|  | //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains logic for simplifying instructions based on information | 
|  | // about how they are used. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InstCombineInternal.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "instcombine" | 
|  |  | 
|  | /// Check to see if the specified operand of the specified instruction is a | 
|  | /// constant integer. If so, check to see if there are any bits set in the | 
|  | /// constant that are not demanded. If so, shrink the constant and return true. | 
|  | static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, | 
|  | const APInt &Demanded) { | 
|  | assert(I && "No instruction?"); | 
|  | assert(OpNo < I->getNumOperands() && "Operand index too large"); | 
|  |  | 
|  | // The operand must be a constant integer or splat integer. | 
|  | Value *Op = I->getOperand(OpNo); | 
|  | const APInt *C; | 
|  | if (!match(Op, m_APInt(C))) | 
|  | return false; | 
|  |  | 
|  | // If there are no bits set that aren't demanded, nothing to do. | 
|  | if (C->isSubsetOf(Demanded)) | 
|  | return false; | 
|  |  | 
|  | // This instruction is producing bits that are not demanded. Shrink the RHS. | 
|  | I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if | 
|  | /// the instruction has any properties that allow us to simplify its operands. | 
|  | bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { | 
|  | unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); | 
|  | KnownBits Known(BitWidth); | 
|  | APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); | 
|  |  | 
|  | Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, | 
|  | 0, &Inst); | 
|  | if (!V) return false; | 
|  | if (V == &Inst) return true; | 
|  | replaceInstUsesWith(Inst, V); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// This form of SimplifyDemandedBits simplifies the specified instruction | 
|  | /// operand if possible, updating it in place. It returns true if it made any | 
|  | /// change and false otherwise. | 
|  | bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, | 
|  | const APInt &DemandedMask, | 
|  | KnownBits &Known, | 
|  | unsigned Depth) { | 
|  | Use &U = I->getOperandUse(OpNo); | 
|  | Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, | 
|  | Depth, I); | 
|  | if (!NewVal) return false; | 
|  | U = NewVal; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// This function attempts to replace V with a simpler value based on the | 
|  | /// demanded bits. When this function is called, it is known that only the bits | 
|  | /// set in DemandedMask of the result of V are ever used downstream. | 
|  | /// Consequently, depending on the mask and V, it may be possible to replace V | 
|  | /// with a constant or one of its operands. In such cases, this function does | 
|  | /// the replacement and returns true. In all other cases, it returns false after | 
|  | /// analyzing the expression and setting KnownOne and known to be one in the | 
|  | /// expression. Known.Zero contains all the bits that are known to be zero in | 
|  | /// the expression. These are provided to potentially allow the caller (which | 
|  | /// might recursively be SimplifyDemandedBits itself) to simplify the | 
|  | /// expression. | 
|  | /// Known.One and Known.Zero always follow the invariant that: | 
|  | ///   Known.One & Known.Zero == 0. | 
|  | /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and | 
|  | /// Known.Zero may only be accurate for those bits set in DemandedMask. Note | 
|  | /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all | 
|  | /// be the same. | 
|  | /// | 
|  | /// This returns null if it did not change anything and it permits no | 
|  | /// simplification.  This returns V itself if it did some simplification of V's | 
|  | /// operands based on the information about what bits are demanded. This returns | 
|  | /// some other non-null value if it found out that V is equal to another value | 
|  | /// in the context where the specified bits are demanded, but not for all users. | 
|  | Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, | 
|  | KnownBits &Known, unsigned Depth, | 
|  | Instruction *CxtI) { | 
|  | assert(V != nullptr && "Null pointer of Value???"); | 
|  | assert(Depth <= 6 && "Limit Search Depth"); | 
|  | uint32_t BitWidth = DemandedMask.getBitWidth(); | 
|  | Type *VTy = V->getType(); | 
|  | assert( | 
|  | (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && | 
|  | Known.getBitWidth() == BitWidth && | 
|  | "Value *V, DemandedMask and Known must have same BitWidth"); | 
|  |  | 
|  | if (isa<Constant>(V)) { | 
|  | computeKnownBits(V, Known, Depth, CxtI); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Known.resetAll(); | 
|  | if (DemandedMask.isNullValue())     // Not demanding any bits from V. | 
|  | return UndefValue::get(VTy); | 
|  |  | 
|  | if (Depth == 6)        // Limit search depth. | 
|  | return nullptr; | 
|  |  | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) { | 
|  | computeKnownBits(V, Known, Depth, CxtI); | 
|  | return nullptr;        // Only analyze instructions. | 
|  | } | 
|  |  | 
|  | // If there are multiple uses of this value and we aren't at the root, then | 
|  | // we can't do any simplifications of the operands, because DemandedMask | 
|  | // only reflects the bits demanded by *one* of the users. | 
|  | if (Depth != 0 && !I->hasOneUse()) | 
|  | return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); | 
|  |  | 
|  | KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); | 
|  |  | 
|  | // If this is the root being simplified, allow it to have multiple uses, | 
|  | // just set the DemandedMask to all bits so that we can try to simplify the | 
|  | // operands.  This allows visitTruncInst (for example) to simplify the | 
|  | // operand of a trunc without duplicating all the logic below. | 
|  | if (Depth == 0 && !V->hasOneUse()) | 
|  | DemandedMask.setAllBits(); | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | default: | 
|  | computeKnownBits(I, Known, Depth, CxtI); | 
|  | break; | 
|  | case Instruction::And: { | 
|  | // If either the LHS or the RHS are Zero, the result is zero. | 
|  | if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || | 
|  | SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, | 
|  | Depth + 1)) | 
|  | return I; | 
|  | assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); | 
|  | assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // Output known-0 are known to be clear if zero in either the LHS | RHS. | 
|  | APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; | 
|  | // Output known-1 bits are only known if set in both the LHS & RHS. | 
|  | APInt IKnownOne = RHSKnown.One & LHSKnown.One; | 
|  |  | 
|  | // If the client is only demanding bits that we know, return the known | 
|  | // constant. | 
|  | if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) | 
|  | return Constant::getIntegerValue(VTy, IKnownOne); | 
|  |  | 
|  | // If all of the demanded bits are known 1 on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'and'. | 
|  | if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) | 
|  | return I->getOperand(0); | 
|  | if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) | 
|  | return I->getOperand(1); | 
|  |  | 
|  | // If the RHS is a constant, see if we can simplify it. | 
|  | if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) | 
|  | return I; | 
|  |  | 
|  | Known.Zero = std::move(IKnownZero); | 
|  | Known.One  = std::move(IKnownOne); | 
|  | break; | 
|  | } | 
|  | case Instruction::Or: { | 
|  | // If either the LHS or the RHS are One, the result is One. | 
|  | if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || | 
|  | SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, | 
|  | Depth + 1)) | 
|  | return I; | 
|  | assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); | 
|  | assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // Output known-0 bits are only known if clear in both the LHS & RHS. | 
|  | APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; | 
|  | // Output known-1 are known. to be set if s.et in either the LHS | RHS. | 
|  | APInt IKnownOne = RHSKnown.One | LHSKnown.One; | 
|  |  | 
|  | // If the client is only demanding bits that we know, return the known | 
|  | // constant. | 
|  | if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) | 
