|  | //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements name lookup for C, C++, Objective-C, and | 
|  | //  Objective-C++. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | #include "Sema.h" | 
|  | #include "Lookup.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/CXXInheritance.h" | 
|  | #include "clang/AST/Decl.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/Parse/DeclSpec.h" | 
|  | #include "clang/Basic/Builtins.h" | 
|  | #include "clang/Basic/LangOptions.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include <list> | 
|  | #include <set> | 
|  | #include <vector> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  | #include <algorithm> | 
|  |  | 
|  | using namespace clang; | 
|  |  | 
|  | namespace { | 
|  | class UnqualUsingEntry { | 
|  | const DeclContext *Nominated; | 
|  | const DeclContext *CommonAncestor; | 
|  |  | 
|  | public: | 
|  | UnqualUsingEntry(const DeclContext *Nominated, | 
|  | const DeclContext *CommonAncestor) | 
|  | : Nominated(Nominated), CommonAncestor(CommonAncestor) { | 
|  | } | 
|  |  | 
|  | const DeclContext *getCommonAncestor() const { | 
|  | return CommonAncestor; | 
|  | } | 
|  |  | 
|  | const DeclContext *getNominatedNamespace() const { | 
|  | return Nominated; | 
|  | } | 
|  |  | 
|  | // Sort by the pointer value of the common ancestor. | 
|  | struct Comparator { | 
|  | bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { | 
|  | return L.getCommonAncestor() < R.getCommonAncestor(); | 
|  | } | 
|  |  | 
|  | bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { | 
|  | return E.getCommonAncestor() < DC; | 
|  | } | 
|  |  | 
|  | bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { | 
|  | return DC < E.getCommonAncestor(); | 
|  | } | 
|  | }; | 
|  | }; | 
|  |  | 
|  | /// A collection of using directives, as used by C++ unqualified | 
|  | /// lookup. | 
|  | class UnqualUsingDirectiveSet { | 
|  | typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy; | 
|  |  | 
|  | ListTy list; | 
|  | llvm::SmallPtrSet<DeclContext*, 8> visited; | 
|  |  | 
|  | public: | 
|  | UnqualUsingDirectiveSet() {} | 
|  |  | 
|  | void visitScopeChain(Scope *S, Scope *InnermostFileScope) { | 
|  | // C++ [namespace.udir]p1: | 
|  | //   During unqualified name lookup, the names appear as if they | 
|  | //   were declared in the nearest enclosing namespace which contains | 
|  | //   both the using-directive and the nominated namespace. | 
|  | DeclContext *InnermostFileDC | 
|  | = static_cast<DeclContext*>(InnermostFileScope->getEntity()); | 
|  | assert(InnermostFileDC && InnermostFileDC->isFileContext()); | 
|  |  | 
|  | for (; S; S = S->getParent()) { | 
|  | if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) { | 
|  | DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC); | 
|  | visit(Ctx, EffectiveDC); | 
|  | } else { | 
|  | Scope::udir_iterator I = S->using_directives_begin(), | 
|  | End = S->using_directives_end(); | 
|  |  | 
|  | for (; I != End; ++I) | 
|  | visit(I->getAs<UsingDirectiveDecl>(), InnermostFileDC); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Visits a context and collect all of its using directives | 
|  | // recursively.  Treats all using directives as if they were | 
|  | // declared in the context. | 
|  | // | 
|  | // A given context is only every visited once, so it is important | 
|  | // that contexts be visited from the inside out in order to get | 
|  | // the effective DCs right. | 
|  | void visit(DeclContext *DC, DeclContext *EffectiveDC) { | 
|  | if (!visited.insert(DC)) | 
|  | return; | 
|  |  | 
|  | addUsingDirectives(DC, EffectiveDC); | 
|  | } | 
|  |  | 
|  | // Visits a using directive and collects all of its using | 
|  | // directives recursively.  Treats all using directives as if they | 
|  | // were declared in the effective DC. | 
|  | void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { | 
|  | DeclContext *NS = UD->getNominatedNamespace(); | 
|  | if (!visited.insert(NS)) | 
|  | return; | 
|  |  | 
|  | addUsingDirective(UD, EffectiveDC); | 
|  | addUsingDirectives(NS, EffectiveDC); | 
|  | } | 
|  |  | 
|  | // Adds all the using directives in a context (and those nominated | 
|  | // by its using directives, transitively) as if they appeared in | 
|  | // the given effective context. | 
|  | void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { | 
|  | llvm::SmallVector<DeclContext*,4> queue; | 
|  | while (true) { | 
|  | DeclContext::udir_iterator I, End; | 
|  | for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) { | 
|  | UsingDirectiveDecl *UD = *I; | 
|  | DeclContext *NS = UD->getNominatedNamespace(); | 
|  | if (visited.insert(NS)) { | 
|  | addUsingDirective(UD, EffectiveDC); | 
|  | queue.push_back(NS); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (queue.empty()) | 
|  | return; | 
|  |  | 
|  | DC = queue.back(); | 
|  | queue.pop_back(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add a using directive as if it had been declared in the given | 
|  | // context.  This helps implement C++ [namespace.udir]p3: | 
|  | //   The using-directive is transitive: if a scope contains a | 
|  | //   using-directive that nominates a second namespace that itself | 
|  | //   contains using-directives, the effect is as if the | 
|  | //   using-directives from the second namespace also appeared in | 
|  | //   the first. | 
|  | void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { | 
|  | // Find the common ancestor between the effective context and | 
|  | // the nominated namespace. | 
|  | DeclContext *Common = UD->getNominatedNamespace(); | 
|  | while (!Common->Encloses(EffectiveDC)) | 
|  | Common = Common->getParent(); | 
|  | Common = Common->getPrimaryContext(); | 
|  |  | 
|  | list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); | 
|  | } | 
|  |  | 
|  | void done() { | 
|  | std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator()); | 
|  | } | 
|  |  | 
|  | typedef ListTy::iterator iterator; | 
|  | typedef ListTy::const_iterator const_iterator; | 
|  |  | 
|  | iterator begin() { return list.begin(); } | 
|  | iterator end() { return list.end(); } | 
|  | const_iterator begin() const { return list.begin(); } | 
|  | const_iterator end() const { return list.end(); } | 
|  |  | 
|  | std::pair<const_iterator,const_iterator> | 
|  | getNamespacesFor(DeclContext *DC) const { | 
|  | return std::equal_range(begin(), end(), DC->getPrimaryContext(), | 
|  | UnqualUsingEntry::Comparator()); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | static bool IsAcceptableIDNS(NamedDecl *D, unsigned IDNS) { | 
|  | return D->isInIdentifierNamespace(IDNS); | 
|  | } | 
|  |  | 
|  | static bool IsAcceptableOperatorName(NamedDecl *D, unsigned IDNS) { | 
|  | return D->isInIdentifierNamespace(IDNS) && | 
|  | !D->getDeclContext()->isRecord(); | 
|  | } | 
|  |  | 
|  | static bool IsAcceptableNestedNameSpecifierName(NamedDecl *D, unsigned IDNS) { | 
|  | // This lookup ignores everything that isn't a type. | 
|  |  | 
|  | // This is a fast check for the far most common case. | 
|  | if (D->isInIdentifierNamespace(Decl::IDNS_Tag)) | 
|  | return true; | 
|  |  | 
|  | if (isa<UsingShadowDecl>(D)) | 
|  | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
|  |  | 
|  | return isa<TypeDecl>(D); | 
|  | } | 
|  |  | 
|  | static bool IsAcceptableNamespaceName(NamedDecl *D, unsigned IDNS) { | 
|  | // We don't need to look through using decls here because | 
|  | // using decls aren't allowed to name namespaces. | 
|  |  | 
|  | return isa<NamespaceDecl>(D) || isa<NamespaceAliasDecl>(D); | 
|  | } | 
|  |  | 
|  | /// Gets the default result filter for the given lookup. | 
|  | static inline | 
|  | LookupResult::ResultFilter getResultFilter(Sema::LookupNameKind NameKind) { | 
|  | switch (NameKind) { | 
|  | case Sema::LookupOrdinaryName: | 
|  | case Sema::LookupTagName: | 
|  | case Sema::LookupMemberName: | 
|  | case Sema::LookupRedeclarationWithLinkage: // FIXME: check linkage, scoping | 
|  | case Sema::LookupUsingDeclName: | 
|  | case Sema::LookupObjCProtocolName: | 
|  | case Sema::LookupObjCImplementationName: | 
|  | return &IsAcceptableIDNS; | 
|  |  | 
|  | case Sema::LookupOperatorName: | 
|  | return &IsAcceptableOperatorName; | 
|  |  | 
|  | case Sema::LookupNestedNameSpecifierName: | 
|  | return &IsAcceptableNestedNameSpecifierName; | 
|  |  | 
|  | case Sema::LookupNamespaceName: | 
|  | return &IsAcceptableNamespaceName; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unkknown lookup kind"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Retrieve the set of identifier namespaces that correspond to a | 
|  | // specific kind of name lookup. | 
|  | static inline unsigned getIDNS(Sema::LookupNameKind NameKind, | 
|  | bool CPlusPlus, | 
|  | bool Redeclaration) { | 
|  | unsigned IDNS = 0; | 
|  | switch (NameKind) { | 
|  | case Sema::LookupOrdinaryName: | 
|  | case Sema::LookupOperatorName: | 
|  | case Sema::LookupRedeclarationWithLinkage: | 
|  | IDNS = Decl::IDNS_Ordinary; | 
|  | if (CPlusPlus) { | 
|  | IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member; | 
|  | if (Redeclaration) IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Sema::LookupTagName: | 
|  | IDNS = Decl::IDNS_Tag; | 
|  | if (CPlusPlus && Redeclaration) | 
|  | IDNS |= Decl::IDNS_TagFriend; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupMemberName: | 
|  | IDNS = Decl::IDNS_Member; | 
|  | if (CPlusPlus) | 
|  | IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupNestedNameSpecifierName: | 
|  | case Sema::LookupNamespaceName: | 
|  | IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupUsingDeclName: | 
|  | IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | 
|  | | Decl::IDNS_Member | Decl::IDNS_Using; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupObjCProtocolName: | 
|  | IDNS = Decl::IDNS_ObjCProtocol; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupObjCImplementationName: | 
|  | IDNS = Decl::IDNS_ObjCImplementation; | 
|  | break; | 
|  | } | 
|  | return IDNS; | 
|  | } | 
|  |  | 
|  | void LookupResult::configure() { | 
|  | IDNS = getIDNS(LookupKind, | 
|  | SemaRef.getLangOptions().CPlusPlus, | 
|  | isForRedeclaration()); | 
|  | IsAcceptableFn = getResultFilter(LookupKind); | 
|  | } | 
|  |  | 
|  | // Necessary because CXXBasePaths is not complete in Sema.h | 
|  | void LookupResult::deletePaths(CXXBasePaths *Paths) { | 
|  | delete Paths; | 
|  | } | 
|  |  | 
|  | /// Resolves the result kind of this lookup. | 
|  | void LookupResult::resolveKind() { | 
|  | unsigned N = Decls.size(); | 
|  |  | 
