Dyld->isCompatibleFile(Obj)) | 
|  | report_fatal_error("Incompatible object format!"); | 
|  |  | 
|  | auto LoadedObjInfo = Dyld->loadObject(Obj); | 
|  | MemMgr.notifyObjectLoaded(*this, Obj); | 
|  | return LoadedObjInfo; | 
|  | } | 
|  |  | 
|  | void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { | 
|  | if (!Dyld) | 
|  | return nullptr; | 
|  | return Dyld->getSymbolLocalAddress(Name); | 
|  | } | 
|  |  | 
|  | JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const { | 
|  | if (!Dyld) | 
|  | return nullptr; | 
|  | return Dyld->getSymbol(Name); | 
|  | } | 
|  |  | 
|  | void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } | 
|  |  | 
|  | void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { | 
|  | Dyld->reassignSectionAddress(SectionID, Addr); | 
|  | } | 
|  |  | 
|  | void RuntimeDyld::mapSectionAddress(const void *LocalAddress, | 
|  | uint64_t TargetAddress) { | 
|  | Dyld->mapSectionAddress(LocalAddress, TargetAddress); | 
|  | } | 
|  |  | 
|  | bool RuntimeDyld::hasError() { return Dyld->hasError(); } | 
|  |  | 
|  | StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } | 
|  |  | 
|  | void RuntimeDyld::finalizeWithMemoryManagerLocking() { | 
|  | bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; | 
|  | MemMgr.FinalizationLocked = true; | 
|  | resolveRelocations(); | 
|  | registerEHFrames(); | 
|  | if (!MemoryFinalizationLocked) { | 
|  | MemMgr.finalizeMemory(); | 
|  | MemMgr.FinalizationLocked = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | void RuntimeDyld::registerEHFrames() { | 
|  | if (Dyld) | 
|  | Dyld->registerEHFrames(); | 
|  | } | 
|  |  | 
|  | void RuntimeDyld::deregisterEHFrames() { | 
|  | if (Dyld) | 
|  | Dyld->deregisterEHFrames(); | 
|  | } | 
|  |  | 
|  | } // end namespace llvm |