|  | //===-- IntegerDivision.cpp - Expand integer division ---------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains an implementation of 32bit and 64bit scalar integer | 
|  | // division for targets that don't have native support. It's largely derived | 
|  | // from compiler-rt's implementations of __udivsi3 and __udivmoddi4, | 
|  | // but hand-tuned for targets that prefer less control flow. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Utils/IntegerDivision.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "integer-division" | 
|  |  | 
|  | /// Generate code to compute the remainder of two signed integers. Returns the | 
|  | /// remainder, which will have the sign of the dividend. Builder's insert point | 
|  | /// should be pointing where the caller wants code generated, e.g. at the srem | 
|  | /// instruction. This will generate a urem in the process, and Builder's insert | 
|  | /// point will be pointing at the uren (if present, i.e. not folded), ready to | 
|  | /// be expanded if the user wishes | 
|  | static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor, | 
|  | IRBuilder<> &Builder) { | 
|  | unsigned BitWidth = Dividend->getType()->getIntegerBitWidth(); | 
|  | ConstantInt *Shift; | 
|  |  | 
|  | if (BitWidth == 64) { | 
|  | Shift = Builder.getInt64(63); | 
|  | } else { | 
|  | assert(BitWidth == 32 && "Unexpected bit width"); | 
|  | Shift = Builder.getInt32(31); | 
|  | } | 
|  |  | 
|  | // Following instructions are generated for both i32 (shift 31) and | 
|  | // i64 (shift 63). | 
|  |  | 
|  | // ;   %dividend_sgn = ashr i32 %dividend, 31 | 
|  | // ;   %divisor_sgn  = ashr i32 %divisor, 31 | 
|  | // ;   %dvd_xor      = xor i32 %dividend, %dividend_sgn | 
|  | // ;   %dvs_xor      = xor i32 %divisor, %divisor_sgn | 
|  | // ;   %u_dividend   = sub i32 %dvd_xor, %dividend_sgn | 
|  | // ;   %u_divisor    = sub i32 %dvs_xor, %divisor_sgn | 
|  | // ;   %urem         = urem i32 %dividend, %divisor | 
|  | // ;   %xored        = xor i32 %urem, %dividend_sgn | 
|  | // ;   %srem         = sub i32 %xored, %dividend_sgn | 
|  | Value *DividendSign = Builder.CreateAShr(Dividend, Shift); | 
|  | Value *DivisorSign  = Builder.CreateAShr(Divisor, Shift); | 
|  | Value *DvdXor       = Builder.CreateXor(Dividend, DividendSign); | 
|  | Value *DvsXor       = Builder.CreateXor(Divisor, DivisorSign); | 
|  | Value *UDividend    = Builder.CreateSub(DvdXor, DividendSign); | 
|  | Value *UDivisor     = Builder.CreateSub(DvsXor, DivisorSign); | 
|  | Value *URem         = Builder.CreateURem(UDividend, UDivisor); | 
|  | Value *Xored        = Builder.CreateXor(URem, DividendSign); | 
|  | Value *SRem         = Builder.CreateSub(Xored, DividendSign); | 
|  |  | 
|  | if (Instruction *URemInst = dyn_cast<Instruction>(URem)) | 
|  | Builder.SetInsertPoint(URemInst); | 
|  |  | 
|  | return SRem; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Generate code to compute the remainder of two unsigned integers. Returns the | 
|  | /// remainder. Builder's insert point should be pointing where the caller wants | 
|  | /// code generated, e.g. at the urem instruction. This will generate a udiv in | 
|  | /// the process, and Builder's insert point will be pointing at the udiv (if | 
|  | /// present, i.e. not folded), ready to be expanded if the user wishes | 
|  | static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor, | 
|  | IRBuilder<> &Builder) { | 
|  | // Remainder = Dividend - Quotient*Divisor | 
|  |  | 
|  | // Following instructions are generated for both i32 and i64 | 
|  |  | 
|  | // ;   %quotient  = udiv i32 %dividend, %divisor | 
