| //===------ CodeGeneration.cpp - Code generate the Scops. -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // The CodeGeneration pass takes a Scop created by ScopInfo and translates it |
| // back to LLVM-IR using Cloog. |
| // |
| // The Scop describes the high level memory behaviour of a control flow region. |
| // Transformation passes can update the schedule (execution order) of statements |
| // in the Scop. Cloog is used to generate an abstract syntax tree (clast) that |
| // reflects the updated execution order. This clast is used to create new |
| // LLVM-IR that is computational equivalent to the original control flow region, |
| // but executes its code in the new execution order defined by the changed |
| // scattering. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "polly-codegen" |
| |
| #include "polly/Cloog.h" |
| #include "polly/CodeGeneration.h" |
| #include "polly/Dependences.h" |
| #include "polly/LinkAllPasses.h" |
| #include "polly/ScopInfo.h" |
| #include "polly/TempScopInfo.h" |
| #include "polly/Support/GICHelper.h" |
| |
| #include "llvm/Module.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/IRBuilder.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| |
| #define CLOOG_INT_GMP 1 |
| #include "cloog/cloog.h" |
| #include "cloog/isl/cloog.h" |
| |
| #include "isl/aff.h" |
| |
| #include <vector> |
| #include <utility> |
| |
| using namespace polly; |
| using namespace llvm; |
| |
| struct isl_set; |
| |
| namespace polly { |
| |
| bool EnablePollyVector; |
| |
| static cl::opt<bool, true> |
| Vector("enable-polly-vector", |
| cl::desc("Enable polly vector code generation"), cl::Hidden, |
| cl::location(EnablePollyVector), cl::init(false)); |
| |
| static cl::opt<bool> |
| OpenMP("enable-polly-openmp", |
| cl::desc("Generate OpenMP parallel code"), cl::Hidden, |
| cl::value_desc("OpenMP code generation enabled if true"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| AtLeastOnce("enable-polly-atLeastOnce", |
| cl::desc("Give polly the hint, that every loop is executed at least" |
| "once"), cl::Hidden, |
| cl::value_desc("OpenMP code generation enabled if true"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| Aligned("enable-polly-aligned", |
| cl::desc("Assumed aligned memory accesses."), cl::Hidden, |
| cl::value_desc("OpenMP code generation enabled if true"), |
| cl::init(false)); |
| |
| typedef DenseMap<const Value*, Value*> ValueMapT; |
| typedef DenseMap<const char*, Value*> CharMapT; |
| typedef std::vector<ValueMapT> VectorValueMapT; |
| |
| // Create a new loop. |
| // |
| // @param Builder The builder used to create the loop. It also defines the |
| // place where to create the loop. |
| // @param UB The upper bound of the loop iv. |
| // @param Stride The number by which the loop iv is incremented after every |
| // iteration. |
| static Value *createLoop(IRBuilder<> *Builder, Value *LB, Value *UB, |
| APInt Stride, Pass *P, BasicBlock **AfterBlock) { |
| DominatorTree &DT = P->getAnalysis<DominatorTree>(); |
| Function *F = Builder->GetInsertBlock()->getParent(); |
| LLVMContext &Context = F->getContext(); |
| |
| BasicBlock *PreheaderBB = Builder->GetInsertBlock(); |
| BasicBlock *HeaderBB = BasicBlock::Create(Context, "polly.loop_header", F); |
| BasicBlock *BodyBB = BasicBlock::Create(Context, "polly.loop_body", F); |
| BasicBlock *AfterBB = SplitBlock(PreheaderBB, Builder->GetInsertPoint()++, P); |
| AfterBB->setName("polly.loop_after"); |
| |
| PreheaderBB->getTerminator()->setSuccessor(0, HeaderBB); |
| DT.addNewBlock(HeaderBB, PreheaderBB); |
| |
| Builder->SetInsertPoint(HeaderBB); |
| |
| // Use the type of upper and lower bound. |
| assert(LB->getType() == UB->getType() |
| && "Different types for upper and lower bound."); |
| |
| IntegerType *LoopIVType = dyn_cast<IntegerType>(UB->getType()); |
| assert(LoopIVType && "UB is not integer?"); |
| |
| // IV |
| PHINode *IV = Builder->CreatePHI(LoopIVType, 2, "polly.loopiv"); |
| IV->addIncoming(LB, PreheaderBB); |
| |
| // IV increment. |
| Value *StrideValue = ConstantInt::get(LoopIVType, |
| Stride.zext(LoopIVType->getBitWidth())); |
| Value *IncrementedIV = Builder->CreateAdd(IV, StrideValue, |
| "polly.next_loopiv"); |
| |
| // Exit condition. |
| Value *CMP; |
| if (AtLeastOnce) { // At least on iteration. |
| UB = Builder->CreateAdd(UB, Builder->getInt64(1)); |
| CMP = Builder->CreateICmpNE(IV, UB); |
| } else { // Maybe not executed at all. |
| CMP = Builder->CreateICmpSLE(IV, UB); |
| } |
| |
| Builder->CreateCondBr(CMP, BodyBB, AfterBB); |
| DT.addNewBlock(BodyBB, HeaderBB); |
| |
| Builder->SetInsertPoint(BodyBB); |
| Builder->CreateBr(HeaderBB); |
| IV->addIncoming(IncrementedIV, BodyBB); |
| DT.changeImmediateDominator(AfterBB, HeaderBB); |
| |
| Builder->SetInsertPoint(BodyBB->begin()); |
| *AfterBlock = AfterBB; |
| |
| return IV; |
| } |
| |
| class IslGenerator; |
| |
| class IslGenerator { |
| public: |
| IslGenerator(IRBuilder<> &Builder) : Builder(Builder) {} |
| Value *generateIslInt(__isl_take isl_int Int); |
| Value *generateIslAff(__isl_take isl_aff *Aff); |
| Value *generateIslPwAff(__isl_take isl_pw_aff *PwAff); |
| |
| private: |
| typedef struct { |
| Value *Result; |
| class IslGenerator *Generator; |
| } IslGenInfo; |
| |
| IRBuilder<> &Builder; |
| static int mergeIslAffValues(__isl_take isl_set *Set, |
| __isl_take isl_aff *Aff, void *User); |
| }; |
| |
| Value *IslGenerator::generateIslInt(isl_int Int) { |
| mpz_t IntMPZ; |
| mpz_init(IntMPZ); |
| isl_int_get_gmp(Int, IntMPZ); |
| Value *IntValue = Builder.getInt(APInt_from_MPZ(IntMPZ)); |
| mpz_clear(IntMPZ); |
| return IntValue; |
| } |
| |
| Value *IslGenerator::generateIslAff(__isl_take isl_aff *Aff) { |
| assert(isl_aff_is_cst(Aff) && "Only constant access functions supported"); |
| Value *ConstValue; |
| isl_int ConstIsl; |
| |
| isl_int_init(ConstIsl); |
| isl_aff_get_constant(Aff, &ConstIsl); |
| ConstValue = generateIslInt(ConstIsl); |
| |
| isl_int_clear(ConstIsl); |
| isl_aff_free(Aff); |
| |
| return ConstValue; |
| } |
| |
| int IslGenerator::mergeIslAffValues(__isl_take isl_set *Set, |
| __isl_take isl_aff *Aff, void *User) { |
| IslGenInfo *GenInfo = (IslGenInfo *)User; |
| |
| assert((GenInfo->Result == NULL) && "Result is already set." |
| "Currently only single isl_aff is supported"); |
| assert(isl_set_plain_is_universe(Set) |
| && "Code generation failed because the set is not universe"); |
| |
| GenInfo->Result = GenInfo->Generator->generateIslAff(Aff); |
| |
| isl_set_free(Set); |
| return 0; |
| } |
| |
| Value *IslGenerator::generateIslPwAff(__isl_take isl_pw_aff *PwAff) { |
| IslGenInfo User; |
| User.Result = NULL; |
| User.Generator = this; |
| isl_pw_aff_foreach_piece(PwAff, mergeIslAffValues, &User); |
| assert(User.Result && "Code generation for isl_pw_aff failed"); |
| |
| isl_pw_aff_free(PwAff); |
| return User.Result; |
| } |
| |
| /// @brief Generate a new basic block for a polyhedral statement. |
| /// |
| /// The only public function exposed is generate(). |
| class BlockGenerator { |
| public: |
| /// @brief Generate a new BasicBlock for a ScopStmt. |
| /// |
| /// @param Builder The LLVM-IR Builder used to generate the statement. The |
| /// code is generated at the location, the Builder points to. |
| /// @param Stmt The statement to code generate. |
| /// @param GlobalMap A map that defines for certain Values referenced from the |
| /// original code new Values they should be replaced with. |
| /// @param P A reference to the pass this function is called from. |
| /// The pass is needed to update other analysis. |
| static void generate(IRBuilder<> &Builder, ScopStmt &Stmt, |
| ValueMapT &GlobalMap, Pass *P) { |
| BlockGenerator Generator(Builder, Stmt, P); |
| Generator.copyBB(GlobalMap); |
| } |
| |
| protected: |
| IRBuilder<> &Builder; |
| ScopStmt &Statement; |
| Pass *P; |
| |
| BlockGenerator(IRBuilder<> &B, ScopStmt &Stmt, Pass *P); |
| |
