|  | //===- SwitchLoweringUtils.cpp - Switch Lowering --------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains switch inst lowering optimizations and utilities for | 
|  | // codegen, so that it can be used for both SelectionDAG and GlobalISel. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/SwitchLoweringUtils.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace SwitchCG; | 
|  |  | 
|  | uint64_t SwitchCG::getJumpTableRange(const CaseClusterVector &Clusters, | 
|  | unsigned First, unsigned Last) { | 
|  | assert(Last >= First); | 
|  | const APInt &LowCase = Clusters[First].Low->getValue(); | 
|  | const APInt &HighCase = Clusters[Last].High->getValue(); | 
|  | assert(LowCase.getBitWidth() == HighCase.getBitWidth()); | 
|  |  | 
|  | // FIXME: A range of consecutive cases has 100% density, but only requires one | 
|  | // comparison to lower. We should discriminate against such consecutive ranges | 
|  | // in jump tables. | 
|  | return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; | 
|  | } | 
|  |  | 
|  | uint64_t | 
|  | SwitchCG::getJumpTableNumCases(const SmallVectorImpl<unsigned> &TotalCases, | 
|  | unsigned First, unsigned Last) { | 
|  | assert(Last >= First); | 
|  | assert(TotalCases[Last] >= TotalCases[First]); | 
|  | uint64_t NumCases = | 
|  | TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); | 
|  | return NumCases; | 
|  | } | 
|  |  | 
|  | void SwitchCG::SwitchLowering::findJumpTables(CaseClusterVector &Clusters, | 
|  | const SwitchInst *SI, | 
|  | MachineBasicBlock *DefaultMBB, | 
|  | ProfileSummaryInfo *PSI, | 
|  | BlockFrequencyInfo *BFI) { | 
|  | #ifndef NDEBUG | 
|  | // Clusters must be non-empty, sorted, and only contain Range clusters. | 
|  | assert(!Clusters.empty()); | 
|  | for (CaseCluster &C : Clusters) | 
|  | assert(C.Kind == CC_Range); | 
|  | for (unsigned i = 1, e = Clusters.size(); i < e; ++i) | 
|  | assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); | 
|  | #endif | 
|  |  | 
|  | assert(TLI && "TLI not set!"); | 
|  | if (!TLI->areJTsAllowed(SI->getParent()->getParent())) | 
|  | return; | 
|  |  | 
|  | const unsigned MinJumpTableEntries = TLI->getMinimumJumpTableEntries(); | 
|  | const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; | 
|  |  | 
|  | // Bail if not enough cases. | 
|  | const int64_t N = Clusters.size(); | 
|  | if (N < 2 || N < MinJumpTableEntries) | 
|  | return; | 
|  |  | 
|  | // Accumulated number of cases in each cluster and those prior to it. | 
|  | SmallVector<unsigned, 8> TotalCases(N); | 
|  | for (unsigned i = 0; i < N; ++i) { | 
|  | const APInt &Hi = Clusters[i].High->getValue(); | 
|  | const APInt &Lo = Clusters[i].Low->getValue(); | 
|  | TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; | 
|  | if (i != 0) | 
|  | TotalCases[i] += TotalCases[i - 1]; | 
|  | } | 
|  |  | 
|  | uint64_t Range = getJumpTableRange(Clusters,0, N - 1); | 
|  | uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); | 
|  | assert(NumCases < UINT64_MAX / 100); | 
|  | assert(Range >= NumCases); | 
|  |  | 
|  | // Cheap case: the whole range may be suitable for jump table. | 
|  | if (TLI->isSuitableForJumpTable(SI, NumCases, Range, PSI, BFI)) { | 
|  | CaseCluster JTCluster; | 
|  | if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { | 
|  | Clusters[0] = JTCluster; | 
|  | Clusters.resize(1); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The algorithm below is not suitable for -O0. | 
|  | if (TM->getOptLevel() == CodeGenOpt::None) | 
|  | return; | 
|  |  | 
|  | // Split Clusters into minimum number of dense partitions. The algorithm uses | 
|  | // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code | 
|  | // for the Case Statement'" (1994), but builds the MinPartitions array in | 
|  | // reverse order to make it easier to reconstruct the partitions in ascending | 
