|  | //===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines an instruction selector for the AArch64 target. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AArch64TargetMachine.h" | 
|  | #include "MCTargetDesc/AArch64AddressingModes.h" | 
|  | #include "llvm/ADT/APSInt.h" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "llvm/IR/Function.h" // To access function attributes. | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/IntrinsicsAArch64.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "aarch64-isel" | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | /// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine | 
|  | /// instructions for SelectionDAG operations. | 
|  | /// | 
|  | namespace { | 
|  |  | 
|  | class AArch64DAGToDAGISel : public SelectionDAGISel { | 
|  |  | 
|  | /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can | 
|  | /// make the right decision when generating code for different targets. | 
|  | const AArch64Subtarget *Subtarget; | 
|  |  | 
|  | public: | 
|  | explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm, | 
|  | CodeGenOpt::Level OptLevel) | 
|  | : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr) {} | 
|  |  | 
|  | StringRef getPassName() const override { | 
|  | return "AArch64 Instruction Selection"; | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override { | 
|  | Subtarget = &MF.getSubtarget<AArch64Subtarget>(); | 
|  | return SelectionDAGISel::runOnMachineFunction(MF); | 
|  | } | 
|  |  | 
|  | void Select(SDNode *Node) override; | 
|  |  | 
|  | /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for | 
|  | /// inline asm expressions. | 
|  | bool SelectInlineAsmMemoryOperand(const SDValue &Op, | 
|  | unsigned ConstraintID, | 
|  | std::vector<SDValue> &OutOps) override; | 
|  |  | 
|  | template <signed Low, signed High, signed Scale> | 
|  | bool SelectRDVLImm(SDValue N, SDValue &Imm); | 
|  |  | 
|  | bool tryMLAV64LaneV128(SDNode *N); | 
|  | bool tryMULLV64LaneV128(unsigned IntNo, SDNode *N); | 
|  | bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift); | 
|  | bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift); | 
|  | bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift); | 
|  | bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) { | 
|  | return SelectShiftedRegister(N, false, Reg, Shift); | 
|  | } | 
|  | bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) { | 
|  | return SelectShiftedRegister(N, true, Reg, Shift); | 
|  | } | 
|  | bool SelectAddrModeIndexed7S8(SDValue N, SDValue &Base, SDValue &OffImm) { | 
|  | return SelectAddrModeIndexed7S(N, 1, Base, OffImm); | 
|  | } | 
|  | bool SelectAddrModeIndexed7S16(SDValue N, SDValue &Base, SDValue &OffImm) { | 
|  | return SelectAddrModeIndexed7S(N, 2, Base, OffImm); | 
|  | } | 
|  | bool SelectAddrModeIndexed7S32(SDValue N, SDValue &Base, SDValue &OffImm) { | 
|  | return SelectAddrModeIndexed7S(N, 4, Base, OffImm); | 
|  | } | 
|  | bool SelectAddrModeIndexed7S64(SDValue N, SDValue &Base, SDValue &OffImm) { | 
|  | return SelectAddrModeIndexed7S(N, 8, Base, OffImm); | 
|  | } | 
|  | bool SelectAddrModeIndexed7S128(SDValue N, SDValue &Base, SDValue &OffImm) { | 
|  | return SelectAddrModeIndexed7S(N, 16, Base, OffImm); | 
|  | } | 
|  | bool SelectAddrModeIndexedS9S128(SDValue N, SDValue &Base, SDValue &OffImm) { | 
|  | return SelectAddrModeIndexedBitWidth(N, true, 9, 16, Base, OffImm); | 
|  | } | 
|  | bool SelectAddrModeIndexedU6S128(SDValue N, SDValue &Base, SDValue &OffImm) { | 
|  | return SelectAddrModeIndexedBitWidth(N, false, 6, 16, Base, OffImm); | 
|  | } | 
|  | bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) { | 
|  | return SelectAddrModeIndexed(N, 1, Base, OffImm); | 
|  | } | 
|  | bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) { | 
|  | return SelectAddrModeIndexed(N, 2, Base, OffImm); | 
|  | } | 
|  | bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) { | 
|  | return SelectAddrModeIndexed(N, 4, Base, OffImm); | 
|  | } | 
|  | bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) { | 
|  | return SelectAddrModeIndexed(N, 8, Base, OffImm); | 
|  | } | 
|  | bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) { | 
|  | return SelectAddrModeIndexed(N, 16, Base, OffImm); | 
|  | } | 
|  | bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) { | 
|  | return SelectAddrModeUnscaled(N, 1, Base, OffImm); | 
|  | } | 
|  | bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) { | 
|  | return SelectAddrModeUnscaled(N, 2, Base, OffImm); | 
|  | } | 
|  | bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) { | 
|  | return SelectAddrModeUnscaled(N, 4, Base, OffImm); | 
|  | } | 
|  | bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) { | 
|  | return SelectAddrModeUnscaled(N, 8, Base, OffImm); | 
|  | } | 
|  | bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) { | 
|  | return SelectAddrModeUnscaled(N, 16, Base, OffImm); | 
|  | } | 
|  |  | 
|  | template<int Width> | 
|  | bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset, | 
|  | SDValue &SignExtend, SDValue &DoShift) { | 
|  | return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift); | 
|  | } | 
|  |  | 
|  | template<int Width> | 
|  | bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset, | 
|  | SDValue &SignExtend, SDValue &DoShift) { | 
|  | return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift); | 
|  | } | 
|  |  | 
|  | bool SelectDupZeroOrUndef(SDValue N) { | 
|  | switch(N->getOpcode()) { | 
|  | case ISD::UNDEF: | 
|  | return true; | 
|  | case AArch64ISD::DUP: | 
|  | case ISD::SPLAT_VECTOR: { | 
|  | auto Opnd0 = N->getOperand(0); | 
|  | if (auto CN = dyn_cast<ConstantSDNode>(Opnd0)) | 
|  | if (CN->isNullValue()) | 
|  | return true; | 
|  | if (auto CN = dyn_cast<ConstantFPSDNode>(Opnd0)) | 
|  | if (CN->isZero()) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template<MVT::SimpleValueType VT> | 
|  | bool SelectSVEAddSubImm(SDValue N, SDValue &Imm, SDValue &Shift) { | 
|  | return SelectSVEAddSubImm(N, VT, Imm, Shift); | 
|  | } | 
|  |  | 
|  | template<MVT::SimpleValueType VT> | 
|  | bool SelectSVELogicalImm(SDValue N, SDValue &Imm) { | 
|  | return SelectSVELogicalImm(N, VT, Imm); | 
|  | } | 
|  |  | 
|  | // Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N. | 
|  | template<signed Min, signed Max, signed Scale, bool Shift> | 
|  | bool SelectCntImm(SDValue N, SDValue &Imm) { | 
|  | if (!isa<ConstantSDNode>(N)) | 
|  | return false; | 
|  |  | 
|  | int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue(); | 
|  | if (Shift) | 
|  | MulImm = 1LL << MulImm; | 
|  |  | 
|  | if ((MulImm % std::abs(Scale)) != 0) | 
|  | return false; | 
|  |  | 
|  | MulImm /= Scale; | 
|  | if ((MulImm >= Min) && (MulImm <= Max)) { | 
|  | Imm = CurDAG->getTargetConstant(MulImm, SDLoc(N), MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Form sequences of consecutive 64/128-bit registers for use in NEON | 
|  | /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have | 
|  | /// between 1 and 4 elements. If it contains a single element that is returned | 
|  | /// unchanged; otherwise a REG_SEQUENCE value is returned. | 
|  | SDValue createDTuple(ArrayRef<SDValue> Vecs); | 
|  | SDValue createQTuple(ArrayRef<SDValue> Vecs); | 
|  |  | 
|  | /// Generic helper for the createDTuple/createQTuple | 
|  | /// functions. Those should almost always be called instead. | 
|  | SDValue createTuple(ArrayRef<SDValue> Vecs, const unsigned RegClassIDs[], | 
|  | const unsigned SubRegs[]); | 
|  |  | 
|  | void SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt); | 
|  |  | 
|  | bool tryIndexedLoad(SDNode *N); | 
|  |  | 
|  | bool trySelectStackSlotTagP(SDNode *N); | 
|  | void SelectTagP(SDNode *N); | 
|  |  | 
|  | void SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc, | 
|  | unsigned SubRegIdx); | 
|  | void SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc, | 
|  | unsigned SubRegIdx); | 
|  | void SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc); | 
|  | void SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc); | 
|  |  | 
|  | bool SelectAddrModeFrameIndexSVE(SDValue N, SDValue &Base, SDValue &OffImm); | 
|  |  | 
|  | void SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc); | 
|  | void SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc); | 
|  | void SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc); | 
|  | void SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc); | 
|  |  | 
|  | bool tryBitfieldExtractOp(SDNode *N); | 
|  | bool tryBitfieldExtractOpFromSExt(SDNode *N); | 
|  | bool tryBitfieldInsertOp(SDNode *N); | 
|  | bool tryBitfieldInsertInZeroOp(SDNode *N); | 
|  | bool tryShiftAmountMod(SDNode *N); | 
|  | bool tryHighFPExt(SDNode *N); | 
|  |  | 
|  | bool tryReadRegister(SDNode *N); | 
|  | bool tryWriteRegister(SDNode *N); | 
|  |  | 
|  | // Include the pieces autogenerated from the target description. | 
|  | #include "AArch64GenDAGISel.inc" | 
|  |  | 
|  | private: | 
|  | bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg, | 
|  | SDValue &Shift); | 
|  | bool SelectAddrModeIndexed7S(SDValue N, unsigned Size, SDValue &Base, | 
|  | SDValue &OffImm) { | 
|  | return SelectAddrModeIndexedBitWidth(N, true, 7, Size, Base, OffImm); | 
|  | } | 
|  | bool SelectAddrModeIndexedBitWidth(SDValue N, bool IsSignedImm, unsigned BW, | 
|  | unsigned Size, SDValue &Base, | 
|  | SDValue &OffImm); | 
|  | bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base, | 
|  | SDValue &OffImm); | 
|  | bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base, | 
|  | SDValue &OffImm); | 
|  | bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base, | 
|  | SDValue &Offset, SDValue &SignExtend, | 
|  | SDValue &DoShift); | 
|  | bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base, | 
|  | SDValue &Offset, SDValue &SignExtend, | 
|  | SDValue &DoShift); | 
|  | bool isWorthFolding(SDValue V) const; | 
|  | bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend, | 
|  | SDValue &Offset, SDValue &SignExtend); | 
|  |  | 
|  | template<unsigned RegWidth> | 
|  | bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) { | 
|  | return SelectCVTFixedPosOperand(N, FixedPos, RegWidth); | 
|  | } | 
|  |  | 
|  | bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width); | 
|  |  | 
|  | bool SelectCMP_SWAP(SDNode *N); | 
|  |  | 
|  | bool SelectSVEAddSubImm(SDValue N, MVT VT, SDValue &Imm, SDValue &Shift); | 
|  |  | 
|  | bool SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm); | 
|  |  | 
|  | bool SelectSVESignedArithImm(SDValue N, SDValue &Imm); | 
|  |  | 
|  | bool SelectSVEArithImm(SDValue N, SDValue &Imm); | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// isIntImmediate - This method tests to see if the node is a constant | 
|  | /// operand. If so Imm will receive the 32-bit value. | 
|  | static bool isIntImmediate(const SDNode *N, uint64_t &Imm) { | 
|  | if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) { | 
|  | Imm = C->getZExtValue(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // isIntImmediate - This method tests to see if a constant operand. | 
|  | // If so Imm will receive the value. | 
|  | static bool isIntImmediate(SDValue N, uint64_t &Imm) { | 
|  | return isIntImmediate(N.getNode(), Imm); | 
|  | } | 
|  |  | 
|  | // isOpcWithIntImmediate - This method tests to see if the node is a specific | 
|  | // opcode and that it has a immediate integer right operand. | 
|  | // If so Imm will receive the 32 bit value. | 
|  | static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc, | 
|  | uint64_t &Imm) { | 
|  | return N->getOpcode() == Opc && | 
|  | isIntImmediate(N->getOperand(1).getNode(), Imm); | 
|  | } | 
|  |  | 
|  | bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand( | 
|  | const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) { | 
|  | switch(ConstraintID) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected asm memory constraint"); | 
|  | case InlineAsm::Constraint_m: | 
|  | case InlineAsm::Constraint_Q: | 
|  | // We need to make sure that this one operand does not end up in XZR, thus | 
|  | // require the address to be in a PointerRegClass register. | 
|  | const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); | 
|  | const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF); | 
|  | SDLoc dl(Op); | 
|  | SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i64); | 
|  | SDValue NewOp = | 
|  | SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, | 
|  | dl, Op.getValueType(), | 
|  | Op, RC), 0); | 
|  | OutOps.push_back(NewOp); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SelectArithImmed - Select an immediate value that can be represented as | 
|  | /// a 12-bit value shifted left by either 0 or 12.  If so, return true with | 
|  | /// Val set to the 12-bit value and Shift set to the shifter operand. | 
|  | bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val, | 
|  | SDValue &Shift) { | 
|  | // This function is called from the addsub_shifted_imm ComplexPattern, | 
|  | // which lists [imm] as the list of opcode it's interested in, however | 
|  | // we still need to check whether the operand is actually an immediate | 
|  | // here because the ComplexPattern opcode list is only used in | 
|  | // root-level opcode matching. | 
|  | if (!isa<ConstantSDNode>(N.getNode())) | 
|  | return false; | 
|  |  | 
|  | uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue(); | 
|  | unsigned ShiftAmt; | 
|  |  | 
|  | if (Immed >> 12 == 0) { | 
|  | ShiftAmt = 0; | 
|  | } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) { | 
|  | ShiftAmt = 12; | 
|  | Immed = Immed >> 12; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt); | 
|  | SDLoc dl(N); | 
|  | Val = CurDAG->getTargetConstant(Immed, dl, MVT::i32); | 
|  | Shift = CurDAG->getTargetConstant(ShVal, dl, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SelectNegArithImmed - As above, but negates the value before trying to | 
|  | /// select it. | 
|  | bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val, | 
|  | SDValue &Shift) { | 
|  | // This function is called from the addsub_shifted_imm ComplexPattern, | 
|  | // which lists [imm] as the list of opcode it's interested in, however | 
|  | // we still need to check whether the operand is actually an immediate | 
|  | // here because the ComplexPattern opcode list is only used in | 
|  | // root-level opcode matching. | 
|  | if (!isa<ConstantSDNode>(N.getNode())) | 
|  | return false; | 
|  |  | 
|  | // The immediate operand must be a 24-bit zero-extended immediate. | 
|  | uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue(); | 
|  |  | 
|  | // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0" | 
|  | // have the opposite effect on the C flag, so this pattern mustn't match under | 
|  | // those circumstances. | 
|  | if (Immed == 0) | 
|  | return false; | 
|  |  | 
|  | if (N.getValueType() == MVT::i32) | 
|  | Immed = ~((uint32_t)Immed) + 1; | 
|  | else | 
|  | Immed = ~Immed + 1ULL; | 
|  | if (Immed & 0xFFFFFFFFFF000000ULL) | 
|  | return false; | 
|  |  | 
|  | Immed &= 0xFFFFFFULL; | 
|  | return SelectArithImmed(CurDAG->getConstant(Immed, SDLoc(N), MVT::i32), Val, | 
|  | Shift); | 
|  | } | 
|  |  | 
|  | /// getShiftTypeForNode - Translate a shift node to the corresponding | 
|  | /// ShiftType value. | 
|  | static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) { | 
|  | switch (N.getOpcode()) { | 
|  | default: | 
|  | return AArch64_AM::InvalidShiftExtend; | 
|  | case ISD::SHL: | 
|  | return AArch64_AM::LSL; | 
|  | case ISD::SRL: | 
|  | return AArch64_AM::LSR; | 
|  | case ISD::SRA: | 
|  | return AArch64_AM::ASR; | 
|  | case ISD::ROTR: | 
|  | return AArch64_AM::ROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Determine whether it is worth it to fold SHL into the addressing | 
|  | /// mode. | 
|  | static bool isWorthFoldingSHL(SDValue V) { | 
|  | assert(V.getOpcode() == ISD::SHL && "invalid opcode"); | 
|  | // It is worth folding logical shift of up to three places. | 
|  | auto *CSD = dyn_cast<ConstantSDNode>(V.getOperand(1)); | 
|  | if (!CSD) | 
|  | return false; | 
|  | unsigned ShiftVal = CSD->getZExtValue(); | 
|  | if (ShiftVal > 3) | 
|  | return false; | 
|  |  | 
|  | // Check if this particular node is reused in any non-memory related | 
|  | // operation.  If yes, do not try to fold this node into the address | 
|  | // computation, since the computation will be kept. | 
|  | const SDNode *Node = V.getNode(); | 
|  | for (SDNode *UI : Node->uses()) | 
|  | if (!isa<MemSDNode>(*UI)) | 
|  | for (SDNode *UII : UI->uses()) | 
|  | if (!isa<MemSDNode>(*UII)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine whether it is worth to fold V into an extended register. | 
|  | bool AArch64DAGToDAGISel::isWorthFolding(SDValue V) const { | 
|  | // Trivial if we are optimizing for code size or if there is only | 
|  | // one use of the value. | 
|  | if (CurDAG->shouldOptForSize() || V.hasOneUse()) | 
|  | return true; | 
|  | // If a subtarget has a fastpath LSL we can fold a logical shift into | 
|  | // the addressing mode and save a cycle. | 
|  | if (Subtarget->hasLSLFast() && V.getOpcode() == ISD::SHL && | 