| /// @brief Get the new version of a Value. |
| /// |
| /// @param Old The old Value. |
| /// @param BBMap A mapping from old values to their new values |
| /// (for values recalculated within this basic block). |
| /// @param GlobalMap A mapping from old values to their new values |
| /// (for values recalculated in the new ScoP, but not |
| /// within this basic block). |
| /// |
| /// @returns o The old value, if it is still valid. |
| /// o The new value, if available. |
| /// o NULL, if no value is found. |
| Value *getNewValue(const Value *Old, ValueMapT &BBMap, ValueMapT &GlobalMap); |
| |
| void copyInstScalar(const Instruction *Inst, ValueMapT &BBMap, |
| ValueMapT &GlobalMap); |
| |
| /// @brief Get the memory access offset to be added to the base address |
| std::vector<Value*> getMemoryAccessIndex(__isl_keep isl_map *AccessRelation, |
| Value *BaseAddress); |
| |
| /// @brief Get the new operand address according to the changed access in |
| /// JSCOP file. |
| Value *getNewAccessOperand(__isl_keep isl_map *NewAccessRelation, |
| Value *BaseAddress, const Value *OldOperand, |
| ValueMapT &BBMap); |
| |
| /// @brief Generate the operand address |
| Value *generateLocationAccessed(const Instruction *Inst, |
| const Value *Pointer, ValueMapT &BBMap, |
| ValueMapT &GlobalMap); |
| |
| Value *generateScalarLoad(const LoadInst *load, ValueMapT &BBMap, |
| ValueMapT &GlobalMap); |
| |
| /// @brief Copy a single Instruction. |
| /// |
| /// This copies a single Instruction and updates references to old values |
| /// with references to new values, as defined by GlobalMap and BBMap. |
| /// |
| /// @param BBMap A mapping from old values to their new values |
| /// (for values recalculated within this basic block). |
| /// @param GlobalMap A mapping from old values to their new values |
| /// (for values recalculated in the new ScoP, but not |
| /// within this basic block). |
| void copyInstruction(const Instruction *Inst, ValueMapT &BBMap, |
| ValueMapT &GlobalMap); |
| |
| /// @brief Copy the basic block. |
| /// |
| /// This copies the entire basic block and updates references to old values |
| /// with references to new values, as defined by GlobalMap. |
| /// |
| /// @param GlobalMap A mapping from old values to their new values |
| /// (for values recalculated in the new ScoP, but not |
| /// within this basic block). |
| void copyBB(ValueMapT &GlobalMap); |
| }; |
| |
| BlockGenerator::BlockGenerator(IRBuilder<> &B, ScopStmt &Stmt, Pass *P): |
| Builder(B), Statement(Stmt), P(P) {} |
| |
| Value *BlockGenerator::getNewValue(const Value *Old, ValueMapT &BBMap, |
| ValueMapT &GlobalMap) { |
| const Instruction *Inst = dyn_cast<Instruction>(Old); |
| |
| if (!Inst) |
| return const_cast<Value*>(Old); |
| |
| // OldOperand was redefined outside of this BasicBlock. |
| if (GlobalMap.count(Old)) { |
| Value *New = GlobalMap[Old]; |
| |
| if (Old->getType()->getScalarSizeInBits() |
| < New->getType()->getScalarSizeInBits()) |
| New = Builder.CreateTruncOrBitCast(New, Old->getType()); |
| |
| return New; |
| } |
| |
| // OldOperand was recalculated within this BasicBlock. |
| if (BBMap.count(Old)) { |
| return BBMap[Old]; |
| } |
| |
| // OldOperand is SCoP invariant. |
| if (!Statement.getParent()->getRegion().contains(Inst->getParent())) |
| return const_cast<Value*>(Old); |
| |
| // We could not find any valid new operand. |
| return NULL; |
| } |
| |
| void BlockGenerator::copyInstScalar(const Instruction *Inst, ValueMapT &BBMap, |
| ValueMapT &GlobalMap) { |
| Instruction *NewInst = Inst->clone(); |
| |
| // Replace old operands with the new ones. |
| for (Instruction::const_op_iterator OI = Inst->op_begin(), |
| OE = Inst->op_end(); OI != OE; ++OI) { |
| Value *OldOperand = *OI; |
| Value *NewOperand = getNewValue(OldOperand, BBMap, GlobalMap); |
| |
| if (!NewOperand) { |
| assert(!isa<StoreInst>(NewInst) |
| && "Store instructions are always needed!"); |
| delete NewInst; |
| return; |
| } |
| |
| NewInst->replaceUsesOfWith(OldOperand, NewOperand); |
| } |
| |
| Builder.Insert(NewInst); |
| BBMap[Inst] = NewInst; |
| |
| if (!NewInst->getType()->isVoidTy()) |
| NewInst->setName("p_" + Inst->getName()); |
| } |
| |
| std::vector <Value*> BlockGenerator::getMemoryAccessIndex( |
| __isl_keep isl_map *AccessRelation, Value *BaseAddress) { |
| assert((isl_map_dim(AccessRelation, isl_dim_out) == 1) |
| && "Only single dimensional access functions supported"); |
| |
| isl_pw_aff *PwAff = isl_map_dim_max(isl_map_copy(AccessRelation), 0); |
| IslGenerator IslGen(Builder); |
| Value *OffsetValue = IslGen.generateIslPwAff(PwAff); |
| |
| PointerType *BaseAddressType = dyn_cast<PointerType>( |
| BaseAddress->getType()); |
| Type *ArrayTy = BaseAddressType->getElementType(); |
| Type *ArrayElementType = dyn_cast<ArrayType>(ArrayTy)->getElementType(); |
| OffsetValue = Builder.CreateSExtOrBitCast(OffsetValue, ArrayElementType); |
| |
| std::vector<Value*> IndexArray; |
| Value *NullValue = Constant::getNullValue(ArrayElementType); |
| IndexArray.push_back(NullValue); |
| IndexArray.push_back(OffsetValue); |
| return IndexArray; |
| } |
| |
| Value *BlockGenerator::getNewAccessOperand( |
| __isl_keep isl_map *NewAccessRelation, Value *BaseAddress, const Value |
| *OldOperand, ValueMapT &BBMap) { |
| std::vector<Value*> IndexArray = getMemoryAccessIndex(NewAccessRelation, |
| BaseAddress); |
| Value *NewOperand = Builder.CreateGEP(BaseAddress, IndexArray, |
| "p_newarrayidx_"); |
| return NewOperand; |
| } |
| |
| Value *BlockGenerator::generateLocationAccessed(const Instruction *Inst, |
| const Value *Pointer, |
| ValueMapT &BBMap, |
| ValueMapT &GlobalMap) { |
| MemoryAccess &Access = Statement.getAccessFor(Inst); |
| isl_map *CurrentAccessRelation = Access.getAccessRelation(); |
| isl_map *NewAccessRelation = Access.getNewAccessRelation(); |
| |
| assert(isl_map_has_equal_space(CurrentAccessRelation, NewAccessRelation) |
| && "Current and new access function use different spaces"); |
| |
| Value *NewPointer; |
| |
| if (!NewAccessRelation) { |
| NewPointer = getNewValue(Pointer, BBMap, GlobalMap); |
| } else { |
| Value *BaseAddress = const_cast<Value*>(Access.getBaseAddr()); |
| NewPointer = getNewAccessOperand(NewAccessRelation, BaseAddress, Pointer, |
| BBMap); |
| } |
| |
| isl_map_free(CurrentAccessRelation); |
| isl_map_free(NewAccessRelation); |
| return NewPointer; |
| } |
| |
| Value *BlockGenerator::generateScalarLoad(const LoadInst *Load, |
| ValueMapT &BBMap, |
| ValueMapT &GlobalMap) { |
| const Value *Pointer = Load->getPointerOperand(); |
| const Instruction *Inst = dyn_cast<Instruction>(Load); |
| Value *NewPointer = generateLocationAccessed(Inst, Pointer, BBMap, GlobalMap); |
| Value *ScalarLoad = Builder.CreateLoad(NewPointer, |
| Load->getName() + "_p_scalar_"); |
| return ScalarLoad; |
| } |
| |
| void BlockGenerator::copyInstruction(const Instruction *Inst, |
| ValueMapT &BBMap, ValueMapT &GlobalMap) { |
| // Terminator instructions control the control flow. They are explicitly |
| // expressed in the clast and do not need to be copied. |
| if (Inst->isTerminator()) |
| return; |
| |
| if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) { |
| BBMap[Load] = generateScalarLoad(Load, BBMap, GlobalMap); |
| return; |
| } |
| |
| copyInstScalar(Inst, BBMap, GlobalMap); |
| } |
| |
| |
| void BlockGenerator::copyBB(ValueMapT &GlobalMap) { |
| BasicBlock *BB = Statement.getBasicBlock(); |
| BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), |
| Builder.GetInsertPoint(), P); |
| CopyBB->setName("polly.stmt." + BB->getName()); |
| Builder.SetInsertPoint(CopyBB->begin()); |
| |
| ValueMapT BBMap; |
| |
| for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; |
| ++II) |
| copyInstruction(II, BBMap, GlobalMap); |
| } |
| |
| /// @brief Generate a new vector basic block for a polyhedral statement. |
| /// |
| /// The only public function exposed is generate(). |
