|  | ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/Sequence.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/CFG.h" | 
|  | #include "llvm/Analysis/CodeMetrics.h" | 
|  | #include "llvm/Analysis/GuardUtils.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/LoopAnalysisManager.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/LoopIterator.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/MemorySSA.h" | 
|  | #include "llvm/Analysis/MemorySSAUpdater.h" | 
|  | #include "llvm/Analysis/Utils/Local.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/GenericDomTree.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Cloning.h" | 
|  | #include "llvm/Transforms/Utils/LoopUtils.h" | 
|  | #include "llvm/Transforms/Utils/ValueMapper.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <iterator> | 
|  | #include <numeric> | 
|  | #include <utility> | 
|  |  | 
|  | #define DEBUG_TYPE "simple-loop-unswitch" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumBranches, "Number of branches unswitched"); | 
|  | STATISTIC(NumSwitches, "Number of switches unswitched"); | 
|  | STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); | 
|  | STATISTIC(NumTrivial, "Number of unswitches that are trivial"); | 
|  | STATISTIC( | 
|  | NumCostMultiplierSkipped, | 
|  | "Number of unswitch candidates that had their cost multiplier skipped"); | 
|  |  | 
|  | static cl::opt<bool> EnableNonTrivialUnswitch( | 
|  | "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, | 
|  | cl::desc("Forcibly enables non-trivial loop unswitching rather than " | 
|  | "following the configuration passed into the pass.")); | 
|  |  | 
|  | static cl::opt<int> | 
|  | UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, | 
|  | cl::desc("The cost threshold for unswitching a loop.")); | 
|  |  | 
|  | static cl::opt<bool> EnableUnswitchCostMultiplier( | 
|  | "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, | 
|  | cl::desc("Enable unswitch cost multiplier that prohibits exponential " | 
|  | "explosion in nontrivial unswitch.")); | 
|  | static cl::opt<int> UnswitchSiblingsToplevelDiv( | 
|  | "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, | 
|  | cl::desc("Toplevel siblings divisor for cost multiplier.")); | 
|  | static cl::opt<int> UnswitchNumInitialUnscaledCandidates( | 
|  | "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, | 
|  | cl::desc("Number of unswitch candidates that are ignored when calculating " | 
|  | "cost multiplier.")); | 
|  | static cl::opt<bool> UnswitchGuards( | 
|  | "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, | 
|  | cl::desc("If enabled, simple loop unswitching will also consider " | 
|  | "llvm.experimental.guard intrinsics as unswitch candidates.")); | 
|  |  | 
|  | /// Collect all of the loop invariant input values transitively used by the | 
|  | /// homogeneous instruction graph from a given root. | 
|  | /// | 
|  | /// This essentially walks from a root recursively through loop variant operands | 
|  | /// which have the exact same opcode and finds all inputs which are loop | 
|  | /// invariant. For some operations these can be re-associated and unswitched out | 
|  | /// of the loop entirely. | 
|  | static TinyPtrVector<Value *> | 
|  | collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, | 
|  | LoopInfo &LI) { | 
|  | assert(!L.isLoopInvariant(&Root) && | 
|  | "Only need to walk the graph if root itself is not invariant."); | 
|  | TinyPtrVector<Value *> Invariants; | 
|  |  | 
|  | // Build a worklist and recurse through operators collecting invariants. | 
|  | SmallVector<Instruction *, 4> Worklist; | 
|  | SmallPtrSet<Instruction *, 8> Visited; | 
|  | Worklist.push_back(&Root); | 
|  | Visited.insert(&Root); | 
|  | do { | 
|  | Instruction &I = *Worklist.pop_back_val(); | 
|  | for (Value *OpV : I.operand_values()) { | 
|  | // Skip constants as unswitching isn't interesting for them. | 
|  | if (isa<Constant>(OpV)) | 
|  | continue; | 
|  |  | 
|  | // Add it to our result if loop invariant. | 
|  | if (L.isLoopInvariant(OpV)) { | 
|  | Invariants.push_back(OpV); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If not an instruction with the same opcode, nothing we can do. | 
|  | Instruction *OpI = dyn_cast<Instruction>(OpV); | 
|  | if (!OpI || OpI->getOpcode() != Root.getOpcode()) | 
|  | continue; | 
|  |  | 
|  | // Visit this operand. | 
|  | if (Visited.insert(OpI).second) | 
|  | Worklist.push_back(OpI); | 
|  | } | 
|  | } while (!Worklist.empty()); | 
|  |  | 
|  | return Invariants; | 
|  | } | 
|  |  | 
|  | static void replaceLoopInvariantUses(Loop &L, Value *Invariant, | 
|  | Constant &Replacement) { | 
|  | assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); | 
|  |  | 
|  | // Replace uses of LIC in the loop with the given constant. | 
|  | for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { | 
|  | // Grab the use and walk past it so we can clobber it in the use list. | 
|  | Use *U = &*UI++; | 
|  | Instruction *UserI = dyn_cast<Instruction>(U->getUser()); | 
|  |  | 
|  | // Replace this use within the loop body. | 
|  | if (UserI && L.contains(UserI)) | 
|  | U->set(&Replacement); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check that all the LCSSA PHI nodes in the loop exit block have trivial | 
|  | /// incoming values along this edge. | 
|  | static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, | 
|  | BasicBlock &ExitBB) { | 
|  | for (Instruction &I : ExitBB) { | 
|  | auto *PN = dyn_cast<PHINode>(&I); | 
|  | if (!PN) | 
|  | // No more PHIs to check. | 
|  | return true; | 
|  |  | 
|  | // If the incoming value for this edge isn't loop invariant the unswitch | 
|  | // won't be trivial. | 
|  | if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) | 
|  | return false; | 
|  | } | 
|  | llvm_unreachable("Basic blocks should never be empty!"); | 
|  | } | 
|  |  | 
|  | /// Insert code to test a set of loop invariant values, and conditionally branch | 
|  | /// on them. | 
|  | static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, | 
|  | ArrayRef<Value *> Invariants, | 
|  | bool Direction, | 
|  | BasicBlock &UnswitchedSucc, | 
|  | BasicBlock &NormalSucc) { | 
|  | IRBuilder<> IRB(&BB); | 
|  |  | 
|  | Value *Cond = Direction ? IRB.CreateOr(Invariants) : | 
|  | IRB.CreateAnd(Invariants); | 
|  | IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, | 
|  | Direction ? &NormalSucc : &UnswitchedSucc); | 
|  | } | 
|  |  | 
|  | /// Rewrite the PHI nodes in an unswitched loop exit basic block. | 
|  | /// | 
|  | /// Requires that the loop exit and unswitched basic block are the same, and | 
|  | /// that the exiting block was a unique predecessor of that block. Rewrites the | 
|  | /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial | 
|  | /// PHI nodes from the old preheader that now contains the unswitched | 
|  | /// terminator. | 
|  | static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, | 
|  | BasicBlock &OldExitingBB, | 
|  | BasicBlock &OldPH) { | 
|  | for (PHINode &PN : UnswitchedBB.phis()) { | 
|  | // When the loop exit is directly unswitched we just need to update the | 
|  | // incoming basic block. We loop to handle weird cases with repeated | 
|  | // incoming blocks, but expect to typically only have one operand here. | 
|  | for (auto i : seq<int>(0, PN.getNumOperands())) { | 
|  | assert(PN.getIncomingBlock(i) == &OldExitingBB && | 
|  | "Found incoming block different from unique predecessor!"); | 
|  | PN.setIncomingBlock(i, &OldPH); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Rewrite the PHI nodes in the loop exit basic block and the split off | 
|  | /// unswitched block. | 
|  | /// | 
|  | /// Because the exit block remains an exit from the loop, this rewrites the | 
|  | /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI | 
|  | /// nodes into the unswitched basic block to select between the value in the | 
|  | /// old preheader and the loop exit. | 
|  | static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, | 
|  | BasicBlock &UnswitchedBB, | 
|  | BasicBlock &OldExitingBB, | 
|  | BasicBlock &OldPH, | 
|  | bool FullUnswitch) { | 
|  | assert(&ExitBB != &UnswitchedBB && | 
|  | "Must have different loop exit and unswitched blocks!"); | 
|  | Instruction *InsertPt = &*UnswitchedBB.begin(); | 
|  | for (PHINode &PN : ExitBB.phis()) { | 
|  | auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, | 
|  | PN.getName() + ".split", InsertPt); | 
|  |  | 
|  | // Walk backwards over the old PHI node's inputs to minimize the cost of | 
|  | // removing each one. We have to do this weird loop manually so that we | 
|  | // create the same number of new incoming edges in the new PHI as we expect | 
|  | // each case-based edge to be included in the unswitched switch in some | 
|  | // cases. | 
|  | // FIXME: This is really, really gross. It would be much cleaner if LLVM | 
|  | // allowed us to create a single entry for a predecessor block without | 
|  | // having separate entries for each "edge" even though these edges are | 
|  | // required to produce identical results. | 
|  | for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { | 
|  | if (PN.getIncomingBlock(i) != &OldExitingBB) | 
|  | continue; | 
|  |  | 
|  | Value *Incoming = PN.getIncomingValue(i); | 
|  | if (FullUnswitch) | 
|  | // No more edge from the old exiting block to the exit block. | 
|  | PN.removeIncomingValue(i); | 
|  |  | 
|  | NewPN->addIncoming(Incoming, &OldPH); | 
|  | } | 
|  |  | 
|  | // Now replace the old PHI with the new one and wire the old one in as an | 
|  | // input to the new one. | 
|  | PN.replaceAllUsesWith(NewPN); | 
|  | NewPN->addIncoming(&PN, &ExitBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Hoist the current loop up to the innermost loop containing a remaining exit. | 
|  | /// | 
|  | /// Because we've removed an exit from the loop, we may have changed the set of | 
|  | /// loops reachable and need to move the current loop up the loop nest or even | 
|  | /// to an entirely separate nest. | 
|  | static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, | 
|  | DominatorTree &DT, LoopInfo &LI, | 
|  | MemorySSAUpdater *MSSAU) { | 
|  | // If the loop is already at the top level, we can't hoist it anywhere. | 
|  | Loop *OldParentL = L.getParentLoop(); | 
|  | if (!OldParentL) | 
|  | return; | 
|  |  | 
|  | SmallVector<BasicBlock *, 4> Exits; | 
|  | L.getExitBlocks(Exits); | 
|  | Loop *NewParentL = nullptr; | 
|  | for (auto *ExitBB : Exits) | 
|  | if (Loop *ExitL = LI.getLoopFor(ExitBB)) | 
|  | if (!NewParentL || NewParentL->contains(ExitL)) | 
|  | NewParentL = ExitL; | 
|  |  | 
|  | if (NewParentL == OldParentL) | 
|  | return; | 
|  |  | 
|  | // The new parent loop (if different) should always contain the old one. | 
|  | if (NewParentL) | 
|  | assert(NewParentL->contains(OldParentL) && | 
|  | "Can only hoist this loop up the nest!"); | 
|  |  | 
|  | // The preheader will need to move with the body of this loop. However, | 
|  | // because it isn't in this loop we also need to update the primary loop map. | 
|  | assert(OldParentL == LI.getLoopFor(&Preheader) && | 
|  | "Parent loop of this loop should contain this loop's preheader!"); | 
|  | LI.changeLoopFor(&Preheader, NewParentL); | 
|  |  | 
|  | // Remove this loop from its old parent. | 
|  | OldParentL->removeChildLoop(&L); | 
|  |  | 
|  | // Add the loop either to the new parent or as a top-level loop. | 
|  | if (NewParentL) | 
|  | NewParentL->addChildLoop(&L); | 
|  | else | 
|  | LI.addTopLevelLoop(&L); | 
|  |  | 
|  | // Remove this loops blocks from the old parent and every other loop up the | 
|  | // nest until reaching the new parent. Also update all of these | 
|  | // no-longer-containing loops to reflect the nesting change. | 
|  | for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; | 
|  | OldContainingL = OldContainingL->getParentLoop()) { | 
|  | llvm::erase_if(OldContainingL->getBlocksVector(), | 
|  | [&](const BasicBlock *BB) { | 
|  | return BB == &Preheader || L.contains(BB); | 
|  | }); | 
|  |  | 
|  | OldContainingL->getBlocksSet().erase(&Preheader); | 
|  | for (BasicBlock *BB : L.blocks()) | 
|  | OldContainingL->getBlocksSet().erase(BB); | 
|  |  | 
|  | // Because we just hoisted a loop out of this one, we have essentially | 
|  | // created new exit paths from it. That means we need to form LCSSA PHI | 
|  | // nodes for values used in the no-longer-nested loop. | 
|  | formLCSSA(*OldContainingL, DT, &LI, nullptr); | 
|  |  | 
|  | // We shouldn't need to form dedicated exits because the exit introduced | 
|  | // here is the (just split by unswitching) preheader. However, after trivial | 
|  | // unswitching it is possible to get new non-dedicated exits out of parent | 
|  | // loop so let's conservatively form dedicated exit blocks and figure out | 
|  | // if we can optimize later. | 
|  | formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, | 
|  | /*PreserveLCSSA*/ true); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Unswitch a trivial branch if the condition is loop invariant. | 
|  | /// | 
|  | /// This routine should only be called when loop code leading to the branch has | 
|  | /// been validated as trivial (no side effects). This routine checks if the | 
|  | /// condition is invariant and one of the successors is a loop exit. This | 
|  | /// allows us to unswitch without duplicating the loop, making it trivial. | 
|  | /// | 
|  | /// If this routine fails to unswitch the branch it returns false. | 
|  | /// | 
|  | /// If the branch can be unswitched, this routine splits the preheader and | 
|  | /// hoists the branch above that split. Preserves loop simplified form | 
|  | /// (splitting the exit block as necessary). It simplifies the branch within | 
|  | /// the loop to an unconditional branch but doesn't remove it entirely. Further | 
|  | /// cleanup can be done with some simplify-cfg like pass. | 
|  | /// | 
|  | /// If `SE` is not null, it will be updated based on the potential loop SCEVs | 
|  | /// invalidated by this. | 
|  | static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, | 
|  | LoopInfo &LI, ScalarEvolution *SE, | 
|  | MemorySSAUpdater *MSSAU) { | 
|  | assert(BI.isConditional() && "Can only unswitch a conditional branch!"); | 
|  | LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n"); | 
|  |  | 
|  | // The loop invariant values that we want to unswitch. | 
|  | TinyPtrVector<Value *> Invariants; | 
|  |  | 
|  | // When true, we're fully unswitching the branch rather than just unswitching | 
|  | // some input conditions to the branch. | 
|  | bool FullUnswitch = false; | 
|  |  | 
|  | if (L.isLoopInvariant(BI.getCondition())) { | 
|  | Invariants.push_back(BI.getCondition()); | 
|  | FullUnswitch = true; | 
|  | } else { | 
|  | if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) | 
|  | Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); | 
|  | if (Invariants.empty()) | 
|  | // Couldn't find invariant inputs! | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check that one of the branch's successors exits, and which one. | 
|  | bool ExitDirection = true; | 
|  | int LoopExitSuccIdx = 0; | 
|  | auto *LoopExitBB = BI.getSuccessor(0); | 
|  | if (L.contains(LoopExitBB)) { | 
|  | ExitDirection = false; | 
|  | LoopExitSuccIdx = 1; | 
|  | LoopExitBB = BI.getSuccessor(1); | 
|  | if (L.contains(LoopExitBB)) | 
|  | return false; | 
|  | } | 
|  | auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); | 
|  | auto *ParentBB = BI.getParent(); | 
|  | if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) | 
|  | return false; | 
|  |  | 
|  | // When unswitching only part of the branch's condition, we need the exit | 
|  | // block to be reached directly from the partially unswitched input. This can | 
|  | // be done when the exit block is along the true edge and the branch condition | 
|  | // is a graph of `or` operations, or the exit block is along the false edge | 
|  | // and the condition is a graph of `and` operations. | 
|  | if (!FullUnswitch) { | 
|  | if (ExitDirection) { | 
|  | if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) | 
|  | return false; | 
|  | } else { | 
