|  | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" | 
|  | "http://www.w3.org/TR/html4/strict.dtd"> | 
|  |  | 
|  | <html> | 
|  | <head> | 
|  | <title>Kaleidoscope: Extending the Language: Control Flow</title> | 
|  | <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | 
|  | <meta name="author" content="Chris Lattner"> | 
|  | <link rel="stylesheet" href="../llvm.css" type="text/css"> | 
|  | </head> | 
|  |  | 
|  | <body> | 
|  |  | 
|  | <h1>Kaleidoscope: Extending the Language: Control Flow</h1> | 
|  |  | 
|  | <ul> | 
|  | <li><a href="index.html">Up to Tutorial Index</a></li> | 
|  | <li>Chapter 5 | 
|  | <ol> | 
|  | <li><a href="#intro">Chapter 5 Introduction</a></li> | 
|  | <li><a href="#ifthen">If/Then/Else</a> | 
|  | <ol> | 
|  | <li><a href="#iflexer">Lexer Extensions</a></li> | 
|  | <li><a href="#ifast">AST Extensions</a></li> | 
|  | <li><a href="#ifparser">Parser Extensions</a></li> | 
|  | <li><a href="#ifir">LLVM IR</a></li> | 
|  | <li><a href="#ifcodegen">Code Generation</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#for">'for' Loop Expression</a> | 
|  | <ol> | 
|  | <li><a href="#forlexer">Lexer Extensions</a></li> | 
|  | <li><a href="#forast">AST Extensions</a></li> | 
|  | <li><a href="#forparser">Parser Extensions</a></li> | 
|  | <li><a href="#forir">LLVM IR</a></li> | 
|  | <li><a href="#forcodegen">Code Generation</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="#code">Full Code Listing</a></li> | 
|  | </ol> | 
|  | </li> | 
|  | <li><a href="LangImpl6.html">Chapter 6</a>: Extending the Language: | 
|  | User-defined Operators</li> | 
|  | </ul> | 
|  |  | 
|  | <div class="doc_author"> | 
|  | <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <h2><a name="intro">Chapter 5 Introduction</a></h2> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Welcome to Chapter 5 of the "<a href="index.html">Implementing a language | 
|  | with LLVM</a>" tutorial.  Parts 1-4 described the implementation of the simple | 
|  | Kaleidoscope language and included support for generating LLVM IR, followed by | 
|  | optimizations and a JIT compiler.  Unfortunately, as presented, Kaleidoscope is | 
|  | mostly useless: it has no control flow other than call and return.  This means | 
|  | that you can't have conditional branches in the code, significantly limiting its | 
|  | power.  In this episode of "build that compiler", we'll extend Kaleidoscope to | 
|  | have an if/then/else expression plus a simple 'for' loop.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <h2><a name="ifthen">If/Then/Else</a></h2> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p> | 
|  | Extending Kaleidoscope to support if/then/else is quite straightforward.  It | 
|  | basically requires adding support for this "new" concept to the lexer, | 
|  | parser, AST, and LLVM code emitter.  This example is nice, because it shows how | 
|  | easy it is to "grow" a language over time, incrementally extending it as new | 
|  | ideas are discovered.</p> | 
|  |  | 
|  | <p>Before we get going on "how" we add this extension, lets talk about "what" we | 
|  | want.  The basic idea is that we want to be able to write this sort of thing: | 
|  | </p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | def fib(x) | 
|  | if x < 3 then | 
|  | 1 | 
|  | else | 
|  | fib(x-1)+fib(x-2); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>In Kaleidoscope, every construct is an expression: there are no statements. | 
|  | As such, the if/then/else expression needs to return a value like any other. | 
|  | Since we're using a mostly functional form, we'll have it evaluate its | 
|  | conditional, then return the 'then' or 'else' value based on how the condition | 
|  | was resolved.  This is very similar to the C "?:" expression.</p> | 
|  |  | 
|  | <p>The semantics of the if/then/else expression is that it evaluates the | 
|  | condition to a boolean equality value: 0.0 is considered to be false and | 
|  | everything else is considered to be true. | 
|  | If the condition is true, the first subexpression is evaluated and returned, if | 
|  | the condition is false, the second subexpression is evaluated and returned. | 
|  | Since Kaleidoscope allows side-effects, this behavior is important to nail down. | 
|  | </p> | 
|  |  | 
|  | <p>Now that we know what we "want", lets break this down into its constituent | 
|  | pieces.</p> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h4><a name="iflexer">Lexer Extensions for If/Then/Else</a></h4> | 
|  | <!-- ======================================================================= --> | 
|  |  | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The lexer extensions are straightforward.  First we add new enum values | 
|  | for the relevant tokens:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // control | 
|  | tok_if = -6, tok_then = -7, tok_else = -8, | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Once we have that, we recognize the new keywords in the lexer. This is pretty simple | 
|  | stuff:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | ... | 
|  | if (IdentifierStr == "def") return tok_def; | 
|  | if (IdentifierStr == "extern") return tok_extern; | 
|  | <b>if (IdentifierStr == "if") return tok_if; | 
|  | if (IdentifierStr == "then") return tok_then; | 
|  | if (IdentifierStr == "else") return tok_else;</b> | 
|  | return tok_identifier; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h4><a name="ifast">AST Extensions for If/Then/Else</a></h4> | 
|  | <!-- ======================================================================= --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>To represent the new expression we add a new AST node for it:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// IfExprAST - Expression class for if/then/else. | 
|  | class IfExprAST : public ExprAST { | 
|  | ExprAST *Cond, *Then, *Else; | 
|  | public: | 
|  | IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) | 
|  | : Cond(cond), Then(then), Else(_else) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>The AST node just has pointers to the various subexpressions.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h4><a name="ifparser">Parser Extensions for If/Then/Else</a></h4> | 
|  | <!-- ======================================================================= --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Now that we have the relevant tokens coming from the lexer and we have the | 
|  | AST node to build, our parsing logic is relatively straightforward.  First we | 
|  | define a new parsing function:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// ifexpr ::= 'if' expression 'then' expression 'else' expression | 
|  | static ExprAST *ParseIfExpr() { | 
|  | getNextToken();  // eat the if. | 
|  |  | 
|  | // condition. | 
|  | ExprAST *Cond = ParseExpression(); | 
|  | if (!Cond) return 0; | 
|  |  | 
|  | if (CurTok != tok_then) | 
|  | return Error("expected then"); | 
|  | getNextToken();  // eat the then | 
|  |  | 
|  | ExprAST *Then = ParseExpression(); | 
|  | if (Then == 0) return 0; | 
|  |  | 
|  | if (CurTok != tok_else) | 
|  | return Error("expected else"); | 
|  |  | 
|  | getNextToken(); | 
|  |  | 
|  | ExprAST *Else = ParseExpression(); | 
|  | if (!Else) return 0; | 
|  |  | 
|  | return new IfExprAST(Cond, Then, Else); | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Next we hook it up as a primary expression:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | static ExprAST *ParsePrimary() { | 
|  | switch (CurTok) { | 
|  | default: return Error("unknown token when expecting an expression"); | 
|  | case tok_identifier: return ParseIdentifierExpr(); | 
|  | case tok_number:     return ParseNumberExpr(); | 
|  | case '(':            return ParseParenExpr(); | 
|  | <b>case tok_if:         return ParseIfExpr();</b> | 
|  | } | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h4><a name="ifir">LLVM IR for If/Then/Else</a></h4> | 
