|  | //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass performs loop invariant code motion, attempting to remove as much | 
|  | // code from the body of a loop as possible.  It does this by either hoisting | 
|  | // code into the preheader block, or by sinking code to the exit blocks if it is | 
|  | // safe.  This pass also promotes must-aliased memory locations in the loop to | 
|  | // live in registers, thus hoisting and sinking "invariant" loads and stores. | 
|  | // | 
|  | // This pass uses alias analysis for two purposes: | 
|  | // | 
|  | //  1. Moving loop invariant loads and calls out of loops.  If we can determine | 
|  | //     that a load or call inside of a loop never aliases anything stored to, | 
|  | //     we can hoist it or sink it like any other instruction. | 
|  | //  2. Scalar Promotion of Memory - If there is a store instruction inside of | 
|  | //     the loop, we try to move the store to happen AFTER the loop instead of | 
|  | //     inside of the loop.  This can only happen if a few conditions are true: | 
|  | //       A. The pointer stored through is loop invariant | 
|  | //       B. There are no stores or loads in the loop which _may_ alias the | 
|  | //          pointer.  There are no calls in the loop which mod/ref the pointer. | 
|  | //     If these conditions are true, we can promote the loads and stores in the | 
|  | //     loop of the pointer to use a temporary alloca'd variable.  We then use | 
|  | //     the SSAUpdater to construct the appropriate SSA form for the value. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/LICM.h" | 
|  | #include "llvm/ADT/SetOperations.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/AliasSetTracker.h" | 
|  | #include "llvm/Analysis/BasicAliasAnalysis.h" | 
|  | #include "llvm/Analysis/CaptureTracking.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Analysis/GuardUtils.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/LoopIterator.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/MemoryBuiltins.h" | 
|  | #include "llvm/Analysis/MemorySSA.h" | 
|  | #include "llvm/Analysis/MemorySSAUpdater.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/PredIteratorCache.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Scalar/LoopPassManager.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/LoopUtils.h" | 
|  | #include "llvm/Transforms/Utils/SSAUpdater.h" | 
|  | #include <algorithm> | 
|  | #include <utility> | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "licm" | 
|  |  | 
|  | STATISTIC(NumCreatedBlocks, "Number of blocks created"); | 
|  | STATISTIC(NumClonedBranches, "Number of branches cloned"); | 
|  | STATISTIC(NumSunk, "Number of instructions sunk out of loop"); | 
|  | STATISTIC(NumHoisted, "Number of instructions hoisted out of loop"); | 
|  | STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); | 
|  | STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); | 
|  | STATISTIC(NumPromoted, "Number of memory locations promoted to registers"); | 
|  |  | 
|  | /// Memory promotion is enabled by default. | 
|  | static cl::opt<bool> | 
|  | DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable memory promotion in LICM pass")); | 
|  |  | 
|  | static cl::opt<bool> ControlFlowHoisting( | 
|  | "licm-control-flow-hoisting", cl::Hidden, cl::init(false), | 
|  | cl::desc("Enable control flow (and PHI) hoisting in LICM")); | 
|  |  | 
|  | static cl::opt<uint32_t> MaxNumUsesTraversed( | 
|  | "licm-max-num-uses-traversed", cl::Hidden, cl::init(8), | 
|  | cl::desc("Max num uses visited for identifying load " | 
|  | "invariance in loop using invariant start (default = 8)")); | 
|  |  | 
|  | // Default value of zero implies we use the regular alias set tracker mechanism | 
|  | // instead of the cross product using AA to identify aliasing of the memory | 
|  | // location we are interested in. | 
|  | static cl::opt<int> | 
|  | LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0), | 
|  | cl::desc("How many instruction to cross product using AA")); | 
|  |  | 
|  | // Experimental option to allow imprecision in LICM in pathological cases, in | 
|  | // exchange for faster compile. This is to be removed if MemorySSA starts to | 
|  | // address the same issue. This flag applies only when LICM uses MemorySSA | 
|  | // instead on AliasSetTracker. LICM calls MemorySSAWalker's | 
|  | // getClobberingMemoryAccess, up to the value of the Cap, getting perfect | 
|  | // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess, | 
|  | // which may not be precise, since optimizeUses is capped. The result is | 
|  | // correct, but we may not get as "far up" as possible to get which access is | 
|  | // clobbering the one queried. | 
|  | cl::opt<unsigned> llvm::SetLicmMssaOptCap( | 
|  | "licm-mssa-optimization-cap", cl::init(100), cl::Hidden, | 
|  | cl::desc("Enable imprecision in LICM in pathological cases, in exchange " | 
|  | "for faster compile. Caps the MemorySSA clobbering calls.")); | 
|  |  | 
|  | // Experimentally, memory promotion carries less importance than sinking and | 
|  | // hoisting. Limit when we do promotion when using MemorySSA, in order to save | 
|  | // compile time. | 
|  | cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap( | 
|  | "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden, | 
|  | cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no " | 
|  | "effect. When MSSA in LICM is enabled, then this is the maximum " | 
|  | "number of accesses allowed to be present in a loop in order to " | 
|  | "enable memory promotion.")); | 
|  |  | 
|  | static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI); | 
|  | static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, | 
|  | const LoopSafetyInfo *SafetyInfo, | 
|  | TargetTransformInfo *TTI, bool &FreeInLoop); | 
|  | static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, | 
|  | BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, | 
|  | MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE); | 
|  | static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, | 
|  | const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, | 
|  | MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE); | 
|  | static bool isSafeToExecuteUnconditionally(Instruction &Inst, | 
|  | const DominatorTree *DT, | 
|  | const Loop *CurLoop, | 
|  | const LoopSafetyInfo *SafetyInfo, | 
|  | OptimizationRemarkEmitter *ORE, | 
|  | const Instruction *CtxI = nullptr); | 
|  | static bool pointerInvalidatedByLoop(MemoryLocation MemLoc, | 
|  | AliasSetTracker *CurAST, Loop *CurLoop, | 
|  | AliasAnalysis *AA); | 
|  | static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU, | 
|  | Loop *CurLoop, | 
|  | SinkAndHoistLICMFlags &Flags); | 
|  | static Instruction *CloneInstructionInExitBlock( | 
|  | Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, | 
|  | const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU); | 
|  |  | 
|  | static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, | 
|  | AliasSetTracker *AST, MemorySSAUpdater *MSSAU); | 
|  |  | 
|  | static void moveInstructionBefore(Instruction &I, Instruction &Dest, | 
|  | ICFLoopSafetyInfo &SafetyInfo, | 
|  | MemorySSAUpdater *MSSAU); | 
|  |  | 
|  | namespace { | 
|  | struct LoopInvariantCodeMotion { | 
|  | using ASTrackerMapTy = DenseMap<Loop *, std::unique_ptr<AliasSetTracker>>; | 
|  | bool runOnLoop(Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT, | 
|  | TargetLibraryInfo *TLI, TargetTransformInfo *TTI, | 
|  | ScalarEvolution *SE, MemorySSA *MSSA, | 
|  | OptimizationRemarkEmitter *ORE, bool DeleteAST); | 
|  |  | 
|  | ASTrackerMapTy &getLoopToAliasSetMap() { return LoopToAliasSetMap; } | 
|  | LoopInvariantCodeMotion(unsigned LicmMssaOptCap, | 
|  | unsigned LicmMssaNoAccForPromotionCap) | 
|  | : LicmMssaOptCap(LicmMssaOptCap), | 
|  | LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {} | 
|  |  | 
|  | private: | 
|  | ASTrackerMapTy LoopToAliasSetMap; | 
|  | unsigned LicmMssaOptCap; | 
|  | unsigned LicmMssaNoAccForPromotionCap; | 
|  |  | 
|  | std::unique_ptr<AliasSetTracker> | 
|  | collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AliasAnalysis *AA); | 
|  | std::unique_ptr<AliasSetTracker> | 
|  | collectAliasInfoForLoopWithMSSA(Loop *L, AliasAnalysis *AA, | 
|  | MemorySSAUpdater *MSSAU); | 
|  | }; | 
|  |  | 
|  | struct LegacyLICMPass : public LoopPass { | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | LegacyLICMPass( | 
|  | unsigned LicmMssaOptCap = SetLicmMssaOptCap, | 
|  | unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap) | 
|  | : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) { | 
|  | initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnLoop(Loop *L, LPPassManager &LPM) override { | 
|  | if (skipLoop(L)) { | 
|  | // If we have run LICM on a previous loop but now we are skipping | 
|  | // (because we've hit the opt-bisect limit), we need to clear the | 
|  | // loop alias information. | 
|  | LICM.getLoopToAliasSetMap().clear(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); | 
|  | MemorySSA *MSSA = EnableMSSALoopDependency | 
|  | ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA()) | 
|  | : nullptr; | 
|  | // For the old PM, we can't use OptimizationRemarkEmitter as an analysis | 
|  | // pass.  Function analyses need to be preserved across loop transformations | 
|  | // but ORE cannot be preserved (see comment before the pass definition). | 
|  | OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); | 
|  | return LICM.runOnLoop(L, | 
|  | &getAnalysis<AAResultsWrapperPass>().getAAResults(), | 
|  | &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), | 
|  | &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), | 
|  | &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), | 
|  | &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( | 
|  | *L->getHeader()->getParent()), | 
|  | SE ? &SE->getSE() : nullptr, MSSA, &ORE, false); | 
|  | } | 
|  |  | 
|  | /// This transformation requires natural loop information & requires that | 
|  | /// loop preheaders be inserted into the CFG... | 
|  | /// | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addPreserved<DominatorTreeWrapperPass>(); | 
|  | AU.addPreserved<LoopInfoWrapperPass>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | if (EnableMSSALoopDependency) { | 
|  | AU.addRequired<MemorySSAWrapperPass>(); | 
|  | AU.addPreserved<MemorySSAWrapperPass>(); | 
|  | } | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | getLoopAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | using llvm::Pass::doFinalization; | 
|  |  | 
|  | bool doFinalization() override { | 
|  | auto &AliasSetMap = LICM.getLoopToAliasSetMap(); | 
|  | // All loops in the AliasSetMap should be cleaned up already. The only case | 
|  | // where we fail to do so is if an outer loop gets deleted before LICM | 
|  | // visits it. | 
|  | assert(all_of(AliasSetMap, | 
|  | [](LoopInvariantCodeMotion::ASTrackerMapTy::value_type &KV) { | 
|  | return !KV.first->getParentLoop(); | 
|  | }) && | 
|  | "Didn't free loop alias sets"); | 
|  | AliasSetMap.clear(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | private: | 
|  | LoopInvariantCodeMotion LICM; | 
|  |  | 
|  | /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info. | 
|  | void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, | 
|  | Loop *L) override; | 
|  |  | 
|  | /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias | 
|  | /// set. | 
|  | void deleteAnalysisValue(Value *V, Loop *L) override; | 
|  |  | 
|  | /// Simple Analysis hook. Delete loop L from alias set map. | 
|  | void deleteAnalysisLoop(Loop *L) override; | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM, | 
|  | LoopStandardAnalysisResults &AR, LPMUpdater &) { | 
|  | const auto &FAM = | 
|  | AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); | 
|  | Function *F = L.getHeader()->getParent(); | 
|  |  | 
|  | auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); | 
|  | // FIXME: This should probably be optional rather than required. | 
|  | if (!ORE) | 
|  | report_fatal_error("LICM: OptimizationRemarkEmitterAnalysis not " | 
|  | "cached at a higher level"); | 
|  |  | 
|  | LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap); | 