|  | return Constant::getIntegerValue(VTy, IKnownOne); | 
|  |  | 
|  | // If all of the demanded bits are known zero on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'or'. | 
|  | if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) | 
|  | return I->getOperand(0); | 
|  | if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) | 
|  | return I->getOperand(1); | 
|  |  | 
|  | // If the RHS is a constant, see if we can simplify it. | 
|  | if (ShrinkDemandedConstant(I, 1, DemandedMask)) | 
|  | return I; | 
|  |  | 
|  | Known.Zero = std::move(IKnownZero); | 
|  | Known.One  = std::move(IKnownOne); | 
|  | break; | 
|  | } | 
|  | case Instruction::Xor: { | 
|  | if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || | 
|  | SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) | 
|  | return I; | 
|  | assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); | 
|  | assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // Output known-0 bits are known if clear or set in both the LHS & RHS. | 
|  | APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | | 
|  | (RHSKnown.One & LHSKnown.One); | 
|  | // Output known-1 are known to be set if set in only one of the LHS, RHS. | 
|  | APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) | | 
|  | (RHSKnown.One & LHSKnown.Zero); | 
|  |  | 
|  | // If the client is only demanding bits that we know, return the known | 
|  | // constant. | 
|  | if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) | 
|  | return Constant::getIntegerValue(VTy, IKnownOne); | 
|  |  | 
|  | // If all of the demanded bits are known zero on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'xor'. | 
|  | if (DemandedMask.isSubsetOf(RHSKnown.Zero)) | 
|  | return I->getOperand(0); | 
|  | if (DemandedMask.isSubsetOf(LHSKnown.Zero)) | 
|  | return I->getOperand(1); | 
|  |  | 
|  | // If all of the demanded bits are known to be zero on one side or the | 
|  | // other, turn this into an *inclusive* or. | 
|  | //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 | 
|  | if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { | 
|  | Instruction *Or = | 
|  | BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), | 
|  | I->getName()); | 
|  | return InsertNewInstWith(Or, *I); | 
|  | } | 
|  |  | 
|  | // If all of the demanded bits on one side are known, and all of the set | 
|  | // bits on that side are also known to be set on the other side, turn this | 
|  | // into an AND, as we know the bits will be cleared. | 
|  | //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 | 
|  | if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && | 
|  | RHSKnown.One.isSubsetOf(LHSKnown.One)) { | 
|  | Constant *AndC = Constant::getIntegerValue(VTy, | 
|  | ~RHSKnown.One & DemandedMask); | 
|  | Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); | 
|  | return InsertNewInstWith(And, *I); | 
|  | } | 
|  |  | 
|  | // If the RHS is a constant, see if we can simplify it. | 
|  | // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. | 
|  | if (ShrinkDemandedConstant(I, 1, DemandedMask)) | 
|  | return I; | 
|  |  | 
|  | // If our LHS is an 'and' and if it has one use, and if any of the bits we | 
|  | // are flipping are known to be set, then the xor is just resetting those | 
|  | // bits to zero.  We can just knock out bits from the 'and' and the 'xor', | 
|  | // simplifying both of them. | 
|  | if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) | 
|  | if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && | 
|  | isa<ConstantInt>(I->getOperand(1)) && | 
|  | isa<ConstantInt>(LHSInst->getOperand(1)) && | 
|  | (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { | 
|  | ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); | 
|  | ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); | 
|  | APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); | 
|  |  | 
|  | Constant *AndC = | 
|  | ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); | 
|  | Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); | 
|  | InsertNewInstWith(NewAnd, *I); | 
|  |  | 
|  | Constant *XorC = | 
|  | ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); | 
|  | Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); | 
|  | return InsertNewInstWith(NewXor, *I); | 
|  | } | 
|  |  | 
|  | // Output known-0 bits are known if clear or set in both the LHS & RHS. | 
|  | Known.Zero = std::move(IKnownZero); | 
|  | // Output known-1 are known to be set if set in only one of the LHS, RHS. | 
|  | Known.One  = std::move(IKnownOne); | 
|  | break; | 
|  | } | 
|  | case Instruction::Select: | 
|  | // If this is a select as part of a min/max pattern, don't simplify any | 
|  | // further in case we break the structure. | 
|  | Value *LHS, *RHS; | 
|  | if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN) | 
|  | return nullptr; | 
|  |  | 
|  | if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || | 
|  | SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) | 
|  | return I; | 
|  | assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); | 
|  | assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If the operands are constants, see if we can simplify them. | 
|  | if (ShrinkDemandedConstant(I, 1, DemandedMask) || | 
|  | ShrinkDemandedConstant(I, 2, DemandedMask)) | 
|  | return I; | 
|  |  | 
|  | // Only known if known in both the LHS and RHS. | 
|  | Known.One = RHSKnown.One & LHSKnown.One; | 
|  | Known.Zero = RHSKnown.Zero & LHSKnown.Zero; | 
|  | break; | 
|  | case Instruction::ZExt: | 
|  | case Instruction::Trunc: { | 
|  | unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); | 
|  |  | 
|  | APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); | 
|  | KnownBits InputKnown(SrcBitWidth); | 
|  | if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) | 
|  | return I; | 
|  | Known = InputKnown.zextOrTrunc(BitWidth); | 
|  | // Any top bits are known to be zero. | 
|  | if (BitWidth > SrcBitWidth) | 
|  | Known.Zero.setBitsFrom(SrcBitWidth); | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  | break; | 
|  | } | 
|  | case Instruction::BitCast: | 
|  | if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) | 
|  | return nullptr;  // vector->int or fp->int? | 
|  |  | 
|  | if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { | 
|  | if (VectorType *SrcVTy = | 
|  | dyn_cast<VectorType>(I->getOperand(0)->getType())) { | 
|  | if (DstVTy->getNumElements() != SrcVTy->getNumElements()) | 
|  | // Don't touch a bitcast between vectors of different element counts. | 
|  | return nullptr; | 
|  | } else | 
|  | // Don't touch a scalar-to-vector bitcast. | 
|  | return nullptr; | 
|  | } else if (I->getOperand(0)->getType()->isVectorTy()) | 
|  | // Don't touch a vector-to-scalar bitcast. | 
|  | return nullptr; | 
|  |  | 
|  | if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) | 
|  | return I; | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  | break; | 
|  | case Instruction::SExt: { | 
|  | // Compute the bits in the result that are not present in the input. | 
|  | unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); | 
|  |  | 
|  | APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); | 
|  |  | 
|  | // If any of the sign extended bits are demanded, we know that the sign | 
|  | // bit is demanded. | 
|  | if (DemandedMask.getActiveBits() > SrcBitWidth) | 
|  | InputDemandedBits.setBit(SrcBitWidth-1); | 
|  |  | 
|  | KnownBits InputKnown(SrcBitWidth); | 
|  | if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) | 
|  | return I; | 
|  |  | 
|  | // If the input sign bit is known zero, or if the NewBits are not demanded | 
|  | // convert this into a zero extension. | 
|  | if (InputKnown.isNonNegative() || | 
|  | DemandedMask.getActiveBits() <= SrcBitWidth) { | 
|  | // Convert to ZExt cast. | 
|  | CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); | 
|  | return InsertNewInstWith(NewCast, *I); | 
|  | } | 
|  |  | 
|  | // If the sign bit of the input is known set or clear, then we know the | 
|  | // top bits of the result. | 
|  | Known = InputKnown.sext(BitWidth); | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  | break; | 
|  | } | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: { | 
|  | /// If the high-bits of an ADD/SUB are not demanded, then we do not care | 
|  | /// about the high bits of the operands. | 