|  | isWorthFoldingSHL(V)) | 
|  | return true; | 
|  | if (Subtarget->hasLSLFast() && V.getOpcode() == ISD::ADD) { | 
|  | const SDValue LHS = V.getOperand(0); | 
|  | const SDValue RHS = V.getOperand(1); | 
|  | if (LHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(LHS)) | 
|  | return true; | 
|  | if (RHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(RHS)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // It hurts otherwise, since the value will be reused. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SelectShiftedRegister - Select a "shifted register" operand.  If the value | 
|  | /// is not shifted, set the Shift operand to default of "LSL 0".  The logical | 
|  | /// instructions allow the shifted register to be rotated, but the arithmetic | 
|  | /// instructions do not.  The AllowROR parameter specifies whether ROR is | 
|  | /// supported. | 
|  | bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR, | 
|  | SDValue &Reg, SDValue &Shift) { | 
|  | AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N); | 
|  | if (ShType == AArch64_AM::InvalidShiftExtend) | 
|  | return false; | 
|  | if (!AllowROR && ShType == AArch64_AM::ROR) | 
|  | return false; | 
|  |  | 
|  | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | unsigned BitSize = N.getValueSizeInBits(); | 
|  | unsigned Val = RHS->getZExtValue() & (BitSize - 1); | 
|  | unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val); | 
|  |  | 
|  | Reg = N.getOperand(0); | 
|  | Shift = CurDAG->getTargetConstant(ShVal, SDLoc(N), MVT::i32); | 
|  | return isWorthFolding(N); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getExtendTypeForNode - Translate an extend node to the corresponding | 
|  | /// ExtendType value. | 
|  | static AArch64_AM::ShiftExtendType | 
|  | getExtendTypeForNode(SDValue N, bool IsLoadStore = false) { | 
|  | if (N.getOpcode() == ISD::SIGN_EXTEND || | 
|  | N.getOpcode() == ISD::SIGN_EXTEND_INREG) { | 
|  | EVT SrcVT; | 
|  | if (N.getOpcode() == ISD::SIGN_EXTEND_INREG) | 
|  | SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT(); | 
|  | else | 
|  | SrcVT = N.getOperand(0).getValueType(); | 
|  |  | 
|  | if (!IsLoadStore && SrcVT == MVT::i8) | 
|  | return AArch64_AM::SXTB; | 
|  | else if (!IsLoadStore && SrcVT == MVT::i16) | 
|  | return AArch64_AM::SXTH; | 
|  | else if (SrcVT == MVT::i32) | 
|  | return AArch64_AM::SXTW; | 
|  | assert(SrcVT != MVT::i64 && "extend from 64-bits?"); | 
|  |  | 
|  | return AArch64_AM::InvalidShiftExtend; | 
|  | } else if (N.getOpcode() == ISD::ZERO_EXTEND || | 
|  | N.getOpcode() == ISD::ANY_EXTEND) { | 
|  | EVT SrcVT = N.getOperand(0).getValueType(); | 
|  | if (!IsLoadStore && SrcVT == MVT::i8) | 
|  | return AArch64_AM::UXTB; | 
|  | else if (!IsLoadStore && SrcVT == MVT::i16) | 
|  | return AArch64_AM::UXTH; | 
|  | else if (SrcVT == MVT::i32) | 
|  | return AArch64_AM::UXTW; | 
|  | assert(SrcVT != MVT::i64 && "extend from 64-bits?"); | 
|  |  | 
|  | return AArch64_AM::InvalidShiftExtend; | 
|  | } else if (N.getOpcode() == ISD::AND) { | 
|  | ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
|  | if (!CSD) | 
|  | return AArch64_AM::InvalidShiftExtend; | 
|  | uint64_t AndMask = CSD->getZExtValue(); | 
|  |  | 
|  | switch (AndMask) { | 
|  | default: | 
|  | return AArch64_AM::InvalidShiftExtend; | 
|  | case 0xFF: | 
|  | return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend; | 
|  | case 0xFFFF: | 
|  | return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend; | 
|  | case 0xFFFFFFFF: | 
|  | return AArch64_AM::UXTW; | 
|  | } | 
|  | } | 
|  |  | 
|  | return AArch64_AM::InvalidShiftExtend; | 
|  | } | 
|  |  | 
|  | // Helper for SelectMLAV64LaneV128 - Recognize high lane extracts. | 
|  | static bool checkHighLaneIndex(SDNode *DL, SDValue &LaneOp, int &LaneIdx) { | 
|  | if (DL->getOpcode() != AArch64ISD::DUPLANE16 && | 
|  | DL->getOpcode() != AArch64ISD::DUPLANE32) | 
|  | return false; | 
|  |  | 
|  | SDValue SV = DL->getOperand(0); | 
|  | if (SV.getOpcode() != ISD::INSERT_SUBVECTOR) | 
|  | return false; | 
|  |  | 
|  | SDValue EV = SV.getOperand(1); | 
|  | if (EV.getOpcode() != ISD::EXTRACT_SUBVECTOR) | 
|  | return false; | 
|  |  | 
|  | ConstantSDNode *DLidx = cast<ConstantSDNode>(DL->getOperand(1).getNode()); | 
|  | ConstantSDNode *EVidx = cast<ConstantSDNode>(EV.getOperand(1).getNode()); | 
|  | LaneIdx = DLidx->getSExtValue() + EVidx->getSExtValue(); | 
|  | LaneOp = EV.getOperand(0); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Helper for SelectOpcV64LaneV128 - Recognize operations where one operand is a | 
|  | // high lane extract. | 
|  | static bool checkV64LaneV128(SDValue Op0, SDValue Op1, SDValue &StdOp, | 
|  | SDValue &LaneOp, int &LaneIdx) { | 
|  |  | 
|  | if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) { | 
|  | std::swap(Op0, Op1); | 
|  | if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) | 
|  | return false; | 
|  | } | 
|  | StdOp = Op1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SelectMLAV64LaneV128 - AArch64 supports vector MLAs where one multiplicand | 
|  | /// is a lane in the upper half of a 128-bit vector.  Recognize and select this | 
|  | /// so that we don't emit unnecessary lane extracts. | 
|  | bool AArch64DAGToDAGISel::tryMLAV64LaneV128(SDNode *N) { | 
|  | SDLoc dl(N); | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  | SDValue MLAOp1;   // Will hold ordinary multiplicand for MLA. | 
|  | SDValue MLAOp2;   // Will hold lane-accessed multiplicand for MLA. | 
|  | int LaneIdx = -1; // Will hold the lane index. | 
|  |  | 
|  | if (Op1.getOpcode() != ISD::MUL || | 
|  | !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2, | 
|  | LaneIdx)) { | 
|  | std::swap(Op0, Op1); | 
|  | if (Op1.getOpcode() != ISD::MUL || | 
|  | !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2, | 
|  | LaneIdx)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64); | 
|  |  | 
|  | SDValue Ops[] = { Op0, MLAOp1, MLAOp2, LaneIdxVal }; | 
|  |  | 
|  | unsigned MLAOpc = ~0U; | 
|  |  | 
|  | switch (N->getSimpleValueType(0).SimpleTy) { | 
|  | default: | 
|  | llvm_unreachable("Unrecognized MLA."); | 
|  | case MVT::v4i16: | 
|  | MLAOpc = AArch64::MLAv4i16_indexed; | 
|  | break; | 
|  | case MVT::v8i16: | 
|  | MLAOpc = AArch64::MLAv8i16_indexed; | 
|  | break; | 
|  | case MVT::v2i32: | 
|  | MLAOpc = AArch64::MLAv2i32_indexed; | 
|  | break; | 
|  | case MVT::v4i32: | 
|  | MLAOpc = AArch64::MLAv4i32_indexed; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ReplaceNode(N, CurDAG->getMachineNode(MLAOpc, dl, N->getValueType(0), Ops)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AArch64DAGToDAGISel::tryMULLV64LaneV128(unsigned IntNo, SDNode *N) { | 
|  | SDLoc dl(N); | 
|  | SDValue SMULLOp0; | 
|  | SDValue SMULLOp1; | 
|  | int LaneIdx; | 
|  |  | 
|  | if (!checkV64LaneV128(N->getOperand(1), N->getOperand(2), SMULLOp0, SMULLOp1, | 
|  | LaneIdx)) | 
|  | return false; | 
|  |  | 
|  | SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64); | 
|  |  | 
|  | SDValue Ops[] = { SMULLOp0, SMULLOp1, LaneIdxVal }; | 
|  |  | 
|  | unsigned SMULLOpc = ~0U; | 
|  |  | 
|  | if (IntNo == Intrinsic::aarch64_neon_smull) { | 
|  | switch (N->getSimpleValueType(0).SimpleTy) { | 
|  | default: | 
|  | llvm_unreachable("Unrecognized SMULL."); | 
|  | case MVT::v4i32: | 
|  | SMULLOpc = AArch64::SMULLv4i16_indexed; | 
|  | break; | 
|  | case MVT::v2i64: | 
|  | SMULLOpc = AArch64::SMULLv2i32_indexed; | 
|  | break; | 
|  | } | 
|  | } else if (IntNo == Intrinsic::aarch64_neon_umull) { | 
|  | switch (N->getSimpleValueType(0).SimpleTy) { | 
|  | default: | 
|  | llvm_unreachable("Unrecognized SMULL."); | 
|  | case MVT::v4i32: | 
|  | SMULLOpc = AArch64::UMULLv4i16_indexed; | 
|  | break; | 
|  | case MVT::v2i64: | 
|  | SMULLOpc = AArch64::UMULLv2i32_indexed; | 
|  | break; | 
|  | } | 
|  | } else | 
|  | llvm_unreachable("Unrecognized intrinsic."); | 
|  |  | 
|  | ReplaceNode(N, CurDAG->getMachineNode(SMULLOpc, dl, N->getValueType(0), Ops)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Instructions that accept extend modifiers like UXTW expect the register | 
|  | /// being extended to be a GPR32, but the incoming DAG might be acting on a | 
|  | /// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if | 
|  | /// this is the case. | 
|  | static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) { | 
|  | if (N.getValueType() == MVT::i32) | 
|  | return N; | 
|  |  | 
|  | SDLoc dl(N); | 
|  | SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32); | 
|  | MachineSDNode *Node = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, | 
|  | dl, MVT::i32, N, SubReg); | 
|  | return SDValue(Node, 0); | 
|  | } | 
|  |  | 
|  | // Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N. | 
|  | template<signed Low, signed High, signed Scale> | 
|  | bool AArch64DAGToDAGISel::SelectRDVLImm(SDValue N, SDValue &Imm) { | 
|  | if (!isa<ConstantSDNode>(N)) | 
|  | return false; | 
|  |  | 
|  | int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue(); | 
|  | if ((MulImm % std::abs(Scale)) == 0) { | 
|  | int64_t RDVLImm = MulImm / Scale; | 
|  | if ((RDVLImm >= Low) && (RDVLImm <= High)) { | 
|  | Imm = CurDAG->getTargetConstant(RDVLImm, SDLoc(N), MVT::i32); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SelectArithExtendedRegister - Select a "extended register" operand.  This | 
|  | /// operand folds in an extend followed by an optional left shift. | 
|  | bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg, | 
|  | SDValue &Shift) { | 
|  | unsigned ShiftVal = 0; | 
|  | AArch64_AM::ShiftExtendType Ext; | 
|  |  | 
|  | if (N.getOpcode() == ISD::SHL) { | 
|  | ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
|  | if (!CSD) | 
|  | return false; | 
|  | ShiftVal = CSD->getZExtValue(); | 
|  | if (ShiftVal > 4) | 
|  | return false; | 
|  |  | 
|  | Ext = getExtendTypeForNode(N.getOperand(0)); | 
|  | if (Ext == AArch64_AM::InvalidShiftExtend) | 
|  | return false; | 
|  |  | 
|  | Reg = N.getOperand(0).getOperand(0); | 
|  | } else { | 
|  | Ext = getExtendTypeForNode(N); | 
|  | if (Ext == AArch64_AM::InvalidShiftExtend) | 
|  | return false; | 
|  |  | 
|  | Reg = N.getOperand(0); | 
|  |  | 
|  | // Don't match if free 32-bit -> 64-bit zext can be used instead. | 
|  | if (Ext == AArch64_AM::UXTW && | 
|  | Reg->getValueType(0).getSizeInBits() == 32 && isDef32(*Reg.getNode())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // AArch64 mandates that the RHS of the operation must use the smallest | 
|  | // register class that could contain the size being extended from.  Thus, | 
|  | // if we're folding a (sext i8), we need the RHS to be a GPR32, even though | 
|  | // there might not be an actual 32-bit value in the program.  We can | 
|  | // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here. | 
|  | assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX); | 
|  | Reg = narrowIfNeeded(CurDAG, Reg); | 
|  | Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N), | 
|  | MVT::i32); | 
|  | return isWorthFolding(N); | 
|  | } | 
|  |  | 
|  | /// If there's a use of this ADDlow that's not itself a load/store then we'll | 
|  | /// need to create a real ADD instruction from it anyway and there's no point in | 
|  | /// folding it into the mem op. Theoretically, it shouldn't matter, but there's | 
|  | /// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding | 
|  | /// leads to duplicated ADRP instructions. | 
|  | static bool isWorthFoldingADDlow(SDValue N) { | 
|  | for (auto Use : N->uses()) { | 
|  | if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE && | 
|  | Use->getOpcode() != ISD::ATOMIC_LOAD && | 
|  | Use->getOpcode() != ISD::ATOMIC_STORE) | 
|  | return false; | 
|  |  | 
|  | // ldar and stlr have much more restrictive addressing modes (just a | 
|  | // register). | 
|  | if (isStrongerThanMonotonic(cast<MemSDNode>(Use)->getOrdering())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SelectAddrModeIndexedBitWidth - Select a "register plus scaled (un)signed BW-bit | 
|  | /// immediate" address.  The "Size" argument is the size in bytes of the memory | 
|  | /// reference, which determines the scale. | 
|  | bool AArch64DAGToDAGISel::SelectAddrModeIndexedBitWidth(SDValue N, bool IsSignedImm, | 
|  | unsigned BW, unsigned Size, | 
|  | SDValue &Base, | 
|  | SDValue &OffImm) { | 
|  | SDLoc dl(N); | 
|  | const DataLayout &DL = CurDAG->getDataLayout(); | 
|  | const TargetLowering *TLI = getTargetLowering(); | 
|  | if (N.getOpcode() == ISD::FrameIndex) { | 
|  | int FI = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); | 
|  | OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // As opposed to the (12-bit) Indexed addressing mode below, the 7/9-bit signed | 
|  | // selected here doesn't support labels/immediates, only base+offset. | 
|  | if (CurDAG->isBaseWithConstantOffset(N)) { | 
|  | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | if (IsSignedImm) { | 
|  | int64_t RHSC = RHS->getSExtValue(); | 
|  | unsigned Scale = Log2_32(Size); | 
|  | int64_t Range = 0x1LL << (BW - 1); | 
|  |  | 
|  | if ((RHSC & (Size - 1)) == 0 && RHSC >= -(Range << Scale) && | 
|  | RHSC < (Range << Scale)) { | 
|  | Base = N.getOperand(0); | 
|  | if (Base.getOpcode() == ISD::FrameIndex) { | 
|  | int FI = cast<FrameIndexSDNode>(Base)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); | 
|  | } | 
|  | OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64); | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | // unsigned Immediate | 
|  | uint64_t RHSC = RHS->getZExtValue(); | 
|  | unsigned Scale = Log2_32(Size); | 
|  | uint64_t Range = 0x1ULL << BW; | 
|  |  | 
|  | if ((RHSC & (Size - 1)) == 0 && RHSC < (Range << Scale)) { | 
|  | Base = N.getOperand(0); | 
|  | if (Base.getOpcode() == ISD::FrameIndex) { | 
|  | int FI = cast<FrameIndexSDNode>(Base)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); | 
|  | } | 
|  | OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // Base only. The address will be materialized into a register before | 
|  | // the memory is accessed. | 
|  | //    add x0, Xbase, #offset | 
|  | //    stp x1, x2, [x0] | 
|  | Base = N; | 
|  | OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit | 
|  | /// immediate" address.  The "Size" argument is the size in bytes of the memory | 
|  | /// reference, which determines the scale. | 
|  | bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size, | 
|  | SDValue &Base, SDValue &OffImm) { | 
|  | SDLoc dl(N); | 
|  | const DataLayout &DL = CurDAG->getDataLayout(); | 
|  | const TargetLowering *TLI = getTargetLowering(); | 
|  | if (N.getOpcode() == ISD::FrameIndex) { | 
|  | int FI = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); | 
|  | OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (N.getOpcode() == AArch64ISD::ADDlow && isWorthFoldingADDlow(N)) { | 
|  | GlobalAddressSDNode *GAN = | 
|  | dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode()); | 
|  | Base = N.getOperand(0); | 
|  | OffImm = N.getOperand(1); | 
|  | if (!GAN) | 
|  | return true; | 
|  |  | 
|  | if (GAN->getOffset() % Size == 0) { | 
|  | const GlobalValue *GV = GAN->getGlobal(); | 
|  | unsigned Alignment = GV->getAlignment(); | 
|  | Type *Ty = GV->getValueType(); | 
|  | if (Alignment == 0 && Ty->isSized()) | 
|  | Alignment = DL.getABITypeAlignment(Ty); | 
|  |  | 
|  | if (Alignment >= Size) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CurDAG->isBaseWithConstantOffset(N)) { | 
|  | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | int64_t RHSC = (int64_t)RHS->getZExtValue(); | 
|  | unsigned Scale = Log2_32(Size); | 
|  | if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) { | 
|  | Base = N.getOperand(0); | 
|  | if (Base.getOpcode() == ISD::FrameIndex) { | 
|  | int FI = cast<FrameIndexSDNode>(Base)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); | 
|  | } | 
|  | OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Before falling back to our general case, check if the unscaled | 
|  | // instructions can handle this. If so, that's preferable. | 
|  | if (SelectAddrModeUnscaled(N, Size, Base, OffImm)) | 
|  | return false; | 
|  |  | 
|  | // Base only. The address will be materialized into a register before | 
|  | // the memory is accessed. | 
|  | //    add x0, Xbase, #offset | 
|  | //    ldr x0, [x0] | 
|  | Base = N; | 
|  | OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit | 
|  | /// immediate" address.  This should only match when there is an offset that | 
|  | /// is not valid for a scaled immediate addressing mode.  The "Size" argument | 
|  | /// is the size in bytes of the memory reference, which is needed here to know | 
|  | /// what is valid for a scaled immediate. | 
|  | bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size, | 
|  | SDValue &Base, | 
|  | SDValue &OffImm) { | 
|  | if (!CurDAG->isBaseWithConstantOffset(N)) | 
|  | return false; | 
|  | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | int64_t RHSC = RHS->getSExtValue(); | 
|  | // If the offset is valid as a scaled immediate, don't match here. | 
|  | if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && | 
|  | RHSC < (0x1000 << Log2_32(Size))) | 
|  | return false; | 
