| //===-- Uops.cpp ------------------------------------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Uops.h" |
| #include "BenchmarkResult.h" |
| #include "InstructionSnippetGenerator.h" |
| #include "PerfHelper.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCSchedule.h" |
| #include "llvm/Support/Error.h" |
| #include <algorithm> |
| #include <random> |
| #include <unordered_map> |
| #include <unordered_set> |
| |
| namespace exegesis { |
| |
| // FIXME: Handle memory (see PR36906) |
| static bool isInvalidOperand(const llvm::MCOperandInfo &OpInfo) { |
| switch (OpInfo.OperandType) { |
| default: |
| return true; |
| case llvm::MCOI::OPERAND_IMMEDIATE: |
| case llvm::MCOI::OPERAND_REGISTER: |
| return false; |
| } |
| } |
| |
| static llvm::Error makeError(llvm::Twine Msg) { |
| return llvm::make_error<llvm::StringError>(Msg, |
| llvm::inconvertibleErrorCode()); |
| } |
| |
| // FIXME: Read the counter names from the ProcResourceUnits when PR36984 is |
| // fixed. |
| static const std::string *getEventNameFromProcResName(const char *ProcResName) { |
| static const std::unordered_map<std::string, std::string> Entries = { |
| {"SBPort0", "UOPS_DISPATCHED_PORT:PORT_0"}, |
| {"SBPort1", "UOPS_DISPATCHED_PORT:PORT_1"}, |
| {"SBPort4", "UOPS_DISPATCHED_PORT:PORT_4"}, |
| {"SBPort5", "UOPS_DISPATCHED_PORT:PORT_5"}, |
| {"HWPort0", "UOPS_DISPATCHED_PORT:PORT_0"}, |
| {"HWPort1", "UOPS_DISPATCHED_PORT:PORT_1"}, |
| {"HWPort2", "UOPS_DISPATCHED_PORT:PORT_2"}, |
| {"HWPort3", "UOPS_DISPATCHED_PORT:PORT_3"}, |
| {"HWPort4", "UOPS_DISPATCHED_PORT:PORT_4"}, |
| {"HWPort5", "UOPS_DISPATCHED_PORT:PORT_5"}, |
| {"HWPort6", "UOPS_DISPATCHED_PORT:PORT_6"}, |
| {"HWPort7", "UOPS_DISPATCHED_PORT:PORT_7"}, |
| {"SKLPort0", "UOPS_DISPATCHED_PORT:PORT_0"}, |
| {"SKLPort1", "UOPS_DISPATCHED_PORT:PORT_1"}, |
| {"SKLPort2", "UOPS_DISPATCHED_PORT:PORT_2"}, |
| {"SKLPort3", "UOPS_DISPATCHED_PORT:PORT_3"}, |
| {"SKLPort4", "UOPS_DISPATCHED_PORT:PORT_4"}, |
| {"SKLPort5", "UOPS_DISPATCHED_PORT:PORT_5"}, |
| {"SKLPort6", "UOPS_DISPATCHED_PORT:PORT_6"}, |
| {"SKXPort7", "UOPS_DISPATCHED_PORT:PORT_7"}, |
| {"SKXPort0", "UOPS_DISPATCHED_PORT:PORT_0"}, |
| {"SKXPort1", "UOPS_DISPATCHED_PORT:PORT_1"}, |
| {"SKXPort2", "UOPS_DISPATCHED_PORT:PORT_2"}, |
| {"SKXPort3", "UOPS_DISPATCHED_PORT:PORT_3"}, |
| {"SKXPort4", "UOPS_DISPATCHED_PORT:PORT_4"}, |
| {"SKXPort5", "UOPS_DISPATCHED_PORT:PORT_5"}, |
| {"SKXPort6", "UOPS_DISPATCHED_PORT:PORT_6"}, |
| {"SKXPort7", "UOPS_DISPATCHED_PORT:PORT_7"}, |
| }; |
| const auto It = Entries.find(ProcResName); |
| return It == Entries.end() ? nullptr : &It->second; |
| } |
| |
| static std::vector<llvm::MCInst> generateIndependentAssignments( |
| const LLVMState &State, const llvm::MCInstrDesc &InstrDesc, |
| llvm::SmallVector<Variable, 8> Vars, int MaxAssignments) { |
| std::unordered_set<llvm::MCPhysReg> IsUsedByAnyVar; |
| for (const Variable &Var : Vars) { |
| if (Var.IsUse) { |
| IsUsedByAnyVar.insert(Var.PossibleRegisters.begin(), |
| Var.PossibleRegisters.end()); |
| } |
| } |
| |
| std::vector<llvm::MCInst> Pattern; |
| for (int A = 0; A < MaxAssignments; ++A) { |
| // FIXME: This is a bit pessimistic. We should get away with an |
| // assignment that ensures that the set of assigned registers for uses and |