|  | <!-- ======================================================================= --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Now that we have it parsing and building the AST, the final piece is adding | 
|  | LLVM code generation support.  This is the most interesting part of the | 
|  | if/then/else example, because this is where it starts to introduce new concepts. | 
|  | All of the code above has been thoroughly described in previous chapters. | 
|  | </p> | 
|  |  | 
|  | <p>To motivate the code we want to produce, lets take a look at a simple | 
|  | example.  Consider:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | extern foo(); | 
|  | extern bar(); | 
|  | def baz(x) if x then foo() else bar(); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>If you disable optimizations, the code you'll (soon) get from Kaleidoscope | 
|  | looks like this:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | declare double @foo() | 
|  |  | 
|  | declare double @bar() | 
|  |  | 
|  | define double @baz(double %x) { | 
|  | entry: | 
|  | %ifcond = fcmp one double %x, 0.000000e+00 | 
|  | br i1 %ifcond, label %then, label %else | 
|  |  | 
|  | then:		; preds = %entry | 
|  | %calltmp = call double @foo() | 
|  | br label %ifcont | 
|  |  | 
|  | else:		; preds = %entry | 
|  | %calltmp1 = call double @bar() | 
|  | br label %ifcont | 
|  |  | 
|  | ifcont:		; preds = %else, %then | 
|  | %iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ] | 
|  | ret double %iftmp | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>To visualize the control flow graph, you can use a nifty feature of the LLVM | 
|  | '<a href="http://llvm.org/cmds/opt.html">opt</a>' tool.  If you put this LLVM IR | 
|  | into "t.ll" and run "<tt>llvm-as < t.ll | opt -analyze -view-cfg</tt>", <a | 
|  | href="../ProgrammersManual.html#ViewGraph">a window will pop up</a> and you'll | 
|  | see this graph:</p> | 
|  |  | 
|  | <div style="text-align: center"><img src="LangImpl5-cfg.png" alt="Example CFG" width="423" | 
|  | height="315"></div> | 
|  |  | 
|  | <p>Another way to get this is to call "<tt>F->viewCFG()</tt>" or | 
|  | "<tt>F->viewCFGOnly()</tt>" (where F is a "<tt>Function*</tt>") either by | 
|  | inserting actual calls into the code and recompiling or by calling these in the | 
|  | debugger.  LLVM has many nice features for visualizing various graphs.</p> | 
|  |  | 
|  | <p>Getting back to the generated code, it is fairly simple: the entry block | 
|  | evaluates the conditional expression ("x" in our case here) and compares the | 
|  | result to 0.0 with the "<tt><a href="../LangRef.html#i_fcmp">fcmp</a> one</tt>" | 
|  | instruction ('one' is "Ordered and Not Equal").  Based on the result of this | 
|  | expression, the code jumps to either the "then" or "else" blocks, which contain | 
|  | the expressions for the true/false cases.</p> | 
|  |  | 
|  | <p>Once the then/else blocks are finished executing, they both branch back to the | 
|  | 'ifcont' block to execute the code that happens after the if/then/else.  In this | 
|  | case the only thing left to do is to return to the caller of the function.  The | 
|  | question then becomes: how does the code know which expression to return?</p> | 
|  |  | 
|  | <p>The answer to this question involves an important SSA operation: the | 
|  | <a href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Phi | 
|  | operation</a>.  If you're not familiar with SSA, <a | 
|  | href="http://en.wikipedia.org/wiki/Static_single_assignment_form">the wikipedia | 
|  | article</a> is a good introduction and there are various other introductions to | 
|  | it available on your favorite search engine.  The short version is that | 
|  | "execution" of the Phi operation requires "remembering" which block control came | 
|  | from.  The Phi operation takes on the value corresponding to the input control | 
|  | block.  In this case, if control comes in from the "then" block, it gets the | 
|  | value of "calltmp".  If control comes from the "else" block, it gets the value | 
|  | of "calltmp1".</p> | 
|  |  | 
|  | <p>At this point, you are probably starting to think "Oh no! This means my | 
|  | simple and elegant front-end will have to start generating SSA form in order to | 
|  | use LLVM!".  Fortunately, this is not the case, and we strongly advise | 
|  | <em>not</em> implementing an SSA construction algorithm in your front-end | 
|  | unless there is an amazingly good reason to do so.  In practice, there are two | 
|  | sorts of values that float around in code written for your average imperative | 
|  | programming language that might need Phi nodes:</p> | 
|  |  | 
|  | <ol> | 
|  | <li>Code that involves user variables: <tt>x = 1; x = x + 1; </tt></li> | 
|  | <li>Values that are implicit in the structure of your AST, such as the Phi node | 
|  | in this case.</li> | 
|  | </ol> | 
|  |  | 
|  | <p>In <a href="LangImpl7.html">Chapter 7</a> of this tutorial ("mutable | 
|  | variables"), we'll talk about #1 | 
|  | in depth.  For now, just believe me that you don't need SSA construction to | 
|  | handle this case.  For #2, you have the choice of using the techniques that we will | 
|  | describe for #1, or you can insert Phi nodes directly, if convenient.  In this | 
|  | case, it is really really easy to generate the Phi node, so we choose to do it | 
|  | directly.</p> | 
|  |  | 
|  | <p>Okay, enough of the motivation and overview, lets generate code!</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h4><a name="ifcodegen">Code Generation for If/Then/Else</a></h4> | 
|  | <!-- ======================================================================= --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>In order to generate code for this, we implement the <tt>Codegen</tt> method | 
|  | for <tt>IfExprAST</tt>:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | Value *IfExprAST::Codegen() { | 
|  | Value *CondV = Cond->Codegen(); | 
|  | if (CondV == 0) return 0; | 
|  |  | 
|  | // Convert condition to a bool by comparing equal to 0.0. | 
|  | CondV = Builder.CreateFCmpONE(CondV, | 
|  | ConstantFP::get(getGlobalContext(), APFloat(0.0)), | 
|  | "ifcond"); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This code is straightforward and similar to what we saw before.  We emit the | 
|  | expression for the condition, then compare that value to zero to get a truth | 
|  | value as a 1-bit (bool) value.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | Function *TheFunction = Builder.GetInsertBlock()->getParent(); | 
|  |  | 
|  | // Create blocks for the then and else cases.  Insert the 'then' block at the | 
|  | // end of the function. | 
|  | BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); | 
|  | BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); | 
|  | BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); | 
|  |  | 
|  | Builder.CreateCondBr(CondV, ThenBB, ElseBB); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This code creates the basic blocks that are related to the if/then/else | 
|  | statement, and correspond directly to the blocks in the example above.  The | 
|  | first line gets the current Function object that is being built.  It | 
|  | gets this by asking the builder for the current BasicBlock, and asking that | 
|  | block for its "parent" (the function it is currently embedded into).</p> | 
|  |  | 
|  | <p>Once it has that, it creates three blocks.  Note that it passes "TheFunction" | 
|  | into the constructor for the "then" block.  This causes the constructor to | 
|  | automatically insert the new block into the end of the specified function.  The | 
|  | other two blocks are created, but aren't yet inserted into the function.</p> | 
|  |  | 
|  | <p>Once the blocks are created, we can emit the conditional branch that chooses | 
|  | between them.  Note that creating new blocks does not implicitly affect the | 
|  | IRBuilder, so it is still inserting into the block that the condition | 
|  | went into.  Also note that it is creating a branch to the "then" block and the | 