| class VectorBlockGenerator : BlockGenerator { |
| public: |
| /// @brief Generate a new vector basic block for a ScoPStmt. |
| /// |
| /// This code generation is similar to the normal, scalar code generation, |
| /// except that each instruction is code generated for several vector lanes |
| /// at a time. If possible instructions are issued as actual vector |
| /// instructions, but e.g. for address calculation instructions we currently |
| /// generate scalar instructions for each vector lane. |
| /// |
| /// @param Builder The LLVM-IR Builder used to generate the statement. The |
| /// code is generated at the location, the builder points |
| /// to. |
| /// @param Stmt The statement to code generate. |
| /// @param GlobalMaps A vector of maps that define for certain Values |
| /// referenced from the original code new Values they should |
| /// be replaced with. Each map in the vector of maps is |
| /// used for one vector lane. The number of elements in the |
| /// vector defines the width of the generated vector |
| /// instructions. |
| /// @param P A reference to the pass this function is called from. |
| /// The pass is needed to update other analysis. |
| static void generate(IRBuilder<> &B, ScopStmt &Stmt, |
| VectorValueMapT &GlobalMaps, __isl_keep isl_set *Domain, |
| Pass *P) { |
| VectorBlockGenerator Generator(B, GlobalMaps, Stmt, Domain, P); |
| Generator.copyBB(); |
| } |
| |
| private: |
| // This is a vector of global value maps. The first map is used for the first |
| // vector lane, ... |
| // Each map, contains information about Instructions in the old ScoP, which |
| // are recalculated in the new SCoP. When copying the basic block, we replace |
| // all referenes to the old instructions with their recalculated values. |
| VectorValueMapT &GlobalMaps; |
| |
| isl_set *Domain; |
| |
| VectorBlockGenerator(IRBuilder<> &B, VectorValueMapT &GlobalMaps, |
| ScopStmt &Stmt, __isl_keep isl_set *Domain, Pass *P); |
| |
| int getVectorWidth(); |
| |
| Value *getVectorValue(const Value *Old, ValueMapT &VectorMap, |
| VectorValueMapT &ScalarMaps); |
| |
| Type *getVectorPtrTy(const Value *V, int Width); |
| |
| /// @brief Load a vector from a set of adjacent scalars |
| /// |
| /// In case a set of scalars is known to be next to each other in memory, |
| /// create a vector load that loads those scalars |
| /// |
| /// %vector_ptr= bitcast double* %p to <4 x double>* |
| /// %vec_full = load <4 x double>* %vector_ptr |
| /// |
| Value *generateStrideOneLoad(const LoadInst *Load, ValueMapT &BBMap); |
| |
| /// @brief Load a vector initialized from a single scalar in memory |
| /// |
| /// In case all elements of a vector are initialized to the same |
| /// scalar value, this value is loaded and shuffeled into all elements |
| /// of the vector. |
| /// |
| /// %splat_one = load <1 x double>* %p |
| /// %splat = shufflevector <1 x double> %splat_one, <1 x |
| /// double> %splat_one, <4 x i32> zeroinitializer |
| /// |
| Value *generateStrideZeroLoad(const LoadInst *Load, ValueMapT &BBMap); |
| |
| /// @Load a vector from scalars distributed in memory |
| /// |
| /// In case some scalars a distributed randomly in memory. Create a vector |
| /// by loading each scalar and by inserting one after the other into the |
| /// vector. |
| /// |
| /// %scalar_1= load double* %p_1 |
| /// %vec_1 = insertelement <2 x double> undef, double %scalar_1, i32 0 |
| /// %scalar 2 = load double* %p_2 |
| /// %vec_2 = insertelement <2 x double> %vec_1, double %scalar_1, i32 1 |
| /// |
| Value *generateUnknownStrideLoad(const LoadInst *Load, |
| VectorValueMapT &ScalarMaps); |
| |
| void generateLoad(const LoadInst *Load, ValueMapT &VectorMap, |
| VectorValueMapT &ScalarMaps); |
| |
| void copyUnaryInst(const UnaryInstruction *Inst, ValueMapT &VectorMap, |
| VectorValueMapT &ScalarMaps); |
| |
| void copyBinaryInst(const BinaryOperator *Inst, ValueMapT &VectorMap, |
| VectorValueMapT &ScalarMaps); |
| |
| void copyStore(const StoreInst *Store, ValueMapT &VectorMap, |
| VectorValueMapT &ScalarMaps); |
| |
| bool hasVectorOperands(const Instruction *Inst, ValueMapT &VectorMap); |
| |
| void copyInstruction(const Instruction *Inst, ValueMapT &VectorMap, |
| VectorValueMapT &ScalarMaps); |
| |
| void copyBB(); |
| }; |
| |
| VectorBlockGenerator::VectorBlockGenerator(IRBuilder<> &B, |
| VectorValueMapT &GlobalMaps, ScopStmt &Stmt, __isl_keep isl_set *Domain, |
| Pass *P) : BlockGenerator(B, Stmt, P), GlobalMaps(GlobalMaps), |
| Domain(Domain) { |
| assert(GlobalMaps.size() > 1 && "Only one vector lane found"); |
| assert(Domain && "No statement domain provided"); |
| } |
| |
| Value *VectorBlockGenerator::getVectorValue(const Value *Old, |
| ValueMapT &VectorMap, |
| VectorValueMapT &ScalarMaps) { |
| if (VectorMap.count(Old)) |
| return VectorMap[Old]; |
| |
| int Width = getVectorWidth(); |
| |
| Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); |
| |
| for (int Lane = 0; Lane < Width; Lane++) |
| Vector = Builder.CreateInsertElement(Vector, |
| getNewValue(Old, |
| ScalarMaps[Lane], |
| GlobalMaps[Lane]), |
| Builder.getInt32(Lane)); |
| |
| VectorMap[Old] = Vector; |
| |
| return Vector; |
| } |
| |
| Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { |
| PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); |
| assert(PointerTy && "PointerType expected"); |
| |
| Type *ScalarType = PointerTy->getElementType(); |
| VectorType *VectorType = VectorType::get(ScalarType, Width); |
| |
| return PointerType::getUnqual(VectorType); |
| } |
| |
| Value *VectorBlockGenerator::generateStrideOneLoad(const LoadInst *Load, |
| ValueMapT &BBMap) { |
| const Value *Pointer = Load->getPointerOperand(); |
| Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); |
| Value *NewPointer = getNewValue(Pointer, BBMap, GlobalMaps[0]); |
| Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, |
| "vector_ptr"); |
| LoadInst *VecLoad = Builder.CreateLoad(VectorPtr, |
| Load->getName() + "_p_vec_full"); |
| if (!Aligned) |
| VecLoad->setAlignment(8); |
| |
| return VecLoad; |
| } |
| |
| Value *VectorBlockGenerator::generateStrideZeroLoad(const LoadInst *Load, |
| ValueMapT &BBMap) { |
| const Value *Pointer = Load->getPointerOperand(); |
| Type *VectorPtrType = getVectorPtrTy(Pointer, 1); |
| Value *NewPointer = getNewValue(Pointer, BBMap, GlobalMaps[0]); |
| Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, |
| Load->getName() + "_p_vec_p"); |
| LoadInst *ScalarLoad= Builder.CreateLoad(VectorPtr, |
| Load->getName() + "_p_splat_one"); |
| |
| if (!Aligned) |
| ScalarLoad->setAlignment(8); |
| |
| Constant *SplatVector = |
| Constant::getNullValue(VectorType::get(Builder.getInt32Ty(), |
| getVectorWidth())); |
| |
| Value *VectorLoad = Builder.CreateShuffleVector(ScalarLoad, ScalarLoad, |
| SplatVector, |
| Load->getName() |
| + "_p_splat"); |
| return VectorLoad; |
| } |
| |
| Value *VectorBlockGenerator::generateUnknownStrideLoad(const LoadInst *Load, |
| VectorValueMapT &ScalarMaps) { |
| int VectorWidth = getVectorWidth(); |
| const Value *Pointer = Load->getPointerOperand(); |
| VectorType *VectorType = VectorType::get( |
| dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); |
| |
| Value *Vector = UndefValue::get(VectorType); |
| |
| for (int i = 0; i < VectorWidth; i++) { |
| Value *NewPointer = getNewValue(Pointer, ScalarMaps[i], GlobalMaps[i]); |
| Value *ScalarLoad = Builder.CreateLoad(NewPointer, |
| Load->getName() + "_p_scalar_"); |
| Vector = Builder.CreateInsertElement(Vector, ScalarLoad, |
| Builder.getInt32(i), |
| Load->getName() + "_p_vec_"); |
| } |
| |
| return Vector; |
| } |
| |
| void VectorBlockGenerator::generateLoad(const LoadInst *Load, |
| ValueMapT &VectorMap, |
| VectorValueMapT &ScalarMaps) { |
| Value *NewLoad; |
| |
| MemoryAccess &Access = Statement.getAccessFor(Load); |
| |
| if (Access.isStrideZero(isl_set_copy(Domain))) |
| NewLoad = generateStrideZeroLoad(Load, ScalarMaps[0]); |