|  | unsigned NLZ = DemandedMask.countLeadingZeros(); | 
|  | // Right fill the mask of bits for this ADD/SUB to demand the most | 
|  | // significant bit and all those below it. | 
|  | APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); | 
|  | if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || | 
|  | SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || | 
|  | ShrinkDemandedConstant(I, 1, DemandedFromOps) || | 
|  | SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { | 
|  | if (NLZ > 0) { | 
|  | // Disable the nsw and nuw flags here: We can no longer guarantee that | 
|  | // we won't wrap after simplification. Removing the nsw/nuw flags is | 
|  | // legal here because the top bit is not demanded. | 
|  | BinaryOperator &BinOP = *cast<BinaryOperator>(I); | 
|  | BinOP.setHasNoSignedWrap(false); | 
|  | BinOP.setHasNoUnsignedWrap(false); | 
|  | } | 
|  | return I; | 
|  | } | 
|  |  | 
|  | // If we are known to be adding/subtracting zeros to every bit below | 
|  | // the highest demanded bit, we just return the other side. | 
|  | if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) | 
|  | return I->getOperand(0); | 
|  | // We can't do this with the LHS for subtraction, unless we are only | 
|  | // demanding the LSB. | 
|  | if ((I->getOpcode() == Instruction::Add || | 
|  | DemandedFromOps.isOneValue()) && | 
|  | DemandedFromOps.isSubsetOf(LHSKnown.Zero)) | 
|  | return I->getOperand(1); | 
|  |  | 
|  | // Otherwise just compute the known bits of the result. | 
|  | bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); | 
|  | Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, | 
|  | NSW, LHSKnown, RHSKnown); | 
|  | break; | 
|  | } | 
|  | case Instruction::Shl: { | 
|  | const APInt *SA; | 
|  | if (match(I->getOperand(1), m_APInt(SA))) { | 
|  | const APInt *ShrAmt; | 
|  | if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) | 
|  | if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) | 
|  | if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, | 
|  | DemandedMask, Known)) | 
|  | return R; | 
|  |  | 
|  | uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); | 
|  | APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); | 
|  |  | 
|  | // If the shift is NUW/NSW, then it does demand the high bits. | 
|  | ShlOperator *IOp = cast<ShlOperator>(I); | 
|  | if (IOp->hasNoSignedWrap()) | 
|  | DemandedMaskIn.setHighBits(ShiftAmt+1); | 
|  | else if (IOp->hasNoUnsignedWrap()) | 
|  | DemandedMaskIn.setHighBits(ShiftAmt); | 
|  |  | 
|  | if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) | 
|  | return I; | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  | Known.Zero <<= ShiftAmt; | 
|  | Known.One  <<= ShiftAmt; | 
|  | // low bits known zero. | 
|  | if (ShiftAmt) | 
|  | Known.Zero.setLowBits(ShiftAmt); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::LShr: { | 
|  | const APInt *SA; | 
|  | if (match(I->getOperand(1), m_APInt(SA))) { | 
|  | uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); | 
|  |  | 
|  | // Unsigned shift right. | 
|  | APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); | 
|  |  | 
|  | // If the shift is exact, then it does demand the low bits (and knows that | 
|  | // they are zero). | 
|  | if (cast<LShrOperator>(I)->isExact()) | 
|  | DemandedMaskIn.setLowBits(ShiftAmt); | 
|  |  | 
|  | if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) | 
|  | return I; | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  | Known.Zero.lshrInPlace(ShiftAmt); | 
|  | Known.One.lshrInPlace(ShiftAmt); | 
|  | if (ShiftAmt) | 
|  | Known.Zero.setHighBits(ShiftAmt);  // high bits known zero. | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::AShr: { | 
|  | // If this is an arithmetic shift right and only the low-bit is set, we can | 
|  | // always convert this into a logical shr, even if the shift amount is | 
|  | // variable.  The low bit of the shift cannot be an input sign bit unless | 
|  | // the shift amount is >= the size of the datatype, which is undefined. | 
|  | if (DemandedMask.isOneValue()) { | 
|  | // Perform the logical shift right. | 
|  | Instruction *NewVal = BinaryOperator::CreateLShr( | 
|  | I->getOperand(0), I->getOperand(1), I->getName()); | 
|  | return InsertNewInstWith(NewVal, *I); | 
|  | } | 
|  |  | 
|  | // If the sign bit is the only bit demanded by this ashr, then there is no | 
|  | // need to do it, the shift doesn't change the high bit. | 
|  | if (DemandedMask.isSignMask()) | 
|  | return I->getOperand(0); | 
|  |  | 
|  | const APInt *SA; | 
|  | if (match(I->getOperand(1), m_APInt(SA))) { | 
|  | uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); | 
|  |  | 
|  | // Signed shift right. | 
|  | APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); | 
|  | // If any of the high bits are demanded, we should set the sign bit as | 
|  | // demanded. | 
|  | if (DemandedMask.countLeadingZeros() <= ShiftAmt) | 
|  | DemandedMaskIn.setSignBit(); | 
|  |  | 
|  | // If the shift is exact, then it does demand the low bits (and knows that | 
|  | // they are zero). | 
|  | if (cast<AShrOperator>(I)->isExact()) | 
|  | DemandedMaskIn.setLowBits(ShiftAmt); | 
|  |  | 
|  | if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) | 
|  | return I; | 
|  |  | 
|  | unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); | 
|  |  | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  | // Compute the new bits that are at the top now plus sign bits. | 
|  | APInt HighBits(APInt::getHighBitsSet( | 
|  | BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); | 
|  | Known.Zero.lshrInPlace(ShiftAmt); | 
|  | Known.One.lshrInPlace(ShiftAmt); | 
|  |  | 
|  | // If the input sign bit is known to be zero, or if none of the top bits | 
|  | // are demanded, turn this into an unsigned shift right. | 
|  | assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); | 
|  | if (Known.Zero[BitWidth-ShiftAmt-1] || | 
|  | !DemandedMask.intersects(HighBits)) { | 
|  | BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), | 
|  | I->getOperand(1)); | 
|  | LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); | 
|  | return InsertNewInstWith(LShr, *I); | 
|  | } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. | 
|  | Known.One |= HighBits; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::SRem: | 
|  | if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | // X % -1 demands all the bits because we don't want to introduce | 
|  | // INT_MIN % -1 (== undef) by accident. | 
|  | if (Rem->isMinusOne()) | 
|  | break; | 
|  | APInt RA = Rem->getValue().abs(); | 
|  | if (RA.isPowerOf2()) { | 
|  | if (DemandedMask.ult(RA))    // srem won't affect demanded bits | 
|  | return I->getOperand(0); | 
|  |  | 
|  | APInt LowBits = RA - 1; | 
|  | APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); | 
|  | if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) | 
|  | return I; | 
|  |  | 
|  | // The low bits of LHS are unchanged by the srem. | 
|  | Known.Zero = LHSKnown.Zero & LowBits; | 
|  | Known.One = LHSKnown.One & LowBits; | 
|  |  | 
|  | // If LHS is non-negative or has all low bits zero, then the upper bits | 
|  | // are all zero. | 
|  | if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) | 
|  | Known.Zero |= ~LowBits; | 
|  |  | 
|  | // If LHS is negative and not all low bits are zero, then the upper bits | 
|  | // are all one. | 
|  | if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) | 
|  | Known.One |= ~LowBits; | 
|  |  | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The sign bit is the LHS's sign bit, except when the result of the | 
|  | // remainder is zero. | 
|  | if (DemandedMask.isSignBitSet()) { | 
|  | computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); | 
|  | // If it's known zero, our sign bit is also zero. | 
|  | if (LHSKnown.isNonNegative()) | 
|  | Known.makeNonNegative(); | 
|  | } | 
|  | break; | 
|  | case Instruction::URem: { | 
|  | KnownBits Known2(BitWidth); | 
|  | APInt AllOnes = APInt::getAllOnesValue(BitWidth); | 
|  | if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || | 
|  | SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) | 
|  | return I; | 
|  |  | 
|  | unsigned Leaders = Known2.countMinLeadingZeros(); | 
|  | Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; | 
|  | break; | 
|  | } | 