|  | if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "    unswitching trivial invariant conditions for: " << BI | 
|  | << "\n"; | 
|  | for (Value *Invariant : Invariants) { | 
|  | dbgs() << "      " << *Invariant << " == true"; | 
|  | if (Invariant != Invariants.back()) | 
|  | dbgs() << " ||"; | 
|  | dbgs() << "\n"; | 
|  | } | 
|  | }); | 
|  |  | 
|  | // If we have scalar evolutions, we need to invalidate them including this | 
|  | // loop and the loop containing the exit block. | 
|  | if (SE) { | 
|  | if (Loop *ExitL = LI.getLoopFor(LoopExitBB)) | 
|  | SE->forgetLoop(ExitL); | 
|  | else | 
|  | // Forget the entire nest as this exits the entire nest. | 
|  | SE->forgetTopmostLoop(&L); | 
|  | } | 
|  |  | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | // Split the preheader, so that we know that there is a safe place to insert | 
|  | // the conditional branch. We will change the preheader to have a conditional | 
|  | // branch on LoopCond. | 
|  | BasicBlock *OldPH = L.getLoopPreheader(); | 
|  | BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); | 
|  |  | 
|  | // Now that we have a place to insert the conditional branch, create a place | 
|  | // to branch to: this is the exit block out of the loop that we are | 
|  | // unswitching. We need to split this if there are other loop predecessors. | 
|  | // Because the loop is in simplified form, *any* other predecessor is enough. | 
|  | BasicBlock *UnswitchedBB; | 
|  | if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { | 
|  | assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && | 
|  | "A branch's parent isn't a predecessor!"); | 
|  | UnswitchedBB = LoopExitBB; | 
|  | } else { | 
|  | UnswitchedBB = | 
|  | SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); | 
|  | } | 
|  |  | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | // Actually move the invariant uses into the unswitched position. If possible, | 
|  | // we do this by moving the instructions, but when doing partial unswitching | 
|  | // we do it by building a new merge of the values in the unswitched position. | 
|  | OldPH->getTerminator()->eraseFromParent(); | 
|  | if (FullUnswitch) { | 
|  | // If fully unswitching, we can use the existing branch instruction. | 
|  | // Splice it into the old PH to gate reaching the new preheader and re-point | 
|  | // its successors. | 
|  | OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), | 
|  | BI); | 
|  | if (MSSAU) { | 
|  | // Temporarily clone the terminator, to make MSSA update cheaper by | 
|  | // separating "insert edge" updates from "remove edge" ones. | 
|  | ParentBB->getInstList().push_back(BI.clone()); | 
|  | } else { | 
|  | // Create a new unconditional branch that will continue the loop as a new | 
|  | // terminator. | 
|  | BranchInst::Create(ContinueBB, ParentBB); | 
|  | } | 
|  | BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); | 
|  | BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); | 
|  | } else { | 
|  | // Only unswitching a subset of inputs to the condition, so we will need to | 
|  | // build a new branch that merges the invariant inputs. | 
|  | if (ExitDirection) | 
|  | assert(cast<Instruction>(BI.getCondition())->getOpcode() == | 
|  | Instruction::Or && | 
|  | "Must have an `or` of `i1`s for the condition!"); | 
|  | else | 
|  | assert(cast<Instruction>(BI.getCondition())->getOpcode() == | 
|  | Instruction::And && | 
|  | "Must have an `and` of `i1`s for the condition!"); | 
|  | buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, | 
|  | *UnswitchedBB, *NewPH); | 
|  | } | 
|  |  | 
|  | // Update the dominator tree with the added edge. | 
|  | DT.insertEdge(OldPH, UnswitchedBB); | 
|  |  | 
|  | // After the dominator tree was updated with the added edge, update MemorySSA | 
|  | // if available. | 
|  | if (MSSAU) { | 
|  | SmallVector<CFGUpdate, 1> Updates; | 
|  | Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); | 
|  | MSSAU->applyInsertUpdates(Updates, DT); | 
|  | } | 
|  |  | 
|  | // Finish updating dominator tree and memory ssa for full unswitch. | 
|  | if (FullUnswitch) { | 
|  | if (MSSAU) { | 
|  | // Remove the cloned branch instruction. | 
|  | ParentBB->getTerminator()->eraseFromParent(); | 
|  | // Create unconditional branch now. | 
|  | BranchInst::Create(ContinueBB, ParentBB); | 
|  | MSSAU->removeEdge(ParentBB, LoopExitBB); | 
|  | } | 
|  | DT.deleteEdge(ParentBB, LoopExitBB); | 
|  | } | 
|  |  | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | // Rewrite the relevant PHI nodes. | 
|  | if (UnswitchedBB == LoopExitBB) | 
|  | rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); | 
|  | else | 
|  | rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, | 
|  | *ParentBB, *OldPH, FullUnswitch); | 
|  |  | 
|  | // The constant we can replace all of our invariants with inside the loop | 
|  | // body. If any of the invariants have a value other than this the loop won't | 
|  | // be entered. | 
|  | ConstantInt *Replacement = ExitDirection | 
|  | ? ConstantInt::getFalse(BI.getContext()) | 
|  | : ConstantInt::getTrue(BI.getContext()); | 
|  |  | 
|  | // Since this is an i1 condition we can also trivially replace uses of it | 
|  | // within the loop with a constant. | 
|  | for (Value *Invariant : Invariants) | 
|  | replaceLoopInvariantUses(L, Invariant, *Replacement); | 
|  |  | 
|  | // If this was full unswitching, we may have changed the nesting relationship | 
|  | // for this loop so hoist it to its correct parent if needed. | 
|  | if (FullUnswitch) | 
|  | hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU); | 
|  |  | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n"); | 
|  | ++NumTrivial; | 
|  | ++NumBranches; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Unswitch a trivial switch if the condition is loop invariant. | 
|  | /// | 
|  | /// This routine should only be called when loop code leading to the switch has | 
|  | /// been validated as trivial (no side effects). This routine checks if the | 
|  | /// condition is invariant and that at least one of the successors is a loop | 
|  | /// exit. This allows us to unswitch without duplicating the loop, making it | 
|  | /// trivial. | 
|  | /// | 
|  | /// If this routine fails to unswitch the switch it returns false. | 
|  | /// | 
|  | /// If the switch can be unswitched, this routine splits the preheader and | 
|  | /// copies the switch above that split. If the default case is one of the | 
|  | /// exiting cases, it copies the non-exiting cases and points them at the new | 
|  | /// preheader. If the default case is not exiting, it copies the exiting cases | 
|  | /// and points the default at the preheader. It preserves loop simplified form | 
|  | /// (splitting the exit blocks as necessary). It simplifies the switch within | 
|  | /// the loop by removing now-dead cases. If the default case is one of those | 
|  | /// unswitched, it replaces its destination with a new basic block containing | 
|  | /// only unreachable. Such basic blocks, while technically loop exits, are not | 
|  | /// considered for unswitching so this is a stable transform and the same | 
|  | /// switch will not be revisited. If after unswitching there is only a single | 
|  | /// in-loop successor, the switch is further simplified to an unconditional | 
|  | /// branch. Still more cleanup can be done with some simplify-cfg like pass. | 
|  | /// | 
|  | /// If `SE` is not null, it will be updated based on the potential loop SCEVs | 
|  | /// invalidated by this. | 
|  | static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, | 
|  | LoopInfo &LI, ScalarEvolution *SE, | 
|  | MemorySSAUpdater *MSSAU) { | 
|  | LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n"); | 
|  | Value *LoopCond = SI.getCondition(); | 
|  |  | 
|  | // If this isn't switching on an invariant condition, we can't unswitch it. | 
|  | if (!L.isLoopInvariant(LoopCond)) | 
|  | return false; | 
|  |  | 
|  | auto *ParentBB = SI.getParent(); | 
|  |  | 
|  | SmallVector<int, 4> ExitCaseIndices; | 
|  | for (auto Case : SI.cases()) { | 
|  | auto *SuccBB = Case.getCaseSuccessor(); | 
|  | if (!L.contains(SuccBB) && | 
|  | areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) | 
|  | ExitCaseIndices.push_back(Case.getCaseIndex()); | 
|  | } | 
|  | BasicBlock *DefaultExitBB = nullptr; | 
|  | SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = | 
|  | SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); | 
|  | if (!L.contains(SI.getDefaultDest()) && | 
|  | areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && | 
|  | !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) { | 
|  | DefaultExitBB = SI.getDefaultDest(); | 
|  | } else if (ExitCaseIndices.empty()) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n"); | 
|  |  | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | // We may need to invalidate SCEVs for the outermost loop reached by any of | 
|  | // the exits. | 
|  | Loop *OuterL = &L; | 
|  |  | 
|  | if (DefaultExitBB) { | 
|  | // Clear out the default destination temporarily to allow accurate | 
|  | // predecessor lists to be examined below. | 
|  | SI.setDefaultDest(nullptr); | 
|  | // Check the loop containing this exit. | 
|  | Loop *ExitL = LI.getLoopFor(DefaultExitBB); | 
|  | if (!ExitL || ExitL->contains(OuterL)) | 
|  | OuterL = ExitL; | 
|  | } | 
|  |  | 
|  | // Store the exit cases into a separate data structure and remove them from | 
|  | // the switch. | 
|  | SmallVector<std::tuple<ConstantInt *, BasicBlock *, | 
|  | SwitchInstProfUpdateWrapper::CaseWeightOpt>, | 
|  | 4> ExitCases; | 
|  | ExitCases.reserve(ExitCaseIndices.size()); | 
|  | SwitchInstProfUpdateWrapper SIW(SI); | 
|  | // We walk the case indices backwards so that we remove the last case first | 
|  | // and don't disrupt the earlier indices. | 
|  | for (unsigned Index : reverse(ExitCaseIndices)) { | 
|  | auto CaseI = SI.case_begin() + Index; | 
|  | // Compute the outer loop from this exit. | 
|  | Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); | 
|  | if (!ExitL || ExitL->contains(OuterL)) | 
|  | OuterL = ExitL; | 
|  | // Save the value of this case. | 
|  | auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); | 
|  | ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); | 
|  | // Delete the unswitched cases. | 
|  | SIW.removeCase(CaseI); | 
|  | } | 
|  |  | 
|  | if (SE) { | 
|  | if (OuterL) | 
|  | SE->forgetLoop(OuterL); | 
|  | else | 
|  | SE->forgetTopmostLoop(&L); | 
|  | } | 
|  |  | 
|  | // Check if after this all of the remaining cases point at the same | 
|  | // successor. | 
|  | BasicBlock *CommonSuccBB = nullptr; | 
|  | if (SI.getNumCases() > 0 && | 
|  | std::all_of(std::next(SI.case_begin()), SI.case_end(), | 
|  | [&SI](const SwitchInst::CaseHandle &Case) { | 
|  | return Case.getCaseSuccessor() == | 
|  | SI.case_begin()->getCaseSuccessor(); | 
|  | })) | 
|  | CommonSuccBB = SI.case_begin()->getCaseSuccessor(); | 
|  | if (!DefaultExitBB) { | 
|  | // If we're not unswitching the default, we need it to match any cases to | 
|  | // have a common successor or if we have no cases it is the common | 
|  | // successor. | 
|  | if (SI.getNumCases() == 0) | 
|  | CommonSuccBB = SI.getDefaultDest(); | 
|  | else if (SI.getDefaultDest() != CommonSuccBB) | 
|  | CommonSuccBB = nullptr; | 
|  | } | 
|  |  | 
|  | // Split the preheader, so that we know that there is a safe place to insert | 
|  | // the switch. | 
|  | BasicBlock *OldPH = L.getLoopPreheader(); | 
|  | BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); | 
|  | OldPH->getTerminator()->eraseFromParent(); | 
|  |  | 
|  | // Now add the unswitched switch. | 
|  | auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); | 
|  | SwitchInstProfUpdateWrapper NewSIW(*NewSI); | 
|  |  | 
|  | // Rewrite the IR for the unswitched basic blocks. This requires two steps. | 
|  | // First, we split any exit blocks with remaining in-loop predecessors. Then | 
|  | // we update the PHIs in one of two ways depending on if there was a split. | 
|  | // We walk in reverse so that we split in the same order as the cases | 
|  | // appeared. This is purely for convenience of reading the resulting IR, but | 
|  | // it doesn't cost anything really. | 
|  | SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; | 
|  | SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; | 
|  | // Handle the default exit if necessary. | 
|  | // FIXME: It'd be great if we could merge this with the loop below but LLVM's | 
|  | // ranges aren't quite powerful enough yet. | 
|  | if (DefaultExitBB) { | 
|  | if (pred_empty(DefaultExitBB)) { | 
|  | UnswitchedExitBBs.insert(DefaultExitBB); | 
|  | rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); | 
|  | } else { | 
|  | auto *SplitBB = | 
|  | SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); | 
|  | rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, | 
|  | *ParentBB, *OldPH, | 
|  | /*FullUnswitch*/ true); | 
|  | DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; | 
|  | } | 
|  | } | 
|  | // Note that we must use a reference in the for loop so that we update the | 
|  | // container. | 
|  | for (auto &ExitCase : reverse(ExitCases)) { | 
|  | // Grab a reference to the exit block in the pair so that we can update it. | 
|  | BasicBlock *ExitBB = std::get<1>(ExitCase); | 
|  |  | 
|  | // If this case is the last edge into the exit block, we can simply reuse it | 
|  | // as it will no longer be a loop exit. No mapping necessary. | 
|  | if (pred_empty(ExitBB)) { | 
|  | // Only rewrite once. | 
|  | if (UnswitchedExitBBs.insert(ExitBB).second) | 
|  | rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise we need to split the exit block so that we retain an exit | 
|  | // block from the loop and a target for the unswitched condition. | 
|  | BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; | 
|  | if (!SplitExitBB) { | 
|  | // If this is the first time we see this, do the split and remember it. | 
|  | SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); | 
|  | rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, | 
|  | *ParentBB, *OldPH, | 
|  | /*FullUnswitch*/ true); | 
|  | } | 
|  | // Update the case pair to point to the split block. | 
|  | std::get<1>(ExitCase) = SplitExitBB; | 
|  | } | 
|  |  | 
|  | // Now add the unswitched cases. We do this in reverse order as we built them | 
|  | // in reverse order. | 
|  | for (auto &ExitCase : reverse(ExitCases)) { | 
|  | ConstantInt *CaseVal = std::get<0>(ExitCase); | 
|  | BasicBlock *UnswitchedBB = std::get<1>(ExitCase); | 
|  |  | 
|  | NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); | 
|  | } | 
|  |  | 
|  | // If the default was unswitched, re-point it and add explicit cases for | 
|  | // entering the loop. | 
|  | if (DefaultExitBB) { | 
|  | NewSIW->setDefaultDest(DefaultExitBB); | 
|  | NewSIW.setSuccessorWeight(0, DefaultCaseWeight); | 
|  |  | 
|  | // We removed all the exit cases, so we just copy the cases to the | 
|  | // unswitched switch. | 
|  | for (const auto &Case : SI.cases()) | 
|  | NewSIW.addCase(Case.getCaseValue(), NewPH, | 
|  | SIW.getSuccessorWeight(Case.getSuccessorIndex())); | 
|  | } else if (DefaultCaseWeight) { | 
|  | // We have to set branch weight of the default case. | 
|  | uint64_t SW = *DefaultCaseWeight; | 
|  | for (const auto &Case : SI.cases()) { | 
|  | auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); | 
|  | assert(W && | 
|  | "case weight must be defined as default case weight is defined"); | 
|  | SW += *W; | 
|  | } | 
|  | NewSIW.setSuccessorWeight(0, SW); | 
|  | } | 
|  |  | 
|  | // If we ended up with a common successor for every path through the switch | 
|  | // after unswitching, rewrite it to an unconditional branch to make it easy | 
|  | // to recognize. Otherwise we potentially have to recognize the default case | 
|  | // pointing at unreachable and other complexity. | 
|  | if (CommonSuccBB) { | 
|  | BasicBlock *BB = SI.getParent(); | 
|  | // We may have had multiple edges to this common successor block, so remove | 
|  | // them as predecessors. We skip the first one, either the default or the | 
|  | // actual first case. | 
|  | bool SkippedFirst = DefaultExitBB == nullptr; | 
