| //===- Passes/LayoutPass.cpp - Layout atoms -------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "LayoutPass" |
| |
| #include "lld/Passes/LayoutPass.h" |
| #include "lld/Core/Instrumentation.h" |
| #include "llvm/Support/Debug.h" |
| |
| using namespace lld; |
| |
| /// The function compares atoms by sorting atoms in the following order |
| /// a) Sorts atoms with the same permissions |
| /// b) Sorts atoms with the same content Type |
| /// c) Sorts atoms by Section position preference |
| /// d) Sorts atoms by how they follow / precede each atom |
| /// e) Sorts atoms on how they appear using File Ordinality |
| /// f) Sorts atoms on how they appear within the File |
| bool LayoutPass::CompareAtoms::operator()(const DefinedAtom *left, |
| const DefinedAtom *right) const { |
| DEBUG(llvm::dbgs() << "Sorting " << left->name() << " " << right->name() << "\n"); |
| if (left == right) |
| return false; |
| |
| // Sort by section position preference. |
| DefinedAtom::SectionPosition leftPos = left->sectionPosition(); |
| DefinedAtom::SectionPosition rightPos = right->sectionPosition(); |
| |
| DEBUG(llvm::dbgs() << "Sorting by sectionPos" |
| << "(" << leftPos << "," << rightPos << ")\n"); |
| |
| bool leftSpecialPos = (leftPos != DefinedAtom::sectionPositionAny); |
| bool rightSpecialPos = (rightPos != DefinedAtom::sectionPositionAny); |
| if (leftSpecialPos || rightSpecialPos) { |
| if (leftPos != rightPos) |
| return leftPos < rightPos; |
| } |
| |
| DEBUG(llvm::dbgs() << "Sorting by override\n"); |
| |
| AtomToOrdinalT::const_iterator lPos = _layout._ordinalOverrideMap.find(left); |
| AtomToOrdinalT::const_iterator rPos = _layout._ordinalOverrideMap.find(right); |
| AtomToOrdinalT::const_iterator end = _layout._ordinalOverrideMap.end(); |
| if (lPos != end) { |
| if (rPos != end) { |
| // both left and right are overridden, so compare overridden ordinals |
| if (lPos->second != rPos->second) |
| return lPos->second < rPos->second; |
| } else { |
| // left is overridden and right is not, so left < right |
| return true; |
| } |
| } else { |
| if (rPos != end) { |
| // right is overridden and left is not, so right < left |
| return false; |
| } else { |
| // neither are overridden, |
| // fall into default sorting below |
| } |
| } |
| |
| // Sort same permissions together. |
| DefinedAtom::ContentPermissions leftPerms = left->permissions(); |
| DefinedAtom::ContentPermissions rightPerms = right->permissions(); |
| |
| DEBUG(llvm::dbgs() << "Sorting by contentPerms" |
| << "(" << leftPerms << "," << rightPerms << ")\n"); |
| |
| if (leftPerms != rightPerms) |
| return leftPerms < rightPerms; |
| |
| // Sort same content types together. |
| DefinedAtom::ContentType leftType = left->contentType(); |
| DefinedAtom::ContentType rightType = right->contentType(); |
| |
| DEBUG(llvm::dbgs() << "Sorting by contentType" |
| << "(" << leftType << "," << rightType << ")\n"); |
| |
| if (leftType != rightType) |
| return leftType < rightType; |
| |
| // TO DO: Sort atoms in customs sections together. |
| |
| // Sort by .o order. |
| const File *leftFile = &left->file(); |
| const File *rightFile = &right->file(); |
| |
| DEBUG(llvm::dbgs() |
| << "Sorting by .o order(" |
| << "(" << leftFile->ordinal() << "," << rightFile->ordinal() << ")" |
| << "[" << leftFile->path() << "," << rightFile->path() << "]\n"); |
| |
| if (leftFile != rightFile) |
| return leftFile->ordinal() < rightFile->ordinal(); |
| |
| // Sort by atom order with .o file. |
| uint64_t leftOrdinal = left->ordinal(); |
| uint64_t rightOrdinal = right->ordinal(); |
| |
| DEBUG(llvm::dbgs() << "Sorting by ordinal(" << left->ordinal() << "," |
| << right->ordinal() << ")\n"); |
| |
| if (leftOrdinal != rightOrdinal) |
| return leftOrdinal < rightOrdinal; |
| |
| DEBUG(llvm::dbgs() << "Unordered\n"); |
| |
| return false; |
| } |
| |
| // Returns the atom immediately followed by the given atom in the followon |
| // chain. |
| const DefinedAtom *LayoutPass::findAtomFollowedBy( |
| const DefinedAtom *targetAtom) { |
| // Start from the beginning of the chain and follow the chain until |
| // we find the targetChain. |
| const DefinedAtom *atom = _followOnRoots[targetAtom]; |
| while (true) { |
| const DefinedAtom *prevAtom = atom; |
| AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom); |