|  | case Instruction::Call: | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::bswap: { | 
|  | // If the only bits demanded come from one byte of the bswap result, | 
|  | // just shift the input byte into position to eliminate the bswap. | 
|  | unsigned NLZ = DemandedMask.countLeadingZeros(); | 
|  | unsigned NTZ = DemandedMask.countTrailingZeros(); | 
|  |  | 
|  | // Round NTZ down to the next byte.  If we have 11 trailing zeros, then | 
|  | // we need all the bits down to bit 8.  Likewise, round NLZ.  If we | 
|  | // have 14 leading zeros, round to 8. | 
|  | NLZ &= ~7; | 
|  | NTZ &= ~7; | 
|  | // If we need exactly one byte, we can do this transformation. | 
|  | if (BitWidth-NLZ-NTZ == 8) { | 
|  | unsigned ResultBit = NTZ; | 
|  | unsigned InputBit = BitWidth-NTZ-8; | 
|  |  | 
|  | // Replace this with either a left or right shift to get the byte into | 
|  | // the right place. | 
|  | Instruction *NewVal; | 
|  | if (InputBit > ResultBit) | 
|  | NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), | 
|  | ConstantInt::get(I->getType(), InputBit-ResultBit)); | 
|  | else | 
|  | NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), | 
|  | ConstantInt::get(I->getType(), ResultBit-InputBit)); | 
|  | NewVal->takeName(I); | 
|  | return InsertNewInstWith(NewVal, *I); | 
|  | } | 
|  |  | 
|  | // TODO: Could compute known zero/one bits based on the input. | 
|  | break; | 
|  | } | 
|  | case Intrinsic::x86_mmx_pmovmskb: | 
|  | case Intrinsic::x86_sse_movmsk_ps: | 
|  | case Intrinsic::x86_sse2_movmsk_pd: | 
|  | case Intrinsic::x86_sse2_pmovmskb_128: | 
|  | case Intrinsic::x86_avx_movmsk_ps_256: | 
|  | case Intrinsic::x86_avx_movmsk_pd_256: | 
|  | case Intrinsic::x86_avx2_pmovmskb: { | 
|  | // MOVMSK copies the vector elements' sign bits to the low bits | 
|  | // and zeros the high bits. | 
|  | unsigned ArgWidth; | 
|  | if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { | 
|  | ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. | 
|  | } else { | 
|  | auto Arg = II->getArgOperand(0); | 
|  | auto ArgType = cast<VectorType>(Arg->getType()); | 
|  | ArgWidth = ArgType->getNumElements(); | 
|  | } | 
|  |  | 
|  | // If we don't need any of low bits then return zero, | 
|  | // we know that DemandedMask is non-zero already. | 
|  | APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); | 
|  | if (DemandedElts.isNullValue()) | 
|  | return ConstantInt::getNullValue(VTy); | 
|  |  | 
|  | // We know that the upper bits are set to zero. | 
|  | Known.Zero.setBitsFrom(ArgWidth); | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::x86_sse42_crc32_64_64: | 
|  | Known.Zero.setBitsFrom(32); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | computeKnownBits(V, Known, Depth, CxtI); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If the client is only demanding bits that we know, return the known | 
|  | // constant. | 
|  | if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) | 
|  | return Constant::getIntegerValue(VTy, Known.One); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Helper routine of SimplifyDemandedUseBits. It computes Known | 
|  | /// bits. It also tries to handle simplifications that can be done based on | 
|  | /// DemandedMask, but without modifying the Instruction. | 
|  | Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, | 
|  | const APInt &DemandedMask, | 
|  | KnownBits &Known, | 
|  | unsigned Depth, | 
|  | Instruction *CxtI) { | 
|  | unsigned BitWidth = DemandedMask.getBitWidth(); | 
|  | Type *ITy = I->getType(); | 
|  |  | 
|  | KnownBits LHSKnown(BitWidth); | 
|  | KnownBits RHSKnown(BitWidth); | 
|  |  | 
|  | // Despite the fact that we can't simplify this instruction in all User's | 
|  | // context, we can at least compute the known bits, and we can | 
|  | // do simplifications that apply to *just* the one user if we know that | 
|  | // this instruction has a simpler value in that context. | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::And: { | 
|  | // If either the LHS or the RHS are Zero, the result is zero. | 
|  | computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); | 
|  | computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, | 
|  | CxtI); | 
|  |  | 
|  | // Output known-0 are known to be clear if zero in either the LHS | RHS. | 
|  | APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; | 
|  | // Output known-1 bits are only known if set in both the LHS & RHS. | 
|  | APInt IKnownOne = RHSKnown.One & LHSKnown.One; | 
|  |  | 
|  | // If the client is only demanding bits that we know, return the known | 
|  | // constant. | 
|  | if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) | 
|  | return Constant::getIntegerValue(ITy, IKnownOne); | 
|  |  | 
|  | // If all of the demanded bits are known 1 on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'and' in this | 
|  | // context. | 
|  | if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) | 
|  | return I->getOperand(0); | 
|  | if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) | 
|  | return I->getOperand(1); | 
|  |  | 
|  | Known.Zero = std::move(IKnownZero); | 
|  | Known.One  = std::move(IKnownOne); | 
|  | break; | 
|  | } | 
|  | case Instruction::Or: { | 
|  | // We can simplify (X|Y) -> X or Y in the user's context if we know that | 
|  | // only bits from X or Y are demanded. | 
|  |  | 
|  | // If either the LHS or the RHS are One, the result is One. | 
|  | computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); | 
|  | computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, | 
|  | CxtI); | 
|  |  | 
|  | // Output known-0 bits are only known if clear in both the LHS & RHS. | 
|  | APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; | 
|  | // Output known-1 are known to be set if set in either the LHS | RHS. | 
|  | APInt IKnownOne = RHSKnown.One | LHSKnown.One; | 
|  |  | 
|  | // If the client is only demanding bits that we know, return the known | 
|  | // constant. | 
|  | if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) | 
|  | return Constant::getIntegerValue(ITy, IKnownOne); | 
|  |  | 
|  | // If all of the demanded bits are known zero on one side, return the | 
|  | // other.  These bits cannot contribute to the result of the 'or' in this | 
|  | // context. | 
|  | if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) | 
|  | return I->getOperand(0); | 
|  | if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) | 
|  | return I->getOperand(1); | 
|  |  | 
|  | Known.Zero = std::move(IKnownZero); | 
|  | Known.One  = std::move(IKnownOne); | 
|  | break; | 
|  | } | 
|  | case Instruction::Xor: { | 
|  | // We can simplify (X^Y) -> X or Y in the user's context if we know that | 
|  | // only bits from X or Y are demanded. | 
|  |  | 
|  | computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); | 
|  | computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, | 
|  | CxtI); | 
|  |  | 
|  | // Output known-0 bits are known if clear or set in both the LHS & RHS. | 
|  | APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | | 
|  | (RHSKnown.One & LHSKnown.One); | 
|  | // Output known-1 are known to be set if set in only one of the LHS, RHS. | 
|  | APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) | | 
|  | (RHSKnown.One & LHSKnown.Zero); | 
|  |  | 
|  | // If the client is only demanding bits that we know, return the known | 
|  | // constant. | 
|  | if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) | 
|  | return Constant::getIntegerValue(ITy, IKnownOne); | 
|  |  | 
|  | // If all of the demanded bits are known zero on one side, return the | 
|  | // other. | 
|  | if (DemandedMask.isSubsetOf(RHSKnown.Zero)) | 
|  | return I->getOperand(0); | 
|  | if (DemandedMask.isSubsetOf(LHSKnown.Zero)) | 
|  | return I->getOperand(1); | 
|  |  | 
|  | // Output known-0 bits are known if clear or set in both the LHS & RHS. | 
|  | Known.Zero = std::move(IKnownZero); | 
|  | // Output known-1 are known to be set if set in only one of the LHS, RHS. | 
|  | Known.One  = std::move(IKnownOne); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | // Compute the Known bits to simplify things downstream. | 
|  | computeKnownBits(I, Known, Depth, CxtI); | 
|  |  | 
|  | // If this user is only demanding bits that we know, return the known | 
|  | // constant. | 
|  | if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) | 