|  | "else" block, even though the "else" block isn't inserted into the function yet. | 
|  | This is all ok: it is the standard way that LLVM supports forward | 
|  | references.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // Emit then value. | 
|  | Builder.SetInsertPoint(ThenBB); | 
|  |  | 
|  | Value *ThenV = Then->Codegen(); | 
|  | if (ThenV == 0) return 0; | 
|  |  | 
|  | Builder.CreateBr(MergeBB); | 
|  | // Codegen of 'Then' can change the current block, update ThenBB for the PHI. | 
|  | ThenBB = Builder.GetInsertBlock(); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>After the conditional branch is inserted, we move the builder to start | 
|  | inserting into the "then" block.  Strictly speaking, this call moves the | 
|  | insertion point to be at the end of the specified block.  However, since the | 
|  | "then" block is empty, it also starts out by inserting at the beginning of the | 
|  | block.  :)</p> | 
|  |  | 
|  | <p>Once the insertion point is set, we recursively codegen the "then" expression | 
|  | from the AST.  To finish off the "then" block, we create an unconditional branch | 
|  | to the merge block.  One interesting (and very important) aspect of the LLVM IR | 
|  | is that it <a href="../LangRef.html#functionstructure">requires all basic blocks | 
|  | to be "terminated"</a> with a <a href="../LangRef.html#terminators">control flow | 
|  | instruction</a> such as return or branch.  This means that all control flow, | 
|  | <em>including fall throughs</em> must be made explicit in the LLVM IR.  If you | 
|  | violate this rule, the verifier will emit an error.</p> | 
|  |  | 
|  | <p>The final line here is quite subtle, but is very important.  The basic issue | 
|  | is that when we create the Phi node in the merge block, we need to set up the | 
|  | block/value pairs that indicate how the Phi will work.  Importantly, the Phi | 
|  | node expects to have an entry for each predecessor of the block in the CFG.  Why | 
|  | then, are we getting the current block when we just set it to ThenBB 5 lines | 
|  | above?  The problem is that the "Then" expression may actually itself change the | 
|  | block that the Builder is emitting into if, for example, it contains a nested | 
|  | "if/then/else" expression.  Because calling Codegen recursively could | 
|  | arbitrarily change the notion of the current block, we are required to get an | 
|  | up-to-date value for code that will set up the Phi node.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // Emit else block. | 
|  | TheFunction->getBasicBlockList().push_back(ElseBB); | 
|  | Builder.SetInsertPoint(ElseBB); | 
|  |  | 
|  | Value *ElseV = Else->Codegen(); | 
|  | if (ElseV == 0) return 0; | 
|  |  | 
|  | Builder.CreateBr(MergeBB); | 
|  | // Codegen of 'Else' can change the current block, update ElseBB for the PHI. | 
|  | ElseBB = Builder.GetInsertBlock(); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Code generation for the 'else' block is basically identical to codegen for | 
|  | the 'then' block.  The only significant difference is the first line, which adds | 
|  | the 'else' block to the function.  Recall previously that the 'else' block was | 
|  | created, but not added to the function.  Now that the 'then' and 'else' blocks | 
|  | are emitted, we can finish up with the merge code:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // Emit merge block. | 
|  | TheFunction->getBasicBlockList().push_back(MergeBB); | 
|  | Builder.SetInsertPoint(MergeBB); | 
|  | PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, | 
|  | "iftmp"); | 
|  |  | 
|  | PN->addIncoming(ThenV, ThenBB); | 
|  | PN->addIncoming(ElseV, ElseBB); | 
|  | return PN; | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>The first two lines here are now familiar: the first adds the "merge" block | 
|  | to the Function object (it was previously floating, like the else block above). | 
|  | The second block changes the insertion point so that newly created code will go | 
|  | into the "merge" block.  Once that is done, we need to create the PHI node and | 
|  | set up the block/value pairs for the PHI.</p> | 
|  |  | 
|  | <p>Finally, the CodeGen function returns the phi node as the value computed by | 
|  | the if/then/else expression.  In our example above, this returned value will | 
|  | feed into the code for the top-level function, which will create the return | 
|  | instruction.</p> | 
|  |  | 
|  | <p>Overall, we now have the ability to execute conditional code in | 
|  | Kaleidoscope.  With this extension, Kaleidoscope is a fairly complete language | 
|  | that can calculate a wide variety of numeric functions.  Next up we'll add | 
|  | another useful expression that is familiar from non-functional languages...</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <h2><a name="for">'for' Loop Expression</a></h2> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Now that we know how to add basic control flow constructs to the language, | 
|  | we have the tools to add more powerful things.  Lets add something more | 
|  | aggressive, a 'for' expression:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | extern putchard(char) | 
|  | def printstar(n) | 
|  | for i = 1, i < n, 1.0 in | 
|  | putchard(42);  # ascii 42 = '*' | 
|  |  | 
|  | # print 100 '*' characters | 
|  | printstar(100); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This expression defines a new variable ("i" in this case) which iterates from | 
|  | a starting value, while the condition ("i < n" in this case) is true, | 
|  | incrementing by an optional step value ("1.0" in this case).  If the step value | 
|  | is omitted, it defaults to 1.0.  While the loop is true, it executes its | 
|  | body expression.  Because we don't have anything better to return, we'll just | 
|  | define the loop as always returning 0.0.  In the future when we have mutable | 
|  | variables, it will get more useful.</p> | 
|  |  | 
|  | <p>As before, lets talk about the changes that we need to Kaleidoscope to | 
|  | support this.</p> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h4><a name="forlexer">Lexer Extensions for the 'for' Loop</a></h4> | 
|  | <!-- ======================================================================= --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The lexer extensions are the same sort of thing as for if/then/else:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | ... in enum Token ... | 
|  | // control | 
|  | tok_if = -6, tok_then = -7, tok_else = -8, | 
|  | <b>  tok_for = -9, tok_in = -10</b> | 
|  |  | 
|  | ... in gettok ... | 
|  | if (IdentifierStr == "def") return tok_def; | 
|  | if (IdentifierStr == "extern") return tok_extern; | 
|  | if (IdentifierStr == "if") return tok_if; | 
|  | if (IdentifierStr == "then") return tok_then; | 
|  | if (IdentifierStr == "else") return tok_else; | 
|  | <b>if (IdentifierStr == "for") return tok_for; | 
|  | if (IdentifierStr == "in") return tok_in;</b> | 
|  | return tok_identifier; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h4><a name="forast">AST Extensions for the 'for' Loop</a></h4> | 
|  | <!-- ======================================================================= --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The AST node is just as simple.  It basically boils down to capturing | 
|  | the variable name and the constituent expressions in the node.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// ForExprAST - Expression class for for/in. | 
|  | class ForExprAST : public ExprAST { | 
|  | std::string VarName; | 
|  | ExprAST *Start, *End, *Step, *Body; | 
|  | public: | 
|  | ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, | 
|  | ExprAST *step, ExprAST *body) | 
|  | : VarName(varname), Start(start), End(end), Step(step), Body(body) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h4><a name="forparser">Parser Extensions for the 'for' Loop</a></h4> | 
|  | <!-- ======================================================================= --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The parser code is also fairly standard.  The only interesting thing here is | 
