|  | //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass transforms loops by placing phi nodes at the end of the loops for | 
|  | // all values that are live across the loop boundary.  For example, it turns | 
|  | // the left into the right code: | 
|  | // | 
|  | // for (...)                for (...) | 
|  | //   if (c)                   if (c) | 
|  | //     X1 = ...                 X1 = ... | 
|  | //   else                     else | 
|  | //     X2 = ...                 X2 = ... | 
|  | //   X3 = phi(X1, X2)         X3 = phi(X1, X2) | 
|  | // ... = X3 + 4             X4 = phi(X3) | 
|  | //                          ... = X4 + 4 | 
|  | // | 
|  | // This is still valid LLVM; the extra phi nodes are purely redundant, and will | 
|  | // be trivially eliminated by InstCombine.  The major benefit of this | 
|  | // transformation is that it makes many other loop optimizations, such as | 
|  | // LoopUnswitching, simpler. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Utils/LCSSA.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/BasicAliasAnalysis.h" | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/MemorySSA.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/PredIteratorCache.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Transforms/Utils.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/LoopUtils.h" | 
|  | #include "llvm/Transforms/Utils/SSAUpdater.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "lcssa" | 
|  |  | 
|  | STATISTIC(NumLCSSA, "Number of live out of a loop variables"); | 
|  |  | 
|  | #ifdef EXPENSIVE_CHECKS | 
|  | static bool VerifyLoopLCSSA = true; | 
|  | #else | 
|  | static bool VerifyLoopLCSSA = false; | 
|  | #endif | 
|  | static cl::opt<bool, true> | 
|  | VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), | 
|  | cl::Hidden, | 
|  | cl::desc("Verify loop lcssa form (time consuming)")); | 
|  |  | 
|  | /// Return true if the specified block is in the list. | 
|  | static bool isExitBlock(BasicBlock *BB, | 
|  | const SmallVectorImpl<BasicBlock *> &ExitBlocks) { | 
|  | return is_contained(ExitBlocks, BB); | 
|  | } | 
|  |  | 
|  | /// For every instruction from the worklist, check to see if it has any uses | 
|  | /// that are outside the current loop.  If so, insert LCSSA PHI nodes and | 
|  | /// rewrite the uses. | 
|  | bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, | 
|  | DominatorTree &DT, LoopInfo &LI) { | 
|  | SmallVector<Use *, 16> UsesToRewrite; | 
|  | SmallSetVector<PHINode *, 16> PHIsToRemove; | 
|  | PredIteratorCache PredCache; | 
|  | bool Changed = false; | 
|  |  | 
|  | // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of | 
|  | // instructions within the same loops, computing the exit blocks is | 
|  | // expensive, and we're not mutating the loop structure. | 
|  | SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | UsesToRewrite.clear(); | 
|  |  | 
|  | Instruction *I = Worklist.pop_back_val(); | 
|  | assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist"); | 
|  | BasicBlock *InstBB = I->getParent(); | 
|  | Loop *L = LI.getLoopFor(InstBB); | 
|  | assert(L && "Instruction belongs to a BB that's not part of a loop"); | 
|  | if (!LoopExitBlocks.count(L)) | 
|  | L->getExitBlocks(LoopExitBlocks[L]); | 
|  | assert(LoopExitBlocks.count(L)); | 
|  | const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; | 
|  |  | 
|  | if (ExitBlocks.empty()) | 
|  | continue; | 
|  |  | 
|  | for (Use &U : I->uses()) { | 
|  | Instruction *User = cast<Instruction>(U.getUser()); | 
|  | BasicBlock *UserBB = User->getParent(); | 
|  | if (auto *PN = dyn_cast<PHINode>(User)) | 
|  | UserBB = PN->getIncomingBlock(U); | 
|  |  | 
|  | if (InstBB != UserBB && !L->contains(UserBB)) | 
|  | UsesToRewrite.push_back(&U); | 
|  | } | 
|  |  | 
|  | // If there are no uses outside the loop, exit with no change. | 