|  | // ;   %product   = mul i32 %divisor, %quotient | 
|  | // ;   %remainder = sub i32 %dividend, %product | 
|  | Value *Quotient  = Builder.CreateUDiv(Dividend, Divisor); | 
|  | Value *Product   = Builder.CreateMul(Divisor, Quotient); | 
|  | Value *Remainder = Builder.CreateSub(Dividend, Product); | 
|  |  | 
|  | if (Instruction *UDiv = dyn_cast<Instruction>(Quotient)) | 
|  | Builder.SetInsertPoint(UDiv); | 
|  |  | 
|  | return Remainder; | 
|  | } | 
|  |  | 
|  | /// Generate code to divide two signed integers. Returns the quotient, rounded | 
|  | /// towards 0. Builder's insert point should be pointing where the caller wants | 
|  | /// code generated, e.g. at the sdiv instruction. This will generate a udiv in | 
|  | /// the process, and Builder's insert point will be pointing at the udiv (if | 
|  | /// present, i.e. not folded), ready to be expanded if the user wishes. | 
|  | static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor, | 
|  | IRBuilder<> &Builder) { | 
|  | // Implementation taken from compiler-rt's __divsi3 and __divdi3 | 
|  |  | 
|  | unsigned BitWidth = Dividend->getType()->getIntegerBitWidth(); | 
|  | ConstantInt *Shift; | 
|  |  | 
|  | if (BitWidth == 64) { | 
|  | Shift = Builder.getInt64(63); | 
|  | } else { | 
|  | assert(BitWidth == 32 && "Unexpected bit width"); | 
|  | Shift = Builder.getInt32(31); | 
|  | } | 
|  |  | 
|  | // Following instructions are generated for both i32 (shift 31) and | 
|  | // i64 (shift 63). | 
|  |  | 
|  | // ;   %tmp    = ashr i32 %dividend, 31 | 
|  | // ;   %tmp1   = ashr i32 %divisor, 31 | 
|  | // ;   %tmp2   = xor i32 %tmp, %dividend | 
|  | // ;   %u_dvnd = sub nsw i32 %tmp2, %tmp | 
|  | // ;   %tmp3   = xor i32 %tmp1, %divisor | 
|  | // ;   %u_dvsr = sub nsw i32 %tmp3, %tmp1 | 
|  | // ;   %q_sgn  = xor i32 %tmp1, %tmp | 
|  | // ;   %q_mag  = udiv i32 %u_dvnd, %u_dvsr | 
|  | // ;   %tmp4   = xor i32 %q_mag, %q_sgn | 
|  | // ;   %q      = sub i32 %tmp4, %q_sgn | 
|  | Value *Tmp    = Builder.CreateAShr(Dividend, Shift); | 
|  | Value *Tmp1   = Builder.CreateAShr(Divisor, Shift); | 
|  | Value *Tmp2   = Builder.CreateXor(Tmp, Dividend); | 
|  | Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp); | 
|  | Value *Tmp3   = Builder.CreateXor(Tmp1, Divisor); | 
|  | Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1); | 
|  | Value *Q_Sgn  = Builder.CreateXor(Tmp1, Tmp); | 
|  | Value *Q_Mag  = Builder.CreateUDiv(U_Dvnd, U_Dvsr); | 
|  | Value *Tmp4   = Builder.CreateXor(Q_Mag, Q_Sgn); | 
|  | Value *Q      = Builder.CreateSub(Tmp4, Q_Sgn); | 
|  |  | 
|  | if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag)) | 
|  | Builder.SetInsertPoint(UDiv); | 
|  |  | 
|  | return Q; | 
|  | } | 
|  |  | 
|  | /// Generates code to divide two unsigned scalar 32-bit or 64-bit integers. | 
|  | /// Returns the quotient, rounded towards 0. Builder's insert point should | 
|  | /// point where the caller wants code generated, e.g. at the udiv instruction. | 
|  | static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor, | 
|  | IRBuilder<> &Builder) { | 
|  | // The basic algorithm can be found in the compiler-rt project's | 
|  | // implementation of __udivsi3.c. Here, we do a lower-level IR based approach | 
|  | // that's been hand-tuned to lessen the amount of control flow involved. | 
|  |  | 
|  | // Some helper values | 
|  | IntegerType *DivTy = cast<IntegerType>(Dividend->getType()); | 
|  | unsigned BitWidth = DivTy->getBitWidth(); | 
|  |  | 
|  | ConstantInt *Zero; | 
|  | ConstantInt *One; | 
|  | ConstantInt *NegOne; | 
|  | ConstantInt *MSB; | 
|  |  | 
|  | if (BitWidth == 64) { | 
|  | Zero      = Builder.getInt64(0); | 