|  | handling of the optional step value.  The parser code handles it by checking to | 
|  | see if the second comma is present.  If not, it sets the step value to null in | 
|  | the AST node:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression | 
|  | static ExprAST *ParseForExpr() { | 
|  | getNextToken();  // eat the for. | 
|  |  | 
|  | if (CurTok != tok_identifier) | 
|  | return Error("expected identifier after for"); | 
|  |  | 
|  | std::string IdName = IdentifierStr; | 
|  | getNextToken();  // eat identifier. | 
|  |  | 
|  | if (CurTok != '=') | 
|  | return Error("expected '=' after for"); | 
|  | getNextToken();  // eat '='. | 
|  |  | 
|  |  | 
|  | ExprAST *Start = ParseExpression(); | 
|  | if (Start == 0) return 0; | 
|  | if (CurTok != ',') | 
|  | return Error("expected ',' after for start value"); | 
|  | getNextToken(); | 
|  |  | 
|  | ExprAST *End = ParseExpression(); | 
|  | if (End == 0) return 0; | 
|  |  | 
|  | // The step value is optional. | 
|  | ExprAST *Step = 0; | 
|  | if (CurTok == ',') { | 
|  | getNextToken(); | 
|  | Step = ParseExpression(); | 
|  | if (Step == 0) return 0; | 
|  | } | 
|  |  | 
|  | if (CurTok != tok_in) | 
|  | return Error("expected 'in' after for"); | 
|  | getNextToken();  // eat 'in'. | 
|  |  | 
|  | ExprAST *Body = ParseExpression(); | 
|  | if (Body == 0) return 0; | 
|  |  | 
|  | return new ForExprAST(IdName, Start, End, Step, Body); | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h4><a name="forir">LLVM IR for the 'for' Loop</a></h4> | 
|  | <!-- ======================================================================= --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>Now we get to the good part: the LLVM IR we want to generate for this thing. | 
|  | With the simple example above, we get this LLVM IR (note that this dump is | 
|  | generated with optimizations disabled for clarity): | 
|  | </p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | declare double @putchard(double) | 
|  |  | 
|  | define double @printstar(double %n) { | 
|  | entry: | 
|  | ; initial value = 1.0 (inlined into phi) | 
|  | br label %loop | 
|  |  | 
|  | loop:		; preds = %loop, %entry | 
|  | %i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ] | 
|  | ; body | 
|  | %calltmp = call double @putchard(double 4.200000e+01) | 
|  | ; increment | 
|  | %nextvar = fadd double %i, 1.000000e+00 | 
|  |  | 
|  | ; termination test | 
|  | %cmptmp = fcmp ult double %i, %n | 
|  | %booltmp = uitofp i1 %cmptmp to double | 
|  | %loopcond = fcmp one double %booltmp, 0.000000e+00 | 
|  | br i1 %loopcond, label %loop, label %afterloop | 
|  |  | 
|  | afterloop:		; preds = %loop | 
|  | ; loop always returns 0.0 | 
|  | ret double 0.000000e+00 | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This loop contains all the same constructs we saw before: a phi node, several | 
|  | expressions, and some basic blocks.  Lets see how this fits together.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- ======================================================================= --> | 
|  | <h4><a name="forcodegen">Code Generation for the 'for' Loop</a></h4> | 
|  | <!-- ======================================================================= --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p>The first part of Codegen is very simple: we just output the start expression | 
|  | for the loop value:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | Value *ForExprAST::Codegen() { | 
|  | // Emit the start code first, without 'variable' in scope. | 
|  | Value *StartVal = Start->Codegen(); | 
|  | if (StartVal == 0) return 0; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>With this out of the way, the next step is to set up the LLVM basic block | 
|  | for the start of the loop body.  In the case above, the whole loop body is one | 
|  | block, but remember that the body code itself could consist of multiple blocks | 
|  | (e.g. if it contains an if/then/else or a for/in expression).</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // Make the new basic block for the loop header, inserting after current | 
|  | // block. | 
|  | Function *TheFunction = Builder.GetInsertBlock()->getParent(); | 
|  | BasicBlock *PreheaderBB = Builder.GetInsertBlock(); | 
|  | BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); | 
|  |  | 
|  | // Insert an explicit fall through from the current block to the LoopBB. | 
|  | Builder.CreateBr(LoopBB); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>This code is similar to what we saw for if/then/else.  Because we will need | 
|  | it to create the Phi node, we remember the block that falls through into the | 
|  | loop.  Once we have that, we create the actual block that starts the loop and | 
|  | create an unconditional branch for the fall-through between the two blocks.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // Start insertion in LoopBB. | 
|  | Builder.SetInsertPoint(LoopBB); | 
|  |  | 
|  | // Start the PHI node with an entry for Start. | 
|  | PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str()); | 
|  | Variable->addIncoming(StartVal, PreheaderBB); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Now that the "preheader" for the loop is set up, we switch to emitting code | 
|  | for the loop body.  To begin with, we move the insertion point and create the | 
|  | PHI node for the loop induction variable.  Since we already know the incoming | 
|  | value for the starting value, we add it to the Phi node.  Note that the Phi will | 
|  | eventually get a second value for the backedge, but we can't set it up yet | 
|  | (because it doesn't exist!).</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // Within the loop, the variable is defined equal to the PHI node.  If it | 
|  | // shadows an existing variable, we have to restore it, so save it now. | 
|  | Value *OldVal = NamedValues[VarName]; | 
|  | NamedValues[VarName] = Variable; | 
|  |  | 
|  | // Emit the body of the loop.  This, like any other expr, can change the | 
|  | // current BB.  Note that we ignore the value computed by the body, but don't | 
|  | // allow an error. | 
|  | if (Body->Codegen() == 0) | 
|  | return 0; | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Now the code starts to get more interesting.  Our 'for' loop introduces a new | 
|  | variable to the symbol table.  This means that our symbol table can now contain | 
|  | either function arguments or loop variables.  To handle this, before we codegen | 
|  | the body of the loop, we add the loop variable as the current value for its | 
|  | name.  Note that it is possible that there is a variable of the same name in the | 
|  | outer scope.  It would be easy to make this an error (emit an error and return | 
|  | null if there is already an entry for VarName) but we choose to allow shadowing | 
|  | of variables.  In order to handle this correctly, we remember the Value that | 
|  | we are potentially shadowing in <tt>OldVal</tt> (which will be null if there is | 
|  | no shadowed variable).</p> | 
|  |  | 
|  | <p>Once the loop variable is set into the symbol table, the code recursively | 
|  | codegen's the body.  This allows the body to use the loop variable: any | 
|  | references to it will naturally find it in the symbol table.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // Emit the step value. | 
|  | Value *StepVal; | 
|  | if (Step) { | 
|  | StepVal = Step->Codegen(); | 
|  | if (StepVal == 0) return 0; | 
|  | } else { | 
|  | // If not specified, use 1.0. | 
|  | StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); | 
|  | } | 
|  |  | 
|  | Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar"); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Now that the body is emitted, we compute the next value of the iteration | 
|  | variable by adding the step value, or 1.0 if it isn't present. '<tt>NextVar</tt>' | 
