|  | //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements routines for translating from LLVM IR into SelectionDAG IR. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "SelectionDAGBuilder.h" | 
|  | #include "SDNodeDbgValue.h" | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/EHPersonalities.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/MemoryLocation.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/Analysis/VectorUtils.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/GCMetadata.h" | 
|  | #include "llvm/CodeGen/ISDOpcodes.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/RuntimeLibcalls.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/CodeGen/SelectionDAGTargetInfo.h" | 
|  | #include "llvm/CodeGen/StackMaps.h" | 
|  | #include "llvm/CodeGen/SwiftErrorValueTracking.h" | 
|  | #include "llvm/CodeGen/TargetFrameLowering.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/TargetOpcodes.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/CodeGen/WinEHFuncInfo.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/ConstantRange.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Statepoint.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/MC/MCContext.h" | 
|  | #include "llvm/MC/MCSymbol.h" | 
|  | #include "llvm/Support/AtomicOrdering.h" | 
|  | #include "llvm/Support/BranchProbability.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CodeGen.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MachineValueType.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetIntrinsicInfo.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <cstring> | 
|  | #include <iterator> | 
|  | #include <limits> | 
|  | #include <numeric> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  | using namespace SwitchCG; | 
|  |  | 
|  | #define DEBUG_TYPE "isel" | 
|  |  | 
|  | /// LimitFloatPrecision - Generate low-precision inline sequences for | 
|  | /// some float libcalls (6, 8 or 12 bits). | 
|  | static unsigned LimitFloatPrecision; | 
|  |  | 
|  | static cl::opt<unsigned, true> | 
|  | LimitFPPrecision("limit-float-precision", | 
|  | cl::desc("Generate low-precision inline sequences " | 
|  | "for some float libcalls"), | 
|  | cl::location(LimitFloatPrecision), cl::Hidden, | 
|  | cl::init(0)); | 
|  |  | 
|  | static cl::opt<unsigned> SwitchPeelThreshold( | 
|  | "switch-peel-threshold", cl::Hidden, cl::init(66), | 
|  | cl::desc("Set the case probability threshold for peeling the case from a " | 
|  | "switch statement. A value greater than 100 will void this " | 
|  | "optimization")); | 
|  |  | 
|  | // Limit the width of DAG chains. This is important in general to prevent | 
|  | // DAG-based analysis from blowing up. For example, alias analysis and | 
|  | // load clustering may not complete in reasonable time. It is difficult to | 
|  | // recognize and avoid this situation within each individual analysis, and | 
|  | // future analyses are likely to have the same behavior. Limiting DAG width is | 
|  | // the safe approach and will be especially important with global DAGs. | 
|  | // | 
|  | // MaxParallelChains default is arbitrarily high to avoid affecting | 
|  | // optimization, but could be lowered to improve compile time. Any ld-ld-st-st | 
|  | // sequence over this should have been converted to llvm.memcpy by the | 
|  | // frontend. It is easy to induce this behavior with .ll code such as: | 
|  | // %buffer = alloca [4096 x i8] | 
|  | // %data = load [4096 x i8]* %argPtr | 
|  | // store [4096 x i8] %data, [4096 x i8]* %buffer | 
|  | static const unsigned MaxParallelChains = 64; | 
|  |  | 
|  | // Return the calling convention if the Value passed requires ABI mangling as it | 
|  | // is a parameter to a function or a return value from a function which is not | 
|  | // an intrinsic. | 
|  | static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { | 
|  | if (auto *R = dyn_cast<ReturnInst>(V)) | 
|  | return R->getParent()->getParent()->getCallingConv(); | 
|  |  | 
|  | if (auto *CI = dyn_cast<CallInst>(V)) { | 
|  | const bool IsInlineAsm = CI->isInlineAsm(); | 
|  | const bool IsIndirectFunctionCall = | 
|  | !IsInlineAsm && !CI->getCalledFunction(); | 
|  |  | 
|  | // It is possible that the call instruction is an inline asm statement or an | 
|  | // indirect function call in which case the return value of | 
|  | // getCalledFunction() would be nullptr. | 
|  | const bool IsInstrinsicCall = | 
|  | !IsInlineAsm && !IsIndirectFunctionCall && | 
|  | CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; | 
|  |  | 
|  | if (!IsInlineAsm && !IsInstrinsicCall) | 
|  | return CI->getCallingConv(); | 
|  | } | 
|  |  | 
|  | return None; | 
|  | } | 
|  |  | 
|  | static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, | 
|  | const SDValue *Parts, unsigned NumParts, | 
|  | MVT PartVT, EVT ValueVT, const Value *V, | 
|  | Optional<CallingConv::ID> CC); | 
|  |  | 
|  | /// getCopyFromParts - Create a value that contains the specified legal parts | 
|  | /// combined into the value they represent.  If the parts combine to a type | 
|  | /// larger than ValueVT then AssertOp can be used to specify whether the extra | 
|  | /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT | 
|  | /// (ISD::AssertSext). | 
|  | static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, | 
|  | const SDValue *Parts, unsigned NumParts, | 
|  | MVT PartVT, EVT ValueVT, const Value *V, | 
|  | Optional<CallingConv::ID> CC = None, | 
|  | Optional<ISD::NodeType> AssertOp = None) { | 
|  | if (ValueVT.isVector()) | 
|  | return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, | 
|  | CC); | 
|  |  | 
|  | assert(NumParts > 0 && "No parts to assemble!"); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue Val = Parts[0]; | 
|  |  | 
|  | if (NumParts > 1) { | 
|  | // Assemble the value from multiple parts. | 
|  | if (ValueVT.isInteger()) { | 
|  | unsigned PartBits = PartVT.getSizeInBits(); | 
|  | unsigned ValueBits = ValueVT.getSizeInBits(); | 
|  |  | 
|  | // Assemble the power of 2 part. | 
|  | unsigned RoundParts = | 
|  | (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; | 
|  | unsigned RoundBits = PartBits * RoundParts; | 
|  | EVT RoundVT = RoundBits == ValueBits ? | 
|  | ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); | 
|  | SDValue Lo, Hi; | 
|  |  | 
|  | EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); | 
|  |  | 
|  | if (RoundParts > 2) { | 
|  | Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, | 
|  | PartVT, HalfVT, V); | 
|  | Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, | 
|  | RoundParts / 2, PartVT, HalfVT, V); | 
|  | } else { | 
|  | Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); | 
|  | Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); | 
|  | } | 
|  |  | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | std::swap(Lo, Hi); | 
|  |  | 
|  | Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); | 
|  |  | 
|  | if (RoundParts < NumParts) { | 
|  | // Assemble the trailing non-power-of-2 part. | 
|  | unsigned OddParts = NumParts - RoundParts; | 
|  | EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); | 
|  | Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, | 
|  | OddVT, V, CC); | 
|  |  | 
|  | // Combine the round and odd parts. | 
|  | Lo = Val; | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | std::swap(Lo, Hi); | 
|  | EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); | 
|  | Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); | 
|  | Hi = | 
|  | DAG.getNode(ISD::SHL, DL, TotalVT, Hi, | 
|  | DAG.getConstant(Lo.getValueSizeInBits(), DL, | 
|  | TLI.getPointerTy(DAG.getDataLayout()))); | 
|  | Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); | 
|  | Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); | 
|  | } | 
|  | } else if (PartVT.isFloatingPoint()) { | 
|  | // FP split into multiple FP parts (for ppcf128) | 
|  | assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && | 
|  | "Unexpected split"); | 
|  | SDValue Lo, Hi; | 
|  | Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); | 
|  | Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); | 
|  | if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) | 
|  | std::swap(Lo, Hi); | 
|  | Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); | 
|  | } else { | 
|  | // FP split into integer parts (soft fp) | 
|  | assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && | 
|  | !PartVT.isVector() && "Unexpected split"); | 
|  | EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); | 
|  | Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); | 
|  | } | 
|  | } | 
|  |  | 
|  | // There is now one part, held in Val.  Correct it to match ValueVT. | 
|  | // PartEVT is the type of the register class that holds the value. | 
|  | // ValueVT is the type of the inline asm operation. | 
|  | EVT PartEVT = Val.getValueType(); | 
|  |  | 
|  | if (PartEVT == ValueVT) | 
|  | return Val; | 
|  |  | 
|  | if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && | 
|  | ValueVT.bitsLT(PartEVT)) { | 
|  | // For an FP value in an integer part, we need to truncate to the right | 
|  | // width first. | 
|  | PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits()); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); | 
|  | } | 
|  |  | 
|  | // Handle types that have the same size. | 
|  | if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) | 
|  | return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); | 
|  |  | 
|  | // Handle types with different sizes. | 
|  | if (PartEVT.isInteger() && ValueVT.isInteger()) { | 
|  | if (ValueVT.bitsLT(PartEVT)) { | 
|  | // For a truncate, see if we have any information to | 
|  | // indicate whether the truncated bits will always be | 
|  | // zero or sign-extension. | 
|  | if (AssertOp.hasValue()) | 
|  | Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, | 
|  | DAG.getValueType(ValueVT)); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); | 
|  | } | 
|  | return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); | 
|  | } | 
|  |  | 
|  | if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { | 
|  | // FP_ROUND's are always exact here. | 
|  | if (ValueVT.bitsLT(Val.getValueType())) | 
|  | return DAG.getNode( | 
|  | ISD::FP_ROUND, DL, ValueVT, Val, | 
|  | DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); | 
|  |  | 
|  | return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); | 
|  | } | 
|  |  | 
|  | // Handle MMX to a narrower integer type by bitcasting MMX to integer and | 
|  | // then truncating. | 
|  | if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && | 
|  | ValueVT.bitsLT(PartEVT)) { | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); | 
|  | } | 
|  |  | 
|  | report_fatal_error("Unknown mismatch in getCopyFromParts!"); | 
|  | } | 
|  |  | 
|  | static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, | 
|  | const Twine &ErrMsg) { | 
|  | const Instruction *I = dyn_cast_or_null<Instruction>(V); | 
|  | if (!V) | 
|  | return Ctx.emitError(ErrMsg); | 
|  |  | 
|  | const char *AsmError = ", possible invalid constraint for vector type"; | 
|  | if (const CallInst *CI = dyn_cast<CallInst>(I)) | 
|  | if (isa<InlineAsm>(CI->getCalledValue())) | 
|  | return Ctx.emitError(I, ErrMsg + AsmError); | 
|  |  | 
|  | return Ctx.emitError(I, ErrMsg); | 
|  | } | 
|  |  | 
|  | /// getCopyFromPartsVector - Create a value that contains the specified legal | 
|  | /// parts combined into the value they represent.  If the parts combine to a | 
|  | /// type larger than ValueVT then AssertOp can be used to specify whether the | 
|  | /// extra bits are known to be zero (ISD::AssertZext) or sign extended from | 
|  | /// ValueVT (ISD::AssertSext). | 
|  | static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, | 
|  | const SDValue *Parts, unsigned NumParts, | 
|  | MVT PartVT, EVT ValueVT, const Value *V, | 
|  | Optional<CallingConv::ID> CallConv) { | 
|  | assert(ValueVT.isVector() && "Not a vector value"); | 
|  | assert(NumParts > 0 && "No parts to assemble!"); | 
|  | const bool IsABIRegCopy = CallConv.hasValue(); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue Val = Parts[0]; | 
|  |  | 
|  | // Handle a multi-element vector. | 
|  | if (NumParts > 1) { | 
|  | EVT IntermediateVT; | 
|  | MVT RegisterVT; | 
|  | unsigned NumIntermediates; | 
|  | unsigned NumRegs; | 
|  |  | 
|  | if (IsABIRegCopy) { | 
|  | NumRegs = TLI.getVectorTypeBreakdownForCallingConv( | 
|  | *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, | 
|  | NumIntermediates, RegisterVT); | 
|  | } else { | 
|  | NumRegs = | 
|  | TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, | 
|  | NumIntermediates, RegisterVT); | 
|  | } | 
|  |  | 
|  | assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); | 
|  | NumParts = NumRegs; // Silence a compiler warning. | 
|  | assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); | 
|  | assert(RegisterVT.getSizeInBits() == | 
|  | Parts[0].getSimpleValueType().getSizeInBits() && | 
|  | "Part type sizes don't match!"); | 
|  |  | 
|  | // Assemble the parts into intermediate operands. | 
|  | SmallVector<SDValue, 8> Ops(NumIntermediates); | 
|  | if (NumIntermediates == NumParts) { | 
|  | // If the register was not expanded, truncate or copy the value, | 
|  | // as appropriate. | 
|  | for (unsigned i = 0; i != NumParts; ++i) | 
|  | Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, | 
|  | PartVT, IntermediateVT, V); | 
|  | } else if (NumParts > 0) { | 
|  | // If the intermediate type was expanded, build the intermediate | 
|  | // operands from the parts. | 
|  | assert(NumParts % NumIntermediates == 0 && | 
|  | "Must expand into a divisible number of parts!"); | 
|  | unsigned Factor = NumParts / NumIntermediates; | 
|  | for (unsigned i = 0; i != NumIntermediates; ++i) | 
|  | Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, | 
|  | PartVT, IntermediateVT, V); | 
|  | } | 
|  |  | 
|  | // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the | 
|  | // intermediate operands. | 
|  | EVT BuiltVectorTy = | 
|  | EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), | 
|  | (IntermediateVT.isVector() | 
|  | ? IntermediateVT.getVectorNumElements() * NumParts | 
|  | : NumIntermediates)); | 
|  | Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS | 
|  | : ISD::BUILD_VECTOR, | 
|  | DL, BuiltVectorTy, Ops); | 
|  | } | 
|  |  | 
|  | // There is now one part, held in Val.  Correct it to match ValueVT. | 
|  | EVT PartEVT = Val.getValueType(); | 
|  |  | 
|  | if (PartEVT == ValueVT) | 
|  | return Val; | 
|  |  | 
|  | if (PartEVT.isVector()) { | 
|  | // If the element type of the source/dest vectors are the same, but the | 
|  | // parts vector has more elements than the value vector, then we have a | 
|  | // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the | 
|  | // elements we want. | 
|  | if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { | 
|  | assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && | 
|  | "Cannot narrow, it would be a lossy transformation"); | 
|  | return DAG.getNode( | 
|  | ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, | 
|  | DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  | } | 
|  |  | 
|  | // Vector/Vector bitcast. | 
|  | if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) | 
|  | return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); | 
|  |  | 
|  | assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && | 
|  | "Cannot handle this kind of promotion"); | 
|  | // Promoted vector extract | 
|  | return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); | 
|  |  | 
|  | } | 
|  |  | 
|  | // Trivial bitcast if the types are the same size and the destination | 
|  | // vector type is legal. | 
|  | if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && | 
|  | TLI.isTypeLegal(ValueVT)) | 
|  | return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); | 
|  |  | 
|  | if (ValueVT.getVectorNumElements() != 1) { | 
|  | // Certain ABIs require that vectors are passed as integers. For vectors | 
|  | // are the same size, this is an obvious bitcast. | 
|  | if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { | 
|  | return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); | 
|  | } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { | 
|  | // Bitcast Val back the original type and extract the corresponding | 
|  | // vector we want. | 
|  | unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); | 
|  | EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), | 
|  | ValueVT.getVectorElementType(), Elts); | 
|  | Val = DAG.getBitcast(WiderVecType, Val); | 
|  | return DAG.getNode( | 
|  | ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, | 
|  | DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  | } | 
|  |  | 
|  | diagnosePossiblyInvalidConstraint( | 
|  | *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); | 
|  | return DAG.getUNDEF(ValueVT); | 
|  | } | 
|  |  | 
|  | // Handle cases such as i8 -> <1 x i1> | 
|  | EVT ValueSVT = ValueVT.getVectorElementType(); | 
|  | if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) | 
|  | Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) | 
|  | : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); | 
|  |  | 
|  | return DAG.getBuildVector(ValueVT, DL, Val); | 
|  | } | 
|  |  | 
|  | static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, | 
|  | SDValue Val, SDValue *Parts, unsigned NumParts, | 
|  | MVT PartVT, const Value *V, | 
|  | Optional<CallingConv::ID> CallConv); | 
|  |  | 
|  | /// getCopyToParts - Create a series of nodes that contain the specified value | 
|  | /// split into legal parts.  If the parts contain more bits than Val, then, for | 
|  | /// integers, ExtendKind can be used to specify how to generate the extra bits. | 
|  | static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, | 
|  | SDValue *Parts, unsigned NumParts, MVT PartVT, | 
|  | const Value *V, | 
|  | Optional<CallingConv::ID> CallConv = None, | 
|  | ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { | 
|  | EVT ValueVT = Val.getValueType(); | 
|  |  | 
|  | // Handle the vector case separately. | 
|  | if (ValueVT.isVector()) | 
|  | return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, | 
|  | CallConv); | 
|  |  | 
|  | unsigned PartBits = PartVT.getSizeInBits(); | 
|  | unsigned OrigNumParts = NumParts; | 
|  | assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && | 
|  | "Copying to an illegal type!"); | 
|  |  | 
|  | if (NumParts == 0) | 
|  | return; | 
|  |  | 
|  | assert(!ValueVT.isVector() && "Vector case handled elsewhere"); | 
|  | EVT PartEVT = PartVT; | 
|  | if (PartEVT == ValueVT) { | 
|  | assert(NumParts == 1 && "No-op copy with multiple parts!"); | 
|  | Parts[0] = Val; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (NumParts * PartBits > ValueVT.getSizeInBits()) { | 
|  | // If the parts cover more bits than the value has, promote the value. | 
|  | if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { | 
|  | assert(NumParts == 1 && "Do not know what to promote to!"); | 
|  | Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); | 
|  | } else { | 
|  | if (ValueVT.isFloatingPoint()) { | 
|  | // FP values need to be bitcast, then extended if they are being put | 
|  | // into a larger container. | 
|  | ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits()); | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); | 
|  | } | 
|  | assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && | 
|  | ValueVT.isInteger() && | 
|  | "Unknown mismatch!"); | 
|  | ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); | 
|  | Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); | 
|  | if (PartVT == MVT::x86mmx) | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); | 
|  | } | 
|  | } else if (PartBits == ValueVT.getSizeInBits()) { | 
|  | // Different types of the same size. | 
|  | assert(NumParts == 1 && PartEVT != ValueVT); | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); | 
|  | } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { | 
|  | // If the parts cover less bits than value has, truncate the value. | 
|  | assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && | 
|  | ValueVT.isInteger() && | 
|  | "Unknown mismatch!"); | 
|  | ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); | 
|  | if (PartVT == MVT::x86mmx) | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); | 
|  | } | 
|  |  | 
|  | // The value may have changed - recompute ValueVT. | 
|  | ValueVT = Val.getValueType(); | 
|  | assert(NumParts * PartBits == ValueVT.getSizeInBits() && | 
|  | "Failed to tile the value with PartVT!"); | 
|  |  | 
|  | if (NumParts == 1) { | 
|  | if (PartEVT != ValueVT) { | 
|  | diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, | 
|  | "scalar-to-vector conversion failed"); | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); | 
|  | } | 
|  |  | 
|  | Parts[0] = Val; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Expand the value into multiple parts. | 
|  | if (NumParts & (NumParts - 1)) { | 
|  | // The number of parts is not a power of 2.  Split off and copy the tail. | 
|  | assert(PartVT.isInteger() && ValueVT.isInteger() && | 
|  | "Do not know what to expand to!"); | 
|  | unsigned RoundParts = 1 << Log2_32(NumParts); | 
|  | unsigned RoundBits = RoundParts * PartBits; | 
|  | unsigned OddParts = NumParts - RoundParts; | 
|  | SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, | 
|  | DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); | 
|  |  | 
|  | getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, | 
|  | CallConv); | 
|  |  | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | // The odd parts were reversed by getCopyToParts - unreverse them. | 
|  | std::reverse(Parts + RoundParts, Parts + NumParts); | 
|  |  | 
|  | NumParts = RoundParts; | 
|  | ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); | 
|  | } | 
|  |  | 
|  | // The number of parts is a power of 2.  Repeatedly bisect the value using | 
|  | // EXTRACT_ELEMENT. | 
|  | Parts[0] = DAG.getNode(ISD::BITCAST, DL, | 
|  | EVT::getIntegerVT(*DAG.getContext(), | 
|  | ValueVT.getSizeInBits()), | 
|  | Val); | 
|  |  | 
|  | for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { | 
|  | for (unsigned i = 0; i < NumParts; i += StepSize) { | 
|  | unsigned ThisBits = StepSize * PartBits / 2; | 
|  | EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); | 
|  | SDValue &Part0 = Parts[i]; | 
|  | SDValue &Part1 = Parts[i+StepSize/2]; | 
|  |  | 
|  | Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, | 
|  | ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); | 
|  | Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, | 
|  | ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); | 
|  |  | 
|  | if (ThisBits == PartBits && ThisVT != PartVT) { | 
|  | Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); | 
|  | Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DAG.getDataLayout().isBigEndian()) | 
|  | std::reverse(Parts, Parts + OrigNumParts); | 
|  | } | 
|  |  | 
|  | static SDValue widenVectorToPartType(SelectionDAG &DAG, | 
|  | SDValue Val, const SDLoc &DL, EVT PartVT) { | 
|  | if (!PartVT.isVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT ValueVT = Val.getValueType(); | 
|  | unsigned PartNumElts = PartVT.getVectorNumElements(); | 
|  | unsigned ValueNumElts = ValueVT.getVectorNumElements(); | 
|  | if (PartNumElts > ValueNumElts && | 
|  | PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { | 
|  | EVT ElementVT = PartVT.getVectorElementType(); | 
|  | // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in | 
|  | // undef elements. | 
|  | SmallVector<SDValue, 16> Ops; | 
|  | DAG.ExtractVectorElements(Val, Ops); | 
|  | SDValue EltUndef = DAG.getUNDEF(ElementVT); | 
|  | for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) | 
|  | Ops.push_back(EltUndef); | 
|  |  | 
|  | // FIXME: Use CONCAT for 2x -> 4x. | 
|  | return DAG.getBuildVector(PartVT, DL, Ops); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// getCopyToPartsVector - Create a series of nodes that contain the specified | 
|  | /// value split into legal parts. | 
|  | static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, | 
|  | SDValue Val, SDValue *Parts, unsigned NumParts, | 
|  | MVT PartVT, const Value *V, | 
|  | Optional<CallingConv::ID> CallConv) { | 
|  | EVT ValueVT = Val.getValueType(); | 
|  | assert(ValueVT.isVector() && "Not a vector"); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | const bool IsABIRegCopy = CallConv.hasValue(); | 
|  |  | 
|  | if (NumParts == 1) { | 
|  | EVT PartEVT = PartVT; | 
|  | if (PartEVT == ValueVT) { | 
|  | // Nothing to do. | 
|  | } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { | 
|  | // Bitconvert vector->vector case. | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); | 
|  | } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { | 
|  | Val = Widened; | 
|  | } else if (PartVT.isVector() && | 
|  | PartEVT.getVectorElementType().bitsGE( | 
|  | ValueVT.getVectorElementType()) && | 
|  | PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { | 
|  |  | 
|  | // Promoted vector extract | 
|  | Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); | 
|  | } else { | 
|  | if (ValueVT.getVectorNumElements() == 1) { | 
|  | Val = DAG.getNode( | 
|  | ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, | 
|  | DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  | } else { | 
|  | assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && | 
|  | "lossy conversion of vector to scalar type"); | 
|  | EVT IntermediateType = | 
|  | EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); | 
|  | Val = DAG.getBitcast(IntermediateType, Val); | 
|  | Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); | 
|  | Parts[0] = Val; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle a multi-element vector. | 
|  | EVT IntermediateVT; | 
|  | MVT RegisterVT; | 
|  | unsigned NumIntermediates; | 
|  | unsigned NumRegs; | 
|  | if (IsABIRegCopy) { | 
|  | NumRegs = TLI.getVectorTypeBreakdownForCallingConv( | 
|  | *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, | 
|  | NumIntermediates, RegisterVT); | 
|  | } else { | 
|  | NumRegs = | 
|  | TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, | 
|  | NumIntermediates, RegisterVT); | 
|  | } | 
|  |  | 
|  | assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); | 
|  | NumParts = NumRegs; // Silence a compiler warning. | 
|  | assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); | 
|  |  | 
|  | unsigned IntermediateNumElts = IntermediateVT.isVector() ? | 
|  | IntermediateVT.getVectorNumElements() : 1; | 
|  |  | 
|  | // Convert the vector to the appropriate type if necessary. | 
|  | unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; | 
|  |  | 
|  | EVT BuiltVectorTy = EVT::getVectorVT( | 
|  | *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); | 
|  | MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); | 
|  | if (ValueVT != BuiltVectorTy) { | 
|  | if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) | 
|  | Val = Widened; | 
|  |  | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); | 
|  | } | 
|  |  | 
|  | // Split the vector into intermediate operands. | 
|  | SmallVector<SDValue, 8> Ops(NumIntermediates); | 
|  | for (unsigned i = 0; i != NumIntermediates; ++i) { | 
|  | if (IntermediateVT.isVector()) { | 
|  | Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, | 
|  | DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); | 
|  | } else { | 
|  | Ops[i] = DAG.getNode( | 
|  | ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, | 
|  | DAG.getConstant(i, DL, IdxVT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Split the intermediate operands into legal parts. | 
|  | if (NumParts == NumIntermediates) { | 
|  | // If the register was not expanded, promote or copy the value, | 
|  | // as appropriate. | 
|  | for (unsigned i = 0; i != NumParts; ++i) | 
|  | getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); | 
|  | } else if (NumParts > 0) { | 
|  | // If the intermediate type was expanded, split each the value into | 
|  | // legal parts. | 
|  | assert(NumIntermediates != 0 && "division by zero"); | 
|  | assert(NumParts % NumIntermediates == 0 && | 
|  | "Must expand into a divisible number of parts!"); | 
|  | unsigned Factor = NumParts / NumIntermediates; | 
|  | for (unsigned i = 0; i != NumIntermediates; ++i) | 
|  | getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, | 
|  | CallConv); | 
|  | } | 
|  | } | 
|  |  | 
|  | RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, | 
|  | EVT valuevt, Optional<CallingConv::ID> CC) | 
|  | : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), | 
|  | RegCount(1, regs.size()), CallConv(CC) {} | 
|  |  | 
|  | RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, | 
|  | const DataLayout &DL, unsigned Reg, Type *Ty, | 
|  | Optional<CallingConv::ID> CC) { | 
|  | ComputeValueVTs(TLI, DL, Ty, ValueVTs); | 
|  |  | 
|  | CallConv = CC; | 
|  |  | 
|  | for (EVT ValueVT : ValueVTs) { | 
|  | unsigned NumRegs = | 
|  | isABIMangled() | 
|  | ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) | 
|  | : TLI.getNumRegisters(Context, ValueVT); | 
|  | MVT RegisterVT = | 
|  | isABIMangled() | 
|  | ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) | 
|  | : TLI.getRegisterType(Context, ValueVT); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) | 
|  | Regs.push_back(Reg + i); | 
|  | RegVTs.push_back(RegisterVT); | 
|  | RegCount.push_back(NumRegs); | 
|  | Reg += NumRegs; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, | 
|  | FunctionLoweringInfo &FuncInfo, | 
|  | const SDLoc &dl, SDValue &Chain, | 
|  | SDValue *Flag, const Value *V) const { | 
|  | // A Value with type {} or [0 x %t] needs no registers. | 
|  | if (ValueVTs.empty()) | 
|  | return SDValue(); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | // Assemble the legal parts into the final values. | 
|  | SmallVector<SDValue, 4> Values(ValueVTs.size()); | 
|  | SmallVector<SDValue, 8> Parts; | 
|  | for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | // Copy the legal parts from the registers. | 
|  | EVT ValueVT = ValueVTs[Value]; | 
|  | unsigned NumRegs = RegCount[Value]; | 
|  | MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( | 
|  | *DAG.getContext(), | 
|  | CallConv.getValue(), RegVTs[Value]) | 
|  | : RegVTs[Value]; | 
|  |  | 
|  | Parts.resize(NumRegs); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | SDValue P; | 
|  | if (!Flag) { | 
|  | P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); | 
|  | } else { | 
|  | P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); | 
|  | *Flag = P.getValue(2); | 
|  | } | 
|  |  | 
|  | Chain = P.getValue(1); | 
|  | Parts[i] = P; | 
|  |  | 
|  | // If the source register was virtual and if we know something about it, | 
|  | // add an assert node. | 
|  | if (!Register::isVirtualRegister(Regs[Part + i]) || | 
|  | !RegisterVT.isInteger()) | 
|  | continue; | 
|  |  | 
|  | const FunctionLoweringInfo::LiveOutInfo *LOI = | 
|  | FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); | 
|  | if (!LOI) | 
|  | continue; | 
|  |  | 
|  | unsigned RegSize = RegisterVT.getScalarSizeInBits(); | 
|  | unsigned NumSignBits = LOI->NumSignBits; | 
|  | unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); | 
|  |  | 
|  | if (NumZeroBits == RegSize) { | 
|  | // The current value is a zero. | 
|  | // Explicitly express that as it would be easier for | 
|  | // optimizations to kick in. | 
|  | Parts[i] = DAG.getConstant(0, dl, RegisterVT); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // FIXME: We capture more information than the dag can represent.  For | 
|  | // now, just use the tightest assertzext/assertsext possible. | 
|  | bool isSExt; | 
|  | EVT FromVT(MVT::Other); | 
|  | if (NumZeroBits) { | 
|  | FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); | 
|  | isSExt = false; | 
|  | } else if (NumSignBits > 1) { | 
|  | FromVT = | 
|  | EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); | 
|  | isSExt = true; | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  | // Add an assertion node. | 
|  | assert(FromVT != MVT::Other); | 
|  | Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, | 
|  | RegisterVT, P, DAG.getValueType(FromVT)); | 
|  | } | 
|  |  | 
|  | Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, | 
|  | RegisterVT, ValueVT, V, CallConv); | 
|  | Part += NumRegs; | 
|  | Parts.clear(); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); | 
|  | } | 
|  |  | 
|  | void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, | 
|  | const SDLoc &dl, SDValue &Chain, SDValue *Flag, | 
|  | const Value *V, | 
|  | ISD::NodeType PreferredExtendType) const { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | ISD::NodeType ExtendKind = PreferredExtendType; | 
|  |  | 
|  | // Get the list of the values's legal parts. | 
|  | unsigned NumRegs = Regs.size(); | 
|  | SmallVector<SDValue, 8> Parts(NumRegs); | 
|  | for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | unsigned NumParts = RegCount[Value]; | 
|  |  | 
|  | MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( | 
|  | *DAG.getContext(), | 
|  | CallConv.getValue(), RegVTs[Value]) | 
|  | : RegVTs[Value]; | 
|  |  | 
|  | if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) | 
|  | ExtendKind = ISD::ZERO_EXTEND; | 
|  |  | 
|  | getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], | 
|  | NumParts, RegisterVT, V, CallConv, ExtendKind); | 
|  | Part += NumParts; | 
|  | } | 
|  |  | 
|  | // Copy the parts into the registers. | 
|  | SmallVector<SDValue, 8> Chains(NumRegs); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | SDValue Part; | 
|  | if (!Flag) { | 
|  | Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); | 
|  | } else { | 
|  | Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); | 
|  | *Flag = Part.getValue(1); | 
|  | } | 
|  |  | 
|  | Chains[i] = Part.getValue(0); | 
|  | } | 
|  |  | 
|  | if (NumRegs == 1 || Flag) | 
|  | // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is | 
|  | // flagged to it. That is the CopyToReg nodes and the user are considered | 
|  | // a single scheduling unit. If we create a TokenFactor and return it as | 
|  | // chain, then the TokenFactor is both a predecessor (operand) of the | 
|  | // user as well as a successor (the TF operands are flagged to the user). | 
|  | // c1, f1 = CopyToReg | 
|  | // c2, f2 = CopyToReg | 
|  | // c3     = TokenFactor c1, c2 | 
|  | // ... | 
|  | //        = op c3, ..., f2 | 
|  | Chain = Chains[NumRegs-1]; | 
|  | else | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); | 
|  | } | 
|  |  | 
|  | void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, | 
|  | unsigned MatchingIdx, const SDLoc &dl, | 
|  | SelectionDAG &DAG, | 
|  | std::vector<SDValue> &Ops) const { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); | 
|  | if (HasMatching) | 
|  | Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); | 
|  | else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { | 
|  | // Put the register class of the virtual registers in the flag word.  That | 
|  | // way, later passes can recompute register class constraints for inline | 
|  | // assembly as well as normal instructions. | 
|  | // Don't do this for tied operands that can use the regclass information | 
|  | // from the def. | 
|  | const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); | 
|  | Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); | 
|  | } | 
|  |  | 
|  | SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); | 
|  | Ops.push_back(Res); | 
|  |  | 
|  | if (Code == InlineAsm::Kind_Clobber) { | 
|  | // Clobbers should always have a 1:1 mapping with registers, and may | 
|  | // reference registers that have illegal (e.g. vector) types. Hence, we | 
|  | // shouldn't try to apply any sort of splitting logic to them. | 
|  | assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && | 
|  | "No 1:1 mapping from clobbers to regs?"); | 
|  | unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); | 
|  | (void)SP; | 
|  | for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { | 
|  | Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); | 
|  | assert( | 
|  | (Regs[I] != SP || | 
|  | DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && | 
|  | "If we clobbered the stack pointer, MFI should know about it."); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); | 
|  | MVT RegisterVT = RegVTs[Value]; | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | assert(Reg < Regs.size() && "Mismatch in # registers expected"); | 
|  | unsigned TheReg = Regs[Reg++]; | 
|  | Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<std::pair<unsigned, unsigned>, 4> | 
|  | RegsForValue::getRegsAndSizes() const { | 
|  | SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; | 
|  | unsigned I = 0; | 
|  | for (auto CountAndVT : zip_first(RegCount, RegVTs)) { | 
|  | unsigned RegCount = std::get<0>(CountAndVT); | 
|  | MVT RegisterVT = std::get<1>(CountAndVT); | 
|  | unsigned RegisterSize = RegisterVT.getSizeInBits(); | 
|  | for (unsigned E = I + RegCount; I != E; ++I) | 
|  | OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); | 
|  | } | 
|  | return OutVec; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, | 
|  | const TargetLibraryInfo *li) { | 
|  | AA = aa; | 
|  | GFI = gfi; | 
|  | LibInfo = li; | 
|  | DL = &DAG.getDataLayout(); | 
|  | Context = DAG.getContext(); | 
|  | LPadToCallSiteMap.clear(); | 
|  | SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::clear() { | 
|  | NodeMap.clear(); | 
|  | UnusedArgNodeMap.clear(); | 
|  | PendingLoads.clear(); | 
|  | PendingExports.clear(); | 
|  | CurInst = nullptr; | 
|  | HasTailCall = false; | 
|  | SDNodeOrder = LowestSDNodeOrder; | 
|  | StatepointLowering.clear(); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::clearDanglingDebugInfo() { | 
|  | DanglingDebugInfoMap.clear(); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGBuilder::getRoot() { | 
|  | if (PendingLoads.empty()) | 
|  | return DAG.getRoot(); | 
|  |  | 
|  | if (PendingLoads.size() == 1) { | 
|  | SDValue Root = PendingLoads[0]; | 
|  | DAG.setRoot(Root); | 
|  | PendingLoads.clear(); | 
|  | return Root; | 
|  | } | 
|  |  | 
|  | // Otherwise, we have to make a token factor node. | 
|  | SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); | 
|  | PendingLoads.clear(); | 
|  | DAG.setRoot(Root); | 
|  | return Root; | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGBuilder::getControlRoot() { | 
|  | SDValue Root = DAG.getRoot(); | 
|  |  | 
|  | if (PendingExports.empty()) | 
|  | return Root; | 
|  |  | 
|  | // Turn all of the CopyToReg chains into one factored node. | 
|  | if (Root.getOpcode() != ISD::EntryToken) { | 
|  | unsigned i = 0, e = PendingExports.size(); | 
|  | for (; i != e; ++i) { | 
|  | assert(PendingExports[i].getNode()->getNumOperands() > 1); | 
|  | if (PendingExports[i].getNode()->getOperand(0) == Root) | 
|  | break;  // Don't add the root if we already indirectly depend on it. | 
|  | } | 
|  |  | 
|  | if (i == e) | 
|  | PendingExports.push_back(Root); | 
|  | } | 
|  |  | 
|  | Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, | 
|  | PendingExports); | 
|  | PendingExports.clear(); | 
|  | DAG.setRoot(Root); | 
|  | return Root; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visit(const Instruction &I) { | 
|  | // Set up outgoing PHI node register values before emitting the terminator. | 
|  | if (I.isTerminator()) { | 
|  | HandlePHINodesInSuccessorBlocks(I.getParent()); | 
|  | } | 
|  |  | 
|  | // Increase the SDNodeOrder if dealing with a non-debug instruction. | 
|  | if (!isa<DbgInfoIntrinsic>(I)) | 
|  | ++SDNodeOrder; | 
|  |  | 
|  | CurInst = &I; | 
|  |  | 
|  | visit(I.getOpcode(), I); | 
|  |  | 
|  | if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { | 
|  | // Propagate the fast-math-flags of this IR instruction to the DAG node that | 
|  | // maps to this instruction. | 
|  | // TODO: We could handle all flags (nsw, etc) here. | 
|  | // TODO: If an IR instruction maps to >1 node, only the final node will have | 
|  | //       flags set. | 
|  | if (SDNode *Node = getNodeForIRValue(&I)) { | 
|  | SDNodeFlags IncomingFlags; | 
|  | IncomingFlags.copyFMF(*FPMO); | 
|  | if (!Node->getFlags().isDefined()) | 
|  | Node->setFlags(IncomingFlags); | 
|  | else | 
|  | Node->intersectFlagsWith(IncomingFlags); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!I.isTerminator() && !HasTailCall && | 
|  | !isStatepoint(&I)) // statepoints handle their exports internally | 
|  | CopyToExportRegsIfNeeded(&I); | 
|  |  | 
|  | CurInst = nullptr; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitPHI(const PHINode &) { | 
|  | llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { | 
|  | // Note: this doesn't use InstVisitor, because it has to work with | 
|  | // ConstantExpr's in addition to instructions. | 
|  | switch (Opcode) { | 
|  | default: llvm_unreachable("Unknown instruction type encountered!"); | 
|  | // Build the switch statement using the Instruction.def file. | 
|  | #define HANDLE_INST(NUM, OPCODE, CLASS) \ | 
|  | case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; | 
|  | #include "llvm/IR/Instruction.def" | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, | 
|  | const DIExpression *Expr) { | 
|  | auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { | 
|  | const DbgValueInst *DI = DDI.getDI(); | 
|  | DIVariable *DanglingVariable = DI->getVariable(); | 
|  | DIExpression *DanglingExpr = DI->getExpression(); | 
|  | if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { | 
|  | LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | for (auto &DDIMI : DanglingDebugInfoMap) { | 
|  | DanglingDebugInfoVector &DDIV = DDIMI.second; | 
|  |  | 
|  | // If debug info is to be dropped, run it through final checks to see | 
|  | // whether it can be salvaged. | 
|  | for (auto &DDI : DDIV) | 
|  | if (isMatchingDbgValue(DDI)) | 
|  | salvageUnresolvedDbgValue(DDI); | 
|  |  | 
|  | DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, | 
|  | // generate the debug data structures now that we've seen its definition. | 
|  | void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, | 
|  | SDValue Val) { | 
|  | auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); | 
|  | if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) | 
|  | return; | 
|  |  | 
|  | DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; | 
|  | for (auto &DDI : DDIV) { | 
|  | const DbgValueInst *DI = DDI.getDI(); | 
|  | assert(DI && "Ill-formed DanglingDebugInfo"); | 
|  | DebugLoc dl = DDI.getdl(); | 
|  | unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); | 
|  | unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); | 
|  | DILocalVariable *Variable = DI->getVariable(); | 
|  | DIExpression *Expr = DI->getExpression(); | 
|  | assert(Variable->isValidLocationForIntrinsic(dl) && | 
|  | "Expected inlined-at fields to agree"); | 
|  | SDDbgValue *SDV; | 
|  | if (Val.getNode()) { | 
|  | // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a | 
|  | // FuncArgumentDbgValue (it would be hoisted to the function entry, and if | 
|  | // we couldn't resolve it directly when examining the DbgValue intrinsic | 
|  | // in the first place we should not be more successful here). Unless we | 
|  | // have some test case that prove this to be correct we should avoid | 
|  | // calling EmitFuncArgumentDbgValue here. | 
|  | if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { | 
|  | LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" | 
|  | << DbgSDNodeOrder << "] for:\n  " << *DI << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump()); | 
|  | // Increase the SDNodeOrder for the DbgValue here to make sure it is | 
|  | // inserted after the definition of Val when emitting the instructions | 
|  | // after ISel. An alternative could be to teach | 
|  | // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. | 
|  | LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() | 
|  | << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " | 
|  | << ValSDNodeOrder << "\n"); | 
|  | SDV = getDbgValue(Val, Variable, Expr, dl, | 
|  | std::max(DbgSDNodeOrder, ValSDNodeOrder)); | 
|  | DAG.AddDbgValue(SDV, Val.getNode(), false); | 
|  | } else | 
|  | LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI | 
|  | << "in EmitFuncArgumentDbgValue\n"); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); | 
|  | auto Undef = | 
|  | UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); | 
|  | auto SDV = | 
|  | DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); | 
|  | DAG.AddDbgValue(SDV, nullptr, false); | 
|  | } | 
|  | } | 
|  | DDIV.clear(); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { | 
|  | Value *V = DDI.getDI()->getValue(); | 
|  | DILocalVariable *Var = DDI.getDI()->getVariable(); | 
|  | DIExpression *Expr = DDI.getDI()->getExpression(); | 
|  | DebugLoc DL = DDI.getdl(); | 
|  | DebugLoc InstDL = DDI.getDI()->getDebugLoc(); | 
|  | unsigned SDOrder = DDI.getSDNodeOrder(); | 
|  |  | 
|  | // Currently we consider only dbg.value intrinsics -- we tell the salvager | 
|  | // that DW_OP_stack_value is desired. | 
|  | assert(isa<DbgValueInst>(DDI.getDI())); | 
|  | bool StackValue = true; | 
|  |  | 
|  | // Can this Value can be encoded without any further work? | 
|  | if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) | 
|  | return; | 
|  |  | 
|  | // Attempt to salvage back through as many instructions as possible. Bail if | 
|  | // a non-instruction is seen, such as a constant expression or global | 
|  | // variable. FIXME: Further work could recover those too. | 
|  | while (isa<Instruction>(V)) { | 
|  | Instruction &VAsInst = *cast<Instruction>(V); | 
|  | DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); | 
|  |  | 
|  | // If we cannot salvage any further, and haven't yet found a suitable debug | 
|  | // expression, bail out. | 
|  | if (!NewExpr) | 
|  | break; | 
|  |  | 
|  | // New value and expr now represent this debuginfo. | 
|  | V = VAsInst.getOperand(0); | 
|  | Expr = NewExpr; | 
|  |  | 
|  | // Some kind of simplification occurred: check whether the operand of the | 
|  | // salvaged debug expression can be encoded in this DAG. | 
|  | if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { | 
|  | LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  " | 
|  | << DDI.getDI() << "\nBy stripping back to:\n  " << V); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This was the final opportunity to salvage this debug information, and it | 
|  | // couldn't be done. Place an undef DBG_VALUE at this location to terminate | 
|  | // any earlier variable location. | 
|  | auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); | 
|  | auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); | 
|  | DAG.AddDbgValue(SDV, nullptr, false); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI() | 
|  | << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0) | 
|  | << "\n"); | 
|  | } | 
|  |  | 
|  | bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, | 
|  | DIExpression *Expr, DebugLoc dl, | 
|  | DebugLoc InstDL, unsigned Order) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDDbgValue *SDV; | 
|  | if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || | 
|  | isa<ConstantPointerNull>(V)) { | 
|  | SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); | 
|  | DAG.AddDbgValue(SDV, nullptr, false); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the Value is a frame index, we can create a FrameIndex debug value | 
|  | // without relying on the DAG at all. | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { | 
|  | auto SI = FuncInfo.StaticAllocaMap.find(AI); | 
|  | if (SI != FuncInfo.StaticAllocaMap.end()) { | 
|  | auto SDV = | 
|  | DAG.getFrameIndexDbgValue(Var, Expr, SI->second, | 
|  | /*IsIndirect*/ false, dl, SDNodeOrder); | 
|  | // Do not attach the SDNodeDbgValue to an SDNode: this variable location | 
|  | // is still available even if the SDNode gets optimized out. | 
|  | DAG.AddDbgValue(SDV, nullptr, false); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Do not use getValue() in here; we don't want to generate code at | 
|  | // this point if it hasn't been done yet. | 
|  | SDValue N = NodeMap[V]; | 
|  | if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. | 
|  | N = UnusedArgNodeMap[V]; | 
|  | if (N.getNode()) { | 
|  | if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) | 
|  | return true; | 
|  | SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); | 
|  | DAG.AddDbgValue(SDV, N.getNode(), false); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Special rules apply for the first dbg.values of parameter variables in a | 
|  | // function. Identify them by the fact they reference Argument Values, that | 
|  | // they're parameters, and they are parameters of the current function. We | 
|  | // need to let them dangle until they get an SDNode. | 
|  | bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && | 
|  | !InstDL.getInlinedAt(); | 
|  | if (!IsParamOfFunc) { | 
|  | // The value is not used in this block yet (or it would have an SDNode). | 
|  | // We still want the value to appear for the user if possible -- if it has | 
|  | // an associated VReg, we can refer to that instead. | 
|  | auto VMI = FuncInfo.ValueMap.find(V); | 
|  | if (VMI != FuncInfo.ValueMap.end()) { | 
|  | unsigned Reg = VMI->second; | 
|  | // If this is a PHI node, it may be split up into several MI PHI nodes | 
|  | // (in FunctionLoweringInfo::set). | 
|  | RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, | 
|  | V->getType(), None); | 
|  | if (RFV.occupiesMultipleRegs()) { | 
|  | unsigned Offset = 0; | 
|  | unsigned BitsToDescribe = 0; | 
|  | if (auto VarSize = Var->getSizeInBits()) | 
|  | BitsToDescribe = *VarSize; | 
|  | if (auto Fragment = Expr->getFragmentInfo()) | 
|  | BitsToDescribe = Fragment->SizeInBits; | 
|  | for (auto RegAndSize : RFV.getRegsAndSizes()) { | 
|  | unsigned RegisterSize = RegAndSize.second; | 
|  | // Bail out if all bits are described already. | 
|  | if (Offset >= BitsToDescribe) | 
|  | break; | 