|  | // Fast case: no possible ambiguity. | 
|  | if (N == 0) { | 
|  | assert(ResultKind == NotFound); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If there's a single decl, we need to examine it to decide what | 
|  | // kind of lookup this is. | 
|  | if (N == 1) { | 
|  | if (isa<FunctionTemplateDecl>(Decls[0])) | 
|  | ResultKind = FoundOverloaded; | 
|  | else if (isa<UnresolvedUsingValueDecl>(Decls[0])) | 
|  | ResultKind = FoundUnresolvedValue; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Don't do any extra resolution if we've already resolved as ambiguous. | 
|  | if (ResultKind == Ambiguous) return; | 
|  |  | 
|  | llvm::SmallPtrSet<NamedDecl*, 16> Unique; | 
|  |  | 
|  | bool Ambiguous = false; | 
|  | bool HasTag = false, HasFunction = false, HasNonFunction = false; | 
|  | bool HasFunctionTemplate = false, HasUnresolved = false; | 
|  |  | 
|  | unsigned UniqueTagIndex = 0; | 
|  |  | 
|  | unsigned I = 0; | 
|  | while (I < N) { | 
|  | NamedDecl *D = Decls[I]->getUnderlyingDecl(); | 
|  | D = cast<NamedDecl>(D->getCanonicalDecl()); | 
|  |  | 
|  | if (!Unique.insert(D)) { | 
|  | // If it's not unique, pull something off the back (and | 
|  | // continue at this index). | 
|  | Decls[I] = Decls[--N]; | 
|  | } else { | 
|  | // Otherwise, do some decl type analysis and then continue. | 
|  |  | 
|  | if (isa<UnresolvedUsingValueDecl>(D)) { | 
|  | HasUnresolved = true; | 
|  | } else if (isa<TagDecl>(D)) { | 
|  | if (HasTag) | 
|  | Ambiguous = true; | 
|  | UniqueTagIndex = I; | 
|  | HasTag = true; | 
|  | } else if (isa<FunctionTemplateDecl>(D)) { | 
|  | HasFunction = true; | 
|  | HasFunctionTemplate = true; | 
|  | } else if (isa<FunctionDecl>(D)) { | 
|  | HasFunction = true; | 
|  | } else { | 
|  | if (HasNonFunction) | 
|  | Ambiguous = true; | 
|  | HasNonFunction = true; | 
|  | } | 
|  | I++; | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [basic.scope.hiding]p2: | 
|  | //   A class name or enumeration name can be hidden by the name of | 
|  | //   an object, function, or enumerator declared in the same | 
|  | //   scope. If a class or enumeration name and an object, function, | 
|  | //   or enumerator are declared in the same scope (in any order) | 
|  | //   with the same name, the class or enumeration name is hidden | 
|  | //   wherever the object, function, or enumerator name is visible. | 
|  | // But it's still an error if there are distinct tag types found, | 
|  | // even if they're not visible. (ref?) | 
|  | if (HideTags && HasTag && !Ambiguous && | 
|  | (HasFunction || HasNonFunction || HasUnresolved)) | 
|  | Decls[UniqueTagIndex] = Decls[--N]; | 
|  |  | 
|  | Decls.set_size(N); | 
|  |  | 
|  | if (HasNonFunction && (HasFunction || HasUnresolved)) | 
|  | Ambiguous = true; | 
|  |  | 
|  | if (Ambiguous) | 
|  | setAmbiguous(LookupResult::AmbiguousReference); | 
|  | else if (HasUnresolved) | 
|  | ResultKind = LookupResult::FoundUnresolvedValue; | 
|  | else if (N > 1 || HasFunctionTemplate) | 
|  | ResultKind = LookupResult::FoundOverloaded; | 
|  | else | 
|  | ResultKind = LookupResult::Found; | 
|  | } | 
|  |  | 
|  | void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { | 
|  | CXXBasePaths::paths_iterator I, E; | 
|  | DeclContext::lookup_iterator DI, DE; | 
|  | for (I = P.begin(), E = P.end(); I != E; ++I) | 
|  | for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI) | 
|  | addDecl(*DI); | 
|  | } | 
|  |  | 
|  | void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { | 
|  | Paths = new CXXBasePaths; | 
|  | Paths->swap(P); | 
|  | addDeclsFromBasePaths(*Paths); | 
|  | resolveKind(); | 
|  | setAmbiguous(AmbiguousBaseSubobjects); | 
|  | } | 
|  |  | 
|  | void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { | 
|  | Paths = new CXXBasePaths; | 
|  | Paths->swap(P); | 
|  | addDeclsFromBasePaths(*Paths); | 
|  | resolveKind(); | 
|  | setAmbiguous(AmbiguousBaseSubobjectTypes); | 
|  | } | 
|  |  | 
|  | void LookupResult::print(llvm::raw_ostream &Out) { | 
|  | Out << Decls.size() << " result(s)"; | 
|  | if (isAmbiguous()) Out << ", ambiguous"; | 
|  | if (Paths) Out << ", base paths present"; | 
|  |  | 
|  | for (iterator I = begin(), E = end(); I != E; ++I) { | 
|  | Out << "\n"; | 
|  | (*I)->print(Out, 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Adds all qualifying matches for a name within a decl context to the | 
|  | // given lookup result.  Returns true if any matches were found. | 
|  | static bool LookupDirect(LookupResult &R, const DeclContext *DC) { | 
|  | bool Found = false; | 
|  |  | 
|  | DeclContext::lookup_const_iterator I, E; | 
|  | for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) | 
|  | if (R.isAcceptableDecl(*I)) | 
|  | R.addDecl(*I), Found = true; | 
|  |  | 
|  | return Found; | 
|  | } | 
|  |  | 
|  | // Performs C++ unqualified lookup into the given file context. | 
|  | static bool | 
|  | CppNamespaceLookup(LookupResult &R, ASTContext &Context, DeclContext *NS, | 
|  | UnqualUsingDirectiveSet &UDirs) { | 
|  |  | 
|  | assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"); | 
|  |  | 
|  | // Perform direct name lookup into the LookupCtx. | 
|  | bool Found = LookupDirect(R, NS); | 
|  |  | 
|  | // Perform direct name lookup into the namespaces nominated by the | 
|  | // using directives whose common ancestor is this namespace. | 
|  | UnqualUsingDirectiveSet::const_iterator UI, UEnd; | 
|  | llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS); | 
|  |  | 
|  | for (; UI != UEnd; ++UI) | 
|  | if (LookupDirect(R, UI->getNominatedNamespace())) | 
|  | Found = true; | 
|  |  | 
|  | R.resolveKind(); | 
|  |  | 
|  | return Found; | 
|  | } | 
|  |  | 
|  | static bool isNamespaceOrTranslationUnitScope(Scope *S) { | 
|  | if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) | 
|  | return Ctx->isFileContext(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Find the next outer declaration context corresponding to this scope. | 
|  | static DeclContext *findOuterContext(Scope *S) { | 
|  | for (S = S->getParent(); S; S = S->getParent()) | 
|  | if (S->getEntity()) | 
|  | return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool Sema::CppLookupName(LookupResult &R, Scope *S) { | 
|  | assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup"); | 
|  |  | 
|  | DeclarationName Name = R.getLookupName(); | 
|  |  | 
|  | Scope *Initial = S; | 
|  | IdentifierResolver::iterator | 
|  | I = IdResolver.begin(Name), | 
|  | IEnd = IdResolver.end(); | 
|  |  | 
|  | // First we lookup local scope. | 
|  | // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] | 
|  | // ...During unqualified name lookup (3.4.1), the names appear as if | 
|  | // they were declared in the nearest enclosing namespace which contains | 
|  | // both the using-directive and the nominated namespace. | 
|  | // [Note: in this context, "contains" means "contains directly or | 
|  | // indirectly". | 
|  | // | 
|  | // For example: | 
|  | // namespace A { int i; } | 
|  | // void foo() { | 
|  | //   int i; | 
|  | //   { | 
|  | //     using namespace A; | 
|  | //     ++i; // finds local 'i', A::i appears at global scope | 
|  | //   } | 
|  | // } | 
|  | // | 
|  | for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { | 
|  | // Check whether the IdResolver has anything in this scope. | 
|  | bool Found = false; | 
|  | for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) { | 
|  | if (R.isAcceptableDecl(*I)) { | 
|  | Found = true; | 
|  | R.addDecl(*I); | 
|  | } | 
|  | } | 
|  | if (Found) { | 
|  | R.resolveKind(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) { | 
|  | DeclContext *OuterCtx = findOuterContext(S); | 
|  | for (; Ctx && Ctx->getPrimaryContext() != OuterCtx; | 
|  | Ctx = Ctx->getLookupParent()) { | 
|  | // We do not directly look into function or method contexts | 
|  | // (since all local variables are found via the identifier | 
|  | // changes) or in transparent contexts (since those entities | 
|  | // will be found in the nearest enclosing non-transparent | 
|  | // context). | 
|  | if (Ctx->isFunctionOrMethod() || Ctx->isTransparentContext()) | 
|  | continue; | 
|  |  | 
|  | // Perform qualified name lookup into this context. | 
|  | // FIXME: In some cases, we know that every name that could be found by | 
|  | // this qualified name lookup will also be on the identifier chain. For | 
|  | // example, inside a class without any base classes, we never need to | 
|  | // perform qualified lookup because all of the members are on top of the | 
|  | // identifier chain. | 
|  | if (LookupQualifiedName(R, Ctx)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Stop if we ran out of scopes. | 
|  | // FIXME:  This really, really shouldn't be happening. | 
|  | if (!S) return false; | 
|  |  | 
|  | // Collect UsingDirectiveDecls in all scopes, and recursively all | 
|  | // nominated namespaces by those using-directives. | 
|  | // | 
|  | // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we | 
|  | // don't build it for each lookup! | 
|  |  | 
|  | UnqualUsingDirectiveSet UDirs; | 
|  | UDirs.visitScopeChain(Initial, S); | 
|  | UDirs.done(); | 
|  |  | 
|  | // Lookup namespace scope, and global scope. | 
|  | // Unqualified name lookup in C++ requires looking into scopes | 
|  | // that aren't strictly lexical, and therefore we walk through the | 
|  | // context as well as walking through the scopes. | 
|  |  | 
|  | for (; S; S = S->getParent()) { | 
|  | DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); | 
|  | if (Ctx->isTransparentContext()) | 
|  | continue; | 
|  |  | 
|  | assert(Ctx && Ctx->isFileContext() && | 
|  | "We should have been looking only at file context here already."); | 
|  |  | 
|  | // Check whether the IdResolver has anything in this scope. | 
|  | bool Found = false; | 
|  | for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) { | 
|  | if (R.isAcceptableDecl(*I)) { | 
|  | // We found something.  Look for anything else in our scope | 
|  | // with this same name and in an acceptable identifier | 
|  | // namespace, so that we can construct an overload set if we | 
|  | // need to. | 
|  | Found = true; | 
|  | R.addDecl(*I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Look into context considering using-directives. | 
|  | if (CppNamespaceLookup(R, Context, Ctx, UDirs)) | 
|  | Found = true; | 
|  |  | 
|  | if (Found) { | 
|  | R.resolveKind(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (R.isForRedeclaration() && !Ctx->isTransparentContext()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return !R.empty(); | 
|  | } | 
|  |  | 