|  | will be the value of the loop variable on the next iteration of the loop.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // Compute the end condition. | 
|  | Value *EndCond = End->Codegen(); | 
|  | if (EndCond == 0) return EndCond; | 
|  |  | 
|  | // Convert condition to a bool by comparing equal to 0.0. | 
|  | EndCond = Builder.CreateFCmpONE(EndCond, | 
|  | ConstantFP::get(getGlobalContext(), APFloat(0.0)), | 
|  | "loopcond"); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Finally, we evaluate the exit value of the loop, to determine whether the | 
|  | loop should exit.  This mirrors the condition evaluation for the if/then/else | 
|  | statement.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // Create the "after loop" block and insert it. | 
|  | BasicBlock *LoopEndBB = Builder.GetInsertBlock(); | 
|  | BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); | 
|  |  | 
|  | // Insert the conditional branch into the end of LoopEndBB. | 
|  | Builder.CreateCondBr(EndCond, LoopBB, AfterBB); | 
|  |  | 
|  | // Any new code will be inserted in AfterBB. | 
|  | Builder.SetInsertPoint(AfterBB); | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>With the code for the body of the loop complete, we just need to finish up | 
|  | the control flow for it.  This code remembers the end block (for the phi node), | 
|  | then creates the block for the loop exit ("afterloop").  Based on the value of | 
|  | the exit condition, it creates a conditional branch that chooses between | 
|  | executing the loop again and exiting the loop.  Any future code is emitted in | 
|  | the "afterloop" block, so it sets the insertion position to it.</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | // Add a new entry to the PHI node for the backedge. | 
|  | Variable->addIncoming(NextVar, LoopEndBB); | 
|  |  | 
|  | // Restore the unshadowed variable. | 
|  | if (OldVal) | 
|  | NamedValues[VarName] = OldVal; | 
|  | else | 
|  | NamedValues.erase(VarName); | 
|  |  | 
|  | // for expr always returns 0.0. | 
|  | return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>The final code handles various cleanups: now that we have the "NextVar" | 
|  | value, we can add the incoming value to the loop PHI node.  After that, we | 
|  | remove the loop variable from the symbol table, so that it isn't in scope after | 
|  | the for loop.  Finally, code generation of the for loop always returns 0.0, so | 
|  | that is what we return from <tt>ForExprAST::Codegen</tt>.</p> | 
|  |  | 
|  | <p>With this, we conclude the "adding control flow to Kaleidoscope" chapter of | 
|  | the tutorial.  In this chapter we added two control flow constructs, and used them to motivate a couple of aspects of the LLVM IR that are important for front-end implementors | 
|  | to know.  In the next chapter of our saga, we will get a bit crazier and add | 
|  | <a href="LangImpl6.html">user-defined operators</a> to our poor innocent | 
|  | language.</p> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <h2><a name="code">Full Code Listing</a></h2> | 
|  | <!-- *********************************************************************** --> | 
|  |  | 
|  | <div> | 
|  |  | 
|  | <p> | 
|  | Here is the complete code listing for our running example, enhanced with the | 
|  | if/then/else and for expressions..  To build this example, use: | 
|  | </p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | # Compile | 
|  | clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy | 
|  | # Run | 
|  | ./toy | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <p>Here is the code:</p> | 
|  |  | 
|  | <div class="doc_code"> | 
|  | <pre> | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/ExecutionEngine/ExecutionEngine.h" | 
|  | #include "llvm/ExecutionEngine/JIT.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/PassManager.h" | 
|  | #include "llvm/Analysis/Verifier.h" | 
|  | #include "llvm/Analysis/Passes.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Support/IRBuilder.h" | 
|  | #include "llvm/Support/TargetSelect.h" | 
|  | #include <cstdio> | 
|  | #include <string> | 
|  | #include <map> | 
|  | #include <vector> | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Lexer | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one | 
|  | // of these for known things. | 
|  | enum Token { | 
|  | tok_eof = -1, | 
|  |  | 
|  | // commands | 
|  | tok_def = -2, tok_extern = -3, | 
|  |  | 
|  | // primary | 
|  | tok_identifier = -4, tok_number = -5, | 
|  |  | 
|  | // control | 
|  | tok_if = -6, tok_then = -7, tok_else = -8, | 
|  | tok_for = -9, tok_in = -10 | 
|  | }; | 
|  |  | 
|  | static std::string IdentifierStr;  // Filled in if tok_identifier | 
|  | static double NumVal;              // Filled in if tok_number | 
|  |  | 
|  | /// gettok - Return the next token from standard input. | 
|  | static int gettok() { | 
|  | static int LastChar = ' '; | 
|  |  | 
|  | // Skip any whitespace. | 
|  | while (isspace(LastChar)) | 
|  | LastChar = getchar(); | 
|  |  | 
|  | if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* | 
|  | IdentifierStr = LastChar; | 
|  | while (isalnum((LastChar = getchar()))) | 
|  | IdentifierStr += LastChar; | 
|  |  | 
|  | if (IdentifierStr == "def") return tok_def; | 
|  | if (IdentifierStr == "extern") return tok_extern; | 
|  | if (IdentifierStr == "if") return tok_if; | 
|  | if (IdentifierStr == "then") return tok_then; | 
|  | if (IdentifierStr == "else") return tok_else; | 
|  | if (IdentifierStr == "for") return tok_for; | 
|  | if (IdentifierStr == "in") return tok_in; | 
|  | return tok_identifier; | 
|  | } | 
|  |  | 
|  | if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+ | 
|  | std::string NumStr; | 
|  | do { | 
|  | NumStr += LastChar; | 
|  | LastChar = getchar(); | 
|  | } while (isdigit(LastChar) || LastChar == '.'); | 
|  |  | 
|  | NumVal = strtod(NumStr.c_str(), 0); | 
|  | return tok_number; | 
|  | } | 
|  |  | 
|  | if (LastChar == '#') { | 
|  | // Comment until end of line. | 
|  | do LastChar = getchar(); | 
|  | while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); | 
|  |  | 
|  | if (LastChar != EOF) | 
|  | return gettok(); | 
|  | } | 
|  |  | 
|  | // Check for end of file.  Don't eat the EOF. | 
|  | if (LastChar == EOF) | 
|  | return tok_eof; | 
|  |  | 
|  | // Otherwise, just return the character as its ascii value. | 
|  | int ThisChar = LastChar; | 
|  | LastChar = getchar(); | 
|  | return ThisChar; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Abstract Syntax Tree (aka Parse Tree) | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ExprAST - Base class for all expression nodes. | 
|  | class ExprAST { | 
|  | public: | 
|  | virtual ~ExprAST() {} | 
|  | virtual Value *Codegen() = 0; | 
|  | }; | 
|  |  | 
|  | /// NumberExprAST - Expression class for numeric literals like "1.0". | 
|  | class NumberExprAST : public ExprAST { | 
|  | double Val; | 
|  | public: | 
|  | NumberExprAST(double val) : Val(val) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// VariableExprAST - Expression class for referencing a variable, like "a". | 
|  | class VariableExprAST : public ExprAST { | 
|  | std::string Name; | 
|  | public: | 
|  | VariableExprAST(const std::string &name) : Name(name) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// BinaryExprAST - Expression class for a binary operator. | 
|  | class BinaryExprAST : public ExprAST { | 
|  | char Op; | 
|  | ExprAST *LHS, *RHS; | 
|  | public: | 
|  | BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) | 
|  | : Op(op), LHS(lhs), RHS(rhs) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// CallExprAST - Expression class for function calls. | 
|  | class CallExprAST : public ExprAST { | 
|  | std::string Callee; | 
|  | std::vector<ExprAST*> Args; | 
|  | public: | 
|  | CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) | 
|  | : Callee(callee), Args(args) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// IfExprAST - Expression class for if/then/else. | 
|  | class IfExprAST : public ExprAST { | 
|  | ExprAST *Cond, *Then, *Else; | 