|  | if (RHSC >= -256 && RHSC < 256) { | 
|  | Base = N.getOperand(0); | 
|  | if (Base.getOpcode() == ISD::FrameIndex) { | 
|  | int FI = cast<FrameIndexSDNode>(Base)->getIndex(); | 
|  | const TargetLowering *TLI = getTargetLowering(); | 
|  | Base = CurDAG->getTargetFrameIndex( | 
|  | FI, TLI->getPointerTy(CurDAG->getDataLayout())); | 
|  | } | 
|  | OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i64); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static SDValue Widen(SelectionDAG *CurDAG, SDValue N) { | 
|  | SDLoc dl(N); | 
|  | SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32); | 
|  | SDValue ImpDef = SDValue( | 
|  | CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, MVT::i64), 0); | 
|  | MachineSDNode *Node = CurDAG->getMachineNode( | 
|  | TargetOpcode::INSERT_SUBREG, dl, MVT::i64, ImpDef, N, SubReg); | 
|  | return SDValue(Node, 0); | 
|  | } | 
|  |  | 
|  | /// Check if the given SHL node (\p N), can be used to form an | 
|  | /// extended register for an addressing mode. | 
|  | bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size, | 
|  | bool WantExtend, SDValue &Offset, | 
|  | SDValue &SignExtend) { | 
|  | assert(N.getOpcode() == ISD::SHL && "Invalid opcode."); | 
|  | ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
|  | if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue()) | 
|  | return false; | 
|  |  | 
|  | SDLoc dl(N); | 
|  | if (WantExtend) { | 
|  | AArch64_AM::ShiftExtendType Ext = | 
|  | getExtendTypeForNode(N.getOperand(0), true); | 
|  | if (Ext == AArch64_AM::InvalidShiftExtend) | 
|  | return false; | 
|  |  | 
|  | Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0)); | 
|  | SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl, | 
|  | MVT::i32); | 
|  | } else { | 
|  | Offset = N.getOperand(0); | 
|  | SignExtend = CurDAG->getTargetConstant(0, dl, MVT::i32); | 
|  | } | 
|  |  | 
|  | unsigned LegalShiftVal = Log2_32(Size); | 
|  | unsigned ShiftVal = CSD->getZExtValue(); | 
|  |  | 
|  | if (ShiftVal != 0 && ShiftVal != LegalShiftVal) | 
|  | return false; | 
|  |  | 
|  | return isWorthFolding(N); | 
|  | } | 
|  |  | 
|  | bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size, | 
|  | SDValue &Base, SDValue &Offset, | 
|  | SDValue &SignExtend, | 
|  | SDValue &DoShift) { | 
|  | if (N.getOpcode() != ISD::ADD) | 
|  | return false; | 
|  | SDValue LHS = N.getOperand(0); | 
|  | SDValue RHS = N.getOperand(1); | 
|  | SDLoc dl(N); | 
|  |  | 
|  | // We don't want to match immediate adds here, because they are better lowered | 
|  | // to the register-immediate addressing modes. | 
|  | if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS)) | 
|  | return false; | 
|  |  | 
|  | // Check if this particular node is reused in any non-memory related | 
|  | // operation.  If yes, do not try to fold this node into the address | 
|  | // computation, since the computation will be kept. | 
|  | const SDNode *Node = N.getNode(); | 
|  | for (SDNode *UI : Node->uses()) { | 
|  | if (!isa<MemSDNode>(*UI)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Remember if it is worth folding N when it produces extended register. | 
|  | bool IsExtendedRegisterWorthFolding = isWorthFolding(N); | 
|  |  | 
|  | // Try to match a shifted extend on the RHS. | 
|  | if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL && | 
|  | SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) { | 
|  | Base = LHS; | 
|  | DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Try to match a shifted extend on the LHS. | 
|  | if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL && | 
|  | SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) { | 
|  | Base = RHS; | 
|  | DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // There was no shift, whatever else we find. | 
|  | DoShift = CurDAG->getTargetConstant(false, dl, MVT::i32); | 
|  |  | 
|  | AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend; | 
|  | // Try to match an unshifted extend on the LHS. | 
|  | if (IsExtendedRegisterWorthFolding && | 
|  | (Ext = getExtendTypeForNode(LHS, true)) != | 
|  | AArch64_AM::InvalidShiftExtend) { | 
|  | Base = RHS; | 
|  | Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0)); | 
|  | SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl, | 
|  | MVT::i32); | 
|  | if (isWorthFolding(LHS)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Try to match an unshifted extend on the RHS. | 
|  | if (IsExtendedRegisterWorthFolding && | 
|  | (Ext = getExtendTypeForNode(RHS, true)) != | 
|  | AArch64_AM::InvalidShiftExtend) { | 
|  | Base = LHS; | 
|  | Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0)); | 
|  | SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl, | 
|  | MVT::i32); | 
|  | if (isWorthFolding(RHS)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check if the given immediate is preferred by ADD. If an immediate can be | 
|  | // encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be | 
|  | // encoded by one MOVZ, return true. | 
|  | static bool isPreferredADD(int64_t ImmOff) { | 
|  | // Constant in [0x0, 0xfff] can be encoded in ADD. | 
|  | if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL) | 
|  | return true; | 
|  | // Check if it can be encoded in an "ADD LSL #12". | 
|  | if ((ImmOff & 0xffffffffff000fffLL) == 0x0LL) | 
|  | // As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant. | 
|  | return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL && | 
|  | (ImmOff & 0xffffffffffff0fffLL) != 0x0LL; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size, | 
|  | SDValue &Base, SDValue &Offset, | 
|  | SDValue &SignExtend, | 
|  | SDValue &DoShift) { | 
|  | if (N.getOpcode() != ISD::ADD) | 
|  | return false; | 
|  | SDValue LHS = N.getOperand(0); | 
|  | SDValue RHS = N.getOperand(1); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Check if this particular node is reused in any non-memory related | 
|  | // operation.  If yes, do not try to fold this node into the address | 
|  | // computation, since the computation will be kept. | 
|  | const SDNode *Node = N.getNode(); | 
|  | for (SDNode *UI : Node->uses()) { | 
|  | if (!isa<MemSDNode>(*UI)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Watch out if RHS is a wide immediate, it can not be selected into | 
|  | // [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into | 
|  | // ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate | 
|  | // instructions like: | 
|  | //     MOV  X0, WideImmediate | 
|  | //     ADD  X1, BaseReg, X0 | 
|  | //     LDR  X2, [X1, 0] | 
|  | // For such situation, using [BaseReg, XReg] addressing mode can save one | 
|  | // ADD/SUB: | 
|  | //     MOV  X0, WideImmediate | 
|  | //     LDR  X2, [BaseReg, X0] | 
|  | if (isa<ConstantSDNode>(RHS)) { | 
|  | int64_t ImmOff = (int64_t)cast<ConstantSDNode>(RHS)->getZExtValue(); | 
|  | unsigned Scale = Log2_32(Size); | 
|  | // Skip the immediate can be selected by load/store addressing mode. | 
|  | // Also skip the immediate can be encoded by a single ADD (SUB is also | 
|  | // checked by using -ImmOff). | 
|  | if ((ImmOff % Size == 0 && ImmOff >= 0 && ImmOff < (0x1000 << Scale)) || | 
|  | isPreferredADD(ImmOff) || isPreferredADD(-ImmOff)) | 
|  | return false; | 
|  |  | 
|  | SDValue Ops[] = { RHS }; | 
|  | SDNode *MOVI = | 
|  | CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops); | 
|  | SDValue MOVIV = SDValue(MOVI, 0); | 
|  | // This ADD of two X register will be selected into [Reg+Reg] mode. | 
|  | N = CurDAG->getNode(ISD::ADD, DL, MVT::i64, LHS, MOVIV); | 
|  | } | 
|  |  | 
|  | // Remember if it is worth folding N when it produces extended register. | 
|  | bool IsExtendedRegisterWorthFolding = isWorthFolding(N); | 
|  |  | 
|  | // Try to match a shifted extend on the RHS. | 
|  | if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL && | 
|  | SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) { | 
|  | Base = LHS; | 
|  | DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Try to match a shifted extend on the LHS. | 
|  | if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL && | 
|  | SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) { | 
|  | Base = RHS; | 
|  | DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Match any non-shifted, non-extend, non-immediate add expression. | 
|  | Base = LHS; | 
|  | Offset = RHS; | 
|  | SignExtend = CurDAG->getTargetConstant(false, DL, MVT::i32); | 
|  | DoShift = CurDAG->getTargetConstant(false, DL, MVT::i32); | 
|  | // Reg1 + Reg2 is free: no check needed. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) { | 
|  | static const unsigned RegClassIDs[] = { | 
|  | AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID}; | 
|  | static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1, | 
|  | AArch64::dsub2, AArch64::dsub3}; | 
|  |  | 
|  | return createTuple(Regs, RegClassIDs, SubRegs); | 
|  | } | 
|  |  | 
|  | SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) { | 
|  | static const unsigned RegClassIDs[] = { | 
|  | AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID}; | 
|  | static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1, | 
|  | AArch64::qsub2, AArch64::qsub3}; | 
|  |  | 
|  | return createTuple(Regs, RegClassIDs, SubRegs); | 
|  | } | 
|  |  | 
|  | SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs, | 
|  | const unsigned RegClassIDs[], | 
|  | const unsigned SubRegs[]) { | 
|  | // There's no special register-class for a vector-list of 1 element: it's just | 
|  | // a vector. | 
|  | if (Regs.size() == 1) | 
|  | return Regs[0]; | 
|  |  | 
|  | assert(Regs.size() >= 2 && Regs.size() <= 4); | 
|  |  | 
|  | SDLoc DL(Regs[0]); | 
|  |  | 
|  | SmallVector<SDValue, 4> Ops; | 
|  |  | 
|  | // First operand of REG_SEQUENCE is the desired RegClass. | 
|  | Ops.push_back( | 
|  | CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], DL, MVT::i32)); | 
|  |  | 
|  | // Then we get pairs of source & subregister-position for the components. | 
|  | for (unsigned i = 0; i < Regs.size(); ++i) { | 
|  | Ops.push_back(Regs[i]); | 
|  | Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | SDNode *N = | 
|  | CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops); | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | void AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, | 
|  | bool isExt) { | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | unsigned ExtOff = isExt; | 
|  |  | 
|  | // Form a REG_SEQUENCE to force register allocation. | 
|  | unsigned Vec0Off = ExtOff + 1; | 
|  | SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off, | 
|  | N->op_begin() + Vec0Off + NumVecs); | 
|  | SDValue RegSeq = createQTuple(Regs); | 
|  |  | 
|  | SmallVector<SDValue, 6> Ops; | 
|  | if (isExt) | 
|  | Ops.push_back(N->getOperand(1)); | 
|  | Ops.push_back(RegSeq); | 
|  | Ops.push_back(N->getOperand(NumVecs + ExtOff + 1)); | 
|  | ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops)); | 
|  | } | 
|  |  | 
|  | bool AArch64DAGToDAGISel::tryIndexedLoad(SDNode *N) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N); | 
|  | if (LD->isUnindexed()) | 
|  | return false; | 
|  | EVT VT = LD->getMemoryVT(); | 
|  | EVT DstVT = N->getValueType(0); | 
|  | ISD::MemIndexedMode AM = LD->getAddressingMode(); | 
|  | bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC; | 
|  |  | 
|  | // We're not doing validity checking here. That was done when checking | 
|  | // if we should mark the load as indexed or not. We're just selecting | 
|  | // the right instruction. | 
|  | unsigned Opcode = 0; | 
|  |  | 
|  | ISD::LoadExtType ExtType = LD->getExtensionType(); | 
|  | bool InsertTo64 = false; | 
|  | if (VT == MVT::i64) | 
|  | Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost; | 
|  | else if (VT == MVT::i32) { | 
|  | if (ExtType == ISD::NON_EXTLOAD) | 
|  | Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost; | 
|  | else if (ExtType == ISD::SEXTLOAD) | 
|  | Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost; | 
|  | else { | 
|  | Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost; | 
|  | InsertTo64 = true; | 
|  | // The result of the load is only i32. It's the subreg_to_reg that makes | 
|  | // it into an i64. | 
|  | DstVT = MVT::i32; | 
|  | } | 
|  | } else if (VT == MVT::i16) { | 
|  | if (ExtType == ISD::SEXTLOAD) { | 
|  | if (DstVT == MVT::i64) | 
|  | Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost; | 
|  | else | 
|  | Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost; | 
|  | } else { | 
|  | Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost; | 
|  | InsertTo64 = DstVT == MVT::i64; | 
|  | // The result of the load is only i32. It's the subreg_to_reg that makes | 
|  | // it into an i64. | 
|  | DstVT = MVT::i32; | 
|  | } | 
|  | } else if (VT == MVT::i8) { | 
|  | if (ExtType == ISD::SEXTLOAD) { | 
|  | if (DstVT == MVT::i64) | 
|  | Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost; | 
|  | else | 
|  | Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost; | 
|  | } else { | 
|  | Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost; | 
|  | InsertTo64 = DstVT == MVT::i64; | 
|  | // The result of the load is only i32. It's the subreg_to_reg that makes | 
|  | // it into an i64. | 
|  | DstVT = MVT::i32; | 
|  | } | 
|  | } else if (VT == MVT::f16) { | 
|  | Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost; | 
|  | } else if (VT == MVT::f32) { | 
|  | Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost; | 
|  | } else if (VT == MVT::f64 || VT.is64BitVector()) { | 
|  | Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost; | 
|  | } else if (VT.is128BitVector()) { | 
|  | Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost; | 
|  | } else | 
|  | return false; | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Base = LD->getBasePtr(); | 
|  | ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset()); | 
|  | int OffsetVal = (int)OffsetOp->getZExtValue(); | 
|  | SDLoc dl(N); | 
|  | SDValue Offset = CurDAG->getTargetConstant(OffsetVal, dl, MVT::i64); | 
|  | SDValue Ops[] = { Base, Offset, Chain }; | 
|  | SDNode *Res = CurDAG->getMachineNode(Opcode, dl, MVT::i64, DstVT, | 
|  | MVT::Other, Ops); | 
|  | // Either way, we're replacing the node, so tell the caller that. | 
|  | SDValue LoadedVal = SDValue(Res, 1); | 
|  | if (InsertTo64) { | 
|  | SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32); | 
|  | LoadedVal = | 
|  | SDValue(CurDAG->getMachineNode( | 
|  | AArch64::SUBREG_TO_REG, dl, MVT::i64, | 
|  | CurDAG->getTargetConstant(0, dl, MVT::i64), LoadedVal, | 
|  | SubReg), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | ReplaceUses(SDValue(N, 0), LoadedVal); | 
|  | ReplaceUses(SDValue(N, 1), SDValue(Res, 0)); | 
|  | ReplaceUses(SDValue(N, 2), SDValue(Res, 2)); | 
|  | CurDAG->RemoveDeadNode(N); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc, | 
|  | unsigned SubRegIdx) { | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue Chain = N->getOperand(0); | 
|  |  | 
|  | SDValue Ops[] = {N->getOperand(2), // Mem operand; | 
|  | Chain}; | 
|  |  | 
|  | const EVT ResTys[] = {MVT::Untyped, MVT::Other}; | 
|  |  | 
|  | SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); | 
|  | SDValue SuperReg = SDValue(Ld, 0); | 
|  | for (unsigned i = 0; i < NumVecs; ++i) | 
|  | ReplaceUses(SDValue(N, i), | 
|  | CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg)); | 
|  |  | 
|  | ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1)); | 
|  |  | 
|  | // Transfer memoperands. | 
|  | MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); | 
|  | CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp}); | 
|  |  | 
|  | CurDAG->RemoveDeadNode(N); | 
|  | } | 
|  |  | 
|  | void AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs, | 
|  | unsigned Opc, unsigned SubRegIdx) { | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue Chain = N->getOperand(0); | 
|  |  | 
|  | SDValue Ops[] = {N->getOperand(1), // Mem operand | 
|  | N->getOperand(2), // Incremental | 
|  | Chain}; | 
|  |  | 
|  | const EVT ResTys[] = {MVT::i64, // Type of the write back register | 
|  | MVT::Untyped, MVT::Other}; | 
|  |  | 
|  | SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); | 
|  |  | 
|  | // Update uses of write back register | 
|  | ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0)); | 
|  |  | 
|  | // Update uses of vector list | 
|  | SDValue SuperReg = SDValue(Ld, 1); | 
|  | if (NumVecs == 1) | 
|  | ReplaceUses(SDValue(N, 0), SuperReg); | 
|  | else | 
|  | for (unsigned i = 0; i < NumVecs; ++i) | 
|  | ReplaceUses(SDValue(N, i), | 
|  | CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg)); | 
|  |  | 
|  | // Update the chain | 
|  | ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2)); | 
|  | CurDAG->RemoveDeadNode(N); | 
|  | } | 
|  |  | 
|  | void AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs, | 
|  | unsigned Opc) { | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getOperand(2)->getValueType(0); | 
|  |  | 
|  | // Form a REG_SEQUENCE to force register allocation. | 
|  | bool Is128Bit = VT.getSizeInBits() == 128; | 
|  | SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs); | 
|  | SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs); | 