| // The target atom must be in the chain of its root. |
| assert(targetFollowOnAtomsIter != _followOnNexts.end()); |
| atom = targetFollowOnAtomsIter->second; |
| if (atom == targetAtom) |
| return prevAtom; |
| } |
| } |
| |
| // Check if all the atoms followed by the given target atom are of size zero. |
| // When this method is called, an atom being added is not of size zero and |
| // will be added to the head of the followon chain. All the atoms between the |
| // atom and the targetAtom (specified by layout-after) need to be of size zero |
| // in this case. Otherwise the desired layout is impossible. |
| bool LayoutPass::checkAllPrevAtomsZeroSize(const DefinedAtom *targetAtom) { |
| const DefinedAtom *atom = _followOnRoots[targetAtom]; |
| while (true) { |
| if (atom == targetAtom) |
| return true; |
| if (atom->size() != 0) |
| // TODO: print warning that an impossible layout is being desired by the |
| // user. |
| return false; |
| AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom); |
| // The target atom must be in the chain of its root. |
| assert(targetFollowOnAtomsIter != _followOnNexts.end()); |
| atom = targetFollowOnAtomsIter->second; |
| } |
| } |
| |
| // Set the root of all atoms in targetAtom's chain to the given root. |
| void LayoutPass::setChainRoot(const DefinedAtom *targetAtom, |
| const DefinedAtom *root) { |
| // Walk through the followon chain and override each node's root. |
| while (true) { |
| _followOnRoots[targetAtom] = root; |
| AtomToAtomT::iterator targetFollowOnAtomsIter = |
| _followOnNexts.find(targetAtom); |
| if (targetFollowOnAtomsIter == _followOnNexts.end()) |
| return; |
| targetAtom = targetFollowOnAtomsIter->second; |
| } |
| } |
| |
| /// This pass builds the followon tables described by two DenseMaps |
| /// followOnRoots and followonNexts. |
| /// The followOnRoots map contains a mapping of a DefinedAtom to its root |
| /// The followOnNexts map contains a mapping of what DefinedAtom follows the |
| /// current Atom |
| /// The algorithm follows a very simple approach |
| /// a) If the atom is first seen, then make that as the root atom |
| /// b) The targetAtom which this Atom contains, has the root thats set to the |
| /// root of the current atom |
| /// c) If the targetAtom is part of a different tree and the root of the |
| /// targetAtom is itself, Chain all the atoms that are contained in the tree |
| /// to the current Tree |
| /// d) If the targetAtom is part of a different chain and the root of the |
| /// targetAtom until the targetAtom has all atoms of size 0, then chain the |
| /// targetAtoms and its tree to the current chain |
| void LayoutPass::buildFollowOnTable(MutableFile::DefinedAtomRange &range) { |
| ScopedTask task(getDefaultDomain(), "LayoutPass::buildFollowOnTable"); |
| // Set the initial size of the followon and the followonNext hash to the |
| // number of atoms that we have. |
| _followOnRoots.resize(range.size()); |
| _followOnNexts.resize(range.size()); |
| for (const DefinedAtom *ai : range) { |
| for (const Reference *r : *ai) { |
| if (r->kind() != lld::Reference::kindLayoutAfter) |
| continue; |
| const DefinedAtom *targetAtom = llvm::dyn_cast<DefinedAtom>(r->target()); |
| _followOnNexts[ai] = targetAtom; |
| |
| // If we find a followon for the first time, lets make that atom as the |
| // root atom. |
| if (_followOnRoots.count(ai) == 0) |
| _followOnRoots[ai] = ai; |
| |
| auto iter = _followOnRoots.find(targetAtom); |
| if (iter == _followOnRoots.end()) { |
| // If the targetAtom is not a root of any chain, lets make the root of |
| // the targetAtom to the root of the current chain. |
| _followOnRoots[targetAtom] = _followOnRoots[ai]; |
| } else if (iter->second == targetAtom) { |
| // If the targetAtom is the root of a chain, the chain becomes part of |
| // the current chain. Rewrite the subchain's root to the current |
| // chain's root. |
| setChainRoot(targetAtom, _followOnRoots[ai]); |
| } else { |
| // The targetAtom is already a part of a chain. If the current atom is |
| // of size zero, we can insert it in the middle of the chain just |
| // before the target atom, while not breaking other atom's followon |
| // relationships. If it's not, we can only insert the current atom at |