|  | if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.TLI, &AR.TTI, &AR.SE, | 
|  | AR.MSSA, ORE, true)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | auto PA = getLoopPassPreservedAnalyses(); | 
|  |  | 
|  | PA.preserve<DominatorTreeAnalysis>(); | 
|  | PA.preserve<LoopAnalysis>(); | 
|  | if (EnableMSSALoopDependency) | 
|  | PA.preserve<MemorySSAAnalysis>(); | 
|  |  | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | char LegacyLICMPass::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion", | 
|  | false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) | 
|  | INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false, | 
|  | false) | 
|  |  | 
|  | Pass *llvm::createLICMPass() { return new LegacyLICMPass(); } | 
|  | Pass *llvm::createLICMPass(unsigned LicmMssaOptCap, | 
|  | unsigned LicmMssaNoAccForPromotionCap) { | 
|  | return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap); | 
|  | } | 
|  |  | 
|  | /// Hoist expressions out of the specified loop. Note, alias info for inner | 
|  | /// loop is not preserved so it is not a good idea to run LICM multiple | 
|  | /// times on one loop. | 
|  | /// We should delete AST for inner loops in the new pass manager to avoid | 
|  | /// memory leak. | 
|  | /// | 
|  | bool LoopInvariantCodeMotion::runOnLoop( | 
|  | Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT, | 
|  | TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE, | 
|  | MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, bool DeleteAST) { | 
|  | bool Changed = false; | 
|  |  | 
|  | assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."); | 
|  |  | 
|  | std::unique_ptr<AliasSetTracker> CurAST; | 
|  | std::unique_ptr<MemorySSAUpdater> MSSAU; | 
|  | bool NoOfMemAccTooLarge = false; | 
|  | unsigned LicmMssaOptCounter = 0; | 
|  |  | 
|  | if (!MSSA) { | 
|  | LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n"); | 
|  | CurAST = collectAliasInfoForLoop(L, LI, AA); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n"); | 
|  | MSSAU = make_unique<MemorySSAUpdater>(MSSA); | 
|  |  | 
|  | unsigned AccessCapCount = 0; | 
|  | for (auto *BB : L->getBlocks()) { | 
|  | if (auto *Accesses = MSSA->getBlockAccesses(BB)) { | 
|  | for (const auto &MA : *Accesses) { | 
|  | (void)MA; | 
|  | AccessCapCount++; | 
|  | if (AccessCapCount > LicmMssaNoAccForPromotionCap) { | 
|  | NoOfMemAccTooLarge = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (NoOfMemAccTooLarge) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get the preheader block to move instructions into... | 
|  | BasicBlock *Preheader = L->getLoopPreheader(); | 
|  |  | 
|  | // Compute loop safety information. | 
|  | ICFLoopSafetyInfo SafetyInfo(DT); | 
|  | SafetyInfo.computeLoopSafetyInfo(L); | 
|  |  | 
|  | // We want to visit all of the instructions in this loop... that are not parts | 
|  | // of our subloops (they have already had their invariants hoisted out of | 
|  | // their loop, into this loop, so there is no need to process the BODIES of | 
|  | // the subloops). | 
|  | // | 
|  | // Traverse the body of the loop in depth first order on the dominator tree so | 
|  | // that we are guaranteed to see definitions before we see uses.  This allows | 
|  | // us to sink instructions in one pass, without iteration.  After sinking | 
|  | // instructions, we perform another pass to hoist them out of the loop. | 
|  | SinkAndHoistLICMFlags Flags = {NoOfMemAccTooLarge, LicmMssaOptCounter, | 
|  | LicmMssaOptCap, LicmMssaNoAccForPromotionCap, | 
|  | /*IsSink=*/true}; | 
|  | if (L->hasDedicatedExits()) | 
|  | Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, | 
|  | CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE); | 
|  | Flags.IsSink = false; | 
|  | if (Preheader) | 
|  | Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L, | 
|  | CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE); | 
|  |  | 
|  | // Now that all loop invariants have been removed from the loop, promote any | 
|  | // memory references to scalars that we can. | 
|  | // Don't sink stores from loops without dedicated block exits. Exits | 
|  | // containing indirect branches are not transformed by loop simplify, | 
|  | // make sure we catch that. An additional load may be generated in the | 
|  | // preheader for SSA updater, so also avoid sinking when no preheader | 
|  | // is available. | 
|  | if (!DisablePromotion && Preheader && L->hasDedicatedExits() && | 
|  | !NoOfMemAccTooLarge) { | 
|  | // Figure out the loop exits and their insertion points | 
|  | SmallVector<BasicBlock *, 8> ExitBlocks; | 
|  | L->getUniqueExitBlocks(ExitBlocks); | 
|  |  | 
|  | // We can't insert into a catchswitch. | 
|  | bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) { | 
|  | return isa<CatchSwitchInst>(Exit->getTerminator()); | 
|  | }); | 
|  |  | 
|  | if (!HasCatchSwitch) { | 
|  | SmallVector<Instruction *, 8> InsertPts; | 
|  | SmallVector<MemoryAccess *, 8> MSSAInsertPts; | 
|  | InsertPts.reserve(ExitBlocks.size()); | 
|  | if (MSSAU) | 
|  | MSSAInsertPts.reserve(ExitBlocks.size()); | 
|  | for (BasicBlock *ExitBlock : ExitBlocks) { | 
|  | InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); | 
|  | if (MSSAU) | 
|  | MSSAInsertPts.push_back(nullptr); | 
|  | } | 
|  |  | 
|  | PredIteratorCache PIC; | 
|  |  | 
|  | bool Promoted = false; | 
|  |  | 
|  | // Build an AST using MSSA. | 
|  | if (!CurAST.get()) | 
|  | CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get()); | 
|  |  | 
|  | // Loop over all of the alias sets in the tracker object. | 
|  | for (AliasSet &AS : *CurAST) { | 
|  | // We can promote this alias set if it has a store, if it is a "Must" | 
|  | // alias set, if the pointer is loop invariant, and if we are not | 
|  | // eliminating any volatile loads or stores. | 
|  | if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() || | 
|  | !L->isLoopInvariant(AS.begin()->getValue())) | 
|  | continue; | 
|  |  | 
|  | assert( | 
|  | !AS.empty() && | 
|  | "Must alias set should have at least one pointer element in it!"); | 
|  |  | 
|  | SmallSetVector<Value *, 8> PointerMustAliases; | 
|  | for (const auto &ASI : AS) | 
|  | PointerMustAliases.insert(ASI.getValue()); | 
|  |  | 
|  | Promoted |= promoteLoopAccessesToScalars( | 
|  | PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI, | 
|  | DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE); | 
|  | } | 
|  |  | 
|  | // Once we have promoted values across the loop body we have to | 
|  | // recursively reform LCSSA as any nested loop may now have values defined | 
|  | // within the loop used in the outer loop. | 
|  | // FIXME: This is really heavy handed. It would be a bit better to use an | 
|  | // SSAUpdater strategy during promotion that was LCSSA aware and reformed | 
|  | // it as it went. | 
|  | if (Promoted) | 
|  | formLCSSARecursively(*L, *DT, LI, SE); | 
|  |  | 
|  | Changed |= Promoted; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that neither this loop nor its parent have had LCSSA broken. LICM is | 
|  | // specifically moving instructions across the loop boundary and so it is | 
|  | // especially in need of sanity checking here. | 
|  | assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"); | 
|  | assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) && | 
|  | "Parent loop not left in LCSSA form after LICM!"); | 
|  |  | 
|  | // If this loop is nested inside of another one, save the alias information | 
|  | // for when we process the outer loop. | 
|  | if (!MSSAU.get() && CurAST.get() && L->getParentLoop() && !DeleteAST) | 
|  | LoopToAliasSetMap[L] = std::move(CurAST); | 
|  |  | 
|  | if (MSSAU.get() && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | if (Changed && SE) | 
|  | SE->forgetLoopDispositions(L); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Walk the specified region of the CFG (defined by all blocks dominated by | 
|  | /// the specified block, and that are in the current loop) in reverse depth | 
|  | /// first order w.r.t the DominatorTree.  This allows us to visit uses before | 
|  | /// definitions, allowing us to sink a loop body in one pass without iteration. | 
|  | /// | 
|  | bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI, | 
|  | DominatorTree *DT, TargetLibraryInfo *TLI, | 
|  | TargetTransformInfo *TTI, Loop *CurLoop, | 
|  | AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU, | 
|  | ICFLoopSafetyInfo *SafetyInfo, | 
|  | SinkAndHoistLICMFlags &Flags, | 
|  | OptimizationRemarkEmitter *ORE) { | 
|  |  | 
|  | // Verify inputs. | 
|  | assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && | 
|  | CurLoop != nullptr && SafetyInfo != nullptr && | 
|  | "Unexpected input to sinkRegion."); | 
|  | assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) && | 
|  | "Either AliasSetTracker or MemorySSA should be initialized."); | 
|  |  | 
|  | // We want to visit children before parents. We will enque all the parents | 
|  | // before their children in the worklist and process the worklist in reverse | 
|  | // order. | 
|  | SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop); | 
|  |  | 
|  | bool Changed = false; | 
|  | for (DomTreeNode *DTN : reverse(Worklist)) { | 
|  | BasicBlock *BB = DTN->getBlock(); | 
|  | // Only need to process the contents of this block if it is not part of a | 
|  | // subloop (which would already have been processed). | 
|  | if (inSubLoop(BB, CurLoop, LI)) | 
|  | continue; | 
|  |  | 
|  | for (BasicBlock::iterator II = BB->end(); II != BB->begin();) { | 
|  | Instruction &I = *--II; | 
|  |  | 
|  | // If the instruction is dead, we would try to sink it because it isn't | 
|  | // used in the loop, instead, just delete it. | 
|  | if (isInstructionTriviallyDead(&I, TLI)) { | 
|  | LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); | 
|  | salvageDebugInfo(I); | 
|  | ++II; | 
|  | eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check to see if we can sink this instruction to the exit blocks | 
|  | // of the loop.  We can do this if the all users of the instruction are | 
|  | // outside of the loop.  In this case, it doesn't even matter if the | 
|  | // operands of the instruction are loop invariant. | 
|  | // | 
|  | bool FreeInLoop = false; | 
|  | if (isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) && | 
|  | canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags, | 
|  | ORE) && | 
|  | !I.mayHaveSideEffects()) { | 
|  | if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) { | 
|  | if (!FreeInLoop) { | 
|  | ++II; | 
|  | eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); | 
|  | } | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // This is a helper class for hoistRegion to make it able to hoist control flow | 
|  | // in order to be able to hoist phis. The way this works is that we initially | 
|  | // start hoisting to the loop preheader, and when we see a loop invariant branch | 
|  | // we make note of this. When we then come to hoist an instruction that's | 
|  | // conditional on such a branch we duplicate the branch and the relevant control | 
|  | // flow, then hoist the instruction into the block corresponding to its original | 
|  | // block in the duplicated control flow. | 
|  | class ControlFlowHoister { | 
|  | private: | 
|  | // Information about the loop we are hoisting from | 
|  | LoopInfo *LI; | 
|  | DominatorTree *DT; | 
|  | Loop *CurLoop; | 
|  | MemorySSAUpdater *MSSAU; | 
|  |  | 
|  | // A map of blocks in the loop to the block their instructions will be hoisted | 
|  | // to. | 
|  | DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap; | 
|  |  | 
|  | // The branches that we can hoist, mapped to the block that marks a | 
|  | // convergence point of their control flow. | 
|  | DenseMap<BranchInst *, BasicBlock *> HoistableBranches; | 
|  |  | 
|  | public: | 
|  | ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop, | 
|  | MemorySSAUpdater *MSSAU) | 
|  | : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {} | 
|  |  | 
|  | void registerPossiblyHoistableBranch(BranchInst *BI) { | 
|  | // We can only hoist conditional branches with loop invariant operands. | 
|  | if (!ControlFlowHoisting || !BI->isConditional() || | 
|  | !CurLoop->hasLoopInvariantOperands(BI)) | 