| else if (Access.isStrideOne(isl_set_copy(Domain))) |
| NewLoad = generateStrideOneLoad(Load, ScalarMaps[0]); |
| else |
| NewLoad = generateUnknownStrideLoad(Load, ScalarMaps); |
| |
| VectorMap[Load] = NewLoad; |
| } |
| |
| void VectorBlockGenerator::copyUnaryInst(const UnaryInstruction *Inst, |
| ValueMapT &VectorMap, |
| VectorValueMapT &ScalarMaps) { |
| int VectorWidth = getVectorWidth(); |
| Value *NewOperand = getVectorValue(Inst->getOperand(0), VectorMap, |
| ScalarMaps); |
| |
| assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); |
| |
| const CastInst *Cast = dyn_cast<CastInst>(Inst); |
| VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); |
| VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); |
| } |
| |
| void VectorBlockGenerator::copyBinaryInst(const BinaryOperator *Inst, |
| ValueMapT &VectorMap, |
| VectorValueMapT &ScalarMaps) { |
| Value *OpZero = Inst->getOperand(0); |
| Value *OpOne = Inst->getOperand(1); |
| |
| Value *NewOpZero, *NewOpOne; |
| NewOpZero = getVectorValue(OpZero, VectorMap, ScalarMaps); |
| NewOpOne = getVectorValue(OpOne, VectorMap, ScalarMaps); |
| |
| Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, |
| NewOpOne, |
| Inst->getName() + "p_vec"); |
| VectorMap[Inst] = NewInst; |
| } |
| |
| void VectorBlockGenerator::copyStore(const StoreInst *Store, |
| ValueMapT &VectorMap, |
| VectorValueMapT &ScalarMaps) { |
| int VectorWidth = getVectorWidth(); |
| |
| MemoryAccess &Access = Statement.getAccessFor(Store); |
| |
| const Value *Pointer = Store->getPointerOperand(); |
| Value *Vector = getVectorValue(Store->getValueOperand(), VectorMap, |
| ScalarMaps); |
| |
| if (Access.isStrideOne(isl_set_copy(Domain))) { |
| Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); |
| Value *NewPointer = getNewValue(Pointer, ScalarMaps[0], GlobalMaps[0]); |
| |
| Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, |
| "vector_ptr"); |
| StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); |
| |
| if (!Aligned) |
| Store->setAlignment(8); |
| } else { |
| for (unsigned i = 0; i < ScalarMaps.size(); i++) { |
| Value *Scalar = Builder.CreateExtractElement(Vector, |
| Builder.getInt32(i)); |
| Value *NewPointer = getNewValue(Pointer, ScalarMaps[i], GlobalMaps[i]); |
| Builder.CreateStore(Scalar, NewPointer); |
| } |
| } |
| } |
| |
| bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, |
| ValueMapT &VectorMap) { |
| for (Instruction::const_op_iterator OI = Inst->op_begin(), |
| OE = Inst->op_end(); OI != OE; ++OI) |
| if (VectorMap.count(*OI)) |
| return true; |
| return false; |
| } |
| |
| int VectorBlockGenerator::getVectorWidth() { |
| return GlobalMaps.size(); |
| } |
| |
| void VectorBlockGenerator::copyInstruction(const Instruction *Inst, |
| ValueMapT &VectorMap, |
| VectorValueMapT &ScalarMaps) { |
| // Terminator instructions control the control flow. They are explicitly |
| // expressed in the clast and do not need to be copied. |
| if (Inst->isTerminator()) |
| return; |
| |
| if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) { |
| generateLoad(Load, VectorMap, ScalarMaps); |
| return; |
| } |
| |
| if (hasVectorOperands(Inst, VectorMap)) { |
| if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) { |
| copyStore(Store, VectorMap, ScalarMaps); |
| return; |
| } |
| |
| if (const UnaryInstruction *Unary = dyn_cast<UnaryInstruction>(Inst)) { |
| copyUnaryInst(Unary, VectorMap, ScalarMaps); |
| return; |
| } |
| |
| if (const BinaryOperator *Binary = dyn_cast<BinaryOperator>(Inst)) { |
| copyBinaryInst(Binary, VectorMap, ScalarMaps); |
| return; |
| } |
| |
| llvm_unreachable("Cannot issue vector code for this instruction"); |
| } |
| |
| for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) |
| copyInstScalar(Inst, ScalarMaps[VectorLane], GlobalMaps[VectorLane]); |
| } |
| |
| void VectorBlockGenerator::copyBB() { |
| BasicBlock *BB = Statement.getBasicBlock(); |
| BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), |
| Builder.GetInsertPoint(), P); |
| CopyBB->setName("polly.stmt." + BB->getName()); |
| Builder.SetInsertPoint(CopyBB->begin()); |
| |
| // Create two maps that store the mapping from the original instructions of |
| // the old basic block to their copies in the new basic block. Those maps |
| // are basic block local. |
| // |
| // As vector code generation is supported there is one map for scalar values |
| // and one for vector values. |
| // |
| // In case we just do scalar code generation, the vectorMap is not used and |
| // the scalarMap has just one dimension, which contains the mapping. |
| // |
| // In case vector code generation is done, an instruction may either appear |
| // in the vector map once (as it is calculating >vectorwidth< values at a |
| // time. Or (if the values are calculated using scalar operations), it |
| // appears once in every dimension of the scalarMap. |
| VectorValueMapT ScalarBlockMap(getVectorWidth()); |
| ValueMapT VectorBlockMap; |
| |
| for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); |
| II != IE; ++II) |
| copyInstruction(II, VectorBlockMap, ScalarBlockMap); |
| } |
| |
| /// Class to generate LLVM-IR that calculates the value of a clast_expr. |
| class ClastExpCodeGen { |
| IRBuilder<> &Builder; |
| const CharMapT *IVS; |
| |
| Value *codegen(const clast_name *e, Type *Ty); |
| Value *codegen(const clast_term *e, Type *Ty); |
| Value *codegen(const clast_binary *e, Type *Ty); |
| Value *codegen(const clast_reduction *r, Type *Ty); |
| public: |
| |
| // A generator for clast expressions. |
| // |
| // @param B The IRBuilder that defines where the code to calculate the |
| // clast expressions should be inserted. |
| // @param IVMAP A Map that translates strings describing the induction |
| // variables to the Values* that represent these variables |
| // on the LLVM side. |
| ClastExpCodeGen(IRBuilder<> &B, CharMapT *IVMap); |
| |
| // Generates code to calculate a given clast expression. |
| // |
| // @param e The expression to calculate. |
| // @return The Value that holds the result. |
| Value *codegen(const clast_expr *e, Type *Ty); |
| |
| // @brief Reset the CharMap. |
| // |
| // This function is called to reset the CharMap to new one, while generating |
| // OpenMP code. |
| void setIVS(CharMapT *IVSNew); |
| }; |
| |
| Value *ClastExpCodeGen::codegen(const clast_name *e, Type *Ty) { |
| CharMapT::const_iterator I = IVS->find(e->name); |
| |
| assert(I != IVS->end() && "Clast name not found"); |
| |
| return Builder.CreateSExtOrBitCast(I->second, Ty); |
| } |
| |
| Value *ClastExpCodeGen::codegen(const clast_term *e, Type *Ty) { |
| APInt a = APInt_from_MPZ(e->val); |
| |
| Value *ConstOne = ConstantInt::get(Builder.getContext(), a); |
| ConstOne = Builder.CreateSExtOrBitCast(ConstOne, Ty); |
| |
| if (!e->var) |
| return ConstOne; |
| |
| Value *var = codegen(e->var, Ty); |
| return Builder.CreateMul(ConstOne, var); |
| } |
| |
| Value *ClastExpCodeGen::codegen(const clast_binary *e, Type *Ty) { |
| Value *LHS = codegen(e->LHS, Ty); |
| |
| APInt RHS_AP = APInt_from_MPZ(e->RHS); |
| |
| Value *RHS = ConstantInt::get(Builder.getContext(), RHS_AP); |
| RHS = Builder.CreateSExtOrBitCast(RHS, Ty); |
| |
| switch (e->type) { |
| case clast_bin_mod: |
| return Builder.CreateSRem(LHS, RHS); |
| case clast_bin_fdiv: |
| { |
| // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d |
| Value *One = ConstantInt::get(Ty, 1); |
| Value *Zero = ConstantInt::get(Ty, 0); |
| Value *Sum1 = Builder.CreateSub(LHS, RHS); |
| Value *Sum2 = Builder.CreateAdd(Sum1, One); |
| Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); |
| Value *Dividend = Builder.CreateSelect(isNegative, Sum2, LHS); |
| return Builder.CreateSDiv(Dividend, RHS); |
| } |
| case clast_bin_cdiv: |
| { |
| // ceild(n,d) ((n < 0) ? n : (n + d - 1)) / d |
| Value *One = ConstantInt::get(Ty, 1); |
| Value *Zero = ConstantInt::get(Ty, 0); |
| Value *Sum1 = Builder.CreateAdd(LHS, RHS); |