|  | unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) | 
|  | ? BitsToDescribe - Offset | 
|  | : RegisterSize; | 
|  | auto FragmentExpr = DIExpression::createFragmentExpression( | 
|  | Expr, Offset, FragmentSize); | 
|  | if (!FragmentExpr) | 
|  | continue; | 
|  | SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, | 
|  | false, dl, SDNodeOrder); | 
|  | DAG.AddDbgValue(SDV, nullptr, false); | 
|  | Offset += RegisterSize; | 
|  | } | 
|  | } else { | 
|  | SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); | 
|  | DAG.AddDbgValue(SDV, nullptr, false); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::resolveOrClearDbgInfo() { | 
|  | // Try to fixup any remaining dangling debug info -- and drop it if we can't. | 
|  | for (auto &Pair : DanglingDebugInfoMap) | 
|  | for (auto &DDI : Pair.second) | 
|  | salvageUnresolvedDbgValue(DDI); | 
|  | clearDanglingDebugInfo(); | 
|  | } | 
|  |  | 
|  | /// getCopyFromRegs - If there was virtual register allocated for the value V | 
|  | /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. | 
|  | SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { | 
|  | DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); | 
|  | SDValue Result; | 
|  |  | 
|  | if (It != FuncInfo.ValueMap.end()) { | 
|  | unsigned InReg = It->second; | 
|  |  | 
|  | RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), | 
|  | DAG.getDataLayout(), InReg, Ty, | 
|  | None); // This is not an ABI copy. | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, | 
|  | V); | 
|  | resolveDanglingDebugInfo(V, Result); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// getValue - Return an SDValue for the given Value. | 
|  | SDValue SelectionDAGBuilder::getValue(const Value *V) { | 
|  | // If we already have an SDValue for this value, use it. It's important | 
|  | // to do this first, so that we don't create a CopyFromReg if we already | 
|  | // have a regular SDValue. | 
|  | SDValue &N = NodeMap[V]; | 
|  | if (N.getNode()) return N; | 
|  |  | 
|  | // If there's a virtual register allocated and initialized for this | 
|  | // value, use it. | 
|  | if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) | 
|  | return copyFromReg; | 
|  |  | 
|  | // Otherwise create a new SDValue and remember it. | 
|  | SDValue Val = getValueImpl(V); | 
|  | NodeMap[V] = Val; | 
|  | resolveDanglingDebugInfo(V, Val); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | // Return true if SDValue exists for the given Value | 
|  | bool SelectionDAGBuilder::findValue(const Value *V) const { | 
|  | return (NodeMap.find(V) != NodeMap.end()) || | 
|  | (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); | 
|  | } | 
|  |  | 
|  | /// getNonRegisterValue - Return an SDValue for the given Value, but | 
|  | /// don't look in FuncInfo.ValueMap for a virtual register. | 
|  | SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { | 
|  | // If we already have an SDValue for this value, use it. | 
|  | SDValue &N = NodeMap[V]; | 
|  | if (N.getNode()) { | 
|  | if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { | 
|  | // Remove the debug location from the node as the node is about to be used | 
|  | // in a location which may differ from the original debug location.  This | 
|  | // is relevant to Constant and ConstantFP nodes because they can appear | 
|  | // as constant expressions inside PHI nodes. | 
|  | N->setDebugLoc(DebugLoc()); | 
|  | } | 
|  | return N; | 
|  | } | 
|  |  | 
|  | // Otherwise create a new SDValue and remember it. | 
|  | SDValue Val = getValueImpl(V); | 
|  | NodeMap[V] = Val; | 
|  | resolveDanglingDebugInfo(V, Val); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | /// getValueImpl - Helper function for getValue and getNonRegisterValue. | 
|  | /// Create an SDValue for the given value. | 
|  | SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | if (const Constant *C = dyn_cast<Constant>(V)) { | 
|  | EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); | 
|  |  | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) | 
|  | return DAG.getConstant(*CI, getCurSDLoc(), VT); | 
|  |  | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) | 
|  | return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); | 
|  |  | 
|  | if (isa<ConstantPointerNull>(C)) { | 
|  | unsigned AS = V->getType()->getPointerAddressSpace(); | 
|  | return DAG.getConstant(0, getCurSDLoc(), | 
|  | TLI.getPointerTy(DAG.getDataLayout(), AS)); | 
|  | } | 
|  |  | 
|  | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) | 
|  | return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); | 
|  |  | 
|  | if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { | 
|  | visit(CE->getOpcode(), *CE); | 
|  | SDValue N1 = NodeMap[V]; | 
|  | assert(N1.getNode() && "visit didn't populate the NodeMap!"); | 
|  | return N1; | 
|  | } | 
|  |  | 
|  | if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { | 
|  | SmallVector<SDValue, 4> Constants; | 
|  | for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); | 
|  | OI != OE; ++OI) { | 
|  | SDNode *Val = getValue(*OI).getNode(); | 
|  | // If the operand is an empty aggregate, there are no values. | 
|  | if (!Val) continue; | 
|  | // Add each leaf value from the operand to the Constants list | 
|  | // to form a flattened list of all the values. | 
|  | for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) | 
|  | Constants.push_back(SDValue(Val, i)); | 
|  | } | 
|  |  | 
|  | return DAG.getMergeValues(Constants, getCurSDLoc()); | 
|  | } | 
|  |  | 
|  | if (const ConstantDataSequential *CDS = | 
|  | dyn_cast<ConstantDataSequential>(C)) { | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { | 
|  | SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); | 
|  | // Add each leaf value from the operand to the Constants list | 
|  | // to form a flattened list of all the values. | 
|  | for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) | 
|  | Ops.push_back(SDValue(Val, i)); | 
|  | } | 
|  |  | 
|  | if (isa<ArrayType>(CDS->getType())) | 
|  | return DAG.getMergeValues(Ops, getCurSDLoc()); | 
|  | return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); | 
|  | } | 
|  |  | 
|  | if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { | 
|  | assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && | 
|  | "Unknown struct or array constant!"); | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); | 
|  | unsigned NumElts = ValueVTs.size(); | 
|  | if (NumElts == 0) | 
|  | return SDValue(); // empty struct | 
|  | SmallVector<SDValue, 4> Constants(NumElts); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | EVT EltVT = ValueVTs[i]; | 
|  | if (isa<UndefValue>(C)) | 
|  | Constants[i] = DAG.getUNDEF(EltVT); | 
|  | else if (EltVT.isFloatingPoint()) | 
|  | Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); | 
|  | else | 
|  | Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); | 
|  | } | 
|  |  | 
|  | return DAG.getMergeValues(Constants, getCurSDLoc()); | 
|  | } | 
|  |  | 
|  | if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) | 
|  | return DAG.getBlockAddress(BA, VT); | 
|  |  | 
|  | VectorType *VecTy = cast<VectorType>(V->getType()); | 
|  | unsigned NumElements = VecTy->getNumElements(); | 
|  |  | 
|  | // Now that we know the number and type of the elements, get that number of | 
|  | // elements into the Ops array based on what kind of constant it is. | 
|  | SmallVector<SDValue, 16> Ops; | 
|  | if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { | 
|  | for (unsigned i = 0; i != NumElements; ++i) | 
|  | Ops.push_back(getValue(CV->getOperand(i))); | 
|  | } else { | 
|  | assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); | 
|  | EVT EltVT = | 
|  | TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); | 
|  |  | 
|  | SDValue Op; | 
|  | if (EltVT.isFloatingPoint()) | 
|  | Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); | 
|  | else | 
|  | Op = DAG.getConstant(0, getCurSDLoc(), EltVT); | 
|  | Ops.assign(NumElements, Op); | 
|  | } | 
|  |  | 
|  | // Create a BUILD_VECTOR node. | 
|  | return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); | 
|  | } | 
|  |  | 
|  | // If this is a static alloca, generate it as the frameindex instead of | 
|  | // computation. | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { | 
|  | DenseMap<const AllocaInst*, int>::iterator SI = | 
|  | FuncInfo.StaticAllocaMap.find(AI); | 
|  | if (SI != FuncInfo.StaticAllocaMap.end()) | 
|  | return DAG.getFrameIndex(SI->second, | 
|  | TLI.getFrameIndexTy(DAG.getDataLayout())); | 
|  | } | 
|  |  | 
|  | // If this is an instruction which fast-isel has deferred, select it now. | 
|  | if (const Instruction *Inst = dyn_cast<Instruction>(V)) { | 
|  | unsigned InReg = FuncInfo.InitializeRegForValue(Inst); | 
|  |  | 
|  | RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, | 
|  | Inst->getType(), getABIRegCopyCC(V)); | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Can't get register for value!"); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { | 
|  | auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); | 
|  | bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; | 
|  | bool IsCoreCLR = Pers == EHPersonality::CoreCLR; | 
|  | bool IsSEH = isAsynchronousEHPersonality(Pers); | 
|  | bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; | 
|  | MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; | 
|  | if (!IsSEH) | 
|  | CatchPadMBB->setIsEHScopeEntry(); | 
|  | // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. | 
|  | if (IsMSVCCXX || IsCoreCLR) | 
|  | CatchPadMBB->setIsEHFuncletEntry(); | 
|  | // Wasm does not need catchpads anymore | 
|  | if (!IsWasmCXX) | 
|  | DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, | 
|  | getControlRoot())); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { | 
|  | // Update machine-CFG edge. | 
|  | MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; | 
|  | FuncInfo.MBB->addSuccessor(TargetMBB); | 
|  |  | 
|  | auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); | 
|  | bool IsSEH = isAsynchronousEHPersonality(Pers); | 
|  | if (IsSEH) { | 
|  | // If this is not a fall-through branch or optimizations are switched off, | 
|  | // emit the branch. | 
|  | if (TargetMBB != NextBlock(FuncInfo.MBB) || | 
|  | TM.getOptLevel() == CodeGenOpt::None) | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, | 
|  | getControlRoot(), DAG.getBasicBlock(TargetMBB))); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Figure out the funclet membership for the catchret's successor. | 
|  | // This will be used by the FuncletLayout pass to determine how to order the | 
|  | // BB's. | 
|  | // A 'catchret' returns to the outer scope's color. | 
|  | Value *ParentPad = I.getCatchSwitchParentPad(); | 
|  | const BasicBlock *SuccessorColor; | 
|  | if (isa<ConstantTokenNone>(ParentPad)) | 
|  | SuccessorColor = &FuncInfo.Fn->getEntryBlock(); | 
|  | else | 
|  | SuccessorColor = cast<Instruction>(ParentPad)->getParent(); | 
|  | assert(SuccessorColor && "No parent funclet for catchret!"); | 
|  | MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; | 
|  | assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); | 
|  |  | 
|  | // Create the terminator node. | 
|  | SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, | 
|  | getControlRoot(), DAG.getBasicBlock(TargetMBB), | 
|  | DAG.getBasicBlock(SuccessorColorMBB)); | 
|  | DAG.setRoot(Ret); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { | 
|  | // Don't emit any special code for the cleanuppad instruction. It just marks | 
|  | // the start of an EH scope/funclet. | 
|  | FuncInfo.MBB->setIsEHScopeEntry(); | 
|  | auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); | 
|  | if (Pers != EHPersonality::Wasm_CXX) { | 
|  | FuncInfo.MBB->setIsEHFuncletEntry(); | 
|  | FuncInfo.MBB->setIsCleanupFuncletEntry(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // For wasm, there's alwyas a single catch pad attached to a catchswitch, and | 
|  | // the control flow always stops at the single catch pad, as it does for a | 
|  | // cleanup pad. In case the exception caught is not of the types the catch pad | 
|  | // catches, it will be rethrown by a rethrow. | 
|  | static void findWasmUnwindDestinations( | 
|  | FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, | 
|  | BranchProbability Prob, | 
|  | SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> | 
|  | &UnwindDests) { | 
|  | while (EHPadBB) { | 
|  | const Instruction *Pad = EHPadBB->getFirstNonPHI(); | 
|  | if (isa<CleanupPadInst>(Pad)) { | 
|  | // Stop on cleanup pads. | 
|  | UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); | 
|  | UnwindDests.back().first->setIsEHScopeEntry(); | 
|  | break; | 
|  | } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { | 
|  | // Add the catchpad handlers to the possible destinations. We don't | 
|  | // continue to the unwind destination of the catchswitch for wasm. | 
|  | for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { | 
|  | UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); | 
|  | UnwindDests.back().first->setIsEHScopeEntry(); | 
|  | } | 
|  | break; | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// When an invoke or a cleanupret unwinds to the next EH pad, there are | 
|  | /// many places it could ultimately go. In the IR, we have a single unwind | 
|  | /// destination, but in the machine CFG, we enumerate all the possible blocks. | 
|  | /// This function skips over imaginary basic blocks that hold catchswitch | 
|  | /// instructions, and finds all the "real" machine | 
|  | /// basic block destinations. As those destinations may not be successors of | 
|  | /// EHPadBB, here we also calculate the edge probability to those destinations. | 
|  | /// The passed-in Prob is the edge probability to EHPadBB. | 
|  | static void findUnwindDestinations( | 
|  | FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, | 
|  | BranchProbability Prob, | 
|  | SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> | 
|  | &UnwindDests) { | 
|  | EHPersonality Personality = | 
|  | classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); | 
|  | bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; | 
|  | bool IsCoreCLR = Personality == EHPersonality::CoreCLR; | 
|  | bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; | 
|  | bool IsSEH = isAsynchronousEHPersonality(Personality); | 
|  |  | 
|  | if (IsWasmCXX) { | 
|  | findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); | 
|  | assert(UnwindDests.size() <= 1 && | 
|  | "There should be at most one unwind destination for wasm"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (EHPadBB) { | 
|  | const Instruction *Pad = EHPadBB->getFirstNonPHI(); | 
|  | BasicBlock *NewEHPadBB = nullptr; | 
|  | if (isa<LandingPadInst>(Pad)) { | 
|  | // Stop on landingpads. They are not funclets. | 
|  | UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); | 
|  | break; | 
|  | } else if (isa<CleanupPadInst>(Pad)) { | 
|  | // Stop on cleanup pads. Cleanups are always funclet entries for all known | 
|  | // personalities. | 
|  | UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); | 
|  | UnwindDests.back().first->setIsEHScopeEntry(); | 
|  | UnwindDests.back().first->setIsEHFuncletEntry(); | 
|  | break; | 
|  | } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { | 
|  | // Add the catchpad handlers to the possible destinations. | 
|  | for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { | 
|  | UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); | 
|  | // For MSVC++ and the CLR, catchblocks are funclets and need prologues. | 
|  | if (IsMSVCCXX || IsCoreCLR) | 
|  | UnwindDests.back().first->setIsEHFuncletEntry(); | 
|  | if (!IsSEH) | 
|  | UnwindDests.back().first->setIsEHScopeEntry(); | 
|  | } | 
|  | NewEHPadBB = CatchSwitch->getUnwindDest(); | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | BranchProbabilityInfo *BPI = FuncInfo.BPI; | 
|  | if (BPI && NewEHPadBB) | 
|  | Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); | 
|  | EHPadBB = NewEHPadBB; | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { | 
|  | // Update successor info. | 
|  | SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; | 
|  | auto UnwindDest = I.getUnwindDest(); | 
|  | BranchProbabilityInfo *BPI = FuncInfo.BPI; | 
|  | BranchProbability UnwindDestProb = | 
|  | (BPI && UnwindDest) | 
|  | ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) | 
|  | : BranchProbability::getZero(); | 
|  | findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); | 
|  | for (auto &UnwindDest : UnwindDests) { | 
|  | UnwindDest.first->setIsEHPad(); | 
|  | addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); | 
|  | } | 
|  | FuncInfo.MBB->normalizeSuccProbs(); | 
|  |  | 
|  | // Create the terminator node. | 
|  | SDValue Ret = | 
|  | DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); | 
|  | DAG.setRoot(Ret); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { | 
|  | report_fatal_error("visitCatchSwitch not yet implemented!"); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitRet(const ReturnInst &I) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | SDValue Chain = getControlRoot(); | 
|  | SmallVector<ISD::OutputArg, 8> Outs; | 
|  | SmallVector<SDValue, 8> OutVals; | 
|  |  | 
|  | // Calls to @llvm.experimental.deoptimize don't generate a return value, so | 
|  | // lower | 
|  | // | 
|  | //   %val = call <ty> @llvm.experimental.deoptimize() | 
|  | //   ret <ty> %val | 
|  | // | 
|  | // differently. | 
|  | if (I.getParent()->getTerminatingDeoptimizeCall()) { | 
|  | LowerDeoptimizingReturn(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!FuncInfo.CanLowerReturn) { | 
|  | unsigned DemoteReg = FuncInfo.DemoteRegister; | 
|  | const Function *F = I.getParent()->getParent(); | 
|  |  | 
|  | // Emit a store of the return value through the virtual register. | 
|  | // Leave Outs empty so that LowerReturn won't try to load return | 
|  | // registers the usual way. | 
|  | SmallVector<EVT, 1> PtrValueVTs; | 
|  | ComputeValueVTs(TLI, DL, | 
|  | F->getReturnType()->getPointerTo( | 
|  | DAG.getDataLayout().getAllocaAddrSpace()), | 
|  | PtrValueVTs); | 
|  |  | 
|  | SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), | 
|  | DemoteReg, PtrValueVTs[0]); | 
|  | SDValue RetOp = getValue(I.getOperand(0)); | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs, MemVTs; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, | 
|  | &Offsets); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  |  | 
|  | SmallVector<SDValue, 4> Chains(NumValues); | 
|  | for (unsigned i = 0; i != NumValues; ++i) { | 
|  | // An aggregate return value cannot wrap around the address space, so | 
|  | // offsets to its parts don't wrap either. | 
|  | SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); | 
|  |  | 
|  | SDValue Val = RetOp.getValue(RetOp.getResNo() + i); | 
|  | if (MemVTs[i] != ValueVTs[i]) | 
|  | Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); | 
|  | Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, | 
|  | // FIXME: better loc info would be nice. | 
|  | Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); | 
|  | } | 
|  |  | 
|  | Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), | 
|  | MVT::Other, Chains); | 
|  | } else if (I.getNumOperands() != 0) { | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues) { | 
|  | SDValue RetOp = getValue(I.getOperand(0)); | 
|  |  | 
|  | const Function *F = I.getParent()->getParent(); | 
|  |  | 
|  | bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( | 
|  | I.getOperand(0)->getType(), F->getCallingConv(), | 
|  | /*IsVarArg*/ false); | 
|  |  | 
|  | ISD::NodeType ExtendKind = ISD::ANY_EXTEND; | 
|  | if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, | 
|  | Attribute::SExt)) | 
|  | ExtendKind = ISD::SIGN_EXTEND; | 
|  | else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, | 
|  | Attribute::ZExt)) | 
|  | ExtendKind = ISD::ZERO_EXTEND; | 
|  |  | 
|  | LLVMContext &Context = F->getContext(); | 
|  | bool RetInReg = F->getAttributes().hasAttribute( | 
|  | AttributeList::ReturnIndex, Attribute::InReg); | 
|  |  | 
|  | for (unsigned j = 0; j != NumValues; ++j) { | 
|  | EVT VT = ValueVTs[j]; | 
|  |  | 
|  | if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) | 
|  | VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); | 
|  |  | 
|  | CallingConv::ID CC = F->getCallingConv(); | 
|  |  | 
|  | unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); | 
|  | MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); | 
|  | SmallVector<SDValue, 4> Parts(NumParts); | 
|  | getCopyToParts(DAG, getCurSDLoc(), | 
|  | SDValue(RetOp.getNode(), RetOp.getResNo() + j), | 
|  | &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); | 
|  |  | 
|  | // 'inreg' on function refers to return value | 
|  | ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); | 
|  | if (RetInReg) | 
|  | Flags.setInReg(); | 
|  |  | 
|  | if (I.getOperand(0)->getType()->isPointerTy()) { | 
|  | Flags.setPointer(); | 
|  | Flags.setPointerAddrSpace( | 
|  | cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); | 
|  | } | 
|  |  | 
|  | if (NeedsRegBlock) { | 
|  | Flags.setInConsecutiveRegs(); | 
|  | if (j == NumValues - 1) | 
|  | Flags.setInConsecutiveRegsLast(); | 
|  | } | 
|  |  | 
|  | // Propagate extension type if any | 
|  | if (ExtendKind == ISD::SIGN_EXTEND) | 
|  | Flags.setSExt(); | 
|  | else if (ExtendKind == ISD::ZERO_EXTEND) | 
|  | Flags.setZExt(); | 
|  |  | 
|  | for (unsigned i = 0; i < NumParts; ++i) { | 
|  | Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), | 
|  | VT, /*isfixed=*/true, 0, 0)); | 
|  | OutVals.push_back(Parts[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Push in swifterror virtual register as the last element of Outs. This makes | 
|  | // sure swifterror virtual register will be returned in the swifterror | 
|  | // physical register. | 
|  | const Function *F = I.getParent()->getParent(); | 
|  | if (TLI.supportSwiftError() && | 
|  | F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { | 
|  | assert(SwiftError.getFunctionArg() && "Need a swift error argument"); | 
|  | ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); | 
|  | Flags.setSwiftError(); | 
|  | Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, | 
|  | EVT(TLI.getPointerTy(DL)) /*argvt*/, | 
|  | true /*isfixed*/, 1 /*origidx*/, | 
|  | 0 /*partOffs*/)); | 
|  | // Create SDNode for the swifterror virtual register. | 
|  | OutVals.push_back( | 
|  | DAG.getRegister(SwiftError.getOrCreateVRegUseAt( | 
|  | &I, FuncInfo.MBB, SwiftError.getFunctionArg()), | 
|  | EVT(TLI.getPointerTy(DL)))); | 
|  | } | 
|  |  | 
|  | bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); | 
|  | CallingConv::ID CallConv = | 
|  | DAG.getMachineFunction().getFunction().getCallingConv(); | 
|  | Chain = DAG.getTargetLoweringInfo().LowerReturn( | 
|  | Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); | 
|  |  | 
|  | // Verify that the target's LowerReturn behaved as expected. | 
|  | assert(Chain.getNode() && Chain.getValueType() == MVT::Other && | 
|  | "LowerReturn didn't return a valid chain!"); | 
|  |  | 
|  | // Update the DAG with the new chain value resulting from return lowering. | 
|  | DAG.setRoot(Chain); | 
|  | } | 
|  |  | 
|  | /// CopyToExportRegsIfNeeded - If the given value has virtual registers | 
|  | /// created for it, emit nodes to copy the value into the virtual | 
|  | /// registers. | 
|  | void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { | 
|  | // Skip empty types | 
|  | if (V->getType()->isEmptyTy()) | 
|  | return; | 
|  |  | 
|  | DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); | 
|  | if (VMI != FuncInfo.ValueMap.end()) { | 
|  | assert(!V->use_empty() && "Unused value assigned virtual registers!"); | 
|  | CopyValueToVirtualRegister(V, VMI->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ExportFromCurrentBlock - If this condition isn't known to be exported from | 
|  | /// the current basic block, add it to ValueMap now so that we'll get a | 
|  | /// CopyTo/FromReg. | 
|  | void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { | 
|  | // No need to export constants. | 
|  | if (!isa<Instruction>(V) && !isa<Argument>(V)) return; | 
|  |  | 
|  | // Already exported? | 
|  | if (FuncInfo.isExportedInst(V)) return; | 
|  |  | 
|  | unsigned Reg = FuncInfo.InitializeRegForValue(V); | 
|  | CopyValueToVirtualRegister(V, Reg); | 
|  | } | 
|  |  | 
|  | bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, | 
|  | const BasicBlock *FromBB) { | 
|  | // The operands of the setcc have to be in this block.  We don't know | 
|  | // how to export them from some other block. | 
|  | if (const Instruction *VI = dyn_cast<Instruction>(V)) { | 
|  | // Can export from current BB. | 
|  | if (VI->getParent() == FromBB) | 
|  | return true; | 
|  |  | 
|  | // Is already exported, noop. | 
|  | return FuncInfo.isExportedInst(V); | 
|  | } | 
|  |  | 
|  | // If this is an argument, we can export it if the BB is the entry block or | 
|  | // if it is already exported. | 
|  | if (isa<Argument>(V)) { | 
|  | if (FromBB == &FromBB->getParent()->getEntryBlock()) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, can only export this if it is already exported. | 
|  | return FuncInfo.isExportedInst(V); | 
|  | } | 
|  |  | 
|  | // Otherwise, constants can always be exported. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. | 
|  | BranchProbability | 
|  | SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, | 
|  | const MachineBasicBlock *Dst) const { | 
|  | BranchProbabilityInfo *BPI = FuncInfo.BPI; | 
|  | const BasicBlock *SrcBB = Src->getBasicBlock(); | 
|  | const BasicBlock *DstBB = Dst->getBasicBlock(); | 
|  | if (!BPI) { | 
|  | // If BPI is not available, set the default probability as 1 / N, where N is | 
|  | // the number of successors. | 
|  | auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); | 
|  | return BranchProbability(1, SuccSize); | 
|  | } | 
|  | return BPI->getEdgeProbability(SrcBB, DstBB); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, | 
|  | MachineBasicBlock *Dst, | 
|  | BranchProbability Prob) { | 
|  | if (!FuncInfo.BPI) | 
|  | Src->addSuccessorWithoutProb(Dst); | 
|  | else { | 
|  | if (Prob.isUnknown()) | 
|  | Prob = getEdgeProbability(Src, Dst); | 
|  | Src->addSuccessor(Dst, Prob); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool InBlock(const Value *V, const BasicBlock *BB) { | 
|  | if (const Instruction *I = dyn_cast<Instruction>(V)) | 
|  | return I->getParent() == BB; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. | 
|  | /// This function emits a branch and is used at the leaves of an OR or an | 
|  | /// AND operator tree. | 
|  | void | 
|  | SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, | 
|  | MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | MachineBasicBlock *CurBB, | 
|  | MachineBasicBlock *SwitchBB, | 
|  | BranchProbability TProb, | 
|  | BranchProbability FProb, | 
|  | bool InvertCond) { | 
|  | const BasicBlock *BB = CurBB->getBasicBlock(); | 
|  |  | 
|  | // If the leaf of the tree is a comparison, merge the condition into | 
|  | // the caseblock. | 
|  | if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { | 
|  | // The operands of the cmp have to be in this block.  We don't know | 
|  | // how to export them from some other block.  If this is the first block | 
|  | // of the sequence, no exporting is needed. | 
|  | if (CurBB == SwitchBB || | 
|  | (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && | 
|  | isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { | 
|  | ISD::CondCode Condition; | 
|  | if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { | 
|  | ICmpInst::Predicate Pred = | 
|  | InvertCond ? IC->getInversePredicate() : IC->getPredicate(); | 
|  | Condition = getICmpCondCode(Pred); | 
|  | } else { | 
|  | const FCmpInst *FC = cast<FCmpInst>(Cond); | 
|  | FCmpInst::Predicate Pred = | 
|  | InvertCond ? FC->getInversePredicate() : FC->getPredicate(); | 
|  | Condition = getFCmpCondCode(Pred); | 
|  | if (TM.Options.NoNaNsFPMath) | 
|  | Condition = getFCmpCodeWithoutNaN(Condition); | 
|  | } | 
|  |  | 
|  | CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, | 
|  | TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); | 
|  | SL->SwitchCases.push_back(CB); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a CaseBlock record representing this branch. | 
|  | ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; | 
|  | CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), | 
|  | nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); | 
|  | SL->SwitchCases.push_back(CB); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, | 
|  | MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | MachineBasicBlock *CurBB, | 
|  | MachineBasicBlock *SwitchBB, | 
|  | Instruction::BinaryOps Opc, | 
|  | BranchProbability TProb, | 
|  | BranchProbability FProb, | 
|  | bool InvertCond) { | 
|  | // Skip over not part of the tree and remember to invert op and operands at | 
|  | // next level. | 
|  | Value *NotCond; | 
|  | if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && | 
|  | InBlock(NotCond, CurBB->getBasicBlock())) { | 
|  | FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, | 
|  | !InvertCond); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const Instruction *BOp = dyn_cast<Instruction>(Cond); | 
|  | // Compute the effective opcode for Cond, taking into account whether it needs | 
|  | // to be inverted, e.g. | 
|  | //   and (not (or A, B)), C | 
|  | // gets lowered as | 
|  | //   and (and (not A, not B), C) | 
|  | unsigned BOpc = 0; | 
|  | if (BOp) { | 
|  | BOpc = BOp->getOpcode(); | 
|  | if (InvertCond) { | 
|  | if (BOpc == Instruction::And) | 
|  | BOpc = Instruction::Or; | 
|  | else if (BOpc == Instruction::Or) | 
|  | BOpc = Instruction::And; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this node is not part of the or/and tree, emit it as a branch. | 
|  | if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || | 
|  | BOpc != unsigned(Opc) || !BOp->hasOneUse() || | 
|  | BOp->getParent() != CurBB->getBasicBlock() || | 
|  | !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || | 
|  | !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { | 
|  | EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, | 
|  | TProb, FProb, InvertCond); | 
|  | return; | 
|  | } | 
|  |  | 
|  | //  Create TmpBB after CurBB. | 
|  | MachineFunction::iterator BBI(CurBB); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); | 
|  | CurBB->getParent()->insert(++BBI, TmpBB); | 
|  |  | 
|  | if (Opc == Instruction::Or) { | 
|  | // Codegen X | Y as: | 
|  | // BB1: | 
|  | //   jmp_if_X TBB | 
|  | //   jmp TmpBB | 
|  | // TmpBB: | 
|  | //   jmp_if_Y TBB | 
|  | //   jmp FBB | 
|  | // | 
|  |  | 
|  | // We have flexibility in setting Prob for BB1 and Prob for TmpBB. | 
|  | // The requirement is that | 
|  | //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) | 
|  | //     = TrueProb for original BB. | 
|  | // Assuming the original probabilities are A and B, one choice is to set | 
|  | // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to | 
|  | // A/(1+B) and 2B/(1+B). This choice assumes that | 
|  | //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. | 
|  | // Another choice is to assume TrueProb for BB1 equals to TrueProb for | 
|  | // TmpBB, but the math is more complicated. | 
|  |  | 
|  | auto NewTrueProb = TProb / 2; | 
|  | auto NewFalseProb = TProb / 2 + FProb; | 
|  | // Emit the LHS condition. | 
|  | FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, | 
|  | NewTrueProb, NewFalseProb, InvertCond); | 
|  |  | 
|  | // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). | 
|  | SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; | 
|  | BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); | 
|  | // Emit the RHS condition into TmpBB. | 
|  | FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, | 
|  | Probs[0], Probs[1], InvertCond); | 
|  | } else { | 
|  | assert(Opc == Instruction::And && "Unknown merge op!"); | 
|  | // Codegen X & Y as: | 
|  | // BB1: | 
|  | //   jmp_if_X TmpBB | 
|  | //   jmp FBB | 
|  | // TmpBB: | 
|  | //   jmp_if_Y TBB | 
|  | //   jmp FBB | 
|  | // | 
|  | //  This requires creation of TmpBB after CurBB. | 
|  |  | 
|  | // We have flexibility in setting Prob for BB1 and Prob for TmpBB. | 
|  | // The requirement is that | 
|  | //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) | 
|  | //     = FalseProb for original BB. | 
|  | // Assuming the original probabilities are A and B, one choice is to set | 
|  | // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to | 
|  | // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == | 
|  | // TrueProb for BB1 * FalseProb for TmpBB. | 
|  |  | 
|  | auto NewTrueProb = TProb + FProb / 2; | 
|  | auto NewFalseProb = FProb / 2; | 
|  | // Emit the LHS condition. | 
|  | FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, | 
|  | NewTrueProb, NewFalseProb, InvertCond); | 
|  |  | 
|  | // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). | 
|  | SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; | 
|  | BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); | 
|  | // Emit the RHS condition into TmpBB. | 
|  | FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, | 
|  | Probs[0], Probs[1], InvertCond); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If the set of cases should be emitted as a series of branches, return true. | 
|  | /// If we should emit this as a bunch of and/or'd together conditions, return | 
|  | /// false. | 
|  | bool | 
|  | SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { | 
|  | if (Cases.size() != 2) return true; | 
|  |  | 
|  | // If this is two comparisons of the same values or'd or and'd together, they | 
|  | // will get folded into a single comparison, so don't emit two blocks. | 
|  | if ((Cases[0].CmpLHS == Cases[1].CmpLHS && | 
|  | Cases[0].CmpRHS == Cases[1].CmpRHS) || | 
|  | (Cases[0].CmpRHS == Cases[1].CmpLHS && | 
|  | Cases[0].CmpLHS == Cases[1].CmpRHS)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Handle: (X != null) | (Y != null) --> (X|Y) != 0 | 
|  | // Handle: (X == null) & (Y == null) --> (X|Y) == 0 | 
|  | if (Cases[0].CmpRHS == Cases[1].CmpRHS && | 
|  | Cases[0].CC == Cases[1].CC && | 
|  | isa<Constant>(Cases[0].CmpRHS) && | 
|  | cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { | 
|  | if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) | 
|  | return false; | 
|  | if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitBr(const BranchInst &I) { | 
|  | MachineBasicBlock *BrMBB = FuncInfo.MBB; | 
|  |  | 
|  | // Update machine-CFG edges. | 
|  | MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; | 
|  |  | 
|  | if (I.isUnconditional()) { | 
|  | // Update machine-CFG edges. | 
|  | BrMBB->addSuccessor(Succ0MBB); | 
|  |  | 
|  | // If this is not a fall-through branch or optimizations are switched off, | 
|  | // emit the branch. | 
|  | if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), | 
|  | MVT::Other, getControlRoot(), | 
|  | DAG.getBasicBlock(Succ0MBB))); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this condition is one of the special cases we handle, do special stuff | 
|  | // now. | 
|  | const Value *CondVal = I.getCondition(); | 
|  | MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; | 
|  |  | 
|  | // If this is a series of conditions that are or'd or and'd together, emit | 
|  | // this as a sequence of branches instead of setcc's with and/or operations. | 
|  | // As long as jumps are not expensive, this should improve performance. | 
|  | // For example, instead of something like: | 
|  | //     cmp A, B | 
|  | //     C = seteq | 
|  | //     cmp D, E | 
|  | //     F = setle | 
|  | //     or C, F | 
|  | //     jnz foo | 
|  | // Emit: | 
|  | //     cmp A, B | 
|  | //     je foo | 
|  | //     cmp D, E | 
|  | //     jle foo | 
|  | if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { | 
|  | Instruction::BinaryOps Opcode = BOp->getOpcode(); | 
|  | if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && | 
|  | !I.hasMetadata(LLVMContext::MD_unpredictable) && | 
|  | (Opcode == Instruction::And || Opcode == Instruction::Or)) { | 
|  | FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, | 
|  | Opcode, | 
|  | getEdgeProbability(BrMBB, Succ0MBB), | 
|  | getEdgeProbability(BrMBB, Succ1MBB), | 
|  | /*InvertCond=*/false); | 
|  | // If the compares in later blocks need to use values not currently | 
|  | // exported from this block, export them now.  This block should always | 
|  | // be the first entry. | 
|  | assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); | 
|  |  | 
|  | // Allow some cases to be rejected. | 
|  | if (ShouldEmitAsBranches(SL->SwitchCases)) { | 
|  | for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { | 
|  | ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); | 
|  | ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); | 
|  | } | 
|  |  | 
|  | // Emit the branch for this block. | 
|  | visitSwitchCase(SL->SwitchCases[0], BrMBB); | 
|  | SL->SwitchCases.erase(SL->SwitchCases.begin()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Okay, we decided not to do this, remove any inserted MBB's and clear | 
|  | // SwitchCases. | 
|  | for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) | 
|  | FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); | 
|  |  | 
|  | SL->SwitchCases.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a CaseBlock record representing this branch. | 
|  | CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), | 
|  | nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); | 
|  |  | 
|  | // Use visitSwitchCase to actually insert the fast branch sequence for this | 
|  | // cond branch. | 
|  | visitSwitchCase(CB, BrMBB); | 
|  | } | 
|  |  | 
|  | /// visitSwitchCase - Emits the necessary code to represent a single node in | 
|  | /// the binary search tree resulting from lowering a switch instruction. | 
|  | void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, | 
|  | MachineBasicBlock *SwitchBB) { | 
|  | SDValue Cond; | 
|  | SDValue CondLHS = getValue(CB.CmpLHS); | 
|  | SDLoc dl = CB.DL; | 
|  |  | 
|  | if (CB.CC == ISD::SETTRUE) { | 
|  | // Branch or fall through to TrueBB. | 
|  | addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); | 
|  | SwitchBB->normalizeSuccProbs(); | 
|  | if (CB.TrueBB != NextBlock(SwitchBB)) { | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), | 
|  | DAG.getBasicBlock(CB.TrueBB))); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); | 
|  |  | 
|  | // Build the setcc now. | 
|  | if (!CB.CmpMHS) { | 
|  | // Fold "(X == true)" to X and "(X == false)" to !X to | 
|  | // handle common cases produced by branch lowering. | 
|  | if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && | 
|  | CB.CC == ISD::SETEQ) | 
|  | Cond = CondLHS; | 
|  | else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && | 
|  | CB.CC == ISD::SETEQ) { | 
|  | SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); | 
|  | Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); | 
|  | } else { | 
|  | SDValue CondRHS = getValue(CB.CmpRHS); | 
|  |  | 
|  | // If a pointer's DAG type is larger than its memory type then the DAG | 
|  | // values are zero-extended. This breaks signed comparisons so truncate | 
|  | // back to the underlying type before doing the compare. | 
|  | if (CondLHS.getValueType() != MemVT) { | 
|  | CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); | 
|  | CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); | 
|  | } | 
|  | Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); | 
|  | } | 
|  | } else { | 
|  | assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); | 
|  |  | 
|  | const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); | 
|  | const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); | 
|  |  | 
|  | SDValue CmpOp = getValue(CB.CmpMHS); | 
|  | EVT VT = CmpOp.getValueType(); | 
|  |  | 
|  | if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { | 
|  | Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), | 
|  | ISD::SETLE); | 
|  | } else { | 
|  | SDValue SUB = DAG.getNode(ISD::SUB, dl, | 
|  | VT, CmpOp, DAG.getConstant(Low, dl, VT)); | 
|  | Cond = DAG.getSetCC(dl, MVT::i1, SUB, | 
|  | DAG.getConstant(High-Low, dl, VT), ISD::SETULE); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update successor info | 
|  | addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); | 
|  | // TrueBB and FalseBB are always different unless the incoming IR is | 
|  | // degenerate. This only happens when running llc on weird IR. | 
|  | if (CB.TrueBB != CB.FalseBB) | 
|  | addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); | 
|  | SwitchBB->normalizeSuccProbs(); | 
|  |  | 
|  | // If the lhs block is the next block, invert the condition so that we can | 
|  | // fall through to the lhs instead of the rhs block. | 
|  | if (CB.TrueBB == NextBlock(SwitchBB)) { | 
|  | std::swap(CB.TrueBB, CB.FalseBB); | 
|  | SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); | 
|  | Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); | 
|  | } | 
|  |  | 
|  | SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, | 
|  | MVT::Other, getControlRoot(), Cond, | 
|  | DAG.getBasicBlock(CB.TrueBB)); | 
|  |  | 
|  | // Insert the false branch. Do this even if it's a fall through branch, | 
|  | // this makes it easier to do DAG optimizations which require inverting | 
|  | // the branch condition. | 
|  | BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, | 
|  | DAG.getBasicBlock(CB.FalseBB)); | 
|  |  | 
|  | DAG.setRoot(BrCond); | 
|  | } | 
|  |  | 
|  | /// visitJumpTable - Emit JumpTable node in the current MBB | 
|  | void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { | 
|  | // Emit the code for the jump table | 
|  | assert(JT.Reg != -1U && "Should lower JT Header first!"); | 
|  | EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); | 
|  | SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), | 
|  | JT.Reg, PTy); | 
|  | SDValue Table = DAG.getJumpTable(JT.JTI, PTy); | 
|  | SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), | 
|  | MVT::Other, Index.getValue(1), | 
|  | Table, Index); | 
|  | DAG.setRoot(BrJumpTable); | 
|  | } | 
|  |  | 
|  | /// visitJumpTableHeader - This function emits necessary code to produce index | 
|  | /// in the JumpTable from switch case. | 
|  | void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, | 
|  | JumpTableHeader &JTH, | 
|  | MachineBasicBlock *SwitchBB) { | 
|  | SDLoc dl = getCurSDLoc(); | 
|  |  | 
|  | // Subtract the lowest switch case value from the value being switched on. | 
|  | SDValue SwitchOp = getValue(JTH.SValue); | 
|  | EVT VT = SwitchOp.getValueType(); | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, | 
|  | DAG.getConstant(JTH.First, dl, VT)); | 
|  |  | 
|  | // The SDNode we just created, which holds the value being switched on minus | 
|  | // the smallest case value, needs to be copied to a virtual register so it | 
|  | // can be used as an index into the jump table in a subsequent basic block. | 
|  | // This value may be smaller or larger than the target's pointer type, and | 
|  | // therefore require extension or truncating. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | unsigned JumpTableReg = | 
|  | FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); | 
|  | SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, | 
|  | JumpTableReg, SwitchOp); | 
|  | JT.Reg = JumpTableReg; | 
|  |  | 
|  | if (!JTH.OmitRangeCheck) { | 
|  | // Emit the range check for the jump table, and branch to the default block | 
|  | // for the switch statement if the value being switched on exceeds the | 
|  | // largest case in the switch. | 
|  | SDValue CMP = DAG.getSetCC( | 
|  | dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), | 
|  | Sub.getValueType()), | 
|  | Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); | 
|  |  | 
|  | SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, | 
|  | MVT::Other, CopyTo, CMP, | 
|  | DAG.getBasicBlock(JT.Default)); | 
|  |  | 
|  | // Avoid emitting unnecessary branches to the next block. | 
|  | if (JT.MBB != NextBlock(SwitchBB)) | 
|  | BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, | 
|  | DAG.getBasicBlock(JT.MBB)); | 
|  |  | 
|  | DAG.setRoot(BrCond); | 
|  | } else { | 
|  | // Avoid emitting unnecessary branches to the next block. | 
|  | if (JT.MBB != NextBlock(SwitchBB)) | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, | 
|  | DAG.getBasicBlock(JT.MBB))); | 
|  | else | 
|  | DAG.setRoot(CopyTo); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global | 
|  | /// variable if there exists one. | 
|  | static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, | 
|  | SDValue &Chain) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); | 
|  | EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); | 
|  | MachineSDNode *Node = | 
|  | DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); | 
|  | if (Global) { | 
|  | MachinePointerInfo MPInfo(Global); | 
|  | auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | | 
|  | MachineMemOperand::MODereferenceable; | 
|  | MachineMemOperand *MemRef = MF.getMachineMemOperand( | 
|  | MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); | 
|  | DAG.setNodeMemRefs(Node, {MemRef}); | 
|  | } | 
|  | if (PtrTy != PtrMemTy) | 
|  | return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); | 
|  | return SDValue(Node, 0); | 
|  | } | 
|  |  | 
|  | /// Codegen a new tail for a stack protector check ParentMBB which has had its | 
|  | /// tail spliced into a stack protector check success bb. | 
|  | /// | 
|  | /// For a high level explanation of how this fits into the stack protector | 
|  | /// generation see the comment on the declaration of class | 
|  | /// StackProtectorDescriptor. | 
|  | void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, | 
|  | MachineBasicBlock *ParentBB) { | 
|  |  | 
|  | // First create the loads to the guard/stack slot for the comparison. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); | 
|  | EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); | 
|  |  | 
|  | MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); | 
|  | int FI = MFI.getStackProtectorIndex(); | 
|  |  | 
|  | SDValue Guard; | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); | 
|  | const Module &M = *ParentBB->getParent()->getFunction().getParent(); | 
|  | unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); | 
|  |  | 
|  | // Generate code to load the content of the guard slot. | 
|  | SDValue GuardVal = DAG.getLoad( | 
|  | PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, | 
|  | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, | 
|  | MachineMemOperand::MOVolatile); | 
|  |  | 
|  | if (TLI.useStackGuardXorFP()) | 
|  | GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); | 
|  |  | 
|  | // Retrieve guard check function, nullptr if instrumentation is inlined. | 
|  | if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { | 
|  | // The target provides a guard check function to validate the guard value. | 
|  | // Generate a call to that function with the content of the guard slot as | 
|  | // argument. | 
|  | FunctionType *FnTy = GuardCheckFn->getFunctionType(); | 
|  | assert(FnTy->getNumParams() == 1 && "Invalid function signature"); | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | Entry.Node = GuardVal; | 
|  | Entry.Ty = FnTy->getParamType(0); | 
|  | if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) | 
|  | Entry.IsInReg = true; | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(getCurSDLoc()) | 
|  | .setChain(DAG.getEntryNode()) | 
|  | .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), | 
|  | getValue(GuardCheckFn), std::move(Args)); | 
|  |  | 
|  | std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); | 
|  | DAG.setRoot(Result.second); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. | 
|  | // Otherwise, emit a volatile load to retrieve the stack guard value. | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | if (TLI.useLoadStackGuardNode()) { | 
|  | Guard = getLoadStackGuard(DAG, dl, Chain); | 
|  | } else { | 
|  | const Value *IRGuard = TLI.getSDagStackGuard(M); | 
|  | SDValue GuardPtr = getValue(IRGuard); | 
|  |  | 
|  | Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, | 
|  | MachinePointerInfo(IRGuard, 0), Align, | 
|  | MachineMemOperand::MOVolatile); | 
|  | } | 
|  |  | 
|  | // Perform the comparison via a subtract/getsetcc. | 
|  | EVT VT = Guard.getValueType(); | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); | 
|  |  | 
|  | SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), | 
|  | *DAG.getContext(), | 
|  | Sub.getValueType()), | 
|  | Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); | 
|  |  | 
|  | // If the sub is not 0, then we know the guard/stackslot do not equal, so | 
|  | // branch to failure MBB. | 
|  | SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, | 
|  | MVT::Other, GuardVal.getOperand(0), | 
|  | Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); | 
|  | // Otherwise branch to success MBB. | 
|  | SDValue Br = DAG.getNode(ISD::BR, dl, | 
|  | MVT::Other, BrCond, | 
|  | DAG.getBasicBlock(SPD.getSuccessMBB())); | 
|  |  | 
|  | DAG.setRoot(Br); | 
|  | } | 
|  |  | 
|  | /// Codegen the failure basic block for a stack protector check. | 
|  | /// | 
|  | /// A failure stack protector machine basic block consists simply of a call to | 
|  | /// __stack_chk_fail(). | 
|  | /// | 
|  | /// For a high level explanation of how this fits into the stack protector | 
|  | /// generation see the comment on the declaration of class | 
|  | /// StackProtectorDescriptor. | 
|  | void | 
|  | SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | TargetLowering::MakeLibCallOptions CallOptions; | 
|  | CallOptions.setDiscardResult(true); | 
|  | SDValue Chain = | 
|  | TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, | 
|  | None, CallOptions, getCurSDLoc()).second; | 
|  | // On PS4, the "return address" must still be within the calling function, | 