|  | return; | 
|  |  | 
|  | // The branch destinations need to be in the loop, and we don't gain | 
|  | // anything by duplicating conditional branches with duplicate successors, | 
|  | // as it's essentially the same as an unconditional branch. | 
|  | BasicBlock *TrueDest = BI->getSuccessor(0); | 
|  | BasicBlock *FalseDest = BI->getSuccessor(1); | 
|  | if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) || | 
|  | TrueDest == FalseDest) | 
|  | return; | 
|  |  | 
|  | // We can hoist BI if one branch destination is the successor of the other, | 
|  | // or both have common successor which we check by seeing if the | 
|  | // intersection of their successors is non-empty. | 
|  | // TODO: This could be expanded to allowing branches where both ends | 
|  | // eventually converge to a single block. | 
|  | SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc; | 
|  | TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest)); | 
|  | FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest)); | 
|  | BasicBlock *CommonSucc = nullptr; | 
|  | if (TrueDestSucc.count(FalseDest)) { | 
|  | CommonSucc = FalseDest; | 
|  | } else if (FalseDestSucc.count(TrueDest)) { | 
|  | CommonSucc = TrueDest; | 
|  | } else { | 
|  | set_intersect(TrueDestSucc, FalseDestSucc); | 
|  | // If there's one common successor use that. | 
|  | if (TrueDestSucc.size() == 1) | 
|  | CommonSucc = *TrueDestSucc.begin(); | 
|  | // If there's more than one pick whichever appears first in the block list | 
|  | // (we can't use the value returned by TrueDestSucc.begin() as it's | 
|  | // unpredicatable which element gets returned). | 
|  | else if (!TrueDestSucc.empty()) { | 
|  | Function *F = TrueDest->getParent(); | 
|  | auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); }; | 
|  | auto It = std::find_if(F->begin(), F->end(), IsSucc); | 
|  | assert(It != F->end() && "Could not find successor in function"); | 
|  | CommonSucc = &*It; | 
|  | } | 
|  | } | 
|  | // The common successor has to be dominated by the branch, as otherwise | 
|  | // there will be some other path to the successor that will not be | 
|  | // controlled by this branch so any phi we hoist would be controlled by the | 
|  | // wrong condition. This also takes care of avoiding hoisting of loop back | 
|  | // edges. | 
|  | // TODO: In some cases this could be relaxed if the successor is dominated | 
|  | // by another block that's been hoisted and we can guarantee that the | 
|  | // control flow has been replicated exactly. | 
|  | if (CommonSucc && DT->dominates(BI, CommonSucc)) | 
|  | HoistableBranches[BI] = CommonSucc; | 
|  | } | 
|  |  | 
|  | bool canHoistPHI(PHINode *PN) { | 
|  | // The phi must have loop invariant operands. | 
|  | if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN)) | 
|  | return false; | 
|  | // We can hoist phis if the block they are in is the target of hoistable | 
|  | // branches which cover all of the predecessors of the block. | 
|  | SmallPtrSet<BasicBlock *, 8> PredecessorBlocks; | 
|  | BasicBlock *BB = PN->getParent(); | 
|  | for (BasicBlock *PredBB : predecessors(BB)) | 
|  | PredecessorBlocks.insert(PredBB); | 
|  | // If we have less predecessor blocks than predecessors then the phi will | 
|  | // have more than one incoming value for the same block which we can't | 
|  | // handle. | 
|  | // TODO: This could be handled be erasing some of the duplicate incoming | 
|  | // values. | 
|  | if (PredecessorBlocks.size() != pred_size(BB)) | 
|  | return false; | 
|  | for (auto &Pair : HoistableBranches) { | 
|  | if (Pair.second == BB) { | 
|  | // Which blocks are predecessors via this branch depends on if the | 
|  | // branch is triangle-like or diamond-like. | 
|  | if (Pair.first->getSuccessor(0) == BB) { | 
|  | PredecessorBlocks.erase(Pair.first->getParent()); | 
|  | PredecessorBlocks.erase(Pair.first->getSuccessor(1)); | 
|  | } else if (Pair.first->getSuccessor(1) == BB) { | 
|  | PredecessorBlocks.erase(Pair.first->getParent()); | 
|  | PredecessorBlocks.erase(Pair.first->getSuccessor(0)); | 
|  | } else { | 
|  | PredecessorBlocks.erase(Pair.first->getSuccessor(0)); | 
|  | PredecessorBlocks.erase(Pair.first->getSuccessor(1)); | 
|  | } | 
|  | } | 
|  | } | 
|  | // PredecessorBlocks will now be empty if for every predecessor of BB we | 
|  | // found a hoistable branch source. | 
|  | return PredecessorBlocks.empty(); | 
|  | } | 
|  |  | 
|  | BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) { | 
|  | if (!ControlFlowHoisting) | 
|  | return CurLoop->getLoopPreheader(); | 
|  | // If BB has already been hoisted, return that | 
|  | if (HoistDestinationMap.count(BB)) | 
|  | return HoistDestinationMap[BB]; | 
|  |  | 
|  | // Check if this block is conditional based on a pending branch | 
|  | auto HasBBAsSuccessor = | 
|  | [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) { | 
|  | return BB != Pair.second && (Pair.first->getSuccessor(0) == BB || | 
|  | Pair.first->getSuccessor(1) == BB); | 
|  | }; | 
|  | auto It = std::find_if(HoistableBranches.begin(), HoistableBranches.end(), | 
|  | HasBBAsSuccessor); | 
|  |  | 
|  | // If not involved in a pending branch, hoist to preheader | 
|  | BasicBlock *InitialPreheader = CurLoop->getLoopPreheader(); | 
|  | if (It == HoistableBranches.end()) { | 
|  | LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getName() | 
|  | << " as hoist destination for " << BB->getName() | 
|  | << "\n"); | 
|  | HoistDestinationMap[BB] = InitialPreheader; | 
|  | return InitialPreheader; | 
|  | } | 
|  | BranchInst *BI = It->first; | 
|  | assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == | 
|  | HoistableBranches.end() && | 
|  | "BB is expected to be the target of at most one branch"); | 
|  |  | 
|  | LLVMContext &C = BB->getContext(); | 
|  | BasicBlock *TrueDest = BI->getSuccessor(0); | 
|  | BasicBlock *FalseDest = BI->getSuccessor(1); | 
|  | BasicBlock *CommonSucc = HoistableBranches[BI]; | 
|  | BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent()); | 
|  |  | 
|  | // Create hoisted versions of blocks that currently don't have them | 
|  | auto CreateHoistedBlock = [&](BasicBlock *Orig) { | 
|  | if (HoistDestinationMap.count(Orig)) | 
|  | return HoistDestinationMap[Orig]; | 
|  | BasicBlock *New = | 
|  | BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent()); | 
|  | HoistDestinationMap[Orig] = New; | 
|  | DT->addNewBlock(New, HoistTarget); | 
|  | if (CurLoop->getParentLoop()) | 
|  | CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI); | 
|  | ++NumCreatedBlocks; | 
|  | LLVM_DEBUG(dbgs() << "LICM created " << New->getName() | 
|  | << " as hoist destination for " << Orig->getName() | 
|  | << "\n"); | 
|  | return New; | 
|  | }; | 
|  | BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest); | 
|  | BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest); | 
|  | BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc); | 
|  |  | 
|  | // Link up these blocks with branches. | 
|  | if (!HoistCommonSucc->getTerminator()) { | 
|  | // The new common successor we've generated will branch to whatever that | 
|  | // hoist target branched to. | 
|  | BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor(); | 
|  | assert(TargetSucc && "Expected hoist target to have a single successor"); | 
|  | HoistCommonSucc->moveBefore(TargetSucc); | 
|  | BranchInst::Create(TargetSucc, HoistCommonSucc); | 
|  | } | 
|  | if (!HoistTrueDest->getTerminator()) { | 
|  | HoistTrueDest->moveBefore(HoistCommonSucc); | 
|  | BranchInst::Create(HoistCommonSucc, HoistTrueDest); | 
|  | } | 
|  | if (!HoistFalseDest->getTerminator()) { | 
|  | HoistFalseDest->moveBefore(HoistCommonSucc); | 
|  | BranchInst::Create(HoistCommonSucc, HoistFalseDest); | 
|  | } | 
|  |  | 
|  | // If BI is being cloned to what was originally the preheader then | 
|  | // HoistCommonSucc will now be the new preheader. | 
|  | if (HoistTarget == InitialPreheader) { | 
|  | // Phis in the loop header now need to use the new preheader. | 
|  | InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc); | 
|  | if (MSSAU) | 
|  | MSSAU->wireOldPredecessorsToNewImmediatePredecessor( | 
|  | HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget}); | 
|  | // The new preheader dominates the loop header. | 
|  | DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc); | 
|  | DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader()); | 
|  | DT->changeImmediateDominator(HeaderNode, PreheaderNode); | 
|  | // The preheader hoist destination is now the new preheader, with the | 
|  | // exception of the hoist destination of this branch. | 
|  | for (auto &Pair : HoistDestinationMap) | 
|  | if (Pair.second == InitialPreheader && Pair.first != BI->getParent()) | 
|  | Pair.second = HoistCommonSucc; | 
|  | } | 
|  |  | 
|  | // Now finally clone BI. | 
|  | ReplaceInstWithInst( | 
|  | HoistTarget->getTerminator(), | 
|  | BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition())); | 
|  | ++NumClonedBranches; | 
|  |  | 
|  | assert(CurLoop->getLoopPreheader() && | 
|  | "Hoisting blocks should not have destroyed preheader"); | 
|  | return HoistDestinationMap[BB]; | 
|  | } | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | /// Walk the specified region of the CFG (defined by all blocks dominated by | 
|  | /// the specified block, and that are in the current loop) in depth first | 
|  | /// order w.r.t the DominatorTree.  This allows us to visit definitions before | 
|  | /// uses, allowing us to hoist a loop body in one pass without iteration. | 
|  | /// | 
|  | bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI, | 
|  | DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop, | 
|  | AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU, | 
|  | ICFLoopSafetyInfo *SafetyInfo, | 
|  | SinkAndHoistLICMFlags &Flags, | 
|  | OptimizationRemarkEmitter *ORE) { | 
|  | // Verify inputs. | 
|  | assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && | 
|  | CurLoop != nullptr && SafetyInfo != nullptr && | 
|  | "Unexpected input to hoistRegion."); | 
|  | assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) && | 
|  | "Either AliasSetTracker or MemorySSA should be initialized."); | 
|  |  | 
|  | ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU); | 
|  |  | 
|  | // Keep track of instructions that have been hoisted, as they may need to be | 
|  | // re-hoisted if they end up not dominating all of their uses. | 
|  | SmallVector<Instruction *, 16> HoistedInstructions; | 
|  |  | 
|  | // For PHI hoisting to work we need to hoist blocks before their successors. | 
|  | // We can do this by iterating through the blocks in the loop in reverse | 
|  | // post-order. | 
|  | LoopBlocksRPO Worklist(CurLoop); | 
|  | Worklist.perform(LI); | 
|  | bool Changed = false; | 
|  | for (BasicBlock *BB : Worklist) { | 
|  | // Only need to process the contents of this block if it is not part of a | 
|  | // subloop (which would already have been processed). | 
|  | if (inSubLoop(BB, CurLoop, LI)) | 
|  | continue; | 
|  |  | 
|  | for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) { | 
|  | Instruction &I = *II++; | 
|  | // Try constant folding this instruction.  If all the operands are | 
|  | // constants, it is technically hoistable, but it would be better to | 
|  | // just fold it. | 
|  | if (Constant *C = ConstantFoldInstruction( | 
|  | &I, I.getModule()->getDataLayout(), TLI)) { | 
|  | LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C | 
|  | << '\n'); | 
|  | if (CurAST) | 
|  | CurAST->copyValue(&I, C); | 
|  | // FIXME MSSA: Such replacements may make accesses unoptimized (D51960). | 
|  | I.replaceAllUsesWith(C); | 
|  | if (isInstructionTriviallyDead(&I, TLI)) | 
|  | eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Try hoisting the instruction out to the preheader.  We can only do | 
|  | // this if all of the operands of the instruction are loop invariant and | 
|  | // if it is safe to hoist the instruction. | 
|  | // TODO: It may be safe to hoist if we are hoisting to a conditional block | 
|  | // and we have accurately duplicated the control flow from the loop header | 
|  | // to that block. | 
|  | if (CurLoop->hasLoopInvariantOperands(&I) && | 
|  | canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags, | 