|  | /// @brief Perform unqualified name lookup starting from a given | 
|  | /// scope. | 
|  | /// | 
|  | /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is | 
|  | /// used to find names within the current scope. For example, 'x' in | 
|  | /// @code | 
|  | /// int x; | 
|  | /// int f() { | 
|  | ///   return x; // unqualified name look finds 'x' in the global scope | 
|  | /// } | 
|  | /// @endcode | 
|  | /// | 
|  | /// Different lookup criteria can find different names. For example, a | 
|  | /// particular scope can have both a struct and a function of the same | 
|  | /// name, and each can be found by certain lookup criteria. For more | 
|  | /// information about lookup criteria, see the documentation for the | 
|  | /// class LookupCriteria. | 
|  | /// | 
|  | /// @param S        The scope from which unqualified name lookup will | 
|  | /// begin. If the lookup criteria permits, name lookup may also search | 
|  | /// in the parent scopes. | 
|  | /// | 
|  | /// @param Name     The name of the entity that we are searching for. | 
|  | /// | 
|  | /// @param Loc      If provided, the source location where we're performing | 
|  | /// name lookup. At present, this is only used to produce diagnostics when | 
|  | /// C library functions (like "malloc") are implicitly declared. | 
|  | /// | 
|  | /// @returns The result of name lookup, which includes zero or more | 
|  | /// declarations and possibly additional information used to diagnose | 
|  | /// ambiguities. | 
|  | bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) { | 
|  | DeclarationName Name = R.getLookupName(); | 
|  | if (!Name) return false; | 
|  |  | 
|  | LookupNameKind NameKind = R.getLookupKind(); | 
|  |  | 
|  | if (!getLangOptions().CPlusPlus) { | 
|  | // Unqualified name lookup in C/Objective-C is purely lexical, so | 
|  | // search in the declarations attached to the name. | 
|  |  | 
|  | if (NameKind == Sema::LookupRedeclarationWithLinkage) { | 
|  | // Find the nearest non-transparent declaration scope. | 
|  | while (!(S->getFlags() & Scope::DeclScope) || | 
|  | (S->getEntity() && | 
|  | static_cast<DeclContext *>(S->getEntity()) | 
|  | ->isTransparentContext())) | 
|  | S = S->getParent(); | 
|  | } | 
|  |  | 
|  | unsigned IDNS = R.getIdentifierNamespace(); | 
|  |  | 
|  | // Scan up the scope chain looking for a decl that matches this | 
|  | // identifier that is in the appropriate namespace.  This search | 
|  | // should not take long, as shadowing of names is uncommon, and | 
|  | // deep shadowing is extremely uncommon. | 
|  | bool LeftStartingScope = false; | 
|  |  | 
|  | for (IdentifierResolver::iterator I = IdResolver.begin(Name), | 
|  | IEnd = IdResolver.end(); | 
|  | I != IEnd; ++I) | 
|  | if ((*I)->isInIdentifierNamespace(IDNS)) { | 
|  | if (NameKind == LookupRedeclarationWithLinkage) { | 
|  | // Determine whether this (or a previous) declaration is | 
|  | // out-of-scope. | 
|  | if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I))) | 
|  | LeftStartingScope = true; | 
|  |  | 
|  | // If we found something outside of our starting scope that | 
|  | // does not have linkage, skip it. | 
|  | if (LeftStartingScope && !((*I)->hasLinkage())) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | R.addDecl(*I); | 
|  |  | 
|  | if ((*I)->getAttr<OverloadableAttr>()) { | 
|  | // If this declaration has the "overloadable" attribute, we | 
|  | // might have a set of overloaded functions. | 
|  |  | 
|  | // Figure out what scope the identifier is in. | 
|  | while (!(S->getFlags() & Scope::DeclScope) || | 
|  | !S->isDeclScope(DeclPtrTy::make(*I))) | 
|  | S = S->getParent(); | 
|  |  | 
|  | // Find the last declaration in this scope (with the same | 
|  | // name, naturally). | 
|  | IdentifierResolver::iterator LastI = I; | 
|  | for (++LastI; LastI != IEnd; ++LastI) { | 
|  | if (!S->isDeclScope(DeclPtrTy::make(*LastI))) | 
|  | break; | 
|  | R.addDecl(*LastI); | 
|  | } | 
|  | } | 
|  |  | 
|  | R.resolveKind(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | // Perform C++ unqualified name lookup. | 
|  | if (CppLookupName(R, S)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If we didn't find a use of this identifier, and if the identifier | 
|  | // corresponds to a compiler builtin, create the decl object for the builtin | 
|  | // now, injecting it into translation unit scope, and return it. | 
|  | if (NameKind == LookupOrdinaryName || | 
|  | NameKind == LookupRedeclarationWithLinkage) { | 
|  | IdentifierInfo *II = Name.getAsIdentifierInfo(); | 
|  | if (II && AllowBuiltinCreation) { | 
|  | // If this is a builtin on this (or all) targets, create the decl. | 
|  | if (unsigned BuiltinID = II->getBuiltinID()) { | 
|  | // In C++, we don't have any predefined library functions like | 
|  | // 'malloc'. Instead, we'll just error. | 
|  | if (getLangOptions().CPlusPlus && | 
|  | Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) | 
|  | return false; | 
|  |  | 
|  | NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, | 
|  | S, R.isForRedeclaration(), | 
|  | R.getNameLoc()); | 
|  | if (D) R.addDecl(D); | 
|  | return (D != NULL); | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// @brief Perform qualified name lookup in the namespaces nominated by | 
|  | /// using directives by the given context. | 
|  | /// | 
|  | /// C++98 [namespace.qual]p2: | 
|  | ///   Given X::m (where X is a user-declared namespace), or given ::m | 
|  | ///   (where X is the global namespace), let S be the set of all | 
|  | ///   declarations of m in X and in the transitive closure of all | 
|  | ///   namespaces nominated by using-directives in X and its used | 
|  | ///   namespaces, except that using-directives are ignored in any | 
|  | ///   namespace, including X, directly containing one or more | 
|  | ///   declarations of m. No namespace is searched more than once in | 
|  | ///   the lookup of a name. If S is the empty set, the program is | 
|  | ///   ill-formed. Otherwise, if S has exactly one member, or if the | 
|  | ///   context of the reference is a using-declaration | 
|  | ///   (namespace.udecl), S is the required set of declarations of | 
|  | ///   m. Otherwise if the use of m is not one that allows a unique | 
|  | ///   declaration to be chosen from S, the program is ill-formed. | 
|  | /// C++98 [namespace.qual]p5: | 
|  | ///   During the lookup of a qualified namespace member name, if the | 
|  | ///   lookup finds more than one declaration of the member, and if one | 
|  | ///   declaration introduces a class name or enumeration name and the | 
|  | ///   other declarations either introduce the same object, the same | 
|  | ///   enumerator or a set of functions, the non-type name hides the | 
|  | ///   class or enumeration name if and only if the declarations are | 
|  | ///   from the same namespace; otherwise (the declarations are from | 
|  | ///   different namespaces), the program is ill-formed. | 
|  | static bool LookupQualifiedNameInUsingDirectives(LookupResult &R, | 
|  | DeclContext *StartDC) { | 
|  | assert(StartDC->isFileContext() && "start context is not a file context"); | 
|  |  | 
|  | DeclContext::udir_iterator I = StartDC->using_directives_begin(); | 
|  | DeclContext::udir_iterator E = StartDC->using_directives_end(); | 
|  |  | 
|  | if (I == E) return false; | 
|  |  | 
|  | // We have at least added all these contexts to the queue. | 
|  | llvm::DenseSet<DeclContext*> Visited; | 
|  | Visited.insert(StartDC); | 
|  |  | 
|  | // We have not yet looked into these namespaces, much less added | 
|  | // their "using-children" to the queue. | 
|  | llvm::SmallVector<NamespaceDecl*, 8> Queue; | 
|  |  | 
|  | // We have already looked into the initial namespace; seed the queue | 
|  | // with its using-children. | 
|  | for (; I != E; ++I) { | 
|  | NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace(); | 
|  | if (Visited.insert(ND).second) | 
|  | Queue.push_back(ND); | 
|  | } | 
|  |  | 
|  | // The easiest way to implement the restriction in [namespace.qual]p5 | 
|  | // is to check whether any of the individual results found a tag | 
|  | // and, if so, to declare an ambiguity if the final result is not | 
|  | // a tag. | 
|  | bool FoundTag = false; | 
|  | bool FoundNonTag = false; | 
|  |  | 
|  | LookupResult LocalR(LookupResult::Temporary, R); | 
|  |  | 
|  | bool Found = false; | 
|  | while (!Queue.empty()) { | 
|  | NamespaceDecl *ND = Queue.back(); | 
|  | Queue.pop_back(); | 
|  |  | 
|  | // We go through some convolutions here to avoid copying results | 
|  | // between LookupResults. | 
|  | bool UseLocal = !R.empty(); | 
|  | LookupResult &DirectR = UseLocal ? LocalR : R; | 
|  | bool FoundDirect = LookupDirect(DirectR, ND); | 
|  |  | 
|  | if (FoundDirect) { | 
|  | // First do any local hiding. | 
|  | DirectR.resolveKind(); | 
|  |  | 
|  | // If the local result is a tag, remember that. | 
|  | if (DirectR.isSingleTagDecl()) | 
|  | FoundTag = true; | 
|  | else | 
|  | FoundNonTag = true; | 
|  |  | 
|  | // Append the local results to the total results if necessary. | 
|  | if (UseLocal) { | 
|  | R.addAllDecls(LocalR); | 
|  | LocalR.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we find names in this namespace, ignore its using directives. | 
|  | if (FoundDirect) { | 
|  | Found = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) { | 
|  | NamespaceDecl *Nom = (*I)->getNominatedNamespace(); | 
|  | if (Visited.insert(Nom).second) | 
|  | Queue.push_back(Nom); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Found) { | 
|  | if (FoundTag && FoundNonTag) | 
|  | R.setAmbiguousQualifiedTagHiding(); | 
|  | else | 
|  | R.resolveKind(); | 
|  | } | 
|  |  | 
|  | return Found; | 
|  | } | 
|  |  | 
|  | /// @brief Perform qualified name lookup into a given context. | 
|  | /// | 
|  | /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find | 
|  | /// names when the context of those names is explicit specified, e.g., | 
|  | /// "std::vector" or "x->member". | 
|  | /// | 
|  | /// Different lookup criteria can find different names. For example, a | 
|  | /// particular scope can have both a struct and a function of the same | 
|  | /// name, and each can be found by certain lookup criteria. For more | 
|  | /// information about lookup criteria, see the documentation for the | 
|  | /// class LookupCriteria. | 
|  | /// | 
|  | /// @param LookupCtx The context in which qualified name lookup will | 
|  | /// search. If the lookup criteria permits, name lookup may also search | 
|  | /// in the parent contexts or (for C++ classes) base classes. | 
|  | /// | 