|  |  | 
|  | SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), N->getOperand(0)}; | 
|  | SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops); | 
|  |  | 
|  | // Transfer memoperands. | 
|  | MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); | 
|  | CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp}); | 
|  |  | 
|  | ReplaceNode(N, St); | 
|  | } | 
|  |  | 
|  | bool AArch64DAGToDAGISel::SelectAddrModeFrameIndexSVE(SDValue N, SDValue &Base, | 
|  | SDValue &OffImm) { | 
|  | SDLoc dl(N); | 
|  | const DataLayout &DL = CurDAG->getDataLayout(); | 
|  | const TargetLowering *TLI = getTargetLowering(); | 
|  |  | 
|  | // Try to match it for the frame address | 
|  | if (auto FINode = dyn_cast<FrameIndexSDNode>(N)) { | 
|  | int FI = FINode->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); | 
|  | OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs, | 
|  | unsigned Opc) { | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getOperand(2)->getValueType(0); | 
|  | const EVT ResTys[] = {MVT::i64,    // Type of the write back register | 
|  | MVT::Other}; // Type for the Chain | 
|  |  | 
|  | // Form a REG_SEQUENCE to force register allocation. | 
|  | bool Is128Bit = VT.getSizeInBits() == 128; | 
|  | SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs); | 
|  | SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs); | 
|  |  | 
|  | SDValue Ops[] = {RegSeq, | 
|  | N->getOperand(NumVecs + 1), // base register | 
|  | N->getOperand(NumVecs + 2), // Incremental | 
|  | N->getOperand(0)};          // Chain | 
|  | SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); | 
|  |  | 
|  | ReplaceNode(N, St); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// WidenVector - Given a value in the V64 register class, produce the | 
|  | /// equivalent value in the V128 register class. | 
|  | class WidenVector { | 
|  | SelectionDAG &DAG; | 
|  |  | 
|  | public: | 
|  | WidenVector(SelectionDAG &DAG) : DAG(DAG) {} | 
|  |  | 
|  | SDValue operator()(SDValue V64Reg) { | 
|  | EVT VT = V64Reg.getValueType(); | 
|  | unsigned NarrowSize = VT.getVectorNumElements(); | 
|  | MVT EltTy = VT.getVectorElementType().getSimpleVT(); | 
|  | MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize); | 
|  | SDLoc DL(V64Reg); | 
|  |  | 
|  | SDValue Undef = | 
|  | SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0); | 
|  | return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg); | 
|  | } | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | /// NarrowVector - Given a value in the V128 register class, produce the | 
|  | /// equivalent value in the V64 register class. | 
|  | static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) { | 
|  | EVT VT = V128Reg.getValueType(); | 
|  | unsigned WideSize = VT.getVectorNumElements(); | 
|  | MVT EltTy = VT.getVectorElementType().getSimpleVT(); | 
|  | MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2); | 
|  |  | 
|  | return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy, | 
|  | V128Reg); | 
|  | } | 
|  |  | 
|  | void AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs, | 
|  | unsigned Opc) { | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | bool Narrow = VT.getSizeInBits() == 64; | 
|  |  | 
|  | // Form a REG_SEQUENCE to force register allocation. | 
|  | SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs); | 
|  |  | 
|  | if (Narrow) | 
|  | transform(Regs, Regs.begin(), | 
|  | WidenVector(*CurDAG)); | 
|  |  | 
|  | SDValue RegSeq = createQTuple(Regs); | 
|  |  | 
|  | const EVT ResTys[] = {MVT::Untyped, MVT::Other}; | 
|  |  | 
|  | unsigned LaneNo = | 
|  | cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue(); | 
|  |  | 
|  | SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64), | 
|  | N->getOperand(NumVecs + 3), N->getOperand(0)}; | 
|  | SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); | 
|  | SDValue SuperReg = SDValue(Ld, 0); | 
|  |  | 
|  | EVT WideVT = RegSeq.getOperand(1)->getValueType(0); | 
|  | static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1, | 
|  | AArch64::qsub2, AArch64::qsub3 }; | 
|  | for (unsigned i = 0; i < NumVecs; ++i) { | 
|  | SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg); | 
|  | if (Narrow) | 
|  | NV = NarrowVector(NV, *CurDAG); | 
|  | ReplaceUses(SDValue(N, i), NV); | 
|  | } | 
|  |  | 
|  | ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1)); | 
|  | CurDAG->RemoveDeadNode(N); | 
|  | } | 
|  |  | 
|  | void AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs, | 
|  | unsigned Opc) { | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | bool Narrow = VT.getSizeInBits() == 64; | 
|  |  | 
|  | // Form a REG_SEQUENCE to force register allocation. | 
|  | SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs); | 
|  |  | 
|  | if (Narrow) | 
|  | transform(Regs, Regs.begin(), | 
|  | WidenVector(*CurDAG)); | 
|  |  | 
|  | SDValue RegSeq = createQTuple(Regs); | 
|  |  | 
|  | const EVT ResTys[] = {MVT::i64, // Type of the write back register | 
|  | RegSeq->getValueType(0), MVT::Other}; | 
|  |  | 
|  | unsigned LaneNo = | 
|  | cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue(); | 
|  |  | 
|  | SDValue Ops[] = {RegSeq, | 
|  | CurDAG->getTargetConstant(LaneNo, dl, | 
|  | MVT::i64),         // Lane Number | 
|  | N->getOperand(NumVecs + 2),                  // Base register | 
|  | N->getOperand(NumVecs + 3),                  // Incremental | 
|  | N->getOperand(0)}; | 
|  | SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); | 
|  |  | 
|  | // Update uses of the write back register | 
|  | ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0)); | 
|  |  | 
|  | // Update uses of the vector list | 
|  | SDValue SuperReg = SDValue(Ld, 1); | 
|  | if (NumVecs == 1) { | 
|  | ReplaceUses(SDValue(N, 0), | 
|  | Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg); | 
|  | } else { | 
|  | EVT WideVT = RegSeq.getOperand(1)->getValueType(0); | 
|  | static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1, | 
|  | AArch64::qsub2, AArch64::qsub3 }; | 
|  | for (unsigned i = 0; i < NumVecs; ++i) { | 
|  | SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, | 
|  | SuperReg); | 
|  | if (Narrow) | 
|  | NV = NarrowVector(NV, *CurDAG); | 
|  | ReplaceUses(SDValue(N, i), NV); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update the Chain | 
|  | ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2)); | 
|  | CurDAG->RemoveDeadNode(N); | 
|  | } | 
|  |  | 
|  | void AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs, | 
|  | unsigned Opc) { | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getOperand(2)->getValueType(0); | 
|  | bool Narrow = VT.getSizeInBits() == 64; | 
|  |  | 
|  | // Form a REG_SEQUENCE to force register allocation. | 
|  | SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs); | 
|  |  | 
|  | if (Narrow) | 
|  | transform(Regs, Regs.begin(), | 
|  | WidenVector(*CurDAG)); | 
|  |  | 
|  | SDValue RegSeq = createQTuple(Regs); | 
|  |  | 
|  | unsigned LaneNo = | 
|  | cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue(); | 
|  |  | 
|  | SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64), | 
|  | N->getOperand(NumVecs + 3), N->getOperand(0)}; | 
|  | SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops); | 
|  |  | 
|  | // Transfer memoperands. | 
|  | MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); | 
|  | CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp}); | 
|  |  | 
|  | ReplaceNode(N, St); | 
|  | } | 
|  |  | 
|  | void AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs, | 
|  | unsigned Opc) { | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getOperand(2)->getValueType(0); | 
|  | bool Narrow = VT.getSizeInBits() == 64; | 
|  |  | 
|  | // Form a REG_SEQUENCE to force register allocation. | 
|  | SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs); | 
|  |  | 
|  | if (Narrow) | 
|  | transform(Regs, Regs.begin(), | 
|  | WidenVector(*CurDAG)); | 
|  |  | 
|  | SDValue RegSeq = createQTuple(Regs); | 
|  |  | 
|  | const EVT ResTys[] = {MVT::i64, // Type of the write back register | 
|  | MVT::Other}; | 
|  |  | 
|  | unsigned LaneNo = | 
|  | cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue(); | 
|  |  | 
|  | SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64), | 
|  | N->getOperand(NumVecs + 2), // Base Register | 
|  | N->getOperand(NumVecs + 3), // Incremental | 
|  | N->getOperand(0)}; | 
|  | SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); | 
|  |  | 
|  | // Transfer memoperands. | 
|  | MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); | 
|  | CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp}); | 
|  |  | 
|  | ReplaceNode(N, St); | 
|  | } | 
|  |  | 
|  | static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N, | 
|  | unsigned &Opc, SDValue &Opd0, | 
|  | unsigned &LSB, unsigned &MSB, | 
|  | unsigned NumberOfIgnoredLowBits, | 
|  | bool BiggerPattern) { | 
|  | assert(N->getOpcode() == ISD::AND && | 
|  | "N must be a AND operation to call this function"); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Here we can test the type of VT and return false when the type does not | 
|  | // match, but since it is done prior to that call in the current context | 
|  | // we turned that into an assert to avoid redundant code. | 
|  | assert((VT == MVT::i32 || VT == MVT::i64) && | 
|  | "Type checking must have been done before calling this function"); | 
|  |  | 
|  | // FIXME: simplify-demanded-bits in DAGCombine will probably have | 
|  | // changed the AND node to a 32-bit mask operation. We'll have to | 
|  | // undo that as part of the transform here if we want to catch all | 
|  | // the opportunities. | 
|  | // Currently the NumberOfIgnoredLowBits argument helps to recover | 
|  | // form these situations when matching bigger pattern (bitfield insert). | 
|  |  | 
|  | // For unsigned extracts, check for a shift right and mask | 
|  | uint64_t AndImm = 0; | 
|  | if (!isOpcWithIntImmediate(N, ISD::AND, AndImm)) | 
|  | return false; | 
|  |  | 
|  | const SDNode *Op0 = N->getOperand(0).getNode(); | 
|  |  | 
|  | // Because of simplify-demanded-bits in DAGCombine, the mask may have been | 
|  | // simplified. Try to undo that | 
|  | AndImm |= maskTrailingOnes<uint64_t>(NumberOfIgnoredLowBits); | 
|  |  | 
|  | // The immediate is a mask of the low bits iff imm & (imm+1) == 0 | 
|  | if (AndImm & (AndImm + 1)) | 
|  | return false; | 
|  |  | 
|  | bool ClampMSB = false; | 
|  | uint64_t SrlImm = 0; | 
|  | // Handle the SRL + ANY_EXTEND case. | 
|  | if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND && | 
|  | isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, SrlImm)) { | 
|  | // Extend the incoming operand of the SRL to 64-bit. | 
|  | Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0)); | 
|  | // Make sure to clamp the MSB so that we preserve the semantics of the | 
|  | // original operations. | 
|  | ClampMSB = true; | 
|  | } else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE && | 
|  | isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, | 
|  | SrlImm)) { | 
|  | // If the shift result was truncated, we can still combine them. | 
|  | Opd0 = Op0->getOperand(0).getOperand(0); | 
|  |  | 
|  | // Use the type of SRL node. | 
|  | VT = Opd0->getValueType(0); | 
|  | } else if (isOpcWithIntImmediate(Op0, ISD::SRL, SrlImm)) { | 
|  | Opd0 = Op0->getOperand(0); | 
|  | } else if (BiggerPattern) { | 
|  | // Let's pretend a 0 shift right has been performed. | 
|  | // The resulting code will be at least as good as the original one | 
|  | // plus it may expose more opportunities for bitfield insert pattern. | 
|  | // FIXME: Currently we limit this to the bigger pattern, because | 
|  | // some optimizations expect AND and not UBFM. | 
|  | Opd0 = N->getOperand(0); | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | // Bail out on large immediates. This happens when no proper | 
|  | // combining/constant folding was performed. | 
|  | if (!BiggerPattern && (SrlImm <= 0 || SrlImm >= VT.getSizeInBits())) { | 
|  | LLVM_DEBUG( | 
|  | (dbgs() << N | 
|  | << ": Found large shift immediate, this should not happen\n")); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LSB = SrlImm; | 
|  | MSB = SrlImm + (VT == MVT::i32 ? countTrailingOnes<uint32_t>(AndImm) | 
|  | : countTrailingOnes<uint64_t>(AndImm)) - | 
|  | 1; | 
|  | if (ClampMSB) | 
|  | // Since we're moving the extend before the right shift operation, we need | 
|  | // to clamp the MSB to make sure we don't shift in undefined bits instead of | 
|  | // the zeros which would get shifted in with the original right shift | 
|  | // operation. | 
|  | MSB = MSB > 31 ? 31 : MSB; | 
|  |  | 
|  | Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isBitfieldExtractOpFromSExtInReg(SDNode *N, unsigned &Opc, | 
|  | SDValue &Opd0, unsigned &Immr, | 
|  | unsigned &Imms) { | 
|  | assert(N->getOpcode() == ISD::SIGN_EXTEND_INREG); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | unsigned BitWidth = VT.getSizeInBits(); | 
|  | assert((VT == MVT::i32 || VT == MVT::i64) && | 
|  | "Type checking must have been done before calling this function"); | 
|  |  | 
|  | SDValue Op = N->getOperand(0); | 
|  | if (Op->getOpcode() == ISD::TRUNCATE) { | 
|  | Op = Op->getOperand(0); | 
|  | VT = Op->getValueType(0); | 
|  | BitWidth = VT.getSizeInBits(); | 
|  | } | 
|  |  | 
|  | uint64_t ShiftImm; | 
|  | if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRL, ShiftImm) && | 
|  | !isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm)) | 
|  | return false; | 
|  |  | 
|  | unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); | 
|  | if (ShiftImm + Width > BitWidth) | 
|  | return false; | 
|  |  | 
|  | Opc = (VT == MVT::i32) ? AArch64::SBFMWri : AArch64::SBFMXri; | 
|  | Opd0 = Op.getOperand(0); | 
|  | Immr = ShiftImm; | 
|  | Imms = ShiftImm + Width - 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isSeveralBitsExtractOpFromShr(SDNode *N, unsigned &Opc, | 
|  | SDValue &Opd0, unsigned &LSB, | 
|  | unsigned &MSB) { | 
|  | // We are looking for the following pattern which basically extracts several | 
|  | // continuous bits from the source value and places it from the LSB of the | 
|  | // destination value, all other bits of the destination value or set to zero: | 
|  | // | 
|  | // Value2 = AND Value, MaskImm | 
|  | // SRL Value2, ShiftImm | 
|  | // | 
|  | // with MaskImm >> ShiftImm to search for the bit width. | 
|  | // | 
|  | // This gets selected into a single UBFM: | 
|  | // | 
|  | // UBFM Value, ShiftImm, BitWide + SrlImm -1 | 
|  | // | 
|  |  | 
|  | if (N->getOpcode() != ISD::SRL) | 
|  | return false; | 
|  |  | 
|  | uint64_t AndMask = 0; | 
|  | if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, AndMask)) | 
|  | return false; | 
|  |  | 
|  | Opd0 = N->getOperand(0).getOperand(0); | 
|  |  | 
|  | uint64_t SrlImm = 0; | 
|  | if (!isIntImmediate(N->getOperand(1), SrlImm)) | 
|  | return false; | 
|  |  | 
|  | // Check whether we really have several bits extract here. | 
|  | unsigned BitWide = 64 - countLeadingOnes(~(AndMask >> SrlImm)); | 
|  | if (BitWide && isMask_64(AndMask >> SrlImm)) { | 
|  | if (N->getValueType(0) == MVT::i32) | 
|  | Opc = AArch64::UBFMWri; | 
|  | else | 
|  | Opc = AArch64::UBFMXri; | 
|  |  | 
|  | LSB = SrlImm; | 
|  | MSB = BitWide + SrlImm - 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0, | 
|  | unsigned &Immr, unsigned &Imms, | 
|  | bool BiggerPattern) { | 
|  | assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && | 
|  | "N must be a SHR/SRA operation to call this function"); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Here we can test the type of VT and return false when the type does not | 
|  | // match, but since it is done prior to that call in the current context | 
|  | // we turned that into an assert to avoid redundant code. | 
|  | assert((VT == MVT::i32 || VT == MVT::i64) && | 
|  | "Type checking must have been done before calling this function"); | 
|  |  | 
|  | // Check for AND + SRL doing several bits extract. | 
|  | if (isSeveralBitsExtractOpFromShr(N, Opc, Opd0, Immr, Imms)) | 
|  | return true; | 
|  |  | 
|  | // We're looking for a shift of a shift. | 
|  | uint64_t ShlImm = 0; | 
|  | uint64_t TruncBits = 0; | 
|  | if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, ShlImm)) { | 
|  | Opd0 = N->getOperand(0).getOperand(0); | 
|  | } else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL && | 
|  | N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) { | 
|  | // We are looking for a shift of truncate. Truncate from i64 to i32 could | 
|  | // be considered as setting high 32 bits as zero. Our strategy here is to | 
|  | // always generate 64bit UBFM. This consistency will help the CSE pass | 
|  | // later find more redundancy. | 
|  | Opd0 = N->getOperand(0).getOperand(0); | 
|  | TruncBits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits(); | 
|  | VT = Opd0.getValueType(); | 
|  | assert(VT == MVT::i64 && "the promoted type should be i64"); | 
|  | } else if (BiggerPattern) { | 
|  | // Let's pretend a 0 shift left has been performed. | 