|  | // even if it's at the very end, so emit an explicit TRAP here. | 
|  | // Passing 'true' for doesNotReturn above won't generate the trap for us. | 
|  | if (TM.getTargetTriple().isPS4CPU()) | 
|  | Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); | 
|  |  | 
|  | DAG.setRoot(Chain); | 
|  | } | 
|  |  | 
|  | /// visitBitTestHeader - This function emits necessary code to produce value | 
|  | /// suitable for "bit tests" | 
|  | void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, | 
|  | MachineBasicBlock *SwitchBB) { | 
|  | SDLoc dl = getCurSDLoc(); | 
|  |  | 
|  | // Subtract the minimum value. | 
|  | SDValue SwitchOp = getValue(B.SValue); | 
|  | EVT VT = SwitchOp.getValueType(); | 
|  | SDValue RangeSub = | 
|  | DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); | 
|  |  | 
|  | // Determine the type of the test operands. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | bool UsePtrType = false; | 
|  | if (!TLI.isTypeLegal(VT)) { | 
|  | UsePtrType = true; | 
|  | } else { | 
|  | for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) | 
|  | if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { | 
|  | // Switch table case range are encoded into series of masks. | 
|  | // Just use pointer type, it's guaranteed to fit. | 
|  | UsePtrType = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | SDValue Sub = RangeSub; | 
|  | if (UsePtrType) { | 
|  | VT = TLI.getPointerTy(DAG.getDataLayout()); | 
|  | Sub = DAG.getZExtOrTrunc(Sub, dl, VT); | 
|  | } | 
|  |  | 
|  | B.RegVT = VT.getSimpleVT(); | 
|  | B.Reg = FuncInfo.CreateReg(B.RegVT); | 
|  | SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); | 
|  |  | 
|  | MachineBasicBlock* MBB = B.Cases[0].ThisBB; | 
|  |  | 
|  | if (!B.OmitRangeCheck) | 
|  | addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); | 
|  | addSuccessorWithProb(SwitchBB, MBB, B.Prob); | 
|  | SwitchBB->normalizeSuccProbs(); | 
|  |  | 
|  | SDValue Root = CopyTo; | 
|  | if (!B.OmitRangeCheck) { | 
|  | // Conditional branch to the default block. | 
|  | SDValue RangeCmp = DAG.getSetCC(dl, | 
|  | TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), | 
|  | RangeSub.getValueType()), | 
|  | RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), | 
|  | ISD::SETUGT); | 
|  |  | 
|  | Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, | 
|  | DAG.getBasicBlock(B.Default)); | 
|  | } | 
|  |  | 
|  | // Avoid emitting unnecessary branches to the next block. | 
|  | if (MBB != NextBlock(SwitchBB)) | 
|  | Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); | 
|  |  | 
|  | DAG.setRoot(Root); | 
|  | } | 
|  |  | 
|  | /// visitBitTestCase - this function produces one "bit test" | 
|  | void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, | 
|  | MachineBasicBlock* NextMBB, | 
|  | BranchProbability BranchProbToNext, | 
|  | unsigned Reg, | 
|  | BitTestCase &B, | 
|  | MachineBasicBlock *SwitchBB) { | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | MVT VT = BB.RegVT; | 
|  | SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); | 
|  | SDValue Cmp; | 
|  | unsigned PopCount = countPopulation(B.Mask); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (PopCount == 1) { | 
|  | // Testing for a single bit; just compare the shift count with what it | 
|  | // would need to be to shift a 1 bit in that position. | 
|  | Cmp = DAG.getSetCC( | 
|  | dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), | 
|  | ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), | 
|  | ISD::SETEQ); | 
|  | } else if (PopCount == BB.Range) { | 
|  | // There is only one zero bit in the range, test for it directly. | 
|  | Cmp = DAG.getSetCC( | 
|  | dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), | 
|  | ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), | 
|  | ISD::SETNE); | 
|  | } else { | 
|  | // Make desired shift | 
|  | SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, | 
|  | DAG.getConstant(1, dl, VT), ShiftOp); | 
|  |  | 
|  | // Emit bit tests and jumps | 
|  | SDValue AndOp = DAG.getNode(ISD::AND, dl, | 
|  | VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); | 
|  | Cmp = DAG.getSetCC( | 
|  | dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), | 
|  | AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); | 
|  | } | 
|  |  | 
|  | // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. | 
|  | addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); | 
|  | // The branch probability from SwitchBB to NextMBB is BranchProbToNext. | 
|  | addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); | 
|  | // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is | 
|  | // one as they are relative probabilities (and thus work more like weights), | 
|  | // and hence we need to normalize them to let the sum of them become one. | 
|  | SwitchBB->normalizeSuccProbs(); | 
|  |  | 
|  | SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, | 
|  | MVT::Other, getControlRoot(), | 
|  | Cmp, DAG.getBasicBlock(B.TargetBB)); | 
|  |  | 
|  | // Avoid emitting unnecessary branches to the next block. | 
|  | if (NextMBB != NextBlock(SwitchBB)) | 
|  | BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, | 
|  | DAG.getBasicBlock(NextMBB)); | 
|  |  | 
|  | DAG.setRoot(BrAnd); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { | 
|  | MachineBasicBlock *InvokeMBB = FuncInfo.MBB; | 
|  |  | 
|  | // Retrieve successors. Look through artificial IR level blocks like | 
|  | // catchswitch for successors. | 
|  | MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; | 
|  | const BasicBlock *EHPadBB = I.getSuccessor(1); | 
|  |  | 
|  | // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't | 
|  | // have to do anything here to lower funclet bundles. | 
|  | assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, | 
|  | LLVMContext::OB_funclet, | 
|  | LLVMContext::OB_cfguardtarget}) && | 
|  | "Cannot lower invokes with arbitrary operand bundles yet!"); | 
|  |  | 
|  | const Value *Callee(I.getCalledValue()); | 
|  | const Function *Fn = dyn_cast<Function>(Callee); | 
|  | if (isa<InlineAsm>(Callee)) | 
|  | visitInlineAsm(&I); | 
|  | else if (Fn && Fn->isIntrinsic()) { | 
|  | switch (Fn->getIntrinsicID()) { | 
|  | default: | 
|  | llvm_unreachable("Cannot invoke this intrinsic"); | 
|  | case Intrinsic::donothing: | 
|  | // Ignore invokes to @llvm.donothing: jump directly to the next BB. | 
|  | break; | 
|  | case Intrinsic::experimental_patchpoint_void: | 
|  | case Intrinsic::experimental_patchpoint_i64: | 
|  | visitPatchpoint(&I, EHPadBB); | 
|  | break; | 
|  | case Intrinsic::experimental_gc_statepoint: | 
|  | LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); | 
|  | break; | 
|  | case Intrinsic::wasm_rethrow_in_catch: { | 
|  | // This is usually done in visitTargetIntrinsic, but this intrinsic is | 
|  | // special because it can be invoked, so we manually lower it to a DAG | 
|  | // node here. | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | Ops.push_back(getRoot()); // inchain | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | Ops.push_back( | 
|  | DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), | 
|  | TLI.getPointerTy(DAG.getDataLayout()))); | 
|  | SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain | 
|  | DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { | 
|  | // Currently we do not lower any intrinsic calls with deopt operand bundles. | 
|  | // Eventually we will support lowering the @llvm.experimental.deoptimize | 
|  | // intrinsic, and right now there are no plans to support other intrinsics | 
|  | // with deopt state. | 
|  | LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); | 
|  | } else { | 
|  | LowerCallTo(&I, getValue(Callee), false, EHPadBB); | 
|  | } | 
|  |  | 
|  | // If the value of the invoke is used outside of its defining block, make it | 
|  | // available as a virtual register. | 
|  | // We already took care of the exported value for the statepoint instruction | 
|  | // during call to the LowerStatepoint. | 
|  | if (!isStatepoint(I)) { | 
|  | CopyToExportRegsIfNeeded(&I); | 
|  | } | 
|  |  | 
|  | SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; | 
|  | BranchProbabilityInfo *BPI = FuncInfo.BPI; | 
|  | BranchProbability EHPadBBProb = | 
|  | BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) | 
|  | : BranchProbability::getZero(); | 
|  | findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); | 
|  |  | 
|  | // Update successor info. | 
|  | addSuccessorWithProb(InvokeMBB, Return); | 
|  | for (auto &UnwindDest : UnwindDests) { | 
|  | UnwindDest.first->setIsEHPad(); | 
|  | addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); | 
|  | } | 
|  | InvokeMBB->normalizeSuccProbs(); | 
|  |  | 
|  | // Drop into normal successor. | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), | 
|  | DAG.getBasicBlock(Return))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { | 
|  | MachineBasicBlock *CallBrMBB = FuncInfo.MBB; | 
|  |  | 
|  | // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't | 
|  | // have to do anything here to lower funclet bundles. | 
|  | assert(!I.hasOperandBundlesOtherThan( | 
|  | {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && | 
|  | "Cannot lower callbrs with arbitrary operand bundles yet!"); | 
|  |  | 
|  | assert(isa<InlineAsm>(I.getCalledValue()) && | 
|  | "Only know how to handle inlineasm callbr"); | 
|  | visitInlineAsm(&I); | 
|  |  | 
|  | // Retrieve successors. | 
|  | MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; | 
|  |  | 
|  | // Update successor info. | 
|  | addSuccessorWithProb(CallBrMBB, Return); | 
|  | for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { | 
|  | MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; | 
|  | addSuccessorWithProb(CallBrMBB, Target); | 
|  | } | 
|  | CallBrMBB->normalizeSuccProbs(); | 
|  |  | 
|  | // Drop into default successor. | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), | 
|  | MVT::Other, getControlRoot(), | 
|  | DAG.getBasicBlock(Return))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { | 
|  | llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { | 
|  | assert(FuncInfo.MBB->isEHPad() && | 
|  | "Call to landingpad not in landing pad!"); | 
|  |  | 
|  | // If there aren't registers to copy the values into (e.g., during SjLj | 
|  | // exceptions), then don't bother to create these DAG nodes. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); | 
|  | if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && | 
|  | TLI.getExceptionSelectorRegister(PersonalityFn) == 0) | 
|  | return; | 
|  |  | 
|  | // If landingpad's return type is token type, we don't create DAG nodes | 
|  | // for its exception pointer and selector value. The extraction of exception | 
|  | // pointer or selector value from token type landingpads is not currently | 
|  | // supported. | 
|  | if (LP.getType()->isTokenTy()) | 
|  | return; | 
|  |  | 
|  | SmallVector<EVT, 2> ValueVTs; | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); | 
|  | assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); | 
|  |  | 
|  | // Get the two live-in registers as SDValues. The physregs have already been | 
|  | // copied into virtual registers. | 
|  | SDValue Ops[2]; | 
|  | if (FuncInfo.ExceptionPointerVirtReg) { | 
|  | Ops[0] = DAG.getZExtOrTrunc( | 
|  | DAG.getCopyFromReg(DAG.getEntryNode(), dl, | 
|  | FuncInfo.ExceptionPointerVirtReg, | 
|  | TLI.getPointerTy(DAG.getDataLayout())), | 
|  | dl, ValueVTs[0]); | 
|  | } else { | 
|  | Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); | 
|  | } | 
|  | Ops[1] = DAG.getZExtOrTrunc( | 
|  | DAG.getCopyFromReg(DAG.getEntryNode(), dl, | 
|  | FuncInfo.ExceptionSelectorVirtReg, | 
|  | TLI.getPointerTy(DAG.getDataLayout())), | 
|  | dl, ValueVTs[1]); | 
|  |  | 
|  | // Merge into one. | 
|  | SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, | 
|  | DAG.getVTList(ValueVTs), Ops); | 
|  | setValue(&LP, Res); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, | 
|  | MachineBasicBlock *Last) { | 
|  | // Update JTCases. | 
|  | for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) | 
|  | if (SL->JTCases[i].first.HeaderBB == First) | 
|  | SL->JTCases[i].first.HeaderBB = Last; | 
|  |  | 
|  | // Update BitTestCases. | 
|  | for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) | 
|  | if (SL->BitTestCases[i].Parent == First) | 
|  | SL->BitTestCases[i].Parent = Last; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { | 
|  | MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; | 
|  |  | 
|  | // Update machine-CFG edges with unique successors. | 
|  | SmallSet<BasicBlock*, 32> Done; | 
|  | for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { | 
|  | BasicBlock *BB = I.getSuccessor(i); | 
|  | bool Inserted = Done.insert(BB).second; | 
|  | if (!Inserted) | 
|  | continue; | 
|  |  | 
|  | MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; | 
|  | addSuccessorWithProb(IndirectBrMBB, Succ); | 
|  | } | 
|  | IndirectBrMBB->normalizeSuccProbs(); | 
|  |  | 
|  | DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), | 
|  | MVT::Other, getControlRoot(), | 
|  | getValue(I.getAddress()))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { | 
|  | if (!DAG.getTarget().Options.TrapUnreachable) | 
|  | return; | 
|  |  | 
|  | // We may be able to ignore unreachable behind a noreturn call. | 
|  | if (DAG.getTarget().Options.NoTrapAfterNoreturn) { | 
|  | const BasicBlock &BB = *I.getParent(); | 
|  | if (&I != &BB.front()) { | 
|  | BasicBlock::const_iterator PredI = | 
|  | std::prev(BasicBlock::const_iterator(&I)); | 
|  | if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { | 
|  | if (Call->doesNotReturn()) | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFSub(const User &I) { | 
|  | // -0.0 - X --> fneg | 
|  | Type *Ty = I.getType(); | 
|  | if (isa<Constant>(I.getOperand(0)) && | 
|  | I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  | setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), | 
|  | Op2.getValueType(), Op2)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | visitBinary(I, ISD::FSUB); | 
|  | } | 
|  |  | 
|  | /// Checks if the given instruction performs a vector reduction, in which case | 
|  | /// we have the freedom to alter the elements in the result as long as the | 
|  | /// reduction of them stays unchanged. | 
|  | static bool isVectorReductionOp(const User *I) { | 
|  | const Instruction *Inst = dyn_cast<Instruction>(I); | 
|  | if (!Inst || !Inst->getType()->isVectorTy()) | 
|  | return false; | 
|  |  | 
|  | auto OpCode = Inst->getOpcode(); | 
|  | switch (OpCode) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | break; | 
|  | case Instruction::FAdd: | 
|  | case Instruction::FMul: | 
|  | if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) | 
|  | if (FPOp->getFastMathFlags().isFast()) | 
|  | break; | 
|  | LLVM_FALLTHROUGH; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned ElemNum = Inst->getType()->getVectorNumElements(); | 
|  | // Ensure the reduction size is a power of 2. | 
|  | if (!isPowerOf2_32(ElemNum)) | 
|  | return false; | 
|  |  | 
|  | unsigned ElemNumToReduce = ElemNum; | 
|  |  | 
|  | // Do DFS search on the def-use chain from the given instruction. We only | 
|  | // allow four kinds of operations during the search until we reach the | 
|  | // instruction that extracts the first element from the vector: | 
|  | // | 
|  | //   1. The reduction operation of the same opcode as the given instruction. | 
|  | // | 
|  | //   2. PHI node. | 
|  | // | 
|  | //   3. ShuffleVector instruction together with a reduction operation that | 
|  | //      does a partial reduction. | 
|  | // | 
|  | //   4. ExtractElement that extracts the first element from the vector, and we | 
|  | //      stop searching the def-use chain here. | 
|  | // | 
|  | // 3 & 4 above perform a reduction on all elements of the vector. We push defs | 
|  | // from 1-3 to the stack to continue the DFS. The given instruction is not | 
|  | // a reduction operation if we meet any other instructions other than those | 
|  | // listed above. | 
|  |  | 
|  | SmallVector<const User *, 16> UsersToVisit{Inst}; | 
|  | SmallPtrSet<const User *, 16> Visited; | 
|  | bool ReduxExtracted = false; | 
|  |  | 
|  | while (!UsersToVisit.empty()) { | 
|  | auto User = UsersToVisit.back(); | 
|  | UsersToVisit.pop_back(); | 
|  | if (!Visited.insert(User).second) | 
|  | continue; | 
|  |  | 
|  | for (const auto &U : User->users()) { | 
|  | auto Inst = dyn_cast<Instruction>(U); | 
|  | if (!Inst) | 
|  | return false; | 
|  |  | 
|  | if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { | 
|  | if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) | 
|  | if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) | 
|  | return false; | 
|  | UsersToVisit.push_back(U); | 
|  | } else if (const ShuffleVectorInst *ShufInst = | 
|  | dyn_cast<ShuffleVectorInst>(U)) { | 
|  | // Detect the following pattern: A ShuffleVector instruction together | 
|  | // with a reduction that do partial reduction on the first and second | 
|  | // ElemNumToReduce / 2 elements, and store the result in | 
|  | // ElemNumToReduce / 2 elements in another vector. | 
|  |  | 
|  | unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); | 
|  | if (ResultElements < ElemNum) | 
|  | return false; | 
|  |  | 
|  | if (ElemNumToReduce == 1) | 
|  | return false; | 
|  | if (!isa<UndefValue>(U->getOperand(1))) | 
|  | return false; | 
|  | for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) | 
|  | if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) | 
|  | return false; | 
|  | for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) | 
|  | if (ShufInst->getMaskValue(i) != -1) | 
|  | return false; | 
|  |  | 
|  | // There is only one user of this ShuffleVector instruction, which | 
|  | // must be a reduction operation. | 
|  | if (!U->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | auto U2 = dyn_cast<Instruction>(*U->user_begin()); | 
|  | if (!U2 || U2->getOpcode() != OpCode) | 
|  | return false; | 
|  |  | 
|  | // Check operands of the reduction operation. | 
|  | if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || | 
|  | (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { | 
|  | UsersToVisit.push_back(U2); | 
|  | ElemNumToReduce /= 2; | 
|  | } else | 
|  | return false; | 
|  | } else if (isa<ExtractElementInst>(U)) { | 
|  | // At this moment we should have reduced all elements in the vector. | 
|  | if (ElemNumToReduce != 1) | 
|  | return false; | 
|  |  | 
|  | const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); | 
|  | if (!Val || !Val->isZero()) | 
|  | return false; | 
|  |  | 
|  | ReduxExtracted = true; | 
|  | } else | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return ReduxExtracted; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { | 
|  | SDNodeFlags Flags; | 
|  |  | 
|  | SDValue Op = getValue(I.getOperand(0)); | 
|  | SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), | 
|  | Op, Flags); | 
|  | setValue(&I, UnNodeValue); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { | 
|  | SDNodeFlags Flags; | 
|  | if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { | 
|  | Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); | 
|  | Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); | 
|  | } | 
|  | if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { | 
|  | Flags.setExact(ExactOp->isExact()); | 
|  | } | 
|  | if (isVectorReductionOp(&I)) { | 
|  | Flags.setVectorReduction(true); | 
|  | LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); | 
|  | } | 
|  |  | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  | SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), | 
|  | Op1, Op2, Flags); | 
|  | setValue(&I, BinNodeValue); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  |  | 
|  | EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( | 
|  | Op1.getValueType(), DAG.getDataLayout()); | 
|  |  | 
|  | // Coerce the shift amount to the right type if we can. | 
|  | if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { | 
|  | unsigned ShiftSize = ShiftTy.getSizeInBits(); | 
|  | unsigned Op2Size = Op2.getValueSizeInBits(); | 
|  | SDLoc DL = getCurSDLoc(); | 
|  |  | 
|  | // If the operand is smaller than the shift count type, promote it. | 
|  | if (ShiftSize > Op2Size) | 
|  | Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); | 
|  |  | 
|  | // If the operand is larger than the shift count type but the shift | 
|  | // count type has enough bits to represent any shift value, truncate | 
|  | // it now. This is a common case and it exposes the truncate to | 
|  | // optimization early. | 
|  | else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) | 
|  | Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); | 
|  | // Otherwise we'll need to temporarily settle for some other convenient | 
|  | // type.  Type legalization will make adjustments once the shiftee is split. | 
|  | else | 
|  | Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); | 
|  | } | 
|  |  | 
|  | bool nuw = false; | 
|  | bool nsw = false; | 
|  | bool exact = false; | 
|  |  | 
|  | if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { | 
|  |  | 
|  | if (const OverflowingBinaryOperator *OFBinOp = | 
|  | dyn_cast<const OverflowingBinaryOperator>(&I)) { | 
|  | nuw = OFBinOp->hasNoUnsignedWrap(); | 
|  | nsw = OFBinOp->hasNoSignedWrap(); | 
|  | } | 
|  | if (const PossiblyExactOperator *ExactOp = | 
|  | dyn_cast<const PossiblyExactOperator>(&I)) | 
|  | exact = ExactOp->isExact(); | 
|  | } | 
|  | SDNodeFlags Flags; | 
|  | Flags.setExact(exact); | 
|  | Flags.setNoSignedWrap(nsw); | 
|  | Flags.setNoUnsignedWrap(nuw); | 
|  | SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, | 
|  | Flags); | 
|  | setValue(&I, Res); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitSDiv(const User &I) { | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  |  | 
|  | SDNodeFlags Flags; | 
|  | Flags.setExact(isa<PossiblyExactOperator>(&I) && | 
|  | cast<PossiblyExactOperator>(&I)->isExact()); | 
|  | setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, | 
|  | Op2, Flags)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitICmp(const User &I) { | 
|  | ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; | 
|  | if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) | 
|  | predicate = IC->getPredicate(); | 
|  | else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) | 
|  | predicate = ICmpInst::Predicate(IC->getPredicate()); | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  | ISD::CondCode Opcode = getICmpCondCode(predicate); | 
|  |  | 
|  | auto &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT MemVT = | 
|  | TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); | 
|  |  | 
|  | // If a pointer's DAG type is larger than its memory type then the DAG values | 
|  | // are zero-extended. This breaks signed comparisons so truncate back to the | 
|  | // underlying type before doing the compare. | 
|  | if (Op1.getValueType() != MemVT) { | 
|  | Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); | 
|  | Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); | 
|  | } | 
|  |  | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFCmp(const User &I) { | 
|  | FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; | 
|  | if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) | 
|  | predicate = FC->getPredicate(); | 
|  | else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) | 
|  | predicate = FCmpInst::Predicate(FC->getPredicate()); | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  |  | 
|  | ISD::CondCode Condition = getFCmpCondCode(predicate); | 
|  | auto *FPMO = dyn_cast<FPMathOperator>(&I); | 
|  | if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) | 
|  | Condition = getFCmpCodeWithoutNaN(Condition); | 
|  |  | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); | 
|  | } | 
|  |  | 
|  | // Check if the condition of the select has one use or two users that are both | 
|  | // selects with the same condition. | 
|  | static bool hasOnlySelectUsers(const Value *Cond) { | 
|  | return llvm::all_of(Cond->users(), [](const Value *V) { | 
|  | return isa<SelectInst>(V); | 
|  | }); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitSelect(const User &I) { | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), | 
|  | ValueVTs); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues == 0) return; | 
|  |  | 
|  | SmallVector<SDValue, 4> Values(NumValues); | 
|  | SDValue Cond     = getValue(I.getOperand(0)); | 
|  | SDValue LHSVal   = getValue(I.getOperand(1)); | 
|  | SDValue RHSVal   = getValue(I.getOperand(2)); | 
|  | auto BaseOps = {Cond}; | 
|  | ISD::NodeType OpCode = Cond.getValueType().isVector() ? | 
|  | ISD::VSELECT : ISD::SELECT; | 
|  |  | 
|  | bool IsUnaryAbs = false; | 
|  |  | 
|  | // Min/max matching is only viable if all output VTs are the same. | 
|  | if (is_splat(ValueVTs)) { | 
|  | EVT VT = ValueVTs[0]; | 
|  | LLVMContext &Ctx = *DAG.getContext(); | 
|  | auto &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | // We care about the legality of the operation after it has been type | 
|  | // legalized. | 
|  | while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) | 
|  | VT = TLI.getTypeToTransformTo(Ctx, VT); | 
|  |  | 
|  | // If the vselect is legal, assume we want to leave this as a vector setcc + | 
|  | // vselect. Otherwise, if this is going to be scalarized, we want to see if | 
|  | // min/max is legal on the scalar type. | 
|  | bool UseScalarMinMax = VT.isVector() && | 
|  | !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); | 
|  |  | 
|  | Value *LHS, *RHS; | 
|  | auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); | 
|  | ISD::NodeType Opc = ISD::DELETED_NODE; | 
|  | switch (SPR.Flavor) { | 
|  | case SPF_UMAX:    Opc = ISD::UMAX; break; | 
|  | case SPF_UMIN:    Opc = ISD::UMIN; break; | 
|  | case SPF_SMAX:    Opc = ISD::SMAX; break; | 
|  | case SPF_SMIN:    Opc = ISD::SMIN; break; | 
|  | case SPF_FMINNUM: | 
|  | switch (SPR.NaNBehavior) { | 
|  | case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); | 
|  | case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break; | 
|  | case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; | 
|  | case SPNB_RETURNS_ANY: { | 
|  | if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) | 
|  | Opc = ISD::FMINNUM; | 
|  | else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) | 
|  | Opc = ISD::FMINIMUM; | 
|  | else if (UseScalarMinMax) | 
|  | Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? | 
|  | ISD::FMINNUM : ISD::FMINIMUM; | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case SPF_FMAXNUM: | 
|  | switch (SPR.NaNBehavior) { | 
|  | case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); | 
|  | case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break; | 
|  | case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; | 
|  | case SPNB_RETURNS_ANY: | 
|  |  | 
|  | if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) | 
|  | Opc = ISD::FMAXNUM; | 
|  | else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) | 
|  | Opc = ISD::FMAXIMUM; | 
|  | else if (UseScalarMinMax) | 
|  | Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? | 
|  | ISD::FMAXNUM : ISD::FMAXIMUM; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case SPF_ABS: | 
|  | IsUnaryAbs = true; | 
|  | Opc = ISD::ABS; | 
|  | break; | 
|  | case SPF_NABS: | 
|  | // TODO: we need to produce sub(0, abs(X)). | 
|  | default: break; | 
|  | } | 
|  |  | 
|  | if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && | 
|  | (TLI.isOperationLegalOrCustom(Opc, VT) || | 
|  | (UseScalarMinMax && | 
|  | TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && | 
|  | // If the underlying comparison instruction is used by any other | 
|  | // instruction, the consumed instructions won't be destroyed, so it is | 
|  | // not profitable to convert to a min/max. | 
|  | hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { | 
|  | OpCode = Opc; | 
|  | LHSVal = getValue(LHS); | 
|  | RHSVal = getValue(RHS); | 
|  | BaseOps = {}; | 
|  | } | 
|  |  | 
|  | if (IsUnaryAbs) { | 
|  | OpCode = Opc; | 
|  | LHSVal = getValue(LHS); | 
|  | BaseOps = {}; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IsUnaryAbs) { | 
|  | for (unsigned i = 0; i != NumValues; ++i) { | 
|  | Values[i] = | 
|  | DAG.getNode(OpCode, getCurSDLoc(), | 
|  | LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), | 
|  | SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); | 
|  | } | 
|  | } else { | 
|  | for (unsigned i = 0; i != NumValues; ++i) { | 
|  | SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); | 
|  | Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); | 
|  | Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); | 
|  | Values[i] = DAG.getNode( | 
|  | OpCode, getCurSDLoc(), | 
|  | LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); | 
|  | } | 
|  | } | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), | 
|  | DAG.getVTList(ValueVTs), Values)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitTrunc(const User &I) { | 
|  | // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitZExt(const User &I) { | 
|  | // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). | 
|  | // ZExt also can't be a cast to bool for same reason. So, nothing much to do | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitSExt(const User &I) { | 
|  | // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). | 
|  | // SExt also can't be a cast to bool for same reason. So, nothing much to do | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFPTrunc(const User &I) { | 
|  | // FPTrunc is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, | 
|  | DAG.getTargetConstant( | 
|  | 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFPExt(const User &I) { | 
|  | // FPExt is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFPToUI(const User &I) { | 
|  | // FPToUI is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFPToSI(const User &I) { | 
|  | // FPToSI is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitUIToFP(const User &I) { | 
|  | // UIToFP is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitSIToFP(const User &I) { | 
|  | // SIToFP is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitPtrToInt(const User &I) { | 
|  | // What to do depends on the size of the integer and the size of the pointer. | 
|  | // We can either truncate, zero extend, or no-op, accordingly. | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | auto &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  | EVT PtrMemVT = | 
|  | TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); | 
|  | N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); | 
|  | N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); | 
|  | setValue(&I, N); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitIntToPtr(const User &I) { | 
|  | // What to do depends on the size of the integer and the size of the pointer. | 
|  | // We can either truncate, zero extend, or no-op, accordingly. | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | auto &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); | 
|  | N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); | 
|  | N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); | 
|  | setValue(&I, N); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitBitCast(const User &I) { | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType()); | 
|  |  | 
|  | // BitCast assures us that source and destination are the same size so this is | 
|  | // either a BITCAST or a no-op. | 
|  | if (DestVT != N.getValueType()) | 
|  | setValue(&I, DAG.getNode(ISD::BITCAST, dl, | 
|  | DestVT, N)); // convert types. | 
|  | // Check if the original LLVM IR Operand was a ConstantInt, because getValue() | 
|  | // might fold any kind of constant expression to an integer constant and that | 
|  | // is not what we are looking for. Only recognize a bitcast of a genuine | 
|  | // constant integer as an opaque constant. | 
|  | else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) | 
|  | setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, | 
|  | /*isOpaque*/true)); | 
|  | else | 
|  | setValue(&I, N);            // noop cast. | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | const Value *SV = I.getOperand(0); | 
|  | SDValue N = getValue(SV); | 
|  | EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  |  | 
|  | unsigned SrcAS = SV->getType()->getPointerAddressSpace(); | 
|  | unsigned DestAS = I.getType()->getPointerAddressSpace(); | 
|  |  | 
|  | if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) | 
|  | N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); | 
|  |  | 
|  | setValue(&I, N); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitInsertElement(const User &I) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue InVec = getValue(I.getOperand(0)); | 
|  | SDValue InVal = getValue(I.getOperand(1)); | 
|  | SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), | 
|  | TLI.getVectorIdxTy(DAG.getDataLayout())); | 
|  | setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), | 
|  | TLI.getValueType(DAG.getDataLayout(), I.getType()), | 
|  | InVec, InVal, InIdx)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitExtractElement(const User &I) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue InVec = getValue(I.getOperand(0)); | 
|  | SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), | 
|  | TLI.getVectorIdxTy(DAG.getDataLayout())); | 
|  | setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), | 
|  | TLI.getValueType(DAG.getDataLayout(), I.getType()), | 
|  | InVec, InIdx)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitShuffleVector(const User &I) { | 
|  | SDValue Src1 = getValue(I.getOperand(0)); | 
|  | SDValue Src2 = getValue(I.getOperand(1)); | 
|  | Constant *MaskV = cast<Constant>(I.getOperand(2)); | 
|  | SDLoc DL = getCurSDLoc(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | EVT SrcVT = Src1.getValueType(); | 
|  | unsigned SrcNumElts = SrcVT.getVectorNumElements(); | 
|  |  | 
|  | if (MaskV->isNullValue() && VT.isScalableVector()) { | 
|  | // Canonical splat form of first element of first input vector. | 
|  | SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, | 
|  | SrcVT.getScalarType(), Src1, | 
|  | DAG.getConstant(0, DL, | 
|  | TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  | setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // For now, we only handle splats for scalable vectors. | 
|  | // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation | 
|  | // for targets that support a SPLAT_VECTOR for non-scalable vector types. | 
|  | assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); | 
|  |  | 
|  | SmallVector<int, 8> Mask; | 
|  | ShuffleVectorInst::getShuffleMask(MaskV, Mask); | 
|  | unsigned MaskNumElts = Mask.size(); | 
|  |  | 
|  | if (SrcNumElts == MaskNumElts) { | 
|  | setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Normalize the shuffle vector since mask and vector length don't match. | 
|  | if (SrcNumElts < MaskNumElts) { | 
|  | // Mask is longer than the source vectors. We can use concatenate vector to | 
|  | // make the mask and vectors lengths match. | 
|  |  | 
|  | if (MaskNumElts % SrcNumElts == 0) { | 
|  | // Mask length is a multiple of the source vector length. | 
|  | // Check if the shuffle is some kind of concatenation of the input | 
|  | // vectors. | 
|  | unsigned NumConcat = MaskNumElts / SrcNumElts; | 
|  | bool IsConcat = true; | 
|  | SmallVector<int, 8> ConcatSrcs(NumConcat, -1); | 
|  | for (unsigned i = 0; i != MaskNumElts; ++i) { | 
|  | int Idx = Mask[i]; | 
|  | if (Idx < 0) | 
|  | continue; | 
|  | // Ensure the indices in each SrcVT sized piece are sequential and that | 
|  | // the same source is used for the whole piece. | 
|  | if ((Idx % SrcNumElts != (i % SrcNumElts)) || | 
|  | (ConcatSrcs[i / SrcNumElts] >= 0 && | 
|  | ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { | 
|  | IsConcat = false; | 
|  | break; | 
|  | } | 
|  | // Remember which source this index came from. | 
|  | ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; | 
|  | } | 
|  |  | 
|  | // The shuffle is concatenating multiple vectors together. Just emit | 
|  | // a CONCAT_VECTORS operation. | 
|  | if (IsConcat) { | 
|  | SmallVector<SDValue, 8> ConcatOps; | 
|  | for (auto Src : ConcatSrcs) { | 
|  | if (Src < 0) | 
|  | ConcatOps.push_back(DAG.getUNDEF(SrcVT)); | 
|  | else if (Src == 0) | 
|  | ConcatOps.push_back(Src1); | 
|  | else | 
|  | ConcatOps.push_back(Src2); | 
|  | } | 
|  | setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); | 
|  | unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; | 
|  | EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), | 
|  | PaddedMaskNumElts); | 
|  |  | 
|  | // Pad both vectors with undefs to make them the same length as the mask. | 
|  | SDValue UndefVal = DAG.getUNDEF(SrcVT); | 
|  |  | 
|  | SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); | 
|  | SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); | 
|  | MOps1[0] = Src1; | 
|  | MOps2[0] = Src2; | 
|  |  | 
|  | Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); | 
|  | Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); | 
|  |  | 
|  | // Readjust mask for new input vector length. | 
|  | SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); | 
|  | for (unsigned i = 0; i != MaskNumElts; ++i) { | 
|  | int Idx = Mask[i]; | 
|  | if (Idx >= (int)SrcNumElts) | 
|  | Idx -= SrcNumElts - PaddedMaskNumElts; | 
|  | MappedOps[i] = Idx; | 
|  | } | 
|  |  | 
|  | SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); | 
|  |  | 
|  | // If the concatenated vector was padded, extract a subvector with the | 
|  | // correct number of elements. | 
|  | if (MaskNumElts != PaddedMaskNumElts) | 
|  | Result = DAG.getNode( | 
|  | ISD::EXTRACT_SUBVECTOR, DL, VT, Result, | 
|  | DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  |  | 
|  | setValue(&I, Result); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (SrcNumElts > MaskNumElts) { | 
|  | // Analyze the access pattern of the vector to see if we can extract | 
|  | // two subvectors and do the shuffle. | 
|  | int StartIdx[2] = { -1, -1 };  // StartIdx to extract from | 
|  | bool CanExtract = true; | 
|  | for (int Idx : Mask) { | 
|  | unsigned Input = 0; | 
|  | if (Idx < 0) | 
|  | continue; | 
|  |  | 
|  | if (Idx >= (int)SrcNumElts) { | 
|  | Input = 1; | 
|  | Idx -= SrcNumElts; | 
|  | } | 
|  |  | 
|  | // If all the indices come from the same MaskNumElts sized portion of | 
|  | // the sources we can use extract. Also make sure the extract wouldn't | 
|  | // extract past the end of the source. | 
|  | int NewStartIdx = alignDown(Idx, MaskNumElts); | 
|  | if (NewStartIdx + MaskNumElts > SrcNumElts || | 
|  | (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) | 
|  | CanExtract = false; | 
|  | // Make sure we always update StartIdx as we use it to track if all | 
|  | // elements are undef. | 
|  | StartIdx[Input] = NewStartIdx; | 
|  | } | 
|  |  | 
|  | if (StartIdx[0] < 0 && StartIdx[1] < 0) { | 
|  | setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. | 
|  | return; | 
|  | } | 
|  | if (CanExtract) { | 
|  | // Extract appropriate subvector and generate a vector shuffle | 
|  | for (unsigned Input = 0; Input < 2; ++Input) { | 
|  | SDValue &Src = Input == 0 ? Src1 : Src2; | 
|  | if (StartIdx[Input] < 0) | 
|  | Src = DAG.getUNDEF(VT); | 
|  | else { | 
|  | Src = DAG.getNode( | 
|  | ISD::EXTRACT_SUBVECTOR, DL, VT, Src, | 
|  | DAG.getConstant(StartIdx[Input], DL, | 
|  | TLI.getVectorIdxTy(DAG.getDataLayout()))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate new mask. | 
|  | SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); | 
|  | for (int &Idx : MappedOps) { | 
|  | if (Idx >= (int)SrcNumElts) | 
|  | Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; | 
|  | else if (Idx >= 0) | 
|  | Idx -= StartIdx[0]; | 
|  | } | 
|  |  | 
|  | setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We can't use either concat vectors or extract subvectors so fall back to | 
|  | // replacing the shuffle with extract and build vector. | 
|  | // to insert and build vector. | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); | 
|  | SmallVector<SDValue,8> Ops; | 
|  | for (int Idx : Mask) { | 
|  | SDValue Res; | 
|  |  | 
|  | if (Idx < 0) { | 
|  | Res = DAG.getUNDEF(EltVT); | 
|  | } else { | 
|  | SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; | 
|  | if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; | 
|  |  | 
|  | Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, | 
|  | EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); | 
|  | } | 
|  |  | 
|  | Ops.push_back(Res); | 
|  | } | 
|  |  | 
|  | setValue(&I, DAG.getBuildVector(VT, DL, Ops)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitInsertValue(const User &I) { | 
|  | ArrayRef<unsigned> Indices; | 
|  | if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) | 
|  | Indices = IV->getIndices(); | 
|  | else | 
|  | Indices = cast<ConstantExpr>(&I)->getIndices(); | 
|  |  | 
|  | const Value *Op0 = I.getOperand(0); | 
|  | const Value *Op1 = I.getOperand(1); | 
|  | Type *AggTy = I.getType(); | 
|  | Type *ValTy = Op1->getType(); | 
|  | bool IntoUndef = isa<UndefValue>(Op0); | 
|  | bool FromUndef = isa<UndefValue>(Op1); | 
|  |  | 
|  | unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SmallVector<EVT, 4> AggValueVTs; | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); | 
|  | SmallVector<EVT, 4> ValValueVTs; | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); | 
|  |  | 
|  | unsigned NumAggValues = AggValueVTs.size(); | 
|  | unsigned NumValValues = ValValueVTs.size(); | 
|  | SmallVector<SDValue, 4> Values(NumAggValues); | 
|  |  | 
|  | // Ignore an insertvalue that produces an empty object | 
|  | if (!NumAggValues) { | 
|  | setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue Agg = getValue(Op0); | 
|  | unsigned i = 0; | 
|  | // Copy the beginning value(s) from the original aggregate. | 
|  | for (; i != LinearIndex; ++i) | 
|  | Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : | 
|  | SDValue(Agg.getNode(), Agg.getResNo() + i); | 
|  | // Copy values from the inserted value(s). | 
|  | if (NumValValues) { | 
|  | SDValue Val = getValue(Op1); | 
|  | for (; i != LinearIndex + NumValValues; ++i) | 
|  | Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : | 
|  | SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); | 
|  | } | 
|  | // Copy remaining value(s) from the original aggregate. | 
|  | for (; i != NumAggValues; ++i) | 
|  | Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : | 
|  | SDValue(Agg.getNode(), Agg.getResNo() + i); | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), | 
|  | DAG.getVTList(AggValueVTs), Values)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitExtractValue(const User &I) { | 
|  | ArrayRef<unsigned> Indices; | 
|  | if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) | 
|  | Indices = EV->getIndices(); | 
|  | else | 
|  | Indices = cast<ConstantExpr>(&I)->getIndices(); | 
|  |  | 
|  | const Value *Op0 = I.getOperand(0); | 
|  | Type *AggTy = Op0->getType(); | 
|  | Type *ValTy = I.getType(); | 
|  | bool OutOfUndef = isa<UndefValue>(Op0); | 
|  |  | 
|  | unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SmallVector<EVT, 4> ValValueVTs; | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); | 
|  |  | 
|  | unsigned NumValValues = ValValueVTs.size(); | 
|  |  | 
|  | // Ignore a extractvalue that produces an empty object | 
|  | if (!NumValValues) { | 
|  | setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 4> Values(NumValValues); | 
|  |  | 
|  | SDValue Agg = getValue(Op0); | 
|  | // Copy out the selected value(s). | 
|  | for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) | 
|  | Values[i - LinearIndex] = | 
|  | OutOfUndef ? | 
|  | DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : | 
|  | SDValue(Agg.getNode(), Agg.getResNo() + i); | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), | 
|  | DAG.getVTList(ValValueVTs), Values)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitGetElementPtr(const User &I) { | 
|  | Value *Op0 = I.getOperand(0); | 
|  | // Note that the pointer operand may be a vector of pointers. Take the scalar | 
|  | // element which holds a pointer. | 
|  | unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); | 
|  | SDValue N = getValue(Op0); | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | auto &TLI = DAG.getTargetLoweringInfo(); | 
|  | MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); | 
|  | MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); | 
|  |  | 
|  | // Normalize Vector GEP - all scalar operands should be converted to the | 
|  | // splat vector. | 
|  | unsigned VectorWidth = I.getType()->isVectorTy() ? | 
|  | I.getType()->getVectorNumElements() : 0; | 
|  |  | 
|  | if (VectorWidth && !N.getValueType().isVector()) { | 
|  | LLVMContext &Context = *DAG.getContext(); | 
|  | EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); | 
|  | N = DAG.getSplatBuildVector(VT, dl, N); | 
|  | } | 
|  |  | 
|  | for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); | 
|  | GTI != E; ++GTI) { | 
|  | const Value *Idx = GTI.getOperand(); | 
|  | if (StructType *StTy = GTI.getStructTypeOrNull()) { | 
|  | unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); | 
|  | if (Field) { | 
|  | // N = N + Offset | 
|  | uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); | 
|  |  | 
|  | // In an inbounds GEP with an offset that is nonnegative even when | 
|  | // interpreted as signed, assume there is no unsigned overflow. | 
|  | SDNodeFlags Flags; | 
|  | if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) | 
|  | Flags.setNoUnsignedWrap(true); | 
|  |  | 
|  | N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, | 
|  | DAG.getConstant(Offset, dl, N.getValueType()), Flags); | 
|  | } | 
|  | } else { | 
|  | unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); | 
|  | MVT IdxTy = MVT::getIntegerVT(IdxSize); | 
|  | APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); | 
|  |  | 
|  | // If this is a scalar constant or a splat vector of constants, | 
|  | // handle it quickly. | 
|  | const auto *C = dyn_cast<Constant>(Idx); | 
|  | if (C && isa<VectorType>(C->getType())) | 
|  | C = C->getSplatValue(); | 
|  |  | 
|  | if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) { | 
|  | if (CI->isZero()) | 
|  | continue; | 
|  | APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); | 
|  | LLVMContext &Context = *DAG.getContext(); | 
|  | SDValue OffsVal = VectorWidth ? | 
|  | DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : | 
|  | DAG.getConstant(Offs, dl, IdxTy); | 
|  |  | 
|  | // In an inbounds GEP with an offset that is nonnegative even when | 
|  | // interpreted as signed, assume there is no unsigned overflow. | 
|  | SDNodeFlags Flags; | 
|  | if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) | 
|  | Flags.setNoUnsignedWrap(true); | 
|  |  | 
|  | OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); | 
|  |  | 
|  | N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // N = N + Idx * ElementSize; | 
|  | SDValue IdxN = getValue(Idx); | 
|  |  | 
|  | if (!IdxN.getValueType().isVector() && VectorWidth) { | 
|  | EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); | 
|  | IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); | 
|  | } | 
|  |  | 
|  | // If the index is smaller or larger than intptr_t, truncate or extend | 
|  | // it. | 
|  | IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); | 
|  |  | 
|  | // If this is a multiply by a power of two, turn it into a shl | 
|  | // immediately.  This is a very common case. | 
|  | if (ElementSize != 1) { | 
|  | if (ElementSize.isPowerOf2()) { | 
|  | unsigned Amt = ElementSize.logBase2(); | 
|  | IdxN = DAG.getNode(ISD::SHL, dl, | 
|  | N.getValueType(), IdxN, | 
|  | DAG.getConstant(Amt, dl, IdxN.getValueType())); | 
|  | } else { | 
|  | SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, | 
|  | IdxN.getValueType()); | 
|  | IdxN = DAG.getNode(ISD::MUL, dl, | 
|  | N.getValueType(), IdxN, Scale); | 
|  | } | 
|  | } | 
|  |  | 
|  | N = DAG.getNode(ISD::ADD, dl, | 
|  | N.getValueType(), N, IdxN); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) | 
|  | N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); | 
|  |  | 
|  | setValue(&I, N); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { | 
|  | // If this is a fixed sized alloca in the entry block of the function, | 
|  | // allocate it statically on the stack. | 
|  | if (FuncInfo.StaticAllocaMap.count(&I)) | 
|  | return;   // getValue will auto-populate this. | 
|  |  | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | Type *Ty = I.getAllocatedType(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | uint64_t TySize = DL.getTypeAllocSize(Ty); | 
|  | unsigned Align = | 
|  | std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); | 
|  |  | 
|  | SDValue AllocSize = getValue(I.getArraySize()); | 
|  |  | 
|  | EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); | 
|  | if (AllocSize.getValueType() != IntPtr) | 
|  | AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); | 
|  |  | 
|  | AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, | 
|  | AllocSize, | 
|  | DAG.getConstant(TySize, dl, IntPtr)); | 
|  |  | 
|  | // Handle alignment.  If the requested alignment is less than or equal to | 
|  | // the stack alignment, ignore it.  If the size is greater than or equal to | 
|  | // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. | 
|  | unsigned StackAlign = | 
|  | DAG.getSubtarget().getFrameLowering()->getStackAlignment(); | 
|  | if (Align <= StackAlign) | 
|  | Align = 0; | 
|  |  | 
|  | // Round the size of the allocation up to the stack alignment size | 
|  | // by add SA-1 to the size. This doesn't overflow because we're computing | 
|  | // an address inside an alloca. | 
|  | SDNodeFlags Flags; | 
|  | Flags.setNoUnsignedWrap(true); | 
|  | AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, | 
|  | DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); | 
