|  | //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the ARM specific subclass of TargetSubtargetInfo. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "ARM.h" | 
|  |  | 
|  | #include "ARMCallLowering.h" | 
|  | #include "ARMLegalizerInfo.h" | 
|  | #include "ARMRegisterBankInfo.h" | 
|  | #include "ARMSubtarget.h" | 
|  | #include "ARMFrameLowering.h" | 
|  | #include "ARMInstrInfo.h" | 
|  | #include "ARMSubtarget.h" | 
|  | #include "ARMTargetMachine.h" | 
|  | #include "MCTargetDesc/ARMMCTargetDesc.h" | 
|  | #include "Thumb1FrameLowering.h" | 
|  | #include "Thumb1InstrInfo.h" | 
|  | #include "Thumb2InstrInfo.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCTargetOptions.h" | 
|  | #include "llvm/Support/CodeGen.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/TargetParser.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "arm-subtarget" | 
|  |  | 
|  | #define GET_SUBTARGETINFO_TARGET_DESC | 
|  | #define GET_SUBTARGETINFO_CTOR | 
|  | #include "ARMGenSubtargetInfo.inc" | 
|  |  | 
|  | static cl::opt<bool> | 
|  | UseFusedMulOps("arm-use-mulops", | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | enum ITMode { | 
|  | DefaultIT, | 
|  | RestrictedIT, | 
|  | NoRestrictedIT | 
|  | }; | 
|  |  | 
|  | static cl::opt<ITMode> | 
|  | IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), | 
|  | cl::ZeroOrMore, | 
|  | cl::values(clEnumValN(DefaultIT, "arm-default-it", | 
|  | "Generate IT block based on arch"), | 
|  | clEnumValN(RestrictedIT, "arm-restrict-it", | 
|  | "Disallow deprecated IT based on ARMv8"), | 
|  | clEnumValN(NoRestrictedIT, "arm-no-restrict-it", | 
|  | "Allow IT blocks based on ARMv7"))); | 
|  |  | 
|  | /// ForceFastISel - Use the fast-isel, even for subtargets where it is not | 
|  | /// currently supported (for testing only). | 
|  | static cl::opt<bool> | 
|  | ForceFastISel("arm-force-fast-isel", | 
|  | cl::init(false), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> EnableSubRegLiveness("arm-enable-subreg-liveness", | 
|  | cl::init(false), cl::Hidden); | 
|  |  | 
|  | /// initializeSubtargetDependencies - Initializes using a CPU and feature string | 
|  | /// so that we can use initializer lists for subtarget initialization. | 
|  | ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU, | 
|  | StringRef FS) { | 
|  | initializeEnvironment(); | 
|  | initSubtargetFeatures(CPU, FS); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU, | 
|  | StringRef FS) { | 
|  | ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS); | 
|  | if (STI.isThumb1Only()) | 
|  | return (ARMFrameLowering *)new Thumb1FrameLowering(STI); | 
|  |  | 
|  | return new ARMFrameLowering(STI); | 
|  | } | 
|  |  | 
|  | ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU, | 
|  | const std::string &FS, | 
|  | const ARMBaseTargetMachine &TM, bool IsLittle, | 
|  | bool MinSize) | 
|  | : ARMGenSubtargetInfo(TT, CPU, FS), UseMulOps(UseFusedMulOps), | 
|  | CPUString(CPU), OptMinSize(MinSize), IsLittle(IsLittle), | 
|  | TargetTriple(TT), Options(TM.Options), TM(TM), | 
|  | FrameLowering(initializeFrameLowering(CPU, FS)), | 
|  | // At this point initializeSubtargetDependencies has been called so | 
|  | // we can query directly. | 
|  | InstrInfo(isThumb1Only() | 
|  | ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this) | 
|  | : !isThumb() | 
|  | ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this) | 
|  | : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)), | 
|  | TLInfo(TM, *this) { | 
|  |  | 
|  | CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering())); | 