|  | return Constant::getIntegerValue(ITy, Known.One); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Helper routine of SimplifyDemandedUseBits. It tries to simplify | 
|  | /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into | 
|  | /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign | 
|  | /// of "C2-C1". | 
|  | /// | 
|  | /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, | 
|  | /// ..., bn}, without considering the specific value X is holding. | 
|  | /// This transformation is legal iff one of following conditions is hold: | 
|  | ///  1) All the bit in S are 0, in this case E1 == E2. | 
|  | ///  2) We don't care those bits in S, per the input DemandedMask. | 
|  | ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the | 
|  | ///     rest bits. | 
|  | /// | 
|  | /// Currently we only test condition 2). | 
|  | /// | 
|  | /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was | 
|  | /// not successful. | 
|  | Value * | 
|  | InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, | 
|  | Instruction *Shl, const APInt &ShlOp1, | 
|  | const APInt &DemandedMask, | 
|  | KnownBits &Known) { | 
|  | if (!ShlOp1 || !ShrOp1) | 
|  | return nullptr; // No-op. | 
|  |  | 
|  | Value *VarX = Shr->getOperand(0); | 
|  | Type *Ty = VarX->getType(); | 
|  | unsigned BitWidth = Ty->getScalarSizeInBits(); | 
|  | if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) | 
|  | return nullptr; // Undef. | 
|  |  | 
|  | unsigned ShlAmt = ShlOp1.getZExtValue(); | 
|  | unsigned ShrAmt = ShrOp1.getZExtValue(); | 
|  |  | 
|  | Known.One.clearAllBits(); | 
|  | Known.Zero.setLowBits(ShlAmt - 1); | 
|  | Known.Zero &= DemandedMask; | 
|  |  | 
|  | APInt BitMask1(APInt::getAllOnesValue(BitWidth)); | 
|  | APInt BitMask2(APInt::getAllOnesValue(BitWidth)); | 
|  |  | 
|  | bool isLshr = (Shr->getOpcode() == Instruction::LShr); | 
|  | BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : | 
|  | (BitMask1.ashr(ShrAmt) << ShlAmt); | 
|  |  | 
|  | if (ShrAmt <= ShlAmt) { | 
|  | BitMask2 <<= (ShlAmt - ShrAmt); | 
|  | } else { | 
|  | BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): | 
|  | BitMask2.ashr(ShrAmt - ShlAmt); | 
|  | } | 
|  |  | 
|  | // Check if condition-2 (see the comment to this function) is satified. | 
|  | if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { | 
|  | if (ShrAmt == ShlAmt) | 
|  | return VarX; | 
|  |  | 
|  | if (!Shr->hasOneUse()) | 
|  | return nullptr; | 
|  |  | 
|  | BinaryOperator *New; | 
|  | if (ShrAmt < ShlAmt) { | 
|  | Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); | 
|  | New = BinaryOperator::CreateShl(VarX, Amt); | 
|  | BinaryOperator *Orig = cast<BinaryOperator>(Shl); | 
|  | New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); | 
|  | New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); | 
|  | } else { | 
|  | Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); | 
|  | New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : | 
|  | BinaryOperator::CreateAShr(VarX, Amt); | 
|  | if (cast<BinaryOperator>(Shr)->isExact()) | 
|  | New->setIsExact(true); | 
|  | } | 
|  |  | 
|  | return InsertNewInstWith(New, *Shl); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// The specified value produces a vector with any number of elements. | 
|  | /// DemandedElts contains the set of elements that are actually used by the | 
|  | /// caller. This method analyzes which elements of the operand are undef and | 
|  | /// returns that information in UndefElts. | 
|  | /// | 
|  | /// If the information about demanded elements can be used to simplify the | 
|  | /// operation, the operation is simplified, then the resultant value is | 
|  | /// returned.  This returns null if no change was made. | 
|  | Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, | 
|  | APInt &UndefElts, | 
|  | unsigned Depth) { | 
|  | unsigned VWidth = V->getType()->getVectorNumElements(); | 
|  | APInt EltMask(APInt::getAllOnesValue(VWidth)); | 
|  | assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); | 
|  |  | 
|  | if (isa<UndefValue>(V)) { | 
|  | // If the entire vector is undefined, just return this info. | 
|  | UndefElts = EltMask; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. | 
|  | UndefElts = EltMask; | 
|  | return UndefValue::get(V->getType()); | 
|  | } | 
|  |  | 
|  | UndefElts = 0; | 
|  |  | 
|  | // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential. | 
|  | if (Constant *C = dyn_cast<Constant>(V)) { | 
|  | // Check if this is identity. If so, return 0 since we are not simplifying | 
|  | // anything. | 
|  | if (DemandedElts.isAllOnesValue()) | 
|  | return nullptr; | 
|  |  | 
|  | Type *EltTy = cast<VectorType>(V->getType())->getElementType(); | 
|  | Constant *Undef = UndefValue::get(EltTy); | 
|  |  | 
|  | SmallVector<Constant*, 16> Elts; | 
|  | for (unsigned i = 0; i != VWidth; ++i) { | 
|  | if (!DemandedElts[i]) {   // If not demanded, set to undef. | 
|  | Elts.push_back(Undef); | 
|  | UndefElts.setBit(i); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Constant *Elt = C->getAggregateElement(i); | 
|  | if (!Elt) return nullptr; | 
|  |  | 
|  | if (isa<UndefValue>(Elt)) {   // Already undef. | 
|  | Elts.push_back(Undef); | 
|  | UndefElts.setBit(i); | 
|  | } else {                               // Otherwise, defined. | 
|  | Elts.push_back(Elt); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we changed the constant, return it. | 
|  | Constant *NewCV = ConstantVector::get(Elts); | 
|  | return NewCV != C ? NewCV : nullptr; | 
|  | } | 
|  |  | 
|  | // Limit search depth. | 
|  | if (Depth == 10) | 
|  | return nullptr; | 
|  |  | 
|  | // If multiple users are using the root value, proceed with | 
|  | // simplification conservatively assuming that all elements | 
|  | // are needed. | 
|  | if (!V->hasOneUse()) { | 
|  | // Quit if we find multiple users of a non-root value though. | 
|  | // They'll be handled when it's their turn to be visited by | 
|  | // the main instcombine process. | 
|  | if (Depth != 0) | 
|  | // TODO: Just compute the UndefElts information recursively. | 
|  | return nullptr; | 
|  |  | 
|  | // Conservatively assume that all elements are needed. | 
|  | DemandedElts = EltMask; | 
|  | } | 
|  |  | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return nullptr;        // Only analyze instructions. | 
|  |  | 
|  | bool MadeChange = false; | 
|  | APInt UndefElts2(VWidth, 0); | 
|  | APInt UndefElts3(VWidth, 0); | 
|  | Value *TmpV; | 
|  | switch (I->getOpcode()) { | 
|  | default: break; | 
|  |  | 
|  | case Instruction::InsertElement: { | 
|  | // If this is a variable index, we don't know which element it overwrites. | 
|  | // demand exactly the same input as we produce. | 
|  | ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); | 
|  | if (!Idx) { | 
|  | // Note that we can't propagate undef elt info, because we don't know | 
|  | // which elt is getting updated. | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, | 
|  | UndefElts2, Depth + 1); | 
|  | if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The element inserted overwrites whatever was there, so the input demanded | 
|  | // set is simpler than the output set. | 
|  | unsigned IdxNo = Idx->getZExtValue(); | 
|  | APInt PreInsertDemandedElts = DemandedElts; | 
|  | if (IdxNo < VWidth) | 
|  | PreInsertDemandedElts.clearBit(IdxNo); | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), PreInsertDemandedElts, | 
|  | UndefElts, Depth + 1); | 
|  | if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } | 
|  |  | 
|  | // If this is inserting an element that isn't demanded, remove this | 
|  | // insertelement. | 
|  | if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { | 
|  | Worklist.Add(I); | 
|  | return I->getOperand(0); | 
|  | } | 
|  |  | 
|  | // The inserted element is defined. | 
|  | UndefElts.clearBit(IdxNo); | 
|  | break; | 
|  | } | 
|  | case Instruction::ShuffleVector: { | 
|  | ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); | 
|  | unsigned LHSVWidth = | 
|  | Shuffle->getOperand(0)->getType()->getVectorNumElements(); | 
|  | APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); | 
|  | for (unsigned i = 0; i < VWidth; i++) { | 
|  | if (DemandedElts[i]) { | 
|  | unsigned MaskVal = Shuffle->getMaskValue(i); | 
|  | if (MaskVal != -1u) { | 
|  | assert(MaskVal < LHSVWidth * 2 && | 
