|  | //===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This tablegen backend is responsible for emitting the memory fold tables of | 
|  | // the X86 backend instructions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CodeGenTarget.h" | 
|  | #include "X86RecognizableInstr.h" | 
|  | #include "llvm/TableGen/Error.h" | 
|  | #include "llvm/TableGen/TableGenBackend.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // 3 possible strategies for the unfolding flag (TB_NO_REVERSE) of the | 
|  | // manual added entries. | 
|  | enum UnfoldStrategy { | 
|  | UNFOLD,     // Allow unfolding | 
|  | NO_UNFOLD,  // Prevent unfolding | 
|  | NO_STRATEGY // Make decision according to operands' sizes | 
|  | }; | 
|  |  | 
|  | // Represents an entry in the manual mapped instructions set. | 
|  | struct ManualMapEntry { | 
|  | const char *RegInstStr; | 
|  | const char *MemInstStr; | 
|  | UnfoldStrategy Strategy; | 
|  |  | 
|  | ManualMapEntry(const char *RegInstStr, const char *MemInstStr, | 
|  | UnfoldStrategy Strategy = NO_STRATEGY) | 
|  | : RegInstStr(RegInstStr), MemInstStr(MemInstStr), Strategy(Strategy) {} | 
|  | }; | 
|  |  | 
|  | class IsMatch; | 
|  |  | 
|  | // List of instructions requiring explicitly aligned memory. | 
|  | const char *ExplicitAlign[] = {"MOVDQA",  "MOVAPS",  "MOVAPD",  "MOVNTPS", | 
|  | "MOVNTPD", "MOVNTDQ", "MOVNTDQA"}; | 
|  |  | 
|  | // List of instructions NOT requiring explicit memory alignment. | 
|  | const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD", | 
|  | "PCMPESTRM", "PCMPESTRI", | 
|  | "PCMPISTRM", "PCMPISTRI" }; | 
|  |  | 
|  | // For manually mapping instructions that do not match by their encoding. | 
|  | const ManualMapEntry ManualMapSet[] = { | 
|  | { "ADD16ri_DB",       "ADD16mi",         NO_UNFOLD  }, | 
|  | { "ADD16ri8_DB",      "ADD16mi8",        NO_UNFOLD  }, | 
|  | { "ADD16rr_DB",       "ADD16mr",         NO_UNFOLD  }, | 
|  | { "ADD32ri_DB",       "ADD32mi",         NO_UNFOLD  }, | 
|  | { "ADD32ri8_DB",      "ADD32mi8",        NO_UNFOLD  }, | 
|  | { "ADD32rr_DB",       "ADD32mr",         NO_UNFOLD  }, | 
|  | { "ADD64ri32_DB",     "ADD64mi32",       NO_UNFOLD  }, | 
|  | { "ADD64ri8_DB",      "ADD64mi8",        NO_UNFOLD  }, | 
|  | { "ADD64rr_DB",       "ADD64mr",         NO_UNFOLD  }, | 
|  | { "ADD16rr_DB",       "ADD16rm",         NO_UNFOLD  }, | 
|  | { "ADD32rr_DB",       "ADD32rm",         NO_UNFOLD  }, | 
|  | { "ADD64rr_DB",       "ADD64rm",         NO_UNFOLD  }, | 
|  | { "PUSH16r",          "PUSH16rmm",       UNFOLD }, | 
|  | { "PUSH32r",          "PUSH32rmm",       UNFOLD }, | 
|  | { "PUSH64r",          "PUSH64rmm",       UNFOLD }, | 
|  | { "TAILJMPr",         "TAILJMPm",        UNFOLD }, | 
|  | { "TAILJMPr64",       "TAILJMPm64",      UNFOLD }, | 
|  | { "TAILJMPr64_REX",   "TAILJMPm64_REX",  UNFOLD }, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static bool isExplicitAlign(const CodeGenInstruction *Inst) { | 
|  | return any_of(ExplicitAlign, [Inst](const char *InstStr) { | 
|  | return Inst->TheDef->getName().find(InstStr) != StringRef::npos; | 
|  | }); | 
|  | } | 
|  |  | 
|  | static bool isExplicitUnalign(const CodeGenInstruction *Inst) { | 
|  | return any_of(ExplicitUnalign, [Inst](const char *InstStr) { | 
|  | return Inst->TheDef->getName().find(InstStr) != StringRef::npos; | 
|  | }); | 
|  | } | 
|  |  | 
|  | class X86FoldTablesEmitter { | 