|  | ORE) && | 
|  | isSafeToExecuteUnconditionally( | 
|  | I, DT, CurLoop, SafetyInfo, ORE, | 
|  | CurLoop->getLoopPreheader()->getTerminator())) { | 
|  | hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, | 
|  | MSSAU, ORE); | 
|  | HoistedInstructions.push_back(&I); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Attempt to remove floating point division out of the loop by | 
|  | // converting it to a reciprocal multiplication. | 
|  | if (I.getOpcode() == Instruction::FDiv && | 
|  | CurLoop->isLoopInvariant(I.getOperand(1)) && | 
|  | I.hasAllowReciprocal()) { | 
|  | auto Divisor = I.getOperand(1); | 
|  | auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0); | 
|  | auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor); | 
|  | ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags()); | 
|  | SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent()); | 
|  | ReciprocalDivisor->insertBefore(&I); | 
|  |  | 
|  | auto Product = | 
|  | BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor); | 
|  | Product->setFastMathFlags(I.getFastMathFlags()); | 
|  | SafetyInfo->insertInstructionTo(Product, I.getParent()); | 
|  | Product->insertAfter(&I); | 
|  | I.replaceAllUsesWith(Product); | 
|  | eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); | 
|  |  | 
|  | hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), | 
|  | SafetyInfo, MSSAU, ORE); | 
|  | HoistedInstructions.push_back(ReciprocalDivisor); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | auto IsInvariantStart = [&](Instruction &I) { | 
|  | using namespace PatternMatch; | 
|  | return I.use_empty() && | 
|  | match(&I, m_Intrinsic<Intrinsic::invariant_start>()); | 
|  | }; | 
|  | auto MustExecuteWithoutWritesBefore = [&](Instruction &I) { | 
|  | return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) && | 
|  | SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop); | 
|  | }; | 
|  | if ((IsInvariantStart(I) || isGuard(&I)) && | 
|  | CurLoop->hasLoopInvariantOperands(&I) && | 
|  | MustExecuteWithoutWritesBefore(I)) { | 
|  | hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, | 
|  | MSSAU, ORE); | 
|  | HoistedInstructions.push_back(&I); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (PHINode *PN = dyn_cast<PHINode>(&I)) { | 
|  | if (CFH.canHoistPHI(PN)) { | 
|  | // Redirect incoming blocks first to ensure that we create hoisted | 
|  | // versions of those blocks before we hoist the phi. | 
|  | for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i) | 
|  | PN->setIncomingBlock( | 
|  | i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i))); | 
|  | hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, | 
|  | MSSAU, ORE); | 
|  | assert(DT->dominates(PN, BB) && "Conditional PHIs not expected"); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remember possibly hoistable branches so we can actually hoist them | 
|  | // later if needed. | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(&I)) | 
|  | CFH.registerPossiblyHoistableBranch(BI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we hoisted instructions to a conditional block they may not dominate | 
|  | // their uses that weren't hoisted (such as phis where some operands are not | 
|  | // loop invariant). If so make them unconditional by moving them to their | 
|  | // immediate dominator. We iterate through the instructions in reverse order | 
|  | // which ensures that when we rehoist an instruction we rehoist its operands, | 
|  | // and also keep track of where in the block we are rehoisting to to make sure | 
|  | // that we rehoist instructions before the instructions that use them. | 
|  | Instruction *HoistPoint = nullptr; | 
|  | if (ControlFlowHoisting) { | 
|  | for (Instruction *I : reverse(HoistedInstructions)) { | 
|  | if (!llvm::all_of(I->uses(), | 
|  | [&](Use &U) { return DT->dominates(I, U); })) { | 
|  | BasicBlock *Dominator = | 
|  | DT->getNode(I->getParent())->getIDom()->getBlock(); | 
|  | if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) { | 
|  | if (HoistPoint) | 
|  | assert(DT->dominates(Dominator, HoistPoint->getParent()) && | 
|  | "New hoist point expected to dominate old hoist point"); | 
|  | HoistPoint = Dominator->getTerminator(); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "LICM rehoisting to " | 
|  | << HoistPoint->getParent()->getName() | 
|  | << ": " << *I << "\n"); | 
|  | moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU); | 
|  | HoistPoint = I; | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | // Now that we've finished hoisting make sure that LI and DT are still | 
|  | // valid. | 
|  | #ifndef NDEBUG | 
|  | if (Changed) { | 
|  | assert(DT->verify(DominatorTree::VerificationLevel::Fast) && | 
|  | "Dominator tree verification failed"); | 
|  | LI->verify(*DT); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // Return true if LI is invariant within scope of the loop. LI is invariant if | 
|  | // CurLoop is dominated by an invariant.start representing the same memory | 
|  | // location and size as the memory location LI loads from, and also the | 
|  | // invariant.start has no uses. | 
|  | static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, | 
|  | Loop *CurLoop) { | 
|  | Value *Addr = LI->getOperand(0); | 
|  | const DataLayout &DL = LI->getModule()->getDataLayout(); | 
|  | const uint32_t LocSizeInBits = DL.getTypeSizeInBits(LI->getType()); | 
|  |  | 
|  | // if the type is i8 addrspace(x)*, we know this is the type of | 
|  | // llvm.invariant.start operand | 
|  | auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()), | 
|  | LI->getPointerAddressSpace()); | 
|  | unsigned BitcastsVisited = 0; | 
|  | // Look through bitcasts until we reach the i8* type (this is invariant.start | 
|  | // operand type). | 
|  | while (Addr->getType() != PtrInt8Ty) { | 
|  | auto *BC = dyn_cast<BitCastInst>(Addr); | 
|  | // Avoid traversing high number of bitcast uses. | 
|  | if (++BitcastsVisited > MaxNumUsesTraversed || !BC) | 
|  | return false; | 
|  | Addr = BC->getOperand(0); | 
|  | } | 
|  |  | 
|  | unsigned UsesVisited = 0; | 
|  | // Traverse all uses of the load operand value, to see if invariant.start is | 
|  | // one of the uses, and whether it dominates the load instruction. | 
|  | for (auto *U : Addr->users()) { | 
|  | // Avoid traversing for Load operand with high number of users. | 
|  | if (++UsesVisited > MaxNumUsesTraversed) | 
|  | return false; | 
|  | IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); | 
|  | // If there are escaping uses of invariant.start instruction, the load maybe | 
|  | // non-invariant. | 
|  | if (!II || II->getIntrinsicID() != Intrinsic::invariant_start || | 
|  | !II->use_empty()) | 
|  | continue; | 
|  | unsigned InvariantSizeInBits = | 
|  | cast<ConstantInt>(II->getArgOperand(0))->getSExtValue() * 8; | 
|  | // Confirm the invariant.start location size contains the load operand size | 
|  | // in bits. Also, the invariant.start should dominate the load, and we | 
|  | // should not hoist the load out of a loop that contains this dominating | 
|  | // invariant.start. | 
|  | if (LocSizeInBits <= InvariantSizeInBits && | 
|  | DT->properlyDominates(II->getParent(), CurLoop->getHeader())) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Return true if-and-only-if we know how to (mechanically) both hoist and | 
|  | /// sink a given instruction out of a loop.  Does not address legality | 
|  | /// concerns such as aliasing or speculation safety. | 
|  | bool isHoistableAndSinkableInst(Instruction &I) { | 
|  | // Only these instructions are hoistable/sinkable. | 
|  | return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || | 
|  | isa<FenceInst>(I) || isa<BinaryOperator>(I) || isa<CastInst>(I) || | 
|  | isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || | 
|  | isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || | 
|  | isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) || | 
|  | isa<InsertValueInst>(I)); | 
|  | } | 
|  | /// Return true if all of the alias sets within this AST are known not to | 
|  | /// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop. | 
|  | bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU, | 
|  | const Loop *L) { | 
|  | if (CurAST) { | 
|  | for (AliasSet &AS : *CurAST) { | 
|  | if (!AS.isForwardingAliasSet() && AS.isMod()) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } else { /*MSSAU*/ | 
|  | for (auto *BB : L->getBlocks()) | 
|  | if (MSSAU->getMemorySSA()->getBlockDefs(BB)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true if I is the only Instruction with a MemoryAccess in L. | 
|  | bool isOnlyMemoryAccess(const Instruction *I, const Loop *L, | 
|  | const MemorySSAUpdater *MSSAU) { | 
|  | for (auto *BB : L->getBlocks()) | 
|  | if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) { | 
|  | int NotAPhi = 0; | 
|  | for (const auto &Acc : *Accs) { | 
|  | if (isa<MemoryPhi>(&Acc)) | 
|  | continue; | 
|  | const auto *MUD = cast<MemoryUseOrDef>(&Acc); | 
|  | if (MUD->getMemoryInst() != I || NotAPhi++ == 1) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, | 
|  | Loop *CurLoop, AliasSetTracker *CurAST, | 
|  | MemorySSAUpdater *MSSAU, | 
|  | bool TargetExecutesOncePerLoop, | 
|  | SinkAndHoistLICMFlags *Flags, | 
|  | OptimizationRemarkEmitter *ORE) { | 
|  | // If we don't understand the instruction, bail early. | 
|  | if (!isHoistableAndSinkableInst(I)) | 
|  | return false; | 
|  |  | 
|  | MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr; | 
|  | if (MSSA) | 
|  | assert(Flags != nullptr && "Flags cannot be null."); | 
|  |  | 
|  | // Loads have extra constraints we have to verify before we can hoist them. | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { | 
|  | if (!LI->isUnordered()) | 
|  | return false; // Don't sink/hoist volatile or ordered atomic loads! | 
|  |  | 
|  | // Loads from constant memory are always safe to move, even if they end up | 
|  | // in the same alias set as something that ends up being modified. | 
|  | if (AA->pointsToConstantMemory(LI->getOperand(0))) | 
|  | return true; | 
|  | if (LI->getMetadata(LLVMContext::MD_invariant_load)) | 
|  | return true; | 
|  |  | 
|  | if (LI->isAtomic() && !TargetExecutesOncePerLoop) | 
|  | return false; // Don't risk duplicating unordered loads | 
|  |  | 
|  | // This checks for an invariant.start dominating the load. | 
|  | if (isLoadInvariantInLoop(LI, DT, CurLoop)) | 
|  | return true; | 
|  |  | 
|  | bool Invalidated; | 
|  | if (CurAST) | 
|  | Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST, | 
|  | CurLoop, AA); | 
|  | else | 
|  | Invalidated = pointerInvalidatedByLoopWithMSSA( | 
|  | MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, *Flags); | 
|  | // Check loop-invariant address because this may also be a sinkable load | 
|  | // whose address is not necessarily loop-invariant. | 
|  | if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand())) | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemarkMissed( | 
|  | DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI) | 
|  | << "failed to move load with loop-invariant address " | 
|  | "because the loop may invalidate its value"; | 
|  | }); | 
|  |  | 
|  | return !Invalidated; | 
|  | } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { | 
|  | // Don't sink or hoist dbg info; it's legal, but not useful. | 
|  | if (isa<DbgInfoIntrinsic>(I)) | 
|  | return false; | 
|  |  | 
|  | // Don't sink calls which can throw. | 
|  | if (CI->mayThrow()) | 
|  | return false; | 
|  |  | 
|  | using namespace PatternMatch; | 
|  | if (match(CI, m_Intrinsic<Intrinsic::assume>())) | 
|  | // Assumes don't actually alias anything or throw | 
|  | return true; | 
|  |  | 
|  | // Handle simple cases by querying alias analysis. | 
|  | FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI); | 
|  | if (Behavior == FMRB_DoesNotAccessMemory) | 
|  | return true; | 
|  | if (AliasAnalysis::onlyReadsMemory(Behavior)) { | 
|  | // A readonly argmemonly function only reads from memory pointed to by | 
|  | // it's arguments with arbitrary offsets.  If we can prove there are no | 
|  | // writes to this memory in the loop, we can hoist or sink. | 
|  | if (AliasAnalysis::onlyAccessesArgPointees(Behavior)) { | 