| // the beginning of the chain. All the atoms followed by the target |
| // atom must be of size zero in that case to satisfy the followon |
| // relationships. |
| size_t currentAtomSize = ai->size(); |
| if (currentAtomSize == 0) { |
| const DefinedAtom *targetPrevAtom = findAtomFollowedBy(targetAtom); |
| _followOnNexts[targetPrevAtom] = ai; |
| _followOnRoots[ai] = _followOnRoots[targetPrevAtom]; |
| } else { |
| if (!checkAllPrevAtomsZeroSize(targetAtom)) |
| break; |
| _followOnNexts[ai] = _followOnRoots[targetAtom]; |
| setChainRoot(_followOnRoots[targetAtom], _followOnRoots[ai]); |
| } |
| } |
| } |
| } |
| } |
| |
| /// This pass builds the followon tables using InGroup relationships |
| /// The algorithm follows a very simple approach |
| /// a) If the rootAtom is not part of any root, create a new root with the |
| /// as the head |
| /// b) If the current Atom root is not found, then make the current atoms root |
| /// point to the rootAtom |
| /// c) If the root of the current Atom is itself a root of some other tree |
| /// make all the atoms in the chain point to the ingroup reference |
| /// d) Check to see if the current atom is part of the chain from the rootAtom |
| /// if not add the atom to the chain, so that the current atom is part of the |
| /// the chain where the rootAtom is in |
| void LayoutPass::buildInGroupTable(MutableFile::DefinedAtomRange &range) { |
| ScopedTask task(getDefaultDomain(), "LayoutPass::buildInGroupTable"); |
| // This table would convert precededby references to follow on |
| // references so that we have only one table |
| for (const DefinedAtom *ai : range) { |
| for (const Reference *r : *ai) { |
| if (r->kind() == lld::Reference::kindInGroup) { |
| const DefinedAtom *rootAtom = llvm::dyn_cast<DefinedAtom>(r->target()); |
| // If the root atom is not part of any root |
| // create a new root |
| if (_followOnRoots.count(rootAtom) == 0) { |
| _followOnRoots[rootAtom] = rootAtom; |
| } |
| // If the current Atom has not been seen yet and there is no root |
| // that has been set, set the root of the atom to the targetAtom |
| // as the targetAtom points to the ingroup root |
| auto iter = _followOnRoots.find(ai); |
| if (iter == _followOnRoots.end()) { |
| _followOnRoots[ai] = rootAtom; |
| } else if (iter->second == ai) { |
| if (iter->second != rootAtom) |
| setChainRoot(iter->second, rootAtom); |
| } else { |
| // TODO : Flag an error that the root of the tree |
| // is different, Here is an example |
| // Say there are atoms |
| // chain 1 : a->b->c |
| // chain 2 : d->e->f |
| // and e,f have their ingroup reference as a |
| // this could happen only if the root of e,f that is d |
| // has root as 'a' |
| continue; |
| } |
| |
| // Check if the current atom is part of the chain |
| bool isAtomInChain = false; |
| const DefinedAtom *lastAtom = rootAtom; |
| while (true) { |
| AtomToAtomT::iterator followOnAtomsIter = |
| _followOnNexts.find(lastAtom); |
| if (followOnAtomsIter != _followOnNexts.end()) { |
| lastAtom = followOnAtomsIter->second; |
| if (lastAtom == ai) { |
| isAtomInChain = true; |
| break; |
| } |
| } |
| else |
| break; |
| } // findAtomInChain |
| |
| if (!isAtomInChain) |
| _followOnNexts[lastAtom] = ai; |
| } |
| } |
| } |
| } |
| |
| /// This pass builds the followon tables using Preceded By relationships |
| /// The algorithm follows a very simple approach |
| /// a) If the targetAtom is not part of any root and the current atom is not |
| /// part of any root, create a chain with the current atom as root and |
| /// the targetAtom as following the current atom |
| /// b) Chain the targetAtom to the current Atom if the targetAtom is not part |
| /// of any chain and the currentAtom has no followOn's |
| /// c) If the targetAtom is part of a different tree and the root of the |
| /// targetAtom is itself, and if the current atom is not part of any root |
| /// chain all the atoms together |
| /// d) If the current atom has no followon and the root of the targetAtom is |
| /// not equal to the root of the current atom(the targetAtom is not in the |
| /// same chain), chain all the atoms that are lead by the targetAtom into |
| /// the current chain |
| void LayoutPass::buildPrecededByTable(MutableFile::DefinedAtomRange &range) { |