|  | "shufflevector mask index out of range!"); | 
|  | if (MaskVal < LHSVWidth) | 
|  | LeftDemanded.setBit(MaskVal); | 
|  | else | 
|  | RightDemanded.setBit(MaskVal - LHSVWidth); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | APInt LHSUndefElts(LHSVWidth, 0); | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, | 
|  | LHSUndefElts, Depth + 1); | 
|  | if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } | 
|  |  | 
|  | APInt RHSUndefElts(LHSVWidth, 0); | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, | 
|  | RHSUndefElts, Depth + 1); | 
|  | if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } | 
|  |  | 
|  | bool NewUndefElts = false; | 
|  | unsigned LHSIdx = -1u, LHSValIdx = -1u; | 
|  | unsigned RHSIdx = -1u, RHSValIdx = -1u; | 
|  | bool LHSUniform = true; | 
|  | bool RHSUniform = true; | 
|  | for (unsigned i = 0; i < VWidth; i++) { | 
|  | unsigned MaskVal = Shuffle->getMaskValue(i); | 
|  | if (MaskVal == -1u) { | 
|  | UndefElts.setBit(i); | 
|  | } else if (!DemandedElts[i]) { | 
|  | NewUndefElts = true; | 
|  | UndefElts.setBit(i); | 
|  | } else if (MaskVal < LHSVWidth) { | 
|  | if (LHSUndefElts[MaskVal]) { | 
|  | NewUndefElts = true; | 
|  | UndefElts.setBit(i); | 
|  | } else { | 
|  | LHSIdx = LHSIdx == -1u ? i : LHSVWidth; | 
|  | LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth; | 
|  | LHSUniform = LHSUniform && (MaskVal == i); | 
|  | } | 
|  | } else { | 
|  | if (RHSUndefElts[MaskVal - LHSVWidth]) { | 
|  | NewUndefElts = true; | 
|  | UndefElts.setBit(i); | 
|  | } else { | 
|  | RHSIdx = RHSIdx == -1u ? i : LHSVWidth; | 
|  | RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth; | 
|  | RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to transform shuffle with constant vector and single element from | 
|  | // this constant vector to single insertelement instruction. | 
|  | // shufflevector V, C, <v1, v2, .., ci, .., vm> -> | 
|  | // insertelement V, C[ci], ci-n | 
|  | if (LHSVWidth == Shuffle->getType()->getNumElements()) { | 
|  | Value *Op = nullptr; | 
|  | Constant *Value = nullptr; | 
|  | unsigned Idx = -1u; | 
|  |  | 
|  | // Find constant vector with the single element in shuffle (LHS or RHS). | 
|  | if (LHSIdx < LHSVWidth && RHSUniform) { | 
|  | if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { | 
|  | Op = Shuffle->getOperand(1); | 
|  | Value = CV->getOperand(LHSValIdx); | 
|  | Idx = LHSIdx; | 
|  | } | 
|  | } | 
|  | if (RHSIdx < LHSVWidth && LHSUniform) { | 
|  | if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { | 
|  | Op = Shuffle->getOperand(0); | 
|  | Value = CV->getOperand(RHSValIdx); | 
|  | Idx = RHSIdx; | 
|  | } | 
|  | } | 
|  | // Found constant vector with single element - convert to insertelement. | 
|  | if (Op && Value) { | 
|  | Instruction *New = InsertElementInst::Create( | 
|  | Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), | 
|  | Shuffle->getName()); | 
|  | InsertNewInstWith(New, *Shuffle); | 
|  | return New; | 
|  | } | 
|  | } | 
|  | if (NewUndefElts) { | 
|  | // Add additional discovered undefs. | 
|  | SmallVector<Constant*, 16> Elts; | 
|  | for (unsigned i = 0; i < VWidth; ++i) { | 
|  | if (UndefElts[i]) | 
|  | Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); | 
|  | else | 
|  | Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), | 
|  | Shuffle->getMaskValue(i))); | 
|  | } | 
|  | I->setOperand(2, ConstantVector::get(Elts)); | 
|  | MadeChange = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Select: { | 
|  | APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts); | 
|  | if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) { | 
|  | for (unsigned i = 0; i < VWidth; i++) { | 
|  | Constant *CElt = CV->getAggregateElement(i); | 
|  | // Method isNullValue always returns false when called on a | 
|  | // ConstantExpr. If CElt is a ConstantExpr then skip it in order to | 
|  | // to avoid propagating incorrect information. | 
|  | if (isa<ConstantExpr>(CElt)) | 
|  | continue; | 
|  | if (CElt->isNullValue()) | 
|  | LeftDemanded.clearBit(i); | 
|  | else | 
|  | RightDemanded.clearBit(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts, | 
|  | Depth + 1); | 
|  | if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } | 
|  |  | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded, | 
|  | UndefElts2, Depth + 1); | 
|  | if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; } | 
|  |  | 
|  | // Output elements are undefined if both are undefined. | 
|  | UndefElts &= UndefElts2; | 
|  | break; | 
|  | } | 
|  | case Instruction::BitCast: { | 
|  | // Vector->vector casts only. | 
|  | VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); | 
|  | if (!VTy) break; | 
|  | unsigned InVWidth = VTy->getNumElements(); | 
|  | APInt InputDemandedElts(InVWidth, 0); | 
|  | UndefElts2 = APInt(InVWidth, 0); | 
|  | unsigned Ratio; | 
|  |  | 
|  | if (VWidth == InVWidth) { | 
|  | // If we are converting from <4 x i32> -> <4 x f32>, we demand the same | 
|  | // elements as are demanded of us. | 
|  | Ratio = 1; | 
|  | InputDemandedElts = DemandedElts; | 
|  | } else if ((VWidth % InVWidth) == 0) { | 
|  | // If the number of elements in the output is a multiple of the number of | 
|  | // elements in the input then an input element is live if any of the | 
|  | // corresponding output elements are live. | 
|  | Ratio = VWidth / InVWidth; | 
|  | for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) | 
|  | if (DemandedElts[OutIdx]) | 
|  | InputDemandedElts.setBit(OutIdx / Ratio); | 
|  | } else if ((InVWidth % VWidth) == 0) { | 
|  | // If the number of elements in the input is a multiple of the number of | 
|  | // elements in the output then an input element is live if the | 
|  | // corresponding output element is live. | 
|  | Ratio = InVWidth / VWidth; | 
|  | for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) | 
|  | if (DemandedElts[InIdx / Ratio]) | 
|  | InputDemandedElts.setBit(InIdx); | 
|  | } else { | 
|  | // Unsupported so far. | 
|  | break; | 
|  | } | 
|  |  | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, | 
|  | UndefElts2, Depth + 1); | 
|  | if (TmpV) { | 
|  | I->setOperand(0, TmpV); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | if (VWidth == InVWidth) { | 
|  | UndefElts = UndefElts2; | 
|  | } else if ((VWidth % InVWidth) == 0) { | 
|  | // If the number of elements in the output is a multiple of the number of | 
|  | // elements in the input then an output element is undef if the | 
|  | // corresponding input element is undef. | 
|  | for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) | 
|  | if (UndefElts2[OutIdx / Ratio]) | 
|  | UndefElts.setBit(OutIdx); | 
|  | } else if ((InVWidth % VWidth) == 0) { | 
|  | // If the number of elements in the input is a multiple of the number of | 
|  | // elements in the output then an output element is undef if all of the | 
|  | // corresponding input elements are undef. | 
|  | for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { | 
|  | APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); | 
|  | if (SubUndef.countPopulation() == Ratio) | 
|  | UndefElts.setBit(OutIdx); | 
|  | } | 
|  | } else { | 
|  | llvm_unreachable("Unimp"); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | // div/rem demand all inputs, because they don't want divide by zero. | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, | 
|  | Depth + 1); | 
|  | if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, | 
|  | UndefElts2, Depth + 1); | 
|  | if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } | 
|  |  | 
|  | // Output elements are undefined if both are undefined.  Consider things | 
|  | // like undef&0.  The result is known zero, not undef. | 
|  | UndefElts &= UndefElts2; | 
|  | break; | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, | 
|  | Depth + 1); | 
|  | if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } | 
|  | break; | 
|  |  | 
|  | case Instruction::Call: { | 
|  | IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); | 
|  | if (!II) break; | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  |  | 
|  | case Intrinsic::x86_xop_vfrcz_ss: | 
|  | case Intrinsic::x86_xop_vfrcz_sd: | 
|  | // The instructions for these intrinsics are speced to zero upper bits not | 
|  | // pass them through like other scalar intrinsics. So we shouldn't just | 
