|  | //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the interface for lazy computation of value constraint | 
|  | // information. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/LazyValueInfo.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/Analysis/ValueLattice.h" | 
|  | #include "llvm/IR/AssemblyAnnotationWriter.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/ConstantRange.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/FormattedStream.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <map> | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "lazy-value-info" | 
|  |  | 
|  | // This is the number of worklist items we will process to try to discover an | 
|  | // answer for a given value. | 
|  | static const unsigned MaxProcessedPerValue = 500; | 
|  |  | 
|  | char LazyValueInfoWrapperPass::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info", | 
|  | "Lazy Value Information Analysis", false, true) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info", | 
|  | "Lazy Value Information Analysis", false, true) | 
|  |  | 
|  | namespace llvm { | 
|  | FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } | 
|  | } | 
|  |  | 
|  | AnalysisKey LazyValueAnalysis::Key; | 
|  |  | 
|  | /// Returns true if this lattice value represents at most one possible value. | 
|  | /// This is as precise as any lattice value can get while still representing | 
|  | /// reachable code. | 
|  | static bool hasSingleValue(const ValueLatticeElement &Val) { | 
|  | if (Val.isConstantRange() && | 
|  | Val.getConstantRange().isSingleElement()) | 
|  | // Integer constants are single element ranges | 
|  | return true; | 
|  | if (Val.isConstant()) | 
|  | // Non integer constants | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Combine two sets of facts about the same value into a single set of | 
|  | /// facts.  Note that this method is not suitable for merging facts along | 
|  | /// different paths in a CFG; that's what the mergeIn function is for.  This | 
|  | /// is for merging facts gathered about the same value at the same location | 
|  | /// through two independent means. | 
|  | /// Notes: | 
|  | /// * This method does not promise to return the most precise possible lattice | 
|  | ///   value implied by A and B.  It is allowed to return any lattice element | 
|  | ///   which is at least as strong as *either* A or B (unless our facts | 
|  | ///   conflict, see below). | 
|  | /// * Due to unreachable code, the intersection of two lattice values could be | 
|  | ///   contradictory.  If this happens, we return some valid lattice value so as | 
|  | ///   not confuse the rest of LVI.  Ideally, we'd always return Undefined, but | 
|  | ///   we do not make this guarantee.  TODO: This would be a useful enhancement. | 
|  | static ValueLatticeElement intersect(const ValueLatticeElement &A, | 
|  | const ValueLatticeElement &B) { | 
|  | // Undefined is the strongest state.  It means the value is known to be along | 
|  | // an unreachable path. | 
|  | if (A.isUndefined()) | 
|  | return A; | 
|  | if (B.isUndefined()) | 
|  | return B; | 
|  |  | 
|  | // If we gave up for one, but got a useable fact from the other, use it. | 
|  | if (A.isOverdefined()) | 
|  | return B; | 
|  | if (B.isOverdefined()) | 
|  | return A; | 
|  |  | 
|  | // Can't get any more precise than constants. | 
|  | if (hasSingleValue(A)) | 
|  | return A; | 
|  | if (hasSingleValue(B)) | 
|  | return B; | 
|  |  | 
|  | // Could be either constant range or not constant here. | 
|  | if (!A.isConstantRange() || !B.isConstantRange()) { | 
|  | // TODO: Arbitrary choice, could be improved | 
|  | return A; | 
|  | } | 
|  |  | 
|  | // Intersect two constant ranges | 
|  | ConstantRange Range = | 
|  | A.getConstantRange().intersectWith(B.getConstantRange()); | 
|  | // Note: An empty range is implicitly converted to overdefined internally. | 
|  | // TODO: We could instead use Undefined here since we've proven a conflict | 
|  | // and thus know this path must be unreachable. | 
|  | return ValueLatticeElement::getRange(std::move(Range)); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                          LazyValueInfoCache Decl | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// A callback value handle updates the cache when values are erased. | 
|  | class LazyValueInfoCache; | 
|  | struct LVIValueHandle final : public CallbackVH { | 
|  | // Needs to access getValPtr(), which is protected. | 
|  | friend struct DenseMapInfo<LVIValueHandle>; | 
|  |  | 
|  | LazyValueInfoCache *Parent; | 
|  |  | 
|  | LVIValueHandle(Value *V, LazyValueInfoCache *P) | 
|  | : CallbackVH(V), Parent(P) { } | 
|  |  | 
|  | void deleted() override; | 
|  | void allUsesReplacedWith(Value *V) override { | 
|  | deleted(); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | namespace { | 
|  | /// This is the cache kept by LazyValueInfo which | 
|  | /// maintains information about queries across the clients' queries. | 
|  | class LazyValueInfoCache { | 
|  | /// This is all of the cached block information for exactly one Value*. | 
|  | /// The entries are sorted by the BasicBlock* of the | 
|  | /// entries, allowing us to do a lookup with a binary search. | 
|  | /// Over-defined lattice values are recorded in OverDefinedCache to reduce | 
|  | /// memory overhead. | 
|  | struct ValueCacheEntryTy { | 
|  | ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {} | 
|  | LVIValueHandle Handle; | 
|  | SmallDenseMap<PoisoningVH<BasicBlock>, ValueLatticeElement, 4> BlockVals; | 
|  | }; | 
|  |  | 
|  | /// This tracks, on a per-block basis, the set of values that are | 
|  | /// over-defined at the end of that block. | 
|  | typedef DenseMap<PoisoningVH<BasicBlock>, SmallPtrSet<Value *, 4>> | 
|  | OverDefinedCacheTy; | 
|  | /// Keep track of all blocks that we have ever seen, so we | 
|  | /// don't spend time removing unused blocks from our caches. | 
|  | DenseSet<PoisoningVH<BasicBlock> > SeenBlocks; | 
|  |  | 
|  | /// This is all of the cached information for all values, | 
|  | /// mapped from Value* to key information. | 
|  | DenseMap<Value *, std::unique_ptr<ValueCacheEntryTy>> ValueCache; | 
|  | OverDefinedCacheTy OverDefinedCache; | 
|  |  | 
|  |  | 
|  | public: | 
|  | void insertResult(Value *Val, BasicBlock *BB, | 
|  | const ValueLatticeElement &Result) { | 
|  | SeenBlocks.insert(BB); | 
|  |  | 
|  | // Insert over-defined values into their own cache to reduce memory | 
|  | // overhead. | 
|  | if (Result.isOverdefined()) | 
|  | OverDefinedCache[BB].insert(Val); | 
|  | else { | 
|  | auto It = ValueCache.find_as(Val); | 
|  | if (It == ValueCache.end()) { | 
|  | ValueCache[Val] = make_unique<ValueCacheEntryTy>(Val, this); | 
|  | It = ValueCache.find_as(Val); | 
|  | assert(It != ValueCache.end() && "Val was just added to the map!"); | 
|  | } | 
|  | It->second->BlockVals[BB] = Result; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool isOverdefined(Value *V, BasicBlock *BB) const { | 
|  | auto ODI = OverDefinedCache.find(BB); | 
|  |  | 
|  | if (ODI == OverDefinedCache.end()) | 
|  | return false; | 
|  |  | 
|  | return ODI->second.count(V); | 
|  | } | 
|  |  | 
|  | bool hasCachedValueInfo(Value *V, BasicBlock *BB) const { | 
|  | if (isOverdefined(V, BB)) | 
|  | return true; | 
|  |  | 
|  | auto I = ValueCache.find_as(V); | 
|  | if (I == ValueCache.end()) | 
|  | return false; | 
|  |  | 
|  | return I->second->BlockVals.count(BB); | 
|  | } | 
|  |  | 
|  | ValueLatticeElement getCachedValueInfo(Value *V, BasicBlock *BB) const { | 
|  | if (isOverdefined(V, BB)) | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  |  | 
|  | auto I = ValueCache.find_as(V); | 
|  | if (I == ValueCache.end()) | 
|  | return ValueLatticeElement(); | 
|  | auto BBI = I->second->BlockVals.find(BB); | 
|  | if (BBI == I->second->BlockVals.end()) | 
|  | return ValueLatticeElement(); | 
|  | return BBI->second; | 
|  | } | 
|  |  | 
|  | /// clear - Empty the cache. | 
|  | void clear() { | 
|  | SeenBlocks.clear(); | 
|  | ValueCache.clear(); | 
|  | OverDefinedCache.clear(); | 
|  | } | 
|  |  | 
|  | /// Inform the cache that a given value has been deleted. | 
|  | void eraseValue(Value *V); | 
|  |  | 
|  | /// This is part of the update interface to inform the cache | 
|  | /// that a block has been deleted. | 
|  | void eraseBlock(BasicBlock *BB); | 
|  |  | 
|  | /// Updates the cache to remove any influence an overdefined value in | 
|  | /// OldSucc might have (unless also overdefined in NewSucc).  This just | 
|  | /// flushes elements from the cache and does not add any. | 
|  | void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc); | 
|  |  | 
|  | friend struct LVIValueHandle; | 
|  | }; | 
|  | } | 
|  |  | 
|  | void LazyValueInfoCache::eraseValue(Value *V) { | 
|  | for (auto I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E;) { | 
|  | // Copy and increment the iterator immediately so we can erase behind | 
|  | // ourselves. | 
|  | auto Iter = I++; | 
|  | SmallPtrSetImpl<Value *> &ValueSet = Iter->second; | 
|  | ValueSet.erase(V); | 
|  | if (ValueSet.empty()) | 
|  | OverDefinedCache.erase(Iter); | 
|  | } | 
|  |  | 
|  | ValueCache.erase(V); | 
|  | } | 
|  |  | 
|  | void LVIValueHandle::deleted() { | 
|  | // This erasure deallocates *this, so it MUST happen after we're done | 
|  | // using any and all members of *this. | 
|  | Parent->eraseValue(*this); | 
|  | } | 
|  |  | 