|  | RecordKeeper &Records; | 
|  | CodeGenTarget Target; | 
|  |  | 
|  | // Represents an entry in the folding table | 
|  | class X86FoldTableEntry { | 
|  | const CodeGenInstruction *RegInst; | 
|  | const CodeGenInstruction *MemInst; | 
|  |  | 
|  | public: | 
|  | bool CannotUnfold = false; | 
|  | bool IsLoad = false; | 
|  | bool IsStore = false; | 
|  | bool IsAligned = false; | 
|  | unsigned int Alignment = 0; | 
|  |  | 
|  | X86FoldTableEntry(const CodeGenInstruction *RegInst, | 
|  | const CodeGenInstruction *MemInst) | 
|  | : RegInst(RegInst), MemInst(MemInst) {} | 
|  |  | 
|  | friend raw_ostream &operator<<(raw_ostream &OS, | 
|  | const X86FoldTableEntry &E) { | 
|  | OS << "{ X86::" << E.RegInst->TheDef->getName() | 
|  | << ", X86::" << E.MemInst->TheDef->getName() << ", "; | 
|  |  | 
|  | if (E.IsLoad) | 
|  | OS << "TB_FOLDED_LOAD | "; | 
|  | if (E.IsStore) | 
|  | OS << "TB_FOLDED_STORE | "; | 
|  | if (E.CannotUnfold) | 
|  | OS << "TB_NO_REVERSE | "; | 
|  | if (E.IsAligned) | 
|  | OS << "TB_ALIGN_" << E.Alignment << " | "; | 
|  |  | 
|  | OS << "0 },\n"; | 
|  |  | 
|  | return OS; | 
|  | } | 
|  | }; | 
|  |  | 
|  | typedef std::vector<X86FoldTableEntry> FoldTable; | 
|  | // std::vector for each folding table. | 
|  | // Table2Addr - Holds instructions which their memory form performs load+store | 
|  | // Table#i - Holds instructions which the their memory form perform a load OR | 
|  | //           a store,  and their #i'th operand is folded. | 
|  | FoldTable Table2Addr; | 
|  | FoldTable Table0; | 
|  | FoldTable Table1; | 
|  | FoldTable Table2; | 
|  | FoldTable Table3; | 
|  | FoldTable Table4; | 
|  |  | 
|  | public: | 
|  | X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {} | 
|  |  | 
|  | // run - Generate the 6 X86 memory fold tables. | 
|  | void run(raw_ostream &OS); | 
|  |  | 
|  | private: | 
|  | // Decides to which table to add the entry with the given instructions. | 
|  | // S sets the strategy of adding the TB_NO_REVERSE flag. | 
|  | void updateTables(const CodeGenInstruction *RegInstr, | 
|  | const CodeGenInstruction *MemInstr, | 
|  | const UnfoldStrategy S = NO_STRATEGY); | 
|  |  | 
|  | // Generates X86FoldTableEntry with the given instructions and fill it with | 
|  | // the appropriate flags - then adds it to Table. | 
|  | void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInstr, | 
|  | const CodeGenInstruction *MemInstr, | 
|  | const UnfoldStrategy S, const unsigned int FoldedInd); | 
|  |  | 
|  | // Print the given table as a static const C++ array of type | 
|  | // X86MemoryFoldTableEntry. | 
|  | void printTable(const FoldTable &Table, StringRef TableName, | 
|  | raw_ostream &OS) { | 
|  | OS << "static const X86MemoryFoldTableEntry MemoryFold" << TableName | 
|  | << "[] = {\n"; | 
|  |  | 
|  | for (const X86FoldTableEntry &E : Table) | 
|  | OS << E; | 
|  |  | 
|  | OS << "};\n"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Return true if one of the instruction's operands is a RST register class | 
|  | static bool hasRSTRegClass(const CodeGenInstruction *Inst) { | 
|  | return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) { | 
|  | return OpIn.Rec->getName() == "RST"; | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Return true if one of the instruction's operands is a ptr_rc_tailcall | 
|  | static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) { | 