|  | // FIXME: Currently we limit this to the bigger pattern case, | 
|  | // because some optimizations expect AND and not UBFM | 
|  | Opd0 = N->getOperand(0); | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | // Missing combines/constant folding may have left us with strange | 
|  | // constants. | 
|  | if (ShlImm >= VT.getSizeInBits()) { | 
|  | LLVM_DEBUG( | 
|  | (dbgs() << N | 
|  | << ": Found large shift immediate, this should not happen\n")); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t SrlImm = 0; | 
|  | if (!isIntImmediate(N->getOperand(1), SrlImm)) | 
|  | return false; | 
|  |  | 
|  | assert(SrlImm > 0 && SrlImm < VT.getSizeInBits() && | 
|  | "bad amount in shift node!"); | 
|  | int immr = SrlImm - ShlImm; | 
|  | Immr = immr < 0 ? immr + VT.getSizeInBits() : immr; | 
|  | Imms = VT.getSizeInBits() - ShlImm - TruncBits - 1; | 
|  | // SRA requires a signed extraction | 
|  | if (VT == MVT::i32) | 
|  | Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri; | 
|  | else | 
|  | Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AArch64DAGToDAGISel::tryBitfieldExtractOpFromSExt(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::SIGN_EXTEND); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT NarrowVT = N->getOperand(0)->getValueType(0); | 
|  | if (VT != MVT::i64 || NarrowVT != MVT::i32) | 
|  | return false; | 
|  |  | 
|  | uint64_t ShiftImm; | 
|  | SDValue Op = N->getOperand(0); | 
|  | if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm)) | 
|  | return false; | 
|  |  | 
|  | SDLoc dl(N); | 
|  | // Extend the incoming operand of the shift to 64-bits. | 
|  | SDValue Opd0 = Widen(CurDAG, Op.getOperand(0)); | 
|  | unsigned Immr = ShiftImm; | 
|  | unsigned Imms = NarrowVT.getSizeInBits() - 1; | 
|  | SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT), | 
|  | CurDAG->getTargetConstant(Imms, dl, VT)}; | 
|  | CurDAG->SelectNodeTo(N, AArch64::SBFMXri, VT, Ops); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Try to form fcvtl2 instructions from a floating-point extend of a high-half | 
|  | /// extract of a subvector. | 
|  | bool AArch64DAGToDAGISel::tryHighFPExt(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::FP_EXTEND); | 
|  |  | 
|  | // There are 2 forms of fcvtl2 - extend to double or extend to float. | 
|  | SDValue Extract = N->getOperand(0); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT NarrowVT = Extract.getValueType(); | 
|  | if ((VT != MVT::v2f64 || NarrowVT != MVT::v2f32) && | 
|  | (VT != MVT::v4f32 || NarrowVT != MVT::v4f16)) | 
|  | return false; | 
|  |  | 
|  | // Optionally look past a bitcast. | 
|  | Extract = peekThroughBitcasts(Extract); | 
|  | if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) | 
|  | return false; | 
|  |  | 
|  | // Match extract from start of high half index. | 
|  | // Example: v8i16 -> v4i16 means the extract must begin at index 4. | 
|  | unsigned ExtractIndex = Extract.getConstantOperandVal(1); | 
|  | if (ExtractIndex != Extract.getValueType().getVectorNumElements()) | 
|  | return false; | 
|  |  | 
|  | auto Opcode = VT == MVT::v2f64 ? AArch64::FCVTLv4i32 : AArch64::FCVTLv8i16; | 
|  | CurDAG->SelectNodeTo(N, Opcode, VT, Extract.getOperand(0)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc, | 
|  | SDValue &Opd0, unsigned &Immr, unsigned &Imms, | 
|  | unsigned NumberOfIgnoredLowBits = 0, | 
|  | bool BiggerPattern = false) { | 
|  | if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64) | 
|  | return false; | 
|  |  | 
|  | switch (N->getOpcode()) { | 
|  | default: | 
|  | if (!N->isMachineOpcode()) | 
|  | return false; | 
|  | break; | 
|  | case ISD::AND: | 
|  | return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, Immr, Imms, | 
|  | NumberOfIgnoredLowBits, BiggerPattern); | 
|  | case ISD::SRL: | 
|  | case ISD::SRA: | 
|  | return isBitfieldExtractOpFromShr(N, Opc, Opd0, Immr, Imms, BiggerPattern); | 
|  |  | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | return isBitfieldExtractOpFromSExtInReg(N, Opc, Opd0, Immr, Imms); | 
|  | } | 
|  |  | 
|  | unsigned NOpc = N->getMachineOpcode(); | 
|  | switch (NOpc) { | 
|  | default: | 
|  | return false; | 
|  | case AArch64::SBFMWri: | 
|  | case AArch64::UBFMWri: | 
|  | case AArch64::SBFMXri: | 
|  | case AArch64::UBFMXri: | 
|  | Opc = NOpc; | 
|  | Opd0 = N->getOperand(0); | 
|  | Immr = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue(); | 
|  | Imms = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue(); | 
|  | return true; | 
|  | } | 
|  | // Unreachable | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AArch64DAGToDAGISel::tryBitfieldExtractOp(SDNode *N) { | 
|  | unsigned Opc, Immr, Imms; | 
|  | SDValue Opd0; | 
|  | if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, Immr, Imms)) | 
|  | return false; | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc dl(N); | 
|  |  | 
|  | // If the bit extract operation is 64bit but the original type is 32bit, we | 
|  | // need to add one EXTRACT_SUBREG. | 
|  | if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) { | 
|  | SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, MVT::i64), | 
|  | CurDAG->getTargetConstant(Imms, dl, MVT::i64)}; | 
|  |  | 
|  | SDNode *BFM = CurDAG->getMachineNode(Opc, dl, MVT::i64, Ops64); | 
|  | SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32); | 
|  | ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, | 
|  | MVT::i32, SDValue(BFM, 0), SubReg)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT), | 
|  | CurDAG->getTargetConstant(Imms, dl, VT)}; | 
|  | CurDAG->SelectNodeTo(N, Opc, VT, Ops); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Does DstMask form a complementary pair with the mask provided by | 
|  | /// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking, | 
|  | /// this asks whether DstMask zeroes precisely those bits that will be set by | 
|  | /// the other half. | 
|  | static bool isBitfieldDstMask(uint64_t DstMask, const APInt &BitsToBeInserted, | 
|  | unsigned NumberOfIgnoredHighBits, EVT VT) { | 
|  | assert((VT == MVT::i32 || VT == MVT::i64) && | 
|  | "i32 or i64 mask type expected!"); | 
|  | unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits; | 
|  |  | 
|  | APInt SignificantDstMask = APInt(BitWidth, DstMask); | 
|  | APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth); | 
|  |  | 
|  | return (SignificantDstMask & SignificantBitsToBeInserted) == 0 && | 
|  | (SignificantDstMask | SignificantBitsToBeInserted).isAllOnesValue(); | 
|  | } | 
|  |  | 
|  | // Look for bits that will be useful for later uses. | 
|  | // A bit is consider useless as soon as it is dropped and never used | 
|  | // before it as been dropped. | 
|  | // E.g., looking for useful bit of x | 
|  | // 1. y = x & 0x7 | 
|  | // 2. z = y >> 2 | 
|  | // After #1, x useful bits are 0x7, then the useful bits of x, live through | 
|  | // y. | 
|  | // After #2, the useful bits of x are 0x4. | 
|  | // However, if x is used on an unpredicatable instruction, then all its bits | 
|  | // are useful. | 
|  | // E.g. | 
|  | // 1. y = x & 0x7 | 
|  | // 2. z = y >> 2 | 
|  | // 3. str x, [@x] | 
|  | static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0); | 
|  |  | 
|  | static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits, | 
|  | unsigned Depth) { | 
|  | uint64_t Imm = | 
|  | cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue(); | 
|  | Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth()); | 
|  | UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm); | 
|  | getUsefulBits(Op, UsefulBits, Depth + 1); | 
|  | } | 
|  |  | 
|  | static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits, | 
|  | uint64_t Imm, uint64_t MSB, | 
|  | unsigned Depth) { | 
|  | // inherit the bitwidth value | 
|  | APInt OpUsefulBits(UsefulBits); | 
|  | OpUsefulBits = 1; | 
|  |  | 
|  | if (MSB >= Imm) { | 
|  | OpUsefulBits <<= MSB - Imm + 1; | 
|  | --OpUsefulBits; | 
|  | // The interesting part will be in the lower part of the result | 
|  | getUsefulBits(Op, OpUsefulBits, Depth + 1); | 
|  | // The interesting part was starting at Imm in the argument | 
|  | OpUsefulBits <<= Imm; | 
|  | } else { | 
|  | OpUsefulBits <<= MSB + 1; | 
|  | --OpUsefulBits; | 
|  | // The interesting part will be shifted in the result | 
|  | OpUsefulBits <<= OpUsefulBits.getBitWidth() - Imm; | 
|  | getUsefulBits(Op, OpUsefulBits, Depth + 1); | 
|  | // The interesting part was at zero in the argument | 
|  | OpUsefulBits.lshrInPlace(OpUsefulBits.getBitWidth() - Imm); | 
|  | } | 
|  |  | 
|  | UsefulBits &= OpUsefulBits; | 
|  | } | 
|  |  | 
|  | static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits, | 
|  | unsigned Depth) { | 
|  | uint64_t Imm = | 
|  | cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue(); | 
|  | uint64_t MSB = | 
|  | cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); | 
|  |  | 
|  | getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth); | 
|  | } | 
|  |  | 
|  | static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits, | 
|  | unsigned Depth) { | 
|  | uint64_t ShiftTypeAndValue = | 
|  | cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); | 
|  | APInt Mask(UsefulBits); | 
|  | Mask.clearAllBits(); | 
|  | Mask.flipAllBits(); | 
|  |  | 
|  | if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) { | 
|  | // Shift Left | 
|  | uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue); | 
|  | Mask <<= ShiftAmt; | 
|  | getUsefulBits(Op, Mask, Depth + 1); | 
|  | Mask.lshrInPlace(ShiftAmt); | 
|  | } else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) { | 
|  | // Shift Right | 
|  | // We do not handle AArch64_AM::ASR, because the sign will change the | 
|  | // number of useful bits | 
|  | uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue); | 
|  | Mask.lshrInPlace(ShiftAmt); | 
|  | getUsefulBits(Op, Mask, Depth + 1); | 
|  | Mask <<= ShiftAmt; | 
|  | } else | 
|  | return; | 
|  |  | 
|  | UsefulBits &= Mask; | 
|  | } | 
|  |  | 
|  | static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits, | 
|  | unsigned Depth) { | 
|  | uint64_t Imm = | 
|  | cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); | 
|  | uint64_t MSB = | 
|  | cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue(); | 
|  |  | 
|  | APInt OpUsefulBits(UsefulBits); | 
|  | OpUsefulBits = 1; | 
|  |  | 
|  | APInt ResultUsefulBits(UsefulBits.getBitWidth(), 0); | 
|  | ResultUsefulBits.flipAllBits(); | 
|  | APInt Mask(UsefulBits.getBitWidth(), 0); | 
|  |  | 
|  | getUsefulBits(Op, ResultUsefulBits, Depth + 1); | 
|  |  | 
|  | if (MSB >= Imm) { | 
|  | // The instruction is a BFXIL. | 
|  | uint64_t Width = MSB - Imm + 1; | 
|  | uint64_t LSB = Imm; | 
|  |  | 
|  | OpUsefulBits <<= Width; | 
|  | --OpUsefulBits; | 
|  |  | 
|  | if (Op.getOperand(1) == Orig) { | 
|  | // Copy the low bits from the result to bits starting from LSB. | 
|  | Mask = ResultUsefulBits & OpUsefulBits; | 
|  | Mask <<= LSB; | 
|  | } | 
|  |  | 
|  | if (Op.getOperand(0) == Orig) | 
|  | // Bits starting from LSB in the input contribute to the result. | 
|  | Mask |= (ResultUsefulBits & ~OpUsefulBits); | 
|  | } else { | 
|  | // The instruction is a BFI. | 
|  | uint64_t Width = MSB + 1; | 
|  | uint64_t LSB = UsefulBits.getBitWidth() - Imm; | 
|  |  | 
|  | OpUsefulBits <<= Width; | 
|  | --OpUsefulBits; | 
|  | OpUsefulBits <<= LSB; | 
|  |  | 
|  | if (Op.getOperand(1) == Orig) { | 
|  | // Copy the bits from the result to the zero bits. | 
|  | Mask = ResultUsefulBits & OpUsefulBits; | 
|  | Mask.lshrInPlace(LSB); | 
|  | } | 
|  |  | 
|  | if (Op.getOperand(0) == Orig) | 
|  | Mask |= (ResultUsefulBits & ~OpUsefulBits); | 
|  | } | 
|  |  | 
|  | UsefulBits &= Mask; | 
|  | } | 
|  |  | 
|  | static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits, | 
|  | SDValue Orig, unsigned Depth) { | 
|  |  | 
|  | // Users of this node should have already been instruction selected | 
|  | // FIXME: Can we turn that into an assert? | 
|  | if (!UserNode->isMachineOpcode()) | 
|  | return; | 
|  |  | 
|  | switch (UserNode->getMachineOpcode()) { | 
|  | default: | 
|  | return; | 
|  | case AArch64::ANDSWri: | 
|  | case AArch64::ANDSXri: | 
|  | case AArch64::ANDWri: | 
|  | case AArch64::ANDXri: | 
|  | // We increment Depth only when we call the getUsefulBits | 
|  | return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits, | 
|  | Depth); | 
|  | case AArch64::UBFMWri: | 
|  | case AArch64::UBFMXri: | 
|  | return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth); | 
|  |  | 
|  | case AArch64::ORRWrs: | 
|  | case AArch64::ORRXrs: | 
|  | if (UserNode->getOperand(1) != Orig) | 
|  | return; | 
|  | return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits, | 
|  | Depth); | 
|  | case AArch64::BFMWri: | 
|  | case AArch64::BFMXri: | 
|  | return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth); | 
|  |  | 
|  | case AArch64::STRBBui: | 
|  | case AArch64::STURBBi: | 
|  | if (UserNode->getOperand(0) != Orig) | 
|  | return; | 
|  | UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xff); | 
|  | return; | 
|  |  | 
|  | case AArch64::STRHHui: | 
|  | case AArch64::STURHHi: | 
|  | if (UserNode->getOperand(0) != Orig) | 
|  | return; | 
|  | UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xffff); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) { | 
|  | if (Depth >= SelectionDAG::MaxRecursionDepth) | 
|  | return; | 
|  | // Initialize UsefulBits | 
|  | if (!Depth) { | 
|  | unsigned Bitwidth = Op.getScalarValueSizeInBits(); | 
|  | // At the beginning, assume every produced bits is useful | 
|  | UsefulBits = APInt(Bitwidth, 0); | 
|  | UsefulBits.flipAllBits(); | 
|  | } | 
|  | APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0); | 
|  |  | 
|  | for (SDNode *Node : Op.getNode()->uses()) { | 
|  | // A use cannot produce useful bits | 
|  | APInt UsefulBitsForUse = APInt(UsefulBits); | 
|  | getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth); | 
|  | UsersUsefulBits |= UsefulBitsForUse; | 
|  | } | 
|  | // UsefulBits contains the produced bits that are meaningful for the | 
|  | // current definition, thus a user cannot make a bit meaningful at | 
|  | // this point | 
|  | UsefulBits &= UsersUsefulBits; | 
|  | } | 
|  |  | 
|  | /// Create a machine node performing a notional SHL of Op by ShlAmount. If | 
|  | /// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is | 
|  | /// 0, return Op unchanged. | 
|  | static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) { | 
|  | if (ShlAmount == 0) | 
|  | return Op; | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc dl(Op); | 
|  | unsigned BitWidth = VT.getSizeInBits(); | 
|  | unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri; | 
|  |  | 
|  | SDNode *ShiftNode; | 
|  | if (ShlAmount > 0) { | 
|  | // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt | 
|  | ShiftNode = CurDAG->getMachineNode( | 
|  | UBFMOpc, dl, VT, Op, | 
|  | CurDAG->getTargetConstant(BitWidth - ShlAmount, dl, VT), | 
|  | CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, dl, VT)); | 
|  | } else { | 
|  | // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1 | 
|  | assert(ShlAmount < 0 && "expected right shift"); | 
|  | int ShrAmount = -ShlAmount; | 
|  | ShiftNode = CurDAG->getMachineNode( | 
|  | UBFMOpc, dl, VT, Op, CurDAG->getTargetConstant(ShrAmount, dl, VT), | 
|  | CurDAG->getTargetConstant(BitWidth - 1, dl, VT)); | 
|  | } | 
|  |  | 
|  | return SDValue(ShiftNode, 0); | 
|  | } | 
|  |  | 
|  | /// Does this tree qualify as an attempt to move a bitfield into position, | 
|  | /// essentially "(and (shl VAL, N), Mask)". | 
|  | static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op, | 
|  | bool BiggerPattern, | 
|  | SDValue &Src, int &ShiftAmount, | 
|  | int &MaskWidth) { | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned BitWidth = VT.getSizeInBits(); | 
|  | (void)BitWidth; | 
|  | assert(BitWidth == 32 || BitWidth == 64); | 
|  |  | 
|  | KnownBits Known = CurDAG->computeKnownBits(Op); | 
|  |  | 
|  | // Non-zero in the sense that they're not provably zero, which is the key | 
|  | // point if we want to use this value | 
|  | uint64_t NonZeroBits = (~Known.Zero).getZExtValue(); | 
|  |  | 
|  | // Discard a constant AND mask if present. It's safe because the node will | 
|  | // already have been factored into the computeKnownBits calculation above. | 
|  | uint64_t AndImm; | 
|  | if (isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm)) { | 
|  | assert((~APInt(BitWidth, AndImm) & ~Known.Zero) == 0); | 
|  | Op = Op.getOperand(0); | 
|  | } | 
|  |  | 
|  | // Don't match if the SHL has more than one use, since then we'll end up | 
|  | // generating SHL+UBFIZ instead of just keeping SHL+AND. | 
|  | if (!BiggerPattern && !Op.hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | uint64_t ShlImm; | 
|  | if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm)) | 
|  | return false; | 
|  | Op = Op.getOperand(0); | 
|  |  | 
|  | if (!isShiftedMask_64(NonZeroBits)) | 
|  | return false; | 
|  |  | 
|  | ShiftAmount = countTrailingZeros(NonZeroBits); | 
|  | MaskWidth = countTrailingOnes(NonZeroBits >> ShiftAmount); | 
|  |  | 
|  | // BFI encompasses sufficiently many nodes that it's worth inserting an extra | 