|  | // TODO: expand to writeable arguments | 
|  | for (Value *Op : CI->arg_operands()) | 
|  | if (Op->getType()->isPointerTy()) { | 
|  | bool Invalidated; | 
|  | if (CurAST) | 
|  | Invalidated = pointerInvalidatedByLoop( | 
|  | MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()), | 
|  | CurAST, CurLoop, AA); | 
|  | else | 
|  | Invalidated = pointerInvalidatedByLoopWithMSSA( | 
|  | MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, | 
|  | *Flags); | 
|  | if (Invalidated) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If this call only reads from memory and there are no writes to memory | 
|  | // in the loop, we can hoist or sink the call as appropriate. | 
|  | if (isReadOnly(CurAST, MSSAU, CurLoop)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // FIXME: This should use mod/ref information to see if we can hoist or | 
|  | // sink the call. | 
|  |  | 
|  | return false; | 
|  | } else if (auto *FI = dyn_cast<FenceInst>(&I)) { | 
|  | // Fences alias (most) everything to provide ordering.  For the moment, | 
|  | // just give up if there are any other memory operations in the loop. | 
|  | if (CurAST) { | 
|  | auto Begin = CurAST->begin(); | 
|  | assert(Begin != CurAST->end() && "must contain FI"); | 
|  | if (std::next(Begin) != CurAST->end()) | 
|  | // constant memory for instance, TODO: handle better | 
|  | return false; | 
|  | auto *UniqueI = Begin->getUniqueInstruction(); | 
|  | if (!UniqueI) | 
|  | // other memory op, give up | 
|  | return false; | 
|  | (void)FI; // suppress unused variable warning | 
|  | assert(UniqueI == FI && "AS must contain FI"); | 
|  | return true; | 
|  | } else // MSSAU | 
|  | return isOnlyMemoryAccess(FI, CurLoop, MSSAU); | 
|  | } else if (auto *SI = dyn_cast<StoreInst>(&I)) { | 
|  | if (!SI->isUnordered()) | 
|  | return false; // Don't sink/hoist volatile or ordered atomic store! | 
|  |  | 
|  | // We can only hoist a store that we can prove writes a value which is not | 
|  | // read or overwritten within the loop.  For those cases, we fallback to | 
|  | // load store promotion instead.  TODO: We can extend this to cases where | 
|  | // there is exactly one write to the location and that write dominates an | 
|  | // arbitrary number of reads in the loop. | 
|  | if (CurAST) { | 
|  | auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI)); | 
|  |  | 
|  | if (AS.isRef() || !AS.isMustAlias()) | 
|  | // Quick exit test, handled by the full path below as well. | 
|  | return false; | 
|  | auto *UniqueI = AS.getUniqueInstruction(); | 
|  | if (!UniqueI) | 
|  | // other memory op, give up | 
|  | return false; | 
|  | assert(UniqueI == SI && "AS must contain SI"); | 
|  | return true; | 
|  | } else { // MSSAU | 
|  | if (isOnlyMemoryAccess(SI, CurLoop, MSSAU)) | 
|  | return true; | 
|  | // If there are more accesses than the Promotion cap, give up, we're not | 
|  | // walking a list that long. | 
|  | if (Flags->NoOfMemAccTooLarge) | 
|  | return false; | 
|  | // Check store only if there's still "quota" to check clobber. | 
|  | if (Flags->LicmMssaOptCounter >= Flags->LicmMssaOptCap) | 
|  | return false; | 
|  | // If there are interfering Uses (i.e. their defining access is in the | 
|  | // loop), or ordered loads (stored as Defs!), don't move this store. | 
|  | // Could do better here, but this is conservatively correct. | 
|  | // TODO: Cache set of Uses on the first walk in runOnLoop, update when | 
|  | // moving accesses. Can also extend to dominating uses. | 
|  | auto *SIMD = MSSA->getMemoryAccess(SI); | 
|  | for (auto *BB : CurLoop->getBlocks()) | 
|  | if (auto *Accesses = MSSA->getBlockAccesses(BB)) { | 
|  | for (const auto &MA : *Accesses) | 
|  | if (const auto *MU = dyn_cast<MemoryUse>(&MA)) { | 
|  | auto *MD = MU->getDefiningAccess(); | 
|  | if (!MSSA->isLiveOnEntryDef(MD) && | 
|  | CurLoop->contains(MD->getBlock())) | 
|  | return false; | 
|  | // Disable hoisting past potentially interfering loads. Optimized | 
|  | // Uses may point to an access outside the loop, as getClobbering | 
|  | // checks the previous iteration when walking the backedge. | 
|  | // FIXME: More precise: no Uses that alias SI. | 
|  | if (!Flags->IsSink && !MSSA->dominates(SIMD, MU)) | 
|  | return false; | 
|  | } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) | 
|  | if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) { | 
|  | (void)LI; // Silence warning. | 
|  | assert(!LI->isUnordered() && "Expected unordered load"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI); | 
|  | Flags->LicmMssaOptCounter++; | 
|  | // If there are no clobbering Defs in the loop, store is safe to hoist. | 
|  | return MSSA->isLiveOnEntryDef(Source) || | 
|  | !CurLoop->contains(Source->getBlock()); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(!I.mayReadOrWriteMemory() && "unhandled aliasing"); | 
|  |  | 
|  | // We've established mechanical ability and aliasing, it's up to the caller | 
|  | // to check fault safety | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Returns true if a PHINode is a trivially replaceable with an | 
|  | /// Instruction. | 
|  | /// This is true when all incoming values are that instruction. | 
|  | /// This pattern occurs most often with LCSSA PHI nodes. | 
|  | /// | 
|  | static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) { | 
|  | for (const Value *IncValue : PN.incoming_values()) | 
|  | if (IncValue != &I) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if the instruction is free in the loop. | 
|  | static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop, | 
|  | const TargetTransformInfo *TTI) { | 
|  |  | 
|  | if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { | 
|  | if (TTI->getUserCost(GEP) != TargetTransformInfo::TCC_Free) | 
|  | return false; | 
|  | // For a GEP, we cannot simply use getUserCost because currently it | 
|  | // optimistically assume that a GEP will fold into addressing mode | 
|  | // regardless of its users. | 
|  | const BasicBlock *BB = GEP->getParent(); | 
|  | for (const User *U : GEP->users()) { | 
|  | const Instruction *UI = cast<Instruction>(U); | 
|  | if (CurLoop->contains(UI) && | 
|  | (BB != UI->getParent() || | 
|  | (!isa<StoreInst>(UI) && !isa<LoadInst>(UI)))) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } else | 
|  | return TTI->getUserCost(&I) == TargetTransformInfo::TCC_Free; | 
|  | } | 
|  |  | 
|  | /// Return true if the only users of this instruction are outside of | 
|  | /// the loop. If this is true, we can sink the instruction to the exit | 
|  | /// blocks of the loop. | 
|  | /// | 
|  | /// We also return true if the instruction could be folded away in lowering. | 
|  | /// (e.g.,  a GEP can be folded into a load as an addressing mode in the loop). | 
|  | static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, | 
|  | const LoopSafetyInfo *SafetyInfo, | 
|  | TargetTransformInfo *TTI, bool &FreeInLoop) { | 
|  | const auto &BlockColors = SafetyInfo->getBlockColors(); | 
|  | bool IsFree = isFreeInLoop(I, CurLoop, TTI); | 
|  | for (const User *U : I.users()) { | 
|  | const Instruction *UI = cast<Instruction>(U); | 
|  | if (const PHINode *PN = dyn_cast<PHINode>(UI)) { | 
|  | const BasicBlock *BB = PN->getParent(); | 
|  | // We cannot sink uses in catchswitches. | 
|  | if (isa<CatchSwitchInst>(BB->getTerminator())) | 
|  | return false; | 
|  |  | 
|  | // We need to sink a callsite to a unique funclet.  Avoid sinking if the | 
|  | // phi use is too muddled. | 
|  | if (isa<CallInst>(I)) | 
|  | if (!BlockColors.empty() && | 
|  | BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (CurLoop->contains(UI)) { | 
|  | if (IsFree) { | 
|  | FreeInLoop = true; | 
|  | continue; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static Instruction *CloneInstructionInExitBlock( | 
|  | Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, | 
|  | const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) { | 
|  | Instruction *New; | 
|  | if (auto *CI = dyn_cast<CallInst>(&I)) { | 
|  | const auto &BlockColors = SafetyInfo->getBlockColors(); | 
|  |  | 
|  | // Sinking call-sites need to be handled differently from other | 
|  | // instructions.  The cloned call-site needs a funclet bundle operand | 
|  | // appropriate for its location in the CFG. | 
|  | SmallVector<OperandBundleDef, 1> OpBundles; | 
|  | for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles(); | 
|  | BundleIdx != BundleEnd; ++BundleIdx) { | 
|  | OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx); | 
|  | if (Bundle.getTagID() == LLVMContext::OB_funclet) | 
|  | continue; | 
|  |  | 
|  | OpBundles.emplace_back(Bundle); | 
|  | } | 
|  |  | 
|  | if (!BlockColors.empty()) { | 
|  | const ColorVector &CV = BlockColors.find(&ExitBlock)->second; | 
|  | assert(CV.size() == 1 && "non-unique color for exit block!"); | 
|  | BasicBlock *BBColor = CV.front(); | 
|  | Instruction *EHPad = BBColor->getFirstNonPHI(); | 
|  | if (EHPad->isEHPad()) | 
|  | OpBundles.emplace_back("funclet", EHPad); | 
|  | } | 
|  |  | 
|  | New = CallInst::Create(CI, OpBundles); | 
|  | } else { | 
|  | New = I.clone(); | 
|  | } | 
|  |  | 
|  | ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New); | 
|  | if (!I.getName().empty()) | 
|  | New->setName(I.getName() + ".le"); | 
|  |  | 
|  | MemoryAccess *OldMemAcc; | 
|  | if (MSSAU && (OldMemAcc = MSSAU->getMemorySSA()->getMemoryAccess(&I))) { | 
|  | // Create a new MemoryAccess and let MemorySSA set its defining access. | 
|  | MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( | 
|  | New, nullptr, New->getParent(), MemorySSA::Beginning); | 
|  | if (NewMemAcc) { | 
|  | if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc)) | 
|  | MSSAU->insertDef(MemDef, /*RenameUses=*/true); | 
|  | else { | 
|  | auto *MemUse = cast<MemoryUse>(NewMemAcc); | 
|  | MSSAU->insertUse(MemUse); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Build LCSSA PHI nodes for any in-loop operands. Note that this is | 
|  | // particularly cheap because we can rip off the PHI node that we're | 
|  | // replacing for the number and blocks of the predecessors. | 
|  | // OPT: If this shows up in a profile, we can instead finish sinking all | 
|  | // invariant instructions, and then walk their operands to re-establish | 
|  | // LCSSA. That will eliminate creating PHI nodes just to nuke them when | 
|  | // sinking bottom-up. | 
|  | for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE; | 
|  | ++OI) | 
|  | if (Instruction *OInst = dyn_cast<Instruction>(*OI)) | 
|  | if (Loop *OLoop = LI->getLoopFor(OInst->getParent())) | 
|  | if (!OLoop->contains(&PN)) { | 
|  | PHINode *OpPN = | 
|  | PHINode::Create(OInst->getType(), PN.getNumIncomingValues(), | 
|  | OInst->getName() + ".lcssa", &ExitBlock.front()); | 
|  | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) | 
|  | OpPN->addIncoming(OInst, PN.getIncomingBlock(i)); | 
|  | *OI = OpPN; | 
|  | } | 
|  | return New; | 
|  | } | 
|  |  | 
|  | static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, | 
|  | AliasSetTracker *AST, MemorySSAUpdater *MSSAU) { | 
|  | if (AST) | 
|  | AST->deleteValue(&I); | 
|  | if (MSSAU) | 
|  | MSSAU->removeMemoryAccess(&I); | 
|  | SafetyInfo.removeInstruction(&I); | 
|  | I.eraseFromParent(); | 
|  | } | 
|  |  | 
|  | static void moveInstructionBefore(Instruction &I, Instruction &Dest, | 
|  | ICFLoopSafetyInfo &SafetyInfo, | 
|  | MemorySSAUpdater *MSSAU) { | 
|  | SafetyInfo.removeInstruction(&I); | 
|  | SafetyInfo.insertInstructionTo(&I, Dest.getParent()); | 
|  | I.moveBefore(&Dest); | 
|  | if (MSSAU) | 
|  | if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>( | 
|  | MSSAU->getMemorySSA()->getMemoryAccess(&I))) | 
|  | MSSAU->moveToPlace(OldMemAcc, Dest.getParent(), MemorySSA::End); | 
|  | } | 
|  |  | 
|  | static Instruction *sinkThroughTriviallyReplaceablePHI( | 
|  | PHINode *TPN, Instruction *I, LoopInfo *LI, | 
|  | SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies, | 
|  | const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop, | 
|  | MemorySSAUpdater *MSSAU) { | 
|  | assert(isTriviallyReplaceablePHI(*TPN, *I) && | 
|  | "Expect only trivially replaceable PHI"); | 
|  | BasicBlock *ExitBlock = TPN->getParent(); | 
|  | Instruction *New; | 