|  |  | 
|  | // Mask out the low bits for alignment purposes. | 
|  | AllocSize = | 
|  | DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, | 
|  | DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); | 
|  |  | 
|  | SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; | 
|  | SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); | 
|  | SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); | 
|  | setValue(&I, DSA); | 
|  | DAG.setRoot(DSA.getValue(1)); | 
|  |  | 
|  | assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitLoad(const LoadInst &I) { | 
|  | if (I.isAtomic()) | 
|  | return visitAtomicLoad(I); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | const Value *SV = I.getOperand(0); | 
|  | if (TLI.supportSwiftError()) { | 
|  | // Swifterror values can come from either a function parameter with | 
|  | // swifterror attribute or an alloca with swifterror attribute. | 
|  | if (const Argument *Arg = dyn_cast<Argument>(SV)) { | 
|  | if (Arg->hasSwiftErrorAttr()) | 
|  | return visitLoadFromSwiftError(I); | 
|  | } | 
|  |  | 
|  | if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { | 
|  | if (Alloca->isSwiftError()) | 
|  | return visitLoadFromSwiftError(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Ptr = getValue(SV); | 
|  |  | 
|  | Type *Ty = I.getType(); | 
|  |  | 
|  | bool isVolatile = I.isVolatile(); | 
|  | bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal); | 
|  | bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load); | 
|  | bool isDereferenceable = | 
|  | isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout()); | 
|  | unsigned Alignment = I.getAlignment(); | 
|  |  | 
|  | AAMDNodes AAInfo; | 
|  | I.getAAMetadata(AAInfo); | 
|  | const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs, MemVTs; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues == 0) | 
|  | return; | 
|  |  | 
|  | SDValue Root; | 
|  | bool ConstantMemory = false; | 
|  | if (isVolatile || NumValues > MaxParallelChains) | 
|  | // Serialize volatile loads with other side effects. | 
|  | Root = getRoot(); | 
|  | else if (AA && | 
|  | AA->pointsToConstantMemory(MemoryLocation( | 
|  | SV, | 
|  | LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), | 
|  | AAInfo))) { | 
|  | // Do not serialize (non-volatile) loads of constant memory with anything. | 
|  | Root = DAG.getEntryNode(); | 
|  | ConstantMemory = true; | 
|  | } else { | 
|  | // Do not serialize non-volatile loads against each other. | 
|  | Root = DAG.getRoot(); | 
|  | } | 
|  |  | 
|  | SDLoc dl = getCurSDLoc(); | 
|  |  | 
|  | if (isVolatile) | 
|  | Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); | 
|  |  | 
|  | // An aggregate load cannot wrap around the address space, so offsets to its | 
|  | // parts don't wrap either. | 
|  | SDNodeFlags Flags; | 
|  | Flags.setNoUnsignedWrap(true); | 
|  |  | 
|  | SmallVector<SDValue, 4> Values(NumValues); | 
|  | SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); | 
|  | EVT PtrVT = Ptr.getValueType(); | 
|  | unsigned ChainI = 0; | 
|  | for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { | 
|  | // Serializing loads here may result in excessive register pressure, and | 
|  | // TokenFactor places arbitrary choke points on the scheduler. SD scheduling | 
|  | // could recover a bit by hoisting nodes upward in the chain by recognizing | 
|  | // they are side-effect free or do not alias. The optimizer should really | 
|  | // avoid this case by converting large object/array copies to llvm.memcpy | 
|  | // (MaxParallelChains should always remain as failsafe). | 
|  | if (ChainI == MaxParallelChains) { | 
|  | assert(PendingLoads.empty() && "PendingLoads must be serialized first"); | 
|  | SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | makeArrayRef(Chains.data(), ChainI)); | 
|  | Root = Chain; | 
|  | ChainI = 0; | 
|  | } | 
|  | SDValue A = DAG.getNode(ISD::ADD, dl, | 
|  | PtrVT, Ptr, | 
|  | DAG.getConstant(Offsets[i], dl, PtrVT), | 
|  | Flags); | 
|  | auto MMOFlags = MachineMemOperand::MONone; | 
|  | if (isVolatile) | 
|  | MMOFlags |= MachineMemOperand::MOVolatile; | 
|  | if (isNonTemporal) | 
|  | MMOFlags |= MachineMemOperand::MONonTemporal; | 
|  | if (isInvariant) | 
|  | MMOFlags |= MachineMemOperand::MOInvariant; | 
|  | if (isDereferenceable) | 
|  | MMOFlags |= MachineMemOperand::MODereferenceable; | 
|  | MMOFlags |= TLI.getMMOFlags(I); | 
|  |  | 
|  | SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, | 
|  | MachinePointerInfo(SV, Offsets[i]), Alignment, | 
|  | MMOFlags, AAInfo, Ranges); | 
|  | Chains[ChainI] = L.getValue(1); | 
|  |  | 
|  | if (MemVTs[i] != ValueVTs[i]) | 
|  | L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); | 
|  |  | 
|  | Values[i] = L; | 
|  | } | 
|  |  | 
|  | if (!ConstantMemory) { | 
|  | SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | makeArrayRef(Chains.data(), ChainI)); | 
|  | if (isVolatile) | 
|  | DAG.setRoot(Chain); | 
|  | else | 
|  | PendingLoads.push_back(Chain); | 
|  | } | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, | 
|  | DAG.getVTList(ValueVTs), Values)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { | 
|  | assert(DAG.getTargetLoweringInfo().supportSwiftError() && | 
|  | "call visitStoreToSwiftError when backend supports swifterror"); | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | const Value *SrcV = I.getOperand(0); | 
|  | ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), | 
|  | SrcV->getType(), ValueVTs, &Offsets); | 
|  | assert(ValueVTs.size() == 1 && Offsets[0] == 0 && | 
|  | "expect a single EVT for swifterror"); | 
|  |  | 
|  | SDValue Src = getValue(SrcV); | 
|  | // Create a virtual register, then update the virtual register. | 
|  | Register VReg = | 
|  | SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); | 
|  | // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue | 
|  | // Chain can be getRoot or getControlRoot. | 
|  | SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, | 
|  | SDValue(Src.getNode(), Src.getResNo())); | 
|  | DAG.setRoot(CopyNode); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { | 
|  | assert(DAG.getTargetLoweringInfo().supportSwiftError() && | 
|  | "call visitLoadFromSwiftError when backend supports swifterror"); | 
|  |  | 
|  | assert(!I.isVolatile() && | 
|  | !I.hasMetadata(LLVMContext::MD_nontemporal) && | 
|  | !I.hasMetadata(LLVMContext::MD_invariant_load) && | 
|  | "Support volatile, non temporal, invariant for load_from_swift_error"); | 
|  |  | 
|  | const Value *SV = I.getOperand(0); | 
|  | Type *Ty = I.getType(); | 
|  | AAMDNodes AAInfo; | 
|  | I.getAAMetadata(AAInfo); | 
|  | assert( | 
|  | (!AA || | 
|  | !AA->pointsToConstantMemory(MemoryLocation( | 
|  | SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), | 
|  | AAInfo))) && | 
|  | "load_from_swift_error should not be constant memory"); | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, | 
|  | ValueVTs, &Offsets); | 
|  | assert(ValueVTs.size() == 1 && Offsets[0] == 0 && | 
|  | "expect a single EVT for swifterror"); | 
|  |  | 
|  | // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT | 
|  | SDValue L = DAG.getCopyFromReg( | 
|  | getRoot(), getCurSDLoc(), | 
|  | SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); | 
|  |  | 
|  | setValue(&I, L); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitStore(const StoreInst &I) { | 
|  | if (I.isAtomic()) | 
|  | return visitAtomicStore(I); | 
|  |  | 
|  | const Value *SrcV = I.getOperand(0); | 
|  | const Value *PtrV = I.getOperand(1); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (TLI.supportSwiftError()) { | 
|  | // Swifterror values can come from either a function parameter with | 
|  | // swifterror attribute or an alloca with swifterror attribute. | 
|  | if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { | 
|  | if (Arg->hasSwiftErrorAttr()) | 
|  | return visitStoreToSwiftError(I); | 
|  | } | 
|  |  | 
|  | if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { | 
|  | if (Alloca->isSwiftError()) | 
|  | return visitStoreToSwiftError(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs, MemVTs; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), | 
|  | SrcV->getType(), ValueVTs, &MemVTs, &Offsets); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues == 0) | 
|  | return; | 
|  |  | 
|  | // Get the lowered operands. Note that we do this after | 
|  | // checking if NumResults is zero, because with zero results | 
|  | // the operands won't have values in the map. | 
|  | SDValue Src = getValue(SrcV); | 
|  | SDValue Ptr = getValue(PtrV); | 
|  |  | 
|  | SDValue Root = getRoot(); | 
|  | SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | EVT PtrVT = Ptr.getValueType(); | 
|  | unsigned Alignment = I.getAlignment(); | 
|  | AAMDNodes AAInfo; | 
|  | I.getAAMetadata(AAInfo); | 
|  |  | 
|  | auto MMOFlags = MachineMemOperand::MONone; | 
|  | if (I.isVolatile()) | 
|  | MMOFlags |= MachineMemOperand::MOVolatile; | 
|  | if (I.hasMetadata(LLVMContext::MD_nontemporal)) | 
|  | MMOFlags |= MachineMemOperand::MONonTemporal; | 
|  | MMOFlags |= TLI.getMMOFlags(I); | 
|  |  | 
|  | // An aggregate load cannot wrap around the address space, so offsets to its | 
|  | // parts don't wrap either. | 
|  | SDNodeFlags Flags; | 
|  | Flags.setNoUnsignedWrap(true); | 
|  |  | 
|  | unsigned ChainI = 0; | 
|  | for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { | 
|  | // See visitLoad comments. | 
|  | if (ChainI == MaxParallelChains) { | 
|  | SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | makeArrayRef(Chains.data(), ChainI)); | 
|  | Root = Chain; | 
|  | ChainI = 0; | 
|  | } | 
|  | SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, | 
|  | DAG.getConstant(Offsets[i], dl, PtrVT), Flags); | 
|  | SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); | 
|  | if (MemVTs[i] != ValueVTs[i]) | 
|  | Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); | 
|  | SDValue St = | 
|  | DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), | 
|  | Alignment, MMOFlags, AAInfo); | 
|  | Chains[ChainI] = St; | 
|  | } | 
|  |  | 
|  | SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | makeArrayRef(Chains.data(), ChainI)); | 
|  | DAG.setRoot(StoreNode); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, | 
|  | bool IsCompressing) { | 
|  | SDLoc sdl = getCurSDLoc(); | 
|  |  | 
|  | auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, | 
|  | unsigned& Alignment) { | 
|  | // llvm.masked.store.*(Src0, Ptr, alignment, Mask) | 
|  | Src0 = I.getArgOperand(0); | 
|  | Ptr = I.getArgOperand(1); | 
|  | Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); | 
|  | Mask = I.getArgOperand(3); | 
|  | }; | 
|  | auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, | 
|  | unsigned& Alignment) { | 
|  | // llvm.masked.compressstore.*(Src0, Ptr, Mask) | 
|  | Src0 = I.getArgOperand(0); | 
|  | Ptr = I.getArgOperand(1); | 
|  | Mask = I.getArgOperand(2); | 
|  | Alignment = 0; | 
|  | }; | 
|  |  | 
|  | Value  *PtrOperand, *MaskOperand, *Src0Operand; | 
|  | unsigned Alignment; | 
|  | if (IsCompressing) | 
|  | getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); | 
|  | else | 
|  | getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); | 
|  |  | 
|  | SDValue Ptr = getValue(PtrOperand); | 
|  | SDValue Src0 = getValue(Src0Operand); | 
|  | SDValue Mask = getValue(MaskOperand); | 
|  |  | 
|  | EVT VT = Src0.getValueType(); | 
|  | if (!Alignment) | 
|  | Alignment = DAG.getEVTAlignment(VT); | 
|  |  | 
|  | AAMDNodes AAInfo; | 
|  | I.getAAMetadata(AAInfo); | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MachinePointerInfo(PtrOperand), | 
|  | MachineMemOperand::MOStore,  VT.getStoreSize(), | 
|  | Alignment, AAInfo); | 
|  | SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, | 
|  | MMO, false /* Truncating */, | 
|  | IsCompressing); | 
|  | DAG.setRoot(StoreNode); | 
|  | setValue(&I, StoreNode); | 
|  | } | 
|  |  | 
|  | // Get a uniform base for the Gather/Scatter intrinsic. | 
|  | // The first argument of the Gather/Scatter intrinsic is a vector of pointers. | 
|  | // We try to represent it as a base pointer + vector of indices. | 
|  | // Usually, the vector of pointers comes from a 'getelementptr' instruction. | 
|  | // The first operand of the GEP may be a single pointer or a vector of pointers | 
|  | // Example: | 
|  | //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind | 
|  | //  or | 
|  | //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind | 
|  | // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. | 
|  | // | 
|  | // When the first GEP operand is a single pointer - it is the uniform base we | 
|  | // are looking for. If first operand of the GEP is a splat vector - we | 
|  | // extract the splat value and use it as a uniform base. | 
|  | // In all other cases the function returns 'false'. | 
|  | static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index, | 
|  | ISD::MemIndexType &IndexType, SDValue &Scale, | 
|  | SelectionDAGBuilder *SDB) { | 
|  | SelectionDAG& DAG = SDB->DAG; | 
|  | LLVMContext &Context = *DAG.getContext(); | 
|  |  | 
|  | assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); | 
|  | const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); | 
|  | if (!GEP) | 
|  | return false; | 
|  |  | 
|  | const Value *GEPPtr = GEP->getPointerOperand(); | 
|  | if (!GEPPtr->getType()->isVectorTy()) | 
|  | Ptr = GEPPtr; | 
|  | else if (!(Ptr = getSplatValue(GEPPtr))) | 
|  | return false; | 
|  |  | 
|  | unsigned FinalIndex = GEP->getNumOperands() - 1; | 
|  | Value *IndexVal = GEP->getOperand(FinalIndex); | 
|  |  | 
|  | // Ensure all the other indices are 0. | 
|  | for (unsigned i = 1; i < FinalIndex; ++i) { | 
|  | auto *C = dyn_cast<Constant>(GEP->getOperand(i)); | 
|  | if (!C) | 
|  | return false; | 
|  | if (isa<VectorType>(C->getType())) | 
|  | C = C->getSplatValue(); | 
|  | auto *CI = dyn_cast_or_null<ConstantInt>(C); | 
|  | if (!CI || !CI->isZero()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The operands of the GEP may be defined in another basic block. | 
|  | // In this case we'll not find nodes for the operands. | 
|  | if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) | 
|  | return false; | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | const DataLayout &DL = DAG.getDataLayout(); | 
|  | Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), | 
|  | SDB->getCurSDLoc(), TLI.getPointerTy(DL)); | 
|  | Base = SDB->getValue(Ptr); | 
|  | Index = SDB->getValue(IndexVal); | 
|  | IndexType = ISD::SIGNED_SCALED; | 
|  |  | 
|  | if (!Index.getValueType().isVector()) { | 
|  | unsigned GEPWidth = GEP->getType()->getVectorNumElements(); | 
|  | EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); | 
|  | Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { | 
|  | SDLoc sdl = getCurSDLoc(); | 
|  |  | 
|  | // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) | 
|  | const Value *Ptr = I.getArgOperand(1); | 
|  | SDValue Src0 = getValue(I.getArgOperand(0)); | 
|  | SDValue Mask = getValue(I.getArgOperand(3)); | 
|  | EVT VT = Src0.getValueType(); | 
|  | unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); | 
|  | if (!Alignment) | 
|  | Alignment = DAG.getEVTAlignment(VT); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | AAMDNodes AAInfo; | 
|  | I.getAAMetadata(AAInfo); | 
|  |  | 
|  | SDValue Base; | 
|  | SDValue Index; | 
|  | ISD::MemIndexType IndexType; | 
|  | SDValue Scale; | 
|  | const Value *BasePtr = Ptr; | 
|  | bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, | 
|  | this); | 
|  |  | 
|  | const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; | 
|  | MachineMemOperand *MMO = DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), | 
|  | MachineMemOperand::MOStore,  VT.getStoreSize(), | 
|  | Alignment, AAInfo); | 
|  | if (!UniformBase) { | 
|  | Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); | 
|  | Index = getValue(Ptr); | 
|  | IndexType = ISD::SIGNED_SCALED; | 
|  | Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); | 
|  | } | 
|  | SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; | 
|  | SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, | 
|  | Ops, MMO, IndexType); | 
|  | DAG.setRoot(Scatter); | 
|  | setValue(&I, Scatter); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { | 
|  | SDLoc sdl = getCurSDLoc(); | 
|  |  | 
|  | auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, | 
|  | unsigned& Alignment) { | 
|  | // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) | 
|  | Ptr = I.getArgOperand(0); | 
|  | Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); | 
|  | Mask = I.getArgOperand(2); | 
|  | Src0 = I.getArgOperand(3); | 
|  | }; | 
|  | auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, | 
|  | unsigned& Alignment) { | 
|  | // @llvm.masked.expandload.*(Ptr, Mask, Src0) | 
|  | Ptr = I.getArgOperand(0); | 
|  | Alignment = 0; | 
|  | Mask = I.getArgOperand(1); | 
|  | Src0 = I.getArgOperand(2); | 
|  | }; | 
|  |  | 
|  | Value  *PtrOperand, *MaskOperand, *Src0Operand; | 
|  | unsigned Alignment; | 
|  | if (IsExpanding) | 
|  | getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); | 
|  | else | 
|  | getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); | 
|  |  | 
|  | SDValue Ptr = getValue(PtrOperand); | 
|  | SDValue Src0 = getValue(Src0Operand); | 
|  | SDValue Mask = getValue(MaskOperand); | 
|  |  | 
|  | EVT VT = Src0.getValueType(); | 
|  | if (!Alignment) | 
|  | Alignment = DAG.getEVTAlignment(VT); | 
|  |  | 
|  | AAMDNodes AAInfo; | 
|  | I.getAAMetadata(AAInfo); | 
|  | const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); | 
|  |  | 
|  | // Do not serialize masked loads of constant memory with anything. | 
|  | MemoryLocation ML; | 
|  | if (VT.isScalableVector()) | 
|  | ML = MemoryLocation(PtrOperand); | 
|  | else | 
|  | ML = MemoryLocation(PtrOperand, LocationSize::precise( | 
|  | DAG.getDataLayout().getTypeStoreSize(I.getType())), | 
|  | AAInfo); | 
|  | bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); | 
|  |  | 
|  | SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MachinePointerInfo(PtrOperand), | 
|  | MachineMemOperand::MOLoad,  VT.getStoreSize(), | 
|  | Alignment, AAInfo, Ranges); | 
|  |  | 
|  | SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, | 
|  | ISD::NON_EXTLOAD, IsExpanding); | 
|  | if (AddToChain) | 
|  | PendingLoads.push_back(Load.getValue(1)); | 
|  | setValue(&I, Load); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { | 
|  | SDLoc sdl = getCurSDLoc(); | 
|  |  | 
|  | // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) | 
|  | const Value *Ptr = I.getArgOperand(0); | 
|  | SDValue Src0 = getValue(I.getArgOperand(3)); | 
|  | SDValue Mask = getValue(I.getArgOperand(2)); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); | 
|  | if (!Alignment) | 
|  | Alignment = DAG.getEVTAlignment(VT); | 
|  |  | 
|  | AAMDNodes AAInfo; | 
|  | I.getAAMetadata(AAInfo); | 
|  | const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); | 
|  |  | 
|  | SDValue Root = DAG.getRoot(); | 
|  | SDValue Base; | 
|  | SDValue Index; | 
|  | ISD::MemIndexType IndexType; | 
|  | SDValue Scale; | 
|  | const Value *BasePtr = Ptr; | 
|  | bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, | 
|  | this); | 
|  | bool ConstantMemory = false; | 
|  | if (UniformBase && AA && | 
|  | AA->pointsToConstantMemory( | 
|  | MemoryLocation(BasePtr, | 
|  | LocationSize::precise( | 
|  | DAG.getDataLayout().getTypeStoreSize(I.getType())), | 
|  | AAInfo))) { | 
|  | // Do not serialize (non-volatile) loads of constant memory with anything. | 
|  | Root = DAG.getEntryNode(); | 
|  | ConstantMemory = true; | 
|  | } | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), | 
|  | MachineMemOperand::MOLoad,  VT.getStoreSize(), | 
|  | Alignment, AAInfo, Ranges); | 
|  |  | 
|  | if (!UniformBase) { | 
|  | Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); | 
|  | Index = getValue(Ptr); | 
|  | IndexType = ISD::SIGNED_SCALED; | 
|  | Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); | 
|  | } | 
|  | SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; | 
|  | SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, | 
|  | Ops, MMO, IndexType); | 
|  |  | 
|  | SDValue OutChain = Gather.getValue(1); | 
|  | if (!ConstantMemory) | 
|  | PendingLoads.push_back(OutChain); | 
|  | setValue(&I, Gather); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); | 
|  | AtomicOrdering FailureOrdering = I.getFailureOrdering(); | 
|  | SyncScope::ID SSID = I.getSyncScopeID(); | 
|  |  | 
|  | SDValue InChain = getRoot(); | 
|  |  | 
|  | MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); | 
|  | SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); | 
|  |  | 
|  | auto Alignment = DAG.getEVTAlignment(MemVT); | 
|  |  | 
|  | auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; | 
|  | if (I.isVolatile()) | 
|  | Flags |= MachineMemOperand::MOVolatile; | 
|  | Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), | 
|  | Flags, MemVT.getStoreSize(), Alignment, | 
|  | AAMDNodes(), nullptr, SSID, SuccessOrdering, | 
|  | FailureOrdering); | 
|  |  | 
|  | SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, | 
|  | dl, MemVT, VTs, InChain, | 
|  | getValue(I.getPointerOperand()), | 
|  | getValue(I.getCompareOperand()), | 
|  | getValue(I.getNewValOperand()), MMO); | 
|  |  | 
|  | SDValue OutChain = L.getValue(2); | 
|  |  | 
|  | setValue(&I, L); | 
|  | DAG.setRoot(OutChain); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | ISD::NodeType NT; | 
|  | switch (I.getOperation()) { | 
|  | default: llvm_unreachable("Unknown atomicrmw operation"); | 
|  | case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; | 
|  | case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break; | 
|  | case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break; | 
|  | case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break; | 
|  | case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; | 
|  | case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break; | 
|  | case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break; | 
|  | case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break; | 
|  | case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break; | 
|  | case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; | 
|  | case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; | 
|  | case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; | 
|  | case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; | 
|  | } | 
|  | AtomicOrdering Ordering = I.getOrdering(); | 
|  | SyncScope::ID SSID = I.getSyncScopeID(); | 
|  |  | 
|  | SDValue InChain = getRoot(); | 
|  |  | 
|  | auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); | 
|  | auto Alignment = DAG.getEVTAlignment(MemVT); | 
|  |  | 
|  | auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore; | 
|  | if (I.isVolatile()) | 
|  | Flags |= MachineMemOperand::MOVolatile; | 
|  | Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, | 
|  | MemVT.getStoreSize(), Alignment, AAMDNodes(), | 
|  | nullptr, SSID, Ordering); | 
|  |  | 
|  | SDValue L = | 
|  | DAG.getAtomic(NT, dl, MemVT, InChain, | 
|  | getValue(I.getPointerOperand()), getValue(I.getValOperand()), | 
|  | MMO); | 
|  |  | 
|  | SDValue OutChain = L.getValue(1); | 
|  |  | 
|  | setValue(&I, L); | 
|  | DAG.setRoot(OutChain); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFence(const FenceInst &I) { | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue Ops[3]; | 
|  | Ops[0] = getRoot(); | 
|  | Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, | 
|  | TLI.getFenceOperandTy(DAG.getDataLayout())); | 
|  | Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, | 
|  | TLI.getFenceOperandTy(DAG.getDataLayout())); | 
|  | DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | AtomicOrdering Order = I.getOrdering(); | 
|  | SyncScope::ID SSID = I.getSyncScopeID(); | 
|  |  | 
|  | SDValue InChain = getRoot(); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); | 
|  |  | 
|  | if (!TLI.supportsUnalignedAtomics() && | 
|  | I.getAlignment() < MemVT.getSizeInBits() / 8) | 
|  | report_fatal_error("Cannot generate unaligned atomic load"); | 
|  |  | 
|  | auto Flags = MachineMemOperand::MOLoad; | 
|  | if (I.isVolatile()) | 
|  | Flags |= MachineMemOperand::MOVolatile; | 
|  | if (I.hasMetadata(LLVMContext::MD_invariant_load)) | 
|  | Flags |= MachineMemOperand::MOInvariant; | 
|  | if (isDereferenceablePointer(I.getPointerOperand(), I.getType(), | 
|  | DAG.getDataLayout())) | 
|  | Flags |= MachineMemOperand::MODereferenceable; | 
|  |  | 
|  | Flags |= TLI.getMMOFlags(I); | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | DAG.getMachineFunction(). | 
|  | getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), | 
|  | Flags, MemVT.getStoreSize(), | 
|  | I.getAlignment() ? I.getAlignment() : | 
|  | DAG.getEVTAlignment(MemVT), | 
|  | AAMDNodes(), nullptr, SSID, Order); | 
|  |  | 
|  | InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); | 
|  |  | 
|  | SDValue Ptr = getValue(I.getPointerOperand()); | 
|  |  | 
|  | if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { | 
|  | // TODO: Once this is better exercised by tests, it should be merged with | 
|  | // the normal path for loads to prevent future divergence. | 
|  | SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); | 
|  | if (MemVT != VT) | 
|  | L = DAG.getPtrExtOrTrunc(L, dl, VT); | 
|  |  | 
|  | setValue(&I, L); | 
|  | SDValue OutChain = L.getValue(1); | 
|  | if (!I.isUnordered()) | 
|  | DAG.setRoot(OutChain); | 
|  | else | 
|  | PendingLoads.push_back(OutChain); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, | 
|  | Ptr, MMO); | 
|  |  | 
|  | SDValue OutChain = L.getValue(1); | 
|  | if (MemVT != VT) | 
|  | L = DAG.getPtrExtOrTrunc(L, dl, VT); | 
|  |  | 
|  | setValue(&I, L); | 
|  | DAG.setRoot(OutChain); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { | 
|  | SDLoc dl = getCurSDLoc(); | 
|  |  | 
|  | AtomicOrdering Ordering = I.getOrdering(); | 
|  | SyncScope::ID SSID = I.getSyncScopeID(); | 
|  |  | 
|  | SDValue InChain = getRoot(); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | EVT MemVT = | 
|  | TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); | 
|  |  | 
|  | if (I.getAlignment() < MemVT.getSizeInBits() / 8) | 
|  | report_fatal_error("Cannot generate unaligned atomic store"); | 
|  |  | 
|  | auto Flags = MachineMemOperand::MOStore; | 
|  | if (I.isVolatile()) | 
|  | Flags |= MachineMemOperand::MOVolatile; | 
|  | Flags |= TLI.getMMOFlags(I); | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, | 
|  | MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), | 
|  | nullptr, SSID, Ordering); | 
|  |  | 
|  | SDValue Val = getValue(I.getValueOperand()); | 
|  | if (Val.getValueType() != MemVT) | 
|  | Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); | 
|  | SDValue Ptr = getValue(I.getPointerOperand()); | 
|  |  | 
|  | if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { | 
|  | // TODO: Once this is better exercised by tests, it should be merged with | 
|  | // the normal path for stores to prevent future divergence. | 
|  | SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); | 
|  | DAG.setRoot(S); | 
|  | return; | 
|  | } | 
|  | SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, | 
|  | Ptr, Val, MMO); | 
|  |  | 
|  |  | 
|  | DAG.setRoot(OutChain); | 
|  | } | 
|  |  | 
|  | /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC | 
|  | /// node. | 
|  | void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, | 
|  | unsigned Intrinsic) { | 
|  | // Ignore the callsite's attributes. A specific call site may be marked with | 
|  | // readnone, but the lowering code will expect the chain based on the | 
|  | // definition. | 
|  | const Function *F = I.getCalledFunction(); | 
|  | bool HasChain = !F->doesNotAccessMemory(); | 
|  | bool OnlyLoad = HasChain && F->onlyReadsMemory(); | 
|  |  | 
|  | // Build the operand list. | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | if (HasChain) {  // If this intrinsic has side-effects, chainify it. | 
|  | if (OnlyLoad) { | 
|  | // We don't need to serialize loads against other loads. | 
|  | Ops.push_back(DAG.getRoot()); | 
|  | } else { | 
|  | Ops.push_back(getRoot()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Info is set by getTgtMemInstrinsic | 
|  | TargetLowering::IntrinsicInfo Info; | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, | 
|  | DAG.getMachineFunction(), | 
|  | Intrinsic); | 
|  |  | 
|  | // Add the intrinsic ID as an integer operand if it's not a target intrinsic. | 
|  | if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || | 
|  | Info.opc == ISD::INTRINSIC_W_CHAIN) | 
|  | Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), | 
|  | TLI.getPointerTy(DAG.getDataLayout()))); | 
|  |  | 
|  | // Add all operands of the call to the operand list. | 
|  | for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { | 
|  | const Value *Arg = I.getArgOperand(i); | 
|  | if (!I.paramHasAttr(i, Attribute::ImmArg)) { | 
|  | Ops.push_back(getValue(Arg)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Use TargetConstant instead of a regular constant for immarg. | 
|  | EVT VT = TLI.getValueType(*DL, Arg->getType(), true); | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { | 
|  | assert(CI->getBitWidth() <= 64 && | 
|  | "large intrinsic immediates not handled"); | 
|  | Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); | 
|  | } else { | 
|  | Ops.push_back( | 
|  | DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); | 
|  |  | 
|  | if (HasChain) | 
|  | ValueVTs.push_back(MVT::Other); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(ValueVTs); | 
|  |  | 
|  | // Create the node. | 
|  | SDValue Result; | 
|  | if (IsTgtIntrinsic) { | 
|  | // This is target intrinsic that touches memory | 
|  | AAMDNodes AAInfo; | 
|  | I.getAAMetadata(AAInfo); | 
|  | Result = DAG.getMemIntrinsicNode( | 
|  | Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, | 
|  | MachinePointerInfo(Info.ptrVal, Info.offset), | 
|  | Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); | 
|  | } else if (!HasChain) { | 
|  | Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); | 
|  | } else if (!I.getType()->isVoidTy()) { | 
|  | Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); | 
|  | } else { | 
|  | Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); | 
|  | } | 
|  |  | 
|  | if (HasChain) { | 
|  | SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); | 
|  | if (OnlyLoad) | 
|  | PendingLoads.push_back(Chain); | 
|  | else | 
|  | DAG.setRoot(Chain); | 
|  | } | 
|  |  | 
|  | if (!I.getType()->isVoidTy()) { | 
|  | if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { | 
|  | EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); | 
|  | Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); | 
|  | } else | 
|  | Result = lowerRangeToAssertZExt(DAG, I, Result); | 
|  |  | 
|  | setValue(&I, Result); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GetSignificand - Get the significand and build it into a floating-point | 
|  | /// number with exponent of 1: | 
|  | /// | 
|  | ///   Op = (Op & 0x007fffff) | 0x3f800000; | 
|  | /// | 
|  | /// where Op is the hexadecimal representation of floating point value. | 
|  | static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { | 
|  | SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, | 
|  | DAG.getConstant(0x007fffff, dl, MVT::i32)); | 
|  | SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, | 
|  | DAG.getConstant(0x3f800000, dl, MVT::i32)); | 
|  | return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); | 
|  | } | 
|  |  | 
|  | /// GetExponent - Get the exponent: | 
|  | /// | 
|  | ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127); | 
|  | /// | 
|  | /// where Op is the hexadecimal representation of floating point value. | 
|  | static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, | 
|  | const TargetLowering &TLI, const SDLoc &dl) { | 
|  | SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, | 
|  | DAG.getConstant(0x7f800000, dl, MVT::i32)); | 
|  | SDValue t1 = DAG.getNode( | 
|  | ISD::SRL, dl, MVT::i32, t0, | 
|  | DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); | 
|  | SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, | 
|  | DAG.getConstant(127, dl, MVT::i32)); | 
|  | return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); | 
|  | } | 
|  |  | 
|  | /// getF32Constant - Get 32-bit floating point constant. | 
|  | static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, | 
|  | const SDLoc &dl) { | 
|  | return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, | 
|  | MVT::f32); | 
|  | } | 
|  |  | 
|  | static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, | 
|  | SelectionDAG &DAG) { | 
|  | // TODO: What fast-math-flags should be set on the floating-point nodes? | 
|  |  | 
|  | //   IntegerPartOfX = ((int32_t)(t0); | 
|  | SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); | 
|  |  | 
|  | //   FractionalPartOfX = t0 - (float)IntegerPartOfX; | 
|  | SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); | 
|  | SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); | 
|  |  | 
|  | //   IntegerPartOfX <<= 23; | 
|  | IntegerPartOfX = DAG.getNode( | 
|  | ISD::SHL, dl, MVT::i32, IntegerPartOfX, | 
|  | DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( | 
|  | DAG.getDataLayout()))); | 
|  |  | 
|  | SDValue TwoToFractionalPartOfX; | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.997535578f + | 
|  | //       (0.735607626f + 0.252464424f * x) * x; | 
|  | // | 
|  | // error 0.0144103317, which is 6 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3e814304, dl)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f3c50c8, dl)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f7f5e7e, dl)); | 
|  | } else if (LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.999892986f + | 
|  | //       (0.696457318f + | 
|  | //         (0.224338339f + 0.792043434e-1f * x) * x) * x; | 
|  | // | 
|  | // error 0.000107046256, which is 13 to 14 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3da235e3, dl)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3e65b8f3, dl)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f324b07, dl)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3f7ff8fd, dl)); | 
|  | } else { // LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.999999982f + | 
|  | //       (0.693148872f + | 
|  | //         (0.240227044f + | 
|  | //           (0.554906021e-1f + | 
|  | //             (0.961591928e-2f + | 
|  | //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; | 
|  | // error 2.47208000*10^(-7), which is better than 18 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3924b03e, dl)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3ab24b87, dl)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3c1d8c17, dl)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3d634a1d, dl)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
|  | SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x3e75fe14, dl)); | 
|  | SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); | 
|  | SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, | 
|  | getF32Constant(DAG, 0x3f317234, dl)); | 
|  | SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); | 
|  | TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, | 
|  | getF32Constant(DAG, 0x3f800000, dl)); | 
|  | } | 
|  |  | 
|  | // Add the exponent into the result in integer domain. | 
|  | SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); | 
|  | return DAG.getNode(ISD::BITCAST, dl, MVT::f32, | 
|  | DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); | 
|  | } | 
|  |  | 
|  | /// expandExp - Lower an exp intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | if (Op.getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  |  | 
|  | // Put the exponent in the right bit position for later addition to the | 
|  | // final result: | 
|  | // | 
|  | // t0 = Op * log2(e) | 
|  |  | 
|  | // TODO: What fast-math-flags should be set here? | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, | 
|  | DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); | 
|  | return getLimitedPrecisionExp2(t0, dl, DAG); | 
|  | } | 
|  |  | 
|  | // No special expansion. | 
|  | return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); | 
|  | } | 
|  |  | 
|  | /// expandLog - Lower a log intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | // TODO: What fast-math-flags should be set on the floating-point nodes? | 
|  |  | 
|  | if (Op.getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); | 
|  |  | 
|  | // Scale the exponent by log(2). | 
|  | SDValue Exp = GetExponent(DAG, Op1, TLI, dl); | 
|  | SDValue LogOfExponent = | 
|  | DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, | 
|  | DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); | 
|  |  | 
|  | // Get the significand and build it into a floating-point number with | 
|  | // exponent of 1. | 
|  | SDValue X = GetSignificand(DAG, Op1, dl); | 
|  |  | 
|  | SDValue LogOfMantissa; | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   LogofMantissa = | 
|  | //     -1.1609546f + | 
|  | //       (1.4034025f - 0.23903021f * x) * x; | 
|  | // | 
|  | // error 0.0034276066, which is better than 8 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbe74c456, dl)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3fb3a2b1, dl)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f949a29, dl)); | 
|  | } else if (LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   LogOfMantissa = | 
|  | //     -1.7417939f + | 
|  | //       (2.8212026f + | 
|  | //         (-1.4699568f + | 
|  | //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; | 
|  | // | 
|  | // error 0.000061011436, which is 14 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbd67b6d6, dl)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3ee4f4b8, dl)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3fbc278b, dl)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x40348e95, dl)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3fdef31a, dl)); | 
|  | } else { // LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   LogOfMantissa = | 
|  | //     -2.1072184f + | 
|  | //       (4.2372794f + | 
|  | //         (-3.7029485f + | 
|  | //           (2.2781945f + | 
|  | //             (-0.87823314f + | 
|  | //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; | 
|  | // | 
|  | // error 0.0000023660568, which is better than 18 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbc91e5ac, dl)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3e4350aa, dl)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f60d3e3, dl)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x4011cdf0, dl)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x406cfd1c, dl)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
|  | SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x408797cb, dl)); | 
|  | SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); | 
|  | LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, | 
|  | getF32Constant(DAG, 0x4006dcab, dl)); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); | 
|  | } | 
|  |  | 
|  | // No special expansion. | 
|  | return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); | 
|  | } | 
|  |  | 
|  | /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | // TODO: What fast-math-flags should be set on the floating-point nodes? | 
|  |  | 
|  | if (Op.getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); | 
|  |  | 
|  | // Get the exponent. | 
|  | SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); | 
|  |  | 
|  | // Get the significand and build it into a floating-point number with | 
|  | // exponent of 1. | 
|  | SDValue X = GetSignificand(DAG, Op1, dl); | 
|  |  | 
|  | // Different possible minimax approximations of significand in | 
|  | // floating-point for various degrees of accuracy over [1,2]. | 
|  | SDValue Log2ofMantissa; | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; | 
|  | // | 
|  | // error 0.0049451742, which is more than 7 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbeb08fe0, dl)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x40019463, dl)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3fd6633d, dl)); | 
|  | } else if (LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   Log2ofMantissa = | 
|  | //     -2.51285454f + | 
|  | //       (4.07009056f + | 
|  | //         (-2.12067489f + | 
|  | //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x; | 
|  | // | 
|  | // error 0.0000876136000, which is better than 13 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbda7262e, dl)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3f25280b, dl)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x4007b923, dl)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x40823e2f, dl)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x4020d29c, dl)); | 
|  | } else { // LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   Log2ofMantissa = | 
|  | //     -3.0400495f + | 
|  | //       (6.1129976f + | 
|  | //         (-5.3420409f + | 
|  | //           (3.2865683f + | 
|  | //             (-1.2669343f + | 
|  | //               (0.27515199f - | 
|  | //                 0.25691327e-1f * x) * x) * x) * x) * x) * x; | 
|  | // | 
|  | // error 0.0000018516, which is better than 18 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbcd2769e, dl)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3e8ce0b9, dl)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3fa22ae7, dl)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x40525723, dl)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x40aaf200, dl)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
|  | SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x40c39dad, dl)); | 
|  | SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); | 
|  | Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, | 
|  | getF32Constant(DAG, 0x4042902c, dl)); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); | 
|  | } | 
|  |  | 
|  | // No special expansion. | 
|  | return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); | 
|  | } | 
|  |  | 
|  | /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | // TODO: What fast-math-flags should be set on the floating-point nodes? | 
|  |  | 
|  | if (Op.getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); | 
|  |  | 
|  | // Scale the exponent by log10(2) [0.30102999f]. | 
|  | SDValue Exp = GetExponent(DAG, Op1, TLI, dl); | 
|  | SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, | 
|  | getF32Constant(DAG, 0x3e9a209a, dl)); | 
|  |  | 
|  | // Get the significand and build it into a floating-point number with | 
|  | // exponent of 1. | 
|  | SDValue X = GetSignificand(DAG, Op1, dl); | 
|  |  | 
|  | SDValue Log10ofMantissa; | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   Log10ofMantissa = | 
|  | //     -0.50419619f + | 
|  | //       (0.60948995f - 0.10380950f * x) * x; | 
|  | // | 
|  | // error 0.0014886165, which is 6 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbdd49a13, dl)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3f1c0789, dl)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f011300, dl)); | 
|  | } else if (LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   Log10ofMantissa = | 
|  | //     -0.64831180f + | 
|  | //       (0.91751397f + | 
|  | //         (-0.31664806f + 0.47637168e-1f * x) * x) * x; | 
|  | // | 
|  | // error 0.00019228036, which is better than 12 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3d431f31, dl)); | 
|  | SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3ea21fb2, dl)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f6ae232, dl)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f25f7c3, dl)); | 
|  | } else { // LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   Log10ofMantissa = | 
|  | //     -0.84299375f + | 
|  | //       (1.5327582f + | 
|  | //         (-1.0688956f + | 
|  | //           (0.49102474f + | 
|  | //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; | 
|  | // | 
|  | // error 0.0000037995730, which is better than 18 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3c5d51ce, dl)); | 
|  | SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3e00685a, dl)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3efb6798, dl)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f88d192, dl)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3fc4316c, dl)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
|  | Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x3f57ce70, dl)); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); | 
|  | } | 
|  |  | 
|  | // No special expansion. | 
|  | return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); | 
|  | } | 
|  |  | 
|  | /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | if (Op.getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) | 
|  | return getLimitedPrecisionExp2(Op, dl, DAG); | 
|  |  | 
|  | // No special expansion. | 
|  | return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); | 
|  | } | 
|  |  | 
|  | /// visitPow - Lower a pow intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode with x == 10.0f. | 
|  | static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, | 
|  | SelectionDAG &DAG, const TargetLowering &TLI) { | 
|  | bool IsExp10 = false; | 
|  | if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { | 
|  | APFloat Ten(10.0f); | 
|  | IsExp10 = LHSC->isExactlyValue(Ten); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: What fast-math-flags should be set on the FMUL node? | 
|  | if (IsExp10) { | 
|  | // Put the exponent in the right bit position for later addition to the | 
|  | // final result: | 
|  | // | 
|  | //   #define LOG2OF10 3.3219281f | 
|  | //   t0 = Op * LOG2OF10; | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, | 
|  | getF32Constant(DAG, 0x40549a78, dl)); | 
|  | return getLimitedPrecisionExp2(t0, dl, DAG); | 
|  | } | 
|  |  | 
|  | // No special expansion. | 
|  | return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); | 
|  | } | 
|  |  | 
|  | /// ExpandPowI - Expand a llvm.powi intrinsic. | 
|  | static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, | 
|  | SelectionDAG &DAG) { | 
|  | // If RHS is a constant, we can expand this out to a multiplication tree, | 
|  | // otherwise we end up lowering to a call to __powidf2 (for example).  When | 
|  | // optimizing for size, we only want to do this if the expansion would produce | 
|  | // a small number of multiplies, otherwise we do the full expansion. | 
|  | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { | 
|  | // Get the exponent as a positive value. | 
|  | unsigned Val = RHSC->getSExtValue(); | 
|  | if ((int)Val < 0) Val = -Val; | 
|  |  | 
|  | // powi(x, 0) -> 1.0 | 
|  | if (Val == 0) | 
|  | return DAG.getConstantFP(1.0, DL, LHS.getValueType()); | 
|  |  | 
|  | const Function &F = DAG.getMachineFunction().getFunction(); | 
|  | if (!F.hasOptSize() || | 
|  | // If optimizing for size, don't insert too many multiplies. | 
|  | // This inserts up to 5 multiplies. | 
|  | countPopulation(Val) + Log2_32(Val) < 7) { | 
|  | // We use the simple binary decomposition method to generate the multiply | 
|  | // sequence.  There are more optimal ways to do this (for example, | 
|  | // powi(x,15) generates one more multiply than it should), but this has | 
|  | // the benefit of being both really simple and much better than a libcall. | 
|  | SDValue Res;  // Logically starts equal to 1.0 | 
|  | SDValue CurSquare = LHS; | 
|  | // TODO: Intrinsics should have fast-math-flags that propagate to these | 
|  | // nodes. | 
|  | while (Val) { | 
|  | if (Val & 1) { | 
|  | if (Res.getNode()) | 
|  | Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); | 
|  | else | 
|  | Res = CurSquare;  // 1.0*CurSquare. | 
|  | } | 
|  |  | 
|  | CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), | 
|  | CurSquare, CurSquare); | 
|  | Val >>= 1; | 
|  | } | 
|  |  | 
|  | // If the original was negative, invert the result, producing 1/(x*x*x). | 
|  | if (RHSC->getSExtValue() < 0) | 
|  | Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), | 
|  | DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); | 
|  | return Res; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, expand to a libcall. | 
|  | return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); | 
|  | } | 
|  |  | 
|  | // getUnderlyingArgRegs - Find underlying registers used for a truncated, | 
|  | // bitcasted, or split argument. Returns a list of <Register, size in bits> | 
|  | static void | 
|  | getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, | 
|  | const SDValue &N) { | 
|  | switch (N.getOpcode()) { | 
|  | case ISD::CopyFromReg: { | 
|  | SDValue Op = N.getOperand(1); | 
|  | Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), | 
|  | Op.getValueType().getSizeInBits()); | 
|  | return; | 
|  | } | 
|  | case ISD::BITCAST: | 
|  | case ISD::AssertZext: | 
|  | case ISD::AssertSext: | 
|  | case ISD::TRUNCATE: | 
|  | getUnderlyingArgRegs(Regs, N.getOperand(0)); | 
|  | return; | 
|  | case ISD::BUILD_PAIR: | 
|  | case ISD::BUILD_VECTOR: | 
|  | case ISD::CONCAT_VECTORS: | 
|  | for (SDValue Op : N->op_values()) | 
|  | getUnderlyingArgRegs(Regs, Op); | 
|  | return; | 
|  | default: | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If the DbgValueInst is a dbg_value of a function argument, create the | 
|  | /// corresponding DBG_VALUE machine instruction for it now.  At the end of | 
|  | /// instruction selection, they will be inserted to the entry BB. | 
|  | bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( | 
|  | const Value *V, DILocalVariable *Variable, DIExpression *Expr, | 
|  | DILocation *DL, bool IsDbgDeclare, const SDValue &N) { | 
|  | const Argument *Arg = dyn_cast<Argument>(V); | 
|  | if (!Arg) | 
|  | return false; | 
|  |  | 
|  | if (!IsDbgDeclare) { | 
|  | // ArgDbgValues are hoisted to the beginning of the entry block. So we | 
|  | // should only emit as ArgDbgValue if the dbg.value intrinsic is found in | 