|  | // order. In the choice between two optimal partitionings, it picks the one | 
|  | // which yields more jump tables. | 
|  |  | 
|  | // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. | 
|  | SmallVector<unsigned, 8> MinPartitions(N); | 
|  | // LastElement[i] is the last element of the partition starting at i. | 
|  | SmallVector<unsigned, 8> LastElement(N); | 
|  | // PartitionsScore[i] is used to break ties when choosing between two | 
|  | // partitionings resulting in the same number of partitions. | 
|  | SmallVector<unsigned, 8> PartitionsScore(N); | 
|  | // For PartitionsScore, a small number of comparisons is considered as good as | 
|  | // a jump table and a single comparison is considered better than a jump | 
|  | // table. | 
|  | enum PartitionScores : unsigned { | 
|  | NoTable = 0, | 
|  | Table = 1, | 
|  | FewCases = 1, | 
|  | SingleCase = 2 | 
|  | }; | 
|  |  | 
|  | // Base case: There is only one way to partition Clusters[N-1]. | 
|  | MinPartitions[N - 1] = 1; | 
|  | LastElement[N - 1] = N - 1; | 
|  | PartitionsScore[N - 1] = PartitionScores::SingleCase; | 
|  |  | 
|  | // Note: loop indexes are signed to avoid underflow. | 
|  | for (int64_t i = N - 2; i >= 0; i--) { | 
|  | // Find optimal partitioning of Clusters[i..N-1]. | 
|  | // Baseline: Put Clusters[i] into a partition on its own. | 
|  | MinPartitions[i] = MinPartitions[i + 1] + 1; | 
|  | LastElement[i] = i; | 
|  | PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; | 
|  |  | 
|  | // Search for a solution that results in fewer partitions. | 
|  | for (int64_t j = N - 1; j > i; j--) { | 
|  | // Try building a partition from Clusters[i..j]. | 
|  | Range = getJumpTableRange(Clusters, i, j); | 
|  | NumCases = getJumpTableNumCases(TotalCases, i, j); | 
|  | assert(NumCases < UINT64_MAX / 100); | 
|  | assert(Range >= NumCases); | 
|  |  | 
|  | if (TLI->isSuitableForJumpTable(SI, NumCases, Range, PSI, BFI)) { | 
|  | unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); | 
|  | unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; | 
|  | int64_t NumEntries = j - i + 1; | 
|  |  | 
|  | if (NumEntries == 1) | 
|  | Score += PartitionScores::SingleCase; | 
|  | else if (NumEntries <= SmallNumberOfEntries) | 
|  | Score += PartitionScores::FewCases; | 
|  | else if (NumEntries >= MinJumpTableEntries) | 
|  | Score += PartitionScores::Table; | 
|  |  | 
|  | // If this leads to fewer partitions, or to the same number of | 
|  | // partitions with better score, it is a better partitioning. | 
|  | if (NumPartitions < MinPartitions[i] || | 
|  | (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { | 
|  | MinPartitions[i] = NumPartitions; | 
|  | LastElement[i] = j; | 
|  | PartitionsScore[i] = Score; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Iterate over the partitions, replacing some with jump tables in-place. | 
|  | unsigned DstIndex = 0; | 
|  | for (unsigned First = 0, Last; First < N; First = Last + 1) { | 
|  | Last = LastElement[First]; | 
|  | assert(Last >= First); | 
|  | assert(DstIndex <= First); | 
|  | unsigned NumClusters = Last - First + 1; | 
|  |  | 
|  | CaseCluster JTCluster; | 
|  | if (NumClusters >= MinJumpTableEntries && | 
|  | buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { | 
|  | Clusters[DstIndex++] = JTCluster; | 
|  | } else { | 
|  | for (unsigned I = First; I <= Last; ++I) | 
|  | std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); | 
|  | } | 
|  | } | 
|  | Clusters.resize(DstIndex); | 
|  | } | 
|  |  | 
|  | bool SwitchCG::SwitchLowering::buildJumpTable(const CaseClusterVector &Clusters, | 
|  | unsigned First, unsigned Last, | 
|  | const SwitchInst *SI, | 
|  | MachineBasicBlock *DefaultMBB, | 
|  | CaseCluster &JTCluster) { | 
|  | assert(First <= Last); | 
|  |  | 
|  | auto Prob = BranchProbability::getZero(); | 
|  | unsigned NumCmps = 0; | 