|  | if (UsesToRewrite.empty()) | 
|  | continue; | 
|  |  | 
|  | ++NumLCSSA; // We are applying the transformation | 
|  |  | 
|  | // Invoke instructions are special in that their result value is not | 
|  | // available along their unwind edge. The code below tests to see whether | 
|  | // DomBB dominates the value, so adjust DomBB to the normal destination | 
|  | // block, which is effectively where the value is first usable. | 
|  | BasicBlock *DomBB = InstBB; | 
|  | if (auto *Inv = dyn_cast<InvokeInst>(I)) | 
|  | DomBB = Inv->getNormalDest(); | 
|  |  | 
|  | DomTreeNode *DomNode = DT.getNode(DomBB); | 
|  |  | 
|  | SmallVector<PHINode *, 16> AddedPHIs; | 
|  | SmallVector<PHINode *, 8> PostProcessPHIs; | 
|  |  | 
|  | SmallVector<PHINode *, 4> InsertedPHIs; | 
|  | SSAUpdater SSAUpdate(&InsertedPHIs); | 
|  | SSAUpdate.Initialize(I->getType(), I->getName()); | 
|  |  | 
|  | // Insert the LCSSA phi's into all of the exit blocks dominated by the | 
|  | // value, and add them to the Phi's map. | 
|  | for (BasicBlock *ExitBB : ExitBlocks) { | 
|  | if (!DT.dominates(DomNode, DT.getNode(ExitBB))) | 
|  | continue; | 
|  |  | 
|  | // If we already inserted something for this BB, don't reprocess it. | 
|  | if (SSAUpdate.HasValueForBlock(ExitBB)) | 
|  | continue; | 
|  |  | 
|  | PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), | 
|  | I->getName() + ".lcssa", &ExitBB->front()); | 
|  | // Get the debug location from the original instruction. | 
|  | PN->setDebugLoc(I->getDebugLoc()); | 
|  | // Add inputs from inside the loop for this PHI. | 
|  | for (BasicBlock *Pred : PredCache.get(ExitBB)) { | 
|  | PN->addIncoming(I, Pred); | 
|  |  | 
|  | // If the exit block has a predecessor not within the loop, arrange for | 
|  | // the incoming value use corresponding to that predecessor to be | 
|  | // rewritten in terms of a different LCSSA PHI. | 
|  | if (!L->contains(Pred)) | 
|  | UsesToRewrite.push_back( | 
|  | &PN->getOperandUse(PN->getOperandNumForIncomingValue( | 
|  | PN->getNumIncomingValues() - 1))); | 
|  | } | 
|  |  | 
|  | AddedPHIs.push_back(PN); | 
|  |  | 
|  | // Remember that this phi makes the value alive in this block. | 
|  | SSAUpdate.AddAvailableValue(ExitBB, PN); | 
|  |  | 
|  | // LoopSimplify might fail to simplify some loops (e.g. when indirect | 
|  | // branches are involved). In such situations, it might happen that an | 
|  | // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we | 
|  | // create PHIs in such an exit block, we are also inserting PHIs into L2's | 
|  | // header. This could break LCSSA form for L2 because these inserted PHIs | 
|  | // can also have uses outside of L2. Remember all PHIs in such situation | 
|  | // as to revisit than later on. FIXME: Remove this if indirectbr support | 
|  | // into LoopSimplify gets improved. | 
|  | if (auto *OtherLoop = LI.getLoopFor(ExitBB)) | 
|  | if (!L->contains(OtherLoop)) | 
|  | PostProcessPHIs.push_back(PN); | 
|  | } | 
|  |  | 
|  | // Rewrite all uses outside the loop in terms of the new PHIs we just | 
|  | // inserted. | 
|  | for (Use *UseToRewrite : UsesToRewrite) { | 
|  | // If this use is in an exit block, rewrite to use the newly inserted PHI. | 
|  | // This is required for correctness because SSAUpdate doesn't handle uses | 
|  | // in the same block.  It assumes the PHI we inserted is at the end of the | 
|  | // block. | 
|  | Instruction *User = cast<Instruction>(UseToRewrite->getUser()); | 
|  | BasicBlock *UserBB = User->getParent(); | 
|  | if (auto *PN = dyn_cast<PHINode>(User)) | 
|  | UserBB = PN->getIncomingBlock(*UseToRewrite); | 
|  |  | 
|  | if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { | 
|  | // Tell the VHs that the uses changed. This updates SCEV's caches. | 
|  | if (UseToRewrite->get()->hasValueHandle()) | 
|  | ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); | 