|  | // the entry block. | 
|  | bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); | 
|  | if (!IsInEntryBlock) | 
|  | return false; | 
|  |  | 
|  | // ArgDbgValues are hoisted to the beginning of the entry block.  So we | 
|  | // should only emit as ArgDbgValue if the dbg.value intrinsic describes a | 
|  | // variable that also is a param. | 
|  | // | 
|  | // Although, if we are at the top of the entry block already, we can still | 
|  | // emit using ArgDbgValue. This might catch some situations when the | 
|  | // dbg.value refers to an argument that isn't used in the entry block, so | 
|  | // any CopyToReg node would be optimized out and the only way to express | 
|  | // this DBG_VALUE is by using the physical reg (or FI) as done in this | 
|  | // method.  ArgDbgValues are hoisted to the beginning of the entry block. So | 
|  | // we should only emit as ArgDbgValue if the Variable is an argument to the | 
|  | // current function, and the dbg.value intrinsic is found in the entry | 
|  | // block. | 
|  | bool VariableIsFunctionInputArg = Variable->isParameter() && | 
|  | !DL->getInlinedAt(); | 
|  | bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; | 
|  | if (!IsInPrologue && !VariableIsFunctionInputArg) | 
|  | return false; | 
|  |  | 
|  | // Here we assume that a function argument on IR level only can be used to | 
|  | // describe one input parameter on source level. If we for example have | 
|  | // source code like this | 
|  | // | 
|  | //    struct A { long x, y; }; | 
|  | //    void foo(struct A a, long b) { | 
|  | //      ... | 
|  | //      b = a.x; | 
|  | //      ... | 
|  | //    } | 
|  | // | 
|  | // and IR like this | 
|  | // | 
|  | //  define void @foo(i32 %a1, i32 %a2, i32 %b)  { | 
|  | //  entry: | 
|  | //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment | 
|  | //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment | 
|  | //    call void @llvm.dbg.value(metadata i32 %b, "b", | 
|  | //    ... | 
|  | //    call void @llvm.dbg.value(metadata i32 %a1, "b" | 
|  | //    ... | 
|  | // | 
|  | // then the last dbg.value is describing a parameter "b" using a value that | 
|  | // is an argument. But since we already has used %a1 to describe a parameter | 
|  | // we should not handle that last dbg.value here (that would result in an | 
|  | // incorrect hoisting of the DBG_VALUE to the function entry). | 
|  | // Notice that we allow one dbg.value per IR level argument, to accommodate | 
|  | // for the situation with fragments above. | 
|  | if (VariableIsFunctionInputArg) { | 
|  | unsigned ArgNo = Arg->getArgNo(); | 
|  | if (ArgNo >= FuncInfo.DescribedArgs.size()) | 
|  | FuncInfo.DescribedArgs.resize(ArgNo + 1, false); | 
|  | else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) | 
|  | return false; | 
|  | FuncInfo.DescribedArgs.set(ArgNo); | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); | 
|  |  | 
|  | bool IsIndirect = false; | 
|  | Optional<MachineOperand> Op; | 
|  | // Some arguments' frame index is recorded during argument lowering. | 
|  | int FI = FuncInfo.getArgumentFrameIndex(Arg); | 
|  | if (FI != std::numeric_limits<int>::max()) | 
|  | Op = MachineOperand::CreateFI(FI); | 
|  |  | 
|  | SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; | 
|  | if (!Op && N.getNode()) { | 
|  | getUnderlyingArgRegs(ArgRegsAndSizes, N); | 
|  | Register Reg; | 
|  | if (ArgRegsAndSizes.size() == 1) | 
|  | Reg = ArgRegsAndSizes.front().first; | 
|  |  | 
|  | if (Reg && Reg.isVirtual()) { | 
|  | MachineRegisterInfo &RegInfo = MF.getRegInfo(); | 
|  | Register PR = RegInfo.getLiveInPhysReg(Reg); | 
|  | if (PR) | 
|  | Reg = PR; | 
|  | } | 
|  | if (Reg) { | 
|  | Op = MachineOperand::CreateReg(Reg, false); | 
|  | IsIndirect = IsDbgDeclare; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Op && N.getNode()) { | 
|  | // Check if frame index is available. | 
|  | SDValue LCandidate = peekThroughBitcasts(N); | 
|  | if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) | 
|  | if (FrameIndexSDNode *FINode = | 
|  | dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) | 
|  | Op = MachineOperand::CreateFI(FINode->getIndex()); | 
|  | } | 
|  |  | 
|  | if (!Op) { | 
|  | // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg | 
|  | auto splitMultiRegDbgValue | 
|  | = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { | 
|  | unsigned Offset = 0; | 
|  | for (auto RegAndSize : SplitRegs) { | 
|  | auto FragmentExpr = DIExpression::createFragmentExpression( | 
|  | Expr, Offset, RegAndSize.second); | 
|  | if (!FragmentExpr) | 
|  | continue; | 
|  | assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); | 
|  | FuncInfo.ArgDbgValues.push_back( | 
|  | BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, | 
|  | RegAndSize.first, Variable, *FragmentExpr)); | 
|  | Offset += RegAndSize.second; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Check if ValueMap has reg number. | 
|  | DenseMap<const Value *, unsigned>::const_iterator | 
|  | VMI = FuncInfo.ValueMap.find(V); | 
|  | if (VMI != FuncInfo.ValueMap.end()) { | 
|  | const auto &TLI = DAG.getTargetLoweringInfo(); | 
|  | RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, | 
|  | V->getType(), getABIRegCopyCC(V)); | 
|  | if (RFV.occupiesMultipleRegs()) { | 
|  | splitMultiRegDbgValue(RFV.getRegsAndSizes()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Op = MachineOperand::CreateReg(VMI->second, false); | 
|  | IsIndirect = IsDbgDeclare; | 
|  | } else if (ArgRegsAndSizes.size() > 1) { | 
|  | // This was split due to the calling convention, and no virtual register | 
|  | // mapping exists for the value. | 
|  | splitMultiRegDbgValue(ArgRegsAndSizes); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Op) | 
|  | return false; | 
|  |  | 
|  | assert(Variable->isValidLocationForIntrinsic(DL) && | 
|  | "Expected inlined-at fields to agree"); | 
|  | IsIndirect = (Op->isReg()) ? IsIndirect : true; | 
|  | if (IsIndirect) | 
|  | Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref}); | 
|  | FuncInfo.ArgDbgValues.push_back( | 
|  | BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, | 
|  | *Op, Variable, Expr)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return the appropriate SDDbgValue based on N. | 
|  | SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, | 
|  | DILocalVariable *Variable, | 
|  | DIExpression *Expr, | 
|  | const DebugLoc &dl, | 
|  | unsigned DbgSDNodeOrder) { | 
|  | if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { | 
|  | // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe | 
|  | // stack slot locations. | 
|  | // | 
|  | // Consider "int x = 0; int *px = &x;". There are two kinds of interesting | 
|  | // debug values here after optimization: | 
|  | // | 
|  | //   dbg.value(i32* %px, !"int *px", !DIExpression()), and | 
|  | //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) | 
|  | // | 
|  | // Both describe the direct values of their associated variables. | 
|  | return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), | 
|  | /*IsIndirect*/ false, dl, DbgSDNodeOrder); | 
|  | } | 
|  | return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), | 
|  | /*IsIndirect*/ false, dl, DbgSDNodeOrder); | 
|  | } | 
|  |  | 
|  | // VisualStudio defines setjmp as _setjmp | 
|  | #if defined(_MSC_VER) && defined(setjmp) && \ | 
|  | !defined(setjmp_undefined_for_msvc) | 
|  | #  pragma push_macro("setjmp") | 
|  | #  undef setjmp | 
|  | #  define setjmp_undefined_for_msvc | 
|  | #endif | 
|  |  | 
|  | static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { | 
|  | switch (Intrinsic) { | 
|  | case Intrinsic::smul_fix: | 
|  | return ISD::SMULFIX; | 
|  | case Intrinsic::umul_fix: | 
|  | return ISD::UMULFIX; | 
|  | default: | 
|  | llvm_unreachable("Unhandled fixed point intrinsic"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, | 
|  | const char *FunctionName) { | 
|  | assert(FunctionName && "FunctionName must not be nullptr"); | 
|  | SDValue Callee = DAG.getExternalSymbol( | 
|  | FunctionName, | 
|  | DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); | 
|  | LowerCallTo(&I, Callee, I.isTailCall()); | 
|  | } | 
|  |  | 
|  | /// Lower the call to the specified intrinsic function. | 
|  | void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, | 
|  | unsigned Intrinsic) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDLoc sdl = getCurSDLoc(); | 
|  | DebugLoc dl = getCurDebugLoc(); | 
|  | SDValue Res; | 
|  |  | 
|  | switch (Intrinsic) { | 
|  | default: | 
|  | // By default, turn this into a target intrinsic node. | 
|  | visitTargetIntrinsic(I, Intrinsic); | 
|  | return; | 
|  | case Intrinsic::vastart:  visitVAStart(I); return; | 
|  | case Intrinsic::vaend:    visitVAEnd(I); return; | 
|  | case Intrinsic::vacopy:   visitVACopy(I); return; | 
|  | case Intrinsic::returnaddress: | 
|  | setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, | 
|  | TLI.getPointerTy(DAG.getDataLayout()), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return; | 
|  | case Intrinsic::addressofreturnaddress: | 
|  | setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, | 
|  | TLI.getPointerTy(DAG.getDataLayout()))); | 
|  | return; | 
|  | case Intrinsic::sponentry: | 
|  | setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, | 
|  | TLI.getFrameIndexTy(DAG.getDataLayout()))); | 
|  | return; | 
|  | case Intrinsic::frameaddress: | 
|  | setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, | 
|  | TLI.getFrameIndexTy(DAG.getDataLayout()), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return; | 
|  | case Intrinsic::read_register: { | 
|  | Value *Reg = I.getArgOperand(0); | 
|  | SDValue Chain = getRoot(); | 
|  | SDValue RegName = | 
|  | DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); | 
|  | EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | Res = DAG.getNode(ISD::READ_REGISTER, sdl, | 
|  | DAG.getVTList(VT, MVT::Other), Chain, RegName); | 
|  | setValue(&I, Res); | 
|  | DAG.setRoot(Res.getValue(1)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::write_register: { | 
|  | Value *Reg = I.getArgOperand(0); | 
|  | Value *RegValue = I.getArgOperand(1); | 
|  | SDValue Chain = getRoot(); | 
|  | SDValue RegName = | 
|  | DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); | 
|  | DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, | 
|  | RegName, getValue(RegValue))); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::setjmp: | 
|  | lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]); | 
|  | return; | 
|  | case Intrinsic::longjmp: | 
|  | lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]); | 
|  | return; | 
|  | case Intrinsic::memcpy: { | 
|  | const auto &MCI = cast<MemCpyInst>(I); | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  | SDValue Op3 = getValue(I.getArgOperand(2)); | 
|  | // @llvm.memcpy defines 0 and 1 to both mean no alignment. | 
|  | unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); | 
|  | unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); | 
|  | unsigned Align = MinAlign(DstAlign, SrcAlign); | 
|  | bool isVol = MCI.isVolatile(); | 
|  | bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); | 
|  | // FIXME: Support passing different dest/src alignments to the memcpy DAG | 
|  | // node. | 
|  | SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, | 
|  | false, isTC, | 
|  | MachinePointerInfo(I.getArgOperand(0)), | 
|  | MachinePointerInfo(I.getArgOperand(1))); | 
|  | updateDAGForMaybeTailCall(MC); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::memset: { | 
|  | const auto &MSI = cast<MemSetInst>(I); | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  | SDValue Op3 = getValue(I.getArgOperand(2)); | 
|  | // @llvm.memset defines 0 and 1 to both mean no alignment. | 
|  | unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); | 
|  | bool isVol = MSI.isVolatile(); | 
|  | bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); | 
|  | SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, | 
|  | isTC, MachinePointerInfo(I.getArgOperand(0))); | 
|  | updateDAGForMaybeTailCall(MS); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::memmove: { | 
|  | const auto &MMI = cast<MemMoveInst>(I); | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  | SDValue Op3 = getValue(I.getArgOperand(2)); | 
|  | // @llvm.memmove defines 0 and 1 to both mean no alignment. | 
|  | unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); | 
|  | unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); | 
|  | unsigned Align = MinAlign(DstAlign, SrcAlign); | 
|  | bool isVol = MMI.isVolatile(); | 
|  | bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); | 
|  | // FIXME: Support passing different dest/src alignments to the memmove DAG | 
|  | // node. | 
|  | SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, | 
|  | isTC, MachinePointerInfo(I.getArgOperand(0)), | 
|  | MachinePointerInfo(I.getArgOperand(1))); | 
|  | updateDAGForMaybeTailCall(MM); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::memcpy_element_unordered_atomic: { | 
|  | const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); | 
|  | SDValue Dst = getValue(MI.getRawDest()); | 
|  | SDValue Src = getValue(MI.getRawSource()); | 
|  | SDValue Length = getValue(MI.getLength()); | 
|  |  | 
|  | unsigned DstAlign = MI.getDestAlignment(); | 
|  | unsigned SrcAlign = MI.getSourceAlignment(); | 
|  | Type *LengthTy = MI.getLength()->getType(); | 
|  | unsigned ElemSz = MI.getElementSizeInBytes(); | 
|  | bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); | 
|  | SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, | 
|  | SrcAlign, Length, LengthTy, ElemSz, isTC, | 
|  | MachinePointerInfo(MI.getRawDest()), | 
|  | MachinePointerInfo(MI.getRawSource())); | 
|  | updateDAGForMaybeTailCall(MC); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::memmove_element_unordered_atomic: { | 
|  | auto &MI = cast<AtomicMemMoveInst>(I); | 
|  | SDValue Dst = getValue(MI.getRawDest()); | 
|  | SDValue Src = getValue(MI.getRawSource()); | 
|  | SDValue Length = getValue(MI.getLength()); | 
|  |  | 
|  | unsigned DstAlign = MI.getDestAlignment(); | 
|  | unsigned SrcAlign = MI.getSourceAlignment(); | 
|  | Type *LengthTy = MI.getLength()->getType(); | 
|  | unsigned ElemSz = MI.getElementSizeInBytes(); | 
|  | bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); | 
|  | SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, | 
|  | SrcAlign, Length, LengthTy, ElemSz, isTC, | 
|  | MachinePointerInfo(MI.getRawDest()), | 
|  | MachinePointerInfo(MI.getRawSource())); | 
|  | updateDAGForMaybeTailCall(MC); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::memset_element_unordered_atomic: { | 
|  | auto &MI = cast<AtomicMemSetInst>(I); | 
|  | SDValue Dst = getValue(MI.getRawDest()); | 
|  | SDValue Val = getValue(MI.getValue()); | 
|  | SDValue Length = getValue(MI.getLength()); | 
|  |  | 
|  | unsigned DstAlign = MI.getDestAlignment(); | 
|  | Type *LengthTy = MI.getLength()->getType(); | 
|  | unsigned ElemSz = MI.getElementSizeInBytes(); | 
|  | bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); | 
|  | SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, | 
|  | LengthTy, ElemSz, isTC, | 
|  | MachinePointerInfo(MI.getRawDest())); | 
|  | updateDAGForMaybeTailCall(MC); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::dbg_addr: | 
|  | case Intrinsic::dbg_declare: { | 
|  | const auto &DI = cast<DbgVariableIntrinsic>(I); | 
|  | DILocalVariable *Variable = DI.getVariable(); | 
|  | DIExpression *Expression = DI.getExpression(); | 
|  | dropDanglingDebugInfo(Variable, Expression); | 
|  | assert(Variable && "Missing variable"); | 
|  |  | 
|  | // Check if address has undef value. | 
|  | const Value *Address = DI.getVariableLocation(); | 
|  | if (!Address || isa<UndefValue>(Address) || | 
|  | (Address->use_empty() && !isa<Argument>(Address))) { | 
|  | LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | bool isParameter = Variable->isParameter() || isa<Argument>(Address); | 
|  |  | 
|  | // Check if this variable can be described by a frame index, typically | 
|  | // either as a static alloca or a byval parameter. | 
|  | int FI = std::numeric_limits<int>::max(); | 
|  | if (const auto *AI = | 
|  | dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { | 
|  | if (AI->isStaticAlloca()) { | 
|  | auto I = FuncInfo.StaticAllocaMap.find(AI); | 
|  | if (I != FuncInfo.StaticAllocaMap.end()) | 
|  | FI = I->second; | 
|  | } | 
|  | } else if (const auto *Arg = dyn_cast<Argument>( | 
|  | Address->stripInBoundsConstantOffsets())) { | 
|  | FI = FuncInfo.getArgumentFrameIndex(Arg); | 
|  | } | 
|  |  | 
|  | // llvm.dbg.addr is control dependent and always generates indirect | 
|  | // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in | 
|  | // the MachineFunction variable table. | 
|  | if (FI != std::numeric_limits<int>::max()) { | 
|  | if (Intrinsic == Intrinsic::dbg_addr) { | 
|  | SDDbgValue *SDV = DAG.getFrameIndexDbgValue( | 
|  | Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); | 
|  | DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue &N = NodeMap[Address]; | 
|  | if (!N.getNode() && isa<Argument>(Address)) | 
|  | // Check unused arguments map. | 
|  | N = UnusedArgNodeMap[Address]; | 
|  | SDDbgValue *SDV; | 
|  | if (N.getNode()) { | 
|  | if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) | 
|  | Address = BCI->getOperand(0); | 
|  | // Parameters are handled specially. | 
|  | auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); | 
|  | if (isParameter && FINode) { | 
|  | // Byval parameter. We have a frame index at this point. | 
|  | SDV = | 
|  | DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), | 
|  | /*IsIndirect*/ true, dl, SDNodeOrder); | 
|  | } else if (isa<Argument>(Address)) { | 
|  | // Address is an argument, so try to emit its dbg value using | 
|  | // virtual register info from the FuncInfo.ValueMap. | 
|  | EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); | 
|  | return; | 
|  | } else { | 
|  | SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), | 
|  | true, dl, SDNodeOrder); | 
|  | } | 
|  | DAG.AddDbgValue(SDV, N.getNode(), isParameter); | 
|  | } else { | 
|  | // If Address is an argument then try to emit its dbg value using | 
|  | // virtual register info from the FuncInfo.ValueMap. | 
|  | if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, | 
|  | N)) { | 
|  | LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  | case Intrinsic::dbg_label: { | 
|  | const DbgLabelInst &DI = cast<DbgLabelInst>(I); | 
|  | DILabel *Label = DI.getLabel(); | 
|  | assert(Label && "Missing label"); | 
|  |  | 
|  | SDDbgLabel *SDV; | 
|  | SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); | 
|  | DAG.AddDbgLabel(SDV); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::dbg_value: { | 
|  | const DbgValueInst &DI = cast<DbgValueInst>(I); | 
|  | assert(DI.getVariable() && "Missing variable"); | 
|  |  | 
|  | DILocalVariable *Variable = DI.getVariable(); | 
|  | DIExpression *Expression = DI.getExpression(); | 
|  | dropDanglingDebugInfo(Variable, Expression); | 
|  | const Value *V = DI.getValue(); | 
|  | if (!V) | 
|  | return; | 
|  |  | 
|  | if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), | 
|  | SDNodeOrder)) | 
|  | return; | 
|  |  | 
|  | // TODO: Dangling debug info will eventually either be resolved or produce | 
|  | // an Undef DBG_VALUE. However in the resolution case, a gap may appear | 
|  | // between the original dbg.value location and its resolved DBG_VALUE, which | 
|  | // we should ideally fill with an extra Undef DBG_VALUE. | 
|  |  | 
|  | DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Intrinsic::eh_typeid_for: { | 
|  | // Find the type id for the given typeinfo. | 
|  | GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); | 
|  | unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); | 
|  | Res = DAG.getConstant(TypeID, sdl, MVT::i32); | 
|  | setValue(&I, Res); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Intrinsic::eh_return_i32: | 
|  | case Intrinsic::eh_return_i64: | 
|  | DAG.getMachineFunction().setCallsEHReturn(true); | 
|  | DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, | 
|  | MVT::Other, | 
|  | getControlRoot(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)))); | 
|  | return; | 
|  | case Intrinsic::eh_unwind_init: | 
|  | DAG.getMachineFunction().setCallsUnwindInit(true); | 
|  | return; | 
|  | case Intrinsic::eh_dwarf_cfa: | 
|  | setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, | 
|  | TLI.getPointerTy(DAG.getDataLayout()), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return; | 
|  | case Intrinsic::eh_sjlj_callsite: { | 
|  | MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); | 
|  | assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); | 
|  | assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); | 
|  |  | 
|  | MMI.setCurrentCallSite(CI->getZExtValue()); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::eh_sjlj_functioncontext: { | 
|  | // Get and store the index of the function context. | 
|  | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | AllocaInst *FnCtx = | 
|  | cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); | 
|  | int FI = FuncInfo.StaticAllocaMap[FnCtx]; | 
|  | MFI.setFunctionContextIndex(FI); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::eh_sjlj_setjmp: { | 
|  | SDValue Ops[2]; | 
|  | Ops[0] = getRoot(); | 
|  | Ops[1] = getValue(I.getArgOperand(0)); | 
|  | SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, | 
|  | DAG.getVTList(MVT::i32, MVT::Other), Ops); | 
|  | setValue(&I, Op.getValue(0)); | 
|  | DAG.setRoot(Op.getValue(1)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::eh_sjlj_longjmp: | 
|  | DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, | 
|  | getRoot(), getValue(I.getArgOperand(0)))); | 
|  | return; | 
|  | case Intrinsic::eh_sjlj_setup_dispatch: | 
|  | DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, | 
|  | getRoot())); | 
|  | return; | 
|  | case Intrinsic::masked_gather: | 
|  | visitMaskedGather(I); | 
|  | return; | 
|  | case Intrinsic::masked_load: | 
|  | visitMaskedLoad(I); | 
|  | return; | 
|  | case Intrinsic::masked_scatter: | 
|  | visitMaskedScatter(I); | 
|  | return; | 
|  | case Intrinsic::masked_store: | 
|  | visitMaskedStore(I); | 
|  | return; | 
|  | case Intrinsic::masked_expandload: | 
|  | visitMaskedLoad(I, true /* IsExpanding */); | 
|  | return; | 
|  | case Intrinsic::masked_compressstore: | 
|  | visitMaskedStore(I, true /* IsCompressing */); | 
|  | return; | 
|  | case Intrinsic::powi: | 
|  | setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)), DAG)); | 
|  | return; | 
|  | case Intrinsic::log: | 
|  | setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); | 
|  | return; | 
|  | case Intrinsic::log2: | 
|  | setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); | 
|  | return; | 
|  | case Intrinsic::log10: | 
|  | setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); | 
|  | return; | 
|  | case Intrinsic::exp: | 
|  | setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); | 
|  | return; | 
|  | case Intrinsic::exp2: | 
|  | setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); | 
|  | return; | 
|  | case Intrinsic::pow: | 
|  | setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)), DAG, TLI)); | 
|  | return; | 
|  | case Intrinsic::sqrt: | 
|  | case Intrinsic::fabs: | 
|  | case Intrinsic::sin: | 
|  | case Intrinsic::cos: | 
|  | case Intrinsic::floor: | 
|  | case Intrinsic::ceil: | 
|  | case Intrinsic::trunc: | 
|  | case Intrinsic::rint: | 
|  | case Intrinsic::nearbyint: | 
|  | case Intrinsic::round: | 
|  | case Intrinsic::canonicalize: { | 
|  | unsigned Opcode; | 
|  | switch (Intrinsic) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break; | 
|  | case Intrinsic::fabs:      Opcode = ISD::FABS;       break; | 
|  | case Intrinsic::sin:       Opcode = ISD::FSIN;       break; | 
|  | case Intrinsic::cos:       Opcode = ISD::FCOS;       break; | 
|  | case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break; | 
|  | case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break; | 
|  | case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break; | 
|  | case Intrinsic::rint:      Opcode = ISD::FRINT;      break; | 
|  | case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; | 
|  | case Intrinsic::round:     Opcode = ISD::FROUND;     break; | 
|  | case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; | 
|  | } | 
|  |  | 
|  | setValue(&I, DAG.getNode(Opcode, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::lround: | 
|  | case Intrinsic::llround: | 
|  | case Intrinsic::lrint: | 
|  | case Intrinsic::llrint: { | 
|  | unsigned Opcode; | 
|  | switch (Intrinsic) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::lround:  Opcode = ISD::LROUND;  break; | 
|  | case Intrinsic::llround: Opcode = ISD::LLROUND; break; | 
|  | case Intrinsic::lrint:   Opcode = ISD::LRINT;   break; | 
|  | case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break; | 
|  | } | 
|  |  | 
|  | EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | setValue(&I, DAG.getNode(Opcode, sdl, RetVT, | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::minnum: | 
|  | setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)))); | 
|  | return; | 
|  | case Intrinsic::maxnum: | 
|  | setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)))); | 
|  | return; | 
|  | case Intrinsic::minimum: | 
|  | setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)))); | 
|  | return; | 
|  | case Intrinsic::maximum: | 
|  | setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)))); | 
|  | return; | 
|  | case Intrinsic::copysign: | 
|  | setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)))); | 
|  | return; | 
|  | case Intrinsic::fma: | 
|  | setValue(&I, DAG.getNode(ISD::FMA, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)), | 
|  | getValue(I.getArgOperand(2)))); | 
|  | return; | 
|  | case Intrinsic::experimental_constrained_fadd: | 
|  | case Intrinsic::experimental_constrained_fsub: | 
|  | case Intrinsic::experimental_constrained_fmul: | 
|  | case Intrinsic::experimental_constrained_fdiv: | 
|  | case Intrinsic::experimental_constrained_frem: | 
|  | case Intrinsic::experimental_constrained_fma: | 
|  | case Intrinsic::experimental_constrained_fptosi: | 
|  | case Intrinsic::experimental_constrained_fptoui: | 
|  | case Intrinsic::experimental_constrained_fptrunc: | 
|  | case Intrinsic::experimental_constrained_fpext: | 
|  | case Intrinsic::experimental_constrained_sqrt: | 
|  | case Intrinsic::experimental_constrained_pow: | 
|  | case Intrinsic::experimental_constrained_powi: | 
|  | case Intrinsic::experimental_constrained_sin: | 
|  | case Intrinsic::experimental_constrained_cos: | 
|  | case Intrinsic::experimental_constrained_exp: | 
|  | case Intrinsic::experimental_constrained_exp2: | 
|  | case Intrinsic::experimental_constrained_log: | 
|  | case Intrinsic::experimental_constrained_log10: | 
|  | case Intrinsic::experimental_constrained_log2: | 
|  | case Intrinsic::experimental_constrained_lrint: | 
|  | case Intrinsic::experimental_constrained_llrint: | 
|  | case Intrinsic::experimental_constrained_rint: | 
|  | case Intrinsic::experimental_constrained_nearbyint: | 
|  | case Intrinsic::experimental_constrained_maxnum: | 
|  | case Intrinsic::experimental_constrained_minnum: | 
|  | case Intrinsic::experimental_constrained_ceil: | 
|  | case Intrinsic::experimental_constrained_floor: | 
|  | case Intrinsic::experimental_constrained_lround: | 
|  | case Intrinsic::experimental_constrained_llround: | 
|  | case Intrinsic::experimental_constrained_round: | 
|  | case Intrinsic::experimental_constrained_trunc: | 
|  | visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); | 
|  | return; | 
|  | case Intrinsic::fmuladd: { | 
|  | EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && | 
|  | TLI.isFMAFasterThanFMulAndFAdd(VT)) { | 
|  | setValue(&I, DAG.getNode(ISD::FMA, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)), | 
|  | getValue(I.getArgOperand(2)))); | 
|  | } else { | 
|  | // TODO: Intrinsic calls should have fast-math-flags. | 
|  | SDValue Mul = DAG.getNode(ISD::FMUL, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1))); | 
|  | SDValue Add = DAG.getNode(ISD::FADD, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | Mul, | 
|  | getValue(I.getArgOperand(2))); | 
|  | setValue(&I, Add); | 
|  | } | 
|  | return; | 
|  | } | 
|  | case Intrinsic::convert_to_fp16: | 
|  | setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, | 
|  | DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, | 
|  | getValue(I.getArgOperand(0)), | 
|  | DAG.getTargetConstant(0, sdl, | 
|  | MVT::i32)))); | 
|  | return; | 
|  | case Intrinsic::convert_from_fp16: | 
|  | setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, | 
|  | TLI.getValueType(DAG.getDataLayout(), I.getType()), | 
|  | DAG.getNode(ISD::BITCAST, sdl, MVT::f16, | 
|  | getValue(I.getArgOperand(0))))); | 
|  | return; | 
|  | case Intrinsic::pcmarker: { | 
|  | SDValue Tmp = getValue(I.getArgOperand(0)); | 
|  | DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::readcyclecounter: { | 
|  | SDValue Op = getRoot(); | 
|  | Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, | 
|  | DAG.getVTList(MVT::i64, MVT::Other), Op); | 
|  | setValue(&I, Res); | 
|  | DAG.setRoot(Res.getValue(1)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::bitreverse: | 
|  | setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return; | 
|  | case Intrinsic::bswap: | 
|  | setValue(&I, DAG.getNode(ISD::BSWAP, sdl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return; | 
|  | case Intrinsic::cttz: { | 
|  | SDValue Arg = getValue(I.getArgOperand(0)); | 
|  | ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); | 
|  | EVT Ty = Arg.getValueType(); | 
|  | setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, | 
|  | sdl, Ty, Arg)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::ctlz: { | 
|  | SDValue Arg = getValue(I.getArgOperand(0)); | 
|  | ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); | 
|  | EVT Ty = Arg.getValueType(); | 
|  | setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, | 
|  | sdl, Ty, Arg)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::ctpop: { | 
|  | SDValue Arg = getValue(I.getArgOperand(0)); | 
|  | EVT Ty = Arg.getValueType(); | 
|  | setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::fshl: | 
|  | case Intrinsic::fshr: { | 
|  | bool IsFSHL = Intrinsic == Intrinsic::fshl; | 
|  | SDValue X = getValue(I.getArgOperand(0)); | 
|  | SDValue Y = getValue(I.getArgOperand(1)); | 
|  | SDValue Z = getValue(I.getArgOperand(2)); | 
|  | EVT VT = X.getValueType(); | 
|  | SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); | 
|  | SDValue Zero = DAG.getConstant(0, sdl, VT); | 
|  | SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); | 
|  |  | 
|  | auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; | 
|  | if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { | 
|  | setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // When X == Y, this is rotate. If the data type has a power-of-2 size, we | 
|  | // avoid the select that is necessary in the general case to filter out | 
|  | // the 0-shift possibility that leads to UB. | 
|  | if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { | 
|  | auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; | 
|  | if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { | 
|  | setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Some targets only rotate one way. Try the opposite direction. | 
|  | RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; | 
|  | if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { | 
|  | // Negate the shift amount because it is safe to ignore the high bits. | 
|  | SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); | 
|  | setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) | 
|  | // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) | 
|  | SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); | 
|  | SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); | 
|  | SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); | 
|  | SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); | 
|  | setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) | 
|  | // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) | 
|  | SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); | 
|  | SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); | 
|  | SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); | 
|  | SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); | 
|  |  | 
|  | // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, | 
|  | // and that is undefined. We must compare and select to avoid UB. | 
|  | EVT CCVT = MVT::i1; | 
|  | if (VT.isVector()) | 
|  | CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); | 
|  |  | 
|  | // For fshl, 0-shift returns the 1st arg (X). | 
|  | // For fshr, 0-shift returns the 2nd arg (Y). | 
|  | SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); | 
|  | setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::sadd_sat: { | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  | setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::uadd_sat: { | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  | setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::ssub_sat: { | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  | setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::usub_sat: { | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  | setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::smul_fix: | 
|  | case Intrinsic::umul_fix: { | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  | SDValue Op3 = getValue(I.getArgOperand(2)); | 
|  | setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, | 
|  | Op1.getValueType(), Op1, Op2, Op3)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::smul_fix_sat: { | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  | SDValue Op3 = getValue(I.getArgOperand(2)); | 
|  | setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, | 
|  | Op3)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::umul_fix_sat: { | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  | SDValue Op3 = getValue(I.getArgOperand(2)); | 
|  | setValue(&I, DAG.getNode(ISD::UMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, | 
|  | Op3)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::stacksave: { | 
|  | SDValue Op = getRoot(); | 
|  | Res = DAG.getNode( | 
|  | ISD::STACKSAVE, sdl, | 
|  | DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); | 
|  | setValue(&I, Res); | 
|  | DAG.setRoot(Res.getValue(1)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::stackrestore: | 
|  | Res = getValue(I.getArgOperand(0)); | 
|  | DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); | 
|  | return; | 
|  | case Intrinsic::get_dynamic_area_offset: { | 
|  | SDValue Op = getRoot(); | 
|  | EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); | 
|  | EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | // Result type for @llvm.get.dynamic.area.offset should match PtrTy for | 
|  | // target. | 
|  | if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) | 
|  | report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" | 
|  | " intrinsic!"); | 
|  | Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), | 
|  | Op); | 
|  | DAG.setRoot(Op); | 
|  | setValue(&I, Res); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::stackguard: { | 
|  | EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const Module &M = *MF.getFunction().getParent(); | 
|  | SDValue Chain = getRoot(); | 
|  | if (TLI.useLoadStackGuardNode()) { | 
|  | Res = getLoadStackGuard(DAG, sdl, Chain); | 
|  | } else { | 
|  | const Value *Global = TLI.getSDagStackGuard(M); | 
|  | unsigned Align = DL->getPrefTypeAlignment(Global->getType()); | 
|  | Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), | 
|  | MachinePointerInfo(Global, 0), Align, | 
|  | MachineMemOperand::MOVolatile); | 
|  | } | 
|  | if (TLI.useStackGuardXorFP()) | 
|  | Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); | 
|  | DAG.setRoot(Chain); | 
|  | setValue(&I, Res); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::stackprotector: { | 
|  | // Emit code into the DAG to store the stack guard onto the stack. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); | 
|  | SDValue Src, Chain = getRoot(); | 
|  |  | 
|  | if (TLI.useLoadStackGuardNode()) | 
|  | Src = getLoadStackGuard(DAG, sdl, Chain); | 
|  | else | 
|  | Src = getValue(I.getArgOperand(0));   // The guard's value. | 
|  |  | 
|  | AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); | 
|  |  | 
|  | int FI = FuncInfo.StaticAllocaMap[Slot]; | 
|  | MFI.setStackProtectorIndex(FI); | 
|  |  | 
|  | SDValue FIN = DAG.getFrameIndex(FI, PtrTy); | 
|  |  | 
|  | // Store the stack protector onto the stack. | 
|  | Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( | 
|  | DAG.getMachineFunction(), FI), | 
|  | /* Alignment = */ 0, MachineMemOperand::MOVolatile); | 
|  | setValue(&I, Res); | 
|  | DAG.setRoot(Res); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::objectsize: | 
|  | llvm_unreachable("llvm.objectsize.* should have been lowered already"); | 
|  |  | 
|  | case Intrinsic::is_constant: | 
|  | llvm_unreachable("llvm.is.constant.* should have been lowered already"); | 
|  |  | 
|  | case Intrinsic::annotation: | 
|  | case Intrinsic::ptr_annotation: | 
|  | case Intrinsic::launder_invariant_group: | 
|  | case Intrinsic::strip_invariant_group: | 
|  | // Drop the intrinsic, but forward the value | 
|  | setValue(&I, getValue(I.getOperand(0))); | 
|  | return; | 
|  | case Intrinsic::assume: | 
|  | case Intrinsic::var_annotation: | 
|  | case Intrinsic::sideeffect: | 
|  | // Discard annotate attributes, assumptions, and artificial side-effects. | 
|  | return; | 
|  |  | 
|  | case Intrinsic::codeview_annotation: { | 
|  | // Emit a label associated with this metadata. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MCSymbol *Label = | 
|  | MF.getMMI().getContext().createTempSymbol("annotation", true); | 
|  | Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); | 
|  | MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); | 
|  | Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); | 
|  | DAG.setRoot(Res); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Intrinsic::init_trampoline: { | 
|  | const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); | 
|  |  | 
|  | SDValue Ops[6]; | 
|  | Ops[0] = getRoot(); | 
|  | Ops[1] = getValue(I.getArgOperand(0)); | 
|  | Ops[2] = getValue(I.getArgOperand(1)); | 
|  | Ops[3] = getValue(I.getArgOperand(2)); | 
|  | Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); | 
|  | Ops[5] = DAG.getSrcValue(F); | 
|  |  | 
|  | Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); | 
|  |  | 
|  | DAG.setRoot(Res); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::adjust_trampoline: | 
|  | setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, | 
|  | TLI.getPointerTy(DAG.getDataLayout()), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return; | 
|  | case Intrinsic::gcroot: { | 
|  | assert(DAG.getMachineFunction().getFunction().hasGC() && | 
|  | "only valid in functions with gc specified, enforced by Verifier"); | 
|  | assert(GFI && "implied by previous"); | 
|  | const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); | 
|  | const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); | 
|  |  | 
|  | FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); | 
|  | GFI->addStackRoot(FI->getIndex(), TypeMap); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::gcread: | 
|  | case Intrinsic::gcwrite: | 
|  | llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); | 
|  | case Intrinsic::flt_rounds: | 
|  | setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); | 
|  | return; | 
|  |  | 
|  | case Intrinsic::expect: | 
|  | // Just replace __builtin_expect(exp, c) with EXP. | 
|  | setValue(&I, getValue(I.getArgOperand(0))); | 
|  | return; | 
|  |  | 
|  | case Intrinsic::debugtrap: | 
|  | case Intrinsic::trap: { | 
|  | StringRef TrapFuncName = | 
|  | I.getAttributes() | 
|  | .getAttribute(AttributeList::FunctionIndex, "trap-func-name") | 
|  | .getValueAsString(); | 
|  | if (TrapFuncName.empty()) { | 
|  | ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? | 
|  | ISD::TRAP : ISD::DEBUGTRAP; | 
|  | DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); | 
|  | return; | 
|  | } | 
|  | TargetLowering::ArgListTy Args; | 
|  |  | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( | 
|  | CallingConv::C, I.getType(), | 
|  | DAG.getExternalSymbol(TrapFuncName.data(), | 
|  | TLI.getPointerTy(DAG.getDataLayout())), | 
|  | std::move(Args)); | 
|  |  | 
|  | std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); | 
|  | DAG.setRoot(Result.second); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Intrinsic::uadd_with_overflow: | 
|  | case Intrinsic::sadd_with_overflow: | 
|  | case Intrinsic::usub_with_overflow: | 
|  | case Intrinsic::ssub_with_overflow: | 
|  | case Intrinsic::umul_with_overflow: | 
|  | case Intrinsic::smul_with_overflow: { | 
|  | ISD::NodeType Op; | 
|  | switch (Intrinsic) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; | 
|  | case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; | 
|  | case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; | 
|  | case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; | 
|  | case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; | 
|  | case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; | 
|  | } | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  |  | 
|  | EVT ResultVT = Op1.getValueType(); | 
|  | EVT OverflowVT = MVT::i1; | 
|  | if (ResultVT.isVector()) | 
|  | OverflowVT = EVT::getVectorVT( | 
|  | *Context, OverflowVT, ResultVT.getVectorNumElements()); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); | 
|  | setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::prefetch: { | 
|  | SDValue Ops[5]; | 
|  | unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); | 
|  | auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; | 
|  | Ops[0] = DAG.getRoot(); | 
|  | Ops[1] = getValue(I.getArgOperand(0)); | 
|  | Ops[2] = getValue(I.getArgOperand(1)); | 
|  | Ops[3] = getValue(I.getArgOperand(2)); | 
|  | Ops[4] = getValue(I.getArgOperand(3)); | 
|  | SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, | 
|  | DAG.getVTList(MVT::Other), Ops, | 
|  | EVT::getIntegerVT(*Context, 8), | 
|  | MachinePointerInfo(I.getArgOperand(0)), | 
|  | 0, /* align */ | 
|  | Flags); | 
|  |  | 
|  | // Chain the prefetch in parallell with any pending loads, to stay out of | 
|  | // the way of later optimizations. | 
|  | PendingLoads.push_back(Result); | 
|  | Result = getRoot(); | 
|  | DAG.setRoot(Result); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::lifetime_start: | 
|  | case Intrinsic::lifetime_end: { | 
|  | bool IsStart = (Intrinsic == Intrinsic::lifetime_start); | 
|  | // Stack coloring is not enabled in O0, discard region information. | 
|  | if (TM.getOptLevel() == CodeGenOpt::None) | 
|  | return; | 
|  |  | 
|  | const int64_t ObjectSize = | 
|  | cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); | 
|  | Value *const ObjectPtr = I.getArgOperand(1); | 
|  | SmallVector<const Value *, 4> Allocas; | 
|  | GetUnderlyingObjects(ObjectPtr, Allocas, *DL); | 
|  |  | 
|  | for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), | 
|  | E = Allocas.end(); Object != E; ++Object) { | 
|  | const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); | 
|  |  | 
|  | // Could not find an Alloca. | 
|  | if (!LifetimeObject) | 
|  | continue; | 
|  |  | 
|  | // First check that the Alloca is static, otherwise it won't have a | 
|  | // valid frame index. | 
|  | auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); | 
|  | if (SI == FuncInfo.StaticAllocaMap.end()) | 
|  | return; | 
|  |  | 
|  | const int FrameIndex = SI->second; | 
|  | int64_t Offset; | 
|  | if (GetPointerBaseWithConstantOffset( | 
|  | ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) | 
|  | Offset = -1; // Cannot determine offset from alloca to lifetime object. | 
|  | Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, | 
|  | Offset); | 
|  | DAG.setRoot(Res); | 
|  | } | 
|  | return; | 
|  | } | 
|  | case Intrinsic::invariant_start: | 
|  | // Discard region information. | 
|  | setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); | 
|  | return; | 
|  | case Intrinsic::invariant_end: | 
|  | // Discard region information. | 
|  | return; | 
|  | case Intrinsic::clear_cache: | 
|  | /// FunctionName may be null. | 
|  | if (const char *FunctionName = TLI.getClearCacheBuiltinName()) | 
|  | lowerCallToExternalSymbol(I, FunctionName); | 
|  | return; | 
|  | case Intrinsic::donothing: | 
|  | // ignore | 
|  | return; | 
|  | case Intrinsic::experimental_stackmap: | 
|  | visitStackmap(I); | 
|  | return; | 
|  | case Intrinsic::experimental_patchpoint_void: | 
|  | case Intrinsic::experimental_patchpoint_i64: | 
|  | visitPatchpoint(&I); | 
|  | return; | 
|  | case Intrinsic::experimental_gc_statepoint: | 
|  | LowerStatepoint(ImmutableStatepoint(&I)); | 
|  | return; | 
|  | case Intrinsic::experimental_gc_result: | 
|  | visitGCResult(cast<GCResultInst>(I)); | 
|  | return; | 
|  | case Intrinsic::experimental_gc_relocate: | 
|  | visitGCRelocate(cast<GCRelocateInst>(I)); | 
|  | return; | 
|  | case Intrinsic::instrprof_increment: | 
|  | llvm_unreachable("instrprof failed to lower an increment"); | 
|  | case Intrinsic::instrprof_value_profile: | 
|  | llvm_unreachable("instrprof failed to lower a value profiling call"); | 
|  | case Intrinsic::localescape: { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); | 
|  |  | 
|  | // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission | 
|  | // is the same on all targets. | 
|  | for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { | 
|  | Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); | 
|  | if (isa<ConstantPointerNull>(Arg)) | 
|  | continue; // Skip null pointers. They represent a hole in index space. | 
|  | AllocaInst *Slot = cast<AllocaInst>(Arg); | 
|  | assert(FuncInfo.StaticAllocaMap.count(Slot) && | 
|  | "can only escape static allocas"); | 
|  | int FI = FuncInfo.StaticAllocaMap[Slot]; | 
|  | MCSymbol *FrameAllocSym = | 
|  | MF.getMMI().getContext().getOrCreateFrameAllocSymbol( | 
|  | GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, | 
|  | TII->get(TargetOpcode::LOCAL_ESCAPE)) | 
|  | .addSym(FrameAllocSym) | 
|  | .addFrameIndex(FI); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Intrinsic::localrecover: { | 
|  | // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); | 
|  |  | 
|  | // Get the symbol that defines the frame offset. | 
|  | auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); | 
|  | auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); | 
|  | unsigned IdxVal = | 
|  | unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); | 
|  | MCSymbol *FrameAllocSym = | 
|  | MF.getMMI().getContext().getOrCreateFrameAllocSymbol( | 
|  | GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); | 
|  |  | 
|  | // Create a MCSymbol for the label to avoid any target lowering | 
|  | // that would make this PC relative. | 
|  | SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); | 
|  | SDValue OffsetVal = | 
|  | DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); | 
|  |  | 
|  | // Add the offset to the FP. | 
|  | Value *FP = I.getArgOperand(1); | 
|  | SDValue FPVal = getValue(FP); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); | 
|  | setValue(&I, Add); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Intrinsic::eh_exceptionpointer: | 
|  | case Intrinsic::eh_exceptioncode: { | 
|  | // Get the exception pointer vreg, copy from it, and resize it to fit. | 
|  | const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); | 
|  | MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); | 
|  | const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); | 
|  | unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); | 
|  | SDValue N = | 
|  | DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); | 
|  | if (Intrinsic == Intrinsic::eh_exceptioncode) | 
|  | N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); | 
|  | setValue(&I, N); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::xray_customevent: { | 
|  | // Here we want to make sure that the intrinsic behaves as if it has a | 
|  | // specific calling convention, and only for x86_64. | 
|  | // FIXME: Support other platforms later. | 
|  | const auto &Triple = DAG.getTarget().getTargetTriple(); | 
|  | if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) | 
|  | return; | 
|  |  | 
|  | SDLoc DL = getCurSDLoc(); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  |  | 
|  | // We want to say that we always want the arguments in registers. | 
|  | SDValue LogEntryVal = getValue(I.getArgOperand(0)); | 
|  | SDValue StrSizeVal = getValue(I.getArgOperand(1)); | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDValue Chain = getRoot(); | 
|  | Ops.push_back(LogEntryVal); | 
|  | Ops.push_back(StrSizeVal); | 
|  | Ops.push_back(Chain); | 
|  |  | 
|  | // We need to enforce the calling convention for the callsite, so that | 
|  | // argument ordering is enforced correctly, and that register allocation can | 
|  | // see that some registers may be assumed clobbered and have to preserve | 
|  | // them across calls to the intrinsic. | 
|  | MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, | 
|  | DL, NodeTys, Ops); | 
|  | SDValue patchableNode = SDValue(MN, 0); | 
|  | DAG.setRoot(patchableNode); | 
|  | setValue(&I, patchableNode); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::xray_typedevent: { | 
|  | // Here we want to make sure that the intrinsic behaves as if it has a | 
|  | // specific calling convention, and only for x86_64. | 
|  | // FIXME: Support other platforms later. | 
|  | const auto &Triple = DAG.getTarget().getTargetTriple(); | 