|  | void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { | 
|  | // Shortcut if we have never seen this block. | 
|  | DenseSet<PoisoningVH<BasicBlock> >::iterator I = SeenBlocks.find(BB); | 
|  | if (I == SeenBlocks.end()) | 
|  | return; | 
|  | SeenBlocks.erase(I); | 
|  |  | 
|  | auto ODI = OverDefinedCache.find(BB); | 
|  | if (ODI != OverDefinedCache.end()) | 
|  | OverDefinedCache.erase(ODI); | 
|  |  | 
|  | for (auto &I : ValueCache) | 
|  | I.second->BlockVals.erase(BB); | 
|  | } | 
|  |  | 
|  | void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, | 
|  | BasicBlock *NewSucc) { | 
|  | // When an edge in the graph has been threaded, values that we could not | 
|  | // determine a value for before (i.e. were marked overdefined) may be | 
|  | // possible to solve now. We do NOT try to proactively update these values. | 
|  | // Instead, we clear their entries from the cache, and allow lazy updating to | 
|  | // recompute them when needed. | 
|  |  | 
|  | // The updating process is fairly simple: we need to drop cached info | 
|  | // for all values that were marked overdefined in OldSucc, and for those same | 
|  | // values in any successor of OldSucc (except NewSucc) in which they were | 
|  | // also marked overdefined. | 
|  | std::vector<BasicBlock*> worklist; | 
|  | worklist.push_back(OldSucc); | 
|  |  | 
|  | auto I = OverDefinedCache.find(OldSucc); | 
|  | if (I == OverDefinedCache.end()) | 
|  | return; // Nothing to process here. | 
|  | SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end()); | 
|  |  | 
|  | // Use a worklist to perform a depth-first search of OldSucc's successors. | 
|  | // NOTE: We do not need a visited list since any blocks we have already | 
|  | // visited will have had their overdefined markers cleared already, and we | 
|  | // thus won't loop to their successors. | 
|  | while (!worklist.empty()) { | 
|  | BasicBlock *ToUpdate = worklist.back(); | 
|  | worklist.pop_back(); | 
|  |  | 
|  | // Skip blocks only accessible through NewSucc. | 
|  | if (ToUpdate == NewSucc) continue; | 
|  |  | 
|  | // If a value was marked overdefined in OldSucc, and is here too... | 
|  | auto OI = OverDefinedCache.find(ToUpdate); | 
|  | if (OI == OverDefinedCache.end()) | 
|  | continue; | 
|  | SmallPtrSetImpl<Value *> &ValueSet = OI->second; | 
|  |  | 
|  | bool changed = false; | 
|  | for (Value *V : ValsToClear) { | 
|  | if (!ValueSet.erase(V)) | 
|  | continue; | 
|  |  | 
|  | // If we removed anything, then we potentially need to update | 
|  | // blocks successors too. | 
|  | changed = true; | 
|  |  | 
|  | if (ValueSet.empty()) { | 
|  | OverDefinedCache.erase(OI); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!changed) continue; | 
|  |  | 
|  | worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | namespace { | 
|  | /// An assembly annotator class to print LazyValueCache information in | 
|  | /// comments. | 
|  | class LazyValueInfoImpl; | 
|  | class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { | 
|  | LazyValueInfoImpl *LVIImpl; | 
|  | // While analyzing which blocks we can solve values for, we need the dominator | 
|  | // information. Since this is an optional parameter in LVI, we require this | 
|  | // DomTreeAnalysis pass in the printer pass, and pass the dominator | 
|  | // tree to the LazyValueInfoAnnotatedWriter. | 
|  | DominatorTree &DT; | 
|  |  | 
|  | public: | 
|  | LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) | 
|  | : LVIImpl(L), DT(DTree) {} | 
|  |  | 
|  | virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, | 
|  | formatted_raw_ostream &OS); | 
|  |  | 
|  | virtual void emitInstructionAnnot(const Instruction *I, | 
|  | formatted_raw_ostream &OS); | 
|  | }; | 
|  | } | 
|  | namespace { | 
|  | // The actual implementation of the lazy analysis and update.  Note that the | 
|  | // inheritance from LazyValueInfoCache is intended to be temporary while | 
|  | // splitting the code and then transitioning to a has-a relationship. | 
|  | class LazyValueInfoImpl { | 
|  |  | 
|  | /// Cached results from previous queries | 
|  | LazyValueInfoCache TheCache; | 
|  |  | 
|  | /// This stack holds the state of the value solver during a query. | 
|  | /// It basically emulates the callstack of the naive | 
|  | /// recursive value lookup process. | 
|  | SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; | 
|  |  | 
|  | /// Keeps track of which block-value pairs are in BlockValueStack. | 
|  | DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; | 
|  |  | 
|  | /// Push BV onto BlockValueStack unless it's already in there. | 
|  | /// Returns true on success. | 
|  | bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { | 
|  | if (!BlockValueSet.insert(BV).second) | 
|  | return false;  // It's already in the stack. | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in " | 
|  | << BV.first->getName() << "\n"); | 
|  | BlockValueStack.push_back(BV); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | AssumptionCache *AC;  ///< A pointer to the cache of @llvm.assume calls. | 
|  | const DataLayout &DL; ///< A mandatory DataLayout | 
|  | DominatorTree *DT;    ///< An optional DT pointer. | 
|  | DominatorTree *DisabledDT; ///< Stores DT if it's disabled. | 
|  |  | 
|  | ValueLatticeElement getBlockValue(Value *Val, BasicBlock *BB); | 
|  | bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T, | 
|  | ValueLatticeElement &Result, Instruction *CxtI = nullptr); | 
|  | bool hasBlockValue(Value *Val, BasicBlock *BB); | 
|  |  | 
|  | // These methods process one work item and may add more. A false value | 
|  | // returned means that the work item was not completely processed and must | 
|  | // be revisited after going through the new items. | 
|  | bool solveBlockValue(Value *Val, BasicBlock *BB); | 
|  | bool solveBlockValueImpl(ValueLatticeElement &Res, Value *Val, | 
|  | BasicBlock *BB); | 
|  | bool solveBlockValueNonLocal(ValueLatticeElement &BBLV, Value *Val, | 
|  | BasicBlock *BB); | 
|  | bool solveBlockValuePHINode(ValueLatticeElement &BBLV, PHINode *PN, | 
|  | BasicBlock *BB); | 
|  | bool solveBlockValueSelect(ValueLatticeElement &BBLV, SelectInst *S, | 
|  | BasicBlock *BB); | 
|  | bool solveBlockValueBinaryOp(ValueLatticeElement &BBLV, BinaryOperator *BBI, | 
|  | BasicBlock *BB); | 
|  | bool solveBlockValueCast(ValueLatticeElement &BBLV, CastInst *CI, | 
|  | BasicBlock *BB); | 
|  | void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, | 
|  | ValueLatticeElement &BBLV, | 
|  | Instruction *BBI); | 
|  |  | 
|  | void solve(); | 
|  |  | 
|  | public: | 
|  | /// This is the query interface to determine the lattice | 
|  | /// value for the specified Value* at the end of the specified block. | 
|  | ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, | 
|  | Instruction *CxtI = nullptr); | 
|  |  | 
|  | /// This is the query interface to determine the lattice | 
|  | /// value for the specified Value* at the specified instruction (generally | 
|  | /// from an assume intrinsic). | 
|  | ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); | 
|  |  | 
|  | /// This is the query interface to determine the lattice | 
|  | /// value for the specified Value* that is true on the specified edge. | 
|  | ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, | 
|  | BasicBlock *ToBB, | 
|  | Instruction *CxtI = nullptr); | 
|  |  | 
|  | /// Complete flush all previously computed values | 
|  | void clear() { | 
|  | TheCache.clear(); | 
|  | } | 
|  |  | 
|  | /// Printing the LazyValueInfo Analysis. | 
|  | void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { | 
|  | LazyValueInfoAnnotatedWriter Writer(this, DTree); | 
|  | F.print(OS, &Writer); | 
|  | } | 
|  |  | 
|  | /// This is part of the update interface to inform the cache | 
|  | /// that a block has been deleted. | 
|  | void eraseBlock(BasicBlock *BB) { | 
|  | TheCache.eraseBlock(BB); | 
|  | } | 
|  |  | 
|  | /// Disables use of the DominatorTree within LVI. | 
|  | void disableDT() { | 
|  | if (DT) { | 
|  | assert(!DisabledDT && "Both DT and DisabledDT are not nullptr!"); | 
|  | std::swap(DT, DisabledDT); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Enables use of the DominatorTree within LVI. Does nothing if the class | 
|  | /// instance was initialized without a DT pointer. | 
|  | void enableDT() { | 
|  | if (DisabledDT) { | 
|  | assert(!DT && "Both DT and DisabledDT are not nullptr!"); | 
|  | std::swap(DT, DisabledDT); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// This is the update interface to inform the cache that an edge from | 
|  | /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. | 
|  | void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); | 
|  |  | 
|  | LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, | 
|  | DominatorTree *DT = nullptr) | 
|  | : AC(AC), DL(DL), DT(DT), DisabledDT(nullptr) {} | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  |  | 
|  | void LazyValueInfoImpl::solve() { | 
|  | SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack( | 
|  | BlockValueStack.begin(), BlockValueStack.end()); | 
|  |  | 
|  | unsigned processedCount = 0; | 
|  | while (!BlockValueStack.empty()) { | 
|  | processedCount++; | 
|  | // Abort if we have to process too many values to get a result for this one. | 
|  | // Because of the design of the overdefined cache currently being per-block | 
|  | // to avoid naming-related issues (IE it wants to try to give different | 