|  | auto It = SunkCopies.find(ExitBlock); | 
|  | if (It != SunkCopies.end()) | 
|  | New = It->second; | 
|  | else | 
|  | New = SunkCopies[ExitBlock] = CloneInstructionInExitBlock( | 
|  | *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) { | 
|  | BasicBlock *BB = PN->getParent(); | 
|  | if (!BB->canSplitPredecessors()) | 
|  | return false; | 
|  | // It's not impossible to split EHPad blocks, but if BlockColors already exist | 
|  | // it require updating BlockColors for all offspring blocks accordingly. By | 
|  | // skipping such corner case, we can make updating BlockColors after splitting | 
|  | // predecessor fairly simple. | 
|  | if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad()) | 
|  | return false; | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { | 
|  | BasicBlock *BBPred = *PI; | 
|  | if (isa<IndirectBrInst>(BBPred->getTerminator())) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, | 
|  | LoopInfo *LI, const Loop *CurLoop, | 
|  | LoopSafetyInfo *SafetyInfo, | 
|  | MemorySSAUpdater *MSSAU) { | 
|  | #ifndef NDEBUG | 
|  | SmallVector<BasicBlock *, 32> ExitBlocks; | 
|  | CurLoop->getUniqueExitBlocks(ExitBlocks); | 
|  | SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), | 
|  | ExitBlocks.end()); | 
|  | #endif | 
|  | BasicBlock *ExitBB = PN->getParent(); | 
|  | assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."); | 
|  |  | 
|  | // Split predecessors of the loop exit to make instructions in the loop are | 
|  | // exposed to exit blocks through trivially replaceable PHIs while keeping the | 
|  | // loop in the canonical form where each predecessor of each exit block should | 
|  | // be contained within the loop. For example, this will convert the loop below | 
|  | // from | 
|  | // | 
|  | // LB1: | 
|  | //   %v1 = | 
|  | //   br %LE, %LB2 | 
|  | // LB2: | 
|  | //   %v2 = | 
|  | //   br %LE, %LB1 | 
|  | // LE: | 
|  | //   %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable | 
|  | // | 
|  | // to | 
|  | // | 
|  | // LB1: | 
|  | //   %v1 = | 
|  | //   br %LE.split, %LB2 | 
|  | // LB2: | 
|  | //   %v2 = | 
|  | //   br %LE.split2, %LB1 | 
|  | // LE.split: | 
|  | //   %p1 = phi [%v1, %LB1]  <-- trivially replaceable | 
|  | //   br %LE | 
|  | // LE.split2: | 
|  | //   %p2 = phi [%v2, %LB2]  <-- trivially replaceable | 
|  | //   br %LE | 
|  | // LE: | 
|  | //   %p = phi [%p1, %LE.split], [%p2, %LE.split2] | 
|  | // | 
|  | const auto &BlockColors = SafetyInfo->getBlockColors(); | 
|  | SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB)); | 
|  | while (!PredBBs.empty()) { | 
|  | BasicBlock *PredBB = *PredBBs.begin(); | 
|  | assert(CurLoop->contains(PredBB) && | 
|  | "Expect all predecessors are in the loop"); | 
|  | if (PN->getBasicBlockIndex(PredBB) >= 0) { | 
|  | BasicBlock *NewPred = SplitBlockPredecessors( | 
|  | ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true); | 
|  | // Since we do not allow splitting EH-block with BlockColors in | 
|  | // canSplitPredecessors(), we can simply assign predecessor's color to | 
|  | // the new block. | 
|  | if (!BlockColors.empty()) | 
|  | // Grab a reference to the ColorVector to be inserted before getting the | 
|  | // reference to the vector we are copying because inserting the new | 
|  | // element in BlockColors might cause the map to be reallocated. | 
|  | SafetyInfo->copyColors(NewPred, PredBB); | 
|  | } | 
|  | PredBBs.remove(PredBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// When an instruction is found to only be used outside of the loop, this | 
|  | /// function moves it to the exit blocks and patches up SSA form as needed. | 
|  | /// This method is guaranteed to remove the original instruction from its | 
|  | /// position, and may either delete it or move it to outside of the loop. | 
|  | /// | 
|  | static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, | 
|  | const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, | 
|  | MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) { | 
|  | LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n"); | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I) | 
|  | << "sinking " << ore::NV("Inst", &I); | 
|  | }); | 
|  | bool Changed = false; | 
|  | if (isa<LoadInst>(I)) | 
|  | ++NumMovedLoads; | 
|  | else if (isa<CallInst>(I)) | 
|  | ++NumMovedCalls; | 
|  | ++NumSunk; | 
|  |  | 
|  | // Iterate over users to be ready for actual sinking. Replace users via | 
|  | // unreachable blocks with undef and make all user PHIs trivially replaceable. | 
|  | SmallPtrSet<Instruction *, 8> VisitedUsers; | 
|  | for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) { | 
|  | auto *User = cast<Instruction>(*UI); | 
|  | Use &U = UI.getUse(); | 
|  | ++UI; | 
|  |  | 
|  | if (VisitedUsers.count(User) || CurLoop->contains(User)) | 
|  | continue; | 
|  |  | 
|  | if (!DT->isReachableFromEntry(User->getParent())) { | 
|  | U = UndefValue::get(I.getType()); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // The user must be a PHI node. | 
|  | PHINode *PN = cast<PHINode>(User); | 
|  |  | 
|  | // Surprisingly, instructions can be used outside of loops without any | 
|  | // exits.  This can only happen in PHI nodes if the incoming block is | 
|  | // unreachable. | 
|  | BasicBlock *BB = PN->getIncomingBlock(U); | 
|  | if (!DT->isReachableFromEntry(BB)) { | 
|  | U = UndefValue::get(I.getType()); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | VisitedUsers.insert(PN); | 
|  | if (isTriviallyReplaceablePHI(*PN, I)) | 
|  | continue; | 
|  |  | 
|  | if (!canSplitPredecessors(PN, SafetyInfo)) | 
|  | return Changed; | 
|  |  | 
|  | // Split predecessors of the PHI so that we can make users trivially | 
|  | // replaceable. | 
|  | splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU); | 
|  |  | 
|  | // Should rebuild the iterators, as they may be invalidated by | 
|  | // splitPredecessorsOfLoopExit(). | 
|  | UI = I.user_begin(); | 
|  | UE = I.user_end(); | 
|  | } | 
|  |  | 
|  | if (VisitedUsers.empty()) | 
|  | return Changed; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | SmallVector<BasicBlock *, 32> ExitBlocks; | 
|  | CurLoop->getUniqueExitBlocks(ExitBlocks); | 
|  | SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), | 
|  | ExitBlocks.end()); | 
|  | #endif | 
|  |  | 
|  | // Clones of this instruction. Don't create more than one per exit block! | 
|  | SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies; | 
|  |  | 
|  | // If this instruction is only used outside of the loop, then all users are | 
|  | // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of | 
|  | // the instruction. | 
|  | SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end()); | 
|  | for (auto *UI : Users) { | 
|  | auto *User = cast<Instruction>(UI); | 
|  |  | 
|  | if (CurLoop->contains(User)) | 
|  | continue; | 
|  |  | 
|  | PHINode *PN = cast<PHINode>(User); | 
|  | assert(ExitBlockSet.count(PN->getParent()) && | 
|  | "The LCSSA PHI is not in an exit block!"); | 
|  | // The PHI must be trivially replaceable. | 
|  | Instruction *New = sinkThroughTriviallyReplaceablePHI( | 
|  | PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU); | 
|  | PN->replaceAllUsesWith(New); | 
|  | eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr); | 
|  | Changed = true; | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// When an instruction is found to only use loop invariant operands that | 
|  | /// is safe to hoist, this instruction is called to do the dirty work. | 
|  | /// | 
|  | static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, | 
|  | BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, | 
|  | MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) { | 
|  | LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getName() << ": " << I | 
|  | << "\n"); | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting " | 
|  | << ore::NV("Inst", &I); | 
|  | }); | 
|  |  | 
|  | // Metadata can be dependent on conditions we are hoisting above. | 
|  | // Conservatively strip all metadata on the instruction unless we were | 
|  | // guaranteed to execute I if we entered the loop, in which case the metadata | 
|  | // is valid in the loop preheader. | 
|  | if (I.hasMetadataOtherThanDebugLoc() && | 
|  | // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning | 
|  | // time in isGuaranteedToExecute if we don't actually have anything to | 
|  | // drop.  It is a compile time optimization, not required for correctness. | 
|  | !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop)) | 
|  | I.dropUnknownNonDebugMetadata(); | 
|  |  | 
|  | if (isa<PHINode>(I)) | 
|  | // Move the new node to the end of the phi list in the destination block. | 
|  | moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU); | 
|  | else | 
|  | // Move the new node to the destination block, before its terminator. | 
|  | moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU); | 
|  |  | 
|  | // Apply line 0 debug locations when we are moving instructions to different | 
|  | // basic blocks because we want to avoid jumpy line tables. | 
|  | if (const DebugLoc &DL = I.getDebugLoc()) | 
|  | I.setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); | 
|  |  | 
|  | if (isa<LoadInst>(I)) | 
|  | ++NumMovedLoads; | 
|  | else if (isa<CallInst>(I)) | 
|  | ++NumMovedCalls; | 
|  | ++NumHoisted; | 
|  | } | 
|  |  | 
|  | /// Only sink or hoist an instruction if it is not a trapping instruction, | 
|  | /// or if the instruction is known not to trap when moved to the preheader. | 
|  | /// or if it is a trapping instruction and is guaranteed to execute. | 
|  | static bool isSafeToExecuteUnconditionally(Instruction &Inst, | 
|  | const DominatorTree *DT, | 
|  | const Loop *CurLoop, | 
|  | const LoopSafetyInfo *SafetyInfo, | 
|  | OptimizationRemarkEmitter *ORE, | 
|  | const Instruction *CtxI) { | 
|  | if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT)) | 
|  | return true; | 
|  |  | 
|  | bool GuaranteedToExecute = | 
|  | SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop); | 
|  |  | 
|  | if (!GuaranteedToExecute) { | 
|  | auto *LI = dyn_cast<LoadInst>(&Inst); | 
|  | if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand())) | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemarkMissed( | 
|  | DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI) | 
|  | << "failed to hoist load with loop-invariant address " | 
|  | "because load is conditionally executed"; | 
|  | }); | 
|  | } | 
|  |  | 
|  | return GuaranteedToExecute; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class LoopPromoter : public LoadAndStorePromoter { | 
|  | Value *SomePtr; // Designated pointer to store to. | 
|  | const SmallSetVector<Value *, 8> &PointerMustAliases; | 
|  | SmallVectorImpl<BasicBlock *> &LoopExitBlocks; | 
|  | SmallVectorImpl<Instruction *> &LoopInsertPts; | 
|  | SmallVectorImpl<MemoryAccess *> &MSSAInsertPts; | 
|  | PredIteratorCache &PredCache; | 
|  | AliasSetTracker &AST; | 
|  | MemorySSAUpdater *MSSAU; | 
|  | LoopInfo &LI; | 
|  | DebugLoc DL; | 
|  | int Alignment; | 
|  | bool UnorderedAtomic; | 
|  | AAMDNodes AATags; | 
|  | ICFLoopSafetyInfo &SafetyInfo; | 
|  |  | 
|  | Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const { | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | if (Loop *L = LI.getLoopFor(I->getParent())) | 
|  | if (!L->contains(BB)) { | 
|  | // We need to create an LCSSA PHI node for the incoming value and | 
|  | // store that. | 
|  | PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB), | 
|  | I->getName() + ".lcssa", &BB->front()); | 
|  | for (BasicBlock *Pred : PredCache.get(BB)) | 
|  | PN->addIncoming(I, Pred); | 
|  | return PN; | 
|  | } | 
|  | return V; | 
|  | } | 
|  |  | 
|  | public: | 
|  | LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S, | 
|  | const SmallSetVector<Value *, 8> &PMA, | 
|  | SmallVectorImpl<BasicBlock *> &LEB, | 
|  | SmallVectorImpl<Instruction *> &LIP, | 
|  | SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC, | 
|  | AliasSetTracker &ast, MemorySSAUpdater *MSSAU, LoopInfo &li, | 
|  | DebugLoc dl, int alignment, bool UnorderedAtomic, | 
|  | const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo) | 