|  | return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) { | 
|  | return OpIn.Rec->getName() == "ptr_rc_tailcall"; | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Calculates the integer value representing the BitsInit object | 
|  | static inline uint64_t getValueFromBitsInit(const BitsInit *B) { | 
|  | assert(B->getNumBits() <= sizeof(uint64_t) * 8 && "BitInits' too long!"); | 
|  |  | 
|  | uint64_t Value = 0; | 
|  | for (unsigned i = 0, e = B->getNumBits(); i != e; ++i) { | 
|  | BitInit *Bit = cast<BitInit>(B->getBit(i)); | 
|  | Value |= uint64_t(Bit->getValue()) << i; | 
|  | } | 
|  | return Value; | 
|  | } | 
|  |  | 
|  | // Returns true if the two given BitsInits represent the same integer value | 
|  | static inline bool equalBitsInits(const BitsInit *B1, const BitsInit *B2) { | 
|  | if (B1->getNumBits() != B2->getNumBits()) | 
|  | PrintFatalError("Comparing two BitsInits with different sizes!"); | 
|  |  | 
|  | for (unsigned i = 0, e = B1->getNumBits(); i != e; ++i) { | 
|  | BitInit *Bit1 = cast<BitInit>(B1->getBit(i)); | 
|  | BitInit *Bit2 = cast<BitInit>(B2->getBit(i)); | 
|  | if (Bit1->getValue() != Bit2->getValue()) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Return the size of the register operand | 
|  | static inline unsigned int getRegOperandSize(const Record *RegRec) { | 
|  | if (RegRec->isSubClassOf("RegisterOperand")) | 
|  | RegRec = RegRec->getValueAsDef("RegClass"); | 
|  | if (RegRec->isSubClassOf("RegisterClass")) | 
|  | return RegRec->getValueAsListOfDefs("RegTypes")[0]->getValueAsInt("Size"); | 
|  |  | 
|  | llvm_unreachable("Register operand's size not known!"); | 
|  | } | 
|  |  | 
|  | // Return the size of the memory operand | 
|  | static inline unsigned int | 
|  | getMemOperandSize(const Record *MemRec, const bool IntrinsicSensitive = false) { | 
|  | if (MemRec->isSubClassOf("Operand")) { | 
|  | // Intrinsic memory instructions use ssmem/sdmem. | 
|  | if (IntrinsicSensitive && | 
|  | (MemRec->getName() == "sdmem" || MemRec->getName() == "ssmem")) | 
|  | return 128; | 
|  |  | 
|  | StringRef Name = | 
|  | MemRec->getValueAsDef("ParserMatchClass")->getValueAsString("Name"); | 
|  | if (Name == "Mem8") | 
|  | return 8; | 
|  | if (Name == "Mem16") | 
|  | return 16; | 
|  | if (Name == "Mem32") | 
|  | return 32; | 
|  | if (Name == "Mem64") | 
|  | return 64; | 
|  | if (Name == "Mem80") | 
|  | return 80; | 
|  | if (Name == "Mem128") | 
|  | return 128; | 
|  | if (Name == "Mem256") | 
|  | return 256; | 
|  | if (Name == "Mem512") | 
|  | return 512; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Memory operand's size not known!"); | 
|  | } | 
|  |  | 
|  | // Return true if the instruction defined as a register flavor. | 
|  | static inline bool hasRegisterFormat(const Record *Inst) { | 
|  | const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits"); | 
|  | uint64_t FormBitsNum = getValueFromBitsInit(FormBits); | 
|  |  | 
|  | // Values from X86Local namespace defined in X86RecognizableInstr.cpp | 
|  | return FormBitsNum >= X86Local::MRMDestReg && FormBitsNum <= X86Local::MRM7r; | 
|  | } | 
|  |  | 
|  | // Return true if the instruction defined as a memory flavor. | 
|  | static inline bool hasMemoryFormat(const Record *Inst) { | 
|  | const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits"); | 
|  | uint64_t FormBitsNum = getValueFromBitsInit(FormBits); | 