|  | if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) | 
|  | return; | 
|  |  | 
|  | SDLoc DL = getCurSDLoc(); | 
|  | SmallVector<SDValue, 8> Ops; | 
|  |  | 
|  | // We want to say that we always want the arguments in registers. | 
|  | // It's unclear to me how manipulating the selection DAG here forces callers | 
|  | // to provide arguments in registers instead of on the stack. | 
|  | SDValue LogTypeId = getValue(I.getArgOperand(0)); | 
|  | SDValue LogEntryVal = getValue(I.getArgOperand(1)); | 
|  | SDValue StrSizeVal = getValue(I.getArgOperand(2)); | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDValue Chain = getRoot(); | 
|  | Ops.push_back(LogTypeId); | 
|  | Ops.push_back(LogEntryVal); | 
|  | Ops.push_back(StrSizeVal); | 
|  | Ops.push_back(Chain); | 
|  |  | 
|  | // We need to enforce the calling convention for the callsite, so that | 
|  | // argument ordering is enforced correctly, and that register allocation can | 
|  | // see that some registers may be assumed clobbered and have to preserve | 
|  | // them across calls to the intrinsic. | 
|  | MachineSDNode *MN = DAG.getMachineNode( | 
|  | TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); | 
|  | SDValue patchableNode = SDValue(MN, 0); | 
|  | DAG.setRoot(patchableNode); | 
|  | setValue(&I, patchableNode); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::experimental_deoptimize: | 
|  | LowerDeoptimizeCall(&I); | 
|  | return; | 
|  |  | 
|  | case Intrinsic::experimental_vector_reduce_v2_fadd: | 
|  | case Intrinsic::experimental_vector_reduce_v2_fmul: | 
|  | case Intrinsic::experimental_vector_reduce_add: | 
|  | case Intrinsic::experimental_vector_reduce_mul: | 
|  | case Intrinsic::experimental_vector_reduce_and: | 
|  | case Intrinsic::experimental_vector_reduce_or: | 
|  | case Intrinsic::experimental_vector_reduce_xor: | 
|  | case Intrinsic::experimental_vector_reduce_smax: | 
|  | case Intrinsic::experimental_vector_reduce_smin: | 
|  | case Intrinsic::experimental_vector_reduce_umax: | 
|  | case Intrinsic::experimental_vector_reduce_umin: | 
|  | case Intrinsic::experimental_vector_reduce_fmax: | 
|  | case Intrinsic::experimental_vector_reduce_fmin: | 
|  | visitVectorReduce(I, Intrinsic); | 
|  | return; | 
|  |  | 
|  | case Intrinsic::icall_branch_funnel: { | 
|  | SmallVector<SDValue, 16> Ops; | 
|  | Ops.push_back(getValue(I.getArgOperand(0))); | 
|  |  | 
|  | int64_t Offset; | 
|  | auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( | 
|  | I.getArgOperand(1), Offset, DAG.getDataLayout())); | 
|  | if (!Base) | 
|  | report_fatal_error( | 
|  | "llvm.icall.branch.funnel operand must be a GlobalValue"); | 
|  | Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); | 
|  |  | 
|  | struct BranchFunnelTarget { | 
|  | int64_t Offset; | 
|  | SDValue Target; | 
|  | }; | 
|  | SmallVector<BranchFunnelTarget, 8> Targets; | 
|  |  | 
|  | for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { | 
|  | auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( | 
|  | I.getArgOperand(Op), Offset, DAG.getDataLayout())); | 
|  | if (ElemBase != Base) | 
|  | report_fatal_error("all llvm.icall.branch.funnel operands must refer " | 
|  | "to the same GlobalValue"); | 
|  |  | 
|  | SDValue Val = getValue(I.getArgOperand(Op + 1)); | 
|  | auto *GA = dyn_cast<GlobalAddressSDNode>(Val); | 
|  | if (!GA) | 
|  | report_fatal_error( | 
|  | "llvm.icall.branch.funnel operand must be a GlobalValue"); | 
|  | Targets.push_back({Offset, DAG.getTargetGlobalAddress( | 
|  | GA->getGlobal(), getCurSDLoc(), | 
|  | Val.getValueType(), GA->getOffset())}); | 
|  | } | 
|  | llvm::sort(Targets, | 
|  | [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { | 
|  | return T1.Offset < T2.Offset; | 
|  | }); | 
|  |  | 
|  | for (auto &T : Targets) { | 
|  | Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); | 
|  | Ops.push_back(T.Target); | 
|  | } | 
|  |  | 
|  | Ops.push_back(DAG.getRoot()); // Chain | 
|  | SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, | 
|  | getCurSDLoc(), MVT::Other, Ops), | 
|  | 0); | 
|  | DAG.setRoot(N); | 
|  | setValue(&I, N); | 
|  | HasTailCall = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Intrinsic::wasm_landingpad_index: | 
|  | // Information this intrinsic contained has been transferred to | 
|  | // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely | 
|  | // delete it now. | 
|  | return; | 
|  |  | 
|  | case Intrinsic::aarch64_settag: | 
|  | case Intrinsic::aarch64_settag_zero: { | 
|  | const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); | 
|  | bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; | 
|  | SDValue Val = TSI.EmitTargetCodeForSetTag( | 
|  | DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), | 
|  | ZeroMemory); | 
|  | DAG.setRoot(Val); | 
|  | setValue(&I, Val); | 
|  | return; | 
|  | } | 
|  | case Intrinsic::ptrmask: { | 
|  | SDValue Ptr = getValue(I.getOperand(0)); | 
|  | SDValue Const = getValue(I.getOperand(1)); | 
|  |  | 
|  | EVT DestVT = | 
|  | EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, | 
|  | DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitConstrainedFPIntrinsic( | 
|  | const ConstrainedFPIntrinsic &FPI) { | 
|  | SDLoc sdl = getCurSDLoc(); | 
|  | unsigned Opcode; | 
|  | switch (FPI.getIntrinsicID()) { | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | case Intrinsic::experimental_constrained_fadd: | 
|  | Opcode = ISD::STRICT_FADD; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_fsub: | 
|  | Opcode = ISD::STRICT_FSUB; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_fmul: | 
|  | Opcode = ISD::STRICT_FMUL; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_fdiv: | 
|  | Opcode = ISD::STRICT_FDIV; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_frem: | 
|  | Opcode = ISD::STRICT_FREM; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_fma: | 
|  | Opcode = ISD::STRICT_FMA; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_fptosi: | 
|  | Opcode = ISD::STRICT_FP_TO_SINT; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_fptoui: | 
|  | Opcode = ISD::STRICT_FP_TO_UINT; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_fptrunc: | 
|  | Opcode = ISD::STRICT_FP_ROUND; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_fpext: | 
|  | Opcode = ISD::STRICT_FP_EXTEND; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_sqrt: | 
|  | Opcode = ISD::STRICT_FSQRT; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_pow: | 
|  | Opcode = ISD::STRICT_FPOW; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_powi: | 
|  | Opcode = ISD::STRICT_FPOWI; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_sin: | 
|  | Opcode = ISD::STRICT_FSIN; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_cos: | 
|  | Opcode = ISD::STRICT_FCOS; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_exp: | 
|  | Opcode = ISD::STRICT_FEXP; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_exp2: | 
|  | Opcode = ISD::STRICT_FEXP2; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_log: | 
|  | Opcode = ISD::STRICT_FLOG; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_log10: | 
|  | Opcode = ISD::STRICT_FLOG10; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_log2: | 
|  | Opcode = ISD::STRICT_FLOG2; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_lrint: | 
|  | Opcode = ISD::STRICT_LRINT; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_llrint: | 
|  | Opcode = ISD::STRICT_LLRINT; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_rint: | 
|  | Opcode = ISD::STRICT_FRINT; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_nearbyint: | 
|  | Opcode = ISD::STRICT_FNEARBYINT; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_maxnum: | 
|  | Opcode = ISD::STRICT_FMAXNUM; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_minnum: | 
|  | Opcode = ISD::STRICT_FMINNUM; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_ceil: | 
|  | Opcode = ISD::STRICT_FCEIL; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_floor: | 
|  | Opcode = ISD::STRICT_FFLOOR; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_lround: | 
|  | Opcode = ISD::STRICT_LROUND; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_llround: | 
|  | Opcode = ISD::STRICT_LLROUND; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_round: | 
|  | Opcode = ISD::STRICT_FROUND; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_trunc: | 
|  | Opcode = ISD::STRICT_FTRUNC; | 
|  | break; | 
|  | } | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue Chain = getRoot(); | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); | 
|  | ValueVTs.push_back(MVT::Other); // Out chain | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(ValueVTs); | 
|  | SDValue Result; | 
|  | if (Opcode == ISD::STRICT_FP_ROUND) | 
|  | Result = DAG.getNode(Opcode, sdl, VTs, | 
|  | { Chain, getValue(FPI.getArgOperand(0)), | 
|  | DAG.getTargetConstant(0, sdl, | 
|  | TLI.getPointerTy(DAG.getDataLayout())) }); | 
|  | else if (FPI.isUnaryOp()) | 
|  | Result = DAG.getNode(Opcode, sdl, VTs, | 
|  | { Chain, getValue(FPI.getArgOperand(0)) }); | 
|  | else if (FPI.isTernaryOp()) | 
|  | Result = DAG.getNode(Opcode, sdl, VTs, | 
|  | { Chain, getValue(FPI.getArgOperand(0)), | 
|  | getValue(FPI.getArgOperand(1)), | 
|  | getValue(FPI.getArgOperand(2)) }); | 
|  | else | 
|  | Result = DAG.getNode(Opcode, sdl, VTs, | 
|  | { Chain, getValue(FPI.getArgOperand(0)), | 
|  | getValue(FPI.getArgOperand(1))  }); | 
|  |  | 
|  | if (FPI.getExceptionBehavior() != | 
|  | ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore) { | 
|  | SDNodeFlags Flags; | 
|  | Flags.setFPExcept(true); | 
|  | Result->setFlags(Flags); | 
|  | } | 
|  |  | 
|  | assert(Result.getNode()->getNumValues() == 2); | 
|  | SDValue OutChain = Result.getValue(1); | 
|  | DAG.setRoot(OutChain); | 
|  | SDValue FPResult = Result.getValue(0); | 
|  | setValue(&FPI, FPResult); | 
|  | } | 
|  |  | 
|  | std::pair<SDValue, SDValue> | 
|  | SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, | 
|  | const BasicBlock *EHPadBB) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineModuleInfo &MMI = MF.getMMI(); | 
|  | MCSymbol *BeginLabel = nullptr; | 
|  |  | 
|  | if (EHPadBB) { | 
|  | // Insert a label before the invoke call to mark the try range.  This can be | 
|  | // used to detect deletion of the invoke via the MachineModuleInfo. | 
|  | BeginLabel = MMI.getContext().createTempSymbol(); | 
|  |  | 
|  | // For SjLj, keep track of which landing pads go with which invokes | 
|  | // so as to maintain the ordering of pads in the LSDA. | 
|  | unsigned CallSiteIndex = MMI.getCurrentCallSite(); | 
|  | if (CallSiteIndex) { | 
|  | MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); | 
|  | LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); | 
|  |  | 
|  | // Now that the call site is handled, stop tracking it. | 
|  | MMI.setCurrentCallSite(0); | 
|  | } | 
|  |  | 
|  | // Both PendingLoads and PendingExports must be flushed here; | 
|  | // this call might not return. | 
|  | (void)getRoot(); | 
|  | DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); | 
|  |  | 
|  | CLI.setChain(getRoot()); | 
|  | } | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); | 
|  |  | 
|  | assert((CLI.IsTailCall || Result.second.getNode()) && | 
|  | "Non-null chain expected with non-tail call!"); | 
|  | assert((Result.second.getNode() || !Result.first.getNode()) && | 
|  | "Null value expected with tail call!"); | 
|  |  | 
|  | if (!Result.second.getNode()) { | 
|  | // As a special case, a null chain means that a tail call has been emitted | 
|  | // and the DAG root is already updated. | 
|  | HasTailCall = true; | 
|  |  | 
|  | // Since there's no actual continuation from this block, nothing can be | 
|  | // relying on us setting vregs for them. | 
|  | PendingExports.clear(); | 
|  | } else { | 
|  | DAG.setRoot(Result.second); | 
|  | } | 
|  |  | 
|  | if (EHPadBB) { | 
|  | // Insert a label at the end of the invoke call to mark the try range.  This | 
|  | // can be used to detect deletion of the invoke via the MachineModuleInfo. | 
|  | MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); | 
|  | DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); | 
|  |  | 
|  | // Inform MachineModuleInfo of range. | 
|  | auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); | 
|  | // There is a platform (e.g. wasm) that uses funclet style IR but does not | 
|  | // actually use outlined funclets and their LSDA info style. | 
|  | if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { | 
|  | assert(CLI.CS); | 
|  | WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); | 
|  | EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), | 
|  | BeginLabel, EndLabel); | 
|  | } else if (!isScopedEHPersonality(Pers)) { | 
|  | MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, | 
|  | bool isTailCall, | 
|  | const BasicBlock *EHPadBB) { | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | FunctionType *FTy = CS.getFunctionType(); | 
|  | Type *RetTy = CS.getType(); | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | Args.reserve(CS.arg_size()); | 
|  |  | 
|  | const Value *SwiftErrorVal = nullptr; | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | // We can't tail call inside a function with a swifterror argument. Lowering | 
|  | // does not support this yet. It would have to move into the swifterror | 
|  | // register before the call. | 
|  | auto *Caller = CS.getInstruction()->getParent()->getParent(); | 
|  | if (TLI.supportSwiftError() && | 
|  | Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) | 
|  | isTailCall = false; | 
|  |  | 
|  | for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); | 
|  | i != e; ++i) { | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | const Value *V = *i; | 
|  |  | 
|  | // Skip empty types | 
|  | if (V->getType()->isEmptyTy()) | 
|  | continue; | 
|  |  | 
|  | SDValue ArgNode = getValue(V); | 
|  | Entry.Node = ArgNode; Entry.Ty = V->getType(); | 
|  |  | 
|  | Entry.setAttributes(&CS, i - CS.arg_begin()); | 
|  |  | 
|  | // Use swifterror virtual register as input to the call. | 
|  | if (Entry.IsSwiftError && TLI.supportSwiftError()) { | 
|  | SwiftErrorVal = V; | 
|  | // We find the virtual register for the actual swifterror argument. | 
|  | // Instead of using the Value, we use the virtual register instead. | 
|  | Entry.Node = DAG.getRegister( | 
|  | SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), | 
|  | EVT(TLI.getPointerTy(DL))); | 
|  | } | 
|  |  | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | // If we have an explicit sret argument that is an Instruction, (i.e., it | 
|  | // might point to function-local memory), we can't meaningfully tail-call. | 
|  | if (Entry.IsSRet && isa<Instruction>(V)) | 
|  | isTailCall = false; | 
|  | } | 
|  |  | 
|  | // If call site has a cfguardtarget operand bundle, create and add an | 
|  | // additional ArgListEntry. | 
|  | if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) { | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | Value *V = Bundle->Inputs[0]; | 
|  | SDValue ArgNode = getValue(V); | 
|  | Entry.Node = ArgNode; | 
|  | Entry.Ty = V->getType(); | 
|  | Entry.IsCFGuardTarget = true; | 
|  | Args.push_back(Entry); | 
|  | } | 
|  |  | 
|  | // Check if target-independent constraints permit a tail call here. | 
|  | // Target-dependent constraints are checked within TLI->LowerCallTo. | 
|  | if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) | 
|  | isTailCall = false; | 
|  |  | 
|  | // Disable tail calls if there is an swifterror argument. Targets have not | 
|  | // been updated to support tail calls. | 
|  | if (TLI.supportSwiftError() && SwiftErrorVal) | 
|  | isTailCall = false; | 
|  |  | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(getCurSDLoc()) | 
|  | .setChain(getRoot()) | 
|  | .setCallee(RetTy, FTy, Callee, std::move(Args), CS) | 
|  | .setTailCall(isTailCall) | 
|  | .setConvergent(CS.isConvergent()); | 
|  | std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); | 
|  |  | 
|  | if (Result.first.getNode()) { | 
|  | const Instruction *Inst = CS.getInstruction(); | 
|  | Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); | 
|  | setValue(Inst, Result.first); | 
|  | } | 
|  |  | 
|  | // The last element of CLI.InVals has the SDValue for swifterror return. | 
|  | // Here we copy it to a virtual register and update SwiftErrorMap for | 
|  | // book-keeping. | 
|  | if (SwiftErrorVal && TLI.supportSwiftError()) { | 
|  | // Get the last element of InVals. | 
|  | SDValue Src = CLI.InVals.back(); | 
|  | Register VReg = SwiftError.getOrCreateVRegDefAt( | 
|  | CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); | 
|  | SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); | 
|  | DAG.setRoot(CopyNode); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, | 
|  | SelectionDAGBuilder &Builder) { | 
|  | // Check to see if this load can be trivially constant folded, e.g. if the | 
|  | // input is from a string literal. | 
|  | if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { | 
|  | // Cast pointer to the type we really want to load. | 
|  | Type *LoadTy = | 
|  | Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); | 
|  | if (LoadVT.isVector()) | 
|  | LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); | 
|  |  | 
|  | LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), | 
|  | PointerType::getUnqual(LoadTy)); | 
|  |  | 
|  | if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( | 
|  | const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) | 
|  | return Builder.getValue(LoadCst); | 
|  | } | 
|  |  | 
|  | // Otherwise, we have to emit the load.  If the pointer is to unfoldable but | 
|  | // still constant memory, the input chain can be the entry node. | 
|  | SDValue Root; | 
|  | bool ConstantMemory = false; | 
|  |  | 
|  | // Do not serialize (non-volatile) loads of constant memory with anything. | 
|  | if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { | 
|  | Root = Builder.DAG.getEntryNode(); | 
|  | ConstantMemory = true; | 
|  | } else { | 
|  | // Do not serialize non-volatile loads against each other. | 
|  | Root = Builder.DAG.getRoot(); | 
|  | } | 
|  |  | 
|  | SDValue Ptr = Builder.getValue(PtrVal); | 
|  | SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, | 
|  | Ptr, MachinePointerInfo(PtrVal), | 
|  | /* Alignment = */ 1); | 
|  |  | 
|  | if (!ConstantMemory) | 
|  | Builder.PendingLoads.push_back(LoadVal.getValue(1)); | 
|  | return LoadVal; | 
|  | } | 
|  |  | 
|  | /// Record the value for an instruction that produces an integer result, | 
|  | /// converting the type where necessary. | 
|  | void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, | 
|  | SDValue Value, | 
|  | bool IsSigned) { | 
|  | EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType(), true); | 
|  | if (IsSigned) | 
|  | Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); | 
|  | else | 
|  | Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); | 
|  | setValue(&I, Value); | 
|  | } | 
|  |  | 
|  | /// See if we can lower a memcmp call into an optimized form. If so, return | 
|  | /// true and lower it. Otherwise return false, and it will be lowered like a | 
|  | /// normal call. | 
|  | /// The caller already checked that \p I calls the appropriate LibFunc with a | 
|  | /// correct prototype. | 
|  | bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { | 
|  | const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); | 
|  | const Value *Size = I.getArgOperand(2); | 
|  | const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); | 
|  | if (CSize && CSize->getZExtValue() == 0) { | 
|  | EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | I.getType(), true); | 
|  | setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); | 
|  | std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( | 
|  | DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), | 
|  | getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); | 
|  | if (Res.first.getNode()) { | 
|  | processIntegerCallValue(I, Res.first, true); | 
|  | PendingLoads.push_back(Res.second); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0 | 
|  | // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0 | 
|  | if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) | 
|  | return false; | 
|  |  | 
|  | // If the target has a fast compare for the given size, it will return a | 
|  | // preferred load type for that size. Require that the load VT is legal and | 
|  | // that the target supports unaligned loads of that type. Otherwise, return | 
|  | // INVALID. | 
|  | auto hasFastLoadsAndCompare = [&](unsigned NumBits) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | MVT LVT = TLI.hasFastEqualityCompare(NumBits); | 
|  | if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { | 
|  | // TODO: Handle 5 byte compare as 4-byte + 1 byte. | 
|  | // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. | 
|  | // TODO: Check alignment of src and dest ptrs. | 
|  | unsigned DstAS = LHS->getType()->getPointerAddressSpace(); | 
|  | unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); | 
|  | if (!TLI.isTypeLegal(LVT) || | 
|  | !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || | 
|  | !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) | 
|  | LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; | 
|  | } | 
|  |  | 
|  | return LVT; | 
|  | }; | 
|  |  | 
|  | // This turns into unaligned loads. We only do this if the target natively | 
|  | // supports the MVT we'll be loading or if it is small enough (<= 4) that | 
|  | // we'll only produce a small number of byte loads. | 
|  | MVT LoadVT; | 
|  | unsigned NumBitsToCompare = CSize->getZExtValue() * 8; | 
|  | switch (NumBitsToCompare) { | 
|  | default: | 
|  | return false; | 
|  | case 16: | 
|  | LoadVT = MVT::i16; | 
|  | break; | 
|  | case 32: | 
|  | LoadVT = MVT::i32; | 
|  | break; | 
|  | case 64: | 
|  | case 128: | 
|  | case 256: | 
|  | LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) | 
|  | return false; | 
|  |  | 
|  | SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); | 
|  | SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); | 
|  |  | 
|  | // Bitcast to a wide integer type if the loads are vectors. | 
|  | if (LoadVT.isVector()) { | 
|  | EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); | 
|  | LoadL = DAG.getBitcast(CmpVT, LoadL); | 
|  | LoadR = DAG.getBitcast(CmpVT, LoadR); | 
|  | } | 
|  |  | 
|  | SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); | 
|  | processIntegerCallValue(I, Cmp, false); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// See if we can lower a memchr call into an optimized form. If so, return | 
|  | /// true and lower it. Otherwise return false, and it will be lowered like a | 
|  | /// normal call. | 
|  | /// The caller already checked that \p I calls the appropriate LibFunc with a | 
|  | /// correct prototype. | 
|  | bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { | 
|  | const Value *Src = I.getArgOperand(0); | 
|  | const Value *Char = I.getArgOperand(1); | 
|  | const Value *Length = I.getArgOperand(2); | 
|  |  | 
|  | const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); | 
|  | std::pair<SDValue, SDValue> Res = | 
|  | TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), | 
|  | getValue(Src), getValue(Char), getValue(Length), | 
|  | MachinePointerInfo(Src)); | 
|  | if (Res.first.getNode()) { | 
|  | setValue(&I, Res.first); | 
|  | PendingLoads.push_back(Res.second); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// See if we can lower a mempcpy call into an optimized form. If so, return | 
|  | /// true and lower it. Otherwise return false, and it will be lowered like a | 
|  | /// normal call. | 
|  | /// The caller already checked that \p I calls the appropriate LibFunc with a | 
|  | /// correct prototype. | 
|  | bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { | 
|  | SDValue Dst = getValue(I.getArgOperand(0)); | 
|  | SDValue Src = getValue(I.getArgOperand(1)); | 
|  | SDValue Size = getValue(I.getArgOperand(2)); | 
|  |  | 
|  | unsigned DstAlign = DAG.InferPtrAlignment(Dst); | 
|  | unsigned SrcAlign = DAG.InferPtrAlignment(Src); | 
|  | unsigned Align = std::min(DstAlign, SrcAlign); | 
|  | if (Align == 0) // Alignment of one or both could not be inferred. | 
|  | Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. | 
|  |  | 
|  | bool isVol = false; | 
|  | SDLoc sdl = getCurSDLoc(); | 
|  |  | 
|  | // In the mempcpy context we need to pass in a false value for isTailCall | 
|  | // because the return pointer needs to be adjusted by the size of | 
|  | // the copied memory. | 
|  | SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, | 
|  | false, /*isTailCall=*/false, | 
|  | MachinePointerInfo(I.getArgOperand(0)), | 
|  | MachinePointerInfo(I.getArgOperand(1))); | 
|  | assert(MC.getNode() != nullptr && | 
|  | "** memcpy should not be lowered as TailCall in mempcpy context **"); | 
|  | DAG.setRoot(MC); | 
|  |  | 
|  | // Check if Size needs to be truncated or extended. | 
|  | Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); | 
|  |  | 
|  | // Adjust return pointer to point just past the last dst byte. | 
|  | SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), | 
|  | Dst, Size); | 
|  | setValue(&I, DstPlusSize); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// See if we can lower a strcpy call into an optimized form.  If so, return | 
|  | /// true and lower it, otherwise return false and it will be lowered like a | 
|  | /// normal call. | 
|  | /// The caller already checked that \p I calls the appropriate LibFunc with a | 
|  | /// correct prototype. | 
|  | bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { | 
|  | const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); | 
|  |  | 
|  | const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); | 
|  | std::pair<SDValue, SDValue> Res = | 
|  | TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), | 
|  | getValue(Arg0), getValue(Arg1), | 
|  | MachinePointerInfo(Arg0), | 
|  | MachinePointerInfo(Arg1), isStpcpy); | 
|  | if (Res.first.getNode()) { | 
|  | setValue(&I, Res.first); | 
|  | DAG.setRoot(Res.second); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// See if we can lower a strcmp call into an optimized form.  If so, return | 
|  | /// true and lower it, otherwise return false and it will be lowered like a | 
|  | /// normal call. | 
|  | /// The caller already checked that \p I calls the appropriate LibFunc with a | 
|  | /// correct prototype. | 
|  | bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { | 
|  | const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); | 
|  |  | 
|  | const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); | 
|  | std::pair<SDValue, SDValue> Res = | 
|  | TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), | 
|  | getValue(Arg0), getValue(Arg1), | 
|  | MachinePointerInfo(Arg0), | 
|  | MachinePointerInfo(Arg1)); | 
|  | if (Res.first.getNode()) { | 
|  | processIntegerCallValue(I, Res.first, true); | 
|  | PendingLoads.push_back(Res.second); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// See if we can lower a strlen call into an optimized form.  If so, return | 
|  | /// true and lower it, otherwise return false and it will be lowered like a | 
|  | /// normal call. | 
|  | /// The caller already checked that \p I calls the appropriate LibFunc with a | 
|  | /// correct prototype. | 
|  | bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { | 
|  | const Value *Arg0 = I.getArgOperand(0); | 
|  |  | 
|  | const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); | 
|  | std::pair<SDValue, SDValue> Res = | 
|  | TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), | 
|  | getValue(Arg0), MachinePointerInfo(Arg0)); | 
|  | if (Res.first.getNode()) { | 
|  | processIntegerCallValue(I, Res.first, false); | 
|  | PendingLoads.push_back(Res.second); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// See if we can lower a strnlen call into an optimized form.  If so, return | 
|  | /// true and lower it, otherwise return false and it will be lowered like a | 
|  | /// normal call. | 
|  | /// The caller already checked that \p I calls the appropriate LibFunc with a | 
|  | /// correct prototype. | 
|  | bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { | 
|  | const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); | 
|  |  | 
|  | const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); | 
|  | std::pair<SDValue, SDValue> Res = | 
|  | TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), | 
|  | getValue(Arg0), getValue(Arg1), | 
|  | MachinePointerInfo(Arg0)); | 
|  | if (Res.first.getNode()) { | 
|  | processIntegerCallValue(I, Res.first, false); | 
|  | PendingLoads.push_back(Res.second); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// See if we can lower a unary floating-point operation into an SDNode with | 
|  | /// the specified Opcode.  If so, return true and lower it, otherwise return | 
|  | /// false and it will be lowered like a normal call. | 
|  | /// The caller already checked that \p I calls the appropriate LibFunc with a | 
|  | /// correct prototype. | 
|  | bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, | 
|  | unsigned Opcode) { | 
|  | // We already checked this call's prototype; verify it doesn't modify errno. | 
|  | if (!I.onlyReadsMemory()) | 
|  | return false; | 
|  |  | 
|  | SDValue Tmp = getValue(I.getArgOperand(0)); | 
|  | setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// See if we can lower a binary floating-point operation into an SDNode with | 
|  | /// the specified Opcode. If so, return true and lower it. Otherwise return | 
|  | /// false, and it will be lowered like a normal call. | 
|  | /// The caller already checked that \p I calls the appropriate LibFunc with a | 
|  | /// correct prototype. | 
|  | bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, | 
|  | unsigned Opcode) { | 
|  | // We already checked this call's prototype; verify it doesn't modify errno. | 
|  | if (!I.onlyReadsMemory()) | 
|  | return false; | 
|  |  | 
|  | SDValue Tmp0 = getValue(I.getArgOperand(0)); | 
|  | SDValue Tmp1 = getValue(I.getArgOperand(1)); | 
|  | EVT VT = Tmp0.getValueType(); | 
|  | setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitCall(const CallInst &I) { | 
|  | // Handle inline assembly differently. | 
|  | if (isa<InlineAsm>(I.getCalledValue())) { | 
|  | visitInlineAsm(&I); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Function *F = I.getCalledFunction()) { | 
|  | if (F->isDeclaration()) { | 
|  | // Is this an LLVM intrinsic or a target-specific intrinsic? | 
|  | unsigned IID = F->getIntrinsicID(); | 
|  | if (!IID) | 
|  | if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) | 
|  | IID = II->getIntrinsicID(F); | 
|  |  | 
|  | if (IID) { | 
|  | visitIntrinsicCall(I, IID); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for well-known libc/libm calls.  If the function is internal, it | 
|  | // can't be a library call.  Don't do the check if marked as nobuiltin for | 
|  | // some reason or the call site requires strict floating point semantics. | 
|  | LibFunc Func; | 
|  | if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && | 
|  | F->hasName() && LibInfo->getLibFunc(*F, Func) && | 
|  | LibInfo->hasOptimizedCodeGen(Func)) { | 
|  | switch (Func) { | 
|  | default: break; | 
|  | case LibFunc_copysign: | 
|  | case LibFunc_copysignf: | 
|  | case LibFunc_copysignl: | 
|  | // We already checked this call's prototype; verify it doesn't modify | 
|  | // errno. | 
|  | if (I.onlyReadsMemory()) { | 
|  | SDValue LHS = getValue(I.getArgOperand(0)); | 
|  | SDValue RHS = getValue(I.getArgOperand(1)); | 
|  | setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), | 
|  | LHS.getValueType(), LHS, RHS)); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case LibFunc_fabs: | 
|  | case LibFunc_fabsf: | 
|  | case LibFunc_fabsl: | 
|  | if (visitUnaryFloatCall(I, ISD::FABS)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_fmin: | 
|  | case LibFunc_fminf: | 
|  | case LibFunc_fminl: | 
|  | if (visitBinaryFloatCall(I, ISD::FMINNUM)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_fmax: | 
|  | case LibFunc_fmaxf: | 
|  | case LibFunc_fmaxl: | 
|  | if (visitBinaryFloatCall(I, ISD::FMAXNUM)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_sin: | 
|  | case LibFunc_sinf: | 
|  | case LibFunc_sinl: | 
|  | if (visitUnaryFloatCall(I, ISD::FSIN)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_cos: | 
|  | case LibFunc_cosf: | 
|  | case LibFunc_cosl: | 
|  | if (visitUnaryFloatCall(I, ISD::FCOS)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_sqrt: | 
|  | case LibFunc_sqrtf: | 
|  | case LibFunc_sqrtl: | 
|  | case LibFunc_sqrt_finite: | 
|  | case LibFunc_sqrtf_finite: | 
|  | case LibFunc_sqrtl_finite: | 
|  | if (visitUnaryFloatCall(I, ISD::FSQRT)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_floor: | 
|  | case LibFunc_floorf: | 
|  | case LibFunc_floorl: | 
|  | if (visitUnaryFloatCall(I, ISD::FFLOOR)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_nearbyint: | 
|  | case LibFunc_nearbyintf: | 
|  | case LibFunc_nearbyintl: | 
|  | if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_ceil: | 
|  | case LibFunc_ceilf: | 
|  | case LibFunc_ceill: | 
|  | if (visitUnaryFloatCall(I, ISD::FCEIL)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_rint: | 
|  | case LibFunc_rintf: | 
|  | case LibFunc_rintl: | 
|  | if (visitUnaryFloatCall(I, ISD::FRINT)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_round: | 
|  | case LibFunc_roundf: | 
|  | case LibFunc_roundl: | 
|  | if (visitUnaryFloatCall(I, ISD::FROUND)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_trunc: | 
|  | case LibFunc_truncf: | 
|  | case LibFunc_truncl: | 
|  | if (visitUnaryFloatCall(I, ISD::FTRUNC)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_log2: | 
|  | case LibFunc_log2f: | 
|  | case LibFunc_log2l: | 
|  | if (visitUnaryFloatCall(I, ISD::FLOG2)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_exp2: | 
|  | case LibFunc_exp2f: | 
|  | case LibFunc_exp2l: | 
|  | if (visitUnaryFloatCall(I, ISD::FEXP2)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_memcmp: | 
|  | if (visitMemCmpCall(I)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_mempcpy: | 
|  | if (visitMemPCpyCall(I)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_memchr: | 
|  | if (visitMemChrCall(I)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_strcpy: | 
|  | if (visitStrCpyCall(I, false)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_stpcpy: | 
|  | if (visitStrCpyCall(I, true)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_strcmp: | 
|  | if (visitStrCmpCall(I)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_strlen: | 
|  | if (visitStrLenCall(I)) | 
|  | return; | 
|  | break; | 
|  | case LibFunc_strnlen: | 
|  | if (visitStrNLenCall(I)) | 
|  | return; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't | 
|  | // have to do anything here to lower funclet bundles. | 
|  | // CFGuardTarget bundles are lowered in LowerCallTo. | 
|  | assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, | 
|  | LLVMContext::OB_funclet, | 
|  | LLVMContext::OB_cfguardtarget}) && | 
|  | "Cannot lower calls with arbitrary operand bundles!"); | 
|  |  | 
|  | SDValue Callee = getValue(I.getCalledValue()); | 
|  |  | 
|  | if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) | 
|  | LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); | 
|  | else | 
|  | // Check if we can potentially perform a tail call. More detailed checking | 
|  | // is be done within LowerCallTo, after more information about the call is | 
|  | // known. | 
|  | LowerCallTo(&I, Callee, I.isTailCall()); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// AsmOperandInfo - This contains information for each constraint that we are | 
|  | /// lowering. | 
|  | class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { | 
|  | public: | 
|  | /// CallOperand - If this is the result output operand or a clobber | 
|  | /// this is null, otherwise it is the incoming operand to the CallInst. | 
|  | /// This gets modified as the asm is processed. | 
|  | SDValue CallOperand; | 
|  |  | 
|  | /// AssignedRegs - If this is a register or register class operand, this | 
|  | /// contains the set of register corresponding to the operand. | 
|  | RegsForValue AssignedRegs; | 
|  |  | 
|  | explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) | 
|  | : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { | 
|  | } | 
|  |  | 
|  | /// Whether or not this operand accesses memory | 
|  | bool hasMemory(const TargetLowering &TLI) const { | 
|  | // Indirect operand accesses access memory. | 
|  | if (isIndirect) | 
|  | return true; | 
|  |  | 
|  | for (const auto &Code : Codes) | 
|  | if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getCallOperandValEVT - Return the EVT of the Value* that this operand | 
|  | /// corresponds to.  If there is no Value* for this operand, it returns | 
|  | /// MVT::Other. | 
|  | EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, | 
|  | const DataLayout &DL) const { | 
|  | if (!CallOperandVal) return MVT::Other; | 
|  |  | 
|  | if (isa<BasicBlock>(CallOperandVal)) | 
|  | return TLI.getPointerTy(DL); | 
|  |  | 
|  | llvm::Type *OpTy = CallOperandVal->getType(); | 
|  |  | 
|  | // FIXME: code duplicated from TargetLowering::ParseConstraints(). | 
|  | // If this is an indirect operand, the operand is a pointer to the | 
|  | // accessed type. | 
|  | if (isIndirect) { | 
|  | PointerType *PtrTy = dyn_cast<PointerType>(OpTy); | 
|  | if (!PtrTy) | 
|  | report_fatal_error("Indirect operand for inline asm not a pointer!"); | 
|  | OpTy = PtrTy->getElementType(); | 
|  | } | 
|  |  | 
|  | // Look for vector wrapped in a struct. e.g. { <16 x i8> }. | 
|  | if (StructType *STy = dyn_cast<StructType>(OpTy)) | 
|  | if (STy->getNumElements() == 1) | 
|  | OpTy = STy->getElementType(0); | 
|  |  | 
|  | // If OpTy is not a single value, it may be a struct/union that we | 
|  | // can tile with integers. | 
|  | if (!OpTy->isSingleValueType() && OpTy->isSized()) { | 
|  | unsigned BitSize = DL.getTypeSizeInBits(OpTy); | 
|  | switch (BitSize) { | 
|  | default: break; | 
|  | case 1: | 
|  | case 8: | 
|  | case 16: | 
|  | case 32: | 
|  | case 64: | 
|  | case 128: | 
|  | OpTy = IntegerType::get(Context, BitSize); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return TLI.getValueType(DL, OpTy, true); | 
|  | } | 
|  | }; | 
|  |  | 
|  | using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Make sure that the output operand \p OpInfo and its corresponding input | 
|  | /// operand \p MatchingOpInfo have compatible constraint types (otherwise error | 
|  | /// out). | 
|  | static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, | 
|  | SDISelAsmOperandInfo &MatchingOpInfo, | 
|  | SelectionDAG &DAG) { | 
|  | if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) | 
|  | return; | 
|  |  | 
|  | const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); | 
|  | const auto &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass *> MatchRC = | 
|  | TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, | 
|  | OpInfo.ConstraintVT); | 
|  | std::pair<unsigned, const TargetRegisterClass *> InputRC = | 
|  | TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, | 
|  | MatchingOpInfo.ConstraintVT); | 
|  | if ((OpInfo.ConstraintVT.isInteger() != | 
|  | MatchingOpInfo.ConstraintVT.isInteger()) || | 
|  | (MatchRC.second != InputRC.second)) { | 
|  | // FIXME: error out in a more elegant fashion | 
|  | report_fatal_error("Unsupported asm: input constraint" | 
|  | " with a matching output constraint of" | 
|  | " incompatible type!"); | 
|  | } | 
|  | MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; | 
|  | } | 
|  |  | 
|  | /// Get a direct memory input to behave well as an indirect operand. | 
|  | /// This may introduce stores, hence the need for a \p Chain. | 
|  | /// \return The (possibly updated) chain. | 
|  | static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, | 
|  | SDISelAsmOperandInfo &OpInfo, | 
|  | SelectionDAG &DAG) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | // If we don't have an indirect input, put it in the constpool if we can, | 
|  | // otherwise spill it to a stack slot. | 
|  | // TODO: This isn't quite right. We need to handle these according to | 
|  | // the addressing mode that the constraint wants. Also, this may take | 
|  | // an additional register for the computation and we don't want that | 
|  | // either. | 
|  |  | 
|  | // If the operand is a float, integer, or vector constant, spill to a | 
|  | // constant pool entry to get its address. | 
|  | const Value *OpVal = OpInfo.CallOperandVal; | 
|  | if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || | 
|  | isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { | 
|  | OpInfo.CallOperand = DAG.getConstantPool( | 
|  | cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | // Otherwise, create a stack slot and emit a store to it before the asm. | 
|  | Type *Ty = OpVal->getType(); | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | uint64_t TySize = DL.getTypeAllocSize(Ty); | 
|  | unsigned Align = DL.getPrefTypeAlignment(Ty); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); | 
|  | Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, | 
|  | MachinePointerInfo::getFixedStack(MF, SSFI), | 
|  | TLI.getMemValueType(DL, Ty)); | 
|  | OpInfo.CallOperand = StackSlot; | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | /// GetRegistersForValue - Assign registers (virtual or physical) for the | 
|  | /// specified operand.  We prefer to assign virtual registers, to allow the | 
|  | /// register allocator to handle the assignment process.  However, if the asm | 
|  | /// uses features that we can't model on machineinstrs, we have SDISel do the | 
|  | /// allocation.  This produces generally horrible, but correct, code. | 
|  | /// | 
|  | ///   OpInfo describes the operand | 
|  | ///   RefOpInfo describes the matching operand if any, the operand otherwise | 
|  | static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, | 
|  | SDISelAsmOperandInfo &OpInfo, | 
|  | SDISelAsmOperandInfo &RefOpInfo) { | 
|  | LLVMContext &Context = *DAG.getContext(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SmallVector<unsigned, 4> Regs; | 
|  | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); | 
|  |  | 
|  | // No work to do for memory operations. | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Memory) | 
|  | return; | 
|  |  | 
|  | // If this is a constraint for a single physreg, or a constraint for a | 
|  | // register class, find it. | 
|  | unsigned AssignedReg; | 
|  | const TargetRegisterClass *RC; | 
|  | std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( | 
|  | &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); | 
|  | // RC is unset only on failure. Return immediately. | 
|  | if (!RC) | 
|  | return; | 
|  |  | 
|  | // Get the actual register value type.  This is important, because the user | 
|  | // may have asked for (e.g.) the AX register in i32 type.  We need to | 
|  | // remember that AX is actually i16 to get the right extension. | 
|  | const MVT RegVT = *TRI.legalclasstypes_begin(*RC); | 
|  |  | 
|  | if (OpInfo.ConstraintVT != MVT::Other) { | 
|  | // If this is an FP operand in an integer register (or visa versa), or more | 
|  | // generally if the operand value disagrees with the register class we plan | 
|  | // to stick it in, fix the operand type. | 
|  | // | 
|  | // If this is an input value, the bitcast to the new type is done now. | 
|  | // Bitcast for output value is done at the end of visitInlineAsm(). | 
|  | if ((OpInfo.Type == InlineAsm::isOutput || | 
|  | OpInfo.Type == InlineAsm::isInput) && | 
|  | !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { | 
|  | // Try to convert to the first EVT that the reg class contains.  If the | 
|  | // types are identical size, use a bitcast to convert (e.g. two differing | 
|  | // vector types).  Note: output bitcast is done at the end of | 
|  | // visitInlineAsm(). | 
|  | if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { | 
|  | // Exclude indirect inputs while they are unsupported because the code | 
|  | // to perform the load is missing and thus OpInfo.CallOperand still | 
|  | // refers to the input address rather than the pointed-to value. | 
|  | if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) | 
|  | OpInfo.CallOperand = | 
|  | DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); | 
|  | OpInfo.ConstraintVT = RegVT; | 
|  | // If the operand is an FP value and we want it in integer registers, | 
|  | // use the corresponding integer type. This turns an f64 value into | 
|  | // i64, which can be passed with two i32 values on a 32-bit machine. | 
|  | } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { | 
|  | MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); | 
|  | if (OpInfo.Type == InlineAsm::isInput) | 
|  | OpInfo.CallOperand = | 
|  | DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); | 
|  | OpInfo.ConstraintVT = VT; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // No need to allocate a matching input constraint since the constraint it's | 
|  | // matching to has already been allocated. | 
|  | if (OpInfo.isMatchingInputConstraint()) | 
|  | return; | 
|  |  | 
|  | EVT ValueVT = OpInfo.ConstraintVT; | 
|  | if (OpInfo.ConstraintVT == MVT::Other) | 
|  | ValueVT = RegVT; | 
|  |  | 
|  | // Initialize NumRegs. | 
|  | unsigned NumRegs = 1; | 
|  | if (OpInfo.ConstraintVT != MVT::Other) | 
|  | NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); | 
|  |  | 
|  | // If this is a constraint for a specific physical register, like {r17}, | 
|  | // assign it now. | 
|  |  | 
|  | // If this associated to a specific register, initialize iterator to correct | 
|  | // place. If virtual, make sure we have enough registers | 
|  |  | 
|  | // Initialize iterator if necessary | 
|  | TargetRegisterClass::iterator I = RC->begin(); | 
|  | MachineRegisterInfo &RegInfo = MF.getRegInfo(); | 
|  |  | 
|  | // Do not check for single registers. | 
|  | if (AssignedReg) { | 
|  | for (; *I != AssignedReg; ++I) | 
|  | assert(I != RC->end() && "AssignedReg should be member of RC"); | 
|  | } | 
|  |  | 
|  | for (; NumRegs; --NumRegs, ++I) { | 
|  | assert(I != RC->end() && "Ran out of registers to allocate!"); | 
|  | Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); | 
|  | Regs.push_back(R); | 
|  | } | 
|  |  | 
|  | OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); | 
|  | } | 
|  |  | 
|  | static unsigned | 
|  | findMatchingInlineAsmOperand(unsigned OperandNo, | 
|  | const std::vector<SDValue> &AsmNodeOperands) { | 
|  | // Scan until we find the definition we already emitted of this operand. | 
|  | unsigned CurOp = InlineAsm::Op_FirstOperand; | 
|  | for (; OperandNo; --OperandNo) { | 
|  | // Advance to the next operand. | 
|  | unsigned OpFlag = | 
|  | cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); | 
|  | assert((InlineAsm::isRegDefKind(OpFlag) || | 
|  | InlineAsm::isRegDefEarlyClobberKind(OpFlag) || | 
|  | InlineAsm::isMemKind(OpFlag)) && | 
|  | "Skipped past definitions?"); | 
|  | CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; | 
|  | } | 
|  | return CurOp; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class ExtraFlags { | 
|  | unsigned Flags = 0; | 
|  |  | 
|  | public: | 
|  | explicit ExtraFlags(ImmutableCallSite CS) { | 
|  | const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); | 
|  | if (IA->hasSideEffects()) | 
|  | Flags |= InlineAsm::Extra_HasSideEffects; | 
|  | if (IA->isAlignStack()) | 
|  | Flags |= InlineAsm::Extra_IsAlignStack; | 
|  | if (CS.isConvergent()) | 
|  | Flags |= InlineAsm::Extra_IsConvergent; | 
|  | Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; | 
|  | } | 
|  |  | 
|  | void update(const TargetLowering::AsmOperandInfo &OpInfo) { | 
|  | // Ideally, we would only check against memory constraints.  However, the | 
|  | // meaning of an Other constraint can be target-specific and we can't easily | 
|  | // reason about it.  Therefore, be conservative and set MayLoad/MayStore | 
|  | // for Other constraints as well. | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Memory || | 
|  | OpInfo.ConstraintType == TargetLowering::C_Other) { | 
|  | if (OpInfo.Type == InlineAsm::isInput) | 
|  | Flags |= InlineAsm::Extra_MayLoad; | 
|  | else if (OpInfo.Type == InlineAsm::isOutput) | 
|  | Flags |= InlineAsm::Extra_MayStore; | 
|  | else if (OpInfo.Type == InlineAsm::isClobber) | 
|  | Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned get() const { return Flags; } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// visitInlineAsm - Handle a call to an InlineAsm object. | 
|  | void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { | 
|  | const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); | 
|  |  | 
|  | /// ConstraintOperands - Information about all of the constraints. | 
|  | SDISelAsmOperandInfoVector ConstraintOperands; | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( | 
|  | DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); | 
|  |  | 
|  | // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, | 
|  | // AsmDialect, MayLoad, MayStore). | 
|  | bool HasSideEffect = IA->hasSideEffects(); | 
|  | ExtraFlags ExtraInfo(CS); | 
|  |  | 
|  | unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst. | 
|  | unsigned ResNo = 0;   // ResNo - The result number of the next output. | 
|  | for (auto &T : TargetConstraints) { | 
|  | ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); | 
|  | SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); | 
|  |  | 
|  | // Compute the value type for each operand. | 
|  | if (OpInfo.Type == InlineAsm::isInput || | 
|  | (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { | 
|  | OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); | 
|  |  | 
|  | // Process the call argument. BasicBlocks are labels, currently appearing | 
|  | // only in asm's. | 
|  | const Instruction *I = CS.getInstruction(); | 
|  | if (isa<CallBrInst>(I) && | 