|  | /// @param Name     The name of the entity that we are searching for. | 
|  | /// | 
|  | /// @param Criteria The criteria that this routine will use to | 
|  | /// determine which names are visible and which names will be | 
|  | /// found. Note that name lookup will find a name that is visible by | 
|  | /// the given criteria, but the entity itself may not be semantically | 
|  | /// correct or even the kind of entity expected based on the | 
|  | /// lookup. For example, searching for a nested-name-specifier name | 
|  | /// might result in an EnumDecl, which is visible but is not permitted | 
|  | /// as a nested-name-specifier in C++03. | 
|  | /// | 
|  | /// @returns The result of name lookup, which includes zero or more | 
|  | /// declarations and possibly additional information used to diagnose | 
|  | /// ambiguities. | 
|  | bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx) { | 
|  | assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); | 
|  |  | 
|  | if (!R.getLookupName()) | 
|  | return false; | 
|  |  | 
|  | // Make sure that the declaration context is complete. | 
|  | assert((!isa<TagDecl>(LookupCtx) || | 
|  | LookupCtx->isDependentContext() || | 
|  | cast<TagDecl>(LookupCtx)->isDefinition() || | 
|  | Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>() | 
|  | ->isBeingDefined()) && | 
|  | "Declaration context must already be complete!"); | 
|  |  | 
|  | // Perform qualified name lookup into the LookupCtx. | 
|  | if (LookupDirect(R, LookupCtx)) { | 
|  | R.resolveKind(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Don't descend into implied contexts for redeclarations. | 
|  | // C++98 [namespace.qual]p6: | 
|  | //   In a declaration for a namespace member in which the | 
|  | //   declarator-id is a qualified-id, given that the qualified-id | 
|  | //   for the namespace member has the form | 
|  | //     nested-name-specifier unqualified-id | 
|  | //   the unqualified-id shall name a member of the namespace | 
|  | //   designated by the nested-name-specifier. | 
|  | // See also [class.mfct]p5 and [class.static.data]p2. | 
|  | if (R.isForRedeclaration()) | 
|  | return false; | 
|  |  | 
|  | // If this is a namespace, look it up in the implied namespaces. | 
|  | if (LookupCtx->isFileContext()) | 
|  | return LookupQualifiedNameInUsingDirectives(R, LookupCtx); | 
|  |  | 
|  | // If this isn't a C++ class, we aren't allowed to look into base | 
|  | // classes, we're done. | 
|  | if (!isa<CXXRecordDecl>(LookupCtx)) | 
|  | return false; | 
|  |  | 
|  | // Perform lookup into our base classes. | 
|  | CXXRecordDecl *LookupRec = cast<CXXRecordDecl>(LookupCtx); | 
|  | CXXBasePaths Paths; | 
|  | Paths.setOrigin(LookupRec); | 
|  |  | 
|  | // Look for this member in our base classes | 
|  | CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0; | 
|  | switch (R.getLookupKind()) { | 
|  | case LookupOrdinaryName: | 
|  | case LookupMemberName: | 
|  | case LookupRedeclarationWithLinkage: | 
|  | BaseCallback = &CXXRecordDecl::FindOrdinaryMember; | 
|  | break; | 
|  |  | 
|  | case LookupTagName: | 
|  | BaseCallback = &CXXRecordDecl::FindTagMember; | 
|  | break; | 
|  |  | 
|  | case LookupUsingDeclName: | 
|  | // This lookup is for redeclarations only. | 
|  |  | 
|  | case LookupOperatorName: | 
|  | case LookupNamespaceName: | 
|  | case LookupObjCProtocolName: | 
|  | case LookupObjCImplementationName: | 
|  | // These lookups will never find a member in a C++ class (or base class). | 
|  | return false; | 
|  |  | 
|  | case LookupNestedNameSpecifierName: | 
|  | BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!LookupRec->lookupInBases(BaseCallback, | 
|  | R.getLookupName().getAsOpaquePtr(), Paths)) | 
|  | return false; | 
|  |  | 
|  | // C++ [class.member.lookup]p2: | 
|  | //   [...] If the resulting set of declarations are not all from | 
|  | //   sub-objects of the same type, or the set has a nonstatic member | 
|  | //   and includes members from distinct sub-objects, there is an | 
|  | //   ambiguity and the program is ill-formed. Otherwise that set is | 
|  | //   the result of the lookup. | 
|  | // FIXME: support using declarations! | 
|  | QualType SubobjectType; | 
|  | int SubobjectNumber = 0; | 
|  | for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); | 
|  | Path != PathEnd; ++Path) { | 
|  | const CXXBasePathElement &PathElement = Path->back(); | 
|  |  | 
|  | // Determine whether we're looking at a distinct sub-object or not. | 
|  | if (SubobjectType.isNull()) { | 
|  | // This is the first subobject we've looked at. Record its type. | 
|  | SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); | 
|  | SubobjectNumber = PathElement.SubobjectNumber; | 
|  | } else if (SubobjectType | 
|  | != Context.getCanonicalType(PathElement.Base->getType())) { | 
|  | // We found members of the given name in two subobjects of | 
|  | // different types. This lookup is ambiguous. | 
|  | R.setAmbiguousBaseSubobjectTypes(Paths); | 
|  | return true; | 
|  | } else if (SubobjectNumber != PathElement.SubobjectNumber) { | 
|  | // We have a different subobject of the same type. | 
|  |  | 
|  | // C++ [class.member.lookup]p5: | 
|  | //   A static member, a nested type or an enumerator defined in | 
|  | //   a base class T can unambiguously be found even if an object | 
|  | //   has more than one base class subobject of type T. | 
|  | Decl *FirstDecl = *Path->Decls.first; | 
|  | if (isa<VarDecl>(FirstDecl) || | 
|  | isa<TypeDecl>(FirstDecl) || | 
|  | isa<EnumConstantDecl>(FirstDecl)) | 
|  | continue; | 
|  |  | 
|  | if (isa<CXXMethodDecl>(FirstDecl)) { | 
|  | // Determine whether all of the methods are static. | 
|  | bool AllMethodsAreStatic = true; | 
|  | for (DeclContext::lookup_iterator Func = Path->Decls.first; | 
|  | Func != Path->Decls.second; ++Func) { | 
|  | if (!isa<CXXMethodDecl>(*Func)) { | 
|  | assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!cast<CXXMethodDecl>(*Func)->isStatic()) { | 
|  | AllMethodsAreStatic = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (AllMethodsAreStatic) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We have found a nonstatic member name in multiple, distinct | 
|  | // subobjects. Name lookup is ambiguous. | 
|  | R.setAmbiguousBaseSubobjects(Paths); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Lookup in a base class succeeded; return these results. | 
|  |  | 
|  | DeclContext::lookup_iterator I, E; | 
|  | for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) | 
|  | R.addDecl(*I); | 
|  | R.resolveKind(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// @brief Performs name lookup for a name that was parsed in the | 
|  | /// source code, and may contain a C++ scope specifier. | 
|  | /// | 
|  | /// This routine is a convenience routine meant to be called from | 
|  | /// contexts that receive a name and an optional C++ scope specifier | 
|  | /// (e.g., "N::M::x"). It will then perform either qualified or | 
|  | /// unqualified name lookup (with LookupQualifiedName or LookupName, | 
|  | /// respectively) on the given name and return those results. | 
|  | /// | 
|  | /// @param S        The scope from which unqualified name lookup will | 
|  | /// begin. | 
|  | /// | 
|  | /// @param SS       An optional C++ scope-specifier, e.g., "::N::M". | 
|  | /// | 
|  | /// @param Name     The name of the entity that name lookup will | 
|  | /// search for. | 
|  | /// | 
|  | /// @param Loc      If provided, the source location where we're performing | 
|  | /// name lookup. At present, this is only used to produce diagnostics when | 
|  | /// C library functions (like "malloc") are implicitly declared. | 
|  | /// | 
|  | /// @param EnteringContext Indicates whether we are going to enter the | 
|  | /// context of the scope-specifier SS (if present). | 
|  | /// | 
|  | /// @returns True if any decls were found (but possibly ambiguous) | 
|  | bool Sema::LookupParsedName(LookupResult &R, Scope *S, const CXXScopeSpec *SS, | 
|  | bool AllowBuiltinCreation, bool EnteringContext) { | 
|  | if (SS && SS->isInvalid()) { | 
|  | // When the scope specifier is invalid, don't even look for | 
|  | // anything. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (SS && SS->isSet()) { | 
|  | if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) { | 
|  | // We have resolved the scope specifier to a particular declaration | 
|  | // contex, and will perform name lookup in that context. | 
|  | if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS)) | 
|  | return false; | 
|  |  | 
|  | R.setContextRange(SS->getRange()); | 
|  |  | 
|  | return LookupQualifiedName(R, DC); | 
|  | } | 
|  |  | 
|  | // We could not resolve the scope specified to a specific declaration | 
|  | // context, which means that SS refers to an unknown specialization. | 
|  | // Name lookup can't find anything in this case. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Perform unqualified name lookup starting in the given scope. | 
|  | return LookupName(R, S, AllowBuiltinCreation); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// @brief Produce a diagnostic describing the ambiguity that resulted | 
|  | /// from name lookup. | 
|  | /// | 
|  | /// @param Result       The ambiguous name lookup result. | 
|  | /// | 
|  | /// @param Name         The name of the entity that name lookup was | 
|  | /// searching for. | 
|  | /// | 
|  | /// @param NameLoc      The location of the name within the source code. | 
|  | /// | 
|  | /// @param LookupRange  A source range that provides more | 
|  | /// source-location information concerning the lookup itself. For | 
|  | /// example, this range might highlight a nested-name-specifier that | 
|  | /// precedes the name. | 
|  | /// | 
|  | /// @returns true | 
|  | bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { | 
|  | assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); | 
|  |  | 
|  | DeclarationName Name = Result.getLookupName(); | 
|  | SourceLocation NameLoc = Result.getNameLoc(); | 
|  | SourceRange LookupRange = Result.getContextRange(); | 
|  |  | 
|  | switch (Result.getAmbiguityKind()) { | 
|  | case LookupResult::AmbiguousBaseSubobjects: { | 
|  | CXXBasePaths *Paths = Result.getBasePaths(); | 
|  | QualType SubobjectType = Paths->front().back().Base->getType(); | 
|  | Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) | 
|  | << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) | 
|  | << LookupRange; | 
|  |  | 
|  | DeclContext::lookup_iterator Found = Paths->front().Decls.first; | 
|  | while (isa<CXXMethodDecl>(*Found) && | 