|  | Legalizer.reset(new ARMLegalizerInfo(*this)); | 
|  |  | 
|  | auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo()); | 
|  |  | 
|  | // FIXME: At this point, we can't rely on Subtarget having RBI. | 
|  | // It's awkward to mix passing RBI and the Subtarget; should we pass | 
|  | // TII/TRI as well? | 
|  | InstSelector.reset(createARMInstructionSelector( | 
|  | *static_cast<const ARMBaseTargetMachine *>(&TM), *this, *RBI)); | 
|  |  | 
|  | RegBankInfo.reset(RBI); | 
|  | } | 
|  |  | 
|  | const CallLowering *ARMSubtarget::getCallLowering() const { | 
|  | return CallLoweringInfo.get(); | 
|  | } | 
|  |  | 
|  | InstructionSelector *ARMSubtarget::getInstructionSelector() const { | 
|  | return InstSelector.get(); | 
|  | } | 
|  |  | 
|  | const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const { | 
|  | return Legalizer.get(); | 
|  | } | 
|  |  | 
|  | const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const { | 
|  | return RegBankInfo.get(); | 
|  | } | 
|  |  | 
|  | bool ARMSubtarget::isXRaySupported() const { | 
|  | // We don't currently suppport Thumb, but Windows requires Thumb. | 
|  | return hasV6Ops() && hasARMOps() && !isTargetWindows(); | 
|  | } | 
|  |  | 
|  | void ARMSubtarget::initializeEnvironment() { | 
|  | // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this | 
|  | // directly from it, but we can try to make sure they're consistent when both | 
|  | // available. | 
|  | UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() && | 
|  | Options.ExceptionModel == ExceptionHandling::None) || | 
|  | Options.ExceptionModel == ExceptionHandling::SjLj; | 
|  | assert((!TM.getMCAsmInfo() || | 
|  | (TM.getMCAsmInfo()->getExceptionHandlingType() == | 
|  | ExceptionHandling::SjLj) == UseSjLjEH) && | 
|  | "inconsistent sjlj choice between CodeGen and MC"); | 
|  | } | 
|  |  | 
|  | void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) { | 
|  | if (CPUString.empty()) { | 
|  | CPUString = "generic"; | 
|  |  | 
|  | if (isTargetDarwin()) { | 
|  | StringRef ArchName = TargetTriple.getArchName(); | 
|  | ARM::ArchKind AK = ARM::parseArch(ArchName); | 
|  | if (AK == ARM::ArchKind::ARMV7S) | 
|  | // Default to the Swift CPU when targeting armv7s/thumbv7s. | 
|  | CPUString = "swift"; | 
|  | else if (AK == ARM::ArchKind::ARMV7K) | 
|  | // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k. | 
|  | // ARMv7k does not use SjLj exception handling. | 
|  | CPUString = "cortex-a7"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Insert the architecture feature derived from the target triple into the | 
|  | // feature string. This is important for setting features that are implied | 
|  | // based on the architecture version. | 
|  | std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString); | 
|  | if (!FS.empty()) { | 
|  | if (!ArchFS.empty()) | 
|  | ArchFS = (Twine(ArchFS) + "," + FS).str(); | 
|  | else | 
|  | ArchFS = FS; | 
|  | } | 
|  | ParseSubtargetFeatures(CPUString, ArchFS); | 
|  |  | 
|  | // FIXME: This used enable V6T2 support implicitly for Thumb2 mode. | 
|  | // Assert this for now to make the change obvious. | 
|  | assert(hasV6T2Ops() || !hasThumb2()); | 
|  |  | 
|  | // Execute only support requires movt support | 
|  | if (genExecuteOnly()) { | 
|  | NoMovt = false; | 
|  | assert(hasV8MBaselineOps() && "Cannot generate execute-only code for this target"); | 
|  | } | 
|  |  | 
|  | // Keep a pointer to static instruction cost data for the specified CPU. | 
|  | SchedModel = getSchedModelForCPU(CPUString); | 
|  |  | 
|  | // Initialize scheduling itinerary for the specified CPU. | 