|  | public: | 
|  | IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) | 
|  | : Cond(cond), Then(then), Else(_else) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// ForExprAST - Expression class for for/in. | 
|  | class ForExprAST : public ExprAST { | 
|  | std::string VarName; | 
|  | ExprAST *Start, *End, *Step, *Body; | 
|  | public: | 
|  | ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, | 
|  | ExprAST *step, ExprAST *body) | 
|  | : VarName(varname), Start(start), End(end), Step(step), Body(body) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// PrototypeAST - This class represents the "prototype" for a function, | 
|  | /// which captures its name, and its argument names (thus implicitly the number | 
|  | /// of arguments the function takes). | 
|  | class PrototypeAST { | 
|  | std::string Name; | 
|  | std::vector<std::string> Args; | 
|  | public: | 
|  | PrototypeAST(const std::string &name, const std::vector<std::string> &args) | 
|  | : Name(name), Args(args) {} | 
|  |  | 
|  | Function *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// FunctionAST - This class represents a function definition itself. | 
|  | class FunctionAST { | 
|  | PrototypeAST *Proto; | 
|  | ExprAST *Body; | 
|  | public: | 
|  | FunctionAST(PrototypeAST *proto, ExprAST *body) | 
|  | : Proto(proto), Body(body) {} | 
|  |  | 
|  | Function *Codegen(); | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Parser | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current | 
|  | /// token the parser is looking at.  getNextToken reads another token from the | 
|  | /// lexer and updates CurTok with its results. | 
|  | static int CurTok; | 
|  | static int getNextToken() { | 
|  | return CurTok = gettok(); | 
|  | } | 
|  |  | 
|  | /// BinopPrecedence - This holds the precedence for each binary operator that is | 
|  | /// defined. | 
|  | static std::map<char, int> BinopPrecedence; | 
|  |  | 
|  | /// GetTokPrecedence - Get the precedence of the pending binary operator token. | 
|  | static int GetTokPrecedence() { | 
|  | if (!isascii(CurTok)) | 
|  | return -1; | 
|  |  | 
|  | // Make sure it's a declared binop. | 
|  | int TokPrec = BinopPrecedence[CurTok]; | 
|  | if (TokPrec <= 0) return -1; | 
|  | return TokPrec; | 
|  | } | 
|  |  | 
|  | /// Error* - These are little helper functions for error handling. | 
|  | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} | 
|  | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } | 
|  | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } | 
|  |  | 
|  | static ExprAST *ParseExpression(); | 
|  |  | 
|  | /// identifierexpr | 
|  | ///   ::= identifier | 
|  | ///   ::= identifier '(' expression* ')' | 
|  | static ExprAST *ParseIdentifierExpr() { | 
|  | std::string IdName = IdentifierStr; | 
|  |  | 
|  | getNextToken();  // eat identifier. | 
|  |  | 
|  | if (CurTok != '(') // Simple variable ref. | 
|  | return new VariableExprAST(IdName); | 
|  |  | 
|  | // Call. | 
|  | getNextToken();  // eat ( | 
|  | std::vector<ExprAST*> Args; | 
|  | if (CurTok != ')') { | 
|  | while (1) { | 
|  | ExprAST *Arg = ParseExpression(); | 
|  | if (!Arg) return 0; | 
|  | Args.push_back(Arg); | 
|  |  | 
|  | if (CurTok == ')') break; | 
|  |  | 
|  | if (CurTok != ',') | 
|  | return Error("Expected ')' or ',' in argument list"); | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Eat the ')'. | 
|  | getNextToken(); | 
|  |  | 
|  | return new CallExprAST(IdName, Args); | 
|  | } | 
|  |  | 
|  | /// numberexpr ::= number | 
|  | static ExprAST *ParseNumberExpr() { | 
|  | ExprAST *Result = new NumberExprAST(NumVal); | 
|  | getNextToken(); // consume the number | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// parenexpr ::= '(' expression ')' | 
|  | static ExprAST *ParseParenExpr() { | 
|  | getNextToken();  // eat (. | 
|  | ExprAST *V = ParseExpression(); | 
|  | if (!V) return 0; | 
|  |  | 
|  | if (CurTok != ')') | 
|  | return Error("expected ')'"); | 
|  | getNextToken();  // eat ). | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// ifexpr ::= 'if' expression 'then' expression 'else' expression | 
|  | static ExprAST *ParseIfExpr() { | 
|  | getNextToken();  // eat the if. | 
|  |  | 
|  | // condition. | 
|  | ExprAST *Cond = ParseExpression(); | 
|  | if (!Cond) return 0; | 
|  |  | 
|  | if (CurTok != tok_then) | 
|  | return Error("expected then"); | 
|  | getNextToken();  // eat the then | 
|  |  | 
|  | ExprAST *Then = ParseExpression(); | 
|  | if (Then == 0) return 0; | 
|  |  | 
|  | if (CurTok != tok_else) | 
|  | return Error("expected else"); | 
|  |  | 
|  | getNextToken(); | 
|  |  | 
|  | ExprAST *Else = ParseExpression(); | 
|  | if (!Else) return 0; | 
|  |  | 
|  | return new IfExprAST(Cond, Then, Else); | 
|  | } | 
|  |  | 
|  | /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression | 
|  | static ExprAST *ParseForExpr() { | 
|  | getNextToken();  // eat the for. | 
|  |  | 
|  | if (CurTok != tok_identifier) | 
|  | return Error("expected identifier after for"); | 
|  |  | 
|  | std::string IdName = IdentifierStr; | 
|  | getNextToken();  // eat identifier. | 
|  |  | 
|  | if (CurTok != '=') | 
|  | return Error("expected '=' after for"); | 
|  | getNextToken();  // eat '='. | 
|  |  | 
|  |  | 
|  | ExprAST *Start = ParseExpression(); | 
|  | if (Start == 0) return 0; | 
|  | if (CurTok != ',') | 
|  | return Error("expected ',' after for start value"); | 
|  | getNextToken(); | 
|  |  | 
|  | ExprAST *End = ParseExpression(); | 
|  | if (End == 0) return 0; | 
|  |  | 
|  | // The step value is optional. | 
|  | ExprAST *Step = 0; | 
|  | if (CurTok == ',') { | 
|  | getNextToken(); | 
|  | Step = ParseExpression(); | 
|  | if (Step == 0) return 0; | 
|  | } | 
|  |  | 
|  | if (CurTok != tok_in) | 
|  | return Error("expected 'in' after for"); | 
|  | getNextToken();  // eat 'in'. | 
|  |  | 
|  | ExprAST *Body = ParseExpression(); | 
|  | if (Body == 0) return 0; | 
|  |  | 
|  | return new ForExprAST(IdName, Start, End, Step, Body); | 
|  | } | 
|  |  | 
|  | /// primary | 
|  | ///   ::= identifierexpr | 
|  | ///   ::= numberexpr | 
|  | ///   ::= parenexpr | 
|  | ///   ::= ifexpr | 
|  | ///   ::= forexpr | 
|  | static ExprAST *ParsePrimary() { | 
|  | switch (CurTok) { | 
|  | default: return Error("unknown token when expecting an expression"); | 
|  | case tok_identifier: return ParseIdentifierExpr(); | 
|  | case tok_number:     return ParseNumberExpr(); | 
|  | case '(':            return ParseParenExpr(); | 
|  | case tok_if:         return ParseIfExpr(); | 
|  | case tok_for:        return ParseForExpr(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// binoprhs | 
|  | ///   ::= ('+' primary)* | 
|  | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { | 
|  | // If this is a binop, find its precedence. | 
|  | while (1) { | 
|  | int TokPrec = GetTokPrecedence(); | 
|  |  | 
|  | // If this is a binop that binds at least as tightly as the current binop, | 
|  | // consume it, otherwise we are done. | 
|  | if (TokPrec < ExprPrec) | 
|  | return LHS; | 
|  |  | 
|  | // Okay, we know this is a binop. | 
|  | int BinOp = CurTok; | 
|  | getNextToken();  // eat binop | 
|  |  | 
|  | // Parse the primary expression after the binary operator. | 
|  | ExprAST *RHS = ParsePrimary(); | 
|  | if (!RHS) return 0; | 
|  |  | 
|  | // If BinOp binds less tightly with RHS than the operator after RHS, let | 
|  | // the pending operator take RHS as its LHS. | 
|  | int NextPrec = GetTokPrecedence(); | 
|  | if (TokPrec < NextPrec) { | 
|  | RHS = ParseBinOpRHS(TokPrec+1, RHS); | 
|  | if (RHS == 0) return 0; | 
|  | } | 
|  |  | 
|  | // Merge LHS/RHS. | 
|  | LHS = new BinaryExprAST(BinOp, LHS, RHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// expression | 
|  | ///   ::= primary binoprhs | 
|  | /// | 
|  | static ExprAST *ParseExpression() { | 
|  | ExprAST *LHS = ParsePrimary(); | 
|  | if (!LHS) return 0; | 
|  |  | 
|  | return ParseBinOpRHS(0, LHS); | 
|  | } | 
|  |  | 