|  | // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. | 
|  | // Instead we should return a zero vector. | 
|  | if (!DemandedElts[0]) { | 
|  | Worklist.Add(II); | 
|  | return ConstantAggregateZero::get(II->getType()); | 
|  | } | 
|  |  | 
|  | // Only the lower element is used. | 
|  | DemandedElts = 1; | 
|  | TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, | 
|  | UndefElts, Depth + 1); | 
|  | if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } | 
|  |  | 
|  | // Only the lower element is undefined. The high elements are zero. | 
|  | UndefElts = UndefElts[0]; | 
|  | break; | 
|  |  | 
|  | // Unary scalar-as-vector operations that work column-wise. | 
|  | case Intrinsic::x86_sse_rcp_ss: | 
|  | case Intrinsic::x86_sse_rsqrt_ss: | 
|  | case Intrinsic::x86_sse_sqrt_ss: | 
|  | case Intrinsic::x86_sse2_sqrt_sd: | 
|  | TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, | 
|  | UndefElts, Depth + 1); | 
|  | if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } | 
|  |  | 
|  | // If lowest element of a scalar op isn't used then use Arg0. | 
|  | if (!DemandedElts[0]) { | 
|  | Worklist.Add(II); | 
|  | return II->getArgOperand(0); | 
|  | } | 
|  | // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions | 
|  | // checks). | 
|  | break; | 
|  |  | 
|  | // Binary scalar-as-vector operations that work column-wise. The high | 
|  | // elements come from operand 0. The low element is a function of both | 
|  | // operands. | 
|  | case Intrinsic::x86_sse_min_ss: | 
|  | case Intrinsic::x86_sse_max_ss: | 
|  | case Intrinsic::x86_sse_cmp_ss: | 
|  | case Intrinsic::x86_sse2_min_sd: | 
|  | case Intrinsic::x86_sse2_max_sd: | 
|  | case Intrinsic::x86_sse2_cmp_sd: { | 
|  | TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, | 
|  | UndefElts, Depth + 1); | 
|  | if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } | 
|  |  | 
|  | // If lowest element of a scalar op isn't used then use Arg0. | 
|  | if (!DemandedElts[0]) { | 
|  | Worklist.Add(II); | 
|  | return II->getArgOperand(0); | 
|  | } | 
|  |  | 
|  | // Only lower element is used for operand 1. | 
|  | DemandedElts = 1; | 
|  | TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, | 
|  | UndefElts2, Depth + 1); | 
|  | if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } | 
|  |  | 
|  | // Lower element is undefined if both lower elements are undefined. | 
|  | // Consider things like undef&0.  The result is known zero, not undef. | 
|  | if (!UndefElts2[0]) | 
|  | UndefElts.clearBit(0); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Binary scalar-as-vector operations that work column-wise. The high | 
|  | // elements come from operand 0 and the low element comes from operand 1. | 
|  | case Intrinsic::x86_sse41_round_ss: | 
|  | case Intrinsic::x86_sse41_round_sd: { | 
|  | // Don't use the low element of operand 0. | 
|  | APInt DemandedElts2 = DemandedElts; | 
|  | DemandedElts2.clearBit(0); | 
|  | TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2, | 
|  | UndefElts, Depth + 1); | 
|  | if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } | 
|  |  | 
|  | // If lowest element of a scalar op isn't used then use Arg0. | 
|  | if (!DemandedElts[0]) { | 
|  | Worklist.Add(II); | 
|  | return II->getArgOperand(0); | 
|  | } | 
|  |  | 
|  | // Only lower element is used for operand 1. | 
|  | DemandedElts = 1; | 
|  | TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, | 
|  | UndefElts2, Depth + 1); | 
|  | if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } | 
|  |  | 
|  | // Take the high undef elements from operand 0 and take the lower element | 
|  | // from operand 1. | 
|  | UndefElts.clearBit(0); | 
|  | UndefElts |= UndefElts2[0]; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Three input scalar-as-vector operations that work column-wise. The high | 
|  | // elements come from operand 0 and the low element is a function of all | 
|  | // three inputs. | 
|  | case Intrinsic::x86_avx512_mask_add_ss_round: | 
|  | case Intrinsic::x86_avx512_mask_div_ss_round: | 
|  | case Intrinsic::x86_avx512_mask_mul_ss_round: | 
|  | case Intrinsic::x86_avx512_mask_sub_ss_round: | 
|  | case Intrinsic::x86_avx512_mask_max_ss_round: | 
|  | case Intrinsic::x86_avx512_mask_min_ss_round: | 
|  | case Intrinsic::x86_avx512_mask_add_sd_round: | 
|  | case Intrinsic::x86_avx512_mask_div_sd_round: | 
|  | case Intrinsic::x86_avx512_mask_mul_sd_round: | 
|  | case Intrinsic::x86_avx512_mask_sub_sd_round: | 
|  | case Intrinsic::x86_avx512_mask_max_sd_round: | 
|  | case Intrinsic::x86_avx512_mask_min_sd_round: | 
|  | case Intrinsic::x86_fma_vfmadd_ss: | 
|  | case Intrinsic::x86_fma_vfmsub_ss: | 
|  | case Intrinsic::x86_fma_vfnmadd_ss: | 
|  | case Intrinsic::x86_fma_vfnmsub_ss: | 
|  | case Intrinsic::x86_fma_vfmadd_sd: | 
|  | case Intrinsic::x86_fma_vfmsub_sd: | 
|  | case Intrinsic::x86_fma_vfnmadd_sd: | 
|  | case Intrinsic::x86_fma_vfnmsub_sd: | 
|  | case Intrinsic::x86_avx512_mask_vfmadd_ss: | 
|  | case Intrinsic::x86_avx512_mask_vfmadd_sd: | 
|  | case Intrinsic::x86_avx512_maskz_vfmadd_ss: | 
|  | case Intrinsic::x86_avx512_maskz_vfmadd_sd: | 
|  | TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, | 
|  | UndefElts, Depth + 1); | 
|  | if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } | 
|  |  | 
|  | // If lowest element of a scalar op isn't used then use Arg0. | 
|  | if (!DemandedElts[0]) { | 
|  | Worklist.Add(II); | 
|  | return II->getArgOperand(0); | 
|  | } | 
|  |  | 
|  | // Only lower element is used for operand 1 and 2. | 
|  | DemandedElts = 1; | 
|  | TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, | 
|  | UndefElts2, Depth + 1); | 
|  | if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } | 
|  | TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts, | 
|  | UndefElts3, Depth + 1); | 
|  | if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; } | 
|  |  | 
|  | // Lower element is undefined if all three lower elements are undefined. | 
|  | // Consider things like undef&0.  The result is known zero, not undef. | 
|  | if (!UndefElts2[0] || !UndefElts3[0]) | 
|  | UndefElts.clearBit(0); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_avx512_mask3_vfmadd_ss: | 
|  | case Intrinsic::x86_avx512_mask3_vfmadd_sd: | 
|  | case Intrinsic::x86_avx512_mask3_vfmsub_ss: | 
|  | case Intrinsic::x86_avx512_mask3_vfmsub_sd: | 
|  | case Intrinsic::x86_avx512_mask3_vfnmsub_ss: | 
|  | case Intrinsic::x86_avx512_mask3_vfnmsub_sd: | 
|  | // These intrinsics get the passthru bits from operand 2. | 
|  | TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts, | 
|  | UndefElts, Depth + 1); | 
|  | if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; } | 
|  |  | 
|  | // If lowest element of a scalar op isn't used then use Arg2. | 
|  | if (!DemandedElts[0]) { | 
|  | Worklist.Add(II); | 
|  | return II->getArgOperand(2); | 
|  | } | 
|  |  | 
|  | // Only lower element is used for operand 0 and 1. | 
|  | DemandedElts = 1; | 
|  | TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, | 
|  | UndefElts2, Depth + 1); | 
|  | if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } | 
|  | TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, | 
|  | UndefElts3, Depth + 1); | 
|  | if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } | 
|  |  | 
|  | // Lower element is undefined if all three lower elements are undefined. | 
|  | // Consider things like undef&0.  The result is known zero, not undef. | 
|  | if (!UndefElts2[0] || !UndefElts3[0]) | 
|  | UndefElts.clearBit(0); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_sse2_pmulu_dq: | 
|  | case Intrinsic::x86_sse41_pmuldq: | 
|  | case Intrinsic::x86_avx2_pmul_dq: | 
|  | case Intrinsic::x86_avx2_pmulu_dq: | 
|  | case Intrinsic::x86_avx512_pmul_dq_512: | 
|  | case Intrinsic::x86_avx512_pmulu_dq_512: { | 
|  | Value *Op0 = II->getArgOperand(0); | 
|  | Value *Op1 = II->getArgOperand(1); | 
|  | unsigned InnerVWidth = Op0->getType()->getVectorNumElements(); | 
|  | assert((VWidth * 2) == InnerVWidth && "Unexpected input size"); | 
|  |  | 
|  | APInt InnerDemandedElts(InnerVWidth, 0); | 
|  | for (unsigned i = 0; i != VWidth; ++i) | 
|  | if (DemandedElts[i]) | 
|  | InnerDemandedElts.setBit(i * 2); | 
|  |  | 
|  | UndefElts2 = APInt(InnerVWidth, 0); | 
|  | TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2, | 