|  | cast<CXXMethodDecl>(*Found)->isStatic()) | 
|  | ++Found; | 
|  |  | 
|  | Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case LookupResult::AmbiguousBaseSubobjectTypes: { | 
|  | Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) | 
|  | << Name << LookupRange; | 
|  |  | 
|  | CXXBasePaths *Paths = Result.getBasePaths(); | 
|  | std::set<Decl *> DeclsPrinted; | 
|  | for (CXXBasePaths::paths_iterator Path = Paths->begin(), | 
|  | PathEnd = Paths->end(); | 
|  | Path != PathEnd; ++Path) { | 
|  | Decl *D = *Path->Decls.first; | 
|  | if (DeclsPrinted.insert(D).second) | 
|  | Diag(D->getLocation(), diag::note_ambiguous_member_found); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case LookupResult::AmbiguousTagHiding: { | 
|  | Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; | 
|  |  | 
|  | llvm::SmallPtrSet<NamedDecl*,8> TagDecls; | 
|  |  | 
|  | LookupResult::iterator DI, DE = Result.end(); | 
|  | for (DI = Result.begin(); DI != DE; ++DI) | 
|  | if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) { | 
|  | TagDecls.insert(TD); | 
|  | Diag(TD->getLocation(), diag::note_hidden_tag); | 
|  | } | 
|  |  | 
|  | for (DI = Result.begin(); DI != DE; ++DI) | 
|  | if (!isa<TagDecl>(*DI)) | 
|  | Diag((*DI)->getLocation(), diag::note_hiding_object); | 
|  |  | 
|  | // For recovery purposes, go ahead and implement the hiding. | 
|  | Result.hideDecls(TagDecls); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case LookupResult::AmbiguousReference: { | 
|  | Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; | 
|  |  | 
|  | LookupResult::iterator DI = Result.begin(), DE = Result.end(); | 
|  | for (; DI != DE; ++DI) | 
|  | Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unknown ambiguity kind"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void | 
|  | addAssociatedClassesAndNamespaces(QualType T, | 
|  | ASTContext &Context, | 
|  | Sema::AssociatedNamespaceSet &AssociatedNamespaces, | 
|  | Sema::AssociatedClassSet &AssociatedClasses); | 
|  |  | 
|  | static void CollectNamespace(Sema::AssociatedNamespaceSet &Namespaces, | 
|  | DeclContext *Ctx) { | 
|  | if (Ctx->isFileContext()) | 
|  | Namespaces.insert(Ctx); | 
|  | } | 
|  |  | 
|  | // \brief Add the associated classes and namespaces for argument-dependent | 
|  | // lookup that involves a template argument (C++ [basic.lookup.koenig]p2). | 
|  | static void | 
|  | addAssociatedClassesAndNamespaces(const TemplateArgument &Arg, | 
|  | ASTContext &Context, | 
|  | Sema::AssociatedNamespaceSet &AssociatedNamespaces, | 
|  | Sema::AssociatedClassSet &AssociatedClasses) { | 
|  | // C++ [basic.lookup.koenig]p2, last bullet: | 
|  | //   -- [...] ; | 
|  | switch (Arg.getKind()) { | 
|  | case TemplateArgument::Null: | 
|  | break; | 
|  |  | 
|  | case TemplateArgument::Type: | 
|  | // [...] the namespaces and classes associated with the types of the | 
|  | // template arguments provided for template type parameters (excluding | 
|  | // template template parameters) | 
|  | addAssociatedClassesAndNamespaces(Arg.getAsType(), Context, | 
|  | AssociatedNamespaces, | 
|  | AssociatedClasses); | 
|  | break; | 
|  |  | 
|  | case TemplateArgument::Template: { | 
|  | // [...] the namespaces in which any template template arguments are | 
|  | // defined; and the classes in which any member templates used as | 
|  | // template template arguments are defined. | 
|  | TemplateName Template = Arg.getAsTemplate(); | 
|  | if (ClassTemplateDecl *ClassTemplate | 
|  | = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) { | 
|  | DeclContext *Ctx = ClassTemplate->getDeclContext(); | 
|  | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | 
|  | AssociatedClasses.insert(EnclosingClass); | 
|  | // Add the associated namespace for this class. | 
|  | while (Ctx->isRecord()) | 
|  | Ctx = Ctx->getParent(); | 
|  | CollectNamespace(AssociatedNamespaces, Ctx); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TemplateArgument::Declaration: | 
|  | case TemplateArgument::Integral: | 
|  | case TemplateArgument::Expression: | 
|  | // [Note: non-type template arguments do not contribute to the set of | 
|  | //  associated namespaces. ] | 
|  | break; | 
|  |  | 
|  | case TemplateArgument::Pack: | 
|  | for (TemplateArgument::pack_iterator P = Arg.pack_begin(), | 
|  | PEnd = Arg.pack_end(); | 
|  | P != PEnd; ++P) | 
|  | addAssociatedClassesAndNamespaces(*P, Context, | 
|  | AssociatedNamespaces, | 
|  | AssociatedClasses); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // \brief Add the associated classes and namespaces for | 
|  | // argument-dependent lookup with an argument of class type | 
|  | // (C++ [basic.lookup.koenig]p2). | 
|  | static void | 
|  | addAssociatedClassesAndNamespaces(CXXRecordDecl *Class, | 
|  | ASTContext &Context, | 
|  | Sema::AssociatedNamespaceSet &AssociatedNamespaces, | 
|  | Sema::AssociatedClassSet &AssociatedClasses) { | 
|  | // C++ [basic.lookup.koenig]p2: | 
|  | //   [...] | 
|  | //     -- If T is a class type (including unions), its associated | 
|  | //        classes are: the class itself; the class of which it is a | 
|  | //        member, if any; and its direct and indirect base | 
|  | //        classes. Its associated namespaces are the namespaces in | 
|  | //        which its associated classes are defined. | 
|  |  | 
|  | // Add the class of which it is a member, if any. | 
|  | DeclContext *Ctx = Class->getDeclContext(); | 
|  | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | 
|  | AssociatedClasses.insert(EnclosingClass); | 
|  | // Add the associated namespace for this class. | 
|  | while (Ctx->isRecord()) | 
|  | Ctx = Ctx->getParent(); | 
|  | CollectNamespace(AssociatedNamespaces, Ctx); | 
|  |  | 
|  | // Add the class itself. If we've already seen this class, we don't | 
|  | // need to visit base classes. | 
|  | if (!AssociatedClasses.insert(Class)) | 
|  | return; | 
|  |  | 
|  | // -- If T is a template-id, its associated namespaces and classes are | 
|  | //    the namespace in which the template is defined; for member | 
|  | //    templates, the member template’s class; the namespaces and classes | 
|  | //    associated with the types of the template arguments provided for | 
|  | //    template type parameters (excluding template template parameters); the | 
|  | //    namespaces in which any template template arguments are defined; and | 
|  | //    the classes in which any member templates used as template template | 
|  | //    arguments are defined. [Note: non-type template arguments do not | 
|  | //    contribute to the set of associated namespaces. ] | 
|  | if (ClassTemplateSpecializationDecl *Spec | 
|  | = dyn_cast<ClassTemplateSpecializationDecl>(Class)) { | 
|  | DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); | 
|  | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | 
|  | AssociatedClasses.insert(EnclosingClass); | 
|  | // Add the associated namespace for this class. | 
|  | while (Ctx->isRecord()) | 
|  | Ctx = Ctx->getParent(); | 
|  | CollectNamespace(AssociatedNamespaces, Ctx); | 
|  |  | 
|  | const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); | 
|  | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) | 
|  | addAssociatedClassesAndNamespaces(TemplateArgs[I], Context, | 
|  | AssociatedNamespaces, | 
|  | AssociatedClasses); | 
|  | } | 
|  |  | 
|  | // Add direct and indirect base classes along with their associated | 
|  | // namespaces. | 
|  | llvm::SmallVector<CXXRecordDecl *, 32> Bases; | 
|  | Bases.push_back(Class); | 
|  | while (!Bases.empty()) { | 
|  | // Pop this class off the stack. | 
|  | Class = Bases.back(); | 
|  | Bases.pop_back(); | 
|  |  | 
|  | // Visit the base classes. | 
|  | for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(), | 
|  | BaseEnd = Class->bases_end(); | 
|  | Base != BaseEnd; ++Base) { | 
|  | const RecordType *BaseType = Base->getType()->getAs<RecordType>(); | 
|  | // In dependent contexts, we do ADL twice, and the first time around, | 
|  | // the base type might be a dependent TemplateSpecializationType, or a | 
|  | // TemplateTypeParmType. If that happens, simply ignore it. | 
|  | // FIXME: If we want to support export, we probably need to add the | 
|  | // namespace of the template in a TemplateSpecializationType, or even | 
|  | // the classes and namespaces of known non-dependent arguments. | 
|  | if (!BaseType) | 
|  | continue; | 
|  | CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl()); | 
|  | if (AssociatedClasses.insert(BaseDecl)) { | 
|  | // Find the associated namespace for this base class. | 
|  | DeclContext *BaseCtx = BaseDecl->getDeclContext(); | 
|  | while (BaseCtx->isRecord()) | 
|  | BaseCtx = BaseCtx->getParent(); | 
|  | CollectNamespace(AssociatedNamespaces, BaseCtx); | 
|  |  | 
|  | // Make sure we visit the bases of this base class. | 
|  | if (BaseDecl->bases_begin() != BaseDecl->bases_end()) | 
|  | Bases.push_back(BaseDecl); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // \brief Add the associated classes and namespaces for | 
|  | // argument-dependent lookup with an argument of type T | 
|  | // (C++ [basic.lookup.koenig]p2). | 
|  | static void | 
|  | addAssociatedClassesAndNamespaces(QualType T, | 
|  | ASTContext &Context, | 
|  | Sema::AssociatedNamespaceSet &AssociatedNamespaces, | 
|  | Sema::AssociatedClassSet &AssociatedClasses) { | 
|  | // C++ [basic.lookup.koenig]p2: | 
|  | // | 
|  | //   For each argument type T in the function call, there is a set | 
|  | //   of zero or more associated namespaces and a set of zero or more | 
|  | //   associated classes to be considered. The sets of namespaces and | 
|  | //   classes is determined entirely by the types of the function | 
|  | //   arguments (and the namespace of any template template | 
|  | //   argument). Typedef names and using-declarations used to specify | 
|  | //   the types do not contribute to this set. The sets of namespaces | 
|  | //   and classes are determined in the following way: | 
|  | T = Context.getCanonicalType(T).getUnqualifiedType(); | 
|  |  | 
|  | //    -- If T is a pointer to U or an array of U, its associated | 
|  | //       namespaces and classes are those associated with U. | 
|  | // | 
|  | // We handle this by unwrapping pointer and array types immediately, | 
|  | // to avoid unnecessary recursion. | 
|  | while (true) { | 
|  | if (const PointerType *Ptr = T->getAs<PointerType>()) | 
|  | T = Ptr->getPointeeType(); | 
|  | else if (const ArrayType *Ptr = Context.getAsArrayType(T)) | 
|  | T = Ptr->getElementType(); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | //     -- If T is a fundamental type, its associated sets of | 