| Value *Sum2 = Builder.CreateSub(Sum1, One); |
| Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); |
| Value *Dividend = Builder.CreateSelect(isNegative, LHS, Sum2); |
| return Builder.CreateSDiv(Dividend, RHS); |
| } |
| case clast_bin_div: |
| return Builder.CreateSDiv(LHS, RHS); |
| }; |
| |
| llvm_unreachable("Unknown clast binary expression type"); |
| } |
| |
| Value *ClastExpCodeGen::codegen(const clast_reduction *r, Type *Ty) { |
| assert(( r->type == clast_red_min |
| || r->type == clast_red_max |
| || r->type == clast_red_sum) |
| && "Clast reduction type not supported"); |
| Value *old = codegen(r->elts[0], Ty); |
| |
| for (int i=1; i < r->n; ++i) { |
| Value *exprValue = codegen(r->elts[i], Ty); |
| |
| switch (r->type) { |
| case clast_red_min: |
| { |
| Value *cmp = Builder.CreateICmpSLT(old, exprValue); |
| old = Builder.CreateSelect(cmp, old, exprValue); |
| break; |
| } |
| case clast_red_max: |
| { |
| Value *cmp = Builder.CreateICmpSGT(old, exprValue); |
| old = Builder.CreateSelect(cmp, old, exprValue); |
| break; |
| } |
| case clast_red_sum: |
| old = Builder.CreateAdd(old, exprValue); |
| break; |
| } |
| } |
| |
| return old; |
| } |
| |
| ClastExpCodeGen::ClastExpCodeGen(IRBuilder<> &B, CharMapT *IVMap) |
| : Builder(B), IVS(IVMap) {} |
| |
| Value *ClastExpCodeGen::codegen(const clast_expr *e, Type *Ty) { |
| switch(e->type) { |
| case clast_expr_name: |
| return codegen((const clast_name *)e, Ty); |
| case clast_expr_term: |
| return codegen((const clast_term *)e, Ty); |
| case clast_expr_bin: |
| return codegen((const clast_binary *)e, Ty); |
| case clast_expr_red: |
| return codegen((const clast_reduction *)e, Ty); |
| } |
| |
| llvm_unreachable("Unknown clast expression!"); |
| } |
| |
| void ClastExpCodeGen::setIVS(CharMapT *IVSNew) { |
| IVS = IVSNew; |
| } |
| |
| class ClastStmtCodeGen { |
| // The Scop we code generate. |
| Scop *S; |
| Pass *P; |
| |
| // The Builder specifies the current location to code generate at. |
| IRBuilder<> &Builder; |
| |
| // Map the Values from the old code to their counterparts in the new code. |
| ValueMapT ValueMap; |
| |
| // clastVars maps from the textual representation of a clast variable to its |
| // current *Value. clast variables are scheduling variables, original |
| // induction variables or parameters. They are used either in loop bounds or |
| // to define the statement instance that is executed. |
| // |
| // for (s = 0; s < n + 3; ++i) |
| // for (t = s; t < m; ++j) |
| // Stmt(i = s + 3 * m, j = t); |
| // |
| // {s,t,i,j,n,m} is the set of clast variables in this clast. |
| CharMapT *clastVars; |
| |
| // Codegenerator for clast expressions. |
| ClastExpCodeGen ExpGen; |
| |
| // Do we currently generate parallel code? |
| bool parallelCodeGeneration; |
| |
| std::vector<std::string> parallelLoops; |
| |
| public: |
| |
| const std::vector<std::string> &getParallelLoops(); |
| |
| protected: |
| void codegen(const clast_assignment *a); |
| |
| void codegen(const clast_assignment *a, ScopStmt *Statement, |
| unsigned Dimension, int vectorDim, |
| std::vector<ValueMapT> *VectorVMap = 0); |
| |
| void codegenSubstitutions(const clast_stmt *Assignment, |
| ScopStmt *Statement, int vectorDim = 0, |
| std::vector<ValueMapT> *VectorVMap = 0); |
| |
| void codegen(const clast_user_stmt *u, std::vector<Value*> *IVS = NULL, |
| const char *iterator = NULL, isl_set *scatteringDomain = 0); |
| |
| void codegen(const clast_block *b); |
| |
| /// @brief Create a classical sequential loop. |
| void codegenForSequential(const clast_for *f, Value *LowerBound = 0, |
| Value *UpperBound = 0); |
| |
| /// @brief Add a new definition of an openmp subfunction. |
| Function *addOpenMPSubfunction(Module *M); |
| |
| /// @brief Add values to the OpenMP structure. |
| /// |
| /// Create the subfunction structure and add the values from the list. |
| Value *addValuesToOpenMPStruct(SetVector<Value*> OMPDataVals, |
| Function *SubFunction); |
| |
| /// @brief Create OpenMP structure values. |
| /// |
| /// Create a list of values that has to be stored into the subfuncition |
| /// structure. |
| SetVector<Value*> createOpenMPStructValues(); |
| |
| /// @brief Extract the values from the subfunction parameter. |
| /// |
| /// Extract the values from the subfunction parameter and update the clast |
| /// variables to point to the new values. |
| void extractValuesFromOpenMPStruct(CharMapT *clastVarsOMP, |
| SetVector<Value*> OMPDataVals, |
| Value *userContext); |
| |
| /// @brief Add body to the subfunction. |
| void addOpenMPSubfunctionBody(Function *FN, const clast_for *f, |
| Value *structData, |
| SetVector<Value*> OMPDataVals); |
| |
| /// @brief Create an OpenMP parallel for loop. |
| /// |
| /// This loop reflects a loop as if it would have been created by an OpenMP |
| /// statement. |
| void codegenForOpenMP(const clast_for *f); |
| |
| bool isInnermostLoop(const clast_for *f); |
| |
| /// @brief Get the number of loop iterations for this loop. |
| /// @param f The clast for loop to check. |
| int getNumberOfIterations(const clast_for *f); |
| |
| /// @brief Create vector instructions for this loop. |
| void codegenForVector(const clast_for *f); |
| |
| void codegen(const clast_for *f); |
| |
| Value *codegen(const clast_equation *eq); |
| |
| void codegen(const clast_guard *g); |
| |
| void codegen(const clast_stmt *stmt); |
| |
| void addParameters(const CloogNames *names); |
| |
| IntegerType *getIntPtrTy(); |
| |
| public: |
| void codegen(const clast_root *r); |
| |
| ClastStmtCodeGen(Scop *scop, IRBuilder<> &B, Pass *P); |
| }; |
| } |
| |
| IntegerType *ClastStmtCodeGen::getIntPtrTy() { |
| return P->getAnalysis<TargetData>().getIntPtrType(Builder.getContext()); |
| } |
| |
| const std::vector<std::string> &ClastStmtCodeGen::getParallelLoops() { |
| return parallelLoops; |
| } |
| |
| void ClastStmtCodeGen::codegen(const clast_assignment *a) { |
| Value *V= ExpGen.codegen(a->RHS, getIntPtrTy()); |
| (*clastVars)[a->LHS] = V; |
| } |
| |
| void ClastStmtCodeGen::codegen(const clast_assignment *a, ScopStmt *Statement, |
| unsigned Dimension, int vectorDim, |
| std::vector<ValueMapT> *VectorVMap) { |
| Value *RHS = ExpGen.codegen(a->RHS, getIntPtrTy()); |
| |
| assert(!a->LHS && "Statement assignments do not have left hand side"); |
| const PHINode *PN; |
| PN = Statement->getInductionVariableForDimension(Dimension); |
| const Value *V = PN; |
| |
| if (VectorVMap) |
| (*VectorVMap)[vectorDim][V] = RHS; |
| |
| ValueMap[V] = RHS; |
| } |
| |
| void ClastStmtCodeGen::codegenSubstitutions(const clast_stmt *Assignment, |
| ScopStmt *Statement, int vectorDim, |
| std::vector<ValueMapT> *VectorVMap) { |
| int Dimension = 0; |
| |
| while (Assignment) { |
| assert(CLAST_STMT_IS_A(Assignment, stmt_ass) |
| && "Substitions are expected to be assignments"); |
| codegen((const clast_assignment *)Assignment, Statement, Dimension, |
| vectorDim, VectorVMap); |
| Assignment = Assignment->next; |
| Dimension++; |
| } |
| } |
| |
| void ClastStmtCodeGen::codegen(const clast_user_stmt *u, |
| std::vector<Value*> *IVS , const char *iterator, |
| isl_set *Domain) { |
| ScopStmt *Statement = (ScopStmt *)u->statement->usr; |
| |
| if (u->substitutions) |
| codegenSubstitutions(u->substitutions, Statement); |
| |
| int VectorDimensions = IVS ? IVS->size() : 1; |
| |
| if (VectorDimensions == 1) { |
| BlockGenerator::generate(Builder, *Statement, ValueMap, P); |
| return; |
| } |
| |
| VectorValueMapT VectorMap(VectorDimensions); |
| |
| if (IVS) { |
| assert (u->substitutions && "Substitutions expected!"); |
| int i = 0; |
| for (std::vector<Value*>::iterator II = IVS->begin(), IE = IVS->end(); |
| II != IE; ++II) { |
| (*clastVars)[iterator] = *II; |
| codegenSubstitutions(u->substitutions, Statement, i, &VectorMap); |
| i++; |
| } |
| } |
| |
| VectorBlockGenerator::generate(Builder, *Statement, VectorMap, Domain, P); |
| } |