|  | // results for the same name in different blocks), overdefined results don't | 
|  | // get cached globally, which in turn means we will often try to rediscover | 
|  | // the same overdefined result again and again.  Once something like | 
|  | // PredicateInfo is used in LVI or CVP, we should be able to make the | 
|  | // overdefined cache global, and remove this throttle. | 
|  | if (processedCount > MaxProcessedPerValue) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Giving up on stack because we are getting too deep\n"); | 
|  | // Fill in the original values | 
|  | while (!StartingStack.empty()) { | 
|  | std::pair<BasicBlock *, Value *> &e = StartingStack.back(); | 
|  | TheCache.insertResult(e.second, e.first, | 
|  | ValueLatticeElement::getOverdefined()); | 
|  | StartingStack.pop_back(); | 
|  | } | 
|  | BlockValueSet.clear(); | 
|  | BlockValueStack.clear(); | 
|  | return; | 
|  | } | 
|  | std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); | 
|  | assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); | 
|  |  | 
|  | if (solveBlockValue(e.second, e.first)) { | 
|  | // The work item was completely processed. | 
|  | assert(BlockValueStack.back() == e && "Nothing should have been pushed!"); | 
|  | assert(TheCache.hasCachedValueInfo(e.second, e.first) && | 
|  | "Result should be in cache!"); | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " | 
|  | << TheCache.getCachedValueInfo(e.second, e.first) << "\n"); | 
|  |  | 
|  | BlockValueStack.pop_back(); | 
|  | BlockValueSet.erase(e); | 
|  | } else { | 
|  | // More work needs to be done before revisiting. | 
|  | assert(BlockValueStack.back() != e && "Stack should have been pushed!"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoImpl::hasBlockValue(Value *Val, BasicBlock *BB) { | 
|  | // If already a constant, there is nothing to compute. | 
|  | if (isa<Constant>(Val)) | 
|  | return true; | 
|  |  | 
|  | return TheCache.hasCachedValueInfo(Val, BB); | 
|  | } | 
|  |  | 
|  | ValueLatticeElement LazyValueInfoImpl::getBlockValue(Value *Val, | 
|  | BasicBlock *BB) { | 
|  | // If already a constant, there is nothing to compute. | 
|  | if (Constant *VC = dyn_cast<Constant>(Val)) | 
|  | return ValueLatticeElement::get(VC); | 
|  |  | 
|  | return TheCache.getCachedValueInfo(Val, BB); | 
|  | } | 
|  |  | 
|  | static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { | 
|  | switch (BBI->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::Load: | 
|  | case Instruction::Call: | 
|  | case Instruction::Invoke: | 
|  | if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) | 
|  | if (isa<IntegerType>(BBI->getType())) { | 
|  | return ValueLatticeElement::getRange( | 
|  | getConstantRangeFromMetadata(*Ranges)); | 
|  | } | 
|  | break; | 
|  | }; | 
|  | // Nothing known - will be intersected with other facts | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { | 
|  | if (isa<Constant>(Val)) | 
|  | return true; | 
|  |  | 
|  | if (TheCache.hasCachedValueInfo(Val, BB)) { | 
|  | // If we have a cached value, use that. | 
|  | LLVM_DEBUG(dbgs() << "  reuse BB '" << BB->getName() << "' val=" | 
|  | << TheCache.getCachedValueInfo(Val, BB) << '\n'); | 
|  |  | 
|  | // Since we're reusing a cached value, we don't need to update the | 
|  | // OverDefinedCache. The cache will have been properly updated whenever the | 
|  | // cached value was inserted. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Hold off inserting this value into the Cache in case we have to return | 
|  | // false and come back later. | 
|  | ValueLatticeElement Res; | 
|  | if (!solveBlockValueImpl(Res, Val, BB)) | 
|  | // Work pushed, will revisit | 
|  | return false; | 
|  |  | 
|  | TheCache.insertResult(Val, BB, Res); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement &Res, | 
|  | Value *Val, BasicBlock *BB) { | 
|  |  | 
|  | Instruction *BBI = dyn_cast<Instruction>(Val); | 
|  | if (!BBI || BBI->getParent() != BB) | 
|  | return solveBlockValueNonLocal(Res, Val, BB); | 
|  |  | 
|  | if (PHINode *PN = dyn_cast<PHINode>(BBI)) | 
|  | return solveBlockValuePHINode(Res, PN, BB); | 
|  |  | 
|  | if (auto *SI = dyn_cast<SelectInst>(BBI)) | 
|  | return solveBlockValueSelect(Res, SI, BB); | 
|  |  | 
|  | // If this value is a nonnull pointer, record it's range and bailout.  Note | 
|  | // that for all other pointer typed values, we terminate the search at the | 
|  | // definition.  We could easily extend this to look through geps, bitcasts, | 
|  | // and the like to prove non-nullness, but it's not clear that's worth it | 
|  | // compile time wise.  The context-insensitive value walk done inside | 
|  | // isKnownNonZero gets most of the profitable cases at much less expense. | 
|  | // This does mean that we have a sensativity to where the defining | 
|  | // instruction is placed, even if it could legally be hoisted much higher. | 
|  | // That is unfortunate. | 
|  | PointerType *PT = dyn_cast<PointerType>(BBI->getType()); | 
|  | if (PT && isKnownNonZero(BBI, DL)) { | 
|  | Res = ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); | 
|  | return true; | 
|  | } | 
|  | if (BBI->getType()->isIntegerTy()) { | 
|  | if (auto *CI = dyn_cast<CastInst>(BBI)) | 
|  | return solveBlockValueCast(Res, CI, BB); | 
|  |  | 
|  | BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI); | 
|  | if (BO && isa<ConstantInt>(BO->getOperand(1))) | 
|  | return solveBlockValueBinaryOp(Res, BO, BB); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() | 
|  | << "' - unknown inst def found.\n"); | 
|  | Res = getFromRangeMetadata(BBI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) { | 
|  | if (LoadInst *L = dyn_cast<LoadInst>(I)) { | 
|  | return L->getPointerAddressSpace() == 0 && | 
|  | GetUnderlyingObject(L->getPointerOperand(), | 
|  | L->getModule()->getDataLayout()) == Ptr; | 
|  | } | 
|  | if (StoreInst *S = dyn_cast<StoreInst>(I)) { | 
|  | return S->getPointerAddressSpace() == 0 && | 
|  | GetUnderlyingObject(S->getPointerOperand(), | 
|  | S->getModule()->getDataLayout()) == Ptr; | 
|  | } | 
|  | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { | 
|  | if (MI->isVolatile()) return false; | 
|  |  | 
|  | // FIXME: check whether it has a valuerange that excludes zero? | 
|  | ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); | 
|  | if (!Len || Len->isZero()) return false; | 
|  |  | 
|  | if (MI->getDestAddressSpace() == 0) | 
|  | if (GetUnderlyingObject(MI->getRawDest(), | 
|  | MI->getModule()->getDataLayout()) == Ptr) | 
|  | return true; | 
|  | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) | 
|  | if (MTI->getSourceAddressSpace() == 0) | 
|  | if (GetUnderlyingObject(MTI->getRawSource(), | 
|  | MTI->getModule()->getDataLayout()) == Ptr) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if the allocation associated with Val is ever dereferenced | 
|  | /// within the given basic block.  This establishes the fact Val is not null, | 
|  | /// but does not imply that the memory at Val is dereferenceable.  (Val may | 
|  | /// point off the end of the dereferenceable part of the object.) | 
|  | static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) { | 
|  | assert(Val->getType()->isPointerTy()); | 
|  |  | 
|  | const DataLayout &DL = BB->getModule()->getDataLayout(); | 
|  | Value *UnderlyingVal = GetUnderlyingObject(Val, DL); | 
|  | // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge | 
|  | // inside InstructionDereferencesPointer either. | 
|  | if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1)) | 
|  | for (Instruction &I : *BB) | 
|  | if (InstructionDereferencesPointer(&I, UnderlyingVal)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement &BBLV, | 
|  | Value *Val, BasicBlock *BB) { | 
|  | ValueLatticeElement Result;  // Start Undefined. | 
|  |  | 
|  | // If this is the entry block, we must be asking about an argument.  The | 
|  | // value is overdefined. | 
|  | if (BB == &BB->getParent()->getEntryBlock()) { | 
|  | assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); | 
|  | // Before giving up, see if we can prove the pointer non-null local to | 
|  | // this particular block. | 
|  | if (Val->getType()->isPointerTy() && | 
|  | (isKnownNonZero(Val, DL) || isObjectDereferencedInBlock(Val, BB))) { | 
|  | PointerType *PTy = cast<PointerType>(Val->getType()); | 
|  | Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); | 
|  | } else { | 
|  | Result = ValueLatticeElement::getOverdefined(); | 
|  | } | 
|  | BBLV = Result; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Loop over all of our predecessors, merging what we know from them into | 
|  | // result.  If we encounter an unexplored predecessor, we eagerly explore it | 
|  | // in a depth first manner.  In practice, this has the effect of discovering | 
|  | // paths we can't analyze eagerly without spending compile times analyzing | 
|  | // other paths.  This heuristic benefits from the fact that predecessors are | 
|  | // frequently arranged such that dominating ones come first and we quickly | 
|  | // find a path to function entry.  TODO: We should consider explicitly | 
|  | // canonicalizing to make this true rather than relying on this happy | 
|  | // accident. | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { | 
|  | ValueLatticeElement EdgeResult; | 
|  | if (!getEdgeValue(Val, *PI, BB, EdgeResult)) | 
|  | // Explore that input, then return here | 
|  | return false; | 