|  | for (auto Case : SI.cases()) { | 
|  | assert(Case.getCaseSuccessor() == CommonSuccBB && | 
|  | "Non-common successor!"); | 
|  | (void)Case; | 
|  | if (!SkippedFirst) { | 
|  | SkippedFirst = true; | 
|  | continue; | 
|  | } | 
|  | CommonSuccBB->removePredecessor(BB, | 
|  | /*KeepOneInputPHIs*/ true); | 
|  | } | 
|  | // Now nuke the switch and replace it with a direct branch. | 
|  | SIW.eraseFromParent(); | 
|  | BranchInst::Create(CommonSuccBB, BB); | 
|  | } else if (DefaultExitBB) { | 
|  | assert(SI.getNumCases() > 0 && | 
|  | "If we had no cases we'd have a common successor!"); | 
|  | // Move the last case to the default successor. This is valid as if the | 
|  | // default got unswitched it cannot be reached. This has the advantage of | 
|  | // being simple and keeping the number of edges from this switch to | 
|  | // successors the same, and avoiding any PHI update complexity. | 
|  | auto LastCaseI = std::prev(SI.case_end()); | 
|  |  | 
|  | SI.setDefaultDest(LastCaseI->getCaseSuccessor()); | 
|  | SIW.setSuccessorWeight( | 
|  | 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); | 
|  | SIW.removeCase(LastCaseI); | 
|  | } | 
|  |  | 
|  | // Walk the unswitched exit blocks and the unswitched split blocks and update | 
|  | // the dominator tree based on the CFG edits. While we are walking unordered | 
|  | // containers here, the API for applyUpdates takes an unordered list of | 
|  | // updates and requires them to not contain duplicates. | 
|  | SmallVector<DominatorTree::UpdateType, 4> DTUpdates; | 
|  | for (auto *UnswitchedExitBB : UnswitchedExitBBs) { | 
|  | DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); | 
|  | DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); | 
|  | } | 
|  | for (auto SplitUnswitchedPair : SplitExitBBMap) { | 
|  | DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); | 
|  | DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); | 
|  | } | 
|  | DT.applyUpdates(DTUpdates); | 
|  |  | 
|  | if (MSSAU) { | 
|  | MSSAU->applyUpdates(DTUpdates, DT); | 
|  | if (VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  | } | 
|  |  | 
|  | assert(DT.verify(DominatorTree::VerificationLevel::Fast)); | 
|  |  | 
|  | // We may have changed the nesting relationship for this loop so hoist it to | 
|  | // its correct parent if needed. | 
|  | hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU); | 
|  |  | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | ++NumTrivial; | 
|  | ++NumSwitches; | 
|  | LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// This routine scans the loop to find a branch or switch which occurs before | 
|  | /// any side effects occur. These can potentially be unswitched without | 
|  | /// duplicating the loop. If a branch or switch is successfully unswitched the | 
|  | /// scanning continues to see if subsequent branches or switches have become | 
|  | /// trivial. Once all trivial candidates have been unswitched, this routine | 
|  | /// returns. | 
|  | /// | 
|  | /// The return value indicates whether anything was unswitched (and therefore | 
|  | /// changed). | 
|  | /// | 
|  | /// If `SE` is not null, it will be updated based on the potential loop SCEVs | 
|  | /// invalidated by this. | 
|  | static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, | 
|  | LoopInfo &LI, ScalarEvolution *SE, | 
|  | MemorySSAUpdater *MSSAU) { | 
|  | bool Changed = false; | 
|  |  | 
|  | // If loop header has only one reachable successor we should keep looking for | 
|  | // trivial condition candidates in the successor as well. An alternative is | 
|  | // to constant fold conditions and merge successors into loop header (then we | 
|  | // only need to check header's terminator). The reason for not doing this in | 
|  | // LoopUnswitch pass is that it could potentially break LoopPassManager's | 
|  | // invariants. Folding dead branches could either eliminate the current loop | 
|  | // or make other loops unreachable. LCSSA form might also not be preserved | 
|  | // after deleting branches. The following code keeps traversing loop header's | 
|  | // successors until it finds the trivial condition candidate (condition that | 
|  | // is not a constant). Since unswitching generates branches with constant | 
|  | // conditions, this scenario could be very common in practice. | 
|  | BasicBlock *CurrentBB = L.getHeader(); | 
|  | SmallPtrSet<BasicBlock *, 8> Visited; | 
|  | Visited.insert(CurrentBB); | 
|  | do { | 
|  | // Check if there are any side-effecting instructions (e.g. stores, calls, | 
|  | // volatile loads) in the part of the loop that the code *would* execute | 
|  | // without unswitching. | 
|  | if (MSSAU) // Possible early exit with MSSA | 
|  | if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) | 
|  | if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) | 
|  | return Changed; | 
|  | if (llvm::any_of(*CurrentBB, | 
|  | [](Instruction &I) { return I.mayHaveSideEffects(); })) | 
|  | return Changed; | 
|  |  | 
|  | Instruction *CurrentTerm = CurrentBB->getTerminator(); | 
|  |  | 
|  | if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { | 
|  | // Don't bother trying to unswitch past a switch with a constant | 
|  | // condition. This should be removed prior to running this pass by | 
|  | // simplify-cfg. | 
|  | if (isa<Constant>(SI->getCondition())) | 
|  | return Changed; | 
|  |  | 
|  | if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) | 
|  | // Couldn't unswitch this one so we're done. | 
|  | return Changed; | 
|  |  | 
|  | // Mark that we managed to unswitch something. | 
|  | Changed = true; | 
|  |  | 
|  | // If unswitching turned the terminator into an unconditional branch then | 
|  | // we can continue. The unswitching logic specifically works to fold any | 
|  | // cases it can into an unconditional branch to make it easier to | 
|  | // recognize here. | 
|  | auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); | 
|  | if (!BI || BI->isConditional()) | 
|  | return Changed; | 
|  |  | 
|  | CurrentBB = BI->getSuccessor(0); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | auto *BI = dyn_cast<BranchInst>(CurrentTerm); | 
|  | if (!BI) | 
|  | // We do not understand other terminator instructions. | 
|  | return Changed; | 
|  |  | 
|  | // Don't bother trying to unswitch past an unconditional branch or a branch | 
|  | // with a constant value. These should be removed by simplify-cfg prior to | 
|  | // running this pass. | 
|  | if (!BI->isConditional() || isa<Constant>(BI->getCondition())) | 
|  | return Changed; | 
|  |  | 
|  | // Found a trivial condition candidate: non-foldable conditional branch. If | 
|  | // we fail to unswitch this, we can't do anything else that is trivial. | 
|  | if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) | 
|  | return Changed; | 
|  |  | 
|  | // Mark that we managed to unswitch something. | 
|  | Changed = true; | 
|  |  | 
|  | // If we only unswitched some of the conditions feeding the branch, we won't | 
|  | // have collapsed it to a single successor. | 
|  | BI = cast<BranchInst>(CurrentBB->getTerminator()); | 
|  | if (BI->isConditional()) | 
|  | return Changed; | 
|  |  | 
|  | // Follow the newly unconditional branch into its successor. | 
|  | CurrentBB = BI->getSuccessor(0); | 
|  |  | 
|  | // When continuing, if we exit the loop or reach a previous visited block, | 
|  | // then we can not reach any trivial condition candidates (unfoldable | 
|  | // branch instructions or switch instructions) and no unswitch can happen. | 
|  | } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Build the cloned blocks for an unswitched copy of the given loop. | 
|  | /// | 
|  | /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and | 
|  | /// after the split block (`SplitBB`) that will be used to select between the | 
|  | /// cloned and original loop. | 
|  | /// | 
|  | /// This routine handles cloning all of the necessary loop blocks and exit | 
|  | /// blocks including rewriting their instructions and the relevant PHI nodes. | 
|  | /// Any loop blocks or exit blocks which are dominated by a different successor | 
|  | /// than the one for this clone of the loop blocks can be trivially skipped. We | 
|  | /// use the `DominatingSucc` map to determine whether a block satisfies that | 
|  | /// property with a simple map lookup. | 
|  | /// | 
|  | /// It also correctly creates the unconditional branch in the cloned | 
|  | /// unswitched parent block to only point at the unswitched successor. | 
|  | /// | 
|  | /// This does not handle most of the necessary updates to `LoopInfo`. Only exit | 
|  | /// block splitting is correctly reflected in `LoopInfo`, essentially all of | 
|  | /// the cloned blocks (and their loops) are left without full `LoopInfo` | 
|  | /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned | 
|  | /// blocks to them but doesn't create the cloned `DominatorTree` structure and | 
|  | /// instead the caller must recompute an accurate DT. It *does* correctly | 
|  | /// update the `AssumptionCache` provided in `AC`. | 
|  | static BasicBlock *buildClonedLoopBlocks( | 
|  | Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, | 
|  | ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, | 
|  | BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, | 
|  | const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, | 
|  | ValueToValueMapTy &VMap, | 
|  | SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, | 
|  | DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { | 
|  | SmallVector<BasicBlock *, 4> NewBlocks; | 
|  | NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); | 
|  |  | 
|  | // We will need to clone a bunch of blocks, wrap up the clone operation in | 
|  | // a helper. | 
|  | auto CloneBlock = [&](BasicBlock *OldBB) { | 
|  | // Clone the basic block and insert it before the new preheader. | 
|  | BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); | 
|  | NewBB->moveBefore(LoopPH); | 
|  |  | 
|  | // Record this block and the mapping. | 
|  | NewBlocks.push_back(NewBB); | 
|  | VMap[OldBB] = NewBB; | 
|  |  | 
|  | return NewBB; | 
|  | }; | 
|  |  | 
|  | // We skip cloning blocks when they have a dominating succ that is not the | 
|  | // succ we are cloning for. | 
|  | auto SkipBlock = [&](BasicBlock *BB) { | 
|  | auto It = DominatingSucc.find(BB); | 
|  | return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; | 
|  | }; | 
|  |  | 
|  | // First, clone the preheader. | 
|  | auto *ClonedPH = CloneBlock(LoopPH); | 
|  |  | 
|  | // Then clone all the loop blocks, skipping the ones that aren't necessary. | 
|  | for (auto *LoopBB : L.blocks()) | 
|  | if (!SkipBlock(LoopBB)) | 
|  | CloneBlock(LoopBB); | 
|  |  | 
|  | // Split all the loop exit edges so that when we clone the exit blocks, if | 
|  | // any of the exit blocks are *also* a preheader for some other loop, we | 
|  | // don't create multiple predecessors entering the loop header. | 
|  | for (auto *ExitBB : ExitBlocks) { | 
|  | if (SkipBlock(ExitBB)) | 
|  | continue; | 
|  |  | 
|  | // When we are going to clone an exit, we don't need to clone all the | 
|  | // instructions in the exit block and we want to ensure we have an easy | 
|  | // place to merge the CFG, so split the exit first. This is always safe to | 
|  | // do because there cannot be any non-loop predecessors of a loop exit in | 
|  | // loop simplified form. | 
|  | auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); | 
|  |  | 
|  | // Rearrange the names to make it easier to write test cases by having the | 
|  | // exit block carry the suffix rather than the merge block carrying the | 
|  | // suffix. | 
|  | MergeBB->takeName(ExitBB); | 
|  | ExitBB->setName(Twine(MergeBB->getName()) + ".split"); | 
|  |  | 
|  | // Now clone the original exit block. | 
|  | auto *ClonedExitBB = CloneBlock(ExitBB); | 
|  | assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && | 
|  | "Exit block should have been split to have one successor!"); | 
|  | assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && | 
|  | "Cloned exit block has the wrong successor!"); | 
|  |  | 
|  | // Remap any cloned instructions and create a merge phi node for them. | 
|  | for (auto ZippedInsts : llvm::zip_first( | 
|  | llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), | 
|  | llvm::make_range(ClonedExitBB->begin(), | 
|  | std::prev(ClonedExitBB->end())))) { | 
|  | Instruction &I = std::get<0>(ZippedInsts); | 
|  | Instruction &ClonedI = std::get<1>(ZippedInsts); | 
|  |  | 
|  | // The only instructions in the exit block should be PHI nodes and | 
|  | // potentially a landing pad. | 
|  | assert( | 
|  | (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && | 
|  | "Bad instruction in exit block!"); | 
|  | // We should have a value map between the instruction and its clone. | 
|  | assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); | 
|  |  | 
|  | auto *MergePN = | 
|  | PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", | 
|  | &*MergeBB->getFirstInsertionPt()); | 
|  | I.replaceAllUsesWith(MergePN); | 
|  | MergePN->addIncoming(&I, ExitBB); | 
|  | MergePN->addIncoming(&ClonedI, ClonedExitBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Rewrite the instructions in the cloned blocks to refer to the instructions | 
|  | // in the cloned blocks. We have to do this as a second pass so that we have | 
|  | // everything available. Also, we have inserted new instructions which may | 
|  | // include assume intrinsics, so we update the assumption cache while | 
|  | // processing this. | 
|  | for (auto *ClonedBB : NewBlocks) | 
|  | for (Instruction &I : *ClonedBB) { | 
|  | RemapInstruction(&I, VMap, | 
|  | RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); | 
|  | if (auto *II = dyn_cast<IntrinsicInst>(&I)) | 
|  | if (II->getIntrinsicID() == Intrinsic::assume) | 
|  | AC.registerAssumption(II); | 
|  | } | 
|  |  | 
|  | // Update any PHI nodes in the cloned successors of the skipped blocks to not | 
|  | // have spurious incoming values. | 
|  | for (auto *LoopBB : L.blocks()) | 
|  | if (SkipBlock(LoopBB)) | 
|  | for (auto *SuccBB : successors(LoopBB)) | 
|  | if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) | 
|  | for (PHINode &PN : ClonedSuccBB->phis()) | 
|  | PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); | 
|  |  | 
|  | // Remove the cloned parent as a predecessor of any successor we ended up | 
|  | // cloning other than the unswitched one. | 
|  | auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); | 
|  | for (auto *SuccBB : successors(ParentBB)) { | 
|  | if (SuccBB == UnswitchedSuccBB) | 
|  | continue; | 
|  |  | 
|  | auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); | 
|  | if (!ClonedSuccBB) | 
|  | continue; | 
|  |  | 
|  | ClonedSuccBB->removePredecessor(ClonedParentBB, | 
|  | /*KeepOneInputPHIs*/ true); | 
|  | } | 
|  |  | 
|  | // Replace the cloned branch with an unconditional branch to the cloned | 
|  | // unswitched successor. | 
|  | auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); | 
|  | ClonedParentBB->getTerminator()->eraseFromParent(); | 
|  | BranchInst::Create(ClonedSuccBB, ClonedParentBB); | 
|  |  | 
|  | // If there are duplicate entries in the PHI nodes because of multiple edges | 
|  | // to the unswitched successor, we need to nuke all but one as we replaced it | 
|  | // with a direct branch. | 
|  | for (PHINode &PN : ClonedSuccBB->phis()) { | 
|  | bool Found = false; | 
|  | // Loop over the incoming operands backwards so we can easily delete as we | 
|  | // go without invalidating the index. | 
|  | for (int i = PN.getNumOperands() - 1; i >= 0; --i) { | 
|  | if (PN.getIncomingBlock(i) != ClonedParentBB) | 
|  | continue; | 
|  | if (!Found) { | 
|  | Found = true; | 
|  | continue; | 
|  | } | 
|  | PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Record the domtree updates for the new blocks. | 
|  | SmallPtrSet<BasicBlock *, 4> SuccSet; | 
|  | for (auto *ClonedBB : NewBlocks) { | 
|  | for (auto *SuccBB : successors(ClonedBB)) | 
|  | if (SuccSet.insert(SuccBB).second) | 
|  | DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); | 
|  | SuccSet.clear(); | 
|  | } | 