|  | UseToRewrite->set(&UserBB->front()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we added a single PHI, it must dominate all uses and we can directly | 
|  | // rename it. | 
|  | if (AddedPHIs.size() == 1) { | 
|  | // Tell the VHs that the uses changed. This updates SCEV's caches. | 
|  | // We might call ValueIsRAUWd multiple times for the same value. | 
|  | if (UseToRewrite->get()->hasValueHandle()) | 
|  | ValueHandleBase::ValueIsRAUWd(*UseToRewrite, AddedPHIs[0]); | 
|  | UseToRewrite->set(AddedPHIs[0]); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, do full PHI insertion. | 
|  | SSAUpdate.RewriteUse(*UseToRewrite); | 
|  | } | 
|  |  | 
|  | SmallVector<DbgValueInst *, 4> DbgValues; | 
|  | llvm::findDbgValues(DbgValues, I); | 
|  |  | 
|  | // Update pre-existing debug value uses that reside outside the loop. | 
|  | auto &Ctx = I->getContext(); | 
|  | for (auto DVI : DbgValues) { | 
|  | BasicBlock *UserBB = DVI->getParent(); | 
|  | if (InstBB == UserBB || L->contains(UserBB)) | 
|  | continue; | 
|  | // We currently only handle debug values residing in blocks that were | 
|  | // traversed while rewriting the uses. If we inserted just a single PHI, | 
|  | // we will handle all relevant debug values. | 
|  | Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0] | 
|  | : SSAUpdate.FindValueForBlock(UserBB); | 
|  | if (V) | 
|  | DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V))); | 
|  | } | 
|  |  | 
|  | // SSAUpdater might have inserted phi-nodes inside other loops. We'll need | 
|  | // to post-process them to keep LCSSA form. | 
|  | for (PHINode *InsertedPN : InsertedPHIs) { | 
|  | if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) | 
|  | if (!L->contains(OtherLoop)) | 
|  | PostProcessPHIs.push_back(InsertedPN); | 
|  | } | 
|  |  | 
|  | // Post process PHI instructions that were inserted into another disjoint | 
|  | // loop and update their exits properly. | 
|  | for (auto *PostProcessPN : PostProcessPHIs) | 
|  | if (!PostProcessPN->use_empty()) | 
|  | Worklist.push_back(PostProcessPN); | 
|  |  | 
|  | // Keep track of PHI nodes that we want to remove because they did not have | 
|  | // any uses rewritten. If the new PHI is used, store it so that we can | 
|  | // try to propagate dbg.value intrinsics to it. | 
|  | SmallVector<PHINode *, 2> NeedDbgValues; | 
|  | for (PHINode *PN : AddedPHIs) | 
|  | if (PN->use_empty()) | 
|  | PHIsToRemove.insert(PN); | 
|  | else | 
|  | NeedDbgValues.push_back(PN); | 
|  | insertDebugValuesForPHIs(InstBB, NeedDbgValues); | 
|  | Changed = true; | 
|  | } | 
|  | // Remove PHI nodes that did not have any uses rewritten. We need to redo the | 
|  | // use_empty() check here, because even if the PHI node wasn't used when added | 
|  | // to PHIsToRemove, later added PHI nodes can be using it.  This cleanup is | 
|  | // not guaranteed to handle trees/cycles of PHI nodes that only are used by | 
|  | // each other. Such situations has only been noticed when the input IR | 
|  | // contains unreachable code, and leaving some extra redundant PHI nodes in | 
|  | // such situations is considered a minor problem. | 
|  | for (PHINode *PN : PHIsToRemove) | 
|  | if (PN->use_empty()) | 
|  | PN->eraseFromParent(); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. | 
|  | static void computeBlocksDominatingExits( | 
|  | Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks, | 
|  | SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) { | 
|  | SmallVector<BasicBlock *, 8> BBWorklist; | 
|  |  | 
|  | // We start from the exit blocks, as every block trivially dominates itself | 
|  | // (not strictly). | 
|  | for (BasicBlock *BB : ExitBlocks) | 
|  | BBWorklist.push_back(BB); | 
|  |  | 
|  | while (!BBWorklist.empty()) { | 
|  | BasicBlock *BB = BBWorklist.pop_back_val(); | 
|  |  | 
|  | // Check if this is a loop header. If this is the case, we're done. | 