|  |  | 
|  | // Values from X86Local namespace defined in X86RecognizableInstr.cpp | 
|  | return FormBitsNum >= X86Local::MRMDestMem && FormBitsNum <= X86Local::MRM7m; | 
|  | } | 
|  |  | 
|  | static inline bool isNOREXRegClass(const Record *Op) { | 
|  | return Op->getName().find("_NOREX") != StringRef::npos; | 
|  | } | 
|  |  | 
|  | static inline bool isRegisterOperand(const Record *Rec) { | 
|  | return Rec->isSubClassOf("RegisterClass") || | 
|  | Rec->isSubClassOf("RegisterOperand") || | 
|  | Rec->isSubClassOf("PointerLikeRegClass"); | 
|  | } | 
|  |  | 
|  | static inline bool isMemoryOperand(const Record *Rec) { | 
|  | return Rec->isSubClassOf("Operand") && | 
|  | Rec->getValueAsString("OperandType") == "OPERAND_MEMORY"; | 
|  | } | 
|  |  | 
|  | static inline bool isImmediateOperand(const Record *Rec) { | 
|  | return Rec->isSubClassOf("Operand") && | 
|  | Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE"; | 
|  | } | 
|  |  | 
|  | // Get the alternative instruction pointed by "FoldGenRegForm" field. | 
|  | static inline const CodeGenInstruction * | 
|  | getAltRegInst(const CodeGenInstruction *I, const RecordKeeper &Records, | 
|  | const CodeGenTarget &Target) { | 
|  |  | 
|  | StringRef AltRegInstStr = I->TheDef->getValueAsString("FoldGenRegForm"); | 
|  | Record *AltRegInstRec = Records.getDef(AltRegInstStr); | 
|  | assert(AltRegInstRec && | 
|  | "Alternative register form instruction def not found"); | 
|  | CodeGenInstruction &AltRegInst = Target.getInstruction(AltRegInstRec); | 
|  | return &AltRegInst; | 
|  | } | 
|  |  | 
|  | // Function object - Operator() returns true if the given VEX instruction | 
|  | // matches the EVEX instruction of this object. | 
|  | class IsMatch { | 
|  | const CodeGenInstruction *MemInst; | 
|  |  | 
|  | public: | 
|  | IsMatch(const CodeGenInstruction *Inst, const RecordKeeper &Records) | 
|  | : MemInst(Inst) {} | 
|  |  | 
|  | bool operator()(const CodeGenInstruction *RegInst) { | 
|  | Record *MemRec = MemInst->TheDef; | 
|  | Record *RegRec = RegInst->TheDef; | 
|  |  | 
|  | // Return false if one (at least) of the encoding fields of both | 
|  | // instructions do not match. | 
|  | if (RegRec->getValueAsDef("OpEnc") != MemRec->getValueAsDef("OpEnc") || | 
|  | !equalBitsInits(RegRec->getValueAsBitsInit("Opcode"), | 
|  | MemRec->getValueAsBitsInit("Opcode")) || | 
|  | // VEX/EVEX fields | 
|  | RegRec->getValueAsDef("OpPrefix") != | 
|  | MemRec->getValueAsDef("OpPrefix") || | 
|  | RegRec->getValueAsDef("OpMap") != MemRec->getValueAsDef("OpMap") || | 
|  | RegRec->getValueAsDef("OpSize") != MemRec->getValueAsDef("OpSize") || | 
|  | RegRec->getValueAsDef("AdSize") != MemRec->getValueAsDef("AdSize") || | 
|  | RegRec->getValueAsBit("hasVEX_4V") != | 
|  | MemRec->getValueAsBit("hasVEX_4V") || | 
|  | RegRec->getValueAsBit("hasEVEX_K") != | 
|  | MemRec->getValueAsBit("hasEVEX_K") || | 
|  | RegRec->getValueAsBit("hasEVEX_Z") != | 
|  | MemRec->getValueAsBit("hasEVEX_Z") || | 
|  | // EVEX_B means different things for memory and register forms. | 
|  | RegRec->getValueAsBit("hasEVEX_B") != 0 || | 
|  | MemRec->getValueAsBit("hasEVEX_B") != 0 || | 
|  | RegRec->getValueAsBit("hasEVEX_RC") != | 
|  | MemRec->getValueAsBit("hasEVEX_RC") || | 
|  | RegRec->getValueAsBit("hasREX_WPrefix") != | 
|  | MemRec->getValueAsBit("hasREX_WPrefix") || | 