|  |  | 
|  | return ClonedPH; | 
|  | } | 
|  |  | 
|  | /// Recursively clone the specified loop and all of its children. | 
|  | /// | 
|  | /// The target parent loop for the clone should be provided, or can be null if | 
|  | /// the clone is a top-level loop. While cloning, all the blocks are mapped | 
|  | /// with the provided value map. The entire original loop must be present in | 
|  | /// the value map. The cloned loop is returned. | 
|  | static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, | 
|  | const ValueToValueMapTy &VMap, LoopInfo &LI) { | 
|  | auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { | 
|  | assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); | 
|  | ClonedL.reserveBlocks(OrigL.getNumBlocks()); | 
|  | for (auto *BB : OrigL.blocks()) { | 
|  | auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); | 
|  | ClonedL.addBlockEntry(ClonedBB); | 
|  | if (LI.getLoopFor(BB) == &OrigL) | 
|  | LI.changeLoopFor(ClonedBB, &ClonedL); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // We specially handle the first loop because it may get cloned into | 
|  | // a different parent and because we most commonly are cloning leaf loops. | 
|  | Loop *ClonedRootL = LI.AllocateLoop(); | 
|  | if (RootParentL) | 
|  | RootParentL->addChildLoop(ClonedRootL); | 
|  | else | 
|  | LI.addTopLevelLoop(ClonedRootL); | 
|  | AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); | 
|  |  | 
|  | if (OrigRootL.empty()) | 
|  | return ClonedRootL; | 
|  |  | 
|  | // If we have a nest, we can quickly clone the entire loop nest using an | 
|  | // iterative approach because it is a tree. We keep the cloned parent in the | 
|  | // data structure to avoid repeatedly querying through a map to find it. | 
|  | SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; | 
|  | // Build up the loops to clone in reverse order as we'll clone them from the | 
|  | // back. | 
|  | for (Loop *ChildL : llvm::reverse(OrigRootL)) | 
|  | LoopsToClone.push_back({ClonedRootL, ChildL}); | 
|  | do { | 
|  | Loop *ClonedParentL, *L; | 
|  | std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); | 
|  | Loop *ClonedL = LI.AllocateLoop(); | 
|  | ClonedParentL->addChildLoop(ClonedL); | 
|  | AddClonedBlocksToLoop(*L, *ClonedL); | 
|  | for (Loop *ChildL : llvm::reverse(*L)) | 
|  | LoopsToClone.push_back({ClonedL, ChildL}); | 
|  | } while (!LoopsToClone.empty()); | 
|  |  | 
|  | return ClonedRootL; | 
|  | } | 
|  |  | 
|  | /// Build the cloned loops of an original loop from unswitching. | 
|  | /// | 
|  | /// Because unswitching simplifies the CFG of the loop, this isn't a trivial | 
|  | /// operation. We need to re-verify that there even is a loop (as the backedge | 
|  | /// may not have been cloned), and even if there are remaining backedges the | 
|  | /// backedge set may be different. However, we know that each child loop is | 
|  | /// undisturbed, we only need to find where to place each child loop within | 
|  | /// either any parent loop or within a cloned version of the original loop. | 
|  | /// | 
|  | /// Because child loops may end up cloned outside of any cloned version of the | 
|  | /// original loop, multiple cloned sibling loops may be created. All of them | 
|  | /// are returned so that the newly introduced loop nest roots can be | 
|  | /// identified. | 
|  | static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, | 
|  | const ValueToValueMapTy &VMap, LoopInfo &LI, | 
|  | SmallVectorImpl<Loop *> &NonChildClonedLoops) { | 
|  | Loop *ClonedL = nullptr; | 
|  |  | 
|  | auto *OrigPH = OrigL.getLoopPreheader(); | 
|  | auto *OrigHeader = OrigL.getHeader(); | 
|  |  | 
|  | auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); | 
|  | auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); | 
|  |  | 
|  | // We need to know the loops of the cloned exit blocks to even compute the | 
|  | // accurate parent loop. If we only clone exits to some parent of the | 
|  | // original parent, we want to clone into that outer loop. We also keep track | 
|  | // of the loops that our cloned exit blocks participate in. | 
|  | Loop *ParentL = nullptr; | 
|  | SmallVector<BasicBlock *, 4> ClonedExitsInLoops; | 
|  | SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; | 
|  | ClonedExitsInLoops.reserve(ExitBlocks.size()); | 
|  | for (auto *ExitBB : ExitBlocks) | 
|  | if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) | 
|  | if (Loop *ExitL = LI.getLoopFor(ExitBB)) { | 
|  | ExitLoopMap[ClonedExitBB] = ExitL; | 
|  | ClonedExitsInLoops.push_back(ClonedExitBB); | 
|  | if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) | 
|  | ParentL = ExitL; | 
|  | } | 
|  | assert((!ParentL || ParentL == OrigL.getParentLoop() || | 
|  | ParentL->contains(OrigL.getParentLoop())) && | 
|  | "The computed parent loop should always contain (or be) the parent of " | 
|  | "the original loop."); | 
|  |  | 
|  | // We build the set of blocks dominated by the cloned header from the set of | 
|  | // cloned blocks out of the original loop. While not all of these will | 
|  | // necessarily be in the cloned loop, it is enough to establish that they | 
|  | // aren't in unreachable cycles, etc. | 
|  | SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; | 
|  | for (auto *BB : OrigL.blocks()) | 
|  | if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) | 
|  | ClonedLoopBlocks.insert(ClonedBB); | 
|  |  | 
|  | // Rebuild the set of blocks that will end up in the cloned loop. We may have | 
|  | // skipped cloning some region of this loop which can in turn skip some of | 
|  | // the backedges so we have to rebuild the blocks in the loop based on the | 
|  | // backedges that remain after cloning. | 
|  | SmallVector<BasicBlock *, 16> Worklist; | 
|  | SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; | 
|  | for (auto *Pred : predecessors(ClonedHeader)) { | 
|  | // The only possible non-loop header predecessor is the preheader because | 
|  | // we know we cloned the loop in simplified form. | 
|  | if (Pred == ClonedPH) | 
|  | continue; | 
|  |  | 
|  | // Because the loop was in simplified form, the only non-loop predecessor | 
|  | // should be the preheader. | 
|  | assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " | 
|  | "header other than the preheader " | 
|  | "that is not part of the loop!"); | 
|  |  | 
|  | // Insert this block into the loop set and on the first visit (and if it | 
|  | // isn't the header we're currently walking) put it into the worklist to | 
|  | // recurse through. | 
|  | if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) | 
|  | Worklist.push_back(Pred); | 
|  | } | 
|  |  | 
|  | // If we had any backedges then there *is* a cloned loop. Put the header into | 
|  | // the loop set and then walk the worklist backwards to find all the blocks | 
|  | // that remain within the loop after cloning. | 
|  | if (!BlocksInClonedLoop.empty()) { | 
|  | BlocksInClonedLoop.insert(ClonedHeader); | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | BasicBlock *BB = Worklist.pop_back_val(); | 
|  | assert(BlocksInClonedLoop.count(BB) && | 
|  | "Didn't put block into the loop set!"); | 
|  |  | 
|  | // Insert any predecessors that are in the possible set into the cloned | 
|  | // set, and if the insert is successful, add them to the worklist. Note | 
|  | // that we filter on the blocks that are definitely reachable via the | 
|  | // backedge to the loop header so we may prune out dead code within the | 
|  | // cloned loop. | 
|  | for (auto *Pred : predecessors(BB)) | 
|  | if (ClonedLoopBlocks.count(Pred) && | 
|  | BlocksInClonedLoop.insert(Pred).second) | 
|  | Worklist.push_back(Pred); | 
|  | } | 
|  |  | 
|  | ClonedL = LI.AllocateLoop(); | 
|  | if (ParentL) { | 
|  | ParentL->addBasicBlockToLoop(ClonedPH, LI); | 
|  | ParentL->addChildLoop(ClonedL); | 
|  | } else { | 
|  | LI.addTopLevelLoop(ClonedL); | 
|  | } | 
|  | NonChildClonedLoops.push_back(ClonedL); | 
|  |  | 
|  | ClonedL->reserveBlocks(BlocksInClonedLoop.size()); | 
|  | // We don't want to just add the cloned loop blocks based on how we | 
|  | // discovered them. The original order of blocks was carefully built in | 
|  | // a way that doesn't rely on predecessor ordering. Rather than re-invent | 
|  | // that logic, we just re-walk the original blocks (and those of the child | 
|  | // loops) and filter them as we add them into the cloned loop. | 
|  | for (auto *BB : OrigL.blocks()) { | 
|  | auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); | 
|  | if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) | 
|  | continue; | 
|  |  | 
|  | // Directly add the blocks that are only in this loop. | 
|  | if (LI.getLoopFor(BB) == &OrigL) { | 
|  | ClonedL->addBasicBlockToLoop(ClonedBB, LI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We want to manually add it to this loop and parents. | 
|  | // Registering it with LoopInfo will happen when we clone the top | 
|  | // loop for this block. | 
|  | for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) | 
|  | PL->addBlockEntry(ClonedBB); | 
|  | } | 
|  |  | 
|  | // Now add each child loop whose header remains within the cloned loop. All | 
|  | // of the blocks within the loop must satisfy the same constraints as the | 
|  | // header so once we pass the header checks we can just clone the entire | 
|  | // child loop nest. | 
|  | for (Loop *ChildL : OrigL) { | 
|  | auto *ClonedChildHeader = | 
|  | cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); | 
|  | if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) | 
|  | continue; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // We should never have a cloned child loop header but fail to have | 
|  | // all of the blocks for that child loop. | 
|  | for (auto *ChildLoopBB : ChildL->blocks()) | 
|  | assert(BlocksInClonedLoop.count( | 
|  | cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && | 
|  | "Child cloned loop has a header within the cloned outer " | 
|  | "loop but not all of its blocks!"); | 
|  | #endif | 
|  |  | 
|  | cloneLoopNest(*ChildL, ClonedL, VMap, LI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we've handled all the components of the original loop that were | 
|  | // cloned into a new loop, we still need to handle anything from the original | 
|  | // loop that wasn't in a cloned loop. | 
|  |  | 
|  | // Figure out what blocks are left to place within any loop nest containing | 
|  | // the unswitched loop. If we never formed a loop, the cloned PH is one of | 
|  | // them. | 
|  | SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; | 
|  | if (BlocksInClonedLoop.empty()) | 
|  | UnloopedBlockSet.insert(ClonedPH); | 
|  | for (auto *ClonedBB : ClonedLoopBlocks) | 
|  | if (!BlocksInClonedLoop.count(ClonedBB)) | 
|  | UnloopedBlockSet.insert(ClonedBB); | 
|  |  | 
|  | // Copy the cloned exits and sort them in ascending loop depth, we'll work | 
|  | // backwards across these to process them inside out. The order shouldn't | 
|  | // matter as we're just trying to build up the map from inside-out; we use | 
|  | // the map in a more stably ordered way below. | 
|  | auto OrderedClonedExitsInLoops = ClonedExitsInLoops; | 
|  | llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { | 
|  | return ExitLoopMap.lookup(LHS)->getLoopDepth() < | 
|  | ExitLoopMap.lookup(RHS)->getLoopDepth(); | 
|  | }); | 
|  |  | 
|  | // Populate the existing ExitLoopMap with everything reachable from each | 
|  | // exit, starting from the inner most exit. | 
|  | while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { | 
|  | assert(Worklist.empty() && "Didn't clear worklist!"); | 
|  |  | 
|  | BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); | 
|  | Loop *ExitL = ExitLoopMap.lookup(ExitBB); | 
|  |  | 
|  | // Walk the CFG back until we hit the cloned PH adding everything reachable | 
|  | // and in the unlooped set to this exit block's loop. | 
|  | Worklist.push_back(ExitBB); | 
|  | do { | 
|  | BasicBlock *BB = Worklist.pop_back_val(); | 
|  | // We can stop recursing at the cloned preheader (if we get there). | 
|  | if (BB == ClonedPH) | 
|  | continue; | 
|  |  | 
|  | for (BasicBlock *PredBB : predecessors(BB)) { | 
|  | // If this pred has already been moved to our set or is part of some | 
|  | // (inner) loop, no update needed. | 
|  | if (!UnloopedBlockSet.erase(PredBB)) { | 
|  | assert( | 
|  | (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && | 
|  | "Predecessor not mapped to a loop!"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We just insert into the loop set here. We'll add these blocks to the | 
|  | // exit loop after we build up the set in an order that doesn't rely on | 
|  | // predecessor order (which in turn relies on use list order). | 
|  | bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; | 
|  | (void)Inserted; | 
|  | assert(Inserted && "Should only visit an unlooped block once!"); | 
|  |  | 
|  | // And recurse through to its predecessors. | 
|  | Worklist.push_back(PredBB); | 
|  | } | 
|  | } while (!Worklist.empty()); | 
|  | } | 
|  |  | 
|  | // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned | 
|  | // blocks to their outer loops, walk the cloned blocks and the cloned exits | 
|  | // in their original order adding them to the correct loop. | 
|  |  | 
|  | // We need a stable insertion order. We use the order of the original loop | 
|  | // order and map into the correct parent loop. | 
|  | for (auto *BB : llvm::concat<BasicBlock *const>( | 
|  | makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) | 
|  | if (Loop *OuterL = ExitLoopMap.lookup(BB)) | 
|  | OuterL->addBasicBlockToLoop(BB, LI); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | for (auto &BBAndL : ExitLoopMap) { | 
|  | auto *BB = BBAndL.first; | 
|  | auto *OuterL = BBAndL.second; | 
|  | assert(LI.getLoopFor(BB) == OuterL && | 
|  | "Failed to put all blocks into outer loops!"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Now that all the blocks are placed into the correct containing loop in the | 
|  | // absence of child loops, find all the potentially cloned child loops and | 
|  | // clone them into whatever outer loop we placed their header into. | 
|  | for (Loop *ChildL : OrigL) { | 
|  | auto *ClonedChildHeader = | 
|  | cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); | 
|  | if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) | 
|  | continue; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | for (auto *ChildLoopBB : ChildL->blocks()) | 
|  | assert(VMap.count(ChildLoopBB) && | 
|  | "Cloned a child loop header but not all of that loops blocks!"); | 
|  | #endif | 
|  |  | 
|  | NonChildClonedLoops.push_back(cloneLoopNest( | 
|  | *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, | 
|  | ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, | 
|  | DominatorTree &DT, MemorySSAUpdater *MSSAU) { | 
|  | // Find all the dead clones, and remove them from their successors. | 
|  | SmallVector<BasicBlock *, 16> DeadBlocks; | 
|  | for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) | 
|  | for (auto &VMap : VMaps) | 
|  | if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) | 
|  | if (!DT.isReachableFromEntry(ClonedBB)) { | 
|  | for (BasicBlock *SuccBB : successors(ClonedBB)) | 
|  | SuccBB->removePredecessor(ClonedBB); | 
|  | DeadBlocks.push_back(ClonedBB); | 
|  | } | 
|  |  | 
|  | // Remove all MemorySSA in the dead blocks | 
|  | if (MSSAU) { | 
|  | SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), | 
|  | DeadBlocks.end()); | 
|  | MSSAU->removeBlocks(DeadBlockSet); | 
|  | } | 
|  |  | 
|  | // Drop any remaining references to break cycles. | 
|  | for (BasicBlock *BB : DeadBlocks) | 
|  | BB->dropAllReferences(); | 
|  | // Erase them from the IR. | 
|  | for (BasicBlock *BB : DeadBlocks) | 
|  | BB->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | static void deleteDeadBlocksFromLoop(Loop &L, | 
|  | SmallVectorImpl<BasicBlock *> &ExitBlocks, | 
|  | DominatorTree &DT, LoopInfo &LI, | 
|  | MemorySSAUpdater *MSSAU) { | 
|  | // Find all the dead blocks tied to this loop, and remove them from their | 
|  | // successors. | 
|  | SmallSetVector<BasicBlock *, 8> DeadBlockSet; | 
|  |  | 