|  |  | 
|  | Result.mergeIn(EdgeResult, DL); | 
|  |  | 
|  | // If we hit overdefined, exit early.  The BlockVals entry is already set | 
|  | // to overdefined. | 
|  | if (Result.isOverdefined()) { | 
|  | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() | 
|  | << "' - overdefined because of pred (non local).\n"); | 
|  | // Before giving up, see if we can prove the pointer non-null local to | 
|  | // this particular block. | 
|  | if (Val->getType()->isPointerTy() && | 
|  | isObjectDereferencedInBlock(Val, BB)) { | 
|  | PointerType *PTy = cast<PointerType>(Val->getType()); | 
|  | Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); | 
|  | } | 
|  |  | 
|  | BBLV = Result; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return the merged value, which is more precise than 'overdefined'. | 
|  | assert(!Result.isOverdefined()); | 
|  | BBLV = Result; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement &BBLV, | 
|  | PHINode *PN, BasicBlock *BB) { | 
|  | ValueLatticeElement Result;  // Start Undefined. | 
|  |  | 
|  | // Loop over all of our predecessors, merging what we know from them into | 
|  | // result.  See the comment about the chosen traversal order in | 
|  | // solveBlockValueNonLocal; the same reasoning applies here. | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | BasicBlock *PhiBB = PN->getIncomingBlock(i); | 
|  | Value *PhiVal = PN->getIncomingValue(i); | 
|  | ValueLatticeElement EdgeResult; | 
|  | // Note that we can provide PN as the context value to getEdgeValue, even | 
|  | // though the results will be cached, because PN is the value being used as | 
|  | // the cache key in the caller. | 
|  | if (!getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN)) | 
|  | // Explore that input, then return here | 
|  | return false; | 
|  |  | 
|  | Result.mergeIn(EdgeResult, DL); | 
|  |  | 
|  | // If we hit overdefined, exit early.  The BlockVals entry is already set | 
|  | // to overdefined. | 
|  | if (Result.isOverdefined()) { | 
|  | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() | 
|  | << "' - overdefined because of pred (local).\n"); | 
|  |  | 
|  | BBLV = Result; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return the merged value, which is more precise than 'overdefined'. | 
|  | assert(!Result.isOverdefined() && "Possible PHI in entry block?"); | 
|  | BBLV = Result; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, | 
|  | bool isTrueDest = true); | 
|  |  | 
|  | // If we can determine a constraint on the value given conditions assumed by | 
|  | // the program, intersect those constraints with BBLV | 
|  | void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( | 
|  | Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { | 
|  | BBI = BBI ? BBI : dyn_cast<Instruction>(Val); | 
|  | if (!BBI) | 
|  | return; | 
|  |  | 
|  | for (auto &AssumeVH : AC->assumptionsFor(Val)) { | 
|  | if (!AssumeVH) | 
|  | continue; | 
|  | auto *I = cast<CallInst>(AssumeVH); | 
|  | if (!isValidAssumeForContext(I, BBI, DT)) | 
|  | continue; | 
|  |  | 
|  | BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0))); | 
|  | } | 
|  |  | 
|  | // If guards are not used in the module, don't spend time looking for them | 
|  | auto *GuardDecl = BBI->getModule()->getFunction( | 
|  | Intrinsic::getName(Intrinsic::experimental_guard)); | 
|  | if (!GuardDecl || GuardDecl->use_empty()) | 
|  | return; | 
|  |  | 
|  | for (Instruction &I : make_range(BBI->getIterator().getReverse(), | 
|  | BBI->getParent()->rend())) { | 
|  | Value *Cond = nullptr; | 
|  | if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond)))) | 
|  | BBLV = intersect(BBLV, getValueFromCondition(Val, Cond)); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement &BBLV, | 
|  | SelectInst *SI, BasicBlock *BB) { | 
|  |  | 
|  | // Recurse on our inputs if needed | 
|  | if (!hasBlockValue(SI->getTrueValue(), BB)) { | 
|  | if (pushBlockValue(std::make_pair(BB, SI->getTrueValue()))) | 
|  | return false; | 
|  | BBLV = ValueLatticeElement::getOverdefined(); | 
|  | return true; | 
|  | } | 
|  | ValueLatticeElement TrueVal = getBlockValue(SI->getTrueValue(), BB); | 
|  | // If we hit overdefined, don't ask more queries.  We want to avoid poisoning | 
|  | // extra slots in the table if we can. | 
|  | if (TrueVal.isOverdefined()) { | 
|  | BBLV = ValueLatticeElement::getOverdefined(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!hasBlockValue(SI->getFalseValue(), BB)) { | 
|  | if (pushBlockValue(std::make_pair(BB, SI->getFalseValue()))) | 
|  | return false; | 
|  | BBLV = ValueLatticeElement::getOverdefined(); | 
|  | return true; | 
|  | } | 
|  | ValueLatticeElement FalseVal = getBlockValue(SI->getFalseValue(), BB); | 
|  | // If we hit overdefined, don't ask more queries.  We want to avoid poisoning | 
|  | // extra slots in the table if we can. | 
|  | if (FalseVal.isOverdefined()) { | 
|  | BBLV = ValueLatticeElement::getOverdefined(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) { | 
|  | const ConstantRange &TrueCR = TrueVal.getConstantRange(); | 
|  | const ConstantRange &FalseCR = FalseVal.getConstantRange(); | 
|  | Value *LHS = nullptr; | 
|  | Value *RHS = nullptr; | 
|  | SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); | 
|  | // Is this a min specifically of our two inputs?  (Avoid the risk of | 
|  | // ValueTracking getting smarter looking back past our immediate inputs.) | 
|  | if (SelectPatternResult::isMinOrMax(SPR.Flavor) && | 
|  | LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) { | 
|  | ConstantRange ResultCR = [&]() { | 
|  | switch (SPR.Flavor) { | 
|  | default: | 
|  | llvm_unreachable("unexpected minmax type!"); | 
|  | case SPF_SMIN:                   /// Signed minimum | 
|  | return TrueCR.smin(FalseCR); | 
|  | case SPF_UMIN:                   /// Unsigned minimum | 
|  | return TrueCR.umin(FalseCR); | 
|  | case SPF_SMAX:                   /// Signed maximum | 
|  | return TrueCR.smax(FalseCR); | 
|  | case SPF_UMAX:                   /// Unsigned maximum | 
|  | return TrueCR.umax(FalseCR); | 
|  | }; | 
|  | }(); | 
|  | BBLV = ValueLatticeElement::getRange(ResultCR); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // TODO: ABS, NABS from the SelectPatternResult | 
|  | } | 
|  |  | 
|  | // Can we constrain the facts about the true and false values by using the | 
|  | // condition itself?  This shows up with idioms like e.g. select(a > 5, a, 5). | 
|  | // TODO: We could potentially refine an overdefined true value above. | 
|  | Value *Cond = SI->getCondition(); | 
|  | TrueVal = intersect(TrueVal, | 
|  | getValueFromCondition(SI->getTrueValue(), Cond, true)); | 
|  | FalseVal = intersect(FalseVal, | 
|  | getValueFromCondition(SI->getFalseValue(), Cond, false)); | 
|  |  | 
|  | // Handle clamp idioms such as: | 
|  | //   %24 = constantrange<0, 17> | 
|  | //   %39 = icmp eq i32 %24, 0 | 
|  | //   %40 = add i32 %24, -1 | 
|  | //   %siv.next = select i1 %39, i32 16, i32 %40 | 
|  | //   %siv.next = constantrange<0, 17> not <-1, 17> | 
|  | // In general, this can handle any clamp idiom which tests the edge | 
|  | // condition via an equality or inequality. | 
|  | if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { | 
|  | ICmpInst::Predicate Pred = ICI->getPredicate(); | 
|  | Value *A = ICI->getOperand(0); | 
|  | if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) { | 
|  | auto addConstants = [](ConstantInt *A, ConstantInt *B) { | 
|  | assert(A->getType() == B->getType()); | 
|  | return ConstantInt::get(A->getType(), A->getValue() + B->getValue()); | 
|  | }; | 
|  | // See if either input is A + C2, subject to the constraint from the | 
|  | // condition that A != C when that input is used.  We can assume that | 
|  | // that input doesn't include C + C2. | 
|  | ConstantInt *CIAdded; | 
|  | switch (Pred) { | 
|  | default: break; | 
|  | case ICmpInst::ICMP_EQ: | 
|  | if (match(SI->getFalseValue(), m_Add(m_Specific(A), | 
|  | m_ConstantInt(CIAdded)))) { | 
|  | auto ResNot = addConstants(CIBase, CIAdded); | 
|  | FalseVal = intersect(FalseVal, | 
|  | ValueLatticeElement::getNot(ResNot)); | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (match(SI->getTrueValue(), m_Add(m_Specific(A), | 
|  | m_ConstantInt(CIAdded)))) { | 
|  | auto ResNot = addConstants(CIBase, CIAdded); | 
|  | TrueVal = intersect(TrueVal, | 
|  | ValueLatticeElement::getNot(ResNot)); | 
|  | } | 
|  | break; | 
|  | }; | 
|  | } | 
|  | } | 
|  |  | 
|  | ValueLatticeElement Result;  // Start Undefined. | 
|  | Result.mergeIn(TrueVal, DL); | 
|  | Result.mergeIn(FalseVal, DL); | 
|  | BBLV = Result; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement &BBLV, | 
|  | CastInst *CI, | 
|  | BasicBlock *BB) { | 
|  | if (!CI->getOperand(0)->getType()->isSized()) { | 
|  | // Without knowing how wide the input is, we can't analyze it in any useful | 
|  | // way. | 
|  | BBLV = ValueLatticeElement::getOverdefined(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Filter out casts we don't know how to reason about before attempting to | 
|  | // recurse on our operand.  This can cut a long search short if we know we're | 
|  | // not going to be able to get any useful information anways. | 
|  | switch (CI->getOpcode()) { | 
|  | case Instruction::Trunc: | 
|  | case Instruction::SExt: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::BitCast: | 
|  | break; | 
|  | default: | 
|  | // Unhandled instructions are overdefined. | 