|  | One       = Builder.getInt64(1); | 
|  | NegOne    = ConstantInt::getSigned(DivTy, -1); | 
|  | MSB       = Builder.getInt64(63); | 
|  | } else { | 
|  | assert(BitWidth == 32 && "Unexpected bit width"); | 
|  | Zero      = Builder.getInt32(0); | 
|  | One       = Builder.getInt32(1); | 
|  | NegOne    = ConstantInt::getSigned(DivTy, -1); | 
|  | MSB       = Builder.getInt32(31); | 
|  | } | 
|  |  | 
|  | ConstantInt *True = Builder.getTrue(); | 
|  |  | 
|  | BasicBlock *IBB = Builder.GetInsertBlock(); | 
|  | Function *F = IBB->getParent(); | 
|  | Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz, | 
|  | DivTy); | 
|  |  | 
|  | // Our CFG is going to look like: | 
|  | // +---------------------+ | 
|  | // | special-cases       | | 
|  | // |   ...               | | 
|  | // +---------------------+ | 
|  | //  |       | | 
|  | //  |   +----------+ | 
|  | //  |   |  bb1     | | 
|  | //  |   |  ...     | | 
|  | //  |   +----------+ | 
|  | //  |    |      | | 
|  | //  |    |  +------------+ | 
|  | //  |    |  |  preheader | | 
|  | //  |    |  |  ...       | | 
|  | //  |    |  +------------+ | 
|  | //  |    |      | | 
|  | //  |    |      |      +---+ | 
|  | //  |    |      |      |   | | 
|  | //  |    |  +------------+ | | 
|  | //  |    |  |  do-while  | | | 
|  | //  |    |  |  ...       | | | 
|  | //  |    |  +------------+ | | 
|  | //  |    |      |      |   | | 
|  | //  |   +-----------+  +---+ | 
|  | //  |   | loop-exit | | 
|  | //  |   |  ...      | | 
|  | //  |   +-----------+ | 
|  | //  |     | | 
|  | // +-------+ | 
|  | // | ...   | | 
|  | // | end   | | 
|  | // +-------+ | 
|  | BasicBlock *SpecialCases = Builder.GetInsertBlock(); | 
|  | SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases")); | 
|  | BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(), | 
|  | "udiv-end"); | 
|  | BasicBlock *LoopExit  = BasicBlock::Create(Builder.getContext(), | 
|  | "udiv-loop-exit", F, End); | 
|  | BasicBlock *DoWhile   = BasicBlock::Create(Builder.getContext(), | 
|  | "udiv-do-while", F, End); | 
|  | BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(), | 
|  | "udiv-preheader", F, End); | 
|  | BasicBlock *BB1       = BasicBlock::Create(Builder.getContext(), | 
|  | "udiv-bb1", F, End); | 
|  |  | 
|  | // We'll be overwriting the terminator to insert our extra blocks | 
|  | SpecialCases->getTerminator()->eraseFromParent(); | 
|  |  | 
|  | // Same instructions are generated for both i32 (msb 31) and i64 (msb 63). | 
|  |  | 
|  | // First off, check for special cases: dividend or divisor is zero, divisor | 
|  | // is greater than dividend, and divisor is 1. | 
|  | // ; special-cases: | 
|  | // ;   %ret0_1      = icmp eq i32 %divisor, 0 | 
|  | // ;   %ret0_2      = icmp eq i32 %dividend, 0 | 
|  | // ;   %ret0_3      = or i1 %ret0_1, %ret0_2 | 
|  | // ;   %tmp0        = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true) | 
|  | // ;   %tmp1        = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true) | 
|  | // ;   %sr          = sub nsw i32 %tmp0, %tmp1 | 
|  | // ;   %ret0_4      = icmp ugt i32 %sr, 31 | 
|  | // ;   %ret0        = or i1 %ret0_3, %ret0_4 | 
|  | // ;   %retDividend = icmp eq i32 %sr, 31 | 
|  | // ;   %retVal      = select i1 %ret0, i32 0, i32 %dividend | 
|  | // ;   %earlyRet    = or i1 %ret0, %retDividend | 
|  | // ;   br i1 %earlyRet, label %end, label %bb1 | 
|  | Builder.SetInsertPoint(SpecialCases); | 
|  | Value *Ret0_1      = Builder.CreateICmpEQ(Divisor, Zero); | 
|  | Value *Ret0_2      = Builder.CreateICmpEQ(Dividend, Zero); | 
|  | Value *Ret0_3      = Builder.CreateOr(Ret0_1, Ret0_2); | 