|  | // Start with loop/exit blocks and get a transitive closure of reachable dead | 
|  | // blocks. | 
|  | SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), | 
|  | ExitBlocks.end()); | 
|  | DeathCandidates.append(L.blocks().begin(), L.blocks().end()); | 
|  | while (!DeathCandidates.empty()) { | 
|  | auto *BB = DeathCandidates.pop_back_val(); | 
|  | if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { | 
|  | for (BasicBlock *SuccBB : successors(BB)) { | 
|  | SuccBB->removePredecessor(BB); | 
|  | DeathCandidates.push_back(SuccBB); | 
|  | } | 
|  | DeadBlockSet.insert(BB); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remove all MemorySSA in the dead blocks | 
|  | if (MSSAU) | 
|  | MSSAU->removeBlocks(DeadBlockSet); | 
|  |  | 
|  | // Filter out the dead blocks from the exit blocks list so that it can be | 
|  | // used in the caller. | 
|  | llvm::erase_if(ExitBlocks, | 
|  | [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); | 
|  |  | 
|  | // Walk from this loop up through its parents removing all of the dead blocks. | 
|  | for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { | 
|  | for (auto *BB : DeadBlockSet) | 
|  | ParentL->getBlocksSet().erase(BB); | 
|  | llvm::erase_if(ParentL->getBlocksVector(), | 
|  | [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); | 
|  | } | 
|  |  | 
|  | // Now delete the dead child loops. This raw delete will clear them | 
|  | // recursively. | 
|  | llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { | 
|  | if (!DeadBlockSet.count(ChildL->getHeader())) | 
|  | return false; | 
|  |  | 
|  | assert(llvm::all_of(ChildL->blocks(), | 
|  | [&](BasicBlock *ChildBB) { | 
|  | return DeadBlockSet.count(ChildBB); | 
|  | }) && | 
|  | "If the child loop header is dead all blocks in the child loop must " | 
|  | "be dead as well!"); | 
|  | LI.destroy(ChildL); | 
|  | return true; | 
|  | }); | 
|  |  | 
|  | // Remove the loop mappings for the dead blocks and drop all the references | 
|  | // from these blocks to others to handle cyclic references as we start | 
|  | // deleting the blocks themselves. | 
|  | for (auto *BB : DeadBlockSet) { | 
|  | // Check that the dominator tree has already been updated. | 
|  | assert(!DT.getNode(BB) && "Should already have cleared domtree!"); | 
|  | LI.changeLoopFor(BB, nullptr); | 
|  | BB->dropAllReferences(); | 
|  | } | 
|  |  | 
|  | // Actually delete the blocks now that they've been fully unhooked from the | 
|  | // IR. | 
|  | for (auto *BB : DeadBlockSet) | 
|  | BB->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | /// Recompute the set of blocks in a loop after unswitching. | 
|  | /// | 
|  | /// This walks from the original headers predecessors to rebuild the loop. We | 
|  | /// take advantage of the fact that new blocks can't have been added, and so we | 
|  | /// filter by the original loop's blocks. This also handles potentially | 
|  | /// unreachable code that we don't want to explore but might be found examining | 
|  | /// the predecessors of the header. | 
|  | /// | 
|  | /// If the original loop is no longer a loop, this will return an empty set. If | 
|  | /// it remains a loop, all the blocks within it will be added to the set | 
|  | /// (including those blocks in inner loops). | 
|  | static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, | 
|  | LoopInfo &LI) { | 
|  | SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; | 
|  |  | 
|  | auto *PH = L.getLoopPreheader(); | 
|  | auto *Header = L.getHeader(); | 
|  |  | 
|  | // A worklist to use while walking backwards from the header. | 
|  | SmallVector<BasicBlock *, 16> Worklist; | 
|  |  | 
|  | // First walk the predecessors of the header to find the backedges. This will | 
|  | // form the basis of our walk. | 
|  | for (auto *Pred : predecessors(Header)) { | 
|  | // Skip the preheader. | 
|  | if (Pred == PH) | 
|  | continue; | 
|  |  | 
|  | // Because the loop was in simplified form, the only non-loop predecessor | 
|  | // is the preheader. | 
|  | assert(L.contains(Pred) && "Found a predecessor of the loop header other " | 
|  | "than the preheader that is not part of the " | 
|  | "loop!"); | 
|  |  | 
|  | // Insert this block into the loop set and on the first visit and, if it | 
|  | // isn't the header we're currently walking, put it into the worklist to | 
|  | // recurse through. | 
|  | if (LoopBlockSet.insert(Pred).second && Pred != Header) | 
|  | Worklist.push_back(Pred); | 
|  | } | 
|  |  | 
|  | // If no backedges were found, we're done. | 
|  | if (LoopBlockSet.empty()) | 
|  | return LoopBlockSet; | 
|  |  | 
|  | // We found backedges, recurse through them to identify the loop blocks. | 
|  | while (!Worklist.empty()) { | 
|  | BasicBlock *BB = Worklist.pop_back_val(); | 
|  | assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); | 
|  |  | 
|  | // No need to walk past the header. | 
|  | if (BB == Header) | 
|  | continue; | 
|  |  | 
|  | // Because we know the inner loop structure remains valid we can use the | 
|  | // loop structure to jump immediately across the entire nested loop. | 
|  | // Further, because it is in loop simplified form, we can directly jump | 
|  | // to its preheader afterward. | 
|  | if (Loop *InnerL = LI.getLoopFor(BB)) | 
|  | if (InnerL != &L) { | 
|  | assert(L.contains(InnerL) && | 
|  | "Should not reach a loop *outside* this loop!"); | 
|  | // The preheader is the only possible predecessor of the loop so | 
|  | // insert it into the set and check whether it was already handled. | 
|  | auto *InnerPH = InnerL->getLoopPreheader(); | 
|  | assert(L.contains(InnerPH) && "Cannot contain an inner loop block " | 
|  | "but not contain the inner loop " | 
|  | "preheader!"); | 
|  | if (!LoopBlockSet.insert(InnerPH).second) | 
|  | // The only way to reach the preheader is through the loop body | 
|  | // itself so if it has been visited the loop is already handled. | 
|  | continue; | 
|  |  | 
|  | // Insert all of the blocks (other than those already present) into | 
|  | // the loop set. We expect at least the block that led us to find the | 
|  | // inner loop to be in the block set, but we may also have other loop | 
|  | // blocks if they were already enqueued as predecessors of some other | 
|  | // outer loop block. | 
|  | for (auto *InnerBB : InnerL->blocks()) { | 
|  | if (InnerBB == BB) { | 
|  | assert(LoopBlockSet.count(InnerBB) && | 
|  | "Block should already be in the set!"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | LoopBlockSet.insert(InnerBB); | 
|  | } | 
|  |  | 
|  | // Add the preheader to the worklist so we will continue past the | 
|  | // loop body. | 
|  | Worklist.push_back(InnerPH); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Insert any predecessors that were in the original loop into the new | 
|  | // set, and if the insert is successful, add them to the worklist. | 
|  | for (auto *Pred : predecessors(BB)) | 
|  | if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) | 
|  | Worklist.push_back(Pred); | 
|  | } | 
|  |  | 
|  | assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); | 
|  |  | 
|  | // We've found all the blocks participating in the loop, return our completed | 
|  | // set. | 
|  | return LoopBlockSet; | 
|  | } | 
|  |  | 
|  | /// Rebuild a loop after unswitching removes some subset of blocks and edges. | 
|  | /// | 
|  | /// The removal may have removed some child loops entirely but cannot have | 
|  | /// disturbed any remaining child loops. However, they may need to be hoisted | 
|  | /// to the parent loop (or to be top-level loops). The original loop may be | 
|  | /// completely removed. | 
|  | /// | 
|  | /// The sibling loops resulting from this update are returned. If the original | 
|  | /// loop remains a valid loop, it will be the first entry in this list with all | 
|  | /// of the newly sibling loops following it. | 
|  | /// | 
|  | /// Returns true if the loop remains a loop after unswitching, and false if it | 
|  | /// is no longer a loop after unswitching (and should not continue to be | 
|  | /// referenced). | 
|  | static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, | 
|  | LoopInfo &LI, | 
|  | SmallVectorImpl<Loop *> &HoistedLoops) { | 
|  | auto *PH = L.getLoopPreheader(); | 
|  |  | 
|  | // Compute the actual parent loop from the exit blocks. Because we may have | 
|  | // pruned some exits the loop may be different from the original parent. | 
|  | Loop *ParentL = nullptr; | 
|  | SmallVector<Loop *, 4> ExitLoops; | 
|  | SmallVector<BasicBlock *, 4> ExitsInLoops; | 
|  | ExitsInLoops.reserve(ExitBlocks.size()); | 
|  | for (auto *ExitBB : ExitBlocks) | 
|  | if (Loop *ExitL = LI.getLoopFor(ExitBB)) { | 
|  | ExitLoops.push_back(ExitL); | 
|  | ExitsInLoops.push_back(ExitBB); | 
|  | if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) | 
|  | ParentL = ExitL; | 
|  | } | 
|  |  | 
|  | // Recompute the blocks participating in this loop. This may be empty if it | 
|  | // is no longer a loop. | 
|  | auto LoopBlockSet = recomputeLoopBlockSet(L, LI); | 
|  |  | 
|  | // If we still have a loop, we need to re-set the loop's parent as the exit | 
|  | // block set changing may have moved it within the loop nest. Note that this | 
|  | // can only happen when this loop has a parent as it can only hoist the loop | 
|  | // *up* the nest. | 
|  | if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { | 
|  | // Remove this loop's (original) blocks from all of the intervening loops. | 
|  | for (Loop *IL = L.getParentLoop(); IL != ParentL; | 
|  | IL = IL->getParentLoop()) { | 
|  | IL->getBlocksSet().erase(PH); | 
|  | for (auto *BB : L.blocks()) | 
|  | IL->getBlocksSet().erase(BB); | 
|  | llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { | 
|  | return BB == PH || L.contains(BB); | 
|  | }); | 
|  | } | 
|  |  | 
|  | LI.changeLoopFor(PH, ParentL); | 
|  | L.getParentLoop()->removeChildLoop(&L); | 
|  | if (ParentL) | 
|  | ParentL->addChildLoop(&L); | 
|  | else | 
|  | LI.addTopLevelLoop(&L); | 
|  | } | 
|  |  | 
|  | // Now we update all the blocks which are no longer within the loop. | 
|  | auto &Blocks = L.getBlocksVector(); | 
|  | auto BlocksSplitI = | 
|  | LoopBlockSet.empty() | 
|  | ? Blocks.begin() | 
|  | : std::stable_partition( | 
|  | Blocks.begin(), Blocks.end(), | 
|  | [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); | 
|  |  | 
|  | // Before we erase the list of unlooped blocks, build a set of them. | 
|  | SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); | 
|  | if (LoopBlockSet.empty()) | 
|  | UnloopedBlocks.insert(PH); | 
|  |  | 
|  | // Now erase these blocks from the loop. | 
|  | for (auto *BB : make_range(BlocksSplitI, Blocks.end())) | 
|  | L.getBlocksSet().erase(BB); | 
|  | Blocks.erase(BlocksSplitI, Blocks.end()); | 
|  |  | 
|  | // Sort the exits in ascending loop depth, we'll work backwards across these | 
|  | // to process them inside out. | 
|  | llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { | 
|  | return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); | 
|  | }); | 
|  |  | 
|  | // We'll build up a set for each exit loop. | 
|  | SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; | 
|  | Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. | 
|  |  | 
|  | auto RemoveUnloopedBlocksFromLoop = | 
|  | [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { | 
|  | for (auto *BB : UnloopedBlocks) | 
|  | L.getBlocksSet().erase(BB); | 
|  | llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { | 
|  | return UnloopedBlocks.count(BB); | 
|  | }); | 
|  | }; | 
|  |  | 
|  | SmallVector<BasicBlock *, 16> Worklist; | 
|  | while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { | 
|  | assert(Worklist.empty() && "Didn't clear worklist!"); | 
|  | assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); | 
|  |  | 
|  | // Grab the next exit block, in decreasing loop depth order. | 
|  | BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); | 
|  | Loop &ExitL = *LI.getLoopFor(ExitBB); | 
|  | assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); | 
|  |  | 
|  | // Erase all of the unlooped blocks from the loops between the previous | 
|  | // exit loop and this exit loop. This works because the ExitInLoops list is | 
|  | // sorted in increasing order of loop depth and thus we visit loops in | 
|  | // decreasing order of loop depth. | 
|  | for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) | 
|  | RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); | 
|  |  | 
|  | // Walk the CFG back until we hit the cloned PH adding everything reachable | 
|  | // and in the unlooped set to this exit block's loop. | 
|  | Worklist.push_back(ExitBB); | 
|  | do { | 
|  | BasicBlock *BB = Worklist.pop_back_val(); | 
|  | // We can stop recursing at the cloned preheader (if we get there). | 
|  | if (BB == PH) | 
|  | continue; | 
|  |  | 
|  | for (BasicBlock *PredBB : predecessors(BB)) { | 
|  | // If this pred has already been moved to our set or is part of some | 
|  | // (inner) loop, no update needed. | 
|  | if (!UnloopedBlocks.erase(PredBB)) { | 
|  | assert((NewExitLoopBlocks.count(PredBB) || | 
|  | ExitL.contains(LI.getLoopFor(PredBB))) && | 
|  | "Predecessor not in a nested loop (or already visited)!"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We just insert into the loop set here. We'll add these blocks to the | 
|  | // exit loop after we build up the set in a deterministic order rather | 
|  | // than the predecessor-influenced visit order. | 
|  | bool Inserted = NewExitLoopBlocks.insert(PredBB).second; | 
|  | (void)Inserted; | 
|  | assert(Inserted && "Should only visit an unlooped block once!"); | 
|  |  | 
|  | // And recurse through to its predecessors. | 
|  | Worklist.push_back(PredBB); | 
|  | } | 
|  | } while (!Worklist.empty()); | 
|  |  | 
|  | // If blocks in this exit loop were directly part of the original loop (as | 
|  | // opposed to a child loop) update the map to point to this exit loop. This | 
|  | // just updates a map and so the fact that the order is unstable is fine. | 
|  | for (auto *BB : NewExitLoopBlocks) | 
|  | if (Loop *BBL = LI.getLoopFor(BB)) | 
|  | if (BBL == &L || !L.contains(BBL)) | 
|  | LI.changeLoopFor(BB, &ExitL); | 
|  |  | 
|  | // We will remove the remaining unlooped blocks from this loop in the next | 
|  | // iteration or below. | 
|  | NewExitLoopBlocks.clear(); | 
|  | } | 
|  |  | 
|  | // Any remaining unlooped blocks are no longer part of any loop unless they | 
|  | // are part of some child loop. | 
|  | for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) | 
|  | RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); | 
|  | for (auto *BB : UnloopedBlocks) | 
|  | if (Loop *BBL = LI.getLoopFor(BB)) | 
|  | if (BBL == &L || !L.contains(BBL)) | 
|  | LI.changeLoopFor(BB, nullptr); | 
|  |  | 
|  | // Sink all the child loops whose headers are no longer in the loop set to | 
|  | // the parent (or to be top level loops). We reach into the loop and directly | 
|  | // update its subloop vector to make this batch update efficient. | 
|  | auto &SubLoops = L.getSubLoopsVector(); | 
|  | auto SubLoopsSplitI = | 
|  | LoopBlockSet.empty() | 
|  | ? SubLoops.begin() | 
|  | : std::stable_partition( | 
|  | SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { | 
|  | return LoopBlockSet.count(SubL->getHeader()); | 
|  | }); | 
|  | for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { | 
|  | HoistedLoops.push_back(HoistedL); | 
|  | HoistedL->setParentLoop(nullptr); | 
|  |  | 
|  | // To compute the new parent of this hoisted loop we look at where we | 
|  | // placed the preheader above. We can't lookup the header itself because we | 
|  | // retained the mapping from the header to the hoisted loop. But the | 
|  | // preheader and header should have the exact same new parent computed | 
|  | // based on the set of exit blocks from the original loop as the preheader | 
|  | // is a predecessor of the header and so reached in the reverse walk. And | 
|  | // because the loops were all in simplified form the preheader of the | 
|  | // hoisted loop can't be part of some *other* loop. | 
|  | if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) | 