|  | RegRec->getValueAsBit("hasLockPrefix") != | 
|  | MemRec->getValueAsBit("hasLockPrefix") || | 
|  | RegRec->getValueAsBit("hasNoTrackPrefix") != | 
|  | MemRec->getValueAsBit("hasNoTrackPrefix") || | 
|  | !equalBitsInits(RegRec->getValueAsBitsInit("EVEX_LL"), | 
|  | MemRec->getValueAsBitsInit("EVEX_LL")) || | 
|  | !equalBitsInits(RegRec->getValueAsBitsInit("VEX_WPrefix"), | 
|  | MemRec->getValueAsBitsInit("VEX_WPrefix")) || | 
|  | // Instruction's format - The register form's "Form" field should be | 
|  | // the opposite of the memory form's "Form" field. | 
|  | !areOppositeForms(RegRec->getValueAsBitsInit("FormBits"), | 
|  | MemRec->getValueAsBitsInit("FormBits")) || | 
|  | RegRec->getValueAsBit("isAsmParserOnly") != | 
|  | MemRec->getValueAsBit("isAsmParserOnly")) | 
|  | return false; | 
|  |  | 
|  | // Make sure the sizes of the operands of both instructions suit each other. | 
|  | // This is needed for instructions with intrinsic version (_Int). | 
|  | // Where the only difference is the size of the operands. | 
|  | // For example: VUCOMISDZrm and Int_VUCOMISDrm | 
|  | // Also for instructions that their EVEX version was upgraded to work with | 
|  | // k-registers. For example VPCMPEQBrm (xmm output register) and | 
|  | // VPCMPEQBZ128rm (k register output register). | 
|  | bool ArgFolded = false; | 
|  | unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs(); | 
|  | unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs(); | 
|  | unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs(); | 
|  | unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs(); | 
|  |  | 
|  | // Instructions with one output in their memory form use the memory folded | 
|  | // operand as source and destination (Read-Modify-Write). | 
|  | unsigned RegStartIdx = | 
|  | (MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0; | 
|  |  | 
|  | for (unsigned i = 0, e = MemInst->Operands.size(); i < e; i++) { | 
|  | Record *MemOpRec = MemInst->Operands[i].Rec; | 
|  | Record *RegOpRec = RegInst->Operands[i + RegStartIdx].Rec; | 
|  |  | 
|  | if (MemOpRec == RegOpRec) | 
|  | continue; | 
|  |  | 
|  | if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec)) { | 
|  | if (getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec) || | 
|  | isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec)) | 
|  | return false; | 
|  | } else if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec)) { | 
|  | if (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec)) | 
|  | return false; | 
|  | } else if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec)) { | 
|  | if (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type")) | 
|  | return false; | 
|  | } else { | 
|  | // Only one operand can be folded. | 
|  | if (ArgFolded) | 
|  | return false; | 
|  |  | 
|  | assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)); | 
|  | ArgFolded = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // Return true of the 2 given forms are the opposite of each other. | 
|  | bool areOppositeForms(const BitsInit *RegFormBits, | 
|  | const BitsInit *MemFormBits) { | 
|  | uint64_t MemFormNum = getValueFromBitsInit(MemFormBits); | 
|  | uint64_t RegFormNum = getValueFromBitsInit(RegFormBits); | 
|  |  | 
|  | if ((MemFormNum == X86Local::MRM0m && RegFormNum == X86Local::MRM0r) || | 
|  | (MemFormNum == X86Local::MRM1m && RegFormNum == X86Local::MRM1r) || | 