|  | //        namespaces and classes are both empty. | 
|  | if (T->getAs<BuiltinType>()) | 
|  | return; | 
|  |  | 
|  | //     -- If T is a class type (including unions), its associated | 
|  | //        classes are: the class itself; the class of which it is a | 
|  | //        member, if any; and its direct and indirect base | 
|  | //        classes. Its associated namespaces are the namespaces in | 
|  | //        which its associated classes are defined. | 
|  | if (const RecordType *ClassType = T->getAs<RecordType>()) | 
|  | if (CXXRecordDecl *ClassDecl | 
|  | = dyn_cast<CXXRecordDecl>(ClassType->getDecl())) { | 
|  | addAssociatedClassesAndNamespaces(ClassDecl, Context, | 
|  | AssociatedNamespaces, | 
|  | AssociatedClasses); | 
|  | return; | 
|  | } | 
|  |  | 
|  | //     -- If T is an enumeration type, its associated namespace is | 
|  | //        the namespace in which it is defined. If it is class | 
|  | //        member, its associated class is the member’s class; else | 
|  | //        it has no associated class. | 
|  | if (const EnumType *EnumT = T->getAs<EnumType>()) { | 
|  | EnumDecl *Enum = EnumT->getDecl(); | 
|  |  | 
|  | DeclContext *Ctx = Enum->getDeclContext(); | 
|  | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | 
|  | AssociatedClasses.insert(EnclosingClass); | 
|  |  | 
|  | // Add the associated namespace for this class. | 
|  | while (Ctx->isRecord()) | 
|  | Ctx = Ctx->getParent(); | 
|  | CollectNamespace(AssociatedNamespaces, Ctx); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | //     -- If T is a function type, its associated namespaces and | 
|  | //        classes are those associated with the function parameter | 
|  | //        types and those associated with the return type. | 
|  | if (const FunctionType *FnType = T->getAs<FunctionType>()) { | 
|  | // Return type | 
|  | addAssociatedClassesAndNamespaces(FnType->getResultType(), | 
|  | Context, | 
|  | AssociatedNamespaces, AssociatedClasses); | 
|  |  | 
|  | const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType); | 
|  | if (!Proto) | 
|  | return; | 
|  |  | 
|  | // Argument types | 
|  | for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(), | 
|  | ArgEnd = Proto->arg_type_end(); | 
|  | Arg != ArgEnd; ++Arg) | 
|  | addAssociatedClassesAndNamespaces(*Arg, Context, | 
|  | AssociatedNamespaces, AssociatedClasses); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | //     -- If T is a pointer to a member function of a class X, its | 
|  | //        associated namespaces and classes are those associated | 
|  | //        with the function parameter types and return type, | 
|  | //        together with those associated with X. | 
|  | // | 
|  | //     -- If T is a pointer to a data member of class X, its | 
|  | //        associated namespaces and classes are those associated | 
|  | //        with the member type together with those associated with | 
|  | //        X. | 
|  | if (const MemberPointerType *MemberPtr = T->getAs<MemberPointerType>()) { | 
|  | // Handle the type that the pointer to member points to. | 
|  | addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(), | 
|  | Context, | 
|  | AssociatedNamespaces, | 
|  | AssociatedClasses); | 
|  |  | 
|  | // Handle the class type into which this points. | 
|  | if (const RecordType *Class = MemberPtr->getClass()->getAs<RecordType>()) | 
|  | addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()), | 
|  | Context, | 
|  | AssociatedNamespaces, | 
|  | AssociatedClasses); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // FIXME: What about block pointers? | 
|  | // FIXME: What about Objective-C message sends? | 
|  | } | 
|  |  | 
|  | /// \brief Find the associated classes and namespaces for | 
|  | /// argument-dependent lookup for a call with the given set of | 
|  | /// arguments. | 
|  | /// | 
|  | /// This routine computes the sets of associated classes and associated | 
|  | /// namespaces searched by argument-dependent lookup | 
|  | /// (C++ [basic.lookup.argdep]) for a given set of arguments. | 
|  | void | 
|  | Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs, | 
|  | AssociatedNamespaceSet &AssociatedNamespaces, | 
|  | AssociatedClassSet &AssociatedClasses) { | 
|  | AssociatedNamespaces.clear(); | 
|  | AssociatedClasses.clear(); | 
|  |  | 
|  | // C++ [basic.lookup.koenig]p2: | 
|  | //   For each argument type T in the function call, there is a set | 
|  | //   of zero or more associated namespaces and a set of zero or more | 
|  | //   associated classes to be considered. The sets of namespaces and | 
|  | //   classes is determined entirely by the types of the function | 
|  | //   arguments (and the namespace of any template template | 
|  | //   argument). | 
|  | for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) { | 
|  | Expr *Arg = Args[ArgIdx]; | 
|  |  | 
|  | if (Arg->getType() != Context.OverloadTy) { | 
|  | addAssociatedClassesAndNamespaces(Arg->getType(), Context, | 
|  | AssociatedNamespaces, | 
|  | AssociatedClasses); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // [...] In addition, if the argument is the name or address of a | 
|  | // set of overloaded functions and/or function templates, its | 
|  | // associated classes and namespaces are the union of those | 
|  | // associated with each of the members of the set: the namespace | 
|  | // in which the function or function template is defined and the | 
|  | // classes and namespaces associated with its (non-dependent) | 
|  | // parameter types and return type. | 
|  | Arg = Arg->IgnoreParens(); | 
|  | if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg)) | 
|  | if (unaryOp->getOpcode() == UnaryOperator::AddrOf) | 
|  | Arg = unaryOp->getSubExpr(); | 
|  |  | 
|  | // TODO: avoid the copies.  This should be easy when the cases | 
|  | // share a storage implementation. | 
|  | llvm::SmallVector<NamedDecl*, 8> Functions; | 
|  |  | 
|  | if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg)) | 
|  | Functions.append(ULE->decls_begin(), ULE->decls_end()); | 
|  | else | 
|  | continue; | 
|  |  | 
|  | for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Functions.begin(), | 
|  | E = Functions.end(); I != E; ++I) { | 
|  | // Look through any using declarations to find the underlying function. | 
|  | NamedDecl *Fn = (*I)->getUnderlyingDecl(); | 
|  |  | 
|  | FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn); | 
|  | if (!FDecl) | 
|  | FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl(); | 
|  |  | 
|  | // Add the classes and namespaces associated with the parameter | 
|  | // types and return type of this function. | 
|  | addAssociatedClassesAndNamespaces(FDecl->getType(), Context, | 
|  | AssociatedNamespaces, | 
|  | AssociatedClasses); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is | 
|  | /// an acceptable non-member overloaded operator for a call whose | 
|  | /// arguments have types T1 (and, if non-empty, T2). This routine | 
|  | /// implements the check in C++ [over.match.oper]p3b2 concerning | 
|  | /// enumeration types. | 
|  | static bool | 
|  | IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn, | 
|  | QualType T1, QualType T2, | 
|  | ASTContext &Context) { | 
|  | if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) | 
|  | return true; | 
|  |  | 
|  | if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) | 
|  | return true; | 
|  |  | 
|  | const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>(); | 
|  | if (Proto->getNumArgs() < 1) | 
|  | return false; | 
|  |  | 
|  | if (T1->isEnumeralType()) { | 
|  | QualType ArgType = Proto->getArgType(0).getNonReferenceType(); | 
|  | if (Context.hasSameUnqualifiedType(T1, ArgType)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Proto->getNumArgs() < 2) | 
|  | return false; | 
|  |  | 
|  | if (!T2.isNull() && T2->isEnumeralType()) { | 
|  | QualType ArgType = Proto->getArgType(1).getNonReferenceType(); | 
|  | if (Context.hasSameUnqualifiedType(T2, ArgType)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, | 
|  | LookupNameKind NameKind, | 
|  | RedeclarationKind Redecl) { | 
|  | LookupResult R(*this, Name, SourceLocation(), NameKind, Redecl); | 
|  | LookupName(R, S); | 
|  | return R.getAsSingle<NamedDecl>(); | 
|  | } | 
|  |  | 
|  | /// \brief Find the protocol with the given name, if any. | 
|  | ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II) { | 
|  | Decl *D = LookupSingleName(TUScope, II, LookupObjCProtocolName); | 
|  | return cast_or_null<ObjCProtocolDecl>(D); | 
|  | } | 
|  |  | 
|  | void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, | 
|  | QualType T1, QualType T2, | 
|  | FunctionSet &Functions) { | 
|  | // C++ [over.match.oper]p3: | 
|  | //     -- The set of non-member candidates is the result of the | 
|  | //        unqualified lookup of operator@ in the context of the | 
|  | //        expression according to the usual rules for name lookup in | 
|  | //        unqualified function calls (3.4.2) except that all member | 
|  | //        functions are ignored. However, if no operand has a class | 
|  | //        type, only those non-member functions in the lookup set | 
|  | //        that have a first parameter of type T1 or "reference to | 
|  | //        (possibly cv-qualified) T1", when T1 is an enumeration | 
|  | //        type, or (if there is a right operand) a second parameter | 
|  | //        of type T2 or "reference to (possibly cv-qualified) T2", | 
|  | //        when T2 is an enumeration type, are candidate functions. | 
|  | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | 
|  | LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); | 
|  | LookupName(Operators, S); | 
|  |  | 
|  | assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); | 
|  |  | 
|  | if (Operators.empty()) | 
|  | return; | 
|  |  | 
|  | for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end(); | 
|  | Op != OpEnd; ++Op) { | 
|  | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op)) { | 
|  | if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context)) | 
|  | Functions.insert(FD); // FIXME: canonical FD | 
|  | } else if (FunctionTemplateDecl *FunTmpl | 
|  | = dyn_cast<FunctionTemplateDecl>(*Op)) { | 
|  | // FIXME: friend operators? | 
|  | // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate, | 
|  | // later? | 
|  | if (!FunTmpl->getDeclContext()->isRecord()) | 
|  | Functions.insert(FunTmpl); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void CollectFunctionDecl(Sema::FunctionSet &Functions, | 
|  | Decl *D) { | 