|  | InstrItins = getInstrItineraryForCPU(CPUString); | 
|  |  | 
|  | // FIXME: this is invalid for WindowsCE | 
|  | if (isTargetWindows()) | 
|  | NoARM = true; | 
|  |  | 
|  | if (isAAPCS_ABI()) | 
|  | stackAlignment = Align(8); | 
|  | if (isTargetNaCl() || isAAPCS16_ABI()) | 
|  | stackAlignment = Align(16); | 
|  |  | 
|  | // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo:: | 
|  | // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as | 
|  | // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation | 
|  | // support in the assembler and linker to be used. This would need to be | 
|  | // fixed to fully support tail calls in Thumb1. | 
|  | // | 
|  | // For ARMv8-M, we /do/ implement tail calls.  Doing this is tricky for v8-M | 
|  | // baseline, since the LDM/POP instruction on Thumb doesn't take LR.  This | 
|  | // means if we need to reload LR, it takes extra instructions, which outweighs | 
|  | // the value of the tail call; but here we don't know yet whether LR is going | 
|  | // to be used. We take the optimistic approach of generating the tail call and | 
|  | // perhaps taking a hit if we need to restore the LR. | 
|  |  | 
|  | // Thumb1 PIC calls to external symbols use BX, so they can be tail calls, | 
|  | // but we need to make sure there are enough registers; the only valid | 
|  | // registers are the 4 used for parameters.  We don't currently do this | 
|  | // case. | 
|  |  | 
|  | SupportsTailCall = !isThumb() || hasV8MBaselineOps(); | 
|  |  | 
|  | if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0)) | 
|  | SupportsTailCall = false; | 
|  |  | 
|  | switch (IT) { | 
|  | case DefaultIT: | 
|  | RestrictIT = hasV8Ops(); | 
|  | break; | 
|  | case RestrictedIT: | 
|  | RestrictIT = true; | 
|  | break; | 
|  | case NoRestrictedIT: | 
|  | RestrictIT = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default. | 
|  | const FeatureBitset &Bits = getFeatureBits(); | 
|  | if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters | 
|  | (Options.UnsafeFPMath || isTargetDarwin())) | 
|  | UseNEONForSinglePrecisionFP = true; | 
|  |  | 
|  | if (isRWPI()) | 
|  | ReserveR9 = true; | 
|  |  | 
|  | // If MVEVectorCostFactor is still 0 (has not been set to anything else), default it to 2 | 
|  | if (MVEVectorCostFactor == 0) | 
|  | MVEVectorCostFactor = 2; | 
|  |  | 
|  | // FIXME: Teach TableGen to deal with these instead of doing it manually here. | 
|  | switch (ARMProcFamily) { | 
|  | case Others: | 
|  | case CortexA5: | 
|  | break; | 
|  | case CortexA7: | 
|  | LdStMultipleTiming = DoubleIssue; | 
|  | break; | 
|  | case CortexA8: | 
|  | LdStMultipleTiming = DoubleIssue; | 
|  | break; | 
|  | case CortexA9: | 
|  | LdStMultipleTiming = DoubleIssueCheckUnalignedAccess; | 
|  | PreISelOperandLatencyAdjustment = 1; | 
|  | break; | 
|  | case CortexA12: | 
|  | break; | 
|  | case CortexA15: | 
|  | MaxInterleaveFactor = 2; | 
|  | PreISelOperandLatencyAdjustment = 1; | 
|  | PartialUpdateClearance = 12; | 
|  | break; | 
|  | case CortexA17: | 
|  | case CortexA32: | 
|  | case CortexA35: | 
|  | case CortexA53: | 
|  | case CortexA55: | 
|  | case CortexA57: | 
|  | case CortexA72: | 
|  | case CortexA73: | 
|  | case CortexA75: | 
|  | case CortexA76: | 
|  | case CortexR4: | 
|  | case CortexR4F: | 
|  | case CortexR5: | 
|  | case CortexR7: | 
|  | case CortexM3: | 
|  | case CortexR52: | 
|  | break; | 
|  | case Exynos: | 
|  | LdStMultipleTiming = SingleIssuePlusExtras; | 
|  | MaxInterleaveFactor = 4; | 
|  | if (!isThumb()) | 
|  | PrefLoopLogAlignment = 3; | 