|  | Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True}); | 
|  | Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True}); | 
|  | Value *SR          = Builder.CreateSub(Tmp0, Tmp1); | 
|  | Value *Ret0_4      = Builder.CreateICmpUGT(SR, MSB); | 
|  | Value *Ret0        = Builder.CreateOr(Ret0_3, Ret0_4); | 
|  | Value *RetDividend = Builder.CreateICmpEQ(SR, MSB); | 
|  | Value *RetVal      = Builder.CreateSelect(Ret0, Zero, Dividend); | 
|  | Value *EarlyRet    = Builder.CreateOr(Ret0, RetDividend); | 
|  | Builder.CreateCondBr(EarlyRet, End, BB1); | 
|  |  | 
|  | // ; bb1:                                             ; preds = %special-cases | 
|  | // ;   %sr_1     = add i32 %sr, 1 | 
|  | // ;   %tmp2     = sub i32 31, %sr | 
|  | // ;   %q        = shl i32 %dividend, %tmp2 | 
|  | // ;   %skipLoop = icmp eq i32 %sr_1, 0 | 
|  | // ;   br i1 %skipLoop, label %loop-exit, label %preheader | 
|  | Builder.SetInsertPoint(BB1); | 
|  | Value *SR_1     = Builder.CreateAdd(SR, One); | 
|  | Value *Tmp2     = Builder.CreateSub(MSB, SR); | 
|  | Value *Q        = Builder.CreateShl(Dividend, Tmp2); | 
|  | Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero); | 
|  | Builder.CreateCondBr(SkipLoop, LoopExit, Preheader); | 
|  |  | 
|  | // ; preheader:                                           ; preds = %bb1 | 
|  | // ;   %tmp3 = lshr i32 %dividend, %sr_1 | 
|  | // ;   %tmp4 = add i32 %divisor, -1 | 
|  | // ;   br label %do-while | 
|  | Builder.SetInsertPoint(Preheader); | 
|  | Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1); | 
|  | Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne); | 
|  | Builder.CreateBr(DoWhile); | 
|  |  | 
|  | // ; do-while:                                 ; preds = %do-while, %preheader | 
|  | // ;   %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ] | 
|  | // ;   %sr_3    = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ] | 
|  | // ;   %r_1     = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ] | 
|  | // ;   %q_2     = phi i32 [ %q, %preheader ], [ %q_1, %do-while ] | 
|  | // ;   %tmp5  = shl i32 %r_1, 1 | 
|  | // ;   %tmp6  = lshr i32 %q_2, 31 | 
|  | // ;   %tmp7  = or i32 %tmp5, %tmp6 | 
|  | // ;   %tmp8  = shl i32 %q_2, 1 | 
|  | // ;   %q_1   = or i32 %carry_1, %tmp8 | 
|  | // ;   %tmp9  = sub i32 %tmp4, %tmp7 | 
|  | // ;   %tmp10 = ashr i32 %tmp9, 31 | 
|  | // ;   %carry = and i32 %tmp10, 1 | 
|  | // ;   %tmp11 = and i32 %tmp10, %divisor | 
|  | // ;   %r     = sub i32 %tmp7, %tmp11 | 
|  | // ;   %sr_2  = add i32 %sr_3, -1 | 
|  | // ;   %tmp12 = icmp eq i32 %sr_2, 0 | 
|  | // ;   br i1 %tmp12, label %loop-exit, label %do-while | 
|  | Builder.SetInsertPoint(DoWhile); | 
|  | PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2); | 
|  | PHINode *SR_3    = Builder.CreatePHI(DivTy, 2); | 
|  | PHINode *R_1     = Builder.CreatePHI(DivTy, 2); | 
|  | PHINode *Q_2     = Builder.CreatePHI(DivTy, 2); | 
|  | Value *Tmp5  = Builder.CreateShl(R_1, One); | 
|  | Value *Tmp6  = Builder.CreateLShr(Q_2, MSB); | 
|  | Value *Tmp7  = Builder.CreateOr(Tmp5, Tmp6); | 
|  | Value *Tmp8  = Builder.CreateShl(Q_2, One); | 
|  | Value *Q_1   = Builder.CreateOr(Carry_1, Tmp8); | 
|  | Value *Tmp9  = Builder.CreateSub(Tmp4, Tmp7); | 
|  | Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB); | 
|  | Value *Carry = Builder.CreateAnd(Tmp10, One); | 
|  | Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor); | 
|  | Value *R     = Builder.CreateSub(Tmp7, Tmp11); | 
|  | Value *SR_2  = Builder.CreateAdd(SR_3, NegOne); | 
|  | Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero); | 
|  | Builder.CreateCondBr(Tmp12, LoopExit, DoWhile); | 
|  |  | 