|  | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() | 
|  | << "' - overdefined (unknown cast).\n"); | 
|  | BBLV = ValueLatticeElement::getOverdefined(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Figure out the range of the LHS.  If that fails, we still apply the | 
|  | // transfer rule on the full set since we may be able to locally infer | 
|  | // interesting facts. | 
|  | if (!hasBlockValue(CI->getOperand(0), BB)) | 
|  | if (pushBlockValue(std::make_pair(BB, CI->getOperand(0)))) | 
|  | // More work to do before applying this transfer rule. | 
|  | return false; | 
|  |  | 
|  | const unsigned OperandBitWidth = | 
|  | DL.getTypeSizeInBits(CI->getOperand(0)->getType()); | 
|  | ConstantRange LHSRange = ConstantRange(OperandBitWidth); | 
|  | if (hasBlockValue(CI->getOperand(0), BB)) { | 
|  | ValueLatticeElement LHSVal = getBlockValue(CI->getOperand(0), BB); | 
|  | intersectAssumeOrGuardBlockValueConstantRange(CI->getOperand(0), LHSVal, | 
|  | CI); | 
|  | if (LHSVal.isConstantRange()) | 
|  | LHSRange = LHSVal.getConstantRange(); | 
|  | } | 
|  |  | 
|  | const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth(); | 
|  |  | 
|  | // NOTE: We're currently limited by the set of operations that ConstantRange | 
|  | // can evaluate symbolically.  Enhancing that set will allows us to analyze | 
|  | // more definitions. | 
|  | BBLV = ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), | 
|  | ResultBitWidth)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement &BBLV, | 
|  | BinaryOperator *BO, | 
|  | BasicBlock *BB) { | 
|  |  | 
|  | assert(BO->getOperand(0)->getType()->isSized() && | 
|  | "all operands to binary operators are sized"); | 
|  |  | 
|  | // Filter out operators we don't know how to reason about before attempting to | 
|  | // recurse on our operand(s).  This can cut a long search short if we know | 
|  | // we're not going to be able to get any useful information anyways. | 
|  | switch (BO->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | // continue into the code below | 
|  | break; | 
|  | default: | 
|  | // Unhandled instructions are overdefined. | 
|  | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() | 
|  | << "' - overdefined (unknown binary operator).\n"); | 
|  | BBLV = ValueLatticeElement::getOverdefined(); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | // Figure out the range of the LHS.  If that fails, use a conservative range, | 
|  | // but apply the transfer rule anyways.  This lets us pick up facts from | 
|  | // expressions like "and i32 (call i32 @foo()), 32" | 
|  | if (!hasBlockValue(BO->getOperand(0), BB)) | 
|  | if (pushBlockValue(std::make_pair(BB, BO->getOperand(0)))) | 
|  | // More work to do before applying this transfer rule. | 
|  | return false; | 
|  |  | 
|  | const unsigned OperandBitWidth = | 
|  | DL.getTypeSizeInBits(BO->getOperand(0)->getType()); | 
|  | ConstantRange LHSRange = ConstantRange(OperandBitWidth); | 
|  | if (hasBlockValue(BO->getOperand(0), BB)) { | 
|  | ValueLatticeElement LHSVal = getBlockValue(BO->getOperand(0), BB); | 
|  | intersectAssumeOrGuardBlockValueConstantRange(BO->getOperand(0), LHSVal, | 
|  | BO); | 
|  | if (LHSVal.isConstantRange()) | 
|  | LHSRange = LHSVal.getConstantRange(); | 
|  | } | 
|  |  | 
|  | ConstantInt *RHS = cast<ConstantInt>(BO->getOperand(1)); | 
|  | ConstantRange RHSRange = ConstantRange(RHS->getValue()); | 
|  |  | 
|  | // NOTE: We're currently limited by the set of operations that ConstantRange | 
|  | // can evaluate symbolically.  Enhancing that set will allows us to analyze | 
|  | // more definitions. | 
|  | Instruction::BinaryOps BinOp = BO->getOpcode(); | 
|  | BBLV = ValueLatticeElement::getRange(LHSRange.binaryOp(BinOp, RHSRange)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI, | 
|  | bool isTrueDest) { | 
|  | Value *LHS = ICI->getOperand(0); | 
|  | Value *RHS = ICI->getOperand(1); | 
|  | CmpInst::Predicate Predicate = ICI->getPredicate(); | 
|  |  | 
|  | if (isa<Constant>(RHS)) { | 
|  | if (ICI->isEquality() && LHS == Val) { | 
|  | // We know that V has the RHS constant if this is a true SETEQ or | 
|  | // false SETNE. | 
|  | if (isTrueDest == (Predicate == ICmpInst::ICMP_EQ)) | 
|  | return ValueLatticeElement::get(cast<Constant>(RHS)); | 
|  | else | 
|  | return ValueLatticeElement::getNot(cast<Constant>(RHS)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Val->getType()->isIntegerTy()) | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  |  | 
|  | // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible | 
|  | // range of Val guaranteed by the condition. Recognize comparisons in the from | 
|  | // of: | 
|  | //  icmp <pred> Val, ... | 
|  | //  icmp <pred> (add Val, Offset), ... | 
|  | // The latter is the range checking idiom that InstCombine produces. Subtract | 
|  | // the offset from the allowed range for RHS in this case. | 
|  |  | 
|  | // Val or (add Val, Offset) can be on either hand of the comparison | 
|  | if (LHS != Val && !match(LHS, m_Add(m_Specific(Val), m_ConstantInt()))) { | 
|  | std::swap(LHS, RHS); | 
|  | Predicate = CmpInst::getSwappedPredicate(Predicate); | 
|  | } | 
|  |  | 
|  | ConstantInt *Offset = nullptr; | 
|  | if (LHS != Val) | 
|  | match(LHS, m_Add(m_Specific(Val), m_ConstantInt(Offset))); | 
|  |  | 
|  | if (LHS == Val || Offset) { | 
|  | // Calculate the range of values that are allowed by the comparison | 
|  | ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(), | 
|  | /*isFullSet=*/true); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) | 
|  | RHSRange = ConstantRange(CI->getValue()); | 
|  | else if (Instruction *I = dyn_cast<Instruction>(RHS)) | 
|  | if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) | 
|  | RHSRange = getConstantRangeFromMetadata(*Ranges); | 
|  |  | 
|  | // If we're interested in the false dest, invert the condition | 
|  | CmpInst::Predicate Pred = | 
|  | isTrueDest ? Predicate : CmpInst::getInversePredicate(Predicate); | 
|  | ConstantRange TrueValues = | 
|  | ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); | 
|  |  | 
|  | if (Offset) // Apply the offset from above. | 
|  | TrueValues = TrueValues.subtract(Offset->getValue()); | 
|  |  | 
|  | return ValueLatticeElement::getRange(std::move(TrueValues)); | 
|  | } | 
|  |  | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  | } | 
|  |  | 
|  | static ValueLatticeElement | 
|  | getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, | 
|  | DenseMap<Value*, ValueLatticeElement> &Visited); | 
|  |  | 
|  | static ValueLatticeElement | 
|  | getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest, | 
|  | DenseMap<Value*, ValueLatticeElement> &Visited) { | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond)) | 
|  | return getValueFromICmpCondition(Val, ICI, isTrueDest); | 
|  |  | 
|  | // Handle conditions in the form of (cond1 && cond2), we know that on the | 
|  | // true dest path both of the conditions hold. Similarly for conditions of | 
|  | // the form (cond1 || cond2), we know that on the false dest path neither | 
|  | // condition holds. | 
|  | BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond); | 
|  | if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) || | 
|  | (!isTrueDest && BO->getOpcode() != BinaryOperator::Or)) | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  |  | 
|  | // Prevent infinite recursion if Cond references itself as in this example: | 
|  | //  Cond: "%tmp4 = and i1 %tmp4, undef" | 
|  | //    BL: "%tmp4 = and i1 %tmp4, undef" | 
|  | //    BR: "i1 undef" | 
|  | Value *BL = BO->getOperand(0); | 
|  | Value *BR = BO->getOperand(1); | 
|  | if (BL == Cond || BR == Cond) | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  |  | 
|  | return intersect(getValueFromCondition(Val, BL, isTrueDest, Visited), | 
|  | getValueFromCondition(Val, BR, isTrueDest, Visited)); | 
|  | } | 
|  |  | 
|  | static ValueLatticeElement | 
|  | getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, | 
|  | DenseMap<Value*, ValueLatticeElement> &Visited) { | 
|  | auto I = Visited.find(Cond); | 
|  | if (I != Visited.end()) | 
|  | return I->second; | 
|  |  | 
|  | auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited); | 
|  | Visited[Cond] = Result; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, | 
|  | bool isTrueDest) { | 
|  | assert(Cond && "precondition"); | 
|  | DenseMap<Value*, ValueLatticeElement> Visited; | 
|  | return getValueFromCondition(Val, Cond, isTrueDest, Visited); | 
|  | } | 
|  |  | 
|  | // Return true if Usr has Op as an operand, otherwise false. | 
|  | static bool usesOperand(User *Usr, Value *Op) { | 
|  | return find(Usr->operands(), Op) != Usr->op_end(); | 
|  | } | 
|  |  | 
|  | // Return true if the instruction type of Val is supported by | 
|  | // constantFoldUser(). Currently CastInst and BinaryOperator only.  Call this | 
|  | // before calling constantFoldUser() to find out if it's even worth attempting | 
|  | // to call it. | 
|  | static bool isOperationFoldable(User *Usr) { | 
|  | return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr); | 
|  | } | 
|  |  | 
|  | // Check if Usr can be simplified to an integer constant when the value of one | 
|  | // of its operands Op is an integer constant OpConstVal. If so, return it as an | 
|  | // lattice value range with a single element or otherwise return an overdefined | 
|  | // lattice value. | 