|  | break; | 
|  | case Kryo: | 
|  | break; | 
|  | case Krait: | 
|  | PreISelOperandLatencyAdjustment = 1; | 
|  | break; | 
|  | case NeoverseN1: | 
|  | break; | 
|  | case Swift: | 
|  | MaxInterleaveFactor = 2; | 
|  | LdStMultipleTiming = SingleIssuePlusExtras; | 
|  | PreISelOperandLatencyAdjustment = 1; | 
|  | PartialUpdateClearance = 12; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); } | 
|  |  | 
|  | bool ARMSubtarget::isAPCS_ABI() const { | 
|  | assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); | 
|  | return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS; | 
|  | } | 
|  | bool ARMSubtarget::isAAPCS_ABI() const { | 
|  | assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); | 
|  | return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS || | 
|  | TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16; | 
|  | } | 
|  | bool ARMSubtarget::isAAPCS16_ABI() const { | 
|  | assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); | 
|  | return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16; | 
|  | } | 
|  |  | 
|  | bool ARMSubtarget::isROPI() const { | 
|  | return TM.getRelocationModel() == Reloc::ROPI || | 
|  | TM.getRelocationModel() == Reloc::ROPI_RWPI; | 
|  | } | 
|  | bool ARMSubtarget::isRWPI() const { | 
|  | return TM.getRelocationModel() == Reloc::RWPI || | 
|  | TM.getRelocationModel() == Reloc::ROPI_RWPI; | 
|  | } | 
|  |  | 
|  | bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const { | 
|  | if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) | 
|  | return true; | 
|  |  | 
|  | // 32 bit macho has no relocation for a-b if a is undefined, even if b is in | 
|  | // the section that is being relocated. This means we have to use o load even | 
|  | // for GVs that are known to be local to the dso. | 
|  | if (isTargetMachO() && TM.isPositionIndependent() && | 
|  | (GV->isDeclarationForLinker() || GV->hasCommonLinkage())) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const { | 
|  | return isTargetELF() && TM.isPositionIndependent() && | 
|  | !TM.shouldAssumeDSOLocal(*GV->getParent(), GV); | 
|  | } | 
|  |  | 
|  | unsigned ARMSubtarget::getMispredictionPenalty() const { | 
|  | return SchedModel.MispredictPenalty; | 
|  | } | 
|  |  | 
|  | bool ARMSubtarget::enableMachineScheduler() const { | 
|  | // The MachineScheduler can increase register usage, so we use more high | 
|  | // registers and end up with more T2 instructions that cannot be converted to | 
|  | // T1 instructions. At least until we do better at converting to thumb1 | 
|  | // instructions, on cortex-m at Oz where we are size-paranoid, don't use the | 
|  | // Machine scheduler, relying on the DAG register pressure scheduler instead. | 
|  | if (isMClass() && hasMinSize()) | 
|  | return false; | 
|  | // Enable the MachineScheduler before register allocation for subtargets | 
|  | // with the use-misched feature. | 
|  | return useMachineScheduler(); | 
|  | } | 
|  |  | 
|  | bool ARMSubtarget::enableSubRegLiveness() const { return EnableSubRegLiveness; } | 
|  |  | 
|  | // This overrides the PostRAScheduler bit in the SchedModel for any CPU. | 
|  | bool ARMSubtarget::enablePostRAScheduler() const { | 
|  | if (enableMachineScheduler()) | 
|  | return false; | 
|  | if (disablePostRAScheduler()) | 
|  | return false; | 
|  | // Thumb1 cores will generally not benefit from post-ra scheduling | 
|  | return !isThumb1Only(); | 
|  | } | 
|  |  | 
|  | bool ARMSubtarget::enablePostRAMachineScheduler() const { | 
|  | if (!enableMachineScheduler()) | 
|  | return false; | 