|  | std::vector<MachineBasicBlock*> Table; | 
|  | DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; | 
|  |  | 
|  | // Initialize probabilities in JTProbs. | 
|  | for (unsigned I = First; I <= Last; ++I) | 
|  | JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); | 
|  |  | 
|  | for (unsigned I = First; I <= Last; ++I) { | 
|  | assert(Clusters[I].Kind == CC_Range); | 
|  | Prob += Clusters[I].Prob; | 
|  | const APInt &Low = Clusters[I].Low->getValue(); | 
|  | const APInt &High = Clusters[I].High->getValue(); | 
|  | NumCmps += (Low == High) ? 1 : 2; | 
|  | if (I != First) { | 
|  | // Fill the gap between this and the previous cluster. | 
|  | const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); | 
|  | assert(PreviousHigh.slt(Low)); | 
|  | uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; | 
|  | for (uint64_t J = 0; J < Gap; J++) | 
|  | Table.push_back(DefaultMBB); | 
|  | } | 
|  | uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; | 
|  | for (uint64_t J = 0; J < ClusterSize; ++J) | 
|  | Table.push_back(Clusters[I].MBB); | 
|  | JTProbs[Clusters[I].MBB] += Clusters[I].Prob; | 
|  | } | 
|  |  | 
|  | unsigned NumDests = JTProbs.size(); | 
|  | if (TLI->isSuitableForBitTests(NumDests, NumCmps, | 
|  | Clusters[First].Low->getValue(), | 
|  | Clusters[Last].High->getValue(), *DL)) { | 
|  | // Clusters[First..Last] should be lowered as bit tests instead. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Create the MBB that will load from and jump through the table. | 
|  | // Note: We create it here, but it's not inserted into the function yet. | 
|  | MachineFunction *CurMF = FuncInfo.MF; | 
|  | MachineBasicBlock *JumpTableMBB = | 
|  | CurMF->CreateMachineBasicBlock(SI->getParent()); | 
|  |  | 
|  | // Add successors. Note: use table order for determinism. | 
|  | SmallPtrSet<MachineBasicBlock *, 8> Done; | 
|  | for (MachineBasicBlock *Succ : Table) { | 
|  | if (Done.count(Succ)) | 
|  | continue; | 
|  | addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); | 
|  | Done.insert(Succ); | 
|  | } | 
|  | JumpTableMBB->normalizeSuccProbs(); | 
|  |  | 
|  | unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI->getJumpTableEncoding()) | 
|  | ->createJumpTableIndex(Table); | 
|  |  | 
|  | // Set up the jump table info. | 
|  | JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); | 
|  | JumpTableHeader JTH(Clusters[First].Low->getValue(), | 
|  | Clusters[Last].High->getValue(), SI->getCondition(), | 
|  | nullptr, false); | 
|  | JTCases.emplace_back(std::move(JTH), std::move(JT)); | 
|  |  | 
|  | JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, | 
|  | JTCases.size() - 1, Prob); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SwitchCG::SwitchLowering::findBitTestClusters(CaseClusterVector &Clusters, | 
|  | const SwitchInst *SI) { | 
|  | // Partition Clusters into as few subsets as possible, where each subset has a | 
|  | // range that fits in a machine word and has <= 3 unique destinations. | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Clusters must be sorted and contain Range or JumpTable clusters. | 
|  | assert(!Clusters.empty()); | 
|  | assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); | 
|  | for (const CaseCluster &C : Clusters) | 
|  | assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); | 
|  | for (unsigned i = 1; i < Clusters.size(); ++i) | 
|  | assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); | 
|  | #endif | 
|  |  | 
|  | // The algorithm below is not suitable for -O0. | 
|  | if (TM->getOptLevel() == CodeGenOpt::None) | 
|  | return; | 
|  |  | 
|  | // If target does not have legal shift left, do not emit bit tests at all. | 
|  | EVT PTy = TLI->getPointerTy(*DL); | 
|  | if (!TLI->isOperationLegal(ISD::SHL, PTy)) | 
|  | return; | 
|  |  | 
|  | int BitWidth = PTy.getSizeInBits(); | 