|  | // ; loop-exit:                                      ; preds = %do-while, %bb1 | 
|  | // ;   %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ] | 
|  | // ;   %q_3     = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ] | 
|  | // ;   %tmp13 = shl i32 %q_3, 1 | 
|  | // ;   %q_4   = or i32 %carry_2, %tmp13 | 
|  | // ;   br label %end | 
|  | Builder.SetInsertPoint(LoopExit); | 
|  | PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2); | 
|  | PHINode *Q_3     = Builder.CreatePHI(DivTy, 2); | 
|  | Value *Tmp13 = Builder.CreateShl(Q_3, One); | 
|  | Value *Q_4   = Builder.CreateOr(Carry_2, Tmp13); | 
|  | Builder.CreateBr(End); | 
|  |  | 
|  | // ; end:                                 ; preds = %loop-exit, %special-cases | 
|  | // ;   %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ] | 
|  | // ;   ret i32 %q_5 | 
|  | Builder.SetInsertPoint(End, End->begin()); | 
|  | PHINode *Q_5 = Builder.CreatePHI(DivTy, 2); | 
|  |  | 
|  | // Populate the Phis, since all values have now been created. Our Phis were: | 
|  | // ;   %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ] | 
|  | Carry_1->addIncoming(Zero, Preheader); | 
|  | Carry_1->addIncoming(Carry, DoWhile); | 
|  | // ;   %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ] | 
|  | SR_3->addIncoming(SR_1, Preheader); | 
|  | SR_3->addIncoming(SR_2, DoWhile); | 
|  | // ;   %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ] | 
|  | R_1->addIncoming(Tmp3, Preheader); | 
|  | R_1->addIncoming(R, DoWhile); | 
|  | // ;   %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ] | 
|  | Q_2->addIncoming(Q, Preheader); | 
|  | Q_2->addIncoming(Q_1, DoWhile); | 
|  | // ;   %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ] | 
|  | Carry_2->addIncoming(Zero, BB1); | 
|  | Carry_2->addIncoming(Carry, DoWhile); | 
|  | // ;   %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ] | 
|  | Q_3->addIncoming(Q, BB1); | 
|  | Q_3->addIncoming(Q_1, DoWhile); | 
|  | // ;   %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ] | 
|  | Q_5->addIncoming(Q_4, LoopExit); | 
|  | Q_5->addIncoming(RetVal, SpecialCases); | 
|  |  | 
|  | return Q_5; | 
|  | } | 
|  |  | 
|  | /// Generate code to calculate the remainder of two integers, replacing Rem with | 
|  | /// the generated code. This currently generates code using the udiv expansion, | 
|  | /// but future work includes generating more specialized code, e.g. when more | 
|  | /// information about the operands are known. Implements both 32bit and 64bit | 
|  | /// scalar division. | 
|  | /// | 
|  | /// Replace Rem with generated code. | 
|  | bool llvm::expandRemainder(BinaryOperator *Rem) { | 
|  | assert((Rem->getOpcode() == Instruction::SRem || | 
|  | Rem->getOpcode() == Instruction::URem) && | 
|  | "Trying to expand remainder from a non-remainder function"); | 
|  |  | 
|  | IRBuilder<> Builder(Rem); | 
|  |  | 
|  | assert(!Rem->getType()->isVectorTy() && "Div over vectors not supported"); | 
|  | assert((Rem->getType()->getIntegerBitWidth() == 32 || | 
|  | Rem->getType()->getIntegerBitWidth() == 64) && | 
|  | "Div of bitwidth other than 32 or 64 not supported"); | 
|  |  | 
|  | // First prepare the sign if it's a signed remainder | 
|  | if (Rem->getOpcode() == Instruction::SRem) { | 
|  | Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0), | 
|  | Rem->getOperand(1), Builder); | 
|  |  | 
|  | // Check whether this is the insert point while Rem is still valid. | 
|  | bool IsInsertPoint = Rem->getIterator() == Builder.GetInsertPoint(); | 
|  | Rem->replaceAllUsesWith(Remainder); | 
|  | Rem->dropAllReferences(); | 
|  | Rem->eraseFromParent(); | 
|  |  | 