|  | if (L.getHeader() == BB) | 
|  | continue; | 
|  |  | 
|  | // Otherwise, add its immediate predecessor in the dominator tree to the | 
|  | // worklist, unless we visited it already. | 
|  | BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); | 
|  |  | 
|  | // Exit blocks can have an immediate dominator not beloinging to the | 
|  | // loop. For an exit block to be immediately dominated by another block | 
|  | // outside the loop, it implies not all paths from that dominator, to the | 
|  | // exit block, go through the loop. | 
|  | // Example: | 
|  | // | 
|  | // |---- A | 
|  | // |     | | 
|  | // |     B<-- | 
|  | // |     |  | | 
|  | // |---> C -- | 
|  | //       | | 
|  | //       D | 
|  | // | 
|  | // C is the exit block of the loop and it's immediately dominated by A, | 
|  | // which doesn't belong to the loop. | 
|  | if (!L.contains(IDomBB)) | 
|  | continue; | 
|  |  | 
|  | if (BlocksDominatingExits.insert(IDomBB)) | 
|  | BBWorklist.push_back(IDomBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, | 
|  | ScalarEvolution *SE) { | 
|  | bool Changed = false; | 
|  |  | 
|  | #ifdef EXPENSIVE_CHECKS | 
|  | // Verify all sub-loops are in LCSSA form already. | 
|  | for (Loop *SubLoop: L) | 
|  | assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!"); | 
|  | #endif | 
|  |  | 
|  | SmallVector<BasicBlock *, 8> ExitBlocks; | 
|  | L.getExitBlocks(ExitBlocks); | 
|  | if (ExitBlocks.empty()) | 
|  | return false; | 
|  |  | 
|  | SmallSetVector<BasicBlock *, 8> BlocksDominatingExits; | 
|  |  | 
|  | // We want to avoid use-scanning leveraging dominance informations. | 
|  | // If a block doesn't dominate any of the loop exits, the none of the values | 
|  | // defined in the loop can be used outside. | 
|  | // We compute the set of blocks fullfilling the conditions in advance | 
|  | // walking the dominator tree upwards until we hit a loop header. | 
|  | computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); | 
|  |  | 
|  | SmallVector<Instruction *, 8> Worklist; | 
|  |  | 
|  | // Look at all the instructions in the loop, checking to see if they have uses | 
|  | // outside the loop.  If so, put them into the worklist to rewrite those uses. | 
|  | for (BasicBlock *BB : BlocksDominatingExits) { | 
|  | // Skip blocks that are part of any sub-loops, they must be in LCSSA | 
|  | // already. | 
|  | if (LI->getLoopFor(BB) != &L) | 
|  | continue; | 
|  | for (Instruction &I : *BB) { | 
|  | // Reject two common cases fast: instructions with no uses (like stores) | 
|  | // and instructions with one use that is in the same block as this. | 
|  | if (I.use_empty() || | 
|  | (I.hasOneUse() && I.user_back()->getParent() == BB && | 
|  | !isa<PHINode>(I.user_back()))) | 
|  | continue; | 
|  |  | 
|  | // Tokens cannot be used in PHI nodes, so we skip over them. | 
|  | // We can run into tokens which are live out of a loop with catchswitch | 
|  | // instructions in Windows EH if the catchswitch has one catchpad which | 
|  | // is inside the loop and another which is not. | 
|  | if (I.getType()->isTokenTy()) | 
|  | continue; | 
|  |  | 
|  | Worklist.push_back(&I); | 
|  | } | 
|  | } | 
|  | Changed = formLCSSAForInstructions(Worklist, DT, *LI); | 
|  |  | 
|  | // If we modified the code, remove any caches about the loop from SCEV to | 
|  | // avoid dangling entries. | 
|  | // FIXME: This is a big hammer, can we clear the cache more selectively? | 
|  | if (SE && Changed) | 
|  | SE->forgetLoop(&L); | 
|  |  | 
|  | assert(L.isLCSSAForm(DT)); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Process a loop nest depth first. | 
|  | bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, | 
|  | ScalarEvolution *SE) { | 
|  | bool Changed = false; | 
|  |  | 
|  | // Recurse depth-first through inner loops. | 
|  | for (Loop *SubLoop : L.getSubLoops()) | 