|  | : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA), | 
|  | LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), | 
|  | PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)), | 
|  | Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags), | 
|  | SafetyInfo(SafetyInfo) {} | 
|  |  | 
|  | bool isInstInList(Instruction *I, | 
|  | const SmallVectorImpl<Instruction *> &) const override { | 
|  | Value *Ptr; | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I)) | 
|  | Ptr = LI->getOperand(0); | 
|  | else | 
|  | Ptr = cast<StoreInst>(I)->getPointerOperand(); | 
|  | return PointerMustAliases.count(Ptr); | 
|  | } | 
|  |  | 
|  | void doExtraRewritesBeforeFinalDeletion() override { | 
|  | // Insert stores after in the loop exit blocks.  Each exit block gets a | 
|  | // store of the live-out values that feed them.  Since we've already told | 
|  | // the SSA updater about the defs in the loop and the preheader | 
|  | // definition, it is all set and we can start using it. | 
|  | for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { | 
|  | BasicBlock *ExitBlock = LoopExitBlocks[i]; | 
|  | Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); | 
|  | LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock); | 
|  | Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock); | 
|  | Instruction *InsertPos = LoopInsertPts[i]; | 
|  | StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos); | 
|  | if (UnorderedAtomic) | 
|  | NewSI->setOrdering(AtomicOrdering::Unordered); | 
|  | NewSI->setAlignment(Alignment); | 
|  | NewSI->setDebugLoc(DL); | 
|  | if (AATags) | 
|  | NewSI->setAAMetadata(AATags); | 
|  |  | 
|  | if (MSSAU) { | 
|  | MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i]; | 
|  | MemoryAccess *NewMemAcc; | 
|  | if (!MSSAInsertPoint) { | 
|  | NewMemAcc = MSSAU->createMemoryAccessInBB( | 
|  | NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning); | 
|  | } else { | 
|  | NewMemAcc = | 
|  | MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint); | 
|  | } | 
|  | MSSAInsertPts[i] = NewMemAcc; | 
|  | MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); | 
|  | // FIXME: true for safety, false may still be correct. | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void replaceLoadWithValue(LoadInst *LI, Value *V) const override { | 
|  | // Update alias analysis. | 
|  | AST.copyValue(LI, V); | 
|  | } | 
|  | void instructionDeleted(Instruction *I) const override { | 
|  | SafetyInfo.removeInstruction(I); | 
|  | AST.deleteValue(I); | 
|  | if (MSSAU) | 
|  | MSSAU->removeMemoryAccess(I); | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | /// Return true iff we can prove that a caller of this function can not inspect | 
|  | /// the contents of the provided object in a well defined program. | 
|  | bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) { | 
|  | if (isa<AllocaInst>(Object)) | 
|  | // Since the alloca goes out of scope, we know the caller can't retain a | 
|  | // reference to it and be well defined.  Thus, we don't need to check for | 
|  | // capture. | 
|  | return true; | 
|  |  | 
|  | // For all other objects we need to know that the caller can't possibly | 
|  | // have gotten a reference to the object.  There are two components of | 
|  | // that: | 
|  | //   1) Object can't be escaped by this function.  This is what | 
|  | //      PointerMayBeCaptured checks. | 
|  | //   2) Object can't have been captured at definition site.  For this, we | 
|  | //      need to know the return value is noalias.  At the moment, we use a | 
|  | //      weaker condition and handle only AllocLikeFunctions (which are | 
|  | //      known to be noalias).  TODO | 
|  | return isAllocLikeFn(Object, TLI) && | 
|  | !PointerMayBeCaptured(Object, true, true); | 
|  | } | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | /// Try to promote memory values to scalars by sinking stores out of the | 
|  | /// loop and moving loads to before the loop.  We do this by looping over | 
|  | /// the stores in the loop, looking for stores to Must pointers which are | 
|  | /// loop invariant. | 
|  | /// | 
|  | bool llvm::promoteLoopAccessesToScalars( | 
|  | const SmallSetVector<Value *, 8> &PointerMustAliases, | 
|  | SmallVectorImpl<BasicBlock *> &ExitBlocks, | 
|  | SmallVectorImpl<Instruction *> &InsertPts, | 
|  | SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC, | 
|  | LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, | 
|  | Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU, | 
|  | ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) { | 
|  | // Verify inputs. | 
|  | assert(LI != nullptr && DT != nullptr && CurLoop != nullptr && | 
|  | CurAST != nullptr && SafetyInfo != nullptr && | 
|  | "Unexpected Input to promoteLoopAccessesToScalars"); | 
|  |  | 
|  | Value *SomePtr = *PointerMustAliases.begin(); | 
|  | BasicBlock *Preheader = CurLoop->getLoopPreheader(); | 
|  |  | 
|  | // It is not safe to promote a load/store from the loop if the load/store is | 
|  | // conditional.  For example, turning: | 
|  | // | 
|  | //    for () { if (c) *P += 1; } | 
|  | // | 
|  | // into: | 
|  | // | 
|  | //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp; | 
|  | // | 
|  | // is not safe, because *P may only be valid to access if 'c' is true. | 
|  | // | 
|  | // The safety property divides into two parts: | 
|  | // p1) The memory may not be dereferenceable on entry to the loop.  In this | 
|  | //    case, we can't insert the required load in the preheader. | 
|  | // p2) The memory model does not allow us to insert a store along any dynamic | 
|  | //    path which did not originally have one. | 
|  | // | 
|  | // If at least one store is guaranteed to execute, both properties are | 
|  | // satisfied, and promotion is legal. | 
|  | // | 
|  | // This, however, is not a necessary condition. Even if no store/load is | 
|  | // guaranteed to execute, we can still establish these properties. | 
|  | // We can establish (p1) by proving that hoisting the load into the preheader | 
|  | // is safe (i.e. proving dereferenceability on all paths through the loop). We | 
|  | // can use any access within the alias set to prove dereferenceability, | 
|  | // since they're all must alias. | 
|  | // | 
|  | // There are two ways establish (p2): | 
|  | // a) Prove the location is thread-local. In this case the memory model | 
|  | // requirement does not apply, and stores are safe to insert. | 
|  | // b) Prove a store dominates every exit block. In this case, if an exit | 
|  | // blocks is reached, the original dynamic path would have taken us through | 
|  | // the store, so inserting a store into the exit block is safe. Note that this | 
|  | // is different from the store being guaranteed to execute. For instance, | 
|  | // if an exception is thrown on the first iteration of the loop, the original | 
|  | // store is never executed, but the exit blocks are not executed either. | 
|  |  | 
|  | bool DereferenceableInPH = false; | 
|  | bool SafeToInsertStore = false; | 
|  |  | 
|  | SmallVector<Instruction *, 64> LoopUses; | 
|  |  | 
|  | // We start with an alignment of one and try to find instructions that allow | 
|  | // us to prove better alignment. | 
|  | unsigned Alignment = 1; | 
|  | // Keep track of which types of access we see | 
|  | bool SawUnorderedAtomic = false; | 
|  | bool SawNotAtomic = false; | 
|  | AAMDNodes AATags; | 
|  |  | 
|  | const DataLayout &MDL = Preheader->getModule()->getDataLayout(); | 
|  |  | 
|  | bool IsKnownThreadLocalObject = false; | 
|  | if (SafetyInfo->anyBlockMayThrow()) { | 
|  | // If a loop can throw, we have to insert a store along each unwind edge. | 
|  | // That said, we can't actually make the unwind edge explicit. Therefore, | 
|  | // we have to prove that the store is dead along the unwind edge.  We do | 
|  | // this by proving that the caller can't have a reference to the object | 
|  | // after return and thus can't possibly load from the object. | 
|  | Value *Object = GetUnderlyingObject(SomePtr, MDL); | 
|  | if (!isKnownNonEscaping(Object, TLI)) | 
|  | return false; | 
|  | // Subtlety: Alloca's aren't visible to callers, but *are* potentially | 
|  | // visible to other threads if captured and used during their lifetimes. | 
|  | IsKnownThreadLocalObject = !isa<AllocaInst>(Object); | 
|  | } | 
|  |  | 
|  | // Check that all of the pointers in the alias set have the same type.  We | 
|  | // cannot (yet) promote a memory location that is loaded and stored in | 
|  | // different sizes.  While we are at it, collect alignment and AA info. | 
|  | for (Value *ASIV : PointerMustAliases) { | 
|  | // Check that all of the pointers in the alias set have the same type.  We | 
|  | // cannot (yet) promote a memory location that is loaded and stored in | 
|  | // different sizes. | 
|  | if (SomePtr->getType() != ASIV->getType()) | 
|  | return false; | 
|  |  | 
|  | for (User *U : ASIV->users()) { | 
|  | // Ignore instructions that are outside the loop. | 
|  | Instruction *UI = dyn_cast<Instruction>(U); | 
|  | if (!UI || !CurLoop->contains(UI)) | 
|  | continue; | 
|  |  | 
|  | // If there is an non-load/store instruction in the loop, we can't promote | 
|  | // it. | 
|  | if (LoadInst *Load = dyn_cast<LoadInst>(UI)) { | 
|  | if (!Load->isUnordered()) | 
|  | return false; | 
|  |  | 
|  | SawUnorderedAtomic |= Load->isAtomic(); | 
|  | SawNotAtomic |= !Load->isAtomic(); | 
|  |  | 
|  | unsigned InstAlignment = Load->getAlignment(); | 
|  | if (!InstAlignment) | 
|  | InstAlignment = | 
|  | MDL.getABITypeAlignment(Load->getType()); | 
|  |  | 
|  | // Note that proving a load safe to speculate requires proving | 
|  | // sufficient alignment at the target location.  Proving it guaranteed | 
|  | // to execute does as well.  Thus we can increase our guaranteed | 
|  | // alignment as well. | 
|  | if (!DereferenceableInPH || (InstAlignment > Alignment)) | 
|  | if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo, | 
|  | ORE, Preheader->getTerminator())) { | 
|  | DereferenceableInPH = true; | 
|  | Alignment = std::max(Alignment, InstAlignment); | 
|  | } | 
|  | } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) { | 
|  | // Stores *of* the pointer are not interesting, only stores *to* the | 
|  | // pointer. | 
|  | if (UI->getOperand(1) != ASIV) | 
|  | continue; | 
|  | if (!Store->isUnordered()) | 
|  | return false; | 
|  |  | 
|  | SawUnorderedAtomic |= Store->isAtomic(); | 
|  | SawNotAtomic |= !Store->isAtomic(); | 
|  |  | 
|  | // If the store is guaranteed to execute, both properties are satisfied. | 
|  | // We may want to check if a store is guaranteed to execute even if we | 
|  | // already know that promotion is safe, since it may have higher | 
|  | // alignment than any other guaranteed stores, in which case we can | 
|  | // raise the alignment on the promoted store. | 
|  | unsigned InstAlignment = Store->getAlignment(); | 
|  | if (!InstAlignment) | 
|  | InstAlignment = | 
|  | MDL.getABITypeAlignment(Store->getValueOperand()->getType()); | 
|  |  | 
|  | if (!DereferenceableInPH || !SafeToInsertStore || | 
|  | (InstAlignment > Alignment)) { | 
|  | if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) { | 
|  | DereferenceableInPH = true; | 
|  | SafeToInsertStore = true; | 
|  | Alignment = std::max(Alignment, InstAlignment); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If a store dominates all exit blocks, it is safe to sink. | 
|  | // As explained above, if an exit block was executed, a dominating | 
|  | // store must have been executed at least once, so we are not | 
|  | // introducing stores on paths that did not have them. | 
|  | // Note that this only looks at explicit exit blocks. If we ever | 
|  | // start sinking stores into unwind edges (see above), this will break. | 
|  | if (!SafeToInsertStore) | 
|  | SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) { | 
|  | return DT->dominates(Store->getParent(), Exit); | 
|  | }); | 
|  |  | 
|  | // If the store is not guaranteed to execute, we may still get | 
|  | // deref info through it. | 
|  | if (!DereferenceableInPH) { | 
|  | DereferenceableInPH = isDereferenceableAndAlignedPointer( | 
|  | Store->getPointerOperand(), Store->getValueOperand()->getType(), | 