|  | if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D)) | 
|  | Functions.insert(Func); | 
|  | else if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) | 
|  | Functions.insert(FunTmpl); | 
|  | } | 
|  |  | 
|  | void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator, | 
|  | Expr **Args, unsigned NumArgs, | 
|  | FunctionSet &Functions) { | 
|  | // Find all of the associated namespaces and classes based on the | 
|  | // arguments we have. | 
|  | AssociatedNamespaceSet AssociatedNamespaces; | 
|  | AssociatedClassSet AssociatedClasses; | 
|  | FindAssociatedClassesAndNamespaces(Args, NumArgs, | 
|  | AssociatedNamespaces, | 
|  | AssociatedClasses); | 
|  |  | 
|  | QualType T1, T2; | 
|  | if (Operator) { | 
|  | T1 = Args[0]->getType(); | 
|  | if (NumArgs >= 2) | 
|  | T2 = Args[1]->getType(); | 
|  | } | 
|  |  | 
|  | // C++ [basic.lookup.argdep]p3: | 
|  | //   Let X be the lookup set produced by unqualified lookup (3.4.1) | 
|  | //   and let Y be the lookup set produced by argument dependent | 
|  | //   lookup (defined as follows). If X contains [...] then Y is | 
|  | //   empty. Otherwise Y is the set of declarations found in the | 
|  | //   namespaces associated with the argument types as described | 
|  | //   below. The set of declarations found by the lookup of the name | 
|  | //   is the union of X and Y. | 
|  | // | 
|  | // Here, we compute Y and add its members to the overloaded | 
|  | // candidate set. | 
|  | for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(), | 
|  | NSEnd = AssociatedNamespaces.end(); | 
|  | NS != NSEnd; ++NS) { | 
|  | //   When considering an associated namespace, the lookup is the | 
|  | //   same as the lookup performed when the associated namespace is | 
|  | //   used as a qualifier (3.4.3.2) except that: | 
|  | // | 
|  | //     -- Any using-directives in the associated namespace are | 
|  | //        ignored. | 
|  | // | 
|  | //     -- Any namespace-scope friend functions declared in | 
|  | //        associated classes are visible within their respective | 
|  | //        namespaces even if they are not visible during an ordinary | 
|  | //        lookup (11.4). | 
|  | DeclContext::lookup_iterator I, E; | 
|  | for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) { | 
|  | Decl *D = *I; | 
|  | // If the only declaration here is an ordinary friend, consider | 
|  | // it only if it was declared in an associated classes. | 
|  | if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) { | 
|  | DeclContext *LexDC = D->getLexicalDeclContext(); | 
|  | if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC))) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | FunctionDecl *Fn; | 
|  | if (!Operator || !(Fn = dyn_cast<FunctionDecl>(D)) || | 
|  | IsAcceptableNonMemberOperatorCandidate(Fn, T1, T2, Context)) | 
|  | CollectFunctionDecl(Functions, D); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //---------------------------------------------------------------------------- | 
|  | // Search for all visible declarations. | 
|  | //---------------------------------------------------------------------------- | 
|  | VisibleDeclConsumer::~VisibleDeclConsumer() { } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class ShadowContextRAII; | 
|  |  | 
|  | class VisibleDeclsRecord { | 
|  | public: | 
|  | /// \brief An entry in the shadow map, which is optimized to store a | 
|  | /// single declaration (the common case) but can also store a list | 
|  | /// of declarations. | 
|  | class ShadowMapEntry { | 
|  | typedef llvm::SmallVector<NamedDecl *, 4> DeclVector; | 
|  |  | 
|  | /// \brief Contains either the solitary NamedDecl * or a vector | 
|  | /// of declarations. | 
|  | llvm::PointerUnion<NamedDecl *, DeclVector*> DeclOrVector; | 
|  |  | 
|  | public: | 
|  | ShadowMapEntry() : DeclOrVector() { } | 
|  |  | 
|  | void Add(NamedDecl *ND); | 
|  | void Destroy(); | 
|  |  | 
|  | // Iteration. | 
|  | typedef NamedDecl **iterator; | 
|  | iterator begin(); | 
|  | iterator end(); | 
|  | }; | 
|  |  | 
|  | private: | 
|  | /// \brief A mapping from declaration names to the declarations that have | 
|  | /// this name within a particular scope. | 
|  | typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; | 
|  |  | 
|  | /// \brief A list of shadow maps, which is used to model name hiding. | 
|  | std::list<ShadowMap> ShadowMaps; | 
|  |  | 
|  | /// \brief The declaration contexts we have already visited. | 
|  | llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; | 
|  |  | 
|  | friend class ShadowContextRAII; | 
|  |  | 
|  | public: | 
|  | /// \brief Determine whether we have already visited this context | 
|  | /// (and, if not, note that we are going to visit that context now). | 
|  | bool visitedContext(DeclContext *Ctx) { | 
|  | return !VisitedContexts.insert(Ctx); | 
|  | } | 
|  |  | 
|  | /// \brief Determine whether the given declaration is hidden in the | 
|  | /// current scope. | 
|  | /// | 
|  | /// \returns the declaration that hides the given declaration, or | 
|  | /// NULL if no such declaration exists. | 
|  | NamedDecl *checkHidden(NamedDecl *ND); | 
|  |  | 
|  | /// \brief Add a declaration to the current shadow map. | 
|  | void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].Add(ND); } | 
|  | }; | 
|  |  | 
|  | /// \brief RAII object that records when we've entered a shadow context. | 
|  | class ShadowContextRAII { | 
|  | VisibleDeclsRecord &Visible; | 
|  |  | 
|  | typedef VisibleDeclsRecord::ShadowMap ShadowMap; | 
|  |  | 
|  | public: | 
|  | ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { | 
|  | Visible.ShadowMaps.push_back(ShadowMap()); | 
|  | } | 
|  |  | 
|  | ~ShadowContextRAII() { | 
|  | for (ShadowMap::iterator E = Visible.ShadowMaps.back().begin(), | 
|  | EEnd = Visible.ShadowMaps.back().end(); | 
|  | E != EEnd; | 
|  | ++E) | 
|  | E->second.Destroy(); | 
|  |  | 
|  | Visible.ShadowMaps.pop_back(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | void VisibleDeclsRecord::ShadowMapEntry::Add(NamedDecl *ND) { | 
|  | if (DeclOrVector.isNull()) { | 
|  | // 0 - > 1 elements: just set the single element information. | 
|  | DeclOrVector = ND; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) { | 
|  | // 1 -> 2 elements: create the vector of results and push in the | 
|  | // existing declaration. | 
|  | DeclVector *Vec = new DeclVector; | 
|  | Vec->push_back(PrevND); | 
|  | DeclOrVector = Vec; | 
|  | } | 
|  |  | 
|  | // Add the new element to the end of the vector. | 
|  | DeclOrVector.get<DeclVector*>()->push_back(ND); | 
|  | } | 
|  |  | 
|  | void VisibleDeclsRecord::ShadowMapEntry::Destroy() { | 
|  | if (DeclVector *Vec = DeclOrVector.dyn_cast<DeclVector *>()) { | 
|  | delete Vec; | 
|  | DeclOrVector = ((NamedDecl *)0); | 
|  | } | 
|  | } | 
|  |  | 
|  | VisibleDeclsRecord::ShadowMapEntry::iterator | 
|  | VisibleDeclsRecord::ShadowMapEntry::begin() { | 
|  | if (DeclOrVector.isNull()) | 
|  | return 0; | 
|  |  | 
|  | if (DeclOrVector.dyn_cast<NamedDecl *>()) | 
|  | return &reinterpret_cast<NamedDecl*&>(DeclOrVector); | 
|  |  | 
|  | return DeclOrVector.get<DeclVector *>()->begin(); | 
|  | } | 
|  |  | 
|  | VisibleDeclsRecord::ShadowMapEntry::iterator | 
|  | VisibleDeclsRecord::ShadowMapEntry::end() { | 
|  | if (DeclOrVector.isNull()) | 
|  | return 0; | 
|  |  | 
|  | if (DeclOrVector.dyn_cast<NamedDecl *>()) | 
|  | return &reinterpret_cast<NamedDecl*&>(DeclOrVector) + 1; | 
|  |  | 
|  | return DeclOrVector.get<DeclVector *>()->end(); | 
|  | } | 
|  |  | 
|  | NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { | 
|  | unsigned IDNS = ND->getIdentifierNamespace(); | 
|  | std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); | 
|  | for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); | 
|  | SM != SMEnd; ++SM) { | 
|  | ShadowMap::iterator Pos = SM->find(ND->getDeclName()); | 
|  | if (Pos == SM->end()) | 
|  | continue; | 
|  |  | 
|  | for (ShadowMapEntry::iterator I = Pos->second.begin(), | 
|  | IEnd = Pos->second.end(); | 
|  | I != IEnd; ++I) { | 
|  | // A tag declaration does not hide a non-tag declaration. | 
|  | if ((*I)->getIdentifierNamespace() == Decl::IDNS_Tag && | 
|  | (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | | 
|  | Decl::IDNS_ObjCProtocol))) | 
|  | continue; | 
|  |  | 
|  | // Protocols are in distinct namespaces from everything else. | 
|  | if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) | 
|  | || (IDNS & Decl::IDNS_ObjCProtocol)) && | 
|  | (*I)->getIdentifierNamespace() != IDNS) | 
|  | continue; | 
|  |  | 
|  | // We've found a declaration that hides this one. | 
|  | return *I; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result, | 
|  | bool QualifiedNameLookup, | 
|  | VisibleDeclConsumer &Consumer, | 
|  | VisibleDeclsRecord &Visited) { | 
|  | // Make sure we don't visit the same context twice. | 
|  | if (Visited.visitedContext(Ctx->getPrimaryContext())) | 
|  | return; | 
|  |  | 
|  | // Enumerate all of the results in this context. | 
|  | for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx; | 
|  | CurCtx = CurCtx->getNextContext()) { | 
|  | for (DeclContext::decl_iterator D = CurCtx->decls_begin(), | 
|  | DEnd = CurCtx->decls_end(); | 
|  | D != DEnd; ++D) { | 
|  | if (NamedDecl *ND = dyn_cast<NamedDecl>(*D)) | 
|  | if (Result.isAcceptableDecl(ND)) { | 
|  | Consumer.FoundDecl(ND, Visited.checkHidden(ND)); | 
|  | Visited.add(ND); | 
|  | } | 
|  |  | 
|  | // Visit transparent contexts inside this context. | 
|  | if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) { | 
|  | if (InnerCtx->isTransparentContext()) | 
|  | LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, | 
|  | Consumer, Visited); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Traverse using directives for qualified name lookup. | 
|  | if (QualifiedNameLookup) { | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | DeclContext::udir_iterator I, E; | 
|  | for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) { | 
|  | LookupVisibleDecls((*I)->getNominatedNamespace(), Result, | 
|  | QualifiedNameLookup, Consumer, Visited); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Traverse the contexts of inherited classes. | 
|  | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { | 
|  | for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(), | 
|  | BEnd = Record->bases_end(); | 
|  | B != BEnd; ++B) { | 
|  | QualType BaseType = B->getType(); | 
|  |  | 
|  | // Don't look into dependent bases, because name lookup can't look | 
|  | // there anyway. | 
|  | if (BaseType->isDependentType()) | 