|  | static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, | 
|  | const APInt &OpConstVal, | 
|  | const DataLayout &DL) { | 
|  | assert(isOperationFoldable(Usr) && "Precondition"); | 
|  | Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); | 
|  | // Check if Usr can be simplified to a constant. | 
|  | if (auto *CI = dyn_cast<CastInst>(Usr)) { | 
|  | assert(CI->getOperand(0) == Op && "Operand 0 isn't Op"); | 
|  | if (auto *C = dyn_cast_or_null<ConstantInt>( | 
|  | SimplifyCastInst(CI->getOpcode(), OpConst, | 
|  | CI->getDestTy(), DL))) { | 
|  | return ValueLatticeElement::getRange(ConstantRange(C->getValue())); | 
|  | } | 
|  | } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) { | 
|  | bool Op0Match = BO->getOperand(0) == Op; | 
|  | bool Op1Match = BO->getOperand(1) == Op; | 
|  | assert((Op0Match || Op1Match) && | 
|  | "Operand 0 nor Operand 1 isn't a match"); | 
|  | Value *LHS = Op0Match ? OpConst : BO->getOperand(0); | 
|  | Value *RHS = Op1Match ? OpConst : BO->getOperand(1); | 
|  | if (auto *C = dyn_cast_or_null<ConstantInt>( | 
|  | SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { | 
|  | return ValueLatticeElement::getRange(ConstantRange(C->getValue())); | 
|  | } | 
|  | } | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  | } | 
|  |  | 
|  | /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if | 
|  | /// Val is not constrained on the edge.  Result is unspecified if return value | 
|  | /// is false. | 
|  | static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom, | 
|  | BasicBlock *BBTo, ValueLatticeElement &Result) { | 
|  | // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we | 
|  | // know that v != 0. | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { | 
|  | // If this is a conditional branch and only one successor goes to BBTo, then | 
|  | // we may be able to infer something from the condition. | 
|  | if (BI->isConditional() && | 
|  | BI->getSuccessor(0) != BI->getSuccessor(1)) { | 
|  | bool isTrueDest = BI->getSuccessor(0) == BBTo; | 
|  | assert(BI->getSuccessor(!isTrueDest) == BBTo && | 
|  | "BBTo isn't a successor of BBFrom"); | 
|  | Value *Condition = BI->getCondition(); | 
|  |  | 
|  | // If V is the condition of the branch itself, then we know exactly what | 
|  | // it is. | 
|  | if (Condition == Val) { | 
|  | Result = ValueLatticeElement::get(ConstantInt::get( | 
|  | Type::getInt1Ty(Val->getContext()), isTrueDest)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the condition of the branch is an equality comparison, we may be | 
|  | // able to infer the value. | 
|  | Result = getValueFromCondition(Val, Condition, isTrueDest); | 
|  | if (!Result.isOverdefined()) | 
|  | return true; | 
|  |  | 
|  | if (User *Usr = dyn_cast<User>(Val)) { | 
|  | assert(Result.isOverdefined() && "Result isn't overdefined"); | 
|  | // Check with isOperationFoldable() first to avoid linearly iterating | 
|  | // over the operands unnecessarily which can be expensive for | 
|  | // instructions with many operands. | 
|  | if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) { | 
|  | const DataLayout &DL = BBTo->getModule()->getDataLayout(); | 
|  | if (usesOperand(Usr, Condition)) { | 
|  | // If Val has Condition as an operand and Val can be folded into a | 
|  | // constant with either Condition == true or Condition == false, | 
|  | // propagate the constant. | 
|  | // eg. | 
|  | //   ; %Val is true on the edge to %then. | 
|  | //   %Val = and i1 %Condition, true. | 
|  | //   br %Condition, label %then, label %else | 
|  | APInt ConditionVal(1, isTrueDest ? 1 : 0); | 
|  | Result = constantFoldUser(Usr, Condition, ConditionVal, DL); | 
|  | } else { | 
|  | // If one of Val's operand has an inferred value, we may be able to | 
|  | // infer the value of Val. | 
|  | // eg. | 
|  | //    ; %Val is 94 on the edge to %then. | 
|  | //    %Val = add i8 %Op, 1 | 
|  | //    %Condition = icmp eq i8 %Op, 93 | 
|  | //    br i1 %Condition, label %then, label %else | 
|  | for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { | 
|  | Value *Op = Usr->getOperand(i); | 
|  | ValueLatticeElement OpLatticeVal = | 
|  | getValueFromCondition(Op, Condition, isTrueDest); | 
|  | if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) { | 
|  | Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!Result.isOverdefined()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the edge was formed by a switch on the value, then we may know exactly | 
|  | // what it is. | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { | 
|  | Value *Condition = SI->getCondition(); | 
|  | if (!isa<IntegerType>(Val->getType())) | 
|  | return false; | 
|  | bool ValUsesConditionAndMayBeFoldable = false; | 
|  | if (Condition != Val) { | 
|  | // Check if Val has Condition as an operand. | 
|  | if (User *Usr = dyn_cast<User>(Val)) | 
|  | ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && | 
|  | usesOperand(Usr, Condition); | 
|  | if (!ValUsesConditionAndMayBeFoldable) | 
|  | return false; | 
|  | } | 
|  | assert((Condition == Val || ValUsesConditionAndMayBeFoldable) && | 
|  | "Condition != Val nor Val doesn't use Condition"); | 
|  |  | 
|  | bool DefaultCase = SI->getDefaultDest() == BBTo; | 
|  | unsigned BitWidth = Val->getType()->getIntegerBitWidth(); | 
|  | ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); | 
|  |  | 
|  | for (auto Case : SI->cases()) { | 
|  | APInt CaseValue = Case.getCaseValue()->getValue(); | 
|  | ConstantRange EdgeVal(CaseValue); | 
|  | if (ValUsesConditionAndMayBeFoldable) { | 
|  | User *Usr = cast<User>(Val); | 
|  | const DataLayout &DL = BBTo->getModule()->getDataLayout(); | 
|  | ValueLatticeElement EdgeLatticeVal = | 
|  | constantFoldUser(Usr, Condition, CaseValue, DL); | 
|  | if (EdgeLatticeVal.isOverdefined()) | 
|  | return false; | 
|  | EdgeVal = EdgeLatticeVal.getConstantRange(); | 
|  | } | 
|  | if (DefaultCase) { | 
|  | // It is possible that the default destination is the destination of | 
|  | // some cases. We cannot perform difference for those cases. | 
|  | // We know Condition != CaseValue in BBTo.  In some cases we can use | 
|  | // this to infer Val == f(Condition) is != f(CaseValue).  For now, we | 
|  | // only do this when f is identity (i.e. Val == Condition), but we | 
|  | // should be able to do this for any injective f. | 
|  | if (Case.getCaseSuccessor() != BBTo && Condition == Val) | 
|  | EdgesVals = EdgesVals.difference(EdgeVal); | 
|  | } else if (Case.getCaseSuccessor() == BBTo) | 
|  | EdgesVals = EdgesVals.unionWith(EdgeVal); | 
|  | } | 
|  | Result = ValueLatticeElement::getRange(std::move(EdgesVals)); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Compute the value of Val on the edge BBFrom -> BBTo or the value at | 
|  | /// the basic block if the edge does not constrain Val. | 
|  | bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom, | 
|  | BasicBlock *BBTo, | 
|  | ValueLatticeElement &Result, | 
|  | Instruction *CxtI) { | 
|  | // If already a constant, there is nothing to compute. | 
|  | if (Constant *VC = dyn_cast<Constant>(Val)) { | 
|  | Result = ValueLatticeElement::get(VC); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ValueLatticeElement LocalResult; | 
|  | if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult)) | 
|  | // If we couldn't constrain the value on the edge, LocalResult doesn't | 
|  | // provide any information. | 
|  | LocalResult = ValueLatticeElement::getOverdefined(); | 
|  |  | 
|  | if (hasSingleValue(LocalResult)) { | 
|  | // Can't get any more precise here | 
|  | Result = LocalResult; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!hasBlockValue(Val, BBFrom)) { | 
|  | if (pushBlockValue(std::make_pair(BBFrom, Val))) | 
|  | return false; | 
|  | // No new information. | 
|  | Result = LocalResult; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Try to intersect ranges of the BB and the constraint on the edge. | 
|  | ValueLatticeElement InBlock = getBlockValue(Val, BBFrom); | 
|  | intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, | 
|  | BBFrom->getTerminator()); | 
|  | // We can use the context instruction (generically the ultimate instruction | 
|  | // the calling pass is trying to simplify) here, even though the result of | 
|  | // this function is generally cached when called from the solve* functions | 
|  | // (and that cached result might be used with queries using a different | 
|  | // context instruction), because when this function is called from the solve* | 
|  | // functions, the context instruction is not provided. When called from | 
|  | // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, | 
|  | // but then the result is not cached. | 
|  | intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); | 
|  |  | 
|  | Result = intersect(LocalResult, InBlock); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, | 
|  | Instruction *CxtI) { | 
|  | LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" | 
|  | << BB->getName() << "'\n"); | 
|  |  | 
|  | assert(BlockValueStack.empty() && BlockValueSet.empty()); | 
|  | if (!hasBlockValue(V, BB)) { | 
|  | pushBlockValue(std::make_pair(BB, V)); | 
|  | solve(); | 
|  | } | 
|  | ValueLatticeElement Result = getBlockValue(V, BB); | 
|  | intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { | 
|  | LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() | 
|  | << "'\n"); | 
|  |  | 
|  | if (auto *C = dyn_cast<Constant>(V)) | 
|  | return ValueLatticeElement::get(C); | 