| |
| void ClastStmtCodeGen::codegen(const clast_block *b) { |
| if (b->body) |
| codegen(b->body); |
| } |
| |
| void ClastStmtCodeGen::codegenForSequential(const clast_for *f, |
| Value *LowerBound, |
| Value *UpperBound) { |
| BasicBlock *AfterBB; |
| Type *IntPtrTy = getIntPtrTy(); |
| APInt Stride = APInt_from_MPZ(f->stride); |
| |
| // The value of lowerbound and upperbound will be supplied, if this |
| // function is called while generating OpenMP code. Otherwise get |
| // the values. |
| assert(!!LowerBound == !!UpperBound && "Either give both bounds or none"); |
| |
| if (LowerBound == 0) { |
| LowerBound = ExpGen.codegen(f->LB, IntPtrTy); |
| UpperBound = ExpGen.codegen(f->UB, IntPtrTy); |
| } |
| |
| Value *IV = createLoop(&Builder, LowerBound, UpperBound, Stride, P, &AfterBB); |
| |
| // Add loop iv to symbols. |
| (*clastVars)[f->iterator] = IV; |
| |
| if (f->body) |
| codegen(f->body); |
| |
| // Loop is finished, so remove its iv from the live symbols. |
| clastVars->erase(f->iterator); |
| Builder.SetInsertPoint(AfterBB->begin()); |
| } |
| |
| Function *ClastStmtCodeGen::addOpenMPSubfunction(Module *M) { |
| Function *F = Builder.GetInsertBlock()->getParent(); |
| std::vector<Type*> Arguments(1, Builder.getInt8PtrTy()); |
| FunctionType *FT = FunctionType::get(Builder.getVoidTy(), Arguments, false); |
| Function *FN = Function::Create(FT, Function::InternalLinkage, |
| F->getName() + ".omp_subfn", M); |
| // Do not run any polly pass on the new function. |
| P->getAnalysis<ScopDetection>().markFunctionAsInvalid(FN); |
| |
| Function::arg_iterator AI = FN->arg_begin(); |
| AI->setName("omp.userContext"); |
| |
| return FN; |
| } |
| |
| Value *ClastStmtCodeGen::addValuesToOpenMPStruct(SetVector<Value*> OMPDataVals, |
| Function *SubFunction) { |
| std::vector<Type*> structMembers; |
| |
| // Create the structure. |
| for (unsigned i = 0; i < OMPDataVals.size(); i++) |
| structMembers.push_back(OMPDataVals[i]->getType()); |
| |
| StructType *structTy = StructType::get(Builder.getContext(), |
| structMembers); |
| // Store the values into the structure. |
| Value *structData = Builder.CreateAlloca(structTy, 0, "omp.userContext"); |
| for (unsigned i = 0; i < OMPDataVals.size(); i++) { |
| Value *storeAddr = Builder.CreateStructGEP(structData, i); |
| Builder.CreateStore(OMPDataVals[i], storeAddr); |
| } |
| |
| return structData; |
| } |
| |
| SetVector<Value*> ClastStmtCodeGen::createOpenMPStructValues() { |
| SetVector<Value*> OMPDataVals; |
| |
| // Push the clast variables available in the clastVars. |
| for (CharMapT::iterator I = clastVars->begin(), E = clastVars->end(); |
| I != E; I++) |
| OMPDataVals.insert(I->second); |
| |
| // Push the base addresses of memory references. |
| for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) { |
| ScopStmt *Stmt = *SI; |
| for (SmallVector<MemoryAccess*, 8>::iterator I = Stmt->memacc_begin(), |
| E = Stmt->memacc_end(); I != E; ++I) { |
| Value *BaseAddr = const_cast<Value*>((*I)->getBaseAddr()); |
| OMPDataVals.insert((BaseAddr)); |
| } |
| } |
| |
| return OMPDataVals; |
| } |
| |
| void ClastStmtCodeGen::extractValuesFromOpenMPStruct(CharMapT *clastVarsOMP, |
| SetVector<Value*> OMPDataVals, Value *userContext) { |
| // Extract the clast variables. |
| unsigned i = 0; |
| for (CharMapT::iterator I = clastVars->begin(), E = clastVars->end(); |
| I != E; I++) { |
| Value *loadAddr = Builder.CreateStructGEP(userContext, i); |
| (*clastVarsOMP)[I->first] = Builder.CreateLoad(loadAddr); |
| i++; |
| } |
| |
| // Extract the base addresses of memory references. |
| for (unsigned j = i; j < OMPDataVals.size(); j++) { |
| Value *loadAddr = Builder.CreateStructGEP(userContext, j); |
| Value *baseAddr = OMPDataVals[j]; |
| ValueMap[baseAddr] = Builder.CreateLoad(loadAddr); |
| } |
| } |
| |
| void ClastStmtCodeGen::addOpenMPSubfunctionBody(Function *FN, |
| const clast_for *f, |
| Value *structData, |
| SetVector<Value*> OMPDataVals) { |
| Type *IntPtrTy = getIntPtrTy(); |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| LLVMContext &Context = FN->getContext(); |
| |
| // Store the previous basic block. |
| BasicBlock::iterator PrevInsertPoint = Builder.GetInsertPoint(); |
| BasicBlock *PrevBB = Builder.GetInsertBlock(); |
| |
| // Create basic blocks. |
| BasicBlock *HeaderBB = BasicBlock::Create(Context, "omp.setup", FN); |
| BasicBlock *ExitBB = BasicBlock::Create(Context, "omp.exit", FN); |
| BasicBlock *checkNextBB = BasicBlock::Create(Context, "omp.checkNext", FN); |
| BasicBlock *loadIVBoundsBB = BasicBlock::Create(Context, "omp.loadIVBounds", |
| FN); |
| |
| DominatorTree &DT = P->getAnalysis<DominatorTree>(); |
| DT.addNewBlock(HeaderBB, PrevBB); |
| DT.addNewBlock(ExitBB, HeaderBB); |
| DT.addNewBlock(checkNextBB, HeaderBB); |
| DT.addNewBlock(loadIVBoundsBB, HeaderBB); |
| |
| // Fill up basic block HeaderBB. |
| Builder.SetInsertPoint(HeaderBB); |
| Value *lowerBoundPtr = Builder.CreateAlloca(IntPtrTy, 0, "omp.lowerBoundPtr"); |
| Value *upperBoundPtr = Builder.CreateAlloca(IntPtrTy, 0, "omp.upperBoundPtr"); |
| Value *userContext = Builder.CreateBitCast(FN->arg_begin(), |
| structData->getType(), |
| "omp.userContext"); |
| |
| CharMapT clastVarsOMP; |
| extractValuesFromOpenMPStruct(&clastVarsOMP, OMPDataVals, userContext); |
| |
| Builder.CreateBr(checkNextBB); |
| |
| // Add code to check if another set of iterations will be executed. |
| Builder.SetInsertPoint(checkNextBB); |
| Function *runtimeNextFunction = M->getFunction("GOMP_loop_runtime_next"); |
| Value *ret1 = Builder.CreateCall2(runtimeNextFunction, |
| lowerBoundPtr, upperBoundPtr); |
| Value *hasNextSchedule = Builder.CreateTrunc(ret1, Builder.getInt1Ty(), |
| "omp.hasNextScheduleBlock"); |
| Builder.CreateCondBr(hasNextSchedule, loadIVBoundsBB, ExitBB); |
| |
| // Add code to to load the iv bounds for this set of iterations. |
| Builder.SetInsertPoint(loadIVBoundsBB); |
| Value *lowerBound = Builder.CreateLoad(lowerBoundPtr, "omp.lowerBound"); |
| Value *upperBound = Builder.CreateLoad(upperBoundPtr, "omp.upperBound"); |
| |
| // Subtract one as the upper bound provided by openmp is a < comparison |
| // whereas the codegenForSequential function creates a <= comparison. |
| upperBound = Builder.CreateSub(upperBound, ConstantInt::get(IntPtrTy, 1), |
| "omp.upperBoundAdjusted"); |
| |
| // Use clastVarsOMP during code generation of the OpenMP subfunction. |
| CharMapT *oldClastVars = clastVars; |
| clastVars = &clastVarsOMP; |
| ExpGen.setIVS(&clastVarsOMP); |
| |
| Builder.CreateBr(checkNextBB); |
| Builder.SetInsertPoint(--Builder.GetInsertPoint()); |
| codegenForSequential(f, lowerBound, upperBound); |
| |
| // Restore the old clastVars. |
| clastVars = oldClastVars; |
| ExpGen.setIVS(oldClastVars); |
| |
| // Add code to terminate this openmp subfunction. |
| Builder.SetInsertPoint(ExitBB); |
| Function *endnowaitFunction = M->getFunction("GOMP_loop_end_nowait"); |
| Builder.CreateCall(endnowaitFunction); |
| Builder.CreateRetVoid(); |
| |
| // Restore the previous insert point. |
| Builder.SetInsertPoint(PrevInsertPoint); |
| } |
| |
| void ClastStmtCodeGen::codegenForOpenMP(const clast_for *For) { |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| IntegerType *IntPtrTy = getIntPtrTy(); |
| |
| Function *SubFunction = addOpenMPSubfunction(M); |
| SetVector<Value*> OMPDataVals = createOpenMPStructValues(); |
| Value *StructData = addValuesToOpenMPStruct(OMPDataVals, SubFunction); |
| |
| addOpenMPSubfunctionBody(SubFunction, For, StructData, OMPDataVals); |
| |
| // Create call for GOMP_parallel_loop_runtime_start. |
| Value *SubfunctionParam = Builder.CreateBitCast(StructData, |
| Builder.getInt8PtrTy(), |
| "omp_data"); |
| |
| Value *NumberOfThreads = Builder.getInt32(0); |
| Value *LowerBound = ExpGen.codegen(For->LB, IntPtrTy); |
| Value *UpperBound = ExpGen.codegen(For->UB, IntPtrTy); |
| |
| // Add one as the upper bound provided by openmp is a < comparison |