|  | (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - | 
|  | cast<CallBrInst>(I)->getNumIndirectDests())) { | 
|  | const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); | 
|  | EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); | 
|  | OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); | 
|  | } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { | 
|  | OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); | 
|  | } else { | 
|  | OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); | 
|  | } | 
|  |  | 
|  | OpInfo.ConstraintVT = | 
|  | OpInfo | 
|  | .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) | 
|  | .getSimpleVT(); | 
|  | } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { | 
|  | // The return value of the call is this value.  As such, there is no | 
|  | // corresponding argument. | 
|  | assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); | 
|  | if (StructType *STy = dyn_cast<StructType>(CS.getType())) { | 
|  | OpInfo.ConstraintVT = TLI.getSimpleValueType( | 
|  | DAG.getDataLayout(), STy->getElementType(ResNo)); | 
|  | } else { | 
|  | assert(ResNo == 0 && "Asm only has one result!"); | 
|  | OpInfo.ConstraintVT = | 
|  | TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); | 
|  | } | 
|  | ++ResNo; | 
|  | } else { | 
|  | OpInfo.ConstraintVT = MVT::Other; | 
|  | } | 
|  |  | 
|  | if (!HasSideEffect) | 
|  | HasSideEffect = OpInfo.hasMemory(TLI); | 
|  |  | 
|  | // Determine if this InlineAsm MayLoad or MayStore based on the constraints. | 
|  | // FIXME: Could we compute this on OpInfo rather than T? | 
|  |  | 
|  | // Compute the constraint code and ConstraintType to use. | 
|  | TLI.ComputeConstraintToUse(T, SDValue()); | 
|  |  | 
|  | if (T.ConstraintType == TargetLowering::C_Immediate && | 
|  | OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) | 
|  | // We've delayed emitting a diagnostic like the "n" constraint because | 
|  | // inlining could cause an integer showing up. | 
|  | return emitInlineAsmError( | 
|  | CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " | 
|  | "integer constant expression"); | 
|  |  | 
|  | ExtraInfo.update(T); | 
|  | } | 
|  |  | 
|  |  | 
|  | // We won't need to flush pending loads if this asm doesn't touch | 
|  | // memory and is nonvolatile. | 
|  | SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); | 
|  |  | 
|  | bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); | 
|  | if (IsCallBr) { | 
|  | // If this is a callbr we need to flush pending exports since inlineasm_br | 
|  | // is a terminator. We need to do this before nodes are glued to | 
|  | // the inlineasm_br node. | 
|  | Chain = getControlRoot(); | 
|  | } | 
|  |  | 
|  | // Second pass over the constraints: compute which constraint option to use. | 
|  | for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { | 
|  | // If this is an output operand with a matching input operand, look up the | 
|  | // matching input. If their types mismatch, e.g. one is an integer, the | 
|  | // other is floating point, or their sizes are different, flag it as an | 
|  | // error. | 
|  | if (OpInfo.hasMatchingInput()) { | 
|  | SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; | 
|  | patchMatchingInput(OpInfo, Input, DAG); | 
|  | } | 
|  |  | 
|  | // Compute the constraint code and ConstraintType to use. | 
|  | TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); | 
|  |  | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Memory && | 
|  | OpInfo.Type == InlineAsm::isClobber) | 
|  | continue; | 
|  |  | 
|  | // If this is a memory input, and if the operand is not indirect, do what we | 
|  | // need to provide an address for the memory input. | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Memory && | 
|  | !OpInfo.isIndirect) { | 
|  | assert((OpInfo.isMultipleAlternative || | 
|  | (OpInfo.Type == InlineAsm::isInput)) && | 
|  | "Can only indirectify direct input operands!"); | 
|  |  | 
|  | // Memory operands really want the address of the value. | 
|  | Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); | 
|  |  | 
|  | // There is no longer a Value* corresponding to this operand. | 
|  | OpInfo.CallOperandVal = nullptr; | 
|  |  | 
|  | // It is now an indirect operand. | 
|  | OpInfo.isIndirect = true; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | // AsmNodeOperands - The operands for the ISD::INLINEASM node. | 
|  | std::vector<SDValue> AsmNodeOperands; | 
|  | AsmNodeOperands.push_back(SDValue());  // reserve space for input chain | 
|  | AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( | 
|  | IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); | 
|  |  | 
|  | // If we have a !srcloc metadata node associated with it, we want to attach | 
|  | // this to the ultimately generated inline asm machineinstr.  To do this, we | 
|  | // pass in the third operand as this (potentially null) inline asm MDNode. | 
|  | const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); | 
|  | AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); | 
|  |  | 
|  | // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore | 
|  | // bits as operand 3. | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant( | 
|  | ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); | 
|  |  | 
|  | // Third pass: Loop over operands to prepare DAG-level operands.. As part of | 
|  | // this, assign virtual and physical registers for inputs and otput. | 
|  | for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { | 
|  | // Assign Registers. | 
|  | SDISelAsmOperandInfo &RefOpInfo = | 
|  | OpInfo.isMatchingInputConstraint() | 
|  | ? ConstraintOperands[OpInfo.getMatchedOperand()] | 
|  | : OpInfo; | 
|  | GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); | 
|  |  | 
|  | switch (OpInfo.Type) { | 
|  | case InlineAsm::isOutput: | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Memory || | 
|  | ((OpInfo.ConstraintType == TargetLowering::C_Immediate || | 
|  | OpInfo.ConstraintType == TargetLowering::C_Other) && | 
|  | OpInfo.isIndirect)) { | 
|  | unsigned ConstraintID = | 
|  | TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); | 
|  | assert(ConstraintID != InlineAsm::Constraint_Unknown && | 
|  | "Failed to convert memory constraint code to constraint id."); | 
|  |  | 
|  | // Add information to the INLINEASM node to know about this output. | 
|  | unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); | 
|  | OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), | 
|  | MVT::i32)); | 
|  | AsmNodeOperands.push_back(OpInfo.CallOperand); | 
|  | break; | 
|  | } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate || | 
|  | OpInfo.ConstraintType == TargetLowering::C_Other) && | 
|  | !OpInfo.isIndirect) || | 
|  | OpInfo.ConstraintType == TargetLowering::C_Register || | 
|  | OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { | 
|  | // Otherwise, this outputs to a register (directly for C_Register / | 
|  | // C_RegisterClass, and a target-defined fashion for | 
|  | // C_Immediate/C_Other). Find a register that we can use. | 
|  | if (OpInfo.AssignedRegs.Regs.empty()) { | 
|  | emitInlineAsmError( | 
|  | CS, "couldn't allocate output register for constraint '" + | 
|  | Twine(OpInfo.ConstraintCode) + "'"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Add information to the INLINEASM node to know that this register is | 
|  | // set. | 
|  | OpInfo.AssignedRegs.AddInlineAsmOperands( | 
|  | OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber | 
|  | : InlineAsm::Kind_RegDef, | 
|  | false, 0, getCurSDLoc(), DAG, AsmNodeOperands); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case InlineAsm::isInput: { | 
|  | SDValue InOperandVal = OpInfo.CallOperand; | 
|  |  | 
|  | if (OpInfo.isMatchingInputConstraint()) { | 
|  | // If this is required to match an output register we have already set, | 
|  | // just use its register. | 
|  | auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), | 
|  | AsmNodeOperands); | 
|  | unsigned OpFlag = | 
|  | cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); | 
|  | if (InlineAsm::isRegDefKind(OpFlag) || | 
|  | InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { | 
|  | // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. | 
|  | if (OpInfo.isIndirect) { | 
|  | // This happens on gcc/testsuite/gcc.dg/pr8788-1.c | 
|  | emitInlineAsmError(CS, "inline asm not supported yet:" | 
|  | " don't know how to handle tied " | 
|  | "indirect register inputs"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); | 
|  | SmallVector<unsigned, 4> Regs; | 
|  |  | 
|  | if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { | 
|  | unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); | 
|  | MachineRegisterInfo &RegInfo = | 
|  | DAG.getMachineFunction().getRegInfo(); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) | 
|  | Regs.push_back(RegInfo.createVirtualRegister(RC)); | 
|  | } else { | 
|  | emitInlineAsmError(CS, "inline asm error: This value type register " | 
|  | "class is not natively supported!"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); | 
|  |  | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | // Use the produced MatchedRegs object to | 
|  | MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, | 
|  | CS.getInstruction()); | 
|  | MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, | 
|  | true, OpInfo.getMatchedOperand(), dl, | 
|  | DAG, AsmNodeOperands); | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); | 
|  | assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && | 
|  | "Unexpected number of operands"); | 
|  | // Add information to the INLINEASM node to know about this input. | 
|  | // See InlineAsm.h isUseOperandTiedToDef. | 
|  | OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); | 
|  | OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, | 
|  | OpInfo.getMatchedOperand()); | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant( | 
|  | OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); | 
|  | AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Treat indirect 'X' constraint as memory. | 
|  | if ((OpInfo.ConstraintType == TargetLowering::C_Immediate || | 
|  | OpInfo.ConstraintType == TargetLowering::C_Other) && | 
|  | OpInfo.isIndirect) | 
|  | OpInfo.ConstraintType = TargetLowering::C_Memory; | 
|  |  | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Immediate || | 
|  | OpInfo.ConstraintType == TargetLowering::C_Other) { | 
|  | std::vector<SDValue> Ops; | 
|  | TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, | 
|  | Ops, DAG); | 
|  | if (Ops.empty()) { | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Immediate) | 
|  | if (isa<ConstantSDNode>(InOperandVal)) { | 
|  | emitInlineAsmError(CS, "value out of range for constraint '" + | 
|  | Twine(OpInfo.ConstraintCode) + "'"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + | 
|  | Twine(OpInfo.ConstraintCode) + "'"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Add information to the INLINEASM node to know about this input. | 
|  | unsigned ResOpType = | 
|  | InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant( | 
|  | ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); | 
|  | AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Memory) { | 
|  | assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); | 
|  | assert(InOperandVal.getValueType() == | 
|  | TLI.getPointerTy(DAG.getDataLayout()) && | 
|  | "Memory operands expect pointer values"); | 
|  |  | 
|  | unsigned ConstraintID = | 
|  | TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); | 
|  | assert(ConstraintID != InlineAsm::Constraint_Unknown && | 
|  | "Failed to convert memory constraint code to constraint id."); | 
|  |  | 
|  | // Add information to the INLINEASM node to know about this input. | 
|  | unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); | 
|  | ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, | 
|  | getCurSDLoc(), | 
|  | MVT::i32)); | 
|  | AsmNodeOperands.push_back(InOperandVal); | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || | 
|  | OpInfo.ConstraintType == TargetLowering::C_Register || | 
|  | OpInfo.ConstraintType == TargetLowering::C_Immediate) && | 
|  | "Unknown constraint type!"); | 
|  |  | 
|  | // TODO: Support this. | 
|  | if (OpInfo.isIndirect) { | 
|  | emitInlineAsmError( | 
|  | CS, "Don't know how to handle indirect register inputs yet " | 
|  | "for constraint '" + | 
|  | Twine(OpInfo.ConstraintCode) + "'"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Copy the input into the appropriate registers. | 
|  | if (OpInfo.AssignedRegs.Regs.empty()) { | 
|  | emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + | 
|  | Twine(OpInfo.ConstraintCode) + "'"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDLoc dl = getCurSDLoc(); | 
|  |  | 
|  | OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, | 
|  | Chain, &Flag, CS.getInstruction()); | 
|  |  | 
|  | OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, | 
|  | dl, DAG, AsmNodeOperands); | 
|  | break; | 
|  | } | 
|  | case InlineAsm::isClobber: | 
|  | // Add the clobbered value to the operand list, so that the register | 
|  | // allocator is aware that the physreg got clobbered. | 
|  | if (!OpInfo.AssignedRegs.Regs.empty()) | 
|  | OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, | 
|  | false, 0, getCurSDLoc(), DAG, | 
|  | AsmNodeOperands); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finish up input operands.  Set the input chain and add the flag last. | 
|  | AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; | 
|  | if (Flag.getNode()) AsmNodeOperands.push_back(Flag); | 
|  |  | 
|  | unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; | 
|  | Chain = DAG.getNode(ISDOpc, getCurSDLoc(), | 
|  | DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); | 
|  | Flag = Chain.getValue(1); | 
|  |  | 
|  | // Do additional work to generate outputs. | 
|  |  | 
|  | SmallVector<EVT, 1> ResultVTs; | 
|  | SmallVector<SDValue, 1> ResultValues; | 
|  | SmallVector<SDValue, 8> OutChains; | 
|  |  | 
|  | llvm::Type *CSResultType = CS.getType(); | 
|  | ArrayRef<Type *> ResultTypes; | 
|  | if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) | 
|  | ResultTypes = StructResult->elements(); | 
|  | else if (!CSResultType->isVoidTy()) | 
|  | ResultTypes = makeArrayRef(CSResultType); | 
|  |  | 
|  | auto CurResultType = ResultTypes.begin(); | 
|  | auto handleRegAssign = [&](SDValue V) { | 
|  | assert(CurResultType != ResultTypes.end() && "Unexpected value"); | 
|  | assert((*CurResultType)->isSized() && "Unexpected unsized type"); | 
|  | EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); | 
|  | ++CurResultType; | 
|  | // If the type of the inline asm call site return value is different but has | 
|  | // same size as the type of the asm output bitcast it.  One example of this | 
|  | // is for vectors with different width / number of elements.  This can | 
|  | // happen for register classes that can contain multiple different value | 
|  | // types.  The preg or vreg allocated may not have the same VT as was | 
|  | // expected. | 
|  | // | 
|  | // This can also happen for a return value that disagrees with the register | 
|  | // class it is put in, eg. a double in a general-purpose register on a | 
|  | // 32-bit machine. | 
|  | if (ResultVT != V.getValueType() && | 
|  | ResultVT.getSizeInBits() == V.getValueSizeInBits()) | 
|  | V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); | 
|  | else if (ResultVT != V.getValueType() && ResultVT.isInteger() && | 
|  | V.getValueType().isInteger()) { | 
|  | // If a result value was tied to an input value, the computed result | 
|  | // may have a wider width than the expected result.  Extract the | 
|  | // relevant portion. | 
|  | V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); | 
|  | } | 
|  | assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); | 
|  | ResultVTs.push_back(ResultVT); | 
|  | ResultValues.push_back(V); | 
|  | }; | 
|  |  | 
|  | // Deal with output operands. | 
|  | for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { | 
|  | if (OpInfo.Type == InlineAsm::isOutput) { | 
|  | SDValue Val; | 
|  | // Skip trivial output operands. | 
|  | if (OpInfo.AssignedRegs.Regs.empty()) | 
|  | continue; | 
|  |  | 
|  | switch (OpInfo.ConstraintType) { | 
|  | case TargetLowering::C_Register: | 
|  | case TargetLowering::C_RegisterClass: | 
|  | Val = OpInfo.AssignedRegs.getCopyFromRegs( | 
|  | DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); | 
|  | break; | 
|  | case TargetLowering::C_Immediate: | 
|  | case TargetLowering::C_Other: | 
|  | Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), | 
|  | OpInfo, DAG); | 
|  | break; | 
|  | case TargetLowering::C_Memory: | 
|  | break; // Already handled. | 
|  | case TargetLowering::C_Unknown: | 
|  | assert(false && "Unexpected unknown constraint"); | 
|  | } | 
|  |  | 
|  | // Indirect output manifest as stores. Record output chains. | 
|  | if (OpInfo.isIndirect) { | 
|  | const Value *Ptr = OpInfo.CallOperandVal; | 
|  | assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); | 
|  | SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), | 
|  | MachinePointerInfo(Ptr)); | 
|  | OutChains.push_back(Store); | 
|  | } else { | 
|  | // generate CopyFromRegs to associated registers. | 
|  | assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); | 
|  | if (Val.getOpcode() == ISD::MERGE_VALUES) { | 
|  | for (const SDValue &V : Val->op_values()) | 
|  | handleRegAssign(V); | 
|  | } else | 
|  | handleRegAssign(Val); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set results. | 
|  | if (!ResultValues.empty()) { | 
|  | assert(CurResultType == ResultTypes.end() && | 
|  | "Mismatch in number of ResultTypes"); | 
|  | assert(ResultValues.size() == ResultTypes.size() && | 
|  | "Mismatch in number of output operands in asm result"); | 
|  |  | 
|  | SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), | 
|  | DAG.getVTList(ResultVTs), ResultValues); | 
|  | setValue(CS.getInstruction(), V); | 
|  | } | 
|  |  | 
|  | // Collect store chains. | 
|  | if (!OutChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); | 
|  |  | 
|  | // Only Update Root if inline assembly has a memory effect. | 
|  | if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) | 
|  | DAG.setRoot(Chain); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, | 
|  | const Twine &Message) { | 
|  | LLVMContext &Ctx = *DAG.getContext(); | 
|  | Ctx.emitError(CS.getInstruction(), Message); | 
|  |  | 
|  | // Make sure we leave the DAG in a valid state | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SmallVector<EVT, 1> ValueVTs; | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); | 
|  |  | 
|  | if (ValueVTs.empty()) | 
|  | return; | 
|  |  | 
|  | SmallVector<SDValue, 1> Ops; | 
|  | for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) | 
|  | Ops.push_back(DAG.getUNDEF(ValueVTs[i])); | 
|  |  | 
|  | setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitVAStart(const CallInst &I) { | 
|  | DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), | 
|  | MVT::Other, getRoot(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | DAG.getSrcValue(I.getArgOperand(0)))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | const DataLayout &DL = DAG.getDataLayout(); | 
|  | SDValue V = DAG.getVAArg( | 
|  | TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), | 
|  | getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), | 
|  | DL.getABITypeAlignment(I.getType())); | 
|  | DAG.setRoot(V.getValue(1)); | 
|  |  | 
|  | if (I.getType()->isPointerTy()) | 
|  | V = DAG.getPtrExtOrTrunc( | 
|  | V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); | 
|  | setValue(&I, V); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { | 
|  | DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), | 
|  | MVT::Other, getRoot(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | DAG.getSrcValue(I.getArgOperand(0)))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitVACopy(const CallInst &I) { | 
|  | DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), | 
|  | MVT::Other, getRoot(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)), | 
|  | DAG.getSrcValue(I.getArgOperand(0)), | 
|  | DAG.getSrcValue(I.getArgOperand(1)))); | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, | 
|  | const Instruction &I, | 
|  | SDValue Op) { | 
|  | const MDNode *Range = I.getMetadata(LLVMContext::MD_range); | 
|  | if (!Range) | 
|  | return Op; | 
|  |  | 
|  | ConstantRange CR = getConstantRangeFromMetadata(*Range); | 
|  | if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) | 
|  | return Op; | 
|  |  | 
|  | APInt Lo = CR.getUnsignedMin(); | 
|  | if (!Lo.isMinValue()) | 
|  | return Op; | 
|  |  | 
|  | APInt Hi = CR.getUnsignedMax(); | 
|  | unsigned Bits = std::max(Hi.getActiveBits(), | 
|  | static_cast<unsigned>(IntegerType::MIN_INT_BITS)); | 
|  |  | 
|  | EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); | 
|  |  | 
|  | SDLoc SL = getCurSDLoc(); | 
|  |  | 
|  | SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, | 
|  | DAG.getValueType(SmallVT)); | 
|  | unsigned NumVals = Op.getNode()->getNumValues(); | 
|  | if (NumVals == 1) | 
|  | return ZExt; | 
|  |  | 
|  | SmallVector<SDValue, 4> Ops; | 
|  |  | 
|  | Ops.push_back(ZExt); | 
|  | for (unsigned I = 1; I != NumVals; ++I) | 
|  | Ops.push_back(Op.getValue(I)); | 
|  |  | 
|  | return DAG.getMergeValues(Ops, SL); | 
|  | } | 
|  |  | 
|  | /// Populate a CallLowerinInfo (into \p CLI) based on the properties of | 
|  | /// the call being lowered. | 
|  | /// | 
|  | /// This is a helper for lowering intrinsics that follow a target calling | 
|  | /// convention or require stack pointer adjustment. Only a subset of the | 
|  | /// intrinsic's operands need to participate in the calling convention. | 
|  | void SelectionDAGBuilder::populateCallLoweringInfo( | 
|  | TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, | 
|  | unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, | 
|  | bool IsPatchPoint) { | 
|  | TargetLowering::ArgListTy Args; | 
|  | Args.reserve(NumArgs); | 
|  |  | 
|  | // Populate the argument list. | 
|  | // Attributes for args start at offset 1, after the return attribute. | 
|  | for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; | 
|  | ArgI != ArgE; ++ArgI) { | 
|  | const Value *V = Call->getOperand(ArgI); | 
|  |  | 
|  | assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); | 
|  |  | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | Entry.Node = getValue(V); | 
|  | Entry.Ty = V->getType(); | 
|  | Entry.setAttributes(Call, ArgI); | 
|  | Args.push_back(Entry); | 
|  | } | 
|  |  | 
|  | CLI.setDebugLoc(getCurSDLoc()) | 
|  | .setChain(getRoot()) | 
|  | .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) | 
|  | .setDiscardResult(Call->use_empty()) | 
|  | .setIsPatchPoint(IsPatchPoint); | 
|  | } | 
|  |  | 
|  | /// Add a stack map intrinsic call's live variable operands to a stackmap | 
|  | /// or patchpoint target node's operand list. | 
|  | /// | 
|  | /// Constants are converted to TargetConstants purely as an optimization to | 
|  | /// avoid constant materialization and register allocation. | 
|  | /// | 
|  | /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not | 
|  | /// generate addess computation nodes, and so FinalizeISel can convert the | 
|  | /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids | 
|  | /// address materialization and register allocation, but may also be required | 
|  | /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an | 
|  | /// alloca in the entry block, then the runtime may assume that the alloca's | 
|  | /// StackMap location can be read immediately after compilation and that the | 
|  | /// location is valid at any point during execution (this is similar to the | 
|  | /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were | 
|  | /// only available in a register, then the runtime would need to trap when | 
|  | /// execution reaches the StackMap in order to read the alloca's location. | 
|  | static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, | 
|  | const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, | 
|  | SelectionDAGBuilder &Builder) { | 
|  | for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { | 
|  | SDValue OpVal = Builder.getValue(CS.getArgument(i)); | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { | 
|  | Ops.push_back( | 
|  | Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); | 
|  | Ops.push_back( | 
|  | Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); | 
|  | } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { | 
|  | const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); | 
|  | Ops.push_back(Builder.DAG.getTargetFrameIndex( | 
|  | FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); | 
|  | } else | 
|  | Ops.push_back(OpVal); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Lower llvm.experimental.stackmap directly to its target opcode. | 
|  | void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { | 
|  | // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, | 
|  | //                                  [live variables...]) | 
|  |  | 
|  | assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); | 
|  |  | 
|  | SDValue Chain, InFlag, Callee, NullPtr; | 
|  | SmallVector<SDValue, 32> Ops; | 
|  |  | 
|  | SDLoc DL = getCurSDLoc(); | 
|  | Callee = getValue(CI.getCalledValue()); | 
|  | NullPtr = DAG.getIntPtrConstant(0, DL, true); | 
|  |  | 
|  | // The stackmap intrinsic only records the live variables (the arguments | 
|  | // passed to it) and emits NOPS (if requested). Unlike the patchpoint | 
|  | // intrinsic, this won't be lowered to a function call. This means we don't | 
|  | // have to worry about calling conventions and target specific lowering code. | 
|  | // Instead we perform the call lowering right here. | 
|  | // | 
|  | // chain, flag = CALLSEQ_START(chain, 0, 0) | 
|  | // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) | 
|  | // chain, flag = CALLSEQ_END(chain, 0, 0, flag) | 
|  | // | 
|  | Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | // Add the <id> and <numBytes> constants. | 
|  | SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); | 
|  | Ops.push_back(DAG.getTargetConstant( | 
|  | cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); | 
|  | SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); | 
|  | Ops.push_back(DAG.getTargetConstant( | 
|  | cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, | 
|  | MVT::i32)); | 
|  |  | 
|  | // Push live variables for the stack map. | 
|  | addStackMapLiveVars(&CI, 2, DL, Ops, *this); | 
|  |  | 
|  | // We are not pushing any register mask info here on the operands list, | 
|  | // because the stackmap doesn't clobber anything. | 
|  |  | 
|  | // Push the chain and the glue flag. | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(InFlag); | 
|  |  | 
|  | // Create the STACKMAP node. | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  | SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); | 
|  | Chain = SDValue(SM, 0); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); | 
|  |  | 
|  | // Stackmaps don't generate values, so nothing goes into the NodeMap. | 
|  |  | 
|  | // Set the root to the target-lowered call chain. | 
|  | DAG.setRoot(Chain); | 
|  |  | 
|  | // Inform the Frame Information that we have a stackmap in this function. | 
|  | FuncInfo.MF->getFrameInfo().setHasStackMap(); | 
|  | } | 
|  |  | 
|  | /// Lower llvm.experimental.patchpoint directly to its target opcode. | 
|  | void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, | 
|  | const BasicBlock *EHPadBB) { | 
|  | // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, | 
|  | //                                                 i32 <numBytes>, | 
|  | //                                                 i8* <target>, | 
|  | //                                                 i32 <numArgs>, | 
|  | //                                                 [Args...], | 
|  | //                                                 [live variables...]) | 
|  |  | 
|  | CallingConv::ID CC = CS.getCallingConv(); | 
|  | bool IsAnyRegCC = CC == CallingConv::AnyReg; | 
|  | bool HasDef = !CS->getType()->isVoidTy(); | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); | 
|  |  | 
|  | // Handle immediate and symbolic callees. | 
|  | if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) | 
|  | Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, | 
|  | /*isTarget=*/true); | 
|  | else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) | 
|  | Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), | 
|  | SDLoc(SymbolicCallee), | 
|  | SymbolicCallee->getValueType(0)); | 
|  |  | 
|  | // Get the real number of arguments participating in the call <numArgs> | 
|  | SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); | 
|  | unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); | 
|  |  | 
|  | // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> | 
|  | // Intrinsics include all meta-operands up to but not including CC. | 
|  | unsigned NumMetaOpers = PatchPointOpers::CCPos; | 
|  | assert(CS.arg_size() >= NumMetaOpers + NumArgs && | 
|  | "Not enough arguments provided to the patchpoint intrinsic"); | 
|  |  | 
|  | // For AnyRegCC the arguments are lowered later on manually. | 
|  | unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; | 
|  | Type *ReturnTy = | 
|  | IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); | 
|  |  | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), | 
|  | NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); | 
|  | std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); | 
|  |  | 
|  | SDNode *CallEnd = Result.second.getNode(); | 
|  | if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) | 
|  | CallEnd = CallEnd->getOperand(0).getNode(); | 
|  |  | 
|  | /// Get a call instruction from the call sequence chain. | 
|  | /// Tail calls are not allowed. | 
|  | assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && | 
|  | "Expected a callseq node."); | 
|  | SDNode *Call = CallEnd->getOperand(0).getNode(); | 
|  | bool HasGlue = Call->getGluedNode(); | 
|  |  | 
|  | // Replace the target specific call node with the patchable intrinsic. | 
|  | SmallVector<SDValue, 8> Ops; | 
|  |  | 
|  | // Add the <id> and <numBytes> constants. | 
|  | SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); | 
|  | Ops.push_back(DAG.getTargetConstant( | 
|  | cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); | 
|  | SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); | 
|  | Ops.push_back(DAG.getTargetConstant( | 
|  | cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, | 
|  | MVT::i32)); | 
|  |  | 
|  | // Add the callee. | 
|  | Ops.push_back(Callee); | 
|  |  | 
|  | // Adjust <numArgs> to account for any arguments that have been passed on the | 
|  | // stack instead. | 
|  | // Call Node: Chain, Target, {Args}, RegMask, [Glue] | 
|  | unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); | 
|  | NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; | 
|  | Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); | 
|  |  | 
|  | // Add the calling convention | 
|  | Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); | 
|  |  | 
|  | // Add the arguments we omitted previously. The register allocator should | 
|  | // place these in any free register. | 
|  | if (IsAnyRegCC) | 
|  | for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) | 
|  | Ops.push_back(getValue(CS.getArgument(i))); | 
|  |  | 
|  | // Push the arguments from the call instruction up to the register mask. | 
|  | SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; | 
|  | Ops.append(Call->op_begin() + 2, e); | 
|  |  | 
|  | // Push live variables for the stack map. | 
|  | addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); | 
|  |  | 
|  | // Push the register mask info. | 
|  | if (HasGlue) | 
|  | Ops.push_back(*(Call->op_end()-2)); | 
|  | else | 
|  | Ops.push_back(*(Call->op_end()-1)); | 
|  |  | 
|  | // Push the chain (this is originally the first operand of the call, but | 
|  | // becomes now the last or second to last operand). | 
|  | Ops.push_back(*(Call->op_begin())); | 
|  |  | 
|  | // Push the glue flag (last operand). | 
|  | if (HasGlue) | 
|  | Ops.push_back(*(Call->op_end()-1)); | 
|  |  | 
|  | SDVTList NodeTys; | 
|  | if (IsAnyRegCC && HasDef) { | 
|  | // Create the return types based on the intrinsic definition | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SmallVector<EVT, 3> ValueVTs; | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); | 
|  | assert(ValueVTs.size() == 1 && "Expected only one return value type."); | 
|  |  | 
|  | // There is always a chain and a glue type at the end | 
|  | ValueVTs.push_back(MVT::Other); | 
|  | ValueVTs.push_back(MVT::Glue); | 
|  | NodeTys = DAG.getVTList(ValueVTs); | 
|  | } else | 
|  | NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  |  | 
|  | // Replace the target specific call node with a PATCHPOINT node. | 
|  | MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, | 
|  | dl, NodeTys, Ops); | 
|  |  | 
|  | // Update the NodeMap. | 
|  | if (HasDef) { | 
|  | if (IsAnyRegCC) | 
|  | setValue(CS.getInstruction(), SDValue(MN, 0)); | 
|  | else | 
|  | setValue(CS.getInstruction(), Result.first); | 
|  | } | 
|  |  | 
|  | // Fixup the consumers of the intrinsic. The chain and glue may be used in the | 
|  | // call sequence. Furthermore the location of the chain and glue can change | 
|  | // when the AnyReg calling convention is used and the intrinsic returns a | 
|  | // value. | 
|  | if (IsAnyRegCC && HasDef) { | 
|  | SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; | 
|  | SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; | 
|  | DAG.ReplaceAllUsesOfValuesWith(From, To, 2); | 
|  | } else | 
|  | DAG.ReplaceAllUsesWith(Call, MN); | 
|  | DAG.DeleteNode(Call); | 
|  |  | 
|  | // Inform the Frame Information that we have a patchpoint in this function. | 
|  | FuncInfo.MF->getFrameInfo().setHasPatchPoint(); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, | 
|  | unsigned Intrinsic) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2; | 
|  | if (I.getNumArgOperands() > 1) | 
|  | Op2 = getValue(I.getArgOperand(1)); | 
|  | SDLoc dl = getCurSDLoc(); | 
|  | EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); | 
|  | SDValue Res; | 
|  | FastMathFlags FMF; | 
|  | if (isa<FPMathOperator>(I)) | 
|  | FMF = I.getFastMathFlags(); | 
|  |  | 
|  | switch (Intrinsic) { | 
|  | case Intrinsic::experimental_vector_reduce_v2_fadd: | 
|  | if (FMF.allowReassoc()) | 
|  | Res = DAG.getNode(ISD::FADD, dl, VT, Op1, | 
|  | DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); | 
|  | else | 
|  | Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); | 
|  | break; | 
|  | case Intrinsic::experimental_vector_reduce_v2_fmul: | 
|  | if (FMF.allowReassoc()) | 
|  | Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, | 
|  | DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); | 
|  | else | 
|  | Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); | 
|  | break; | 
|  | case Intrinsic::experimental_vector_reduce_add: | 
|  | Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); | 
|  | break; | 
|  | case Intrinsic::experimental_vector_reduce_mul: | 
|  | Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); | 
|  | break; | 
|  | case Intrinsic::experimental_vector_reduce_and: | 
|  | Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); | 
|  | break; | 
|  | case Intrinsic::experimental_vector_reduce_or: | 
|  | Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); | 
|  | break; | 
|  | case Intrinsic::experimental_vector_reduce_xor: | 
|  | Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); | 
|  | break; | 
|  | case Intrinsic::experimental_vector_reduce_smax: | 
|  | Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); | 
|  | break; | 
|  | case Intrinsic::experimental_vector_reduce_smin: | 
|  | Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); | 
|  | break; | 
|  | case Intrinsic::experimental_vector_reduce_umax: | 
|  | Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); | 
|  | break; | 
|  | case Intrinsic::experimental_vector_reduce_umin: | 
|  | Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); | 
|  | break; | 
|  | case Intrinsic::experimental_vector_reduce_fmax: | 
|  | Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); | 
|  | break; | 
|  | case Intrinsic::experimental_vector_reduce_fmin: | 
|  | Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unhandled vector reduce intrinsic"); | 
|  | } | 
|  | setValue(&I, Res); | 
|  | } | 
|  |  | 
|  | /// Returns an AttributeList representing the attributes applied to the return | 
|  | /// value of the given call. | 
|  | static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { | 
|  | SmallVector<Attribute::AttrKind, 2> Attrs; | 
|  | if (CLI.RetSExt) | 
|  | Attrs.push_back(Attribute::SExt); | 
|  | if (CLI.RetZExt) | 
|  | Attrs.push_back(Attribute::ZExt); | 
|  | if (CLI.IsInReg) | 
|  | Attrs.push_back(Attribute::InReg); | 
|  |  | 
|  | return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, | 
|  | Attrs); | 
|  | } | 
|  |  | 
|  | /// TargetLowering::LowerCallTo - This is the default LowerCallTo | 
|  | /// implementation, which just calls LowerCall. | 
|  | /// FIXME: When all targets are | 
|  | /// migrated to using LowerCall, this hook should be integrated into SDISel. | 
|  | std::pair<SDValue, SDValue> | 
|  | TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { | 
|  | // Handle the incoming return values from the call. | 
|  | CLI.Ins.clear(); | 
|  | Type *OrigRetTy = CLI.RetTy; | 
|  | SmallVector<EVT, 4> RetTys; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | auto &DL = CLI.DAG.getDataLayout(); | 
|  | ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); | 
|  |  | 
|  | if (CLI.IsPostTypeLegalization) { | 
|  | // If we are lowering a libcall after legalization, split the return type. | 
|  | SmallVector<EVT, 4> OldRetTys; | 
|  | SmallVector<uint64_t, 4> OldOffsets; | 
|  | RetTys.swap(OldRetTys); | 
|  | Offsets.swap(OldOffsets); | 
|  |  | 
|  | for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { | 
|  | EVT RetVT = OldRetTys[i]; | 
|  | uint64_t Offset = OldOffsets[i]; | 
|  | MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); | 
|  | unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); | 
|  | unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; | 
|  | RetTys.append(NumRegs, RegisterVT); | 
|  | for (unsigned j = 0; j != NumRegs; ++j) | 
|  | Offsets.push_back(Offset + j * RegisterVTByteSZ); | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<ISD::OutputArg, 4> Outs; | 
|  | GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); | 
|  |  | 
|  | bool CanLowerReturn = | 
|  | this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), | 
|  | CLI.IsVarArg, Outs, CLI.RetTy->getContext()); | 
|  |  | 
|  | SDValue DemoteStackSlot; | 
|  | int DemoteStackIdx = -100; | 
|  | if (!CanLowerReturn) { | 
|  | // FIXME: equivalent assert? | 
|  | // assert(!CS.hasInAllocaArgument() && | 
|  | //        "sret demotion is incompatible with inalloca"); | 
|  | uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); | 
|  | unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); | 
|  | MachineFunction &MF = CLI.DAG.getMachineFunction(); | 
|  | DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); | 
|  | Type *StackSlotPtrType = PointerType::get(CLI.RetTy, | 
|  | DL.getAllocaAddrSpace()); | 
|  |  | 
|  | DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); | 
|  | ArgListEntry Entry; | 
|  | Entry.Node = DemoteStackSlot; | 
|  | Entry.Ty = StackSlotPtrType; | 
|  | Entry.IsSExt = false; | 
|  | Entry.IsZExt = false; | 
|  | Entry.IsInReg = false; | 
|  | Entry.IsSRet = true; | 
|  | Entry.IsNest = false; | 
|  | Entry.IsByVal = false; | 
|  | Entry.IsReturned = false; | 
|  | Entry.IsSwiftSelf = false; | 
|  | Entry.IsSwiftError = false; | 
|  | Entry.IsCFGuardTarget = false; | 
|  | Entry.Alignment = Align; | 
|  | CLI.getArgs().insert(CLI.getArgs().begin(), Entry); | 
|  | CLI.NumFixedArgs += 1; | 
|  | CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); | 
|  |  | 
|  | // sret demotion isn't compatible with tail-calls, since the sret argument | 
|  | // points into the callers stack frame. | 
|  | CLI.IsTailCall = false; | 
|  | } else { | 
|  | bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( | 
|  | CLI.RetTy, CLI.CallConv, CLI.IsVarArg); | 
|  | for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { | 
|  | ISD::ArgFlagsTy Flags; | 
|  | if (NeedsRegBlock) { | 
|  | Flags.setInConsecutiveRegs(); | 
|  | if (I == RetTys.size() - 1) | 
|  | Flags.setInConsecutiveRegsLast(); | 
|  | } | 
|  | EVT VT = RetTys[I]; | 
|  | MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), | 
|  | CLI.CallConv, VT); | 
|  | unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), | 
|  | CLI.CallConv, VT); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | ISD::InputArg MyFlags; | 
|  | MyFlags.Flags = Flags; | 
|  | MyFlags.VT = RegisterVT; | 
|  | MyFlags.ArgVT = VT; | 
|  | MyFlags.Used = CLI.IsReturnValueUsed; | 
|  | if (CLI.RetTy->isPointerTy()) { | 
|  | MyFlags.Flags.setPointer(); | 
|  | MyFlags.Flags.setPointerAddrSpace( | 
|  | cast<PointerType>(CLI.RetTy)->getAddressSpace()); | 
|  | } | 
|  | if (CLI.RetSExt) | 
|  | MyFlags.Flags.setSExt(); | 
|  | if (CLI.RetZExt) | 
|  | MyFlags.Flags.setZExt(); | 
|  | if (CLI.IsInReg) | 
|  | MyFlags.Flags.setInReg(); | 
|  | CLI.Ins.push_back(MyFlags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // We push in swifterror return as the last element of CLI.Ins. | 
|  | ArgListTy &Args = CLI.getArgs(); | 
|  | if (supportSwiftError()) { | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | if (Args[i].IsSwiftError) { | 
|  | ISD::InputArg MyFlags; | 
|  | MyFlags.VT = getPointerTy(DL); | 
|  | MyFlags.ArgVT = EVT(getPointerTy(DL)); | 
|  | MyFlags.Flags.setSwiftError(); | 
|  | CLI.Ins.push_back(MyFlags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle all of the outgoing arguments. | 
|  | CLI.Outs.clear(); | 
|  | CLI.OutVals.clear(); | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); | 
|  | // FIXME: Split arguments if CLI.IsPostTypeLegalization | 
|  | Type *FinalType = Args[i].Ty; | 
|  | if (Args[i].IsByVal) | 
|  | FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); | 
|  | bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( | 
|  | FinalType, CLI.CallConv, CLI.IsVarArg); | 
|  | for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; | 
|  | ++Value) { | 
|  | EVT VT = ValueVTs[Value]; | 
|  | Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); | 
|  | SDValue Op = SDValue(Args[i].Node.getNode(), | 
|  | Args[i].Node.getResNo() + Value); | 
|  | ISD::ArgFlagsTy Flags; | 
|  |  | 
|  | // Certain targets (such as MIPS), may have a different ABI alignment | 
|  | // for a type depending on the context. Give the target a chance to | 
|  | // specify the alignment it wants. | 
|  | const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); | 
|  |  | 
|  | if (Args[i].Ty->isPointerTy()) { | 
|  | Flags.setPointer(); | 
|  | Flags.setPointerAddrSpace( | 
|  | cast<PointerType>(Args[i].Ty)->getAddressSpace()); | 
|  | } | 
|  | if (Args[i].IsZExt) | 
|  | Flags.setZExt(); | 
|  | if (Args[i].IsSExt) | 
|  | Flags.setSExt(); | 
|  | if (Args[i].IsInReg) { | 
|  | // If we are using vectorcall calling convention, a structure that is | 
|  | // passed InReg - is surely an HVA | 
|  | if (CLI.CallConv == CallingConv::X86_VectorCall && | 
|  | isa<StructType>(FinalType)) { | 
|  | // The first value of a structure is marked | 
|  | if (0 == Value) | 
|  | Flags.setHvaStart(); | 
|  | Flags.setHva(); | 
|  | } | 
|  | // Set InReg Flag | 
|  | Flags.setInReg(); | 
|  | } | 
|  | if (Args[i].IsSRet) | 
|  | Flags.setSRet(); | 
|  | if (Args[i].IsSwiftSelf) | 
|  | Flags.setSwiftSelf(); | 
|  | if (Args[i].IsSwiftError) | 
|  | Flags.setSwiftError(); | 
|  | if (Args[i].IsCFGuardTarget) | 
|  | Flags.setCFGuardTarget(); | 
|  | if (Args[i].IsByVal) | 
|  | Flags.setByVal(); | 
|  | if (Args[i].IsInAlloca) { | 
|  | Flags.setInAlloca(); | 
|  | // Set the byval flag for CCAssignFn callbacks that don't know about | 
|  | // inalloca.  This way we can know how many bytes we should've allocated | 
|  | // and how many bytes a callee cleanup function will pop.  If we port | 
|  | // inalloca to more targets, we'll have to add custom inalloca handling | 
|  | // in the various CC lowering callbacks. | 
|  | Flags.setByVal(); | 
|  | } | 
|  | if (Args[i].IsByVal || Args[i].IsInAlloca) { | 
|  | PointerType *Ty = cast<PointerType>(Args[i].Ty); | 
|  | Type *ElementTy = Ty->getElementType(); | 
|  |  | 
|  | unsigned FrameSize = DL.getTypeAllocSize( | 
|  | Args[i].ByValType ? Args[i].ByValType : ElementTy); | 
|  | Flags.setByValSize(FrameSize); | 
|  |  | 
|  | // info is not there but there are cases it cannot get right. | 
|  | unsigned FrameAlign; | 
|  | if (Args[i].Alignment) | 
|  | FrameAlign = Args[i].Alignment; | 
|  | else | 
|  | FrameAlign = getByValTypeAlignment(ElementTy, DL); | 
|  | Flags.setByValAlign(Align(FrameAlign)); | 
|  | } | 
|  | if (Args[i].IsNest) | 
|  | Flags.setNest(); | 
|  | if (NeedsRegBlock) | 
|  | Flags.setInConsecutiveRegs(); | 
|  | Flags.setOrigAlign(OriginalAlignment); | 
|  |  | 
|  | MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), | 
|  | CLI.CallConv, VT); | 
|  | unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), | 
|  | CLI.CallConv, VT); | 
|  | SmallVector<SDValue, 4> Parts(NumParts); | 
|  | ISD::NodeType ExtendKind = ISD::ANY_EXTEND; | 
|  |  | 
|  | if (Args[i].IsSExt) | 
|  | ExtendKind = ISD::SIGN_EXTEND; | 
|  | else if (Args[i].IsZExt) | 
|  | ExtendKind = ISD::ZERO_EXTEND; | 
|  |  | 
|  | // Conservatively only handle 'returned' on non-vectors that can be lowered, | 
|  | // for now. | 
|  | if (Args[i].IsReturned && !Op.getValueType().isVector() && | 
|  | CanLowerReturn) { | 
|  | assert((CLI.RetTy == Args[i].Ty || | 
|  | (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && | 
|  | CLI.RetTy->getPointerAddressSpace() == | 
|  | Args[i].Ty->getPointerAddressSpace())) && | 
|  | RetTys.size() == NumValues && "unexpected use of 'returned'"); | 
|  | // Before passing 'returned' to the target lowering code, ensure that | 
|  | // either the register MVT and the actual EVT are the same size or that | 
|  | // the return value and argument are extended in the same way; in these | 
|  | // cases it's safe to pass the argument register value unchanged as the | 
|  | // return register value (although it's at the target's option whether | 
|  | // to do so) | 
|  | // TODO: allow code generation to take advantage of partially preserved | 
|  | // registers rather than clobbering the entire register when the | 
|  | // parameter extension method is not compatible with the return | 
|  | // extension method | 
|  | if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || | 
|  | (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && | 
|  | CLI.RetZExt == Args[i].IsZExt)) | 
|  | Flags.setReturned(); | 
|  | } | 
|  |  | 
|  | getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, | 
|  | CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); | 
|  |  | 
|  | for (unsigned j = 0; j != NumParts; ++j) { | 
|  | // if it isn't first piece, alignment must be 1 | 
|  | ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, | 
|  | i < CLI.NumFixedArgs, | 
|  | i, j*Parts[j].getValueType().getStoreSize()); | 
|  | if (NumParts > 1 && j == 0) | 
|  | MyFlags.Flags.setSplit(); | 
|  | else if (j != 0) { | 
|  | MyFlags.Flags.setOrigAlign(Align::None()); | 
|  | if (j == NumParts - 1) | 
|  | MyFlags.Flags.setSplitEnd(); | 
|  | } | 
|  |  | 
|  | CLI.Outs.push_back(MyFlags); | 
|  | CLI.OutVals.push_back(Parts[j]); | 
|  | } | 
|  |  | 
|  | if (NeedsRegBlock && Value == NumValues - 1) | 
|  | CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 4> InVals; | 
|  | CLI.Chain = LowerCall(CLI, InVals); | 
|  |  | 
|  | // Update CLI.InVals to use outside of this function. | 
|  | CLI.InVals = InVals; | 
|  |  | 
|  | // Verify that the target's LowerCall behaved as expected. | 
|  | assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && | 
|  | "LowerCall didn't return a valid chain!"); | 
|  | assert((!CLI.IsTailCall || InVals.empty()) && | 
|  | "LowerCall emitted a return value for a tail call!"); | 
|  | assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && | 
|  | "LowerCall didn't emit the correct number of values!"); | 
|  |  | 
|  | // For a tail call, the return value is merely live-out and there aren't | 
|  | // any nodes in the DAG representing it. Return a special value to | 
|  | // indicate that a tail call has been emitted and no more Instructions | 
|  | // should be processed in the current block. | 
|  | if (CLI.IsTailCall) { | 
|  | CLI.DAG.setRoot(CLI.Chain); | 
|  | return std::make_pair(SDValue(), SDValue()); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { | 
|  | assert(InVals[i].getNode() && "LowerCall emitted a null value!"); | 
|  | assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && | 
|  | "LowerCall emitted a value with the wrong type!"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | SmallVector<SDValue, 4> ReturnValues; | 
|  | if (!CanLowerReturn) { | 
|  | // The instruction result is the result of loading from the | 
|  | // hidden sret parameter. | 
|  | SmallVector<EVT, 1> PVTs; | 
|  | Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); | 
|  |  | 
|  | ComputeValueVTs(*this, DL, PtrRetTy, PVTs); | 
|  | assert(PVTs.size() == 1 && "Pointers should fit in one register"); | 
|  | EVT PtrVT = PVTs[0]; | 
|  |  | 
|  | unsigned NumValues = RetTys.size(); | 
|  | ReturnValues.resize(NumValues); | 
|  | SmallVector<SDValue, 4> Chains(NumValues); | 
|  |  | 
|  | // An aggregate return value cannot wrap around the address space, so | 
|  | // offsets to its parts don't wrap either. | 
|  | SDNodeFlags Flags; | 
|  | Flags.setNoUnsignedWrap(true); | 
|  |  | 
|  | for (unsigned i = 0; i < NumValues; ++i) { | 