|  |  | 
|  | ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); | 
|  | if (auto *I = dyn_cast<Instruction>(V)) | 
|  | Result = getFromRangeMetadata(I); | 
|  | intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | ValueLatticeElement LazyValueInfoImpl:: | 
|  | getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, | 
|  | Instruction *CxtI) { | 
|  | LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" | 
|  | << FromBB->getName() << "' to '" << ToBB->getName() | 
|  | << "'\n"); | 
|  |  | 
|  | ValueLatticeElement Result; | 
|  | if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) { | 
|  | solve(); | 
|  | bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI); | 
|  | (void)WasFastQuery; | 
|  | assert(WasFastQuery && "More work to do after problem solved?"); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, | 
|  | BasicBlock *NewSucc) { | 
|  | TheCache.threadEdgeImpl(OldSucc, NewSucc); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                            LazyValueInfo Impl | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// This lazily constructs the LazyValueInfoImpl. | 
|  | static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC, | 
|  | const DataLayout *DL, | 
|  | DominatorTree *DT = nullptr) { | 
|  | if (!PImpl) { | 
|  | assert(DL && "getCache() called with a null DataLayout"); | 
|  | PImpl = new LazyValueInfoImpl(AC, *DL, DT); | 
|  | } | 
|  | return *static_cast<LazyValueInfoImpl*>(PImpl); | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { | 
|  | Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  |  | 
|  | DominatorTreeWrapperPass *DTWP = | 
|  | getAnalysisIfAvailable<DominatorTreeWrapperPass>(); | 
|  | Info.DT = DTWP ? &DTWP->getDomTree() : nullptr; | 
|  | Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); | 
|  |  | 
|  | if (Info.PImpl) | 
|  | getImpl(Info.PImpl, Info.AC, &DL, Info.DT).clear(); | 
|  |  | 
|  | // Fully lazy. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } | 
|  |  | 
|  | LazyValueInfo::~LazyValueInfo() { releaseMemory(); } | 
|  |  | 
|  | void LazyValueInfo::releaseMemory() { | 
|  | // If the cache was allocated, free it. | 
|  | if (PImpl) { | 
|  | delete &getImpl(PImpl, AC, nullptr); | 
|  | PImpl = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, | 
|  | FunctionAnalysisManager::Invalidator &Inv) { | 
|  | // We need to invalidate if we have either failed to preserve this analyses | 
|  | // result directly or if any of its dependencies have been invalidated. | 
|  | auto PAC = PA.getChecker<LazyValueAnalysis>(); | 
|  | if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || | 
|  | (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } | 
|  |  | 
|  | LazyValueInfo LazyValueAnalysis::run(Function &F, | 
|  | FunctionAnalysisManager &FAM) { | 
|  | auto &AC = FAM.getResult<AssumptionAnalysis>(F); | 
|  | auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); | 
|  | auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); | 
|  |  | 
|  | return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI, DT); | 
|  | } | 
|  |  | 
|  | /// Returns true if we can statically tell that this value will never be a | 
|  | /// "useful" constant.  In practice, this means we've got something like an | 
|  | /// alloca or a malloc call for which a comparison against a constant can | 
|  | /// only be guarding dead code.  Note that we are potentially giving up some | 
|  | /// precision in dead code (a constant result) in favour of avoiding a | 
|  | /// expensive search for a easily answered common query. | 
|  | static bool isKnownNonConstant(Value *V) { | 
|  | V = V->stripPointerCasts(); | 
|  | // The return val of alloc cannot be a Constant. | 
|  | if (isa<AllocaInst>(V)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB, | 
|  | Instruction *CxtI) { | 
|  | // Bail out early if V is known not to be a Constant. | 
|  | if (isKnownNonConstant(V)) | 
|  | return nullptr; | 
|  |  | 
|  | const DataLayout &DL = BB->getModule()->getDataLayout(); | 
|  | ValueLatticeElement Result = | 
|  | getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); | 
|  |  | 
|  | if (Result.isConstant()) | 
|  | return Result.getConstant(); | 
|  | if (Result.isConstantRange()) { | 
|  | const ConstantRange &CR = Result.getConstantRange(); | 
|  | if (const APInt *SingleVal = CR.getSingleElement()) | 
|  | return ConstantInt::get(V->getContext(), *SingleVal); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB, | 
|  | Instruction *CxtI) { | 
|  | assert(V->getType()->isIntegerTy()); | 
|  | unsigned Width = V->getType()->getIntegerBitWidth(); | 
|  | const DataLayout &DL = BB->getModule()->getDataLayout(); | 
|  | ValueLatticeElement Result = | 
|  | getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); | 
|  | if (Result.isUndefined()) | 
|  | return ConstantRange(Width, /*isFullSet=*/false); | 
|  | if (Result.isConstantRange()) | 
|  | return Result.getConstantRange(); | 
|  | // We represent ConstantInt constants as constant ranges but other kinds | 
|  | // of integer constants, i.e. ConstantExpr will be tagged as constants | 
|  | assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && | 
|  | "ConstantInt value must be represented as constantrange"); | 
|  | return ConstantRange(Width, /*isFullSet=*/true); | 
|  | } | 
|  |  | 
|  | /// Determine whether the specified value is known to be a | 
|  | /// constant on the specified edge. Return null if not. | 
|  | Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, | 
|  | BasicBlock *ToBB, | 
|  | Instruction *CxtI) { | 
|  | const DataLayout &DL = FromBB->getModule()->getDataLayout(); | 
|  | ValueLatticeElement Result = | 
|  | getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); | 
|  |  | 
|  | if (Result.isConstant()) | 
|  | return Result.getConstant(); | 
|  | if (Result.isConstantRange()) { | 
|  | const ConstantRange &CR = Result.getConstantRange(); | 
|  | if (const APInt *SingleVal = CR.getSingleElement()) | 
|  | return ConstantInt::get(V->getContext(), *SingleVal); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, | 
|  | BasicBlock *FromBB, | 
|  | BasicBlock *ToBB, | 
|  | Instruction *CxtI) { | 
|  | unsigned Width = V->getType()->getIntegerBitWidth(); | 
|  | const DataLayout &DL = FromBB->getModule()->getDataLayout(); | 
|  | ValueLatticeElement Result = | 
|  | getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); | 
|  |  | 
|  | if (Result.isUndefined()) | 
|  | return ConstantRange(Width, /*isFullSet=*/false); | 
|  | if (Result.isConstantRange()) | 
|  | return Result.getConstantRange(); | 
|  | // We represent ConstantInt constants as constant ranges but other kinds | 
|  | // of integer constants, i.e. ConstantExpr will be tagged as constants | 
|  | assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && | 
|  | "ConstantInt value must be represented as constantrange"); | 
|  | return ConstantRange(Width, /*isFullSet=*/true); | 
|  | } | 
|  |  | 
|  | static LazyValueInfo::Tristate | 
|  | getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val, | 
|  | const DataLayout &DL, TargetLibraryInfo *TLI) { | 
|  | // If we know the value is a constant, evaluate the conditional. | 
|  | Constant *Res = nullptr; | 
|  | if (Val.isConstant()) { | 
|  | Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI); | 
|  | if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) | 
|  | return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; | 
|  | return LazyValueInfo::Unknown; | 
|  | } | 
|  |  | 
|  | if (Val.isConstantRange()) { | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(C); | 
|  | if (!CI) return LazyValueInfo::Unknown; | 
|  |  | 
|  | const ConstantRange &CR = Val.getConstantRange(); | 
|  | if (Pred == ICmpInst::ICMP_EQ) { | 
|  | if (!CR.contains(CI->getValue())) | 
|  | return LazyValueInfo::False; | 
|  |  | 
|  | if (CR.isSingleElement()) | 
|  | return LazyValueInfo::True; | 
|  | } else if (Pred == ICmpInst::ICMP_NE) { | 
|  | if (!CR.contains(CI->getValue())) | 
|  | return LazyValueInfo::True; | 
|  |  | 
|  | if (CR.isSingleElement()) | 
|  | return LazyValueInfo::False; | 
|  | } else { | 
|  | // Handle more complex predicates. | 
|  | ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( | 
|  | (ICmpInst::Predicate)Pred, CI->getValue()); | 
|  | if (TrueValues.contains(CR)) | 
|  | return LazyValueInfo::True; | 
|  | if (TrueValues.inverse().contains(CR)) | 
|  | return LazyValueInfo::False; | 
|  | } | 
|  | return LazyValueInfo::Unknown; | 
|  | } | 
|  |  | 
|  | if (Val.isNotConstant()) { | 
|  | // If this is an equality comparison, we can try to fold it knowing that | 
|  | // "V != C1". | 
|  | if (Pred == ICmpInst::ICMP_EQ) { | 
|  | // !C1 == C -> false iff C1 == C. | 
|  | Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, | 
|  | Val.getNotConstant(), C, DL, | 
|  | TLI); | 
|  | if (Res->isNullValue()) | 
|  | return LazyValueInfo::False; | 
|  | } else if (Pred == ICmpInst::ICMP_NE) { | 
|  | // !C1 != C -> true iff C1 == C. | 
|  | Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, | 
|  | Val.getNotConstant(), C, DL, | 
|  | TLI); | 
|  | if (Res->isNullValue()) | 
|  | return LazyValueInfo::True; | 
|  | } | 
|  | return LazyValueInfo::Unknown; | 
|  | } | 
|  |  | 
|  | return LazyValueInfo::Unknown; | 
|  | } | 
|  |  | 
|  | /// Determine whether the specified value comparison with a constant is known to | 
|  | /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. | 