|  | (MemFormNum == X86Local::MRM2m && RegFormNum == X86Local::MRM2r) || | 
|  | (MemFormNum == X86Local::MRM3m && RegFormNum == X86Local::MRM3r) || | 
|  | (MemFormNum == X86Local::MRM4m && RegFormNum == X86Local::MRM4r) || | 
|  | (MemFormNum == X86Local::MRM5m && RegFormNum == X86Local::MRM5r) || | 
|  | (MemFormNum == X86Local::MRM6m && RegFormNum == X86Local::MRM6r) || | 
|  | (MemFormNum == X86Local::MRM7m && RegFormNum == X86Local::MRM7r) || | 
|  | (MemFormNum == X86Local::MRMXm && RegFormNum == X86Local::MRMXr) || | 
|  | (MemFormNum == X86Local::MRMDestMem && | 
|  | RegFormNum == X86Local::MRMDestReg) || | 
|  | (MemFormNum == X86Local::MRMSrcMem && | 
|  | RegFormNum == X86Local::MRMSrcReg) || | 
|  | (MemFormNum == X86Local::MRMSrcMem4VOp3 && | 
|  | RegFormNum == X86Local::MRMSrcReg4VOp3) || | 
|  | (MemFormNum == X86Local::MRMSrcMemOp4 && | 
|  | RegFormNum == X86Local::MRMSrcRegOp4)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table, | 
|  | const CodeGenInstruction *RegInstr, | 
|  | const CodeGenInstruction *MemInstr, | 
|  | const UnfoldStrategy S, | 
|  | const unsigned int FoldedInd) { | 
|  |  | 
|  | X86FoldTableEntry Result = X86FoldTableEntry(RegInstr, MemInstr); | 
|  | Record *RegRec = RegInstr->TheDef; | 
|  | Record *MemRec = MemInstr->TheDef; | 
|  |  | 
|  | // Only table0 entries should explicitly specify a load or store flag. | 
|  | if (&Table == &Table0) { | 
|  | unsigned MemInOpsNum = MemRec->getValueAsDag("InOperandList")->getNumArgs(); | 
|  | unsigned RegInOpsNum = RegRec->getValueAsDag("InOperandList")->getNumArgs(); | 
|  | // If the instruction writes to the folded operand, it will appear as an | 
|  | // output in the register form instruction and as an input in the memory | 
|  | // form instruction. | 
|  | // If the instruction reads from the folded operand, it well appear as in | 
|  | // input in both forms. | 
|  | if (MemInOpsNum == RegInOpsNum) | 
|  | Result.IsLoad = true; | 
|  | else | 
|  | Result.IsStore = true; | 
|  | } | 
|  |  | 
|  | Record *RegOpRec = RegInstr->Operands[FoldedInd].Rec; | 
|  | Record *MemOpRec = MemInstr->Operands[FoldedInd].Rec; | 
|  |  | 
|  | // Unfolding code generates a load/store instruction according to the size of | 
|  | // the register in the register form instruction. | 
|  | // If the register's size is greater than the memory's operand size, do not | 
|  | // allow unfolding. | 
|  | if (S == UNFOLD) | 
|  | Result.CannotUnfold = false; | 
|  | else if (S == NO_UNFOLD) | 
|  | Result.CannotUnfold = true; | 
|  | else if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec)) | 
|  | Result.CannotUnfold = true; // S == NO_STRATEGY | 
|  |  | 
|  | uint64_t Enc = getValueFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits")); | 
|  | if (isExplicitAlign(RegInstr)) { | 
|  | // The instruction require explicitly aligned memory. | 
|  | BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize"); | 
|  | uint64_t Value = getValueFromBitsInit(VectSize); | 
|  | Result.IsAligned = true; | 
|  | Result.Alignment = Value; | 
|  | } else if (Enc != X86Local::XOP && Enc != X86Local::VEX && | 
|  | Enc != X86Local::EVEX) { | 
|  | // Instructions with VEX encoding do not require alignment. | 
|  | if (!isExplicitUnalign(RegInstr) && getMemOperandSize(MemOpRec) > 64) { | 
|  | // SSE packed vector instructions require a 16 byte alignment. | 
|  | Result.IsAligned = true; | 