| // whereas the codegenForSequential function creates a <= comparison. |
| UpperBound = Builder.CreateAdd(UpperBound, ConstantInt::get(IntPtrTy, 1)); |
| APInt APStride = APInt_from_MPZ(For->stride); |
| Value *Stride = ConstantInt::get(IntPtrTy, |
| APStride.zext(IntPtrTy->getBitWidth())); |
| |
| Value *Arguments[] = { SubFunction, SubfunctionParam, NumberOfThreads, |
| LowerBound, UpperBound, Stride}; |
| Builder.CreateCall(M->getFunction("GOMP_parallel_loop_runtime_start"), |
| Arguments); |
| Builder.CreateCall(SubFunction, SubfunctionParam); |
| Builder.CreateCall(M->getFunction("GOMP_parallel_end")); |
| } |
| |
| bool ClastStmtCodeGen::isInnermostLoop(const clast_for *f) { |
| const clast_stmt *stmt = f->body; |
| |
| while (stmt) { |
| if (!CLAST_STMT_IS_A(stmt, stmt_user)) |
| return false; |
| |
| stmt = stmt->next; |
| } |
| |
| return true; |
| } |
| |
| int ClastStmtCodeGen::getNumberOfIterations(const clast_for *f) { |
| isl_set *loopDomain = isl_set_copy(isl_set_from_cloog_domain(f->domain)); |
| isl_set *tmp = isl_set_copy(loopDomain); |
| |
| // Calculate a map similar to the identity map, but with the last input |
| // and output dimension not related. |
| // [i0, i1, i2, i3] -> [i0, i1, i2, o0] |
| isl_space *Space = isl_set_get_space(loopDomain); |
| Space = isl_space_drop_outputs(Space, |
| isl_set_dim(loopDomain, isl_dim_set) - 2, 1); |
| Space = isl_space_map_from_set(Space); |
| isl_map *identity = isl_map_identity(Space); |
| identity = isl_map_add_dims(identity, isl_dim_in, 1); |
| identity = isl_map_add_dims(identity, isl_dim_out, 1); |
| |
| isl_map *map = isl_map_from_domain_and_range(tmp, loopDomain); |
| map = isl_map_intersect(map, identity); |
| |
| isl_map *lexmax = isl_map_lexmax(isl_map_copy(map)); |
| isl_map *lexmin = isl_map_lexmin(map); |
| isl_map *sub = isl_map_sum(lexmax, isl_map_neg(lexmin)); |
| |
| isl_set *elements = isl_map_range(sub); |
| |
| if (!isl_set_is_singleton(elements)) { |
| isl_set_free(elements); |
| return -1; |
| } |
| |
| isl_point *p = isl_set_sample_point(elements); |
| |
| isl_int v; |
| isl_int_init(v); |
| isl_point_get_coordinate(p, isl_dim_set, isl_set_n_dim(loopDomain) - 1, &v); |
| int numberIterations = isl_int_get_si(v); |
| isl_int_clear(v); |
| isl_point_free(p); |
| |
| return (numberIterations) / isl_int_get_si(f->stride) + 1; |
| } |
| |
| void ClastStmtCodeGen::codegenForVector(const clast_for *F) { |
| DEBUG(dbgs() << "Vectorizing loop '" << F->iterator << "'\n";); |
| int VectorWidth = getNumberOfIterations(F); |
| |
| Value *LB = ExpGen.codegen(F->LB, getIntPtrTy()); |
| |
| APInt Stride = APInt_from_MPZ(F->stride); |
| IntegerType *LoopIVType = dyn_cast<IntegerType>(LB->getType()); |
| Stride = Stride.zext(LoopIVType->getBitWidth()); |
| Value *StrideValue = ConstantInt::get(LoopIVType, Stride); |
| |
| std::vector<Value*> IVS(VectorWidth); |
| IVS[0] = LB; |
| |
| for (int i = 1; i < VectorWidth; i++) |
| IVS[i] = Builder.CreateAdd(IVS[i-1], StrideValue, "p_vector_iv"); |
| |
| isl_set *ScatteringDomain = |
| isl_set_copy(isl_set_from_cloog_domain(F->domain)); |
| |
| // Add loop iv to symbols. |
| (*clastVars)[F->iterator] = LB; |
| |
| const clast_stmt *Stmt = F->body; |
| |
| while (Stmt) { |
| codegen((const clast_user_stmt *)Stmt, &IVS, F->iterator, ScatteringDomain); |
| Stmt = Stmt->next; |
| } |
| |
| // Loop is finished, so remove its iv from the live symbols. |
| isl_set_free(ScatteringDomain); |
| clastVars->erase(F->iterator); |
| } |
| |
| void ClastStmtCodeGen::codegen(const clast_for *f) { |
| if ((Vector || OpenMP) && P->getAnalysis<Dependences>().isParallelFor(f)) { |
| if (Vector && isInnermostLoop(f) && (-1 != getNumberOfIterations(f)) |
| && (getNumberOfIterations(f) <= 16)) { |
| codegenForVector(f); |
| return; |
| } |
| |
| if (OpenMP && !parallelCodeGeneration) { |
| parallelCodeGeneration = true; |
| parallelLoops.push_back(f->iterator); |
| codegenForOpenMP(f); |
| parallelCodeGeneration = false; |
| return; |
| } |
| } |
| |
| codegenForSequential(f); |
| } |
| |
| Value *ClastStmtCodeGen::codegen(const clast_equation *eq) { |
| Value *LHS = ExpGen.codegen(eq->LHS, getIntPtrTy()); |
| Value *RHS = ExpGen.codegen(eq->RHS, getIntPtrTy()); |
| CmpInst::Predicate P; |
| |
| if (eq->sign == 0) |
| P = ICmpInst::ICMP_EQ; |
| else if (eq->sign > 0) |
| P = ICmpInst::ICMP_SGE; |
| else |
| P = ICmpInst::ICMP_SLE; |
| |
| return Builder.CreateICmp(P, LHS, RHS); |
| } |
| |
| void ClastStmtCodeGen::codegen(const clast_guard *g) { |
| Function *F = Builder.GetInsertBlock()->getParent(); |
| LLVMContext &Context = F->getContext(); |
| |
| BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), |
| Builder.GetInsertPoint(), P); |
| CondBB->setName("polly.cond"); |
| BasicBlock *MergeBB = SplitBlock(CondBB, CondBB->begin(), P); |
| MergeBB->setName("polly.merge"); |
| BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); |
| |
| DominatorTree &DT = P->getAnalysis<DominatorTree>(); |
| DT.addNewBlock(ThenBB, CondBB); |
| DT.changeImmediateDominator(MergeBB, CondBB); |
| |
| CondBB->getTerminator()->eraseFromParent(); |
| |
| Builder.SetInsertPoint(CondBB); |
| |
| Value *Predicate = codegen(&(g->eq[0])); |
| |
| for (int i = 1; i < g->n; ++i) { |
| Value *TmpPredicate = codegen(&(g->eq[i])); |
| Predicate = Builder.CreateAnd(Predicate, TmpPredicate); |
| } |
| |
| Builder.CreateCondBr(Predicate, ThenBB, MergeBB); |
| Builder.SetInsertPoint(ThenBB); |
| Builder.CreateBr(MergeBB); |
| Builder.SetInsertPoint(ThenBB->begin()); |
| |
| codegen(g->then); |
| |
| Builder.SetInsertPoint(MergeBB->begin()); |
| } |
| |
| void ClastStmtCodeGen::codegen(const clast_stmt *stmt) { |
| if (CLAST_STMT_IS_A(stmt, stmt_root)) |
| assert(false && "No second root statement expected"); |
| else if (CLAST_STMT_IS_A(stmt, stmt_ass)) |
| codegen((const clast_assignment *)stmt); |
| else if (CLAST_STMT_IS_A(stmt, stmt_user)) |
| codegen((const clast_user_stmt *)stmt); |
| else if (CLAST_STMT_IS_A(stmt, stmt_block)) |
| codegen((const clast_block *)stmt); |
| else if (CLAST_STMT_IS_A(stmt, stmt_for)) |
| codegen((const clast_for *)stmt); |
| else if (CLAST_STMT_IS_A(stmt, stmt_guard)) |
| codegen((const clast_guard *)stmt); |
| |
| if (stmt->next) |
| codegen(stmt->next); |
| } |
| |
| void ClastStmtCodeGen::addParameters(const CloogNames *names) { |
| SCEVExpander Rewriter(P->getAnalysis<ScalarEvolution>(), "polly"); |
| |
| int i = 0; |
| for (Scop::param_iterator PI = S->param_begin(), PE = S->param_end(); |
| PI != PE; ++PI) { |
| assert(i < names->nb_parameters && "Not enough parameter names"); |
| |
| const SCEV *Param = *PI; |
| Type *Ty = Param->getType(); |
| |
| Instruction *insertLocation = --(Builder.GetInsertBlock()->end()); |
| Value *V = Rewriter.expandCodeFor(Param, Ty, insertLocation); |
| (*clastVars)[names->parameters[i]] = V; |
| |
| ++i; |
| } |
| } |
| |
| void ClastStmtCodeGen::codegen(const clast_root *r) { |
| clastVars = new CharMapT(); |
| addParameters(r->names); |
| ExpGen.setIVS(clastVars); |
| |
| parallelCodeGeneration = false; |
| |
| const clast_stmt *stmt = (const clast_stmt*) r; |
| if (stmt->next) |
| codegen(stmt->next); |
| |
| delete clastVars; |
| } |
| |
| ClastStmtCodeGen::ClastStmtCodeGen(Scop *scop, IRBuilder<> &B, Pass *P) : |
| S(scop), P(P), Builder(B), ExpGen(Builder, NULL) {} |
| |
| namespace { |
| class CodeGeneration : public ScopPass { |
| Region *region; |
| Scop *S; |
| DominatorTree *DT; |
| RegionInfo *RI; |
| |
| std::vector<std::string> parallelLoops; |
| |
| public: |
| static char ID; |
| |
| CodeGeneration() : ScopPass(ID) {} |
| |
| // Add the declarations needed by the OpenMP function calls that we insert in |
| // OpenMP mode. |
| void addOpenMPDeclarations(Module *M) |
| { |
| IRBuilder<> Builder(M->getContext()); |
| Type *LongTy = getAnalysis<TargetData>().getIntPtrType(M->getContext()); |
| |