|  | if (disablePostRAScheduler()) | 
|  | return false; | 
|  | return !isThumb1Only(); | 
|  | } | 
|  |  | 
|  | bool ARMSubtarget::enableAtomicExpand() const { return hasAnyDataBarrier(); } | 
|  |  | 
|  | bool ARMSubtarget::useStride4VFPs() const { | 
|  | // For general targets, the prologue can grow when VFPs are allocated with | 
|  | // stride 4 (more vpush instructions). But WatchOS uses a compact unwind | 
|  | // format which it's more important to get right. | 
|  | return isTargetWatchABI() || | 
|  | (useWideStrideVFP() && !OptMinSize); | 
|  | } | 
|  |  | 
|  | bool ARMSubtarget::useMovt() const { | 
|  | // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit | 
|  | // immediates as it is inherently position independent, and may be out of | 
|  | // range otherwise. | 
|  | return !NoMovt && hasV8MBaselineOps() && | 
|  | (isTargetWindows() || !OptMinSize || genExecuteOnly()); | 
|  | } | 
|  |  | 
|  | bool ARMSubtarget::useFastISel() const { | 
|  | // Enable fast-isel for any target, for testing only. | 
|  | if (ForceFastISel) | 
|  | return true; | 
|  |  | 
|  | // Limit fast-isel to the targets that are or have been tested. | 
|  | if (!hasV6Ops()) | 
|  | return false; | 
|  |  | 
|  | // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl. | 
|  | return TM.Options.EnableFastISel && | 
|  | ((isTargetMachO() && !isThumb1Only()) || | 
|  | (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb())); | 
|  | } | 
|  |  | 
|  | unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const { | 
|  | // The GPR register class has multiple possible allocation orders, with | 
|  | // tradeoffs preferred by different sub-architectures and optimisation goals. | 
|  | // The allocation orders are: | 
|  | // 0: (the default tablegen order, not used) | 
|  | // 1: r14, r0-r13 | 
|  | // 2: r0-r7 | 
|  | // 3: r0-r7, r12, lr, r8-r11 | 
|  | // Note that the register allocator will change this order so that | 
|  | // callee-saved registers are used later, as they require extra work in the | 
|  | // prologue/epilogue (though we sometimes override that). | 
|  |  | 
|  | // For thumb1-only targets, only the low registers are allocatable. | 
|  | if (isThumb1Only()) | 
|  | return 2; | 
|  |  | 
|  | // Allocate low registers first, so we can select more 16-bit instructions. | 
|  | // We also (in ignoreCSRForAllocationOrder) override  the default behaviour | 
|  | // with regards to callee-saved registers, because pushing extra registers is | 
|  | // much cheaper (in terms of code size) than using high registers. After | 
|  | // that, we allocate r12 (doesn't need to be saved), lr (saving it means we | 
|  | // can return with the pop, don't need an extra "bx lr") and then the rest of | 
|  | // the high registers. | 
|  | if (isThumb2() && MF.getFunction().hasMinSize()) | 
|  | return 3; | 
|  |  | 
|  | // Otherwise, allocate in the default order, using LR first because saving it | 
|  | // allows a shorter epilogue sequence. | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF, | 
|  | unsigned PhysReg) const { | 
|  | // To minimize code size in Thumb2, we prefer the usage of low regs (lower | 
|  | // cost per use) so we can  use narrow encoding. By default, caller-saved | 
|  | // registers (e.g. lr, r12) are always  allocated first, regardless of | 
|  | // their cost per use. When optForMinSize, we prefer the low regs even if | 
|  | // they are CSR because usually push/pop can be folded into existing ones. | 
|  | return isThumb2() && MF.getFunction().hasMinSize() && | 
|  | ARM::GPRRegClass.contains(PhysReg); | 
|  | } |