|  | /// prototype | 
|  | ///   ::= id '(' id* ')' | 
|  | static PrototypeAST *ParsePrototype() { | 
|  | if (CurTok != tok_identifier) | 
|  | return ErrorP("Expected function name in prototype"); | 
|  |  | 
|  | std::string FnName = IdentifierStr; | 
|  | getNextToken(); | 
|  |  | 
|  | if (CurTok != '(') | 
|  | return ErrorP("Expected '(' in prototype"); | 
|  |  | 
|  | std::vector<std::string> ArgNames; | 
|  | while (getNextToken() == tok_identifier) | 
|  | ArgNames.push_back(IdentifierStr); | 
|  | if (CurTok != ')') | 
|  | return ErrorP("Expected ')' in prototype"); | 
|  |  | 
|  | // success. | 
|  | getNextToken();  // eat ')'. | 
|  |  | 
|  | return new PrototypeAST(FnName, ArgNames); | 
|  | } | 
|  |  | 
|  | /// definition ::= 'def' prototype expression | 
|  | static FunctionAST *ParseDefinition() { | 
|  | getNextToken();  // eat def. | 
|  | PrototypeAST *Proto = ParsePrototype(); | 
|  | if (Proto == 0) return 0; | 
|  |  | 
|  | if (ExprAST *E = ParseExpression()) | 
|  | return new FunctionAST(Proto, E); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// toplevelexpr ::= expression | 
|  | static FunctionAST *ParseTopLevelExpr() { | 
|  | if (ExprAST *E = ParseExpression()) { | 
|  | // Make an anonymous proto. | 
|  | PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); | 
|  | return new FunctionAST(Proto, E); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// external ::= 'extern' prototype | 
|  | static PrototypeAST *ParseExtern() { | 
|  | getNextToken();  // eat extern. | 
|  | return ParsePrototype(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Code Generation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static Module *TheModule; | 
|  | static IRBuilder<> Builder(getGlobalContext()); | 
|  | static std::map<std::string, Value*> NamedValues; | 
|  | static FunctionPassManager *TheFPM; | 
|  |  | 
|  | Value *ErrorV(const char *Str) { Error(Str); return 0; } | 
|  |  | 
|  | Value *NumberExprAST::Codegen() { | 
|  | return ConstantFP::get(getGlobalContext(), APFloat(Val)); | 
|  | } | 
|  |  | 
|  | Value *VariableExprAST::Codegen() { | 
|  | // Look this variable up in the function. | 
|  | Value *V = NamedValues[Name]; | 
|  | return V ? V : ErrorV("Unknown variable name"); | 
|  | } | 
|  |  | 
|  | Value *BinaryExprAST::Codegen() { | 
|  | Value *L = LHS->Codegen(); | 
|  | Value *R = RHS->Codegen(); | 
|  | if (L == 0 || R == 0) return 0; | 
|  |  | 
|  | switch (Op) { | 
|  | case '+': return Builder.CreateFAdd(L, R, "addtmp"); | 
|  | case '-': return Builder.CreateFSub(L, R, "subtmp"); | 
|  | case '*': return Builder.CreateFMul(L, R, "multmp"); | 
|  | case '<': | 
|  | L = Builder.CreateFCmpULT(L, R, "cmptmp"); | 
|  | // Convert bool 0/1 to double 0.0 or 1.0 | 
|  | return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), | 
|  | "booltmp"); | 
|  | default: return ErrorV("invalid binary operator"); | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *CallExprAST::Codegen() { | 
|  | // Look up the name in the global module table. | 
|  | Function *CalleeF = TheModule->getFunction(Callee); | 
|  | if (CalleeF == 0) | 
|  | return ErrorV("Unknown function referenced"); | 
|  |  | 
|  | // If argument mismatch error. | 
|  | if (CalleeF->arg_size() != Args.size()) | 
|  | return ErrorV("Incorrect # arguments passed"); | 
|  |  | 
|  | std::vector<Value*> ArgsV; | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | ArgsV.push_back(Args[i]->Codegen()); | 
|  | if (ArgsV.back() == 0) return 0; | 
|  | } | 
|  |  | 
|  | return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); | 
|  | } | 
|  |  | 
|  | Value *IfExprAST::Codegen() { | 
|  | Value *CondV = Cond->Codegen(); | 
|  | if (CondV == 0) return 0; | 
|  |  | 
|  | // Convert condition to a bool by comparing equal to 0.0. | 
|  | CondV = Builder.CreateFCmpONE(CondV, | 
|  | ConstantFP::get(getGlobalContext(), APFloat(0.0)), | 
|  | "ifcond"); | 
|  |  | 
|  | Function *TheFunction = Builder.GetInsertBlock()->getParent(); | 
|  |  | 
|  | // Create blocks for the then and else cases.  Insert the 'then' block at the | 
|  | // end of the function. | 
|  | BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); | 
|  | BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); | 
|  | BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); | 
|  |  | 
|  | Builder.CreateCondBr(CondV, ThenBB, ElseBB); | 
|  |  | 
|  | // Emit then value. | 
|  | Builder.SetInsertPoint(ThenBB); | 
|  |  | 
|  | Value *ThenV = Then->Codegen(); | 
|  | if (ThenV == 0) return 0; | 
|  |  | 
|  | Builder.CreateBr(MergeBB); | 
|  | // Codegen of 'Then' can change the current block, update ThenBB for the PHI. | 
|  | ThenBB = Builder.GetInsertBlock(); | 
|  |  | 
|  | // Emit else block. | 
|  | TheFunction->getBasicBlockList().push_back(ElseBB); | 
|  | Builder.SetInsertPoint(ElseBB); | 
|  |  | 
|  | Value *ElseV = Else->Codegen(); | 
|  | if (ElseV == 0) return 0; | 
|  |  | 
|  | Builder.CreateBr(MergeBB); | 
|  | // Codegen of 'Else' can change the current block, update ElseBB for the PHI. | 
|  | ElseBB = Builder.GetInsertBlock(); | 
|  |  | 
|  | // Emit merge block. | 
|  | TheFunction->getBasicBlockList().push_back(MergeBB); | 
|  | Builder.SetInsertPoint(MergeBB); | 
|  | PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, | 
|  | "iftmp"); | 
|  |  | 
|  | PN->addIncoming(ThenV, ThenBB); | 
|  | PN->addIncoming(ElseV, ElseBB); | 
|  | return PN; | 
|  | } | 
|  |  | 
|  | Value *ForExprAST::Codegen() { | 
|  | // Output this as: | 
|  | //   ... | 
|  | //   start = startexpr | 
|  | //   goto loop | 
|  | // loop: | 
|  | //   variable = phi [start, loopheader], [nextvariable, loopend] | 
|  | //   ... | 
|  | //   bodyexpr | 
|  | //   ... | 
|  | // loopend: | 
|  | //   step = stepexpr | 
|  | //   nextvariable = variable + step | 
|  | //   endcond = endexpr | 
|  | //   br endcond, loop, endloop | 
|  | // outloop: | 
|  |  | 
|  | // Emit the start code first, without 'variable' in scope. | 
|  | Value *StartVal = Start->Codegen(); | 
|  | if (StartVal == 0) return 0; | 
|  |  | 
|  | // Make the new basic block for the loop header, inserting after current | 
|  | // block. | 
|  | Function *TheFunction = Builder.GetInsertBlock()->getParent(); | 
|  | BasicBlock *PreheaderBB = Builder.GetInsertBlock(); | 
|  | BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); | 
|  |  | 
|  | // Insert an explicit fall through from the current block to the LoopBB. | 
|  | Builder.CreateBr(LoopBB); | 
|  |  | 
|  | // Start insertion in LoopBB. | 
|  | Builder.SetInsertPoint(LoopBB); | 
|  |  | 
|  | // Start the PHI node with an entry for Start. | 
|  | PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str()); | 
|  | Variable->addIncoming(StartVal, PreheaderBB); | 
|  |  | 
|  | // Within the loop, the variable is defined equal to the PHI node.  If it | 
|  | // shadows an existing variable, we have to restore it, so save it now. | 
|  | Value *OldVal = NamedValues[VarName]; | 
|  | NamedValues[VarName] = Variable; | 
|  |  | 
|  | // Emit the body of the loop.  This, like any other expr, can change the | 
|  | // current BB.  Note that we ignore the value computed by the body, but don't | 
|  | // allow an error. | 
|  | if (Body->Codegen() == 0) | 
|  | return 0; | 
|  |  | 
|  | // Emit the step value. | 
|  | Value *StepVal; | 
|  | if (Step) { | 
|  | StepVal = Step->Codegen(); | 
|  | if (StepVal == 0) return 0; | 
|  | } else { | 
|  | // If not specified, use 1.0. | 
|  | StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); | 
|  | } | 
|  |  | 
|  | Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar"); | 
|  |  | 
|  | // Compute the end condition. | 
|  | Value *EndCond = End->Codegen(); | 
|  | if (EndCond == 0) return EndCond; | 
|  |  | 
|  | // Convert condition to a bool by comparing equal to 0.0. | 
|  | EndCond = Builder.CreateFCmpONE(EndCond, | 
|  | ConstantFP::get(getGlobalContext(), APFloat(0.0)), | 
|  | "loopcond"); | 
|  |  | 
|  | // Create the "after loop" block and insert it. | 