|  | NewParentL->addChildLoop(HoistedL); | 
|  | else | 
|  | LI.addTopLevelLoop(HoistedL); | 
|  | } | 
|  | SubLoops.erase(SubLoopsSplitI, SubLoops.end()); | 
|  |  | 
|  | // Actually delete the loop if nothing remained within it. | 
|  | if (Blocks.empty()) { | 
|  | assert(SubLoops.empty() && | 
|  | "Failed to remove all subloops from the original loop!"); | 
|  | if (Loop *ParentL = L.getParentLoop()) | 
|  | ParentL->removeChildLoop(llvm::find(*ParentL, &L)); | 
|  | else | 
|  | LI.removeLoop(llvm::find(LI, &L)); | 
|  | LI.destroy(&L); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Helper to visit a dominator subtree, invoking a callable on each node. | 
|  | /// | 
|  | /// Returning false at any point will stop walking past that node of the tree. | 
|  | template <typename CallableT> | 
|  | void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { | 
|  | SmallVector<DomTreeNode *, 4> DomWorklist; | 
|  | DomWorklist.push_back(DT[BB]); | 
|  | #ifndef NDEBUG | 
|  | SmallPtrSet<DomTreeNode *, 4> Visited; | 
|  | Visited.insert(DT[BB]); | 
|  | #endif | 
|  | do { | 
|  | DomTreeNode *N = DomWorklist.pop_back_val(); | 
|  |  | 
|  | // Visit this node. | 
|  | if (!Callable(N->getBlock())) | 
|  | continue; | 
|  |  | 
|  | // Accumulate the child nodes. | 
|  | for (DomTreeNode *ChildN : *N) { | 
|  | assert(Visited.insert(ChildN).second && | 
|  | "Cannot visit a node twice when walking a tree!"); | 
|  | DomWorklist.push_back(ChildN); | 
|  | } | 
|  | } while (!DomWorklist.empty()); | 
|  | } | 
|  |  | 
|  | static void unswitchNontrivialInvariants( | 
|  | Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, | 
|  | SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, | 
|  | AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, | 
|  | ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { | 
|  | auto *ParentBB = TI.getParent(); | 
|  | BranchInst *BI = dyn_cast<BranchInst>(&TI); | 
|  | SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); | 
|  |  | 
|  | // We can only unswitch switches, conditional branches with an invariant | 
|  | // condition, or combining invariant conditions with an instruction. | 
|  | assert((SI || BI->isConditional()) && | 
|  | "Can only unswitch switches and conditional branch!"); | 
|  | bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; | 
|  | if (FullUnswitch) | 
|  | assert(Invariants.size() == 1 && | 
|  | "Cannot have other invariants with full unswitching!"); | 
|  | else | 
|  | assert(isa<Instruction>(BI->getCondition()) && | 
|  | "Partial unswitching requires an instruction as the condition!"); | 
|  |  | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | // Constant and BBs tracking the cloned and continuing successor. When we are | 
|  | // unswitching the entire condition, this can just be trivially chosen to | 
|  | // unswitch towards `true`. However, when we are unswitching a set of | 
|  | // invariants combined with `and` or `or`, the combining operation determines | 
|  | // the best direction to unswitch: we want to unswitch the direction that will | 
|  | // collapse the branch. | 
|  | bool Direction = true; | 
|  | int ClonedSucc = 0; | 
|  | if (!FullUnswitch) { | 
|  | if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { | 
|  | assert(cast<Instruction>(BI->getCondition())->getOpcode() == | 
|  | Instruction::And && | 
|  | "Only `or` and `and` instructions can combine invariants being " | 
|  | "unswitched."); | 
|  | Direction = false; | 
|  | ClonedSucc = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | BasicBlock *RetainedSuccBB = | 
|  | BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); | 
|  | SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; | 
|  | if (BI) | 
|  | UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); | 
|  | else | 
|  | for (auto Case : SI->cases()) | 
|  | if (Case.getCaseSuccessor() != RetainedSuccBB) | 
|  | UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); | 
|  |  | 
|  | assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && | 
|  | "Should not unswitch the same successor we are retaining!"); | 
|  |  | 
|  | // The branch should be in this exact loop. Any inner loop's invariant branch | 
|  | // should be handled by unswitching that inner loop. The caller of this | 
|  | // routine should filter out any candidates that remain (but were skipped for | 
|  | // whatever reason). | 
|  | assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); | 
|  |  | 
|  | // Compute the parent loop now before we start hacking on things. | 
|  | Loop *ParentL = L.getParentLoop(); | 
|  | // Get blocks in RPO order for MSSA update, before changing the CFG. | 
|  | LoopBlocksRPO LBRPO(&L); | 
|  | if (MSSAU) | 
|  | LBRPO.perform(&LI); | 
|  |  | 
|  | // Compute the outer-most loop containing one of our exit blocks. This is the | 
|  | // furthest up our loopnest which can be mutated, which we will use below to | 
|  | // update things. | 
|  | Loop *OuterExitL = &L; | 
|  | for (auto *ExitBB : ExitBlocks) { | 
|  | Loop *NewOuterExitL = LI.getLoopFor(ExitBB); | 
|  | if (!NewOuterExitL) { | 
|  | // We exited the entire nest with this block, so we're done. | 
|  | OuterExitL = nullptr; | 
|  | break; | 
|  | } | 
|  | if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) | 
|  | OuterExitL = NewOuterExitL; | 
|  | } | 
|  |  | 
|  | // At this point, we're definitely going to unswitch something so invalidate | 
|  | // any cached information in ScalarEvolution for the outer most loop | 
|  | // containing an exit block and all nested loops. | 
|  | if (SE) { | 
|  | if (OuterExitL) | 
|  | SE->forgetLoop(OuterExitL); | 
|  | else | 
|  | SE->forgetTopmostLoop(&L); | 
|  | } | 
|  |  | 
|  | // If the edge from this terminator to a successor dominates that successor, | 
|  | // store a map from each block in its dominator subtree to it. This lets us | 
|  | // tell when cloning for a particular successor if a block is dominated by | 
|  | // some *other* successor with a single data structure. We use this to | 
|  | // significantly reduce cloning. | 
|  | SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; | 
|  | for (auto *SuccBB : llvm::concat<BasicBlock *const>( | 
|  | makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) | 
|  | if (SuccBB->getUniquePredecessor() || | 
|  | llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { | 
|  | return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); | 
|  | })) | 
|  | visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { | 
|  | DominatingSucc[BB] = SuccBB; | 
|  | return true; | 
|  | }); | 
|  |  | 
|  | // Split the preheader, so that we know that there is a safe place to insert | 
|  | // the conditional branch. We will change the preheader to have a conditional | 
|  | // branch on LoopCond. The original preheader will become the split point | 
|  | // between the unswitched versions, and we will have a new preheader for the | 
|  | // original loop. | 
|  | BasicBlock *SplitBB = L.getLoopPreheader(); | 
|  | BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); | 
|  |  | 
|  | // Keep track of the dominator tree updates needed. | 
|  | SmallVector<DominatorTree::UpdateType, 4> DTUpdates; | 
|  |  | 
|  | // Clone the loop for each unswitched successor. | 
|  | SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; | 
|  | VMaps.reserve(UnswitchedSuccBBs.size()); | 
|  | SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; | 
|  | for (auto *SuccBB : UnswitchedSuccBBs) { | 
|  | VMaps.emplace_back(new ValueToValueMapTy()); | 
|  | ClonedPHs[SuccBB] = buildClonedLoopBlocks( | 
|  | L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, | 
|  | DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); | 
|  | } | 
|  |  | 
|  | // The stitching of the branched code back together depends on whether we're | 
|  | // doing full unswitching or not with the exception that we always want to | 
|  | // nuke the initial terminator placed in the split block. | 
|  | SplitBB->getTerminator()->eraseFromParent(); | 
|  | if (FullUnswitch) { | 
|  | // Splice the terminator from the original loop and rewrite its | 
|  | // successors. | 
|  | SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); | 
|  |  | 
|  | // Keep a clone of the terminator for MSSA updates. | 
|  | Instruction *NewTI = TI.clone(); | 
|  | ParentBB->getInstList().push_back(NewTI); | 
|  |  | 
|  | // First wire up the moved terminator to the preheaders. | 
|  | if (BI) { | 
|  | BasicBlock *ClonedPH = ClonedPHs.begin()->second; | 
|  | BI->setSuccessor(ClonedSucc, ClonedPH); | 
|  | BI->setSuccessor(1 - ClonedSucc, LoopPH); | 
|  | DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); | 
|  | } else { | 
|  | assert(SI && "Must either be a branch or switch!"); | 
|  |  | 
|  | // Walk the cases and directly update their successors. | 
|  | assert(SI->getDefaultDest() == RetainedSuccBB && | 
|  | "Not retaining default successor!"); | 
|  | SI->setDefaultDest(LoopPH); | 
|  | for (auto &Case : SI->cases()) | 
|  | if (Case.getCaseSuccessor() == RetainedSuccBB) | 
|  | Case.setSuccessor(LoopPH); | 
|  | else | 
|  | Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); | 
|  |  | 
|  | // We need to use the set to populate domtree updates as even when there | 
|  | // are multiple cases pointing at the same successor we only want to | 
|  | // remove and insert one edge in the domtree. | 
|  | for (BasicBlock *SuccBB : UnswitchedSuccBBs) | 
|  | DTUpdates.push_back( | 
|  | {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); | 
|  | } | 
|  |  | 
|  | if (MSSAU) { | 
|  | DT.applyUpdates(DTUpdates); | 
|  | DTUpdates.clear(); | 
|  |  | 
|  | // Remove all but one edge to the retained block and all unswitched | 
|  | // blocks. This is to avoid having duplicate entries in the cloned Phis, | 
|  | // when we know we only keep a single edge for each case. | 
|  | MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); | 
|  | for (BasicBlock *SuccBB : UnswitchedSuccBBs) | 
|  | MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); | 
|  |  | 
|  | for (auto &VMap : VMaps) | 
|  | MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, | 
|  | /*IgnoreIncomingWithNoClones=*/true); | 
|  | MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); | 
|  |  | 
|  | // Remove all edges to unswitched blocks. | 
|  | for (BasicBlock *SuccBB : UnswitchedSuccBBs) | 
|  | MSSAU->removeEdge(ParentBB, SuccBB); | 
|  | } | 
|  |  | 
|  | // Now unhook the successor relationship as we'll be replacing | 
|  | // the terminator with a direct branch. This is much simpler for branches | 
|  | // than switches so we handle those first. | 
|  | if (BI) { | 
|  | // Remove the parent as a predecessor of the unswitched successor. | 
|  | assert(UnswitchedSuccBBs.size() == 1 && | 
|  | "Only one possible unswitched block for a branch!"); | 
|  | BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); | 
|  | UnswitchedSuccBB->removePredecessor(ParentBB, | 
|  | /*KeepOneInputPHIs*/ true); | 
|  | DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); | 
|  | } else { | 
|  | // Note that we actually want to remove the parent block as a predecessor | 
|  | // of *every* case successor. The case successor is either unswitched, | 
|  | // completely eliminating an edge from the parent to that successor, or it | 
|  | // is a duplicate edge to the retained successor as the retained successor | 
|  | // is always the default successor and as we'll replace this with a direct | 
|  | // branch we no longer need the duplicate entries in the PHI nodes. | 
|  | SwitchInst *NewSI = cast<SwitchInst>(NewTI); | 
|  | assert(NewSI->getDefaultDest() == RetainedSuccBB && | 
|  | "Not retaining default successor!"); | 
|  | for (auto &Case : NewSI->cases()) | 
|  | Case.getCaseSuccessor()->removePredecessor( | 
|  | ParentBB, | 
|  | /*KeepOneInputPHIs*/ true); | 
|  |  | 
|  | // We need to use the set to populate domtree updates as even when there | 
|  | // are multiple cases pointing at the same successor we only want to | 
|  | // remove and insert one edge in the domtree. | 
|  | for (BasicBlock *SuccBB : UnswitchedSuccBBs) | 
|  | DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); | 
|  | } | 
|  |  | 
|  | // After MSSAU update, remove the cloned terminator instruction NewTI. | 
|  | ParentBB->getTerminator()->eraseFromParent(); | 
|  |  | 
|  | // Create a new unconditional branch to the continuing block (as opposed to | 
|  | // the one cloned). | 
|  | BranchInst::Create(RetainedSuccBB, ParentBB); | 
|  | } else { | 
|  | assert(BI && "Only branches have partial unswitching."); | 
|  | assert(UnswitchedSuccBBs.size() == 1 && | 
|  | "Only one possible unswitched block for a branch!"); | 
|  | BasicBlock *ClonedPH = ClonedPHs.begin()->second; | 
|  | // When doing a partial unswitch, we have to do a bit more work to build up | 
|  | // the branch in the split block. | 
|  | buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, | 
|  | *ClonedPH, *LoopPH); | 
|  | DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); | 
|  | } | 
|  |  | 
|  | // Apply the updates accumulated above to get an up-to-date dominator tree. | 
|  | DT.applyUpdates(DTUpdates); | 
|  | if (!FullUnswitch && MSSAU) { | 
|  | // Update MSSA for partial unswitch, after DT update. | 
|  | SmallVector<CFGUpdate, 1> Updates; | 
|  | Updates.push_back( | 
|  | {cfg::UpdateKind::Insert, SplitBB, ClonedPHs.begin()->second}); | 
|  | MSSAU->applyInsertUpdates(Updates, DT); | 
|  | } | 
|  |  | 
|  | // Now that we have an accurate dominator tree, first delete the dead cloned | 
|  | // blocks so that we can accurately build any cloned loops. It is important to | 
|  | // not delete the blocks from the original loop yet because we still want to | 
|  | // reference the original loop to understand the cloned loop's structure. | 
|  | deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); | 
|  |  | 
|  | // Build the cloned loop structure itself. This may be substantially | 
|  | // different from the original structure due to the simplified CFG. This also | 
|  | // handles inserting all the cloned blocks into the correct loops. | 
|  | SmallVector<Loop *, 4> NonChildClonedLoops; | 
|  | for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) | 
|  | buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); | 
|  |  | 
|  | // Now that our cloned loops have been built, we can update the original loop. | 
|  | // First we delete the dead blocks from it and then we rebuild the loop | 
|  | // structure taking these deletions into account. | 
|  | deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU); | 
|  |  | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | SmallVector<Loop *, 4> HoistedLoops; | 
|  | bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); | 
|  |  | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | // This transformation has a high risk of corrupting the dominator tree, and | 
|  | // the below steps to rebuild loop structures will result in hard to debug | 
|  | // errors in that case so verify that the dominator tree is sane first. | 
|  | // FIXME: Remove this when the bugs stop showing up and rely on existing | 
|  | // verification steps. | 
|  | assert(DT.verify(DominatorTree::VerificationLevel::Fast)); | 
|  |  | 
|  | if (BI) { | 
|  | // If we unswitched a branch which collapses the condition to a known | 
|  | // constant we want to replace all the uses of the invariants within both | 
|  | // the original and cloned blocks. We do this here so that we can use the | 
|  | // now updated dominator tree to identify which side the users are on. | 
|  | assert(UnswitchedSuccBBs.size() == 1 && | 
|  | "Only one possible unswitched block for a branch!"); | 
|  | BasicBlock *ClonedPH = ClonedPHs.begin()->second; | 
|  |  | 
|  | // When considering multiple partially-unswitched invariants | 
|  | // we cant just go replace them with constants in both branches. | 
|  | // | 
|  | // For 'AND' we infer that true branch ("continue") means true | 
|  | // for each invariant operand. | 
|  | // For 'OR' we can infer that false branch ("continue") means false | 
|  | // for each invariant operand. | 
|  | // So it happens that for multiple-partial case we dont replace | 