|  | Result.Alignment = 16; | 
|  | } | 
|  | } | 
|  |  | 
|  | Table.push_back(Result); | 
|  | } | 
|  |  | 
|  | void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInstr, | 
|  | const CodeGenInstruction *MemInstr, | 
|  | const UnfoldStrategy S) { | 
|  |  | 
|  | Record *RegRec = RegInstr->TheDef; | 
|  | Record *MemRec = MemInstr->TheDef; | 
|  | unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs(); | 
|  | unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs(); | 
|  | unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs(); | 
|  | unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs(); | 
|  |  | 
|  | // Instructions which Read-Modify-Write should be added to Table2Addr. | 
|  | if (MemOutSize != RegOutSize && MemInSize == RegInSize) { | 
|  | addEntryWithFlags(Table2Addr, RegInstr, MemInstr, S, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (MemInSize == RegInSize && MemOutSize == RegOutSize) { | 
|  | // Load-Folding cases. | 
|  | // If the i'th register form operand is a register and the i'th memory form | 
|  | // operand is a memory operand, add instructions to Table#i. | 
|  | for (unsigned i = RegOutSize, e = RegInstr->Operands.size(); i < e; i++) { | 
|  | Record *RegOpRec = RegInstr->Operands[i].Rec; | 
|  | Record *MemOpRec = MemInstr->Operands[i].Rec; | 
|  | if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)) { | 
|  | switch (i) { | 
|  | case 0: | 
|  | addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0); | 
|  | return; | 
|  | case 1: | 
|  | addEntryWithFlags(Table1, RegInstr, MemInstr, S, 1); | 
|  | return; | 
|  | case 2: | 
|  | addEntryWithFlags(Table2, RegInstr, MemInstr, S, 2); | 
|  | return; | 
|  | case 3: | 
|  | addEntryWithFlags(Table3, RegInstr, MemInstr, S, 3); | 
|  | return; | 
|  | case 4: | 
|  | addEntryWithFlags(Table4, RegInstr, MemInstr, S, 4); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) { | 
|  | // Store-Folding cases. | 
|  | // If the memory form instruction performs a store, the *output* | 
|  | // register of the register form instructions disappear and instead a | 
|  | // memory *input* operand appears in the memory form instruction. | 
|  | // For example: | 
|  | //   MOVAPSrr => (outs VR128:$dst), (ins VR128:$src) | 
|  | //   MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src) | 
|  | Record *RegOpRec = RegInstr->Operands[RegOutSize - 1].Rec; | 
|  | Record *MemOpRec = MemInstr->Operands[RegOutSize - 1].Rec; | 
|  | if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) && | 
|  | getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec)) | 
|  | addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | void X86FoldTablesEmitter::run(raw_ostream &OS) { | 
|  | emitSourceFileHeader("X86 fold tables", OS); | 
|  |  | 
|  | // Holds all memory instructions | 
|  | std::vector<const CodeGenInstruction *> MemInsts; | 
|  | // Holds all register instructions - divided according to opcode. | 
|  | std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts; | 
|  |  | 
|  | ArrayRef<const CodeGenInstruction *> NumberedInstructions = | 
|  | Target.getInstructionsByEnumValue(); | 
|  |  | 
|  | for (const CodeGenInstruction *Inst : NumberedInstructions) { | 
|  | if (!Inst->TheDef->getNameInit() || !Inst->TheDef->isSubClassOf("X86Inst")) | 
|  | continue; | 
|  |  | 
|  | const Record *Rec = Inst->TheDef; | 
|  |  | 