|  | // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL | 
|  | // amount.  BiggerPattern is true when this pattern is being matched for BFI, | 
|  | // BiggerPattern is false when this pattern is being matched for UBFIZ, in | 
|  | // which case it is not profitable to insert an extra shift. | 
|  | if (ShlImm - ShiftAmount != 0 && !BiggerPattern) | 
|  | return false; | 
|  | Src = getLeftShift(CurDAG, Op, ShlImm - ShiftAmount); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isShiftedMask(uint64_t Mask, EVT VT) { | 
|  | assert(VT == MVT::i32 || VT == MVT::i64); | 
|  | if (VT == MVT::i32) | 
|  | return isShiftedMask_32(Mask); | 
|  | return isShiftedMask_64(Mask); | 
|  | } | 
|  |  | 
|  | // Generate a BFI/BFXIL from 'or (and X, MaskImm), OrImm' iff the value being | 
|  | // inserted only sets known zero bits. | 
|  | static bool tryBitfieldInsertOpFromOrAndImm(SDNode *N, SelectionDAG *CurDAG) { | 
|  | assert(N->getOpcode() == ISD::OR && "Expect a OR operation"); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i32 && VT != MVT::i64) | 
|  | return false; | 
|  |  | 
|  | unsigned BitWidth = VT.getSizeInBits(); | 
|  |  | 
|  | uint64_t OrImm; | 
|  | if (!isOpcWithIntImmediate(N, ISD::OR, OrImm)) | 
|  | return false; | 
|  |  | 
|  | // Skip this transformation if the ORR immediate can be encoded in the ORR. | 
|  | // Otherwise, we'll trade an AND+ORR for ORR+BFI/BFXIL, which is most likely | 
|  | // performance neutral. | 
|  | if (AArch64_AM::isLogicalImmediate(OrImm, BitWidth)) | 
|  | return false; | 
|  |  | 
|  | uint64_t MaskImm; | 
|  | SDValue And = N->getOperand(0); | 
|  | // Must be a single use AND with an immediate operand. | 
|  | if (!And.hasOneUse() || | 
|  | !isOpcWithIntImmediate(And.getNode(), ISD::AND, MaskImm)) | 
|  | return false; | 
|  |  | 
|  | // Compute the Known Zero for the AND as this allows us to catch more general | 
|  | // cases than just looking for AND with imm. | 
|  | KnownBits Known = CurDAG->computeKnownBits(And); | 
|  |  | 
|  | // Non-zero in the sense that they're not provably zero, which is the key | 
|  | // point if we want to use this value. | 
|  | uint64_t NotKnownZero = (~Known.Zero).getZExtValue(); | 
|  |  | 
|  | // The KnownZero mask must be a shifted mask (e.g., 1110..011, 11100..00). | 
|  | if (!isShiftedMask(Known.Zero.getZExtValue(), VT)) | 
|  | return false; | 
|  |  | 
|  | // The bits being inserted must only set those bits that are known to be zero. | 
|  | if ((OrImm & NotKnownZero) != 0) { | 
|  | // FIXME:  It's okay if the OrImm sets NotKnownZero bits to 1, but we don't | 
|  | // currently handle this case. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // BFI/BFXIL dst, src, #lsb, #width. | 
|  | int LSB = countTrailingOnes(NotKnownZero); | 
|  | int Width = BitWidth - APInt(BitWidth, NotKnownZero).countPopulation(); | 
|  |  | 
|  | // BFI/BFXIL is an alias of BFM, so translate to BFM operands. | 
|  | unsigned ImmR = (BitWidth - LSB) % BitWidth; | 
|  | unsigned ImmS = Width - 1; | 
|  |  | 
|  | // If we're creating a BFI instruction avoid cases where we need more | 
|  | // instructions to materialize the BFI constant as compared to the original | 
|  | // ORR.  A BFXIL will use the same constant as the original ORR, so the code | 
|  | // should be no worse in this case. | 
|  | bool IsBFI = LSB != 0; | 
|  | uint64_t BFIImm = OrImm >> LSB; | 
|  | if (IsBFI && !AArch64_AM::isLogicalImmediate(BFIImm, BitWidth)) { | 
|  | // We have a BFI instruction and we know the constant can't be materialized | 
|  | // with a ORR-immediate with the zero register. | 
|  | unsigned OrChunks = 0, BFIChunks = 0; | 
|  | for (unsigned Shift = 0; Shift < BitWidth; Shift += 16) { | 
|  | if (((OrImm >> Shift) & 0xFFFF) != 0) | 
|  | ++OrChunks; | 
|  | if (((BFIImm >> Shift) & 0xFFFF) != 0) | 
|  | ++BFIChunks; | 
|  | } | 
|  | if (BFIChunks > OrChunks) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Materialize the constant to be inserted. | 
|  | SDLoc DL(N); | 
|  | unsigned MOVIOpc = VT == MVT::i32 ? AArch64::MOVi32imm : AArch64::MOVi64imm; | 
|  | SDNode *MOVI = CurDAG->getMachineNode( | 
|  | MOVIOpc, DL, VT, CurDAG->getTargetConstant(BFIImm, DL, VT)); | 
|  |  | 
|  | // Create the BFI/BFXIL instruction. | 
|  | SDValue Ops[] = {And.getOperand(0), SDValue(MOVI, 0), | 
|  | CurDAG->getTargetConstant(ImmR, DL, VT), | 
|  | CurDAG->getTargetConstant(ImmS, DL, VT)}; | 
|  | unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri; | 
|  | CurDAG->SelectNodeTo(N, Opc, VT, Ops); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool tryBitfieldInsertOpFromOr(SDNode *N, const APInt &UsefulBits, | 
|  | SelectionDAG *CurDAG) { | 
|  | assert(N->getOpcode() == ISD::OR && "Expect a OR operation"); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i32 && VT != MVT::i64) | 
|  | return false; | 
|  |  | 
|  | unsigned BitWidth = VT.getSizeInBits(); | 
|  |  | 
|  | // Because of simplify-demanded-bits in DAGCombine, involved masks may not | 
|  | // have the expected shape. Try to undo that. | 
|  |  | 
|  | unsigned NumberOfIgnoredLowBits = UsefulBits.countTrailingZeros(); | 
|  | unsigned NumberOfIgnoredHighBits = UsefulBits.countLeadingZeros(); | 
|  |  | 
|  | // Given a OR operation, check if we have the following pattern | 
|  | // ubfm c, b, imm, imm2 (or something that does the same jobs, see | 
|  | //                       isBitfieldExtractOp) | 
|  | // d = e & mask2 ; where mask is a binary sequence of 1..10..0 and | 
|  | //                 countTrailingZeros(mask2) == imm2 - imm + 1 | 
|  | // f = d | c | 
|  | // if yes, replace the OR instruction with: | 
|  | // f = BFM Opd0, Opd1, LSB, MSB ; where LSB = imm, and MSB = imm2 | 
|  |  | 
|  | // OR is commutative, check all combinations of operand order and values of | 
|  | // BiggerPattern, i.e. | 
|  | //     Opd0, Opd1, BiggerPattern=false | 
|  | //     Opd1, Opd0, BiggerPattern=false | 
|  | //     Opd0, Opd1, BiggerPattern=true | 
|  | //     Opd1, Opd0, BiggerPattern=true | 
|  | // Several of these combinations may match, so check with BiggerPattern=false | 
|  | // first since that will produce better results by matching more instructions | 
|  | // and/or inserting fewer extra instructions. | 
|  | for (int I = 0; I < 4; ++I) { | 
|  |  | 
|  | SDValue Dst, Src; | 
|  | unsigned ImmR, ImmS; | 
|  | bool BiggerPattern = I / 2; | 
|  | SDValue OrOpd0Val = N->getOperand(I % 2); | 
|  | SDNode *OrOpd0 = OrOpd0Val.getNode(); | 
|  | SDValue OrOpd1Val = N->getOperand((I + 1) % 2); | 
|  | SDNode *OrOpd1 = OrOpd1Val.getNode(); | 
|  |  | 
|  | unsigned BFXOpc; | 
|  | int DstLSB, Width; | 
|  | if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS, | 
|  | NumberOfIgnoredLowBits, BiggerPattern)) { | 
|  | // Check that the returned opcode is compatible with the pattern, | 
|  | // i.e., same type and zero extended (U and not S) | 
|  | if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) || | 
|  | (BFXOpc != AArch64::UBFMWri && VT == MVT::i32)) | 
|  | continue; | 
|  |  | 
|  | // Compute the width of the bitfield insertion | 
|  | DstLSB = 0; | 
|  | Width = ImmS - ImmR + 1; | 
|  | // FIXME: This constraint is to catch bitfield insertion we may | 
|  | // want to widen the pattern if we want to grab general bitfied | 
|  | // move case | 
|  | if (Width <= 0) | 
|  | continue; | 
|  |  | 
|  | // If the mask on the insertee is correct, we have a BFXIL operation. We | 
|  | // can share the ImmR and ImmS values from the already-computed UBFM. | 
|  | } else if (isBitfieldPositioningOp(CurDAG, OrOpd0Val, | 
|  | BiggerPattern, | 
|  | Src, DstLSB, Width)) { | 
|  | ImmR = (BitWidth - DstLSB) % BitWidth; | 
|  | ImmS = Width - 1; | 
|  | } else | 
|  | continue; | 
|  |  | 
|  | // Check the second part of the pattern | 
|  | EVT VT = OrOpd1Val.getValueType(); | 
|  | assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand"); | 
|  |  | 
|  | // Compute the Known Zero for the candidate of the first operand. | 
|  | // This allows to catch more general case than just looking for | 
|  | // AND with imm. Indeed, simplify-demanded-bits may have removed | 
|  | // the AND instruction because it proves it was useless. | 
|  | KnownBits Known = CurDAG->computeKnownBits(OrOpd1Val); | 
|  |  | 
|  | // Check if there is enough room for the second operand to appear | 
|  | // in the first one | 
|  | APInt BitsToBeInserted = | 
|  | APInt::getBitsSet(Known.getBitWidth(), DstLSB, DstLSB + Width); | 
|  |  | 
|  | if ((BitsToBeInserted & ~Known.Zero) != 0) | 
|  | continue; | 
|  |  | 
|  | // Set the first operand | 
|  | uint64_t Imm; | 
|  | if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) && | 
|  | isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT)) | 
|  | // In that case, we can eliminate the AND | 
|  | Dst = OrOpd1->getOperand(0); | 
|  | else | 
|  | // Maybe the AND has been removed by simplify-demanded-bits | 
|  | // or is useful because it discards more bits | 
|  | Dst = OrOpd1Val; | 
|  |  | 
|  | // both parts match | 
|  | SDLoc DL(N); | 
|  | SDValue Ops[] = {Dst, Src, CurDAG->getTargetConstant(ImmR, DL, VT), | 
|  | CurDAG->getTargetConstant(ImmS, DL, VT)}; | 
|  | unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri; | 
|  | CurDAG->SelectNodeTo(N, Opc, VT, Ops); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Generate a BFXIL from 'or (and X, Mask0Imm), (and Y, Mask1Imm)' iff | 
|  | // Mask0Imm and ~Mask1Imm are equivalent and one of the MaskImms is a shifted | 
|  | // mask (e.g., 0x000ffff0). | 
|  | uint64_t Mask0Imm, Mask1Imm; | 
|  | SDValue And0 = N->getOperand(0); | 
|  | SDValue And1 = N->getOperand(1); | 
|  | if (And0.hasOneUse() && And1.hasOneUse() && | 
|  | isOpcWithIntImmediate(And0.getNode(), ISD::AND, Mask0Imm) && | 
|  | isOpcWithIntImmediate(And1.getNode(), ISD::AND, Mask1Imm) && | 
|  | APInt(BitWidth, Mask0Imm) == ~APInt(BitWidth, Mask1Imm) && | 
|  | (isShiftedMask(Mask0Imm, VT) || isShiftedMask(Mask1Imm, VT))) { | 
|  |  | 
|  | // ORR is commutative, so canonicalize to the form 'or (and X, Mask0Imm), | 
|  | // (and Y, Mask1Imm)' where Mask1Imm is the shifted mask masking off the | 
|  | // bits to be inserted. | 
|  | if (isShiftedMask(Mask0Imm, VT)) { | 
|  | std::swap(And0, And1); | 
|  | std::swap(Mask0Imm, Mask1Imm); | 
|  | } | 
|  |  | 
|  | SDValue Src = And1->getOperand(0); | 
|  | SDValue Dst = And0->getOperand(0); | 
|  | unsigned LSB = countTrailingZeros(Mask1Imm); | 
|  | int Width = BitWidth - APInt(BitWidth, Mask0Imm).countPopulation(); | 
|  |  | 
|  | // The BFXIL inserts the low-order bits from a source register, so right | 
|  | // shift the needed bits into place. | 
|  | SDLoc DL(N); | 
|  | unsigned ShiftOpc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri; | 
|  | SDNode *LSR = CurDAG->getMachineNode( | 
|  | ShiftOpc, DL, VT, Src, CurDAG->getTargetConstant(LSB, DL, VT), | 
|  | CurDAG->getTargetConstant(BitWidth - 1, DL, VT)); | 
|  |  | 
|  | // BFXIL is an alias of BFM, so translate to BFM operands. | 
|  | unsigned ImmR = (BitWidth - LSB) % BitWidth; | 
|  | unsigned ImmS = Width - 1; | 
|  |  | 
|  | // Create the BFXIL instruction. | 
|  | SDValue Ops[] = {Dst, SDValue(LSR, 0), | 
|  | CurDAG->getTargetConstant(ImmR, DL, VT), | 
|  | CurDAG->getTargetConstant(ImmS, DL, VT)}; | 
|  | unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri; | 
|  | CurDAG->SelectNodeTo(N, Opc, VT, Ops); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AArch64DAGToDAGISel::tryBitfieldInsertOp(SDNode *N) { | 
|  | if (N->getOpcode() != ISD::OR) | 
|  | return false; | 
|  |  | 
|  | APInt NUsefulBits; | 
|  | getUsefulBits(SDValue(N, 0), NUsefulBits); | 
|  |  | 
|  | // If all bits are not useful, just return UNDEF. | 
|  | if (!NUsefulBits) { | 
|  | CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (tryBitfieldInsertOpFromOr(N, NUsefulBits, CurDAG)) | 
|  | return true; | 
|  |  | 
|  | return tryBitfieldInsertOpFromOrAndImm(N, CurDAG); | 
|  | } | 
|  |  | 
|  | /// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the | 
|  | /// equivalent of a left shift by a constant amount followed by an and masking | 
|  | /// out a contiguous set of bits. | 
|  | bool AArch64DAGToDAGISel::tryBitfieldInsertInZeroOp(SDNode *N) { | 
|  | if (N->getOpcode() != ISD::AND) | 
|  | return false; | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::i32 && VT != MVT::i64) | 
|  | return false; | 
|  |  | 
|  | SDValue Op0; | 
|  | int DstLSB, Width; | 
|  | if (!isBitfieldPositioningOp(CurDAG, SDValue(N, 0), /*BiggerPattern=*/false, | 
|  | Op0, DstLSB, Width)) | 
|  | return false; | 
|  |  | 
|  | // ImmR is the rotate right amount. | 
|  | unsigned ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits(); | 
|  | // ImmS is the most significant bit of the source to be moved. | 
|  | unsigned ImmS = Width - 1; | 
|  |  | 
|  | SDLoc DL(N); | 
|  | SDValue Ops[] = {Op0, CurDAG->getTargetConstant(ImmR, DL, VT), | 
|  | CurDAG->getTargetConstant(ImmS, DL, VT)}; | 
|  | unsigned Opc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri; | 
|  | CurDAG->SelectNodeTo(N, Opc, VT, Ops); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// tryShiftAmountMod - Take advantage of built-in mod of shift amount in | 
|  | /// variable shift/rotate instructions. | 
|  | bool AArch64DAGToDAGISel::tryShiftAmountMod(SDNode *N) { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | unsigned Opc; | 
|  | switch (N->getOpcode()) { | 
|  | case ISD::ROTR: | 
|  | Opc = (VT == MVT::i32) ? AArch64::RORVWr : AArch64::RORVXr; | 
|  | break; | 
|  | case ISD::SHL: | 
|  | Opc = (VT == MVT::i32) ? AArch64::LSLVWr : AArch64::LSLVXr; | 
|  | break; | 
|  | case ISD::SRL: | 
|  | Opc = (VT == MVT::i32) ? AArch64::LSRVWr : AArch64::LSRVXr; | 
|  | break; | 
|  | case ISD::SRA: | 
|  | Opc = (VT == MVT::i32) ? AArch64::ASRVWr : AArch64::ASRVXr; | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t Size; | 
|  | uint64_t Bits; | 
|  | if (VT == MVT::i32) { | 
|  | Bits = 5; | 
|  | Size = 32; | 
|  | } else if (VT == MVT::i64) { | 
|  | Bits = 6; | 
|  | Size = 64; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | SDValue ShiftAmt = N->getOperand(1); | 
|  | SDLoc DL(N); | 
|  | SDValue NewShiftAmt; | 
|  |  | 
|  | // Skip over an extend of the shift amount. | 
|  | if (ShiftAmt->getOpcode() == ISD::ZERO_EXTEND || | 
|  | ShiftAmt->getOpcode() == ISD::ANY_EXTEND) | 
|  | ShiftAmt = ShiftAmt->getOperand(0); | 
|  |  | 
|  | if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) { | 
|  | SDValue Add0 = ShiftAmt->getOperand(0); | 
|  | SDValue Add1 = ShiftAmt->getOperand(1); | 
|  | uint64_t Add0Imm; | 
|  | uint64_t Add1Imm; | 
|  | // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X | 
|  | // to avoid the ADD/SUB. | 
|  | if (isIntImmediate(Add1, Add1Imm) && (Add1Imm % Size == 0)) | 
|  | NewShiftAmt = Add0; | 
|  | // If we are shifting by N-X where N == 0 mod Size, then just shift by -X to | 
|  | // generate a NEG instead of a SUB of a constant. | 
|  | else if (ShiftAmt->getOpcode() == ISD::SUB && | 
|  | isIntImmediate(Add0, Add0Imm) && Add0Imm != 0 && | 
|  | (Add0Imm % Size == 0)) { | 
|  | unsigned NegOpc; | 
|  | unsigned ZeroReg; | 
|  | EVT SubVT = ShiftAmt->getValueType(0); | 
|  | if (SubVT == MVT::i32) { | 
|  | NegOpc = AArch64::SUBWrr; | 
|  | ZeroReg = AArch64::WZR; | 
|  | } else { | 
|  | assert(SubVT == MVT::i64); | 
|  | NegOpc = AArch64::SUBXrr; | 
|  | ZeroReg = AArch64::XZR; | 
|  | } | 
|  | SDValue Zero = | 
|  | CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, ZeroReg, SubVT); | 
|  | MachineSDNode *Neg = | 
|  | CurDAG->getMachineNode(NegOpc, DL, SubVT, Zero, Add1); | 
|  | NewShiftAmt = SDValue(Neg, 0); | 
|  | } else | 
|  | return false; | 
|  | } else { | 
|  | // If the shift amount is masked with an AND, check that the mask covers the | 
|  | // bits that are implicitly ANDed off by the above opcodes and if so, skip | 
|  | // the AND. | 
|  | uint64_t MaskImm; | 
|  | if (!isOpcWithIntImmediate(ShiftAmt.getNode(), ISD::AND, MaskImm)) | 
|  | return false; | 
|  |  | 
|  | if (countTrailingOnes(MaskImm) < Bits) | 
|  | return false; | 
|  |  | 
|  | NewShiftAmt = ShiftAmt->getOperand(0); | 
|  | } | 
|  |  | 
|  | // Narrow/widen the shift amount to match the size of the shift operation. | 
|  | if (VT == MVT::i32) | 
|  | NewShiftAmt = narrowIfNeeded(CurDAG, NewShiftAmt); | 
|  | else if (VT == MVT::i64 && NewShiftAmt->getValueType(0) == MVT::i32) { | 
|  | SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, DL, MVT::i32); | 
|  | MachineSDNode *Ext = CurDAG->getMachineNode( | 
|  | AArch64::SUBREG_TO_REG, DL, VT, | 
|  | CurDAG->getTargetConstant(0, DL, MVT::i64), NewShiftAmt, SubReg); | 
|  | NewShiftAmt = SDValue(Ext, 0); | 
|  | } | 
|  |  | 
|  | SDValue Ops[] = {N->getOperand(0), NewShiftAmt}; | 
|  | CurDAG->SelectNodeTo(N, Opc, VT, Ops); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, | 
|  | unsigned RegWidth) { | 
|  | APFloat FVal(0.0); | 
|  | if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) | 
|  | FVal = CN->getValueAPF(); | 
|  | else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) { | 
|  | // Some otherwise illegal constants are allowed in this case. | 