|  | Store->getAlignment(), MDL, Preheader->getTerminator(), DT); | 
|  | } | 
|  | } else | 
|  | return false; // Not a load or store. | 
|  |  | 
|  | // Merge the AA tags. | 
|  | if (LoopUses.empty()) { | 
|  | // On the first load/store, just take its AA tags. | 
|  | UI->getAAMetadata(AATags); | 
|  | } else if (AATags) { | 
|  | UI->getAAMetadata(AATags, /* Merge = */ true); | 
|  | } | 
|  |  | 
|  | LoopUses.push_back(UI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we found both an unordered atomic instruction and a non-atomic memory | 
|  | // access, bail.  We can't blindly promote non-atomic to atomic since we | 
|  | // might not be able to lower the result.  We can't downgrade since that | 
|  | // would violate memory model.  Also, align 0 is an error for atomics. | 
|  | if (SawUnorderedAtomic && SawNotAtomic) | 
|  | return false; | 
|  |  | 
|  | // If we're inserting an atomic load in the preheader, we must be able to | 
|  | // lower it.  We're only guaranteed to be able to lower naturally aligned | 
|  | // atomics. | 
|  | auto *SomePtrElemType = SomePtr->getType()->getPointerElementType(); | 
|  | if (SawUnorderedAtomic && | 
|  | Alignment < MDL.getTypeStoreSize(SomePtrElemType)) | 
|  | return false; | 
|  |  | 
|  | // If we couldn't prove we can hoist the load, bail. | 
|  | if (!DereferenceableInPH) | 
|  | return false; | 
|  |  | 
|  | // We know we can hoist the load, but don't have a guaranteed store. | 
|  | // Check whether the location is thread-local. If it is, then we can insert | 
|  | // stores along paths which originally didn't have them without violating the | 
|  | // memory model. | 
|  | if (!SafeToInsertStore) { | 
|  | if (IsKnownThreadLocalObject) | 
|  | SafeToInsertStore = true; | 
|  | else { | 
|  | Value *Object = GetUnderlyingObject(SomePtr, MDL); | 
|  | SafeToInsertStore = | 
|  | (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) && | 
|  | !PointerMayBeCaptured(Object, true, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we've still failed to prove we can sink the store, give up. | 
|  | if (!SafeToInsertStore) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, this is safe to promote, lets do it! | 
|  | LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr | 
|  | << '\n'); | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar", | 
|  | LoopUses[0]) | 
|  | << "Moving accesses to memory location out of the loop"; | 
|  | }); | 
|  | ++NumPromoted; | 
|  |  | 
|  | // Grab a debug location for the inserted loads/stores; given that the | 
|  | // inserted loads/stores have little relation to the original loads/stores, | 
|  | // this code just arbitrarily picks a location from one, since any debug | 
|  | // location is better than none. | 
|  | DebugLoc DL = LoopUses[0]->getDebugLoc(); | 
|  |  | 
|  | // We use the SSAUpdater interface to insert phi nodes as required. | 
|  | SmallVector<PHINode *, 16> NewPHIs; | 
|  | SSAUpdater SSA(&NewPHIs); | 
|  | LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks, | 
|  | InsertPts, MSSAInsertPts, PIC, *CurAST, MSSAU, *LI, DL, | 
|  | Alignment, SawUnorderedAtomic, AATags, *SafetyInfo); | 
|  |  | 
|  | // Set up the preheader to have a definition of the value.  It is the live-out | 
|  | // value from the preheader that uses in the loop will use. | 
|  | LoadInst *PreheaderLoad = new LoadInst( | 
|  | SomePtr->getType()->getPointerElementType(), SomePtr, | 
|  | SomePtr->getName() + ".promoted", Preheader->getTerminator()); | 
|  | if (SawUnorderedAtomic) | 
|  | PreheaderLoad->setOrdering(AtomicOrdering::Unordered); | 
|  | PreheaderLoad->setAlignment(Alignment); | 
|  | PreheaderLoad->setDebugLoc(DL); | 
|  | if (AATags) | 
|  | PreheaderLoad->setAAMetadata(AATags); | 
|  | SSA.AddAvailableValue(Preheader, PreheaderLoad); | 
|  |  | 
|  | MemoryAccess *PreheaderLoadMemoryAccess; | 
|  | if (MSSAU) { | 
|  | PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB( | 
|  | PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End); | 
|  | MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess); | 
|  | MSSAU->insertUse(NewMemUse); | 
|  | } | 
|  |  | 
|  | // Rewrite all the loads in the loop and remember all the definitions from | 
|  | // stores in the loop. | 
|  | Promoter.run(LoopUses); | 
|  |  | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  | // If the SSAUpdater didn't use the load in the preheader, just zap it now. | 
|  | if (PreheaderLoad->use_empty()) | 
|  | eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Returns an owning pointer to an alias set which incorporates aliasing info | 
|  | /// from L and all subloops of L. | 
|  | /// FIXME: In new pass manager, there is no helper function to handle loop | 
|  | /// analysis such as cloneBasicBlockAnalysis, so the AST needs to be recomputed | 
|  | /// from scratch for every loop. Hook up with the helper functions when | 
|  | /// available in the new pass manager to avoid redundant computation. | 
|  | std::unique_ptr<AliasSetTracker> | 
|  | LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI, | 
|  | AliasAnalysis *AA) { | 
|  | std::unique_ptr<AliasSetTracker> CurAST; | 
|  | SmallVector<Loop *, 4> RecomputeLoops; | 
|  | for (Loop *InnerL : L->getSubLoops()) { | 
|  | auto MapI = LoopToAliasSetMap.find(InnerL); | 
|  | // If the AST for this inner loop is missing it may have been merged into | 
|  | // some other loop's AST and then that loop unrolled, and so we need to | 
|  | // recompute it. | 
|  | if (MapI == LoopToAliasSetMap.end()) { | 
|  | RecomputeLoops.push_back(InnerL); | 
|  | continue; | 
|  | } | 
|  | std::unique_ptr<AliasSetTracker> InnerAST = std::move(MapI->second); | 
|  |  | 
|  | if (CurAST) { | 
|  | // What if InnerLoop was modified by other passes ? | 
|  | // Once we've incorporated the inner loop's AST into ours, we don't need | 
|  | // the subloop's anymore. | 
|  | CurAST->add(*InnerAST); | 
|  | } else { | 
|  | CurAST = std::move(InnerAST); | 
|  | } | 
|  | LoopToAliasSetMap.erase(MapI); | 
|  | } | 
|  | if (!CurAST) | 
|  | CurAST = make_unique<AliasSetTracker>(*AA); | 
|  |  | 
|  | // Add everything from the sub loops that are no longer directly available. | 
|  | for (Loop *InnerL : RecomputeLoops) | 
|  | for (BasicBlock *BB : InnerL->blocks()) | 
|  | CurAST->add(*BB); | 
|  |  | 
|  | // And merge in this loop (without anything from inner loops). | 
|  | for (BasicBlock *BB : L->blocks()) | 
|  | if (LI->getLoopFor(BB) == L) | 
|  | CurAST->add(*BB); | 
|  |  | 
|  | return CurAST; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<AliasSetTracker> | 
|  | LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA( | 
|  | Loop *L, AliasAnalysis *AA, MemorySSAUpdater *MSSAU) { | 
|  | auto *MSSA = MSSAU->getMemorySSA(); | 
|  | auto CurAST = make_unique<AliasSetTracker>(*AA, MSSA, L); | 
|  | CurAST->addAllInstructionsInLoopUsingMSSA(); | 
|  | return CurAST; | 
|  | } | 
|  |  | 
|  | /// Simple analysis hook. Clone alias set info. | 
|  | /// | 
|  | void LegacyLICMPass::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, | 
|  | Loop *L) { | 
|  | auto ASTIt = LICM.getLoopToAliasSetMap().find(L); | 
|  | if (ASTIt == LICM.getLoopToAliasSetMap().end()) | 
|  | return; | 
|  |  | 
|  | ASTIt->second->copyValue(From, To); | 
|  | } | 
|  |  | 
|  | /// Simple Analysis hook. Delete value V from alias set | 
|  | /// | 
|  | void LegacyLICMPass::deleteAnalysisValue(Value *V, Loop *L) { | 
|  | auto ASTIt = LICM.getLoopToAliasSetMap().find(L); | 
|  | if (ASTIt == LICM.getLoopToAliasSetMap().end()) | 
|  | return; | 
|  |  | 
|  | ASTIt->second->deleteValue(V); | 
|  | } | 
|  |  | 
|  | /// Simple Analysis hook. Delete value L from alias set map. | 
|  | /// | 
|  | void LegacyLICMPass::deleteAnalysisLoop(Loop *L) { | 
|  | if (!LICM.getLoopToAliasSetMap().count(L)) | 
|  | return; | 
|  |  | 
|  | LICM.getLoopToAliasSetMap().erase(L); | 
|  | } | 
|  |  | 
|  | static bool pointerInvalidatedByLoop(MemoryLocation MemLoc, | 
|  | AliasSetTracker *CurAST, Loop *CurLoop, | 
|  | AliasAnalysis *AA) { | 
|  | // First check to see if any of the basic blocks in CurLoop invalidate *V. | 
|  | bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod(); | 
|  |  | 
|  | if (!isInvalidatedAccordingToAST || !LICMN2Theshold) | 
|  | return isInvalidatedAccordingToAST; | 
|  |  | 
|  | // Check with a diagnostic analysis if we can refine the information above. | 
|  | // This is to identify the limitations of using the AST. | 
|  | // The alias set mechanism used by LICM has a major weakness in that it | 
|  | // combines all things which may alias into a single set *before* asking | 
|  | // modref questions. As a result, a single readonly call within a loop will | 
|  | // collapse all loads and stores into a single alias set and report | 
|  | // invalidation if the loop contains any store. For example, readonly calls | 
|  | // with deopt states have this form and create a general alias set with all | 
|  | // loads and stores.  In order to get any LICM in loops containing possible | 
|  | // deopt states we need a more precise invalidation of checking the mod ref | 
|  | // info of each instruction within the loop and LI. This has a complexity of | 
|  | // O(N^2), so currently, it is used only as a diagnostic tool since the | 
|  | // default value of LICMN2Threshold is zero. | 
|  |  | 
|  | // Don't look at nested loops. | 
|  | if (CurLoop->begin() != CurLoop->end()) | 
|  | return true; | 
|  |  | 
|  | int N = 0; | 
|  | for (BasicBlock *BB : CurLoop->getBlocks()) | 
|  | for (Instruction &I : *BB) { | 
|  | if (N >= LICMN2Theshold) { | 
|  | LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for " | 
|  | << *(MemLoc.Ptr) << "\n"); | 
|  | return true; | 
|  | } | 
|  | N++; | 
|  | auto Res = AA->getModRefInfo(&I, MemLoc); | 
|  | if (isModSet(Res)) { | 
|  | LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for " | 
|  | << *(MemLoc.Ptr) << "\n"); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU, | 
|  | Loop *CurLoop, | 
|  | SinkAndHoistLICMFlags &Flags) { | 
|  | // For hoisting, use the walker to determine safety | 
|  | if (!Flags.IsSink) { | 
|  | MemoryAccess *Source; | 
|  | // See declaration of SetLicmMssaOptCap for usage details. | 
|  | if (Flags.LicmMssaOptCounter >= Flags.LicmMssaOptCap) | 
|  | Source = MU->getDefiningAccess(); | 
|  | else { | 
|  | Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU); | 
|  | Flags.LicmMssaOptCounter++; | 
|  | } | 
|  | return !MSSA->isLiveOnEntryDef(Source) && | 
|  | CurLoop->contains(Source->getBlock()); | 
|  | } | 
|  |  | 
|  | // For sinking, we'd need to check all Defs below this use. The getClobbering | 
|  | // call will look on the backedge of the loop, but will check aliasing with | 
|  | // the instructions on the previous iteration. | 
|  | // For example: | 
|  | // for (i ... ) | 
|  | //   load a[i] ( Use (LoE) | 
|  | //   store a[i] ( 1 = Def (2), with 2 = Phi for the loop. | 
|  | //   i++; | 
|  | // The load sees no clobbering inside the loop, as the backedge alias check | 
|  | // does phi translation, and will check aliasing against store a[i-1]. | 
|  | // However sinking the load outside the loop, below the store is incorrect. | 
|  |  | 
|  | // For now, only sink if there are no Defs in the loop, and the existing ones | 
|  | // precede the use and are in the same block. | 
|  | // FIXME: Increase precision: Safe to sink if Use post dominates the Def; | 
|  | // needs PostDominatorTreeAnalysis. | 
|  | // FIXME: More precise: no Defs that alias this Use. | 
|  | if (Flags.NoOfMemAccTooLarge) | 
|  | return true; | 
|  | for (auto *BB : CurLoop->getBlocks()) | 
|  | if (auto *Accesses = MSSA->getBlockDefs(BB)) | 
|  | for (const auto &MA : *Accesses) | 
|  | if (const auto *MD = dyn_cast<MemoryDef>(&MA)) | 
|  | if (MU->getBlock() != MD->getBlock() || | 
|  | !MSSA->locallyDominates(MD, MU)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Little predicate that returns true if the specified basic block is in | 
|  | /// a subloop of the current one, not the current one itself. | 
|  | /// | 
|  | static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) { | 
|  | assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); | 
|  | return LI->getLoopFor(BB) != CurLoop; | 
|  | } |