|  | continue; | 
|  |  | 
|  | const RecordType *Record = BaseType->getAs<RecordType>(); | 
|  | if (!Record) | 
|  | continue; | 
|  |  | 
|  | // FIXME: It would be nice to be able to determine whether referencing | 
|  | // a particular member would be ambiguous. For example, given | 
|  | // | 
|  | //   struct A { int member; }; | 
|  | //   struct B { int member; }; | 
|  | //   struct C : A, B { }; | 
|  | // | 
|  | //   void f(C *c) { c->### } | 
|  | // | 
|  | // accessing 'member' would result in an ambiguity. However, we | 
|  | // could be smart enough to qualify the member with the base | 
|  | // class, e.g., | 
|  | // | 
|  | //   c->B::member | 
|  | // | 
|  | // or | 
|  | // | 
|  | //   c->A::member | 
|  |  | 
|  | // Find results in this base class (and its bases). | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup, | 
|  | Consumer, Visited); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: Look into base classes in Objective-C! | 
|  | } | 
|  |  | 
|  | static void LookupVisibleDecls(Scope *S, LookupResult &Result, | 
|  | UnqualUsingDirectiveSet &UDirs, | 
|  | VisibleDeclConsumer &Consumer, | 
|  | VisibleDeclsRecord &Visited) { | 
|  | if (!S) | 
|  | return; | 
|  |  | 
|  | DeclContext *Entity = 0; | 
|  | if (S->getEntity() && | 
|  | !((DeclContext *)S->getEntity())->isFunctionOrMethod()) { | 
|  | // Look into this scope's declaration context, along with any of its | 
|  | // parent lookup contexts (e.g., enclosing classes), up to the point | 
|  | // where we hit the context stored in the next outer scope. | 
|  | Entity = (DeclContext *)S->getEntity(); | 
|  | DeclContext *OuterCtx = findOuterContext(S); | 
|  |  | 
|  | for (DeclContext *Ctx = Entity; Ctx && Ctx->getPrimaryContext() != OuterCtx; | 
|  | Ctx = Ctx->getLookupParent()) { | 
|  | if (Ctx->isFunctionOrMethod()) | 
|  | continue; | 
|  |  | 
|  | LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false, | 
|  | Consumer, Visited); | 
|  | } | 
|  | } else if (!S->getParent()) { | 
|  | // Look into the translation unit scope. We walk through the translation | 
|  | // unit's declaration context, because the Scope itself won't have all of | 
|  | // the declarations if we loaded a precompiled header. | 
|  | // FIXME: We would like the translation unit's Scope object to point to the | 
|  | // translation unit, so we don't need this special "if" branch. However, | 
|  | // doing so would force the normal C++ name-lookup code to look into the | 
|  | // translation unit decl when the IdentifierInfo chains would suffice. | 
|  | // Once we fix that problem (which is part of a more general "don't look | 
|  | // in DeclContexts unless we have to" optimization), we can eliminate the | 
|  | // TranslationUnit parameter entirely. | 
|  | Entity = Result.getSema().Context.getTranslationUnitDecl(); | 
|  | LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false, | 
|  | Consumer, Visited); | 
|  | } else { | 
|  | // Walk through the declarations in this Scope. | 
|  | for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end(); | 
|  | D != DEnd; ++D) { | 
|  | if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get()))) | 
|  | if (Result.isAcceptableDecl(ND)) { | 
|  | Consumer.FoundDecl(ND, Visited.checkHidden(ND)); | 
|  | Visited.add(ND); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Entity) { | 
|  | // Lookup visible declarations in any namespaces found by using | 
|  | // directives. | 
|  | UnqualUsingDirectiveSet::const_iterator UI, UEnd; | 
|  | llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity); | 
|  | for (; UI != UEnd; ++UI) | 
|  | LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()), | 
|  | Result, /*QualifiedNameLookup=*/false, Consumer, | 
|  | Visited); | 
|  | } | 
|  |  | 
|  | // Lookup names in the parent scope. | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited); | 
|  | } | 
|  |  | 
|  | void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, | 
|  | VisibleDeclConsumer &Consumer) { | 
|  | // Determine the set of using directives available during | 
|  | // unqualified name lookup. | 
|  | Scope *Initial = S; | 
|  | UnqualUsingDirectiveSet UDirs; | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | // Find the first namespace or translation-unit scope. | 
|  | while (S && !isNamespaceOrTranslationUnitScope(S)) | 
|  | S = S->getParent(); | 
|  |  | 
|  | UDirs.visitScopeChain(Initial, S); | 
|  | } | 
|  | UDirs.done(); | 
|  |  | 
|  | // Look for visible declarations. | 
|  | LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind); | 
|  | VisibleDeclsRecord Visited; | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited); | 
|  | } | 
|  |  | 
|  | void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, | 
|  | VisibleDeclConsumer &Consumer) { | 
|  | LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind); | 
|  | VisibleDeclsRecord Visited; | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true, Consumer, | 
|  | Visited); | 
|  | } | 
|  |  | 
|  | //---------------------------------------------------------------------------- | 
|  | // Typo correction | 
|  | //---------------------------------------------------------------------------- | 
|  |  | 
|  | namespace { | 
|  | class TypoCorrectionConsumer : public VisibleDeclConsumer { | 
|  | /// \brief The name written that is a typo in the source. | 
|  | llvm::StringRef Typo; | 
|  |  | 
|  | /// \brief The results found that have the smallest edit distance | 
|  | /// found (so far) with the typo name. | 
|  | llvm::SmallVector<NamedDecl *, 4> BestResults; | 
|  |  | 
|  | /// \brief The best edit distance found so far. | 
|  | unsigned BestEditDistance; | 
|  |  | 
|  | public: | 
|  | explicit TypoCorrectionConsumer(IdentifierInfo *Typo) | 
|  | : Typo(Typo->getName()) { } | 
|  |  | 
|  | virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding); | 
|  |  | 
|  | typedef llvm::SmallVector<NamedDecl *, 4>::const_iterator iterator; | 
|  | iterator begin() const { return BestResults.begin(); } | 
|  | iterator end() const { return BestResults.end(); } | 
|  | bool empty() const { return BestResults.empty(); } | 
|  |  | 
|  | unsigned getBestEditDistance() const { return BestEditDistance; } | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding) { | 
|  | // Don't consider hidden names for typo correction. | 
|  | if (Hiding) | 
|  | return; | 
|  |  | 
|  | // Only consider entities with identifiers for names, ignoring | 
|  | // special names (constructors, overloaded operators, selectors, | 
|  | // etc.). | 
|  | IdentifierInfo *Name = ND->getIdentifier(); | 
|  | if (!Name) | 
|  | return; | 
|  |  | 
|  | // Compute the edit distance between the typo and the name of this | 
|  | // entity. If this edit distance is not worse than the best edit | 
|  | // distance we've seen so far, add it to the list of results. | 
|  | unsigned ED = Typo.edit_distance(Name->getName()); | 
|  | if (!BestResults.empty()) { | 
|  | if (ED < BestEditDistance) { | 
|  | // This result is better than any we've seen before; clear out | 
|  | // the previous results. | 
|  | BestResults.clear(); | 
|  | BestEditDistance = ED; | 
|  | } else if (ED > BestEditDistance) { | 
|  | // This result is worse than the best results we've seen so far; | 
|  | // ignore it. | 
|  | return; | 
|  | } | 
|  | } else | 
|  | BestEditDistance = ED; | 
|  |  | 
|  | BestResults.push_back(ND); | 
|  | } | 
|  |  | 
|  | /// \brief Try to "correct" a typo in the source code by finding | 
|  | /// visible declarations whose names are similar to the name that was | 
|  | /// present in the source code. | 
|  | /// | 
|  | /// \param Res the \c LookupResult structure that contains the name | 
|  | /// that was present in the source code along with the name-lookup | 
|  | /// criteria used to search for the name. On success, this structure | 
|  | /// will contain the results of name lookup. | 
|  | /// | 
|  | /// \param S the scope in which name lookup occurs. | 
|  | /// | 
|  | /// \param SS the nested-name-specifier that precedes the name we're | 
|  | /// looking for, if present. | 
|  | /// | 
|  | /// \returns true if the typo was corrected, in which case the \p Res | 
|  | /// structure will contain the results of name lookup for the | 
|  | /// corrected name. Otherwise, returns false. | 
|  | bool Sema::CorrectTypo(LookupResult &Res, Scope *S, const CXXScopeSpec *SS, | 
|  | bool AllowBuiltinCreation, bool EnteringContext) { | 
|  | // We only attempt to correct typos for identifiers. | 
|  | IdentifierInfo *Typo = Res.getLookupName().getAsIdentifierInfo(); | 
|  | if (!Typo) | 
|  | return false; | 
|  |  | 
|  | // If the scope specifier itself was invalid, don't try to correct | 
|  | // typos. | 
|  | if (SS && SS->isInvalid()) | 
|  | return false; | 
|  |  | 
|  | // Never try to correct typos during template deduction or | 
|  | // instantiation. | 
|  | if (!ActiveTemplateInstantiations.empty()) | 
|  | return false; | 
|  |  | 
|  | TypoCorrectionConsumer Consumer(Typo); | 
|  | if (SS && SS->isSet()) { | 
|  | DeclContext *DC = computeDeclContext(*SS, EnteringContext); | 
|  | if (!DC) | 
|  | return false; | 
|  |  | 
|  | LookupVisibleDecls(DC, Res.getLookupKind(), Consumer); | 
|  | } else { | 
|  | LookupVisibleDecls(S, Res.getLookupKind(), Consumer); | 
|  | } | 
|  |  | 
|  | if (Consumer.empty()) | 
|  | return false; | 
|  |  | 
|  | // Only allow a single, closest name in the result set (it's okay to | 
|  | // have overloads of that name, though). | 
|  | TypoCorrectionConsumer::iterator I = Consumer.begin(); | 
|  | DeclarationName BestName = (*I)->getDeclName(); | 
|  | ++I; | 
|  | for(TypoCorrectionConsumer::iterator IEnd = Consumer.end(); I != IEnd; ++I) { | 
|  | if (BestName != (*I)->getDeclName()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // BestName is the closest viable name to what the user | 
|  | // typed. However, to make sure that we don't pick something that's | 
|  | // way off, make sure that the user typed at least 3 characters for | 
|  | // each correction. | 
|  | unsigned ED = Consumer.getBestEditDistance(); | 
|  | if (ED == 0 || (BestName.getAsIdentifierInfo()->getName().size() / ED) < 3) | 
|  | return false; | 
|  |  | 
|  | // Perform name lookup again with the name we chose, and declare | 
|  | // success if we found something that was not ambiguous. | 
|  | Res.clear(); | 
|  | Res.setLookupName(BestName); | 
|  | LookupParsedName(Res, S, SS, AllowBuiltinCreation, EnteringContext); | 
|  | return Res.getResultKind() != LookupResult::NotFound && !Res.isAmbiguous(); | 
|  | } |