|  | const int64_t N = Clusters.size(); | 
|  |  | 
|  | // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. | 
|  | SmallVector<unsigned, 8> MinPartitions(N); | 
|  | // LastElement[i] is the last element of the partition starting at i. | 
|  | SmallVector<unsigned, 8> LastElement(N); | 
|  |  | 
|  | // FIXME: This might not be the best algorithm for finding bit test clusters. | 
|  |  | 
|  | // Base case: There is only one way to partition Clusters[N-1]. | 
|  | MinPartitions[N - 1] = 1; | 
|  | LastElement[N - 1] = N - 1; | 
|  |  | 
|  | // Note: loop indexes are signed to avoid underflow. | 
|  | for (int64_t i = N - 2; i >= 0; --i) { | 
|  | // Find optimal partitioning of Clusters[i..N-1]. | 
|  | // Baseline: Put Clusters[i] into a partition on its own. | 
|  | MinPartitions[i] = MinPartitions[i + 1] + 1; | 
|  | LastElement[i] = i; | 
|  |  | 
|  | // Search for a solution that results in fewer partitions. | 
|  | // Note: the search is limited by BitWidth, reducing time complexity. | 
|  | for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { | 
|  | // Try building a partition from Clusters[i..j]. | 
|  |  | 
|  | // Check the range. | 
|  | if (!TLI->rangeFitsInWord(Clusters[i].Low->getValue(), | 
|  | Clusters[j].High->getValue(), *DL)) | 
|  | continue; | 
|  |  | 
|  | // Check nbr of destinations and cluster types. | 
|  | // FIXME: This works, but doesn't seem very efficient. | 
|  | bool RangesOnly = true; | 
|  | BitVector Dests(FuncInfo.MF->getNumBlockIDs()); | 
|  | for (int64_t k = i; k <= j; k++) { | 
|  | if (Clusters[k].Kind != CC_Range) { | 
|  | RangesOnly = false; | 
|  | break; | 
|  | } | 
|  | Dests.set(Clusters[k].MBB->getNumber()); | 
|  | } | 
|  | if (!RangesOnly || Dests.count() > 3) | 
|  | break; | 
|  |  | 
|  | // Check if it's a better partition. | 
|  | unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); | 
|  | if (NumPartitions < MinPartitions[i]) { | 
|  | // Found a better partition. | 
|  | MinPartitions[i] = NumPartitions; | 
|  | LastElement[i] = j; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Iterate over the partitions, replacing with bit-test clusters in-place. | 
|  | unsigned DstIndex = 0; | 
|  | for (unsigned First = 0, Last; First < N; First = Last + 1) { | 
|  | Last = LastElement[First]; | 
|  | assert(First <= Last); | 
|  | assert(DstIndex <= First); | 
|  |  | 
|  | CaseCluster BitTestCluster; | 
|  | if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { | 
|  | Clusters[DstIndex++] = BitTestCluster; | 
|  | } else { | 
|  | size_t NumClusters = Last - First + 1; | 
|  | std::memmove(&Clusters[DstIndex], &Clusters[First], | 
|  | sizeof(Clusters[0]) * NumClusters); | 
|  | DstIndex += NumClusters; | 
|  | } | 
|  | } | 
|  | Clusters.resize(DstIndex); | 
|  | } | 
|  |  | 
|  | bool SwitchCG::SwitchLowering::buildBitTests(CaseClusterVector &Clusters, | 
|  | unsigned First, unsigned Last, | 
|  | const SwitchInst *SI, | 
|  | CaseCluster &BTCluster) { | 
|  | assert(First <= Last); | 
|  | if (First == Last) | 
|  | return false; | 
|  |  | 
|  | BitVector Dests(FuncInfo.MF->getNumBlockIDs()); | 
|  | unsigned NumCmps = 0; | 
|  | for (int64_t I = First; I <= Last; ++I) { | 
|  | assert(Clusters[I].Kind == CC_Range); | 
|  | Dests.set(Clusters[I].MBB->getNumber()); | 
|  | NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; | 
|  | } | 
|  | unsigned NumDests = Dests.count(); | 
|  |  | 
|  | APInt Low = Clusters[First].Low->getValue(); | 
|  | APInt High = Clusters[Last].High->getValue(); | 
|  | assert(Low.slt(High)); | 
|  |  | 
|  | if (!TLI->isSuitableForBitTests(NumDests, NumCmps, Low, High, *DL)) | 
|  | return false; | 
|  |  | 
|  | APInt LowBound; | 
|  | APInt CmpRange; | 
|  |  | 
|  | const int BitWidth = TLI->getPointerTy(*DL).getSizeInBits(); | 
|  | assert(TLI->rangeFitsInWord(Low, High, *DL) && | 
|  | "Case range must fit in bit mask!"); | 