|  | if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow || | 
|  | !isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1))) | 
|  | return false; | 
|  |  | 
|  | ConstantPoolSDNode *CN = | 
|  | dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)); | 
|  | FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF(); | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits | 
|  | // is between 1 and 32 for a destination w-register, or 1 and 64 for an | 
|  | // x-register. | 
|  | // | 
|  | // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we | 
|  | // want THIS_NODE to be 2^fbits. This is much easier to deal with using | 
|  | // integers. | 
|  | bool IsExact; | 
|  |  | 
|  | // fbits is between 1 and 64 in the worst-case, which means the fmul | 
|  | // could have 2^64 as an actual operand. Need 65 bits of precision. | 
|  | APSInt IntVal(65, true); | 
|  | FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact); | 
|  |  | 
|  | // N.b. isPowerOf2 also checks for > 0. | 
|  | if (!IsExact || !IntVal.isPowerOf2()) return false; | 
|  | unsigned FBits = IntVal.logBase2(); | 
|  |  | 
|  | // Checks above should have guaranteed that we haven't lost information in | 
|  | // finding FBits, but it must still be in range. | 
|  | if (FBits == 0 || FBits > RegWidth) return false; | 
|  |  | 
|  | FixedPos = CurDAG->getTargetConstant(FBits, SDLoc(N), MVT::i32); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields | 
|  | // of the string and obtains the integer values from them and combines these | 
|  | // into a single value to be used in the MRS/MSR instruction. | 
|  | static int getIntOperandFromRegisterString(StringRef RegString) { | 
|  | SmallVector<StringRef, 5> Fields; | 
|  | RegString.split(Fields, ':'); | 
|  |  | 
|  | if (Fields.size() == 1) | 
|  | return -1; | 
|  |  | 
|  | assert(Fields.size() == 5 | 
|  | && "Invalid number of fields in read register string"); | 
|  |  | 
|  | SmallVector<int, 5> Ops; | 
|  | bool AllIntFields = true; | 
|  |  | 
|  | for (StringRef Field : Fields) { | 
|  | unsigned IntField; | 
|  | AllIntFields &= !Field.getAsInteger(10, IntField); | 
|  | Ops.push_back(IntField); | 
|  | } | 
|  |  | 
|  | assert(AllIntFields && | 
|  | "Unexpected non-integer value in special register string."); | 
|  |  | 
|  | // Need to combine the integer fields of the string into a single value | 
|  | // based on the bit encoding of MRS/MSR instruction. | 
|  | return (Ops[0] << 14) | (Ops[1] << 11) | (Ops[2] << 7) | | 
|  | (Ops[3] << 3) | (Ops[4]); | 
|  | } | 
|  |  | 
|  | // Lower the read_register intrinsic to an MRS instruction node if the special | 
|  | // register string argument is either of the form detailed in the ALCE (the | 
|  | // form described in getIntOperandsFromRegsterString) or is a named register | 
|  | // known by the MRS SysReg mapper. | 
|  | bool AArch64DAGToDAGISel::tryReadRegister(SDNode *N) { | 
|  | const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1)); | 
|  | const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0)); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | int Reg = getIntOperandFromRegisterString(RegString->getString()); | 
|  | if (Reg != -1) { | 
|  | ReplaceNode(N, CurDAG->getMachineNode( | 
|  | AArch64::MRS, DL, N->getSimpleValueType(0), MVT::Other, | 
|  | CurDAG->getTargetConstant(Reg, DL, MVT::i32), | 
|  | N->getOperand(0))); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Use the sysreg mapper to map the remaining possible strings to the | 
|  | // value for the register to be used for the instruction operand. | 
|  | auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString()); | 
|  | if (TheReg && TheReg->Readable && | 
|  | TheReg->haveFeatures(Subtarget->getFeatureBits())) | 
|  | Reg = TheReg->Encoding; | 
|  | else | 
|  | Reg = AArch64SysReg::parseGenericRegister(RegString->getString()); | 
|  |  | 
|  | if (Reg != -1) { | 
|  | ReplaceNode(N, CurDAG->getMachineNode( | 
|  | AArch64::MRS, DL, N->getSimpleValueType(0), MVT::Other, | 
|  | CurDAG->getTargetConstant(Reg, DL, MVT::i32), | 
|  | N->getOperand(0))); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (RegString->getString() == "pc") { | 
|  | ReplaceNode(N, CurDAG->getMachineNode( | 
|  | AArch64::ADR, DL, N->getSimpleValueType(0), MVT::Other, | 
|  | CurDAG->getTargetConstant(0, DL, MVT::i32), | 
|  | N->getOperand(0))); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Lower the write_register intrinsic to an MSR instruction node if the special | 
|  | // register string argument is either of the form detailed in the ALCE (the | 
|  | // form described in getIntOperandsFromRegsterString) or is a named register | 
|  | // known by the MSR SysReg mapper. | 
|  | bool AArch64DAGToDAGISel::tryWriteRegister(SDNode *N) { | 
|  | const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1)); | 
|  | const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0)); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | int Reg = getIntOperandFromRegisterString(RegString->getString()); | 
|  | if (Reg != -1) { | 
|  | ReplaceNode( | 
|  | N, CurDAG->getMachineNode(AArch64::MSR, DL, MVT::Other, | 
|  | CurDAG->getTargetConstant(Reg, DL, MVT::i32), | 
|  | N->getOperand(2), N->getOperand(0))); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check if the register was one of those allowed as the pstatefield value in | 
|  | // the MSR (immediate) instruction. To accept the values allowed in the | 
|  | // pstatefield for the MSR (immediate) instruction, we also require that an | 
|  | // immediate value has been provided as an argument, we know that this is | 
|  | // the case as it has been ensured by semantic checking. | 
|  | auto PMapper = AArch64PState::lookupPStateByName(RegString->getString()); | 
|  | if (PMapper) { | 
|  | assert (isa<ConstantSDNode>(N->getOperand(2)) | 
|  | && "Expected a constant integer expression."); | 
|  | unsigned Reg = PMapper->Encoding; | 
|  | uint64_t Immed = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(); | 
|  | unsigned State; | 
|  | if (Reg == AArch64PState::PAN || Reg == AArch64PState::UAO || Reg == AArch64PState::SSBS) { | 
|  | assert(Immed < 2 && "Bad imm"); | 
|  | State = AArch64::MSRpstateImm1; | 
|  | } else { | 
|  | assert(Immed < 16 && "Bad imm"); | 
|  | State = AArch64::MSRpstateImm4; | 
|  | } | 
|  | ReplaceNode(N, CurDAG->getMachineNode( | 
|  | State, DL, MVT::Other, | 
|  | CurDAG->getTargetConstant(Reg, DL, MVT::i32), | 
|  | CurDAG->getTargetConstant(Immed, DL, MVT::i16), | 
|  | N->getOperand(0))); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Use the sysreg mapper to attempt to map the remaining possible strings | 
|  | // to the value for the register to be used for the MSR (register) | 
|  | // instruction operand. | 
|  | auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString()); | 
|  | if (TheReg && TheReg->Writeable && | 
|  | TheReg->haveFeatures(Subtarget->getFeatureBits())) | 
|  | Reg = TheReg->Encoding; | 
|  | else | 
|  | Reg = AArch64SysReg::parseGenericRegister(RegString->getString()); | 
|  | if (Reg != -1) { | 
|  | ReplaceNode(N, CurDAG->getMachineNode( | 
|  | AArch64::MSR, DL, MVT::Other, | 
|  | CurDAG->getTargetConstant(Reg, DL, MVT::i32), | 
|  | N->getOperand(2), N->getOperand(0))); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// We've got special pseudo-instructions for these | 
|  | bool AArch64DAGToDAGISel::SelectCMP_SWAP(SDNode *N) { | 
|  | unsigned Opcode; | 
|  | EVT MemTy = cast<MemSDNode>(N)->getMemoryVT(); | 
|  |  | 
|  | // Leave IR for LSE if subtarget supports it. | 
|  | if (Subtarget->hasLSE()) return false; | 
|  |  | 
|  | if (MemTy == MVT::i8) | 
|  | Opcode = AArch64::CMP_SWAP_8; | 
|  | else if (MemTy == MVT::i16) | 
|  | Opcode = AArch64::CMP_SWAP_16; | 
|  | else if (MemTy == MVT::i32) | 
|  | Opcode = AArch64::CMP_SWAP_32; | 
|  | else if (MemTy == MVT::i64) | 
|  | Opcode = AArch64::CMP_SWAP_64; | 
|  | else | 
|  | llvm_unreachable("Unknown AtomicCmpSwap type"); | 
|  |  | 
|  | MVT RegTy = MemTy == MVT::i64 ? MVT::i64 : MVT::i32; | 
|  | SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3), | 
|  | N->getOperand(0)}; | 
|  | SDNode *CmpSwap = CurDAG->getMachineNode( | 
|  | Opcode, SDLoc(N), | 
|  | CurDAG->getVTList(RegTy, MVT::i32, MVT::Other), Ops); | 
|  |  | 
|  | MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); | 
|  | CurDAG->setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp}); | 
|  |  | 
|  | ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0)); | 
|  | ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2)); | 
|  | CurDAG->RemoveDeadNode(N); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AArch64DAGToDAGISel::SelectSVEAddSubImm(SDValue N, MVT VT, SDValue &Imm, SDValue &Shift) { | 
|  | if (auto CNode = dyn_cast<ConstantSDNode>(N)) { | 
|  | const int64_t ImmVal = CNode->getZExtValue(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | switch (VT.SimpleTy) { | 
|  | case MVT::i8: | 
|  | if ((ImmVal & 0xFF) == ImmVal) { | 
|  | Shift = CurDAG->getTargetConstant(0, DL, MVT::i32); | 
|  | Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | case MVT::i64: | 
|  | if ((ImmVal & 0xFF) == ImmVal) { | 
|  | Shift = CurDAG->getTargetConstant(0, DL, MVT::i32); | 
|  | Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32); | 
|  | return true; | 
|  | } else if ((ImmVal & 0xFF00) == ImmVal) { | 
|  | Shift = CurDAG->getTargetConstant(8, DL, MVT::i32); | 
|  | Imm = CurDAG->getTargetConstant(ImmVal >> 8, DL, MVT::i32); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AArch64DAGToDAGISel::SelectSVESignedArithImm(SDValue N, SDValue &Imm) { | 
|  | if (auto CNode = dyn_cast<ConstantSDNode>(N)) { | 
|  | int64_t ImmVal = CNode->getSExtValue(); | 
|  | SDLoc DL(N); | 
|  | if (ImmVal >= -127 && ImmVal < 127) { | 
|  | Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AArch64DAGToDAGISel::SelectSVEArithImm(SDValue N, SDValue &Imm) { | 
|  | if (auto CNode = dyn_cast<ConstantSDNode>(N)) { | 
|  | uint64_t ImmVal = CNode->getSExtValue(); | 
|  | SDLoc DL(N); | 
|  | ImmVal = ImmVal & 0xFF; | 
|  | if (ImmVal < 256) { | 
|  | Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AArch64DAGToDAGISel::SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm) { | 
|  | if (auto CNode = dyn_cast<ConstantSDNode>(N)) { | 
|  | uint64_t ImmVal = CNode->getZExtValue(); | 
|  | SDLoc DL(N); | 
|  |  | 
|  | // Shift mask depending on type size. | 
|  | switch (VT.SimpleTy) { | 
|  | case MVT::i8: | 
|  | ImmVal &= 0xFF; | 
|  | ImmVal |= ImmVal << 8; | 
|  | ImmVal |= ImmVal << 16; | 
|  | ImmVal |= ImmVal << 32; | 
|  | break; | 
|  | case MVT::i16: | 
|  | ImmVal &= 0xFFFF; | 
|  | ImmVal |= ImmVal << 16; | 
|  | ImmVal |= ImmVal << 32; | 
|  | break; | 
|  | case MVT::i32: | 
|  | ImmVal &= 0xFFFFFFFF; | 
|  | ImmVal |= ImmVal << 32; | 
|  | break; | 
|  | case MVT::i64: | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected type"); | 
|  | } | 
|  |  | 
|  | uint64_t encoding; | 
|  | if (AArch64_AM::processLogicalImmediate(ImmVal, 64, encoding)) { | 
|  | Imm = CurDAG->getTargetConstant(encoding, DL, MVT::i64); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AArch64DAGToDAGISel::trySelectStackSlotTagP(SDNode *N) { | 
|  | // tagp(FrameIndex, IRGstack, tag_offset): | 
|  | // since the offset between FrameIndex and IRGstack is a compile-time | 
|  | // constant, this can be lowered to a single ADDG instruction. | 
|  | if (!(isa<FrameIndexSDNode>(N->getOperand(1)))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue IRG_SP = N->getOperand(2); | 
|  | if (IRG_SP->getOpcode() != ISD::INTRINSIC_W_CHAIN || | 
|  | cast<ConstantSDNode>(IRG_SP->getOperand(1))->getZExtValue() != | 
|  | Intrinsic::aarch64_irg_sp) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const TargetLowering *TLI = getTargetLowering(); | 
|  | SDLoc DL(N); | 
|  | int FI = cast<FrameIndexSDNode>(N->getOperand(1))->getIndex(); | 
|  | SDValue FiOp = CurDAG->getTargetFrameIndex( | 
|  | FI, TLI->getPointerTy(CurDAG->getDataLayout())); | 
|  | int TagOffset = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue(); | 
|  |  | 
|  | SDNode *Out = CurDAG->getMachineNode( | 
|  | AArch64::TAGPstack, DL, MVT::i64, | 
|  | {FiOp, CurDAG->getTargetConstant(0, DL, MVT::i64), N->getOperand(2), | 
|  | CurDAG->getTargetConstant(TagOffset, DL, MVT::i64)}); | 
|  | ReplaceNode(N, Out); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void AArch64DAGToDAGISel::SelectTagP(SDNode *N) { | 
|  | assert(isa<ConstantSDNode>(N->getOperand(3)) && | 
|  | "llvm.aarch64.tagp third argument must be an immediate"); | 
|  | if (trySelectStackSlotTagP(N)) | 
|  | return; | 
|  | // FIXME: above applies in any case when offset between Op1 and Op2 is a | 
|  | // compile-time constant, not just for stack allocations. | 
|  |  | 
|  | // General case for unrelated pointers in Op1 and Op2. | 
|  | SDLoc DL(N); | 
|  | int TagOffset = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue(); | 
|  | SDNode *N1 = CurDAG->getMachineNode(AArch64::SUBP, DL, MVT::i64, | 
|  | {N->getOperand(1), N->getOperand(2)}); | 
|  | SDNode *N2 = CurDAG->getMachineNode(AArch64::ADDXrr, DL, MVT::i64, | 
|  | {SDValue(N1, 0), N->getOperand(2)}); | 
|  | SDNode *N3 = CurDAG->getMachineNode( | 
|  | AArch64::ADDG, DL, MVT::i64, | 
|  | {SDValue(N2, 0), CurDAG->getTargetConstant(0, DL, MVT::i64), | 
|  | CurDAG->getTargetConstant(TagOffset, DL, MVT::i64)}); | 
|  | ReplaceNode(N, N3); | 
|  | } | 
|  |  | 
|  | void AArch64DAGToDAGISel::Select(SDNode *Node) { | 
|  | // If we have a custom node, we already have selected! | 
|  | if (Node->isMachineOpcode()) { | 
|  | LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n"); | 
|  | Node->setNodeId(-1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Few custom selection stuff. | 
|  | EVT VT = Node->getValueType(0); | 
|  |  | 
|  | switch (Node->getOpcode()) { | 
|  | default: | 
|  | break; | 
|  |  | 
|  | case ISD::ATOMIC_CMP_SWAP: | 
|  | if (SelectCMP_SWAP(Node)) | 
|  | return; | 
|  | break; | 
|  |  | 
|  | case ISD::READ_REGISTER: | 
|  | if (tryReadRegister(Node)) | 
|  | return; | 
|  | break; | 
|  |  | 
|  | case ISD::WRITE_REGISTER: | 
|  | if (tryWriteRegister(Node)) | 
|  | return; | 
|  | break; | 
|  |  | 
|  | case ISD::ADD: | 
|  | if (tryMLAV64LaneV128(Node)) | 
|  | return; | 
|  | break; | 
|  |  | 
|  | case ISD::LOAD: { | 
|  | // Try to select as an indexed load. Fall through to normal processing | 
|  | // if we can't. | 
|  | if (tryIndexedLoad(Node)) | 
|  | return; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::SRL: | 
|  | case ISD::AND: | 
|  | case ISD::SRA: | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | if (tryBitfieldExtractOp(Node)) | 
|  | return; | 
|  | if (tryBitfieldInsertInZeroOp(Node)) | 
|  | return; | 
|  | LLVM_FALLTHROUGH; | 
|  | case ISD::ROTR: | 
|  | case ISD::SHL: | 
|  | if (tryShiftAmountMod(Node)) | 
|  | return; | 
|  | break; | 
|  |  | 
|  | case ISD::SIGN_EXTEND: | 
|  | if (tryBitfieldExtractOpFromSExt(Node)) | 
|  | return; | 
|  | break; | 
|  |  | 
|  | case ISD::FP_EXTEND: | 
|  | if (tryHighFPExt(Node)) | 
|  | return; | 
|  | break; | 
|  |  | 
|  | case ISD::OR: | 
|  | if (tryBitfieldInsertOp(Node)) | 
|  | return; | 
|  | break; | 
|  |  | 
|  | case ISD::Constant: { | 
|  | // Materialize zero constants as copies from WZR/XZR.  This allows | 
|  | // the coalescer to propagate these into other instructions. | 
|  | ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node); | 
|  | if (ConstNode->isNullValue()) { | 
|  | if (VT == MVT::i32) { | 
|  | SDValue New = CurDAG->getCopyFromReg( | 
|  | CurDAG->getEntryNode(), SDLoc(Node), AArch64::WZR, MVT::i32); | 
|  | ReplaceNode(Node, New.getNode()); | 
|  | return; | 
|  | } else if (VT == MVT::i64) { | 
|  | SDValue New = CurDAG->getCopyFromReg( | 
|  | CurDAG->getEntryNode(), SDLoc(Node), AArch64::XZR, MVT::i64); | 
|  | ReplaceNode(Node, New.getNode()); | 
|  | return; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::FrameIndex: { | 
|  | // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm. | 
|  | int FI = cast<FrameIndexSDNode>(Node)->getIndex(); | 
|  | unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0); | 
|  | const TargetLowering *TLI = getTargetLowering(); | 
|  | SDValue TFI = CurDAG->getTargetFrameIndex( | 
|  | FI, TLI->getPointerTy(CurDAG->getDataLayout())); | 
|  | SDLoc DL(Node); | 
|  | SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, DL, MVT::i32), | 
|  | CurDAG->getTargetConstant(Shifter, DL, MVT::i32) }; | 
|  | CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops); | 
|  | return; | 
|  | } | 
|  | case ISD::INTRINSIC_W_CHAIN: { | 
|  | unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); | 
|  | switch (IntNo) { | 
|  | default: | 
|  | break; | 
|  | case Intrinsic::aarch64_ldaxp: | 
|  | case Intrinsic::aarch64_ldxp: { | 
|  | unsigned Op = | 
|  | IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX; | 
|  | SDValue MemAddr = Node->getOperand(2); | 
|  | SDLoc DL(Node); | 
|  | SDValue Chain = Node->getOperand(0); | 
|  |  | 
|  | SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64, | 
|  | MVT::Other, MemAddr, Chain); | 
|  |  | 
|  | // Transfer memoperands. | 
|  | MachineMemOperand *MemOp = | 