|  | Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); | 
|  |  | 
|  | Changed |= formLCSSA(L, DT, LI, SE); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Process all loops in the function, inner-most out. | 
|  | static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT, | 
|  | ScalarEvolution *SE) { | 
|  | bool Changed = false; | 
|  | for (auto &L : *LI) | 
|  | Changed |= formLCSSARecursively(*L, DT, LI, SE); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct LCSSAWrapperPass : public FunctionPass { | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | LCSSAWrapperPass() : FunctionPass(ID) { | 
|  | initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | // Cached analysis information for the current function. | 
|  | DominatorTree *DT; | 
|  | LoopInfo *LI; | 
|  | ScalarEvolution *SE; | 
|  |  | 
|  | bool runOnFunction(Function &F) override; | 
|  | void verifyAnalysis() const override { | 
|  | // This check is very expensive. On the loop intensive compiles it may cause | 
|  | // up to 10x slowdown. Currently it's disabled by default. LPPassManager | 
|  | // always does limited form of the LCSSA verification. Similar reasoning | 
|  | // was used for the LoopInfo verifier. | 
|  | if (VerifyLoopLCSSA) { | 
|  | assert(all_of(*LI, | 
|  | [&](Loop *L) { | 
|  | return L->isRecursivelyLCSSAForm(*DT, *LI); | 
|  | }) && | 
|  | "LCSSA form is broken!"); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// This transformation requires natural loop information & requires that | 
|  | /// loop preheaders be inserted into the CFG.  It maintains both of these, | 
|  | /// as well as the CFG.  It also requires dominator information. | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  |  | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<LoopInfoWrapperPass>(); | 
|  | AU.addPreservedID(LoopSimplifyID); | 
|  | AU.addPreserved<AAResultsWrapperPass>(); | 
|  | AU.addPreserved<BasicAAWrapperPass>(); | 
|  | AU.addPreserved<GlobalsAAWrapperPass>(); | 
|  | AU.addPreserved<ScalarEvolutionWrapperPass>(); | 
|  | AU.addPreserved<SCEVAAWrapperPass>(); | 
|  | AU.addPreserved<BranchProbabilityInfoWrapperPass>(); | 
|  | AU.addPreserved<MemorySSAWrapperPass>(); | 
|  |  | 
|  | // This is needed to perform LCSSA verification inside LPPassManager | 
|  | AU.addRequired<LCSSAVerificationPass>(); | 
|  | AU.addPreserved<LCSSAVerificationPass>(); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | char LCSSAWrapperPass::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", | 
|  | false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) | 
|  | INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", | 
|  | false, false) | 
|  |  | 
|  | Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } | 
|  | char &llvm::LCSSAID = LCSSAWrapperPass::ID; | 
|  |  | 
|  | /// Transform \p F into loop-closed SSA form. | 
|  | bool LCSSAWrapperPass::runOnFunction(Function &F) { | 
|  | LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); | 
|  | SE = SEWP ? &SEWP->getSE() : nullptr; | 
|  |  | 
|  | return formLCSSAOnAllLoops(LI, *DT, SE); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { | 
|  | auto &LI = AM.getResult<LoopAnalysis>(F); | 
|  | auto &DT = AM.getResult<DominatorTreeAnalysis>(F); | 
|  | auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); | 
|  | if (!formLCSSAOnAllLoops(&LI, DT, SE)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | PreservedAnalyses PA; | 
|  | PA.preserveSet<CFGAnalyses>(); | 
|  | PA.preserve<BasicAA>(); | 
|  | PA.preserve<GlobalsAA>(); | 
|  | PA.preserve<SCEVAA>(); | 
|  | PA.preserve<ScalarEvolutionAnalysis>(); | 
|  | // BPI maps terminators to probabilities, since we don't modify the CFG, no | 
|  | // updates are needed to preserve it. | 
|  | PA.preserve<BranchProbabilityAnalysis>(); | 
|  | PA.preserve<MemorySSAAnalysis>(); | 
|  | return PA; | 
|  | } |