|  | // If we didn't actually generate an urem instruction, we're done | 
|  | // This happens for example if the input were constant. In this case the | 
|  | // Builder insertion point was unchanged | 
|  | if (IsInsertPoint) | 
|  | return true; | 
|  |  | 
|  | BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint()); | 
|  | Rem = BO; | 
|  | } | 
|  |  | 
|  | Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0), | 
|  | Rem->getOperand(1), | 
|  | Builder); | 
|  |  | 
|  | Rem->replaceAllUsesWith(Remainder); | 
|  | Rem->dropAllReferences(); | 
|  | Rem->eraseFromParent(); | 
|  |  | 
|  | // Expand the udiv | 
|  | if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) { | 
|  | assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?"); | 
|  | expandDivision(UDiv); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Generate code to divide two integers, replacing Div with the generated | 
|  | /// code. This currently generates code similarly to compiler-rt's | 
|  | /// implementations, but future work includes generating more specialized code | 
|  | /// when more information about the operands are known. Implements both | 
|  | /// 32bit and 64bit scalar division. | 
|  | /// | 
|  | /// Replace Div with generated code. | 
|  | bool llvm::expandDivision(BinaryOperator *Div) { | 
|  | assert((Div->getOpcode() == Instruction::SDiv || | 
|  | Div->getOpcode() == Instruction::UDiv) && | 
|  | "Trying to expand division from a non-division function"); | 
|  |  | 
|  | IRBuilder<> Builder(Div); | 
|  |  | 
|  | assert(!Div->getType()->isVectorTy() && "Div over vectors not supported"); | 
|  | assert((Div->getType()->getIntegerBitWidth() == 32 || | 
|  | Div->getType()->getIntegerBitWidth() == 64) && | 
|  | "Div of bitwidth other than 32 or 64 not supported"); | 
|  |  | 
|  | // First prepare the sign if it's a signed division | 
|  | if (Div->getOpcode() == Instruction::SDiv) { | 
|  | // Lower the code to unsigned division, and reset Div to point to the udiv. | 
|  | Value *Quotient = generateSignedDivisionCode(Div->getOperand(0), | 
|  | Div->getOperand(1), Builder); | 
|  |  | 
|  | // Check whether this is the insert point while Div is still valid. | 
|  | bool IsInsertPoint = Div->getIterator() == Builder.GetInsertPoint(); | 
|  | Div->replaceAllUsesWith(Quotient); | 
|  | Div->dropAllReferences(); | 
|  | Div->eraseFromParent(); | 
|  |  | 
|  | // If we didn't actually generate an udiv instruction, we're done | 
|  | // This happens for example if the input were constant. In this case the | 
|  | // Builder insertion point was unchanged | 
|  | if (IsInsertPoint) | 
|  | return true; | 
|  |  | 
|  | BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint()); | 
|  | Div = BO; | 
|  | } | 
|  |  | 
|  | // Insert the unsigned division code | 
|  | Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0), | 
|  | Div->getOperand(1), | 
|  | Builder); | 
|  | Div->replaceAllUsesWith(Quotient); | 
|  | Div->dropAllReferences(); | 
|  | Div->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Generate code to compute the remainder of two integers of bitwidth up to | 
|  | /// 32 bits. Uses the above routines and extends the inputs/truncates the | 
|  | /// outputs to operate in 32 bits; that is, these routines are good for targets | 
|  | /// that have no or very little suppport for smaller than 32 bit integer | 
|  | /// arithmetic. | 
|  | /// | 
|  | /// Replace Rem with emulation code. | 
|  | bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) { | 
|  | assert((Rem->getOpcode() == Instruction::SRem || | 
|  | Rem->getOpcode() == Instruction::URem) && | 