|  | // in the unswitched branch. | 
|  | bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1); | 
|  |  | 
|  | ConstantInt *UnswitchedReplacement = | 
|  | Direction ? ConstantInt::getTrue(BI->getContext()) | 
|  | : ConstantInt::getFalse(BI->getContext()); | 
|  | ConstantInt *ContinueReplacement = | 
|  | Direction ? ConstantInt::getFalse(BI->getContext()) | 
|  | : ConstantInt::getTrue(BI->getContext()); | 
|  | for (Value *Invariant : Invariants) | 
|  | for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); | 
|  | UI != UE;) { | 
|  | // Grab the use and walk past it so we can clobber it in the use list. | 
|  | Use *U = &*UI++; | 
|  | Instruction *UserI = dyn_cast<Instruction>(U->getUser()); | 
|  | if (!UserI) | 
|  | continue; | 
|  |  | 
|  | // Replace it with the 'continue' side if in the main loop body, and the | 
|  | // unswitched if in the cloned blocks. | 
|  | if (DT.dominates(LoopPH, UserI->getParent())) | 
|  | U->set(ContinueReplacement); | 
|  | else if (ReplaceUnswitched && | 
|  | DT.dominates(ClonedPH, UserI->getParent())) | 
|  | U->set(UnswitchedReplacement); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We can change which blocks are exit blocks of all the cloned sibling | 
|  | // loops, the current loop, and any parent loops which shared exit blocks | 
|  | // with the current loop. As a consequence, we need to re-form LCSSA for | 
|  | // them. But we shouldn't need to re-form LCSSA for any child loops. | 
|  | // FIXME: This could be made more efficient by tracking which exit blocks are | 
|  | // new, and focusing on them, but that isn't likely to be necessary. | 
|  | // | 
|  | // In order to reasonably rebuild LCSSA we need to walk inside-out across the | 
|  | // loop nest and update every loop that could have had its exits changed. We | 
|  | // also need to cover any intervening loops. We add all of these loops to | 
|  | // a list and sort them by loop depth to achieve this without updating | 
|  | // unnecessary loops. | 
|  | auto UpdateLoop = [&](Loop &UpdateL) { | 
|  | #ifndef NDEBUG | 
|  | UpdateL.verifyLoop(); | 
|  | for (Loop *ChildL : UpdateL) { | 
|  | ChildL->verifyLoop(); | 
|  | assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && | 
|  | "Perturbed a child loop's LCSSA form!"); | 
|  | } | 
|  | #endif | 
|  | // First build LCSSA for this loop so that we can preserve it when | 
|  | // forming dedicated exits. We don't want to perturb some other loop's | 
|  | // LCSSA while doing that CFG edit. | 
|  | formLCSSA(UpdateL, DT, &LI, nullptr); | 
|  |  | 
|  | // For loops reached by this loop's original exit blocks we may | 
|  | // introduced new, non-dedicated exits. At least try to re-form dedicated | 
|  | // exits for these loops. This may fail if they couldn't have dedicated | 
|  | // exits to start with. | 
|  | formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); | 
|  | }; | 
|  |  | 
|  | // For non-child cloned loops and hoisted loops, we just need to update LCSSA | 
|  | // and we can do it in any order as they don't nest relative to each other. | 
|  | // | 
|  | // Also check if any of the loops we have updated have become top-level loops | 
|  | // as that will necessitate widening the outer loop scope. | 
|  | for (Loop *UpdatedL : | 
|  | llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { | 
|  | UpdateLoop(*UpdatedL); | 
|  | if (!UpdatedL->getParentLoop()) | 
|  | OuterExitL = nullptr; | 
|  | } | 
|  | if (IsStillLoop) { | 
|  | UpdateLoop(L); | 
|  | if (!L.getParentLoop()) | 
|  | OuterExitL = nullptr; | 
|  | } | 
|  |  | 
|  | // If the original loop had exit blocks, walk up through the outer most loop | 
|  | // of those exit blocks to update LCSSA and form updated dedicated exits. | 
|  | if (OuterExitL != &L) | 
|  | for (Loop *OuterL = ParentL; OuterL != OuterExitL; | 
|  | OuterL = OuterL->getParentLoop()) | 
|  | UpdateLoop(*OuterL); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Verify the entire loop structure to catch any incorrect updates before we | 
|  | // progress in the pass pipeline. | 
|  | LI.verify(DT); | 
|  | #endif | 
|  |  | 
|  | // Now that we've unswitched something, make callbacks to report the changes. | 
|  | // For that we need to merge together the updated loops and the cloned loops | 
|  | // and check whether the original loop survived. | 
|  | SmallVector<Loop *, 4> SibLoops; | 
|  | for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) | 
|  | if (UpdatedL->getParentLoop() == ParentL) | 
|  | SibLoops.push_back(UpdatedL); | 
|  | UnswitchCB(IsStillLoop, SibLoops); | 
|  |  | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | if (BI) | 
|  | ++NumBranches; | 
|  | else | 
|  | ++NumSwitches; | 
|  | } | 
|  |  | 
|  | /// Recursively compute the cost of a dominator subtree based on the per-block | 
|  | /// cost map provided. | 
|  | /// | 
|  | /// The recursive computation is memozied into the provided DT-indexed cost map | 
|  | /// to allow querying it for most nodes in the domtree without it becoming | 
|  | /// quadratic. | 
|  | static int | 
|  | computeDomSubtreeCost(DomTreeNode &N, | 
|  | const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, | 
|  | SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { | 
|  | // Don't accumulate cost (or recurse through) blocks not in our block cost | 
|  | // map and thus not part of the duplication cost being considered. | 
|  | auto BBCostIt = BBCostMap.find(N.getBlock()); | 
|  | if (BBCostIt == BBCostMap.end()) | 
|  | return 0; | 
|  |  | 
|  | // Lookup this node to see if we already computed its cost. | 
|  | auto DTCostIt = DTCostMap.find(&N); | 
|  | if (DTCostIt != DTCostMap.end()) | 
|  | return DTCostIt->second; | 
|  |  | 
|  | // If not, we have to compute it. We can't use insert above and update | 
|  | // because computing the cost may insert more things into the map. | 
|  | int Cost = std::accumulate( | 
|  | N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { | 
|  | return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); | 
|  | }); | 
|  | bool Inserted = DTCostMap.insert({&N, Cost}).second; | 
|  | (void)Inserted; | 
|  | assert(Inserted && "Should not insert a node while visiting children!"); | 
|  | return Cost; | 
|  | } | 
|  |  | 
|  | /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, | 
|  | /// making the following replacement: | 
|  | /// | 
|  | ///   --code before guard-- | 
|  | ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] | 
|  | ///   --code after guard-- | 
|  | /// | 
|  | /// into | 
|  | /// | 
|  | ///   --code before guard-- | 
|  | ///   br i1 %cond, label %guarded, label %deopt | 
|  | /// | 
|  | /// guarded: | 
|  | ///   --code after guard-- | 
|  | /// | 
|  | /// deopt: | 
|  | ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] | 
|  | ///   unreachable | 
|  | /// | 
|  | /// It also makes all relevant DT and LI updates, so that all structures are in | 
|  | /// valid state after this transform. | 
|  | static BranchInst * | 
|  | turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, | 
|  | SmallVectorImpl<BasicBlock *> &ExitBlocks, | 
|  | DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { | 
|  | SmallVector<DominatorTree::UpdateType, 4> DTUpdates; | 
|  | LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); | 
|  | BasicBlock *CheckBB = GI->getParent(); | 
|  |  | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | // Remove all CheckBB's successors from DomTree. A block can be seen among | 
|  | // successors more than once, but for DomTree it should be added only once. | 
|  | SmallPtrSet<BasicBlock *, 4> Successors; | 
|  | for (auto *Succ : successors(CheckBB)) | 
|  | if (Successors.insert(Succ).second) | 
|  | DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); | 
|  |  | 
|  | Instruction *DeoptBlockTerm = | 
|  | SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); | 
|  | BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); | 
|  | // SplitBlockAndInsertIfThen inserts control flow that branches to | 
|  | // DeoptBlockTerm if the condition is true.  We want the opposite. | 
|  | CheckBI->swapSuccessors(); | 
|  |  | 
|  | BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); | 
|  | GuardedBlock->setName("guarded"); | 
|  | CheckBI->getSuccessor(1)->setName("deopt"); | 
|  | BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); | 
|  |  | 
|  | // We now have a new exit block. | 
|  | ExitBlocks.push_back(CheckBI->getSuccessor(1)); | 
|  |  | 
|  | if (MSSAU) | 
|  | MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); | 
|  |  | 
|  | GI->moveBefore(DeoptBlockTerm); | 
|  | GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); | 
|  |  | 
|  | // Add new successors of CheckBB into DomTree. | 
|  | for (auto *Succ : successors(CheckBB)) | 
|  | DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); | 
|  |  | 
|  | // Now the blocks that used to be CheckBB's successors are GuardedBlock's | 
|  | // successors. | 
|  | for (auto *Succ : Successors) | 
|  | DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); | 
|  |  | 
|  | // Make proper changes to DT. | 
|  | DT.applyUpdates(DTUpdates); | 
|  | // Inform LI of a new loop block. | 
|  | L.addBasicBlockToLoop(GuardedBlock, LI); | 
|  |  | 
|  | if (MSSAU) { | 
|  | MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); | 
|  | MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::End); | 
|  | if (VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  | } | 
|  |  | 
|  | ++NumGuards; | 
|  | return CheckBI; | 
|  | } | 
|  |  | 
|  | /// Cost multiplier is a way to limit potentially exponential behavior | 
|  | /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch | 
|  | /// candidates available. Also accounting for the number of "sibling" loops with | 
|  | /// the idea to account for previous unswitches that already happened on this | 
|  | /// cluster of loops. There was an attempt to keep this formula simple, | 
|  | /// just enough to limit the worst case behavior. Even if it is not that simple | 
|  | /// now it is still not an attempt to provide a detailed heuristic size | 
|  | /// prediction. | 
|  | /// | 
|  | /// TODO: Make a proper accounting of "explosion" effect for all kinds of | 
|  | /// unswitch candidates, making adequate predictions instead of wild guesses. | 
|  | /// That requires knowing not just the number of "remaining" candidates but | 
|  | /// also costs of unswitching for each of these candidates. | 
|  | static int calculateUnswitchCostMultiplier( | 
|  | Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, | 
|  | ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> | 
|  | UnswitchCandidates) { | 
|  |  | 
|  | // Guards and other exiting conditions do not contribute to exponential | 
|  | // explosion as soon as they dominate the latch (otherwise there might be | 
|  | // another path to the latch remaining that does not allow to eliminate the | 
|  | // loop copy on unswitch). | 
|  | BasicBlock *Latch = L.getLoopLatch(); | 
|  | BasicBlock *CondBlock = TI.getParent(); | 
|  | if (DT.dominates(CondBlock, Latch) && | 
|  | (isGuard(&TI) || | 
|  | llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { | 
|  | return L.contains(SuccBB); | 
|  | }) <= 1)) { | 
|  | NumCostMultiplierSkipped++; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | auto *ParentL = L.getParentLoop(); | 
|  | int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() | 
|  | : std::distance(LI.begin(), LI.end())); | 
|  | // Count amount of clones that all the candidates might cause during | 
|  | // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. | 
|  | int UnswitchedClones = 0; | 
|  | for (auto Candidate : UnswitchCandidates) { | 
|  | Instruction *CI = Candidate.first; | 
|  | BasicBlock *CondBlock = CI->getParent(); | 
|  | bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); | 
|  | if (isGuard(CI)) { | 
|  | if (!SkipExitingSuccessors) | 
|  | UnswitchedClones++; | 
|  | continue; | 
|  | } | 
|  | int NonExitingSuccessors = llvm::count_if( | 
|  | successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { | 
|  | return !SkipExitingSuccessors || L.contains(SuccBB); | 
|  | }); | 
|  | UnswitchedClones += Log2_32(NonExitingSuccessors); | 
|  | } | 
|  |  | 
|  | // Ignore up to the "unscaled candidates" number of unswitch candidates | 
|  | // when calculating the power-of-two scaling of the cost. The main idea | 
|  | // with this control is to allow a small number of unswitches to happen | 
|  | // and rely more on siblings multiplier (see below) when the number | 
|  | // of candidates is small. | 
|  | unsigned ClonesPower = | 
|  | std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); | 
|  |  | 
|  | // Allowing top-level loops to spread a bit more than nested ones. | 
|  | int SiblingsMultiplier = | 
|  | std::max((ParentL ? SiblingsCount | 
|  | : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), | 
|  | 1); | 
|  | // Compute the cost multiplier in a way that won't overflow by saturating | 
|  | // at an upper bound. | 
|  | int CostMultiplier; | 
|  | if (ClonesPower > Log2_32(UnswitchThreshold) || | 
|  | SiblingsMultiplier > UnswitchThreshold) | 
|  | CostMultiplier = UnswitchThreshold; | 
|  | else | 
|  | CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), | 
|  | (int)UnswitchThreshold); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier | 
|  | << " (siblings " << SiblingsMultiplier << " * clones " | 
|  | << (1 << ClonesPower) << ")" | 
|  | << " for unswitch candidate: " << TI << "\n"); | 
|  | return CostMultiplier; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, | 
|  | AssumptionCache &AC, TargetTransformInfo &TTI, | 
|  | function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, | 
|  | ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { | 
|  | // Collect all invariant conditions within this loop (as opposed to an inner | 
|  | // loop which would be handled when visiting that inner loop). | 
|  | SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> | 
|  | UnswitchCandidates; | 
|  |  | 
|  | // Whether or not we should also collect guards in the loop. | 
|  | bool CollectGuards = false; | 
|  | if (UnswitchGuards) { | 
|  | auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( | 
|  | Intrinsic::getName(Intrinsic::experimental_guard)); | 
|  | if (GuardDecl && !GuardDecl->use_empty()) | 
|  | CollectGuards = true; | 
|  | } | 
|  |  | 
|  | for (auto *BB : L.blocks()) { | 
|  | if (LI.getLoopFor(BB) != &L) | 
|  | continue; | 
|  |  | 
|  | if (CollectGuards) | 
|  | for (auto &I : *BB) | 
|  | if (isGuard(&I)) { | 
|  | auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); | 
|  | // TODO: Support AND, OR conditions and partial unswitching. | 
|  | if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) | 
|  | UnswitchCandidates.push_back({&I, {Cond}}); | 
|  | } | 
|  |  | 
|  | if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { | 
|  | // We can only consider fully loop-invariant switch conditions as we need | 
|  | // to completely eliminate the switch after unswitching. | 
|  | if (!isa<Constant>(SI->getCondition()) && | 
|  | L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) | 
|  | UnswitchCandidates.push_back({SI, {SI->getCondition()}}); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); | 
|  | if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || | 
|  | BI->getSuccessor(0) == BI->getSuccessor(1)) | 
|  | continue; | 
|  |  | 
|  | if (L.isLoopInvariant(BI->getCondition())) { | 
|  | UnswitchCandidates.push_back({BI, {BI->getCondition()}}); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Instruction &CondI = *cast<Instruction>(BI->getCondition()); | 
|  | if (CondI.getOpcode() != Instruction::And && | 
|  | CondI.getOpcode() != Instruction::Or) | 
|  | continue; | 
|  |  | 
|  | TinyPtrVector<Value *> Invariants = | 
|  | collectHomogenousInstGraphLoopInvariants(L, CondI, LI); | 
|  | if (Invariants.empty()) | 
|  | continue; | 
|  |  | 
|  | UnswitchCandidates.push_back({BI, std::move(Invariants)}); | 
|  | } | 
|  |  | 
|  | // If we didn't find any candidates, we're done. | 
|  | if (UnswitchCandidates.empty()) | 
|  | return false; | 
|  |  | 