| // the set of assigned registers for defs do not intersect (registers |
| // for uses (resp defs) do not have to be all distinct). |
| const std::vector<llvm::MCPhysReg> Regs = getExclusiveAssignment(Vars); |
| if (Regs.empty()) |
| break; |
| // Remove all assigned registers defs that are used by at least one other |
| // variable from the list of possible variable registers. This ensures that |
| // we never create a RAW hazard that would lead to serialization. |
| for (size_t I = 0, E = Vars.size(); I < E; ++I) { |
| llvm::MCPhysReg Reg = Regs[I]; |
| if (Vars[I].IsDef && IsUsedByAnyVar.count(Reg)) { |
| Vars[I].PossibleRegisters.remove(Reg); |
| } |
| } |
| // Create an MCInst and check assembly. |
| llvm::MCInst Inst = generateMCInst(InstrDesc, Vars, Regs); |
| if (!State.canAssemble(Inst)) |
| continue; |
| Pattern.push_back(std::move(Inst)); |
| } |
| return Pattern; |
| } |
| |
| UopsBenchmarkRunner::~UopsBenchmarkRunner() = default; |
| |
| const char *UopsBenchmarkRunner::getDisplayName() const { return "uops"; } |
| |
| llvm::Expected<std::vector<llvm::MCInst>> UopsBenchmarkRunner::createCode( |
| const LLVMState &State, const unsigned OpcodeIndex, |
| const unsigned NumRepetitions, const JitFunctionContext &Context) const { |
| const auto &InstrInfo = State.getInstrInfo(); |
| const auto &RegInfo = State.getRegInfo(); |
| const llvm::MCInstrDesc &InstrDesc = InstrInfo.get(OpcodeIndex); |
| for (const llvm::MCOperandInfo &OpInfo : InstrDesc.operands()) { |
| if (isInvalidOperand(OpInfo)) |
| return makeError("Only registers and immediates are supported"); |
| } |
| |
| // FIXME: Load constants into registers (e.g. with fld1) to not break |
| // instructions like x87. |
| |
| // Ideally we would like the only limitation on executing uops to be the issue |
| // ports. Maximizing port pressure increases the likelihood that the load is |
| // distributed evenly across possible ports. |
| |
| // To achieve that, one approach is to generate instructions that do not have |
| // data dependencies between them. |
| // |
| // For some instructions, this is trivial: |
| // mov rax, qword ptr [rsi] |
| // mov rax, qword ptr [rsi] |
| // mov rax, qword ptr [rsi] |
| // mov rax, qword ptr [rsi] |
| // For the above snippet, haswell just renames rax four times and executes the |
| // four instructions two at a time on P23 and P0126. |
| // |
| // For some instructions, we just need to make sure that the source is |
| // different from the destination. For example, IDIV8r reads from GPR and |
| // writes to AX. We just need to ensure that the variable is assigned a |
| // register which is different from AX: |
| // idiv bx |
| // idiv bx |
| // idiv bx |
| // idiv bx |
| // The above snippet will be able to fully saturate the ports, while the same |
| // with ax would issue one uop every `latency(IDIV8r)` cycles. |
| // |
| // Some instructions make this harder because they both read and write from |
| // the same register: |
| // inc rax |
| // inc rax |
| // inc rax |
| // inc rax |
| // This has a data dependency from each instruction to the next, limit the |
| // number of instructions that can be issued in parallel. |