|  |  | 
|  | // Check if the clusters cover a contiguous range such that no value in the | 
|  | // range will jump to the default statement. | 
|  | bool ContiguousRange = true; | 
|  | for (int64_t I = First + 1; I <= Last; ++I) { | 
|  | if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { | 
|  | ContiguousRange = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Low.isStrictlyPositive() && High.slt(BitWidth)) { | 
|  | // Optimize the case where all the case values fit in a word without having | 
|  | // to subtract minValue. In this case, we can optimize away the subtraction. | 
|  | LowBound = APInt::getNullValue(Low.getBitWidth()); | 
|  | CmpRange = High; | 
|  | ContiguousRange = false; | 
|  | } else { | 
|  | LowBound = Low; | 
|  | CmpRange = High - Low; | 
|  | } | 
|  |  | 
|  | CaseBitsVector CBV; | 
|  | auto TotalProb = BranchProbability::getZero(); | 
|  | for (unsigned i = First; i <= Last; ++i) { | 
|  | // Find the CaseBits for this destination. | 
|  | unsigned j; | 
|  | for (j = 0; j < CBV.size(); ++j) | 
|  | if (CBV[j].BB == Clusters[i].MBB) | 
|  | break; | 
|  | if (j == CBV.size()) | 
|  | CBV.push_back( | 
|  | CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); | 
|  | CaseBits *CB = &CBV[j]; | 
|  |  | 
|  | // Update Mask, Bits and ExtraProb. | 
|  | uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); | 
|  | uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); | 
|  | assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); | 
|  | CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; | 
|  | CB->Bits += Hi - Lo + 1; | 
|  | CB->ExtraProb += Clusters[i].Prob; | 
|  | TotalProb += Clusters[i].Prob; | 
|  | } | 
|  |  | 
|  | BitTestInfo BTI; | 
|  | llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { | 
|  | // Sort by probability first, number of bits second, bit mask third. | 
|  | if (a.ExtraProb != b.ExtraProb) | 
|  | return a.ExtraProb > b.ExtraProb; | 
|  | if (a.Bits != b.Bits) | 
|  | return a.Bits > b.Bits; | 
|  | return a.Mask < b.Mask; | 
|  | }); | 
|  |  | 
|  | for (auto &CB : CBV) { | 
|  | MachineBasicBlock *BitTestBB = | 
|  | FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); | 
|  | BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); | 
|  | } | 
|  | BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), | 
|  | SI->getCondition(), -1U, MVT::Other, false, | 
|  | ContiguousRange, nullptr, nullptr, std::move(BTI), | 
|  | TotalProb); | 
|  |  | 
|  | BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, | 
|  | BitTestCases.size() - 1, TotalProb); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SwitchCG::sortAndRangeify(CaseClusterVector &Clusters) { | 
|  | #ifndef NDEBUG | 
|  | for (const CaseCluster &CC : Clusters) | 
|  | assert(CC.Low == CC.High && "Input clusters must be single-case"); | 
|  | #endif | 
|  |  | 
|  | llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { | 
|  | return a.Low->getValue().slt(b.Low->getValue()); | 
|  | }); | 
|  |  | 
|  | // Merge adjacent clusters with the same destination. | 
|  | const unsigned N = Clusters.size(); | 
|  | unsigned DstIndex = 0; | 
|  | for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { | 
|  | CaseCluster &CC = Clusters[SrcIndex]; | 
|  | const ConstantInt *CaseVal = CC.Low; | 
|  | MachineBasicBlock *Succ = CC.MBB; | 
|  |  | 
|  | if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && | 
|  | (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { | 
|  | // If this case has the same successor and is a neighbour, merge it into | 
|  | // the previous cluster. | 
|  | Clusters[DstIndex - 1].High = CaseVal; | 
|  | Clusters[DstIndex - 1].Prob += CC.Prob; | 
|  | } else { | 
|  | std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], | 
|  | sizeof(Clusters[SrcIndex])); | 
|  | } | 
|  | } | 
|  | Clusters.resize(DstIndex); | 
|  | } |