|  | // Check if there are irreducible CFG cycles in this loop. If so, we cannot | 
|  | // easily unswitch non-trivial edges out of the loop. Doing so might turn the | 
|  | // irreducible control flow into reducible control flow and introduce new | 
|  | // loops "out of thin air". If we ever discover important use cases for doing | 
|  | // this, we can add support to loop unswitch, but it is a lot of complexity | 
|  | // for what seems little or no real world benefit. | 
|  | LoopBlocksRPO RPOT(&L); | 
|  | RPOT.perform(&LI); | 
|  | if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) | 
|  | return false; | 
|  |  | 
|  | SmallVector<BasicBlock *, 4> ExitBlocks; | 
|  | L.getUniqueExitBlocks(ExitBlocks); | 
|  |  | 
|  | // We cannot unswitch if exit blocks contain a cleanuppad instruction as we | 
|  | // don't know how to split those exit blocks. | 
|  | // FIXME: We should teach SplitBlock to handle this and remove this | 
|  | // restriction. | 
|  | for (auto *ExitBB : ExitBlocks) | 
|  | if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { | 
|  | dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Considering " << UnswitchCandidates.size() | 
|  | << " non-trivial loop invariant conditions for unswitching.\n"); | 
|  |  | 
|  | // Given that unswitching these terminators will require duplicating parts of | 
|  | // the loop, so we need to be able to model that cost. Compute the ephemeral | 
|  | // values and set up a data structure to hold per-BB costs. We cache each | 
|  | // block's cost so that we don't recompute this when considering different | 
|  | // subsets of the loop for duplication during unswitching. | 
|  | SmallPtrSet<const Value *, 4> EphValues; | 
|  | CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); | 
|  | SmallDenseMap<BasicBlock *, int, 4> BBCostMap; | 
|  |  | 
|  | // Compute the cost of each block, as well as the total loop cost. Also, bail | 
|  | // out if we see instructions which are incompatible with loop unswitching | 
|  | // (convergent, noduplicate, or cross-basic-block tokens). | 
|  | // FIXME: We might be able to safely handle some of these in non-duplicated | 
|  | // regions. | 
|  | int LoopCost = 0; | 
|  | for (auto *BB : L.blocks()) { | 
|  | int Cost = 0; | 
|  | for (auto &I : *BB) { | 
|  | if (EphValues.count(&I)) | 
|  | continue; | 
|  |  | 
|  | if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) | 
|  | return false; | 
|  | if (auto CS = CallSite(&I)) | 
|  | if (CS.isConvergent() || CS.cannotDuplicate()) | 
|  | return false; | 
|  |  | 
|  | Cost += TTI.getUserCost(&I); | 
|  | } | 
|  | assert(Cost >= 0 && "Must not have negative costs!"); | 
|  | LoopCost += Cost; | 
|  | assert(LoopCost >= 0 && "Must not have negative loop costs!"); | 
|  | BBCostMap[BB] = Cost; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n"); | 
|  |  | 
|  | // Now we find the best candidate by searching for the one with the following | 
|  | // properties in order: | 
|  | // | 
|  | // 1) An unswitching cost below the threshold | 
|  | // 2) The smallest number of duplicated unswitch candidates (to avoid | 
|  | //    creating redundant subsequent unswitching) | 
|  | // 3) The smallest cost after unswitching. | 
|  | // | 
|  | // We prioritize reducing fanout of unswitch candidates provided the cost | 
|  | // remains below the threshold because this has a multiplicative effect. | 
|  | // | 
|  | // This requires memoizing each dominator subtree to avoid redundant work. | 
|  | // | 
|  | // FIXME: Need to actually do the number of candidates part above. | 
|  | SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; | 
|  | // Given a terminator which might be unswitched, computes the non-duplicated | 
|  | // cost for that terminator. | 
|  | auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) { | 
|  | BasicBlock &BB = *TI.getParent(); | 
|  | SmallPtrSet<BasicBlock *, 4> Visited; | 
|  |  | 
|  | int Cost = LoopCost; | 
|  | for (BasicBlock *SuccBB : successors(&BB)) { | 
|  | // Don't count successors more than once. | 
|  | if (!Visited.insert(SuccBB).second) | 
|  | continue; | 
|  |  | 
|  | // If this is a partial unswitch candidate, then it must be a conditional | 
|  | // branch with a condition of either `or` or `and`. In that case, one of | 
|  | // the successors is necessarily duplicated, so don't even try to remove | 
|  | // its cost. | 
|  | if (!FullUnswitch) { | 
|  | auto &BI = cast<BranchInst>(TI); | 
|  | if (cast<Instruction>(BI.getCondition())->getOpcode() == | 
|  | Instruction::And) { | 
|  | if (SuccBB == BI.getSuccessor(1)) | 
|  | continue; | 
|  | } else { | 
|  | assert(cast<Instruction>(BI.getCondition())->getOpcode() == | 
|  | Instruction::Or && | 
|  | "Only `and` and `or` conditions can result in a partial " | 
|  | "unswitch!"); | 
|  | if (SuccBB == BI.getSuccessor(0)) | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This successor's domtree will not need to be duplicated after | 
|  | // unswitching if the edge to the successor dominates it (and thus the | 
|  | // entire tree). This essentially means there is no other path into this | 
|  | // subtree and so it will end up live in only one clone of the loop. | 
|  | if (SuccBB->getUniquePredecessor() || | 
|  | llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { | 
|  | return PredBB == &BB || DT.dominates(SuccBB, PredBB); | 
|  | })) { | 
|  | Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); | 
|  | assert(Cost >= 0 && | 
|  | "Non-duplicated cost should never exceed total loop cost!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now scale the cost by the number of unique successors minus one. We | 
|  | // subtract one because there is already at least one copy of the entire | 
|  | // loop. This is computing the new cost of unswitching a condition. | 
|  | // Note that guards always have 2 unique successors that are implicit and | 
|  | // will be materialized if we decide to unswitch it. | 
|  | int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); | 
|  | assert(SuccessorsCount > 1 && | 
|  | "Cannot unswitch a condition without multiple distinct successors!"); | 
|  | return Cost * (SuccessorsCount - 1); | 
|  | }; | 
|  | Instruction *BestUnswitchTI = nullptr; | 
|  | int BestUnswitchCost; | 
|  | ArrayRef<Value *> BestUnswitchInvariants; | 
|  | for (auto &TerminatorAndInvariants : UnswitchCandidates) { | 
|  | Instruction &TI = *TerminatorAndInvariants.first; | 
|  | ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; | 
|  | BranchInst *BI = dyn_cast<BranchInst>(&TI); | 
|  | int CandidateCost = ComputeUnswitchedCost( | 
|  | TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && | 
|  | Invariants[0] == BI->getCondition())); | 
|  | // Calculate cost multiplier which is a tool to limit potentially | 
|  | // exponential behavior of loop-unswitch. | 
|  | if (EnableUnswitchCostMultiplier) { | 
|  | int CostMultiplier = | 
|  | calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); | 
|  | assert( | 
|  | (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && | 
|  | "cost multiplier needs to be in the range of 1..UnswitchThreshold"); | 
|  | CandidateCost *= CostMultiplier; | 
|  | LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost | 
|  | << " (multiplier: " << CostMultiplier << ")" | 
|  | << " for unswitch candidate: " << TI << "\n"); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost | 
|  | << " for unswitch candidate: " << TI << "\n"); | 
|  | } | 
|  |  | 
|  | if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { | 
|  | BestUnswitchTI = &TI; | 
|  | BestUnswitchCost = CandidateCost; | 
|  | BestUnswitchInvariants = Invariants; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BestUnswitchCost >= UnswitchThreshold) { | 
|  | LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " | 
|  | << BestUnswitchCost << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the best candidate is a guard, turn it into a branch. | 
|  | if (isGuard(BestUnswitchTI)) | 
|  | BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, | 
|  | ExitBlocks, DT, LI, MSSAU); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = " | 
|  | << BestUnswitchCost << ") terminator: " << *BestUnswitchTI | 
|  | << "\n"); | 
|  | unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, | 
|  | ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Unswitch control flow predicated on loop invariant conditions. | 
|  | /// | 
|  | /// This first hoists all branches or switches which are trivial (IE, do not | 
|  | /// require duplicating any part of the loop) out of the loop body. It then | 
|  | /// looks at other loop invariant control flows and tries to unswitch those as | 
|  | /// well by cloning the loop if the result is small enough. | 
|  | /// | 
|  | /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also | 
|  | /// updated based on the unswitch. | 
|  | /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled). | 
|  | /// | 
|  | /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is | 
|  | /// true, we will attempt to do non-trivial unswitching as well as trivial | 
|  | /// unswitching. | 
|  | /// | 
|  | /// The `UnswitchCB` callback provided will be run after unswitching is | 
|  | /// complete, with the first parameter set to `true` if the provided loop | 
|  | /// remains a loop, and a list of new sibling loops created. | 
|  | /// | 
|  | /// If `SE` is non-null, we will update that analysis based on the unswitching | 
|  | /// done. | 
|  | static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, | 
|  | AssumptionCache &AC, TargetTransformInfo &TTI, | 
|  | bool NonTrivial, | 
|  | function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, | 
|  | ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { | 
|  | assert(L.isRecursivelyLCSSAForm(DT, LI) && | 
|  | "Loops must be in LCSSA form before unswitching."); | 
|  | bool Changed = false; | 
|  |  | 
|  | // Must be in loop simplified form: we need a preheader and dedicated exits. | 
|  | if (!L.isLoopSimplifyForm()) | 
|  | return false; | 
|  |  | 
|  | // Try trivial unswitch first before loop over other basic blocks in the loop. | 
|  | if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { | 
|  | // If we unswitched successfully we will want to clean up the loop before | 
|  | // processing it further so just mark it as unswitched and return. | 
|  | UnswitchCB(/*CurrentLoopValid*/ true, {}); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If we're not doing non-trivial unswitching, we're done. We both accept | 
|  | // a parameter but also check a local flag that can be used for testing | 
|  | // a debugging. | 
|  | if (!NonTrivial && !EnableNonTrivialUnswitch) | 
|  | return false; | 
|  |  | 
|  | // For non-trivial unswitching, because it often creates new loops, we rely on | 
|  | // the pass manager to iterate on the loops rather than trying to immediately | 
|  | // reach a fixed point. There is no substantial advantage to iterating | 
|  | // internally, and if any of the new loops are simplified enough to contain | 
|  | // trivial unswitching we want to prefer those. | 
|  |  | 
|  | // Try to unswitch the best invariant condition. We prefer this full unswitch to | 
|  | // a partial unswitch when possible below the threshold. | 
|  | if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU)) | 
|  | return true; | 
|  |  | 
|  | // No other opportunities to unswitch. | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, | 
|  | LoopStandardAnalysisResults &AR, | 
|  | LPMUpdater &U) { | 
|  | Function &F = *L.getHeader()->getParent(); | 
|  | (void)F; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L | 
|  | << "\n"); | 
|  |  | 
|  | // Save the current loop name in a variable so that we can report it even | 
|  | // after it has been deleted. | 
|  | std::string LoopName = L.getName(); | 
|  |  | 
|  | auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, | 
|  | ArrayRef<Loop *> NewLoops) { | 
|  | // If we did a non-trivial unswitch, we have added new (cloned) loops. | 
|  | if (!NewLoops.empty()) | 
|  | U.addSiblingLoops(NewLoops); | 
|  |  | 
|  | // If the current loop remains valid, we should revisit it to catch any | 
|  | // other unswitch opportunities. Otherwise, we need to mark it as deleted. | 
|  | if (CurrentLoopValid) | 
|  | U.revisitCurrentLoop(); | 
|  | else | 
|  | U.markLoopAsDeleted(L, LoopName); | 
|  | }; | 
|  |  | 
|  | Optional<MemorySSAUpdater> MSSAU; | 
|  | if (AR.MSSA) { | 
|  | MSSAU = MemorySSAUpdater(AR.MSSA); | 
|  | if (VerifyMemorySSA) | 
|  | AR.MSSA->verifyMemorySSA(); | 
|  | } | 
|  | if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, | 
|  | &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | if (AR.MSSA && VerifyMemorySSA) | 
|  | AR.MSSA->verifyMemorySSA(); | 
|  |  | 
|  | // Historically this pass has had issues with the dominator tree so verify it | 
|  | // in asserts builds. | 
|  | assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); | 
|  |  | 
|  | auto PA = getLoopPassPreservedAnalyses(); | 
|  | if (EnableMSSALoopDependency) | 
|  | PA.preserve<MemorySSAAnalysis>(); | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class SimpleLoopUnswitchLegacyPass : public LoopPass { | 
|  | bool NonTrivial; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass ID, replacement for typeid | 
|  |  | 
|  | explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) | 
|  | : LoopPass(ID), NonTrivial(NonTrivial) { | 
|  | initializeSimpleLoopUnswitchLegacyPassPass( | 
|  | *PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnLoop(Loop *L, LPPassManager &LPM) override; | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | if (EnableMSSALoopDependency) { | 
|  | AU.addRequired<MemorySSAWrapperPass>(); | 
|  | AU.addPreserved<MemorySSAWrapperPass>(); | 
|  | } | 
|  | getLoopAnalysisUsage(AU); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { | 
|  | if (skipLoop(L)) | 
|  | return false; | 
|  |  | 
|  | Function &F = *L->getHeader()->getParent(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L | 
|  | << "\n"); | 
|  |  | 
|  | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  | auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | 
|  | auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); | 
|  | MemorySSA *MSSA = nullptr; | 
|  | Optional<MemorySSAUpdater> MSSAU; | 
|  | if (EnableMSSALoopDependency) { | 
|  | MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); | 
|  | MSSAU = MemorySSAUpdater(MSSA); | 
|  | } | 
|  |  | 
|  | auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); | 
|  | auto *SE = SEWP ? &SEWP->getSE() : nullptr; | 
|  |  | 
|  | auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, | 
|  | ArrayRef<Loop *> NewLoops) { | 
|  | // If we did a non-trivial unswitch, we have added new (cloned) loops. | 
|  | for (auto *NewL : NewLoops) | 
|  | LPM.addLoop(*NewL); | 
|  |  | 
|  | // If the current loop remains valid, re-add it to the queue. This is | 
|  | // a little wasteful as we'll finish processing the current loop as well, | 
|  | // but it is the best we can do in the old PM. | 
|  | if (CurrentLoopValid) | 
|  | LPM.addLoop(*L); | 
|  | else | 
|  | LPM.markLoopAsDeleted(*L); | 
|  | }; | 
|  |  | 
|  | if (MSSA && VerifyMemorySSA) | 
|  | MSSA->verifyMemorySSA(); | 
|  |  | 
|  | bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE, | 
|  | MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); | 
|  |  | 
|  | if (MSSA && VerifyMemorySSA) | 
|  | MSSA->verifyMemorySSA(); | 
|  |  | 
|  | // If anything was unswitched, also clear any cached information about this | 
|  | // loop. | 
|  | LPM.deleteSimpleAnalysisLoop(L); | 
|  |  | 
|  | // Historically this pass has had issues with the dominator tree so verify it | 
|  | // in asserts builds. | 
|  | assert(DT.verify(DominatorTree::VerificationLevel::Fast)); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | char SimpleLoopUnswitchLegacyPass::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", | 
|  | "Simple unswitch loops", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", | 
|  | "Simple unswitch loops", false, false) | 
|  |  | 
|  | Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { | 
|  | return new SimpleLoopUnswitchLegacyPass(NonTrivial); | 
|  | } |