|  | cast<MemIntrinsicSDNode>(Node)->getMemOperand(); | 
|  | CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp}); | 
|  | ReplaceNode(Node, Ld); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::aarch64_stlxp: | 
|  | case Intrinsic::aarch64_stxp: { | 
|  | unsigned Op = | 
|  | IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX; | 
|  | SDLoc DL(Node); | 
|  | SDValue Chain = Node->getOperand(0); | 
|  | SDValue ValLo = Node->getOperand(2); | 
|  | SDValue ValHi = Node->getOperand(3); | 
|  | SDValue MemAddr = Node->getOperand(4); | 
|  |  | 
|  | // Place arguments in the right order. | 
|  | SDValue Ops[] = {ValLo, ValHi, MemAddr, Chain}; | 
|  |  | 
|  | SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops); | 
|  | // Transfer memoperands. | 
|  | MachineMemOperand *MemOp = | 
|  | cast<MemIntrinsicSDNode>(Node)->getMemOperand(); | 
|  | CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp}); | 
|  |  | 
|  | ReplaceNode(Node, St); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::aarch64_neon_ld1x2: | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Intrinsic::aarch64_neon_ld1x3: | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Intrinsic::aarch64_neon_ld1x4: | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Intrinsic::aarch64_neon_ld2: | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Intrinsic::aarch64_neon_ld3: | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Intrinsic::aarch64_neon_ld4: | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Intrinsic::aarch64_neon_ld2r: | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Intrinsic::aarch64_neon_ld3r: | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Intrinsic::aarch64_neon_ld4r: | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Intrinsic::aarch64_neon_ld2lane: | 
|  | if (VT == MVT::v16i8 || VT == MVT::v8i8) { | 
|  | SelectLoadLane(Node, 2, AArch64::LD2i8); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || | 
|  | VT == MVT::v8f16) { | 
|  | SelectLoadLane(Node, 2, AArch64::LD2i16); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || | 
|  | VT == MVT::v2f32) { | 
|  | SelectLoadLane(Node, 2, AArch64::LD2i32); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || | 
|  | VT == MVT::v1f64) { | 
|  | SelectLoadLane(Node, 2, AArch64::LD2i64); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Intrinsic::aarch64_neon_ld3lane: | 
|  | if (VT == MVT::v16i8 || VT == MVT::v8i8) { | 
|  | SelectLoadLane(Node, 3, AArch64::LD3i8); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || | 
|  | VT == MVT::v8f16) { | 
|  | SelectLoadLane(Node, 3, AArch64::LD3i16); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || | 
|  | VT == MVT::v2f32) { | 
|  | SelectLoadLane(Node, 3, AArch64::LD3i32); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || | 
|  | VT == MVT::v1f64) { | 
|  | SelectLoadLane(Node, 3, AArch64::LD3i64); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Intrinsic::aarch64_neon_ld4lane: | 
|  | if (VT == MVT::v16i8 || VT == MVT::v8i8) { | 
|  | SelectLoadLane(Node, 4, AArch64::LD4i8); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || | 
|  | VT == MVT::v8f16) { | 
|  | SelectLoadLane(Node, 4, AArch64::LD4i16); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || | 
|  | VT == MVT::v2f32) { | 
|  | SelectLoadLane(Node, 4, AArch64::LD4i32); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || | 
|  | VT == MVT::v1f64) { | 
|  | SelectLoadLane(Node, 4, AArch64::LD4i64); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } break; | 
|  | case ISD::INTRINSIC_WO_CHAIN: { | 
|  | unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue(); | 
|  | switch (IntNo) { | 
|  | default: | 
|  | break; | 
|  | case Intrinsic::aarch64_tagp: | 
|  | SelectTagP(Node); | 
|  | return; | 
|  | case Intrinsic::aarch64_neon_tbl2: | 
|  | SelectTable(Node, 2, | 
|  | VT == MVT::v8i8 ? AArch64::TBLv8i8Two : AArch64::TBLv16i8Two, | 
|  | false); | 
|  | return; | 
|  | case Intrinsic::aarch64_neon_tbl3: | 
|  | SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three | 
|  | : AArch64::TBLv16i8Three, | 
|  | false); | 
|  | return; | 
|  | case Intrinsic::aarch64_neon_tbl4: | 
|  | SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four | 
|  | : AArch64::TBLv16i8Four, | 
|  | false); | 
|  | return; | 
|  | case Intrinsic::aarch64_neon_tbx2: | 
|  | SelectTable(Node, 2, | 
|  | VT == MVT::v8i8 ? AArch64::TBXv8i8Two : AArch64::TBXv16i8Two, | 
|  | true); | 
|  | return; | 
|  | case Intrinsic::aarch64_neon_tbx3: | 
|  | SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three | 
|  | : AArch64::TBXv16i8Three, | 
|  | true); | 
|  | return; | 
|  | case Intrinsic::aarch64_neon_tbx4: | 
|  | SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four | 
|  | : AArch64::TBXv16i8Four, | 
|  | true); | 
|  | return; | 
|  | case Intrinsic::aarch64_neon_smull: | 
|  | case Intrinsic::aarch64_neon_umull: | 
|  | if (tryMULLV64LaneV128(IntNo, Node)) | 
|  | return; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::INTRINSIC_VOID: { | 
|  | unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); | 
|  | if (Node->getNumOperands() >= 3) | 
|  | VT = Node->getOperand(2)->getValueType(0); | 
|  | switch (IntNo) { | 
|  | default: | 
|  | break; | 
|  | case Intrinsic::aarch64_neon_st1x2: { | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectStore(Node, 2, AArch64::ST1Twov8b); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectStore(Node, 2, AArch64::ST1Twov16b); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectStore(Node, 2, AArch64::ST1Twov4h); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectStore(Node, 2, AArch64::ST1Twov8h); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectStore(Node, 2, AArch64::ST1Twov2s); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectStore(Node, 2, AArch64::ST1Twov4s); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectStore(Node, 2, AArch64::ST1Twov2d); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectStore(Node, 2, AArch64::ST1Twov1d); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Intrinsic::aarch64_neon_st1x3: { | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectStore(Node, 3, AArch64::ST1Threev8b); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectStore(Node, 3, AArch64::ST1Threev16b); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectStore(Node, 3, AArch64::ST1Threev4h); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectStore(Node, 3, AArch64::ST1Threev8h); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectStore(Node, 3, AArch64::ST1Threev2s); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectStore(Node, 3, AArch64::ST1Threev4s); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectStore(Node, 3, AArch64::ST1Threev2d); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectStore(Node, 3, AArch64::ST1Threev1d); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Intrinsic::aarch64_neon_st1x4: { | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectStore(Node, 4, AArch64::ST1Fourv8b); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectStore(Node, 4, AArch64::ST1Fourv16b); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectStore(Node, 4, AArch64::ST1Fourv4h); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectStore(Node, 4, AArch64::ST1Fourv8h); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectStore(Node, 4, AArch64::ST1Fourv2s); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectStore(Node, 4, AArch64::ST1Fourv4s); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectStore(Node, 4, AArch64::ST1Fourv2d); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectStore(Node, 4, AArch64::ST1Fourv1d); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Intrinsic::aarch64_neon_st2: { | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectStore(Node, 2, AArch64::ST2Twov8b); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectStore(Node, 2, AArch64::ST2Twov16b); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectStore(Node, 2, AArch64::ST2Twov4h); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectStore(Node, 2, AArch64::ST2Twov8h); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectStore(Node, 2, AArch64::ST2Twov2s); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectStore(Node, 2, AArch64::ST2Twov4s); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectStore(Node, 2, AArch64::ST2Twov2d); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectStore(Node, 2, AArch64::ST1Twov1d); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Intrinsic::aarch64_neon_st3: { | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectStore(Node, 3, AArch64::ST3Threev8b); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectStore(Node, 3, AArch64::ST3Threev16b); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectStore(Node, 3, AArch64::ST3Threev4h); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectStore(Node, 3, AArch64::ST3Threev8h); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectStore(Node, 3, AArch64::ST3Threev2s); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectStore(Node, 3, AArch64::ST3Threev4s); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectStore(Node, 3, AArch64::ST3Threev2d); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectStore(Node, 3, AArch64::ST1Threev1d); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Intrinsic::aarch64_neon_st4: { | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectStore(Node, 4, AArch64::ST4Fourv8b); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectStore(Node, 4, AArch64::ST4Fourv16b); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectStore(Node, 4, AArch64::ST4Fourv4h); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectStore(Node, 4, AArch64::ST4Fourv8h); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectStore(Node, 4, AArch64::ST4Fourv2s); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectStore(Node, 4, AArch64::ST4Fourv4s); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectStore(Node, 4, AArch64::ST4Fourv2d); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectStore(Node, 4, AArch64::ST1Fourv1d); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Intrinsic::aarch64_neon_st2lane: { | 
|  | if (VT == MVT::v16i8 || VT == MVT::v8i8) { | 
|  | SelectStoreLane(Node, 2, AArch64::ST2i8); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || | 
|  | VT == MVT::v8f16) { | 
|  | SelectStoreLane(Node, 2, AArch64::ST2i16); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || | 
|  | VT == MVT::v2f32) { | 
|  | SelectStoreLane(Node, 2, AArch64::ST2i32); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || | 
|  | VT == MVT::v1f64) { | 
|  | SelectStoreLane(Node, 2, AArch64::ST2i64); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Intrinsic::aarch64_neon_st3lane: { | 
|  | if (VT == MVT::v16i8 || VT == MVT::v8i8) { | 
|  | SelectStoreLane(Node, 3, AArch64::ST3i8); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || | 
|  | VT == MVT::v8f16) { | 
|  | SelectStoreLane(Node, 3, AArch64::ST3i16); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || | 
|  | VT == MVT::v2f32) { | 
|  | SelectStoreLane(Node, 3, AArch64::ST3i32); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || | 
|  | VT == MVT::v1f64) { | 
|  | SelectStoreLane(Node, 3, AArch64::ST3i64); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Intrinsic::aarch64_neon_st4lane: { | 
|  | if (VT == MVT::v16i8 || VT == MVT::v8i8) { | 
|  | SelectStoreLane(Node, 4, AArch64::ST4i8); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || | 
|  | VT == MVT::v8f16) { | 
|  | SelectStoreLane(Node, 4, AArch64::ST4i16); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || | 
|  | VT == MVT::v2f32) { | 
|  | SelectStoreLane(Node, 4, AArch64::ST4i32); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || | 
|  | VT == MVT::v1f64) { | 
|  | SelectStoreLane(Node, 4, AArch64::ST4i64); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::LD2post: { | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::LD3post: { | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::LD4post: { | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::LD1x2post: { | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::LD1x3post: { | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::LD1x4post: { | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::LD1DUPpost: { | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::LD2DUPpost: { | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::LD3DUPpost: { | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::LD4DUPpost: { | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::LD1LANEpost: { | 
|  | if (VT == MVT::v16i8 || VT == MVT::v8i8) { | 
|  | SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || | 
|  | VT == MVT::v8f16) { | 
|  | SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || | 
|  | VT == MVT::v2f32) { | 
|  | SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || | 
|  | VT == MVT::v1f64) { | 
|  | SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::LD2LANEpost: { | 
|  | if (VT == MVT::v16i8 || VT == MVT::v8i8) { | 
|  | SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || | 
|  | VT == MVT::v8f16) { | 
|  | SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || | 
|  | VT == MVT::v2f32) { | 
|  | SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || | 
|  | VT == MVT::v1f64) { | 
|  | SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::LD3LANEpost: { | 
|  | if (VT == MVT::v16i8 || VT == MVT::v8i8) { | 
|  | SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || | 
|  | VT == MVT::v8f16) { | 
|  | SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || | 
|  | VT == MVT::v2f32) { | 
|  | SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || | 
|  | VT == MVT::v1f64) { | 
|  | SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::LD4LANEpost: { | 
|  | if (VT == MVT::v16i8 || VT == MVT::v8i8) { | 
|  | SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || | 
|  | VT == MVT::v8f16) { | 
|  | SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || | 
|  | VT == MVT::v2f32) { | 
|  | SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || | 
|  | VT == MVT::v1f64) { | 
|  | SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::ST2post: { | 
|  | VT = Node->getOperand(1).getValueType(); | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::ST3post: { | 
|  | VT = Node->getOperand(1).getValueType(); | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::ST4post: { | 
|  | VT = Node->getOperand(1).getValueType(); | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::ST1x2post: { | 
|  | VT = Node->getOperand(1).getValueType(); | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::ST1x3post: { | 
|  | VT = Node->getOperand(1).getValueType(); | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::ST1x4post: { | 
|  | VT = Node->getOperand(1).getValueType(); | 
|  | if (VT == MVT::v8i8) { | 
|  | SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v16i8) { | 
|  | SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { | 
|  | SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { | 
|  | SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { | 
|  | SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { | 
|  | SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { | 
|  | SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { | 
|  | SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::ST2LANEpost: { | 
|  | VT = Node->getOperand(1).getValueType(); | 
|  | if (VT == MVT::v16i8 || VT == MVT::v8i8) { | 
|  | SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || | 
|  | VT == MVT::v8f16) { | 
|  | SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || | 
|  | VT == MVT::v2f32) { | 
|  | SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || | 
|  | VT == MVT::v1f64) { | 
|  | SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::ST3LANEpost: { | 
|  | VT = Node->getOperand(1).getValueType(); | 
|  | if (VT == MVT::v16i8 || VT == MVT::v8i8) { | 
|  | SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || | 
|  | VT == MVT::v8f16) { | 
|  | SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || | 
|  | VT == MVT::v2f32) { | 
|  | SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || | 
|  | VT == MVT::v1f64) { | 
|  | SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AArch64ISD::ST4LANEpost: { | 
|  | VT = Node->getOperand(1).getValueType(); | 
|  | if (VT == MVT::v16i8 || VT == MVT::v8i8) { | 
|  | SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || | 
|  | VT == MVT::v8f16) { | 
|  | SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || | 
|  | VT == MVT::v2f32) { | 
|  | SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST); | 
|  | return; | 
|  | } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || | 
|  | VT == MVT::v1f64) { | 
|  | SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Select the default instruction | 
|  | SelectCode(Node); | 
|  | } | 
|  |  | 
|  | /// createAArch64ISelDag - This pass converts a legalized DAG into a | 
|  | /// AArch64-specific DAG, ready for instruction scheduling. | 
|  | FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM, | 
|  | CodeGenOpt::Level OptLevel) { | 
|  | return new AArch64DAGToDAGISel(TM, OptLevel); | 
|  | } |