|  | LazyValueInfo::Tristate | 
|  | LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, | 
|  | BasicBlock *FromBB, BasicBlock *ToBB, | 
|  | Instruction *CxtI) { | 
|  | const DataLayout &DL = FromBB->getModule()->getDataLayout(); | 
|  | ValueLatticeElement Result = | 
|  | getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); | 
|  |  | 
|  | return getPredicateResult(Pred, C, Result, DL, TLI); | 
|  | } | 
|  |  | 
|  | LazyValueInfo::Tristate | 
|  | LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, | 
|  | Instruction *CxtI) { | 
|  | // Is or is not NonNull are common predicates being queried. If | 
|  | // isKnownNonZero can tell us the result of the predicate, we can | 
|  | // return it quickly. But this is only a fastpath, and falling | 
|  | // through would still be correct. | 
|  | const DataLayout &DL = CxtI->getModule()->getDataLayout(); | 
|  | if (V->getType()->isPointerTy() && C->isNullValue() && | 
|  | isKnownNonZero(V->stripPointerCasts(), DL)) { | 
|  | if (Pred == ICmpInst::ICMP_EQ) | 
|  | return LazyValueInfo::False; | 
|  | else if (Pred == ICmpInst::ICMP_NE) | 
|  | return LazyValueInfo::True; | 
|  | } | 
|  | ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI); | 
|  | Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI); | 
|  | if (Ret != Unknown) | 
|  | return Ret; | 
|  |  | 
|  | // Note: The following bit of code is somewhat distinct from the rest of LVI; | 
|  | // LVI as a whole tries to compute a lattice value which is conservatively | 
|  | // correct at a given location.  In this case, we have a predicate which we | 
|  | // weren't able to prove about the merged result, and we're pushing that | 
|  | // predicate back along each incoming edge to see if we can prove it | 
|  | // separately for each input.  As a motivating example, consider: | 
|  | // bb1: | 
|  | //   %v1 = ... ; constantrange<1, 5> | 
|  | //   br label %merge | 
|  | // bb2: | 
|  | //   %v2 = ... ; constantrange<10, 20> | 
|  | //   br label %merge | 
|  | // merge: | 
|  | //   %phi = phi [%v1, %v2] ; constantrange<1,20> | 
|  | //   %pred = icmp eq i32 %phi, 8 | 
|  | // We can't tell from the lattice value for '%phi' that '%pred' is false | 
|  | // along each path, but by checking the predicate over each input separately, | 
|  | // we can. | 
|  | // We limit the search to one step backwards from the current BB and value. | 
|  | // We could consider extending this to search further backwards through the | 
|  | // CFG and/or value graph, but there are non-obvious compile time vs quality | 
|  | // tradeoffs. | 
|  | if (CxtI) { | 
|  | BasicBlock *BB = CxtI->getParent(); | 
|  |  | 
|  | // Function entry or an unreachable block.  Bail to avoid confusing | 
|  | // analysis below. | 
|  | pred_iterator PI = pred_begin(BB), PE = pred_end(BB); | 
|  | if (PI == PE) | 
|  | return Unknown; | 
|  |  | 
|  | // If V is a PHI node in the same block as the context, we need to ask | 
|  | // questions about the predicate as applied to the incoming value along | 
|  | // each edge. This is useful for eliminating cases where the predicate is | 
|  | // known along all incoming edges. | 
|  | if (auto *PHI = dyn_cast<PHINode>(V)) | 
|  | if (PHI->getParent() == BB) { | 
|  | Tristate Baseline = Unknown; | 
|  | for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { | 
|  | Value *Incoming = PHI->getIncomingValue(i); | 
|  | BasicBlock *PredBB = PHI->getIncomingBlock(i); | 
|  | // Note that PredBB may be BB itself. | 
|  | Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, | 
|  | CxtI); | 
|  |  | 
|  | // Keep going as long as we've seen a consistent known result for | 
|  | // all inputs. | 
|  | Baseline = (i == 0) ? Result /* First iteration */ | 
|  | : (Baseline == Result ? Baseline : Unknown); /* All others */ | 
|  | if (Baseline == Unknown) | 
|  | break; | 
|  | } | 
|  | if (Baseline != Unknown) | 
|  | return Baseline; | 
|  | } | 
|  |  | 
|  | // For a comparison where the V is outside this block, it's possible | 
|  | // that we've branched on it before. Look to see if the value is known | 
|  | // on all incoming edges. | 
|  | if (!isa<Instruction>(V) || | 
|  | cast<Instruction>(V)->getParent() != BB) { | 
|  | // For predecessor edge, determine if the comparison is true or false | 
|  | // on that edge. If they're all true or all false, we can conclude | 
|  | // the value of the comparison in this block. | 
|  | Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); | 
|  | if (Baseline != Unknown) { | 
|  | // Check that all remaining incoming values match the first one. | 
|  | while (++PI != PE) { | 
|  | Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); | 
|  | if (Ret != Baseline) break; | 
|  | } | 
|  | // If we terminated early, then one of the values didn't match. | 
|  | if (PI == PE) { | 
|  | return Baseline; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return Unknown; | 
|  | } | 
|  |  | 
|  | void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, | 
|  | BasicBlock *NewSucc) { | 
|  | if (PImpl) { | 
|  | const DataLayout &DL = PredBB->getModule()->getDataLayout(); | 
|  | getImpl(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LazyValueInfo::eraseBlock(BasicBlock *BB) { | 
|  | if (PImpl) { | 
|  | const DataLayout &DL = BB->getModule()->getDataLayout(); | 
|  | getImpl(PImpl, AC, &DL, DT).eraseBlock(BB); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { | 
|  | if (PImpl) { | 
|  | getImpl(PImpl, AC, DL, DT).printLVI(F, DTree, OS); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LazyValueInfo::disableDT() { | 
|  | if (PImpl) | 
|  | getImpl(PImpl, AC, DL, DT).disableDT(); | 
|  | } | 
|  |  | 
|  | void LazyValueInfo::enableDT() { | 
|  | if (PImpl) | 
|  | getImpl(PImpl, AC, DL, DT).enableDT(); | 
|  | } | 
|  |  | 
|  | // Print the LVI for the function arguments at the start of each basic block. | 
|  | void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( | 
|  | const BasicBlock *BB, formatted_raw_ostream &OS) { | 
|  | // Find if there are latticevalues defined for arguments of the function. | 
|  | auto *F = BB->getParent(); | 
|  | for (auto &Arg : F->args()) { | 
|  | ValueLatticeElement Result = LVIImpl->getValueInBlock( | 
|  | const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB)); | 
|  | if (Result.isUndefined()) | 
|  | continue; | 
|  | OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This function prints the LVI analysis for the instruction I at the beginning | 
|  | // of various basic blocks. It relies on calculated values that are stored in | 
|  | // the LazyValueInfoCache, and in the absence of cached values, recalculate the | 
|  | // LazyValueInfo for `I`, and print that info. | 
|  | void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( | 
|  | const Instruction *I, formatted_raw_ostream &OS) { | 
|  |  | 
|  | auto *ParentBB = I->getParent(); | 
|  | SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; | 
|  | // We can generate (solve) LVI values only for blocks that are dominated by | 
|  | // the I's parent. However, to avoid generating LVI for all dominating blocks, | 
|  | // that contain redundant/uninteresting information, we print LVI for | 
|  | // blocks that may use this LVI information (such as immediate successor | 
|  | // blocks, and blocks that contain uses of `I`). | 
|  | auto printResult = [&](const BasicBlock *BB) { | 
|  | if (!BlocksContainingLVI.insert(BB).second) | 
|  | return; | 
|  | ValueLatticeElement Result = LVIImpl->getValueInBlock( | 
|  | const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB)); | 
|  | OS << "; LatticeVal for: '" << *I << "' in BB: '"; | 
|  | BB->printAsOperand(OS, false); | 
|  | OS << "' is: " << Result << "\n"; | 
|  | }; | 
|  |  | 
|  | printResult(ParentBB); | 
|  | // Print the LVI analysis results for the immediate successor blocks, that | 
|  | // are dominated by `ParentBB`. | 
|  | for (auto *BBSucc : successors(ParentBB)) | 
|  | if (DT.dominates(ParentBB, BBSucc)) | 
|  | printResult(BBSucc); | 
|  |  | 
|  | // Print LVI in blocks where `I` is used. | 
|  | for (auto *U : I->users()) | 
|  | if (auto *UseI = dyn_cast<Instruction>(U)) | 
|  | if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent())) | 
|  | printResult(UseI->getParent()); | 
|  |  | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Printer class for LazyValueInfo results. | 
|  | class LazyValueInfoPrinter : public FunctionPass { | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | LazyValueInfoPrinter() : FunctionPass(ID) { | 
|  | initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesAll(); | 
|  | AU.addRequired<LazyValueInfoWrapperPass>(); | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | } | 
|  |  | 
|  | // Get the mandatory dominator tree analysis and pass this in to the | 
|  | // LVIPrinter. We cannot rely on the LVI's DT, since it's optional. | 
|  | bool runOnFunction(Function &F) override { | 
|  | dbgs() << "LVI for function '" << F.getName() << "':\n"; | 
|  | auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI(); | 
|  | auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | LVI.printLVI(F, DTree, dbgs()); | 
|  | return false; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | char LazyValueInfoPrinter::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info", | 
|  | "Lazy Value Info Printer Pass", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info", | 
|  | "Lazy Value Info Printer Pass", false, false) |