| // It turns out that this is not a big issue on recent Intel CPUs because they |
| // have heuristics to balance port pressure. In the snippet above, subsequent |
| // instructions will end up evenly distributed on {P0,P1,P5,P6}, but some CPUs |
| // might end up executing them all on P0 (just because they can), or try |
| // avoiding P5 because it's usually under high pressure from vector |
| // instructions. |
| // This issue is even more important for high-latency instructions because |
| // they increase the idle time of the CPU, e.g. : |
| // imul rax, rbx |
| // imul rax, rbx |
| // imul rax, rbx |
| // imul rax, rbx |
| // |
| // To avoid that, we do the renaming statically by generating as many |
| // independent exclusive assignments as possible (until all possible registers |
| // are exhausted) e.g.: |
| // imul rax, rbx |
| // imul rcx, rbx |
| // imul rdx, rbx |
| // imul r8, rbx |
| // |
| // Some instruction even make the above static renaming impossible because |
| // they implicitly read and write from the same operand, e.g. ADC16rr reads |
| // and writes from EFLAGS. |
| // In that case we just use a greedy register assignment and hope for the |
| // best. |
| |
| const auto Vars = getVariables(RegInfo, InstrDesc, Context.getReservedRegs()); |
| |
| // Generate as many independent exclusive assignments as possible. |
| constexpr const int MaxStaticRenames = 20; |
| std::vector<llvm::MCInst> Pattern = |
| generateIndependentAssignments(State, InstrDesc, Vars, MaxStaticRenames); |
| if (Pattern.empty()) { |
| // We don't even have a single exclusive assignment, fallback to a greedy |
| // assignment. |
| // FIXME: Tell the user about this decision to help debugging. |
| const std::vector<llvm::MCPhysReg> Regs = getGreedyAssignment(Vars); |
| if (!Vars.empty() && Regs.empty()) |
| return makeError("No feasible greedy assignment"); |
| llvm::MCInst Inst = generateMCInst(InstrDesc, Vars, Regs); |
| if (!State.canAssemble(Inst)) |
| return makeError("Cannot assemble greedy assignment"); |
| Pattern.push_back(std::move(Inst)); |
| } |
| |
| // Generate repetitions of the pattern until benchmark_iterations is reached. |
| std::vector<llvm::MCInst> Result; |
| Result.reserve(NumRepetitions); |
| for (unsigned I = 0; I < NumRepetitions; ++I) |
| Result.push_back(Pattern[I % Pattern.size()]); |
| return Result; |
| } |
| |
| std::vector<BenchmarkMeasure> |
| UopsBenchmarkRunner::runMeasurements(const LLVMState &State, |
| const JitFunction &Function, |
| const unsigned NumRepetitions) const { |
| const auto &SchedModel = State.getSubtargetInfo().getSchedModel(); |
| |
| std::vector<BenchmarkMeasure> Result; |
| for (unsigned ProcResIdx = 1; |
| ProcResIdx < SchedModel.getNumProcResourceKinds(); ++ProcResIdx) { |
| const llvm::MCProcResourceDesc &ProcRes = |
| *SchedModel.getProcResource(ProcResIdx); |
| const std::string *const EventName = |
| getEventNameFromProcResName(ProcRes.Name); |
| if (!EventName) |
| continue; |
| pfm::Counter Counter{pfm::PerfEvent(*EventName)}; |
| Counter.start(); |
| Function(); |
| Counter.stop(); |
| Result.push_back({llvm::itostr(ProcResIdx), |
| static_cast<double>(Counter.read()) / NumRepetitions, |
| ProcRes.Name}); |
| } |
| return Result; |
| } |
| |
| } // namespace exegesis |