|  | "Trying to expand remainder from a non-remainder function"); | 
|  |  | 
|  | Type *RemTy = Rem->getType(); | 
|  | assert(!RemTy->isVectorTy() && "Div over vectors not supported"); | 
|  |  | 
|  | unsigned RemTyBitWidth = RemTy->getIntegerBitWidth(); | 
|  |  | 
|  | assert(RemTyBitWidth <= 32 && | 
|  | "Div of bitwidth greater than 32 not supported"); | 
|  |  | 
|  | if (RemTyBitWidth == 32) | 
|  | return expandRemainder(Rem); | 
|  |  | 
|  | // If bitwidth smaller than 32 extend inputs, extend output and proceed | 
|  | // with 32 bit division. | 
|  | IRBuilder<> Builder(Rem); | 
|  |  | 
|  | Value *ExtDividend; | 
|  | Value *ExtDivisor; | 
|  | Value *ExtRem; | 
|  | Value *Trunc; | 
|  | Type *Int32Ty = Builder.getInt32Ty(); | 
|  |  | 
|  | if (Rem->getOpcode() == Instruction::SRem) { | 
|  | ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty); | 
|  | ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty); | 
|  | ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor); | 
|  | } else { | 
|  | ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty); | 
|  | ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty); | 
|  | ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor); | 
|  | } | 
|  | Trunc = Builder.CreateTrunc(ExtRem, RemTy); | 
|  |  | 
|  | Rem->replaceAllUsesWith(Trunc); | 
|  | Rem->dropAllReferences(); | 
|  | Rem->eraseFromParent(); | 
|  |  | 
|  | return expandRemainder(cast<BinaryOperator>(ExtRem)); | 
|  | } | 
|  |  | 
|  | /// Generate code to compute the remainder of two integers of bitwidth up to | 
|  | /// 64 bits. Uses the above routines and extends the inputs/truncates the | 
|  | /// outputs to operate in 64 bits. | 
|  | /// | 
|  | /// Replace Rem with emulation code. | 
|  | bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) { | 
|  | assert((Rem->getOpcode() == Instruction::SRem || | 
|  | Rem->getOpcode() == Instruction::URem) && | 
|  | "Trying to expand remainder from a non-remainder function"); | 
|  |  | 
|  | Type *RemTy = Rem->getType(); | 
|  | assert(!RemTy->isVectorTy() && "Div over vectors not supported"); | 
|  |  | 
|  | unsigned RemTyBitWidth = RemTy->getIntegerBitWidth(); | 
|  |  | 
|  | assert(RemTyBitWidth <= 64 && "Div of bitwidth greater than 64 not supported"); | 
|  |  | 
|  | if (RemTyBitWidth == 64) | 
|  | return expandRemainder(Rem); | 
|  |  | 
|  | // If bitwidth smaller than 64 extend inputs, extend output and proceed | 
|  | // with 64 bit division. | 
|  | IRBuilder<> Builder(Rem); | 
|  |  | 
|  | Value *ExtDividend; | 
|  | Value *ExtDivisor; | 
|  | Value *ExtRem; | 
|  | Value *Trunc; | 
|  | Type *Int64Ty = Builder.getInt64Ty(); | 
|  |  | 
|  | if (Rem->getOpcode() == Instruction::SRem) { | 
|  | ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty); | 
|  | ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty); | 
|  | ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor); | 
|  | } else { | 
|  | ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty); | 
|  | ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty); | 
|  | ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor); | 
|  | } | 
|  | Trunc = Builder.CreateTrunc(ExtRem, RemTy); | 
|  |  | 
|  | Rem->replaceAllUsesWith(Trunc); | 
|  | Rem->dropAllReferences(); | 
|  | Rem->eraseFromParent(); | 
|  |  | 
|  | return expandRemainder(cast<BinaryOperator>(ExtRem)); | 
|  | } | 
|  |  | 
|  | /// Generate code to divide two integers of bitwidth up to 32 bits. Uses the | 
|  | /// above routines and extends the inputs/truncates the outputs to operate | 
|  | /// in 32 bits; that is, these routines are good for targets that have no | 