| ScopedTask task(getDefaultDomain(), "LayoutPass::buildPrecededByTable"); |
| // This table would convert precededby references to follow on |
| // references so that we have only one table |
| for (const DefinedAtom *ai : range) { |
| for (const Reference *r : *ai) { |
| if (r->kind() == lld::Reference::kindLayoutBefore) { |
| const DefinedAtom *targetAtom = llvm::dyn_cast<DefinedAtom>(r->target()); |
| // Is the targetAtom not chained |
| if (_followOnRoots.count(targetAtom) == 0) { |
| // Is the current atom not part of any root ? |
| if (_followOnRoots.count(ai) == 0) { |
| _followOnRoots[ai] = ai; |
| _followOnNexts[ai] = targetAtom; |
| _followOnRoots[targetAtom] = _followOnRoots[ai]; |
| } else if (_followOnNexts.count(ai) == 0) { |
| // Chain the targetAtom to the current Atom |
| // if the currentAtom has no followon references |
| _followOnNexts[ai] = targetAtom; |
| _followOnRoots[targetAtom] = _followOnRoots[ai]; |
| } |
| } else if (_followOnRoots.find(targetAtom)->second == targetAtom) { |
| // Is the targetAtom in chain with the targetAtom as the root ? |
| bool changeRoots = false; |
| if (_followOnRoots.count(ai) == 0) { |
| _followOnRoots[ai] = ai; |
| _followOnNexts[ai] = targetAtom; |
| _followOnRoots[targetAtom] = _followOnRoots[ai]; |
| changeRoots = true; |
| } else if (_followOnNexts.count(ai) == 0) { |
| // Chain the targetAtom to the current Atom |
| // if the currentAtom has no followon references |
| if (_followOnRoots[ai] != _followOnRoots[targetAtom]) { |
| _followOnNexts[ai] = targetAtom; |
| _followOnRoots[targetAtom] = _followOnRoots[ai]; |
| changeRoots = true; |
| } |
| } |
| // Change the roots of the targetAtom and its chain to |
| // the current atoms root |
| if (changeRoots) { |
| setChainRoot(_followOnRoots[targetAtom], _followOnRoots[ai]); |
| } |
| } // Is targetAtom root |
| } // kindLayoutBefore |
| } // Reference |
| } // atom iteration |
| } // end function |
| |
| |
| /// Build an ordinal override map by traversing the followon chain, and |
| /// assigning ordinals to each atom, if the atoms have their ordinals |
| /// already assigned skip the atom and move to the next. This is the |
| /// main map thats used to sort the atoms while comparing two atoms together |
| void LayoutPass::buildOrdinalOverrideMap(MutableFile::DefinedAtomRange &range) { |
| ScopedTask task(getDefaultDomain(), "LayoutPass::buildOrdinalOverrideMap"); |
| uint64_t index = 0; |
| for (const DefinedAtom *ai : range) { |
| const DefinedAtom *atom = ai; |
| if (_ordinalOverrideMap.find(atom) != _ordinalOverrideMap.end()) |
| continue; |
| AtomToAtomT::iterator start = _followOnRoots.find(atom); |
| if (start != _followOnRoots.end()) { |
| for (const DefinedAtom *nextAtom = start->second; nextAtom != NULL; |
| nextAtom = _followOnNexts[nextAtom]) { |
| AtomToOrdinalT::iterator pos = _ordinalOverrideMap.find(nextAtom); |
| if (pos == _ordinalOverrideMap.end()) { |
| _ordinalOverrideMap[nextAtom] = index++; |
| } |
| } |
| } else { |
| _ordinalOverrideMap[atom] = index++; |
| } |
| } |
| } |
| |
| /// Perform the actual pass |
| void LayoutPass::perform(MutableFile &mergedFile) { |
| ScopedTask task(getDefaultDomain(), "LayoutPass"); |
| MutableFile::DefinedAtomRange atomRange = mergedFile.definedAtoms(); |
| |
| // Build follow on tables |
| buildFollowOnTable(atomRange); |
| |
| // Build Ingroup reference table |
| buildInGroupTable(atomRange); |
| |
| // Build preceded by tables |
| buildPrecededByTable(atomRange); |
| |
| // Build override maps |
| buildOrdinalOverrideMap(atomRange); |
| |
| DEBUG({ |
| llvm::dbgs() << "unsorted atoms:\n"; |
| for (const DefinedAtom *atom : atomRange) { |
| llvm::dbgs() << " file=" << atom->file().path() |
| << ", name=" << atom->name() |
| << ", size=" << atom->size() |
| << ", type=" << atom->contentType() |
| << ", ordinal=" << atom->ordinal() |
| << "\n"; |
| } |
| }); |
| |
| // sort the atoms |
| std::sort(atomRange.begin(), atomRange.end(), _compareAtoms); |
| |
| DEBUG({ |
| llvm::dbgs() << "sorted atoms:\n"; |
| for (const DefinedAtom *atom : atomRange) { |
| llvm::dbgs() << " file=" << atom->file().path() |
| << ", name=" << atom->name() |
| << ", size=" << atom->size() |
| << ", type=" << atom->contentType() |
| << ", ordinal=" << atom->ordinal() |
| << "\n"; |
| } |
| }); |
| |
| } |