|  | BasicBlock *LoopEndBB = Builder.GetInsertBlock(); | 
|  | BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); | 
|  |  | 
|  | // Insert the conditional branch into the end of LoopEndBB. | 
|  | Builder.CreateCondBr(EndCond, LoopBB, AfterBB); | 
|  |  | 
|  | // Any new code will be inserted in AfterBB. | 
|  | Builder.SetInsertPoint(AfterBB); | 
|  |  | 
|  | // Add a new entry to the PHI node for the backedge. | 
|  | Variable->addIncoming(NextVar, LoopEndBB); | 
|  |  | 
|  | // Restore the unshadowed variable. | 
|  | if (OldVal) | 
|  | NamedValues[VarName] = OldVal; | 
|  | else | 
|  | NamedValues.erase(VarName); | 
|  |  | 
|  |  | 
|  | // for expr always returns 0.0. | 
|  | return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); | 
|  | } | 
|  |  | 
|  | Function *PrototypeAST::Codegen() { | 
|  | // Make the function type:  double(double,double) etc. | 
|  | std::vector<Type*> Doubles(Args.size(), | 
|  | Type::getDoubleTy(getGlobalContext())); | 
|  | FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), | 
|  | Doubles, false); | 
|  |  | 
|  | Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); | 
|  |  | 
|  | // If F conflicted, there was already something named 'Name'.  If it has a | 
|  | // body, don't allow redefinition or reextern. | 
|  | if (F->getName() != Name) { | 
|  | // Delete the one we just made and get the existing one. | 
|  | F->eraseFromParent(); | 
|  | F = TheModule->getFunction(Name); | 
|  |  | 
|  | // If F already has a body, reject this. | 
|  | if (!F->empty()) { | 
|  | ErrorF("redefinition of function"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If F took a different number of args, reject. | 
|  | if (F->arg_size() != Args.size()) { | 
|  | ErrorF("redefinition of function with different # args"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set names for all arguments. | 
|  | unsigned Idx = 0; | 
|  | for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); | 
|  | ++AI, ++Idx) { | 
|  | AI->setName(Args[Idx]); | 
|  |  | 
|  | // Add arguments to variable symbol table. | 
|  | NamedValues[Args[Idx]] = AI; | 
|  | } | 
|  |  | 
|  | return F; | 
|  | } | 
|  |  | 
|  | Function *FunctionAST::Codegen() { | 
|  | NamedValues.clear(); | 
|  |  | 
|  | Function *TheFunction = Proto->Codegen(); | 
|  | if (TheFunction == 0) | 
|  | return 0; | 
|  |  | 
|  | // Create a new basic block to start insertion into. | 
|  | BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); | 
|  | Builder.SetInsertPoint(BB); | 
|  |  | 
|  | if (Value *RetVal = Body->Codegen()) { | 
|  | // Finish off the function. | 
|  | Builder.CreateRet(RetVal); | 
|  |  | 
|  | // Validate the generated code, checking for consistency. | 
|  | verifyFunction(*TheFunction); | 
|  |  | 
|  | // Optimize the function. | 
|  | TheFPM->run(*TheFunction); | 
|  |  | 
|  | return TheFunction; | 
|  | } | 
|  |  | 
|  | // Error reading body, remove function. | 
|  | TheFunction->eraseFromParent(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Top-Level parsing and JIT Driver | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static ExecutionEngine *TheExecutionEngine; | 
|  |  | 
|  | static void HandleDefinition() { | 
|  | if (FunctionAST *F = ParseDefinition()) { | 
|  | if (Function *LF = F->Codegen()) { | 
|  | fprintf(stderr, "Read function definition:"); | 
|  | LF->dump(); | 
|  | } | 
|  | } else { | 
|  | // Skip token for error recovery. | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void HandleExtern() { | 
|  | if (PrototypeAST *P = ParseExtern()) { | 
|  | if (Function *F = P->Codegen()) { | 
|  | fprintf(stderr, "Read extern: "); | 
|  | F->dump(); | 
|  | } | 
|  | } else { | 
|  | // Skip token for error recovery. | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void HandleTopLevelExpression() { | 
|  | // Evaluate a top-level expression into an anonymous function. | 
|  | if (FunctionAST *F = ParseTopLevelExpr()) { | 
|  | if (Function *LF = F->Codegen()) { | 
|  | // JIT the function, returning a function pointer. | 
|  | void *FPtr = TheExecutionEngine->getPointerToFunction(LF); | 
|  |  | 
|  | // Cast it to the right type (takes no arguments, returns a double) so we | 
|  | // can call it as a native function. | 
|  | double (*FP)() = (double (*)())(intptr_t)FPtr; | 
|  | fprintf(stderr, "Evaluated to %f\n", FP()); | 
|  | } | 
|  | } else { | 
|  | // Skip token for error recovery. | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// top ::= definition | external | expression | ';' | 
|  | static void MainLoop() { | 
|  | while (1) { | 
|  | fprintf(stderr, "ready> "); | 
|  | switch (CurTok) { | 
|  | case tok_eof:    return; | 
|  | case ';':        getNextToken(); break;  // ignore top-level semicolons. | 
|  | case tok_def:    HandleDefinition(); break; | 
|  | case tok_extern: HandleExtern(); break; | 
|  | default:         HandleTopLevelExpression(); break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // "Library" functions that can be "extern'd" from user code. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// putchard - putchar that takes a double and returns 0. | 
|  | extern "C" | 
|  | double putchard(double X) { | 
|  | putchar((char)X); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Main driver code. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | int main() { | 
|  | InitializeNativeTarget(); | 
|  | LLVMContext &Context = getGlobalContext(); | 
|  |  | 
|  | // Install standard binary operators. | 
|  | // 1 is lowest precedence. | 
|  | BinopPrecedence['<'] = 10; | 
|  | BinopPrecedence['+'] = 20; | 
|  | BinopPrecedence['-'] = 20; | 
|  | BinopPrecedence['*'] = 40;  // highest. | 
|  |  | 
|  | // Prime the first token. | 
|  | fprintf(stderr, "ready> "); | 
|  | getNextToken(); | 
|  |  | 
|  | // Make the module, which holds all the code. | 
|  | TheModule = new Module("my cool jit", Context); | 
|  |  | 
|  | // Create the JIT.  This takes ownership of the module. | 
|  | std::string ErrStr; | 
|  | TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); | 
|  | if (!TheExecutionEngine) { | 
|  | fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | FunctionPassManager OurFPM(TheModule); | 
|  |  | 
|  | // Set up the optimizer pipeline.  Start with registering info about how the | 
|  | // target lays out data structures. | 
|  | OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); | 
|  | // Provide basic AliasAnalysis support for GVN. | 
|  | OurFPM.add(createBasicAliasAnalysisPass()); | 
|  | // Do simple "peephole" optimizations and bit-twiddling optzns. | 
|  | OurFPM.add(createInstructionCombiningPass()); | 
|  | // Reassociate expressions. | 
|  | OurFPM.add(createReassociatePass()); | 
|  | // Eliminate Common SubExpressions. | 
|  | OurFPM.add(createGVNPass()); | 
|  | // Simplify the control flow graph (deleting unreachable blocks, etc). | 
|  | OurFPM.add(createCFGSimplificationPass()); | 
|  |  | 
|  | OurFPM.doInitialization(); | 
|  |  | 
|  | // Set the global so the code gen can use this. | 
|  | TheFPM = &OurFPM; | 
|  |  | 
|  | // Run the main "interpreter loop" now. | 
|  | MainLoop(); | 
|  |  | 
|  | TheFPM = 0; | 
|  |  | 
|  | // Print out all of the generated code. | 
|  | TheModule->dump(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | </pre> | 
|  | </div> | 
|  |  | 
|  | <a href="LangImpl6.html">Next: Extending the language: user-defined operators</a> | 
|  | </div> | 
|  |  | 
|  | <!-- *********************************************************************** --> | 
|  | <hr> | 
|  | <address> | 
|  | <a href="http://jigsaw.w3.org/css-validator/check/referer"><img | 
|  | src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> | 
|  | <a href="http://validator.w3.org/check/referer"><img | 
|  | src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> | 
|  |  | 
|  | <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> | 
|  | <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br> | 
|  | Last modified: $Date$ | 
|  | </address> | 
|  | </body> | 
|  | </html> |