|  | /// or very little support for smaller than 32 bit integer arithmetic. | 
|  | /// | 
|  | /// Replace Div with emulation code. | 
|  | bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) { | 
|  | assert((Div->getOpcode() == Instruction::SDiv || | 
|  | Div->getOpcode() == Instruction::UDiv) && | 
|  | "Trying to expand division from a non-division function"); | 
|  |  | 
|  | Type *DivTy = Div->getType(); | 
|  | assert(!DivTy->isVectorTy() && "Div over vectors not supported"); | 
|  |  | 
|  | unsigned DivTyBitWidth = DivTy->getIntegerBitWidth(); | 
|  |  | 
|  | assert(DivTyBitWidth <= 32 && "Div of bitwidth greater than 32 not supported"); | 
|  |  | 
|  | if (DivTyBitWidth == 32) | 
|  | return expandDivision(Div); | 
|  |  | 
|  | // If bitwidth smaller than 32 extend inputs, extend output and proceed | 
|  | // with 32 bit division. | 
|  | IRBuilder<> Builder(Div); | 
|  |  | 
|  | Value *ExtDividend; | 
|  | Value *ExtDivisor; | 
|  | Value *ExtDiv; | 
|  | Value *Trunc; | 
|  | Type *Int32Ty = Builder.getInt32Ty(); | 
|  |  | 
|  | if (Div->getOpcode() == Instruction::SDiv) { | 
|  | ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty); | 
|  | ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty); | 
|  | ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor); | 
|  | } else { | 
|  | ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty); | 
|  | ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty); | 
|  | ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor); | 
|  | } | 
|  | Trunc = Builder.CreateTrunc(ExtDiv, DivTy); | 
|  |  | 
|  | Div->replaceAllUsesWith(Trunc); | 
|  | Div->dropAllReferences(); | 
|  | Div->eraseFromParent(); | 
|  |  | 
|  | return expandDivision(cast<BinaryOperator>(ExtDiv)); | 
|  | } | 
|  |  | 
|  | /// Generate code to divide two integers of bitwidth up to 64 bits. Uses the | 
|  | /// above routines and extends the inputs/truncates the outputs to operate | 
|  | /// in 64 bits. | 
|  | /// | 
|  | /// Replace Div with emulation code. | 
|  | bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) { | 
|  | assert((Div->getOpcode() == Instruction::SDiv || | 
|  | Div->getOpcode() == Instruction::UDiv) && | 
|  | "Trying to expand division from a non-division function"); | 
|  |  | 
|  | Type *DivTy = Div->getType(); | 
|  | assert(!DivTy->isVectorTy() && "Div over vectors not supported"); | 
|  |  | 
|  | unsigned DivTyBitWidth = DivTy->getIntegerBitWidth(); | 
|  |  | 
|  | assert(DivTyBitWidth <= 64 && | 
|  | "Div of bitwidth greater than 64 not supported"); | 
|  |  | 
|  | if (DivTyBitWidth == 64) | 
|  | return expandDivision(Div); | 
|  |  | 
|  | // If bitwidth smaller than 64 extend inputs, extend output and proceed | 
|  | // with 64 bit division. | 
|  | IRBuilder<> Builder(Div); | 
|  |  | 
|  | Value *ExtDividend; | 
|  | Value *ExtDivisor; | 
|  | Value *ExtDiv; | 
|  | Value *Trunc; | 
|  | Type *Int64Ty = Builder.getInt64Ty(); | 
|  |  | 
|  | if (Div->getOpcode() == Instruction::SDiv) { | 
|  | ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty); | 
|  | ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty); | 
|  | ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor); | 
|  | } else { | 
|  | ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty); | 
|  | ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty); | 
|  | ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor); | 
|  | } | 
|  | Trunc = Builder.CreateTrunc(ExtDiv, DivTy); | 
|  |  | 
|  | Div->replaceAllUsesWith(Trunc); | 
|  | Div->dropAllReferences(); | 
|  | Div->eraseFromParent(); | 
|  |  | 
|  | return expandDivision(cast<BinaryOperator>(ExtDiv)); | 
|  | } |