| llvm::GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; |
| |
| if (!M->getFunction("GOMP_parallel_end")) { |
| FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); |
| Function::Create(Ty, Linkage, "GOMP_parallel_end", M); |
| } |
| |
| if (!M->getFunction("GOMP_parallel_loop_runtime_start")) { |
| Type *Params[] = { |
| PointerType::getUnqual(FunctionType::get(Builder.getVoidTy(), |
| Builder.getInt8PtrTy(), |
| false)), |
| Builder.getInt8PtrTy(), |
| Builder.getInt32Ty(), |
| LongTy, |
| LongTy, |
| LongTy, |
| }; |
| |
| FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Params, false); |
| Function::Create(Ty, Linkage, "GOMP_parallel_loop_runtime_start", M); |
| } |
| |
| if (!M->getFunction("GOMP_loop_runtime_next")) { |
| PointerType *LongPtrTy = PointerType::getUnqual(LongTy); |
| Type *Params[] = { |
| LongPtrTy, |
| LongPtrTy, |
| }; |
| |
| FunctionType *Ty = FunctionType::get(Builder.getInt8Ty(), Params, false); |
| Function::Create(Ty, Linkage, "GOMP_loop_runtime_next", M); |
| } |
| |
| if (!M->getFunction("GOMP_loop_end_nowait")) { |
| FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); |
| Function::Create(Ty, Linkage, "GOMP_loop_end_nowait", M); |
| } |
| } |
| |
| // Split the entry edge of the region and generate a new basic block on this |
| // edge. This function also updates ScopInfo and RegionInfo. |
| // |
| // @param region The region where the entry edge will be splitted. |
| BasicBlock *splitEdgeAdvanced(Region *region) { |
| BasicBlock *newBlock; |
| BasicBlock *splitBlock; |
| |
| newBlock = SplitEdge(region->getEnteringBlock(), region->getEntry(), this); |
| |
| if (DT->dominates(region->getEntry(), newBlock)) { |
| BasicBlock *OldBlock = region->getEntry(); |
| std::string OldName = OldBlock->getName(); |
| |
| // Update ScopInfo. |
| for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) |
| if ((*SI)->getBasicBlock() == OldBlock) { |
| (*SI)->setBasicBlock(newBlock); |
| break; |
| } |
| |
| // Update RegionInfo. |
| splitBlock = OldBlock; |
| OldBlock->setName("polly.split"); |
| newBlock->setName(OldName); |
| region->replaceEntry(newBlock); |
| RI->setRegionFor(newBlock, region); |
| } else { |
| RI->setRegionFor(newBlock, region->getParent()); |
| splitBlock = newBlock; |
| } |
| |
| return splitBlock; |
| } |
| |
| // Create a split block that branches either to the old code or to a new basic |
| // block where the new code can be inserted. |
| // |
| // @param Builder A builder that will be set to point to a basic block, where |
| // the new code can be generated. |
| // @return The split basic block. |
| BasicBlock *addSplitAndStartBlock(IRBuilder<> *Builder) { |
| BasicBlock *StartBlock, *SplitBlock; |
| |
| SplitBlock = splitEdgeAdvanced(region); |
| SplitBlock->setName("polly.split_new_and_old"); |
| Function *F = SplitBlock->getParent(); |
| StartBlock = BasicBlock::Create(F->getContext(), "polly.start", F); |
| SplitBlock->getTerminator()->eraseFromParent(); |
| Builder->SetInsertPoint(SplitBlock); |
| Builder->CreateCondBr(Builder->getTrue(), StartBlock, region->getEntry()); |
| DT->addNewBlock(StartBlock, SplitBlock); |
| Builder->SetInsertPoint(StartBlock); |
| return SplitBlock; |
| } |
| |
| // Merge the control flow of the newly generated code with the existing code. |
| // |
| // @param SplitBlock The basic block where the control flow was split between |
| // old and new version of the Scop. |
| // @param Builder An IRBuilder that points to the last instruction of the |
| // newly generated code. |
| void mergeControlFlow(BasicBlock *SplitBlock, IRBuilder<> *Builder) { |
| BasicBlock *MergeBlock; |
| Region *R = region; |
| |
| if (R->getExit()->getSinglePredecessor()) |
| // No splitEdge required. A block with a single predecessor cannot have |
| // PHI nodes that would complicate life. |
| MergeBlock = R->getExit(); |
| else { |
| MergeBlock = SplitEdge(R->getExitingBlock(), R->getExit(), this); |
| // SplitEdge will never split R->getExit(), as R->getExit() has more than |
| // one predecessor. Hence, mergeBlock is always a newly generated block. |
| R->replaceExit(MergeBlock); |
| } |
| |
| Builder->CreateBr(MergeBlock); |
| MergeBlock->setName("polly.merge_new_and_old"); |
| |
| if (DT->dominates(SplitBlock, MergeBlock)) |
| DT->changeImmediateDominator(MergeBlock, SplitBlock); |
| } |
| |
| bool runOnScop(Scop &scop) { |
| S = &scop; |
| region = &S->getRegion(); |
| DT = &getAnalysis<DominatorTree>(); |
| RI = &getAnalysis<RegionInfo>(); |
| |
| parallelLoops.clear(); |
| |
| assert(region->isSimple() && "Only simple regions are supported"); |
| |
| Module *M = region->getEntry()->getParent()->getParent(); |
| |
| if (OpenMP) addOpenMPDeclarations(M); |
| |
| // In the CFG the optimized code of the SCoP is generated next to the |
| // original code. Both the new and the original version of the code remain |
| // in the CFG. A branch statement decides which version is executed. |
| // For now, we always execute the new version (the old one is dead code |
| // eliminated by the cleanup passes). In the future we may decide to execute |
| // the new version only if certain run time checks succeed. This will be |
| // useful to support constructs for which we cannot prove all assumptions at |
| // compile time. |
| // |
| // Before transformation: |
| // |
| // bb0 |
| // | |
| // orig_scop |
| // | |
| // bb1 |
| // |
| // After transformation: |
| // bb0 |
| // | |
| // polly.splitBlock |
| // / \. |
| // | startBlock |
| // | | |
| // orig_scop new_scop |
| // \ / |
| // \ / |
| // bb1 (joinBlock) |
| IRBuilder<> builder(region->getEntry()); |
| |
| // The builder will be set to startBlock. |
| BasicBlock *splitBlock = addSplitAndStartBlock(&builder); |
| BasicBlock *StartBlock = builder.GetInsertBlock(); |
| |
| mergeControlFlow(splitBlock, &builder); |
| builder.SetInsertPoint(StartBlock->begin()); |
| |
| ClastStmtCodeGen CodeGen(S, builder, this); |
| CloogInfo &C = getAnalysis<CloogInfo>(); |
| CodeGen.codegen(C.getClast()); |
| |
| parallelLoops.insert(parallelLoops.begin(), |
| CodeGen.getParallelLoops().begin(), |
| CodeGen.getParallelLoops().end()); |
| |
| return true; |
| } |
| |
| virtual void printScop(raw_ostream &OS) const { |
| for (std::vector<std::string>::const_iterator PI = parallelLoops.begin(), |
| PE = parallelLoops.end(); PI != PE; ++PI) |
| OS << "Parallel loop with iterator '" << *PI << "' generated\n"; |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<CloogInfo>(); |
| AU.addRequired<Dependences>(); |
| AU.addRequired<DominatorTree>(); |
| AU.addRequired<RegionInfo>(); |
| AU.addRequired<ScalarEvolution>(); |
| AU.addRequired<ScopDetection>(); |
| AU.addRequired<ScopInfo>(); |
| AU.addRequired<TargetData>(); |
| |
| AU.addPreserved<CloogInfo>(); |
| AU.addPreserved<Dependences>(); |
| |
| // FIXME: We do not create LoopInfo for the newly generated loops. |
| AU.addPreserved<LoopInfo>(); |
| AU.addPreserved<DominatorTree>(); |
| AU.addPreserved<ScopDetection>(); |
| AU.addPreserved<ScalarEvolution>(); |
| |
| // FIXME: We do not yet add regions for the newly generated code to the |
| // region tree. |
| AU.addPreserved<RegionInfo>(); |
| AU.addPreserved<TempScopInfo>(); |
| AU.addPreserved<ScopInfo>(); |
| AU.addPreservedID(IndependentBlocksID); |
| } |
| }; |
| } |
| |
| char CodeGeneration::ID = 1; |
| |
| INITIALIZE_PASS_BEGIN(CodeGeneration, "polly-codegen", |
| "Polly - Create LLVM-IR from SCoPs", false, false) |
| INITIALIZE_PASS_DEPENDENCY(CloogInfo) |
| INITIALIZE_PASS_DEPENDENCY(Dependences) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(RegionInfo) |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) |
| INITIALIZE_PASS_DEPENDENCY(ScopDetection) |
| INITIALIZE_PASS_DEPENDENCY(TargetData) |
| INITIALIZE_PASS_END(CodeGeneration, "polly-codegen", |
| "Polly - Create LLVM-IR from SCoPs", false, false) |
| |
| Pass *polly::createCodeGenerationPass() { |
| return new CodeGeneration(); |
| } |