|  | // - Do not proceed if the instruction is marked as notMemoryFoldable. | 
|  | // - Instructions including RST register class operands are not relevant | 
|  | //   for memory folding (for further details check the explanation in | 
|  | //   lib/Target/X86/X86InstrFPStack.td file). | 
|  | // - Some instructions (listed in the manual map above) use the register | 
|  | //   class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure | 
|  | //   safe mapping of these instruction we manually map them and exclude | 
|  | //   them from the automation. | 
|  | if (Rec->getValueAsBit("isMemoryFoldable") == false || | 
|  | hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst)) | 
|  | continue; | 
|  |  | 
|  | // Add all the memory form instructions to MemInsts, and all the register | 
|  | // form instructions to RegInsts[Opc], where Opc in the opcode of each | 
|  | // instructions. this helps reducing the runtime of the backend. | 
|  | if (hasMemoryFormat(Rec)) | 
|  | MemInsts.push_back(Inst); | 
|  | else if (hasRegisterFormat(Rec)) { | 
|  | uint8_t Opc = getValueFromBitsInit(Rec->getValueAsBitsInit("Opcode")); | 
|  | RegInsts[Opc].push_back(Inst); | 
|  | } | 
|  | } | 
|  |  | 
|  | // For each memory form instruction, try to find its register form | 
|  | // instruction. | 
|  | for (const CodeGenInstruction *MemInst : MemInsts) { | 
|  | uint8_t Opc = | 
|  | getValueFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode")); | 
|  |  | 
|  | if (RegInsts.count(Opc) == 0) | 
|  | continue; | 
|  |  | 
|  | // Two forms (memory & register) of the same instruction must have the same | 
|  | // opcode. try matching only with register form instructions with the same | 
|  | // opcode. | 
|  | std::vector<const CodeGenInstruction *> &OpcRegInsts = | 
|  | RegInsts.find(Opc)->second; | 
|  |  | 
|  | auto Match = find_if(OpcRegInsts, IsMatch(MemInst, Records)); | 
|  | if (Match != OpcRegInsts.end()) { | 
|  | const CodeGenInstruction *RegInst = *Match; | 
|  | // If the matched instruction has it's "FoldGenRegForm" set, map the | 
|  | // memory form instruction to the register form instruction pointed by | 
|  | // this field | 
|  | if (RegInst->TheDef->isValueUnset("FoldGenRegForm")) { | 
|  | updateTables(RegInst, MemInst); | 
|  | } else { | 
|  | const CodeGenInstruction *AltRegInst = | 
|  | getAltRegInst(RegInst, Records, Target); | 
|  | updateTables(AltRegInst, MemInst); | 
|  | } | 
|  | OpcRegInsts.erase(Match); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add the manually mapped instructions listed above. | 
|  | for (const ManualMapEntry &Entry : ManualMapSet) { | 
|  | Record *RegInstIter = Records.getDef(Entry.RegInstStr); | 
|  | Record *MemInstIter = Records.getDef(Entry.MemInstStr); | 
|  |  | 
|  | updateTables(&(Target.getInstruction(RegInstIter)), | 
|  | &(Target.getInstruction(MemInstIter)), Entry.Strategy); | 
|  | } | 
|  |  | 
|  | // Print all tables to raw_ostream OS. | 
|  | printTable(Table2Addr, "Table2Addr", OS); | 
|  | printTable(Table0, "Table0", OS); | 
|  | printTable(Table1, "Table1", OS); | 
|  | printTable(Table2, "Table2", OS); | 
|  | printTable(Table3, "Table3", OS); | 
|  | printTable(Table4, "Table4", OS); | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | void EmitX86FoldTables(RecordKeeper &RK, raw_ostream &OS) { | 
|  | X86FoldTablesEmitter(RK).run(OS); | 
|  | } | 
|  | } // namespace llvm |