|  | Depth + 1); | 
|  | if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } | 
|  |  | 
|  | UndefElts3 = APInt(InnerVWidth, 0); | 
|  | TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3, | 
|  | Depth + 1); | 
|  | if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_sse2_packssdw_128: | 
|  | case Intrinsic::x86_sse2_packsswb_128: | 
|  | case Intrinsic::x86_sse2_packuswb_128: | 
|  | case Intrinsic::x86_sse41_packusdw: | 
|  | case Intrinsic::x86_avx2_packssdw: | 
|  | case Intrinsic::x86_avx2_packsswb: | 
|  | case Intrinsic::x86_avx2_packusdw: | 
|  | case Intrinsic::x86_avx2_packuswb: | 
|  | case Intrinsic::x86_avx512_packssdw_512: | 
|  | case Intrinsic::x86_avx512_packsswb_512: | 
|  | case Intrinsic::x86_avx512_packusdw_512: | 
|  | case Intrinsic::x86_avx512_packuswb_512: { | 
|  | auto *Ty0 = II->getArgOperand(0)->getType(); | 
|  | unsigned InnerVWidth = Ty0->getVectorNumElements(); | 
|  | assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); | 
|  |  | 
|  | unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; | 
|  | unsigned VWidthPerLane = VWidth / NumLanes; | 
|  | unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; | 
|  |  | 
|  | // Per lane, pack the elements of the first input and then the second. | 
|  | // e.g. | 
|  | // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) | 
|  | // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) | 
|  | for (int OpNum = 0; OpNum != 2; ++OpNum) { | 
|  | APInt OpDemandedElts(InnerVWidth, 0); | 
|  | for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { | 
|  | unsigned LaneIdx = Lane * VWidthPerLane; | 
|  | for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { | 
|  | unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; | 
|  | if (DemandedElts[Idx]) | 
|  | OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Demand elements from the operand. | 
|  | auto *Op = II->getArgOperand(OpNum); | 
|  | APInt OpUndefElts(InnerVWidth, 0); | 
|  | TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts, | 
|  | Depth + 1); | 
|  | if (TmpV) { | 
|  | II->setArgOperand(OpNum, TmpV); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | // Pack the operand's UNDEF elements, one lane at a time. | 
|  | OpUndefElts = OpUndefElts.zext(VWidth); | 
|  | for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { | 
|  | APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); | 
|  | LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); | 
|  | LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); | 
|  | UndefElts |= LaneElts; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // PSHUFB | 
|  | case Intrinsic::x86_ssse3_pshuf_b_128: | 
|  | case Intrinsic::x86_avx2_pshuf_b: | 
|  | case Intrinsic::x86_avx512_pshuf_b_512: | 
|  | // PERMILVAR | 
|  | case Intrinsic::x86_avx_vpermilvar_ps: | 
|  | case Intrinsic::x86_avx_vpermilvar_ps_256: | 
|  | case Intrinsic::x86_avx512_vpermilvar_ps_512: | 
|  | case Intrinsic::x86_avx_vpermilvar_pd: | 
|  | case Intrinsic::x86_avx_vpermilvar_pd_256: | 
|  | case Intrinsic::x86_avx512_vpermilvar_pd_512: | 
|  | // PERMV | 
|  | case Intrinsic::x86_avx2_permd: | 
|  | case Intrinsic::x86_avx2_permps: { | 
|  | Value *Op1 = II->getArgOperand(1); | 
|  | TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts, | 
|  | Depth + 1); | 
|  | if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // SSE4A instructions leave the upper 64-bits of the 128-bit result | 
|  | // in an undefined state. | 
|  | case Intrinsic::x86_sse4a_extrq: | 
|  | case Intrinsic::x86_sse4a_extrqi: | 
|  | case Intrinsic::x86_sse4a_insertq: | 
|  | case Intrinsic::x86_sse4a_insertqi: | 
|  | UndefElts.setHighBits(VWidth / 2); | 
|  | break; | 
|  | case Intrinsic::amdgcn_buffer_load: | 
|  | case Intrinsic::amdgcn_buffer_load_format: | 
|  | case Intrinsic::amdgcn_image_sample: | 
|  | case Intrinsic::amdgcn_image_sample_cl: | 
|  | case Intrinsic::amdgcn_image_sample_d: | 
|  | case Intrinsic::amdgcn_image_sample_d_cl: | 
|  | case Intrinsic::amdgcn_image_sample_l: | 
|  | case Intrinsic::amdgcn_image_sample_b: | 
|  | case Intrinsic::amdgcn_image_sample_b_cl: | 
|  | case Intrinsic::amdgcn_image_sample_lz: | 
|  | case Intrinsic::amdgcn_image_sample_cd: | 
|  | case Intrinsic::amdgcn_image_sample_cd_cl: | 
|  |  | 
|  | case Intrinsic::amdgcn_image_sample_c: | 
|  | case Intrinsic::amdgcn_image_sample_c_cl: | 
|  | case Intrinsic::amdgcn_image_sample_c_d: | 
|  | case Intrinsic::amdgcn_image_sample_c_d_cl: | 
|  | case Intrinsic::amdgcn_image_sample_c_l: | 
|  | case Intrinsic::amdgcn_image_sample_c_b: | 
|  | case Intrinsic::amdgcn_image_sample_c_b_cl: | 
|  | case Intrinsic::amdgcn_image_sample_c_lz: | 
|  | case Intrinsic::amdgcn_image_sample_c_cd: | 
|  | case Intrinsic::amdgcn_image_sample_c_cd_cl: | 
|  |  | 
|  | case Intrinsic::amdgcn_image_sample_o: | 
|  | case Intrinsic::amdgcn_image_sample_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_d_o: | 
|  | case Intrinsic::amdgcn_image_sample_d_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_l_o: | 
|  | case Intrinsic::amdgcn_image_sample_b_o: | 
|  | case Intrinsic::amdgcn_image_sample_b_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_lz_o: | 
|  | case Intrinsic::amdgcn_image_sample_cd_o: | 
|  | case Intrinsic::amdgcn_image_sample_cd_cl_o: | 
|  |  | 
|  | case Intrinsic::amdgcn_image_sample_c_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_d_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_d_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_l_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_b_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_b_cl_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_lz_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_cd_o: | 
|  | case Intrinsic::amdgcn_image_sample_c_cd_cl_o: | 
|  |  | 
|  | case Intrinsic::amdgcn_image_getlod: { | 
|  | if (VWidth == 1 || !DemandedElts.isMask()) | 
|  | return nullptr; | 
|  |  | 
|  | // TODO: Handle 3 vectors when supported in code gen. | 
|  | unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countTrailingOnes()); | 
|  | if (NewNumElts == VWidth) | 
|  | return nullptr; | 
|  |  | 
|  | Module *M = II->getParent()->getParent()->getParent(); | 
|  | Type *EltTy = V->getType()->getVectorElementType(); | 
|  |  | 
|  | Type *NewTy = (NewNumElts == 1) ? EltTy : | 
|  | VectorType::get(EltTy, NewNumElts); | 
|  |  | 
|  | auto IID = II->getIntrinsicID(); | 
|  |  | 
|  | bool IsBuffer = IID == Intrinsic::amdgcn_buffer_load || | 
|  | IID == Intrinsic::amdgcn_buffer_load_format; | 
|  |  | 
|  | Function *NewIntrin = IsBuffer ? | 
|  | Intrinsic::getDeclaration(M, IID, NewTy) : | 
|  | // Samplers have 3 mangled types. | 
|  | Intrinsic::getDeclaration(M, IID, | 
|  | { NewTy, II->getArgOperand(0)->getType(), | 
|  | II->getArgOperand(1)->getType()}); | 
|  |  | 
|  | SmallVector<Value *, 5> Args; | 
|  | for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I) | 
|  | Args.push_back(II->getArgOperand(I)); | 
|  |  | 
|  | IRBuilderBase::InsertPointGuard Guard(Builder); | 
|  | Builder.SetInsertPoint(II); | 
|  |  | 
|  | CallInst *NewCall = Builder.CreateCall(NewIntrin, Args); | 
|  | NewCall->takeName(II); | 
|  | NewCall->copyMetadata(*II); | 
|  |  | 
|  | if (!IsBuffer) { | 
|  | ConstantInt *DMask = dyn_cast<ConstantInt>(NewCall->getArgOperand(3)); | 
|  | if (DMask) { | 
|  | unsigned DMaskVal = DMask->getZExtValue() & 0xf; | 
|  |  | 
|  | unsigned PopCnt = 0; | 
|  | unsigned NewDMask = 0; | 
|  | for (unsigned I = 0; I < 4; ++I) { | 
|  | const unsigned Bit = 1 << I; | 
|  | if (!!(DMaskVal & Bit)) { | 
|  | if (++PopCnt > NewNumElts) | 
|  | break; | 
|  |  | 
|  | NewDMask |= Bit; | 
|  | } | 
|  | } | 
|  |  | 
|  | NewCall->setArgOperand(3, ConstantInt::get(DMask->getType(), NewDMask)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | if (NewNumElts == 1) { | 
|  | return Builder.CreateInsertElement(UndefValue::get(V->getType()), | 
|  | NewCall, static_cast<uint64_t>(0)); | 
|  | } | 
|  |  | 
|  | SmallVector<uint32_t, 8> EltMask; | 
|  | for (unsigned I = 0; I < VWidth; ++I) | 
|  | EltMask.push_back(I); | 
|  |  | 
|  | Value *Shuffle = Builder.CreateShuffleVector( | 
|  | NewCall, UndefValue::get(NewTy), EltMask); | 
|  |  | 
|  | MadeChange = true; | 
|  | return Shuffle; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | return MadeChange ? I : nullptr; | 
|  | } |