|  | SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, | 
|  | CLI.DAG.getConstant(Offsets[i], CLI.DL, | 
|  | PtrVT), Flags); | 
|  | SDValue L = CLI.DAG.getLoad( | 
|  | RetTys[i], CLI.DL, CLI.Chain, Add, | 
|  | MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), | 
|  | DemoteStackIdx, Offsets[i]), | 
|  | /* Alignment = */ 1); | 
|  | ReturnValues[i] = L; | 
|  | Chains[i] = L.getValue(1); | 
|  | } | 
|  |  | 
|  | CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); | 
|  | } else { | 
|  | // Collect the legal value parts into potentially illegal values | 
|  | // that correspond to the original function's return values. | 
|  | Optional<ISD::NodeType> AssertOp; | 
|  | if (CLI.RetSExt) | 
|  | AssertOp = ISD::AssertSext; | 
|  | else if (CLI.RetZExt) | 
|  | AssertOp = ISD::AssertZext; | 
|  | unsigned CurReg = 0; | 
|  | for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { | 
|  | EVT VT = RetTys[I]; | 
|  | MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), | 
|  | CLI.CallConv, VT); | 
|  | unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), | 
|  | CLI.CallConv, VT); | 
|  |  | 
|  | ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], | 
|  | NumRegs, RegisterVT, VT, nullptr, | 
|  | CLI.CallConv, AssertOp)); | 
|  | CurReg += NumRegs; | 
|  | } | 
|  |  | 
|  | // For a function returning void, there is no return value. We can't create | 
|  | // such a node, so we just return a null return value in that case. In | 
|  | // that case, nothing will actually look at the value. | 
|  | if (ReturnValues.empty()) | 
|  | return std::make_pair(SDValue(), CLI.Chain); | 
|  | } | 
|  |  | 
|  | SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, | 
|  | CLI.DAG.getVTList(RetTys), ReturnValues); | 
|  | return std::make_pair(Res, CLI.Chain); | 
|  | } | 
|  |  | 
|  | void TargetLowering::LowerOperationWrapper(SDNode *N, | 
|  | SmallVectorImpl<SDValue> &Results, | 
|  | SelectionDAG &DAG) const { | 
|  | if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) | 
|  | Results.push_back(Res); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { | 
|  | llvm_unreachable("LowerOperation not implemented for this target!"); | 
|  | } | 
|  |  | 
|  | void | 
|  | SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { | 
|  | SDValue Op = getNonRegisterValue(V); | 
|  | assert((Op.getOpcode() != ISD::CopyFromReg || | 
|  | cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && | 
|  | "Copy from a reg to the same reg!"); | 
|  | assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | // If this is an InlineAsm we have to match the registers required, not the | 
|  | // notional registers required by the type. | 
|  |  | 
|  | RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), | 
|  | None); // This is not an ABI copy. | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  |  | 
|  | ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == | 
|  | FuncInfo.PreferredExtendType.end()) | 
|  | ? ISD::ANY_EXTEND | 
|  | : FuncInfo.PreferredExtendType[V]; | 
|  | RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); | 
|  | PendingExports.push_back(Chain); | 
|  | } | 
|  |  | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  |  | 
|  | /// isOnlyUsedInEntryBlock - If the specified argument is only used in the | 
|  | /// entry block, return true.  This includes arguments used by switches, since | 
|  | /// the switch may expand into multiple basic blocks. | 
|  | static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { | 
|  | // With FastISel active, we may be splitting blocks, so force creation | 
|  | // of virtual registers for all non-dead arguments. | 
|  | if (FastISel) | 
|  | return A->use_empty(); | 
|  |  | 
|  | const BasicBlock &Entry = A->getParent()->front(); | 
|  | for (const User *U : A->users()) | 
|  | if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) | 
|  | return false;  // Use not in entry block. | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | using ArgCopyElisionMapTy = | 
|  | DenseMap<const Argument *, | 
|  | std::pair<const AllocaInst *, const StoreInst *>>; | 
|  |  | 
|  | /// Scan the entry block of the function in FuncInfo for arguments that look | 
|  | /// like copies into a local alloca. Record any copied arguments in | 
|  | /// ArgCopyElisionCandidates. | 
|  | static void | 
|  | findArgumentCopyElisionCandidates(const DataLayout &DL, | 
|  | FunctionLoweringInfo *FuncInfo, | 
|  | ArgCopyElisionMapTy &ArgCopyElisionCandidates) { | 
|  | // Record the state of every static alloca used in the entry block. Argument | 
|  | // allocas are all used in the entry block, so we need approximately as many | 
|  | // entries as we have arguments. | 
|  | enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; | 
|  | SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; | 
|  | unsigned NumArgs = FuncInfo->Fn->arg_size(); | 
|  | StaticAllocas.reserve(NumArgs * 2); | 
|  |  | 
|  | auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { | 
|  | if (!V) | 
|  | return nullptr; | 
|  | V = V->stripPointerCasts(); | 
|  | const auto *AI = dyn_cast<AllocaInst>(V); | 
|  | if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) | 
|  | return nullptr; | 
|  | auto Iter = StaticAllocas.insert({AI, Unknown}); | 
|  | return &Iter.first->second; | 
|  | }; | 
|  |  | 
|  | // Look for stores of arguments to static allocas. Look through bitcasts and | 
|  | // GEPs to handle type coercions, as long as the alloca is fully initialized | 
|  | // by the store. Any non-store use of an alloca escapes it and any subsequent | 
|  | // unanalyzed store might write it. | 
|  | // FIXME: Handle structs initialized with multiple stores. | 
|  | for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { | 
|  | // Look for stores, and handle non-store uses conservatively. | 
|  | const auto *SI = dyn_cast<StoreInst>(&I); | 
|  | if (!SI) { | 
|  | // We will look through cast uses, so ignore them completely. | 
|  | if (I.isCast()) | 
|  | continue; | 
|  | // Ignore debug info intrinsics, they don't escape or store to allocas. | 
|  | if (isa<DbgInfoIntrinsic>(I)) | 
|  | continue; | 
|  | // This is an unknown instruction. Assume it escapes or writes to all | 
|  | // static alloca operands. | 
|  | for (const Use &U : I.operands()) { | 
|  | if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) | 
|  | *Info = StaticAllocaInfo::Clobbered; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If the stored value is a static alloca, mark it as escaped. | 
|  | if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) | 
|  | *Info = StaticAllocaInfo::Clobbered; | 
|  |  | 
|  | // Check if the destination is a static alloca. | 
|  | const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); | 
|  | StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); | 
|  | if (!Info) | 
|  | continue; | 
|  | const AllocaInst *AI = cast<AllocaInst>(Dst); | 
|  |  | 
|  | // Skip allocas that have been initialized or clobbered. | 
|  | if (*Info != StaticAllocaInfo::Unknown) | 
|  | continue; | 
|  |  | 
|  | // Check if the stored value is an argument, and that this store fully | 
|  | // initializes the alloca. Don't elide copies from the same argument twice. | 
|  | const Value *Val = SI->getValueOperand()->stripPointerCasts(); | 
|  | const auto *Arg = dyn_cast<Argument>(Val); | 
|  | if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || | 
|  | Arg->getType()->isEmptyTy() || | 
|  | DL.getTypeStoreSize(Arg->getType()) != | 
|  | DL.getTypeAllocSize(AI->getAllocatedType()) || | 
|  | ArgCopyElisionCandidates.count(Arg)) { | 
|  | *Info = StaticAllocaInfo::Clobbered; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI | 
|  | << '\n'); | 
|  |  | 
|  | // Mark this alloca and store for argument copy elision. | 
|  | *Info = StaticAllocaInfo::Elidable; | 
|  | ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); | 
|  |  | 
|  | // Stop scanning if we've seen all arguments. This will happen early in -O0 | 
|  | // builds, which is useful, because -O0 builds have large entry blocks and | 
|  | // many allocas. | 
|  | if (ArgCopyElisionCandidates.size() == NumArgs) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Try to elide argument copies from memory into a local alloca. Succeeds if | 
|  | /// ArgVal is a load from a suitable fixed stack object. | 
|  | static void tryToElideArgumentCopy( | 
|  | FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, | 
|  | DenseMap<int, int> &ArgCopyElisionFrameIndexMap, | 
|  | SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, | 
|  | ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, | 
|  | SDValue ArgVal, bool &ArgHasUses) { | 
|  | // Check if this is a load from a fixed stack object. | 
|  | auto *LNode = dyn_cast<LoadSDNode>(ArgVal); | 
|  | if (!LNode) | 
|  | return; | 
|  | auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); | 
|  | if (!FINode) | 
|  | return; | 
|  |  | 
|  | // Check that the fixed stack object is the right size and alignment. | 
|  | // Look at the alignment that the user wrote on the alloca instead of looking | 
|  | // at the stack object. | 
|  | auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); | 
|  | assert(ArgCopyIter != ArgCopyElisionCandidates.end()); | 
|  | const AllocaInst *AI = ArgCopyIter->second.first; | 
|  | int FixedIndex = FINode->getIndex(); | 
|  | int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; | 
|  | int OldIndex = AllocaIndex; | 
|  | MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); | 
|  | if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "  argument copy elision failed due to bad fixed stack " | 
|  | "object size\n"); | 
|  | return; | 
|  | } | 
|  | unsigned RequiredAlignment = AI->getAlignment(); | 
|  | if (!RequiredAlignment) { | 
|  | RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( | 
|  | AI->getAllocatedType()); | 
|  | } | 
|  | if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { | 
|  | LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca " | 
|  | "greater than stack argument alignment (" | 
|  | << RequiredAlignment << " vs " | 
|  | << MFI.getObjectAlignment(FixedIndex) << ")\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Perform the elision. Delete the old stack object and replace its only use | 
|  | // in the variable info map. Mark the stack object as mutable. | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' | 
|  | << "  Replacing frame index " << OldIndex << " with " << FixedIndex | 
|  | << '\n'; | 
|  | }); | 
|  | MFI.RemoveStackObject(OldIndex); | 
|  | MFI.setIsImmutableObjectIndex(FixedIndex, false); | 
|  | AllocaIndex = FixedIndex; | 
|  | ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); | 
|  | Chains.push_back(ArgVal.getValue(1)); | 
|  |  | 
|  | // Avoid emitting code for the store implementing the copy. | 
|  | const StoreInst *SI = ArgCopyIter->second.second; | 
|  | ElidedArgCopyInstrs.insert(SI); | 
|  |  | 
|  | // Check for uses of the argument again so that we can avoid exporting ArgVal | 
|  | // if it is't used by anything other than the store. | 
|  | for (const Value *U : Arg.users()) { | 
|  | if (U != SI) { | 
|  | ArgHasUses = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::LowerArguments(const Function &F) { | 
|  | SelectionDAG &DAG = SDB->DAG; | 
|  | SDLoc dl = SDB->getCurSDLoc(); | 
|  | const DataLayout &DL = DAG.getDataLayout(); | 
|  | SmallVector<ISD::InputArg, 16> Ins; | 
|  |  | 
|  | if (!FuncInfo->CanLowerReturn) { | 
|  | // Put in an sret pointer parameter before all the other parameters. | 
|  | SmallVector<EVT, 1> ValueVTs; | 
|  | ComputeValueVTs(*TLI, DAG.getDataLayout(), | 
|  | F.getReturnType()->getPointerTo( | 
|  | DAG.getDataLayout().getAllocaAddrSpace()), | 
|  | ValueVTs); | 
|  |  | 
|  | // NOTE: Assuming that a pointer will never break down to more than one VT | 
|  | // or one register. | 
|  | ISD::ArgFlagsTy Flags; | 
|  | Flags.setSRet(); | 
|  | MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); | 
|  | ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, | 
|  | ISD::InputArg::NoArgIndex, 0); | 
|  | Ins.push_back(RetArg); | 
|  | } | 
|  |  | 
|  | // Look for stores of arguments to static allocas. Mark such arguments with a | 
|  | // flag to ask the target to give us the memory location of that argument if | 
|  | // available. | 
|  | ArgCopyElisionMapTy ArgCopyElisionCandidates; | 
|  | findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); | 
|  |  | 
|  | // Set up the incoming argument description vector. | 
|  | for (const Argument &Arg : F.args()) { | 
|  | unsigned ArgNo = Arg.getArgNo(); | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); | 
|  | bool isArgValueUsed = !Arg.use_empty(); | 
|  | unsigned PartBase = 0; | 
|  | Type *FinalType = Arg.getType(); | 
|  | if (Arg.hasAttribute(Attribute::ByVal)) | 
|  | FinalType = Arg.getParamByValType(); | 
|  | bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( | 
|  | FinalType, F.getCallingConv(), F.isVarArg()); | 
|  | for (unsigned Value = 0, NumValues = ValueVTs.size(); | 
|  | Value != NumValues; ++Value) { | 
|  | EVT VT = ValueVTs[Value]; | 
|  | Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); | 
|  | ISD::ArgFlagsTy Flags; | 
|  |  | 
|  | // Certain targets (such as MIPS), may have a different ABI alignment | 
|  | // for a type depending on the context. Give the target a chance to | 
|  | // specify the alignment it wants. | 
|  | const Align OriginalAlignment( | 
|  | TLI->getABIAlignmentForCallingConv(ArgTy, DL)); | 
|  |  | 
|  | if (Arg.getType()->isPointerTy()) { | 
|  | Flags.setPointer(); | 
|  | Flags.setPointerAddrSpace( | 
|  | cast<PointerType>(Arg.getType())->getAddressSpace()); | 
|  | } | 
|  | if (Arg.hasAttribute(Attribute::ZExt)) | 
|  | Flags.setZExt(); | 
|  | if (Arg.hasAttribute(Attribute::SExt)) | 
|  | Flags.setSExt(); | 
|  | if (Arg.hasAttribute(Attribute::InReg)) { | 
|  | // If we are using vectorcall calling convention, a structure that is | 
|  | // passed InReg - is surely an HVA | 
|  | if (F.getCallingConv() == CallingConv::X86_VectorCall && | 
|  | isa<StructType>(Arg.getType())) { | 
|  | // The first value of a structure is marked | 
|  | if (0 == Value) | 
|  | Flags.setHvaStart(); | 
|  | Flags.setHva(); | 
|  | } | 
|  | // Set InReg Flag | 
|  | Flags.setInReg(); | 
|  | } | 
|  | if (Arg.hasAttribute(Attribute::StructRet)) | 
|  | Flags.setSRet(); | 
|  | if (Arg.hasAttribute(Attribute::SwiftSelf)) | 
|  | Flags.setSwiftSelf(); | 
|  | if (Arg.hasAttribute(Attribute::SwiftError)) | 
|  | Flags.setSwiftError(); | 
|  | if (Arg.hasAttribute(Attribute::ByVal)) | 
|  | Flags.setByVal(); | 
|  | if (Arg.hasAttribute(Attribute::InAlloca)) { | 
|  | Flags.setInAlloca(); | 
|  | // Set the byval flag for CCAssignFn callbacks that don't know about | 
|  | // inalloca.  This way we can know how many bytes we should've allocated | 
|  | // and how many bytes a callee cleanup function will pop.  If we port | 
|  | // inalloca to more targets, we'll have to add custom inalloca handling | 
|  | // in the various CC lowering callbacks. | 
|  | Flags.setByVal(); | 
|  | } | 
|  | if (F.getCallingConv() == CallingConv::X86_INTR) { | 
|  | // IA Interrupt passes frame (1st parameter) by value in the stack. | 
|  | if (ArgNo == 0) | 
|  | Flags.setByVal(); | 
|  | } | 
|  | if (Flags.isByVal() || Flags.isInAlloca()) { | 
|  | Type *ElementTy = Arg.getParamByValType(); | 
|  |  | 
|  | // For ByVal, size and alignment should be passed from FE.  BE will | 
|  | // guess if this info is not there but there are cases it cannot get | 
|  | // right. | 
|  | unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); | 
|  | Flags.setByValSize(FrameSize); | 
|  |  | 
|  | unsigned FrameAlign; | 
|  | if (Arg.getParamAlignment()) | 
|  | FrameAlign = Arg.getParamAlignment(); | 
|  | else | 
|  | FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); | 
|  | Flags.setByValAlign(Align(FrameAlign)); | 
|  | } | 
|  | if (Arg.hasAttribute(Attribute::Nest)) | 
|  | Flags.setNest(); | 
|  | if (NeedsRegBlock) | 
|  | Flags.setInConsecutiveRegs(); | 
|  | Flags.setOrigAlign(OriginalAlignment); | 
|  | if (ArgCopyElisionCandidates.count(&Arg)) | 
|  | Flags.setCopyElisionCandidate(); | 
|  | if (Arg.hasAttribute(Attribute::Returned)) | 
|  | Flags.setReturned(); | 
|  |  | 
|  | MVT RegisterVT = TLI->getRegisterTypeForCallingConv( | 
|  | *CurDAG->getContext(), F.getCallingConv(), VT); | 
|  | unsigned NumRegs = TLI->getNumRegistersForCallingConv( | 
|  | *CurDAG->getContext(), F.getCallingConv(), VT); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, | 
|  | ArgNo, PartBase+i*RegisterVT.getStoreSize()); | 
|  | if (NumRegs > 1 && i == 0) | 
|  | MyFlags.Flags.setSplit(); | 
|  | // if it isn't first piece, alignment must be 1 | 
|  | else if (i > 0) { | 
|  | MyFlags.Flags.setOrigAlign(Align::None()); | 
|  | if (i == NumRegs - 1) | 
|  | MyFlags.Flags.setSplitEnd(); | 
|  | } | 
|  | Ins.push_back(MyFlags); | 
|  | } | 
|  | if (NeedsRegBlock && Value == NumValues - 1) | 
|  | Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); | 
|  | PartBase += VT.getStoreSize(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Call the target to set up the argument values. | 
|  | SmallVector<SDValue, 8> InVals; | 
|  | SDValue NewRoot = TLI->LowerFormalArguments( | 
|  | DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); | 
|  |  | 
|  | // Verify that the target's LowerFormalArguments behaved as expected. | 
|  | assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && | 
|  | "LowerFormalArguments didn't return a valid chain!"); | 
|  | assert(InVals.size() == Ins.size() && | 
|  | "LowerFormalArguments didn't emit the correct number of values!"); | 
|  | LLVM_DEBUG({ | 
|  | for (unsigned i = 0, e = Ins.size(); i != e; ++i) { | 
|  | assert(InVals[i].getNode() && | 
|  | "LowerFormalArguments emitted a null value!"); | 
|  | assert(EVT(Ins[i].VT) == InVals[i].getValueType() && | 
|  | "LowerFormalArguments emitted a value with the wrong type!"); | 
|  | } | 
|  | }); | 
|  |  | 
|  | // Update the DAG with the new chain value resulting from argument lowering. | 
|  | DAG.setRoot(NewRoot); | 
|  |  | 
|  | // Set up the argument values. | 
|  | unsigned i = 0; | 
|  | if (!FuncInfo->CanLowerReturn) { | 
|  | // Create a virtual register for the sret pointer, and put in a copy | 
|  | // from the sret argument into it. | 
|  | SmallVector<EVT, 1> ValueVTs; | 
|  | ComputeValueVTs(*TLI, DAG.getDataLayout(), | 
|  | F.getReturnType()->getPointerTo( | 
|  | DAG.getDataLayout().getAllocaAddrSpace()), | 
|  | ValueVTs); | 
|  | MVT VT = ValueVTs[0].getSimpleVT(); | 
|  | MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); | 
|  | Optional<ISD::NodeType> AssertOp = None; | 
|  | SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, | 
|  | nullptr, F.getCallingConv(), AssertOp); | 
|  |  | 
|  | MachineFunction& MF = SDB->DAG.getMachineFunction(); | 
|  | MachineRegisterInfo& RegInfo = MF.getRegInfo(); | 
|  | Register SRetReg = | 
|  | RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); | 
|  | FuncInfo->DemoteRegister = SRetReg; | 
|  | NewRoot = | 
|  | SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); | 
|  | DAG.setRoot(NewRoot); | 
|  |  | 
|  | // i indexes lowered arguments.  Bump it past the hidden sret argument. | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 4> Chains; | 
|  | DenseMap<int, int> ArgCopyElisionFrameIndexMap; | 
|  | for (const Argument &Arg : F.args()) { | 
|  | SmallVector<SDValue, 4> ArgValues; | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues == 0) | 
|  | continue; | 
|  |  | 
|  | bool ArgHasUses = !Arg.use_empty(); | 
|  |  | 
|  | // Elide the copying store if the target loaded this argument from a | 
|  | // suitable fixed stack object. | 
|  | if (Ins[i].Flags.isCopyElisionCandidate()) { | 
|  | tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, | 
|  | ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, | 
|  | InVals[i], ArgHasUses); | 
|  | } | 
|  |  | 
|  | // If this argument is unused then remember its value. It is used to generate | 
|  | // debugging information. | 
|  | bool isSwiftErrorArg = | 
|  | TLI->supportSwiftError() && | 
|  | Arg.hasAttribute(Attribute::SwiftError); | 
|  | if (!ArgHasUses && !isSwiftErrorArg) { | 
|  | SDB->setUnusedArgValue(&Arg, InVals[i]); | 
|  |  | 
|  | // Also remember any frame index for use in FastISel. | 
|  | if (FrameIndexSDNode *FI = | 
|  | dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) | 
|  | FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); | 
|  | } | 
|  |  | 
|  | for (unsigned Val = 0; Val != NumValues; ++Val) { | 
|  | EVT VT = ValueVTs[Val]; | 
|  | MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), | 
|  | F.getCallingConv(), VT); | 
|  | unsigned NumParts = TLI->getNumRegistersForCallingConv( | 
|  | *CurDAG->getContext(), F.getCallingConv(), VT); | 
|  |  | 
|  | // Even an apparent 'unused' swifterror argument needs to be returned. So | 
|  | // we do generate a copy for it that can be used on return from the | 
|  | // function. | 
|  | if (ArgHasUses || isSwiftErrorArg) { | 
|  | Optional<ISD::NodeType> AssertOp; | 
|  | if (Arg.hasAttribute(Attribute::SExt)) | 
|  | AssertOp = ISD::AssertSext; | 
|  | else if (Arg.hasAttribute(Attribute::ZExt)) | 
|  | AssertOp = ISD::AssertZext; | 
|  |  | 
|  | ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, | 
|  | PartVT, VT, nullptr, | 
|  | F.getCallingConv(), AssertOp)); | 
|  | } | 
|  |  | 
|  | i += NumParts; | 
|  | } | 
|  |  | 
|  | // We don't need to do anything else for unused arguments. | 
|  | if (ArgValues.empty()) | 
|  | continue; | 
|  |  | 
|  | // Note down frame index. | 
|  | if (FrameIndexSDNode *FI = | 
|  | dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) | 
|  | FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); | 
|  |  | 
|  | SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), | 
|  | SDB->getCurSDLoc()); | 
|  |  | 
|  | SDB->setValue(&Arg, Res); | 
|  | if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { | 
|  | // We want to associate the argument with the frame index, among | 
|  | // involved operands, that correspond to the lowest address. The | 
|  | // getCopyFromParts function, called earlier, is swapping the order of | 
|  | // the operands to BUILD_PAIR depending on endianness. The result of | 
|  | // that swapping is that the least significant bits of the argument will | 
|  | // be in the first operand of the BUILD_PAIR node, and the most | 
|  | // significant bits will be in the second operand. | 
|  | unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; | 
|  | if (LoadSDNode *LNode = | 
|  | dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) | 
|  | if (FrameIndexSDNode *FI = | 
|  | dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) | 
|  | FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); | 
|  | } | 
|  |  | 
|  | // Analyses past this point are naive and don't expect an assertion. | 
|  | if (Res.getOpcode() == ISD::AssertZext) | 
|  | Res = Res.getOperand(0); | 
|  |  | 
|  | // Update the SwiftErrorVRegDefMap. | 
|  | if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { | 
|  | unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); | 
|  | if (Register::isVirtualRegister(Reg)) | 
|  | SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), | 
|  | Reg); | 
|  | } | 
|  |  | 
|  | // If this argument is live outside of the entry block, insert a copy from | 
|  | // wherever we got it to the vreg that other BB's will reference it as. | 
|  | if (Res.getOpcode() == ISD::CopyFromReg) { | 
|  | // If we can, though, try to skip creating an unnecessary vreg. | 
|  | // FIXME: This isn't very clean... it would be nice to make this more | 
|  | // general. | 
|  | unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); | 
|  | if (Register::isVirtualRegister(Reg)) { | 
|  | FuncInfo->ValueMap[&Arg] = Reg; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { | 
|  | FuncInfo->InitializeRegForValue(&Arg); | 
|  | SDB->CopyToExportRegsIfNeeded(&Arg); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Chains.empty()) { | 
|  | Chains.push_back(NewRoot); | 
|  | NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); | 
|  | } | 
|  |  | 
|  | DAG.setRoot(NewRoot); | 
|  |  | 
|  | assert(i == InVals.size() && "Argument register count mismatch!"); | 
|  |  | 
|  | // If any argument copy elisions occurred and we have debug info, update the | 
|  | // stale frame indices used in the dbg.declare variable info table. | 
|  | MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); | 
|  | if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { | 
|  | for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { | 
|  | auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); | 
|  | if (I != ArgCopyElisionFrameIndexMap.end()) | 
|  | VI.Slot = I->second; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, if the target has anything special to do, allow it to do so. | 
|  | EmitFunctionEntryCode(); | 
|  | } | 
|  |  | 
|  | /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to | 
|  | /// ensure constants are generated when needed.  Remember the virtual registers | 
|  | /// that need to be added to the Machine PHI nodes as input.  We cannot just | 
|  | /// directly add them, because expansion might result in multiple MBB's for one | 
|  | /// BB.  As such, the start of the BB might correspond to a different MBB than | 
|  | /// the end. | 
|  | void | 
|  | SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { | 
|  | const Instruction *TI = LLVMBB->getTerminator(); | 
|  |  | 
|  | SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; | 
|  |  | 
|  | // Check PHI nodes in successors that expect a value to be available from this | 
|  | // block. | 
|  | for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { | 
|  | const BasicBlock *SuccBB = TI->getSuccessor(succ); | 
|  | if (!isa<PHINode>(SuccBB->begin())) continue; | 
|  | MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; | 
|  |  | 
|  | // If this terminator has multiple identical successors (common for | 
|  | // switches), only handle each succ once. | 
|  | if (!SuccsHandled.insert(SuccMBB).second) | 
|  | continue; | 
|  |  | 
|  | MachineBasicBlock::iterator MBBI = SuccMBB->begin(); | 
|  |  | 
|  | // At this point we know that there is a 1-1 correspondence between LLVM PHI | 
|  | // nodes and Machine PHI nodes, but the incoming operands have not been | 
|  | // emitted yet. | 
|  | for (const PHINode &PN : SuccBB->phis()) { | 
|  | // Ignore dead phi's. | 
|  | if (PN.use_empty()) | 
|  | continue; | 
|  |  | 
|  | // Skip empty types | 
|  | if (PN.getType()->isEmptyTy()) | 
|  | continue; | 
|  |  | 
|  | unsigned Reg; | 
|  | const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); | 
|  |  | 
|  | if (const Constant *C = dyn_cast<Constant>(PHIOp)) { | 
|  | unsigned &RegOut = ConstantsOut[C]; | 
|  | if (RegOut == 0) { | 
|  | RegOut = FuncInfo.CreateRegs(C); | 
|  | CopyValueToVirtualRegister(C, RegOut); | 
|  | } | 
|  | Reg = RegOut; | 
|  | } else { | 
|  | DenseMap<const Value *, unsigned>::iterator I = | 
|  | FuncInfo.ValueMap.find(PHIOp); | 
|  | if (I != FuncInfo.ValueMap.end()) | 
|  | Reg = I->second; | 
|  | else { | 
|  | assert(isa<AllocaInst>(PHIOp) && | 
|  | FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && | 
|  | "Didn't codegen value into a register!??"); | 
|  | Reg = FuncInfo.CreateRegs(PHIOp); | 
|  | CopyValueToVirtualRegister(PHIOp, Reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remember that this register needs to added to the machine PHI node as | 
|  | // the input for this MBB. | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); | 
|  | for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { | 
|  | EVT VT = ValueVTs[vti]; | 
|  | unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); | 
|  | for (unsigned i = 0, e = NumRegisters; i != e; ++i) | 
|  | FuncInfo.PHINodesToUpdate.push_back( | 
|  | std::make_pair(&*MBBI++, Reg + i)); | 
|  | Reg += NumRegisters; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ConstantsOut.clear(); | 
|  | } | 
|  |  | 
|  | /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB | 
|  | /// is 0. | 
|  | MachineBasicBlock * | 
|  | SelectionDAGBuilder::StackProtectorDescriptor:: | 
|  | AddSuccessorMBB(const BasicBlock *BB, | 
|  | MachineBasicBlock *ParentMBB, | 
|  | bool IsLikely, | 
|  | MachineBasicBlock *SuccMBB) { | 
|  | // If SuccBB has not been created yet, create it. | 
|  | if (!SuccMBB) { | 
|  | MachineFunction *MF = ParentMBB->getParent(); | 
|  | MachineFunction::iterator BBI(ParentMBB); | 
|  | SuccMBB = MF->CreateMachineBasicBlock(BB); | 
|  | MF->insert(++BBI, SuccMBB); | 
|  | } | 
|  | // Add it as a successor of ParentMBB. | 
|  | ParentMBB->addSuccessor( | 
|  | SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); | 
|  | return SuccMBB; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { | 
|  | MachineFunction::iterator I(MBB); | 
|  | if (++I == FuncInfo.MF->end()) | 
|  | return nullptr; | 
|  | return &*I; | 
|  | } | 
|  |  | 
|  | /// During lowering new call nodes can be created (such as memset, etc.). | 
|  | /// Those will become new roots of the current DAG, but complications arise | 
|  | /// when they are tail calls. In such cases, the call lowering will update | 
|  | /// the root, but the builder still needs to know that a tail call has been | 
|  | /// lowered in order to avoid generating an additional return. | 
|  | void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { | 
|  | // If the node is null, we do have a tail call. | 
|  | if (MaybeTC.getNode() != nullptr) | 
|  | DAG.setRoot(MaybeTC); | 
|  | else | 
|  | HasTailCall = true; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, | 
|  | MachineBasicBlock *SwitchMBB, | 
|  | MachineBasicBlock *DefaultMBB) { | 
|  | MachineFunction *CurMF = FuncInfo.MF; | 
|  | MachineBasicBlock *NextMBB = nullptr; | 
|  | MachineFunction::iterator BBI(W.MBB); | 
|  | if (++BBI != FuncInfo.MF->end()) | 
|  | NextMBB = &*BBI; | 
|  |  | 
|  | unsigned Size = W.LastCluster - W.FirstCluster + 1; | 
|  |  | 
|  | BranchProbabilityInfo *BPI = FuncInfo.BPI; | 
|  |  | 
|  | if (Size == 2 && W.MBB == SwitchMBB) { | 
|  | // If any two of the cases has the same destination, and if one value | 
|  | // is the same as the other, but has one bit unset that the other has set, | 
|  | // use bit manipulation to do two compares at once.  For example: | 
|  | // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" | 
|  | // TODO: This could be extended to merge any 2 cases in switches with 3 | 
|  | // cases. | 
|  | // TODO: Handle cases where W.CaseBB != SwitchBB. | 
|  | CaseCluster &Small = *W.FirstCluster; | 
|  | CaseCluster &Big = *W.LastCluster; | 
|  |  | 
|  | if (Small.Low == Small.High && Big.Low == Big.High && | 
|  | Small.MBB == Big.MBB) { | 
|  | const APInt &SmallValue = Small.Low->getValue(); | 
|  | const APInt &BigValue = Big.Low->getValue(); | 
|  |  | 
|  | // Check that there is only one bit different. | 
|  | APInt CommonBit = BigValue ^ SmallValue; | 
|  | if (CommonBit.isPowerOf2()) { | 
|  | SDValue CondLHS = getValue(Cond); | 
|  | EVT VT = CondLHS.getValueType(); | 
|  | SDLoc DL = getCurSDLoc(); | 
|  |  | 
|  | SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, | 
|  | DAG.getConstant(CommonBit, DL, VT)); | 
|  | SDValue Cond = DAG.getSetCC( | 
|  | DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), | 
|  | ISD::SETEQ); | 
|  |  | 
|  | // Update successor info. | 
|  | // Both Small and Big will jump to Small.BB, so we sum up the | 
|  | // probabilities. | 
|  | addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); | 
|  | if (BPI) | 
|  | addSuccessorWithProb( | 
|  | SwitchMBB, DefaultMBB, | 
|  | // The default destination is the first successor in IR. | 
|  | BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); | 
|  | else | 
|  | addSuccessorWithProb(SwitchMBB, DefaultMBB); | 
|  |  | 
|  | // Insert the true branch. | 
|  | SDValue BrCond = | 
|  | DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, | 
|  | DAG.getBasicBlock(Small.MBB)); | 
|  | // Insert the false branch. | 
|  | BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, | 
|  | DAG.getBasicBlock(DefaultMBB)); | 
|  |  | 
|  | DAG.setRoot(BrCond); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TM.getOptLevel() != CodeGenOpt::None) { | 
|  | // Here, we order cases by probability so the most likely case will be | 
|  | // checked first. However, two clusters can have the same probability in | 
|  | // which case their relative ordering is non-deterministic. So we use Low | 
|  | // as a tie-breaker as clusters are guaranteed to never overlap. | 
|  | llvm::sort(W.FirstCluster, W.LastCluster + 1, | 
|  | [](const CaseCluster &a, const CaseCluster &b) { | 
|  | return a.Prob != b.Prob ? | 
|  | a.Prob > b.Prob : | 
|  | a.Low->getValue().slt(b.Low->getValue()); | 
|  | }); | 
|  |  | 
|  | // Rearrange the case blocks so that the last one falls through if possible | 
|  | // without changing the order of probabilities. | 
|  | for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { | 
|  | --I; | 
|  | if (I->Prob > W.LastCluster->Prob) | 
|  | break; | 
|  | if (I->Kind == CC_Range && I->MBB == NextMBB) { | 
|  | std::swap(*I, *W.LastCluster); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute total probability. | 
|  | BranchProbability DefaultProb = W.DefaultProb; | 
|  | BranchProbability UnhandledProbs = DefaultProb; | 
|  | for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) | 
|  | UnhandledProbs += I->Prob; | 
|  |  | 
|  | MachineBasicBlock *CurMBB = W.MBB; | 
|  | for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { | 
|  | bool FallthroughUnreachable = false; | 
|  | MachineBasicBlock *Fallthrough; | 
|  | if (I == W.LastCluster) { | 
|  | // For the last cluster, fall through to the default destination. | 
|  | Fallthrough = DefaultMBB; | 
|  | FallthroughUnreachable = isa<UnreachableInst>( | 
|  | DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); | 
|  | } else { | 
|  | Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); | 
|  | CurMF->insert(BBI, Fallthrough); | 
|  | // Put Cond in a virtual register to make it available from the new blocks. | 
|  | ExportFromCurrentBlock(Cond); | 
|  | } | 
|  | UnhandledProbs -= I->Prob; | 
|  |  | 
|  | switch (I->Kind) { | 
|  | case CC_JumpTable: { | 
|  | // FIXME: Optimize away range check based on pivot comparisons. | 
|  | JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; | 
|  | SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; | 
|  |  | 
|  | // The jump block hasn't been inserted yet; insert it here. | 
|  | MachineBasicBlock *JumpMBB = JT->MBB; | 
|  | CurMF->insert(BBI, JumpMBB); | 
|  |  | 
|  | auto JumpProb = I->Prob; | 
|  | auto FallthroughProb = UnhandledProbs; | 
|  |  | 
|  | // If the default statement is a target of the jump table, we evenly | 
|  | // distribute the default probability to successors of CurMBB. Also | 
|  | // update the probability on the edge from JumpMBB to Fallthrough. | 
|  | for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), | 
|  | SE = JumpMBB->succ_end(); | 
|  | SI != SE; ++SI) { | 
|  | if (*SI == DefaultMBB) { | 
|  | JumpProb += DefaultProb / 2; | 
|  | FallthroughProb -= DefaultProb / 2; | 
|  | JumpMBB->setSuccProbability(SI, DefaultProb / 2); | 
|  | JumpMBB->normalizeSuccProbs(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FallthroughUnreachable) { | 
|  | // Skip the range check if the fallthrough block is unreachable. | 
|  | JTH->OmitRangeCheck = true; | 
|  | } | 
|  |  | 
|  | if (!JTH->OmitRangeCheck) | 
|  | addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); | 
|  | addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); | 
|  | CurMBB->normalizeSuccProbs(); | 
|  |  | 
|  | // The jump table header will be inserted in our current block, do the | 
|  | // range check, and fall through to our fallthrough block. | 
|  | JTH->HeaderBB = CurMBB; | 
|  | JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. | 
|  |  | 
|  | // If we're in the right place, emit the jump table header right now. | 
|  | if (CurMBB == SwitchMBB) { | 
|  | visitJumpTableHeader(*JT, *JTH, SwitchMBB); | 
|  | JTH->Emitted = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case CC_BitTests: { | 
|  | // FIXME: Optimize away range check based on pivot comparisons. | 
|  | BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; | 
|  |  | 
|  | // The bit test blocks haven't been inserted yet; insert them here. | 
|  | for (BitTestCase &BTC : BTB->Cases) | 
|  | CurMF->insert(BBI, BTC.ThisBB); | 
|  |  | 
|  | // Fill in fields of the BitTestBlock. | 
|  | BTB->Parent = CurMBB; | 
|  | BTB->Default = Fallthrough; | 
|  |  | 
|  | BTB->DefaultProb = UnhandledProbs; | 
|  | // If the cases in bit test don't form a contiguous range, we evenly | 
|  | // distribute the probability on the edge to Fallthrough to two | 
|  | // successors of CurMBB. | 
|  | if (!BTB->ContiguousRange) { | 
|  | BTB->Prob += DefaultProb / 2; | 
|  | BTB->DefaultProb -= DefaultProb / 2; | 
|  | } | 
|  |  | 
|  | if (FallthroughUnreachable) { | 
|  | // Skip the range check if the fallthrough block is unreachable. | 
|  | BTB->OmitRangeCheck = true; | 
|  | } | 
|  |  | 
|  | // If we're in the right place, emit the bit test header right now. | 
|  | if (CurMBB == SwitchMBB) { | 
|  | visitBitTestHeader(*BTB, SwitchMBB); | 
|  | BTB->Emitted = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case CC_Range: { | 
|  | const Value *RHS, *LHS, *MHS; | 
|  | ISD::CondCode CC; | 
|  | if (I->Low == I->High) { | 
|  | // Check Cond == I->Low. | 
|  | CC = ISD::SETEQ; | 
|  | LHS = Cond; | 
|  | RHS=I->Low; | 
|  | MHS = nullptr; | 
|  | } else { | 
|  | // Check I->Low <= Cond <= I->High. | 
|  | CC = ISD::SETLE; | 
|  | LHS = I->Low; | 
|  | MHS = Cond; | 
|  | RHS = I->High; | 
|  | } | 
|  |  | 
|  | // If Fallthrough is unreachable, fold away the comparison. | 
|  | if (FallthroughUnreachable) | 
|  | CC = ISD::SETTRUE; | 
|  |  | 
|  | // The false probability is the sum of all unhandled cases. | 
|  | CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, | 
|  | getCurSDLoc(), I->Prob, UnhandledProbs); | 
|  |  | 
|  | if (CurMBB == SwitchMBB) | 
|  | visitSwitchCase(CB, SwitchMBB); | 
|  | else | 
|  | SL->SwitchCases.push_back(CB); | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  | CurMBB = Fallthrough; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, | 
|  | CaseClusterIt First, | 
|  | CaseClusterIt Last) { | 
|  | return std::count_if(First, Last + 1, [&](const CaseCluster &X) { | 
|  | if (X.Prob != CC.Prob) | 
|  | return X.Prob > CC.Prob; | 
|  |  | 
|  | // Ties are broken by comparing the case value. | 
|  | return X.Low->getValue().slt(CC.Low->getValue()); | 
|  | }); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, | 
|  | const SwitchWorkListItem &W, | 
|  | Value *Cond, | 
|  | MachineBasicBlock *SwitchMBB) { | 
|  | assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && | 
|  | "Clusters not sorted?"); | 
|  |  | 
|  | assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); | 
|  |  | 
|  | // Balance the tree based on branch probabilities to create a near-optimal (in | 
|  | // terms of search time given key frequency) binary search tree. See e.g. Kurt | 
|  | // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). | 
|  | CaseClusterIt LastLeft = W.FirstCluster; | 
|  | CaseClusterIt FirstRight = W.LastCluster; | 
|  | auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; | 
|  | auto RightProb = FirstRight->Prob + W.DefaultProb / 2; | 
|  |  | 
|  | // Move LastLeft and FirstRight towards each other from opposite directions to | 
|  | // find a partitioning of the clusters which balances the probability on both | 
|  | // sides. If LeftProb and RightProb are equal, alternate which side is | 
|  | // taken to ensure 0-probability nodes are distributed evenly. | 
|  | unsigned I = 0; | 
|  | while (LastLeft + 1 < FirstRight) { | 
|  | if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) | 
|  | LeftProb += (++LastLeft)->Prob; | 
|  | else | 
|  | RightProb += (--FirstRight)->Prob; | 
|  | I++; | 
|  | } | 
|  |  | 
|  | while (true) { | 
|  | // Our binary search tree differs from a typical BST in that ours can have up | 
|  | // to three values in each leaf. The pivot selection above doesn't take that | 
|  | // into account, which means the tree might require more nodes and be less | 
|  | // efficient. We compensate for this here. | 
|  |  | 
|  | unsigned NumLeft = LastLeft - W.FirstCluster + 1; | 
|  | unsigned NumRight = W.LastCluster - FirstRight + 1; | 
|  |  | 
|  | if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { | 
|  | // If one side has less than 3 clusters, and the other has more than 3, | 
|  | // consider taking a cluster from the other side. | 
|  |  | 
|  | if (NumLeft < NumRight) { | 
|  | // Consider moving the first cluster on the right to the left side. | 
|  | CaseCluster &CC = *FirstRight; | 
|  | unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); | 
|  | unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); | 
|  | if (LeftSideRank <= RightSideRank) { | 
|  | // Moving the cluster to the left does not demote it. | 
|  | ++LastLeft; | 
|  | ++FirstRight; | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | assert(NumRight < NumLeft); | 
|  | // Consider moving the last element on the left to the right side. | 
|  | CaseCluster &CC = *LastLeft; | 
|  | unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); | 
|  | unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); | 
|  | if (RightSideRank <= LeftSideRank) { | 
|  | // Moving the cluster to the right does not demot it. | 
|  | --LastLeft; | 
|  | --FirstRight; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(LastLeft + 1 == FirstRight); | 
|  | assert(LastLeft >= W.FirstCluster); | 
|  | assert(FirstRight <= W.LastCluster); | 
|  |  | 
|  | // Use the first element on the right as pivot since we will make less-than | 
|  | // comparisons against it. | 
|  | CaseClusterIt PivotCluster = FirstRight; | 
|  | assert(PivotCluster > W.FirstCluster); | 
|  | assert(PivotCluster <= W.LastCluster); | 
|  |  | 
|  | CaseClusterIt FirstLeft = W.FirstCluster; | 
|  | CaseClusterIt LastRight = W.LastCluster; | 
|  |  | 
|  | const ConstantInt *Pivot = PivotCluster->Low; | 
|  |  | 
|  | // New blocks will be inserted immediately after the current one. | 
|  | MachineFunction::iterator BBI(W.MBB); | 
|  | ++BBI; | 
|  |  | 
|  | // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, | 
|  | // we can branch to its destination directly if it's squeezed exactly in | 
|  | // between the known lower bound and Pivot - 1. | 
|  | MachineBasicBlock *LeftMBB; | 
|  | if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && | 
|  | FirstLeft->Low == W.GE && | 
|  | (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { | 
|  | LeftMBB = FirstLeft->MBB; | 
|  | } else { | 
|  | LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); | 
|  | FuncInfo.MF->insert(BBI, LeftMBB); | 
|  | WorkList.push_back( | 
|  | {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); | 
|  | // Put Cond in a virtual register to make it available from the new blocks. | 
|  | ExportFromCurrentBlock(Cond); | 
|  | } | 
|  |  | 
|  | // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a | 
|  | // single cluster, RHS.Low == Pivot, and we can branch to its destination | 
|  | // directly if RHS.High equals the current upper bound. | 
|  | MachineBasicBlock *RightMBB; | 
|  | if (FirstRight == LastRight && FirstRight->Kind == CC_Range && | 
|  | W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { | 
|  | RightMBB = FirstRight->MBB; | 
|  | } else { | 
|  | RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); | 
|  | FuncInfo.MF->insert(BBI, RightMBB); | 
|  | WorkList.push_back( | 
|  | {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); | 
|  | // Put Cond in a virtual register to make it available from the new blocks. | 
|  | ExportFromCurrentBlock(Cond); | 
|  | } | 
|  |  | 
|  | // Create the CaseBlock record that will be used to lower the branch. | 
|  | CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, | 
|  | getCurSDLoc(), LeftProb, RightProb); | 
|  |  | 
|  | if (W.MBB == SwitchMBB) | 
|  | visitSwitchCase(CB, SwitchMBB); | 
|  | else | 
|  | SL->SwitchCases.push_back(CB); | 
|  | } | 
|  |  | 
|  | // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb | 
|  | // from the swith statement. | 
|  | static BranchProbability scaleCaseProbality(BranchProbability CaseProb, | 
|  | BranchProbability PeeledCaseProb) { | 
|  | if (PeeledCaseProb == BranchProbability::getOne()) | 
|  | return BranchProbability::getZero(); | 
|  | BranchProbability SwitchProb = PeeledCaseProb.getCompl(); | 
|  |  | 
|  | uint32_t Numerator = CaseProb.getNumerator(); | 
|  | uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); | 
|  | return BranchProbability(Numerator, std::max(Numerator, Denominator)); | 
|  | } | 
|  |  | 
|  | // Try to peel the top probability case if it exceeds the threshold. | 
|  | // Return current MachineBasicBlock for the switch statement if the peeling | 
|  | // does not occur. | 
|  | // If the peeling is performed, return the newly created MachineBasicBlock | 
|  | // for the peeled switch statement. Also update Clusters to remove the peeled | 
|  | // case. PeeledCaseProb is the BranchProbability for the peeled case. | 
|  | MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( | 
|  | const SwitchInst &SI, CaseClusterVector &Clusters, | 
|  | BranchProbability &PeeledCaseProb) { | 
|  | MachineBasicBlock *SwitchMBB = FuncInfo.MBB; | 
|  | // Don't perform if there is only one cluster or optimizing for size. | 
|  | if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || | 
|  | TM.getOptLevel() == CodeGenOpt::None || | 
|  | SwitchMBB->getParent()->getFunction().hasMinSize()) | 
|  | return SwitchMBB; | 
|  |  | 
|  | BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); | 
|  | unsigned PeeledCaseIndex = 0; | 
|  | bool SwitchPeeled = false; | 
|  | for (unsigned Index = 0; Index < Clusters.size(); ++Index) { | 
|  | CaseCluster &CC = Clusters[Index]; | 
|  | if (CC.Prob < TopCaseProb) | 
|  | continue; | 
|  | TopCaseProb = CC.Prob; | 
|  | PeeledCaseIndex = Index; | 
|  | SwitchPeeled = true; | 
|  | } | 
|  | if (!SwitchPeeled) | 
|  | return SwitchMBB; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " | 
|  | << TopCaseProb << "\n"); | 
|  |  | 
|  | // Record the MBB for the peeled switch statement. | 
|  | MachineFunction::iterator BBI(SwitchMBB); | 
|  | ++BBI; | 
|  | MachineBasicBlock *PeeledSwitchMBB = | 
|  | FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); | 
|  | FuncInfo.MF->insert(BBI, PeeledSwitchMBB); | 
|  |  | 
|  | ExportFromCurrentBlock(SI.getCondition()); | 
|  | auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; | 
|  | SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, | 
|  | nullptr,   nullptr,      TopCaseProb.getCompl()}; | 
|  | lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); | 
|  |  | 
|  | Clusters.erase(PeeledCaseIt); | 
|  | for (CaseCluster &CC : Clusters) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Scale the probablity for one cluster, before scaling: " | 
|  | << CC.Prob << "\n"); | 
|  | CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); | 
|  | LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); | 
|  | } | 
|  | PeeledCaseProb = TopCaseProb; | 
|  | return PeeledSwitchMBB; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { | 
|  | // Extract cases from the switch. | 
|  | BranchProbabilityInfo *BPI = FuncInfo.BPI; | 
|  | CaseClusterVector Clusters; | 
|  | Clusters.reserve(SI.getNumCases()); | 
|  | for (auto I : SI.cases()) { | 
|  | MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; | 
|  | const ConstantInt *CaseVal = I.getCaseValue(); | 
|  | BranchProbability Prob = | 
|  | BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) | 
|  | : BranchProbability(1, SI.getNumCases() + 1); | 
|  | Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; | 
|  |  | 
|  | // Cluster adjacent cases with the same destination. We do this at all | 
|  | // optimization levels because it's cheap to do and will make codegen faster | 
|  | // if there are many clusters. | 
|  | sortAndRangeify(Clusters); | 
|  |  | 
|  | // The branch probablity of the peeled case. | 
|  | BranchProbability PeeledCaseProb = BranchProbability::getZero(); | 
|  | MachineBasicBlock *PeeledSwitchMBB = | 
|  | peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); | 
|  |  | 
|  | // If there is only the default destination, jump there directly. | 
|  | MachineBasicBlock *SwitchMBB = FuncInfo.MBB; | 
|  | if (Clusters.empty()) { | 
|  | assert(PeeledSwitchMBB == SwitchMBB); | 
|  | SwitchMBB->addSuccessor(DefaultMBB); | 
|  | if (DefaultMBB != NextBlock(SwitchMBB)) { | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, | 
|  | getControlRoot(), DAG.getBasicBlock(DefaultMBB))); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | SL->findJumpTables(Clusters, &SI, DefaultMBB); | 
|  | SL->findBitTestClusters(Clusters, &SI); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Case clusters: "; | 
|  | for (const CaseCluster &C : Clusters) { | 
|  | if (C.Kind == CC_JumpTable) | 
|  | dbgs() << "JT:"; | 
|  | if (C.Kind == CC_BitTests) | 
|  | dbgs() << "BT:"; | 
|  |  | 
|  | C.Low->getValue().print(dbgs(), true); | 
|  | if (C.Low != C.High) { | 
|  | dbgs() << '-'; | 
|  | C.High->getValue().print(dbgs(), true); | 
|  | } | 
|  | dbgs() << ' '; | 
|  | } | 
|  | dbgs() << '\n'; | 
|  | }); | 
|  |  | 
|  | assert(!Clusters.empty()); | 
|  | SwitchWorkList WorkList; | 
|  | CaseClusterIt First = Clusters.begin(); | 
|  | CaseClusterIt Last = Clusters.end() - 1; | 
|  | auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); | 
|  | // Scale the branchprobability for DefaultMBB if the peel occurs and | 
|  | // DefaultMBB is not replaced. | 
|  | if (PeeledCaseProb != BranchProbability::getZero() && | 
|  | DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) | 
|  | DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); | 
|  | WorkList.push_back( | 
|  | {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); | 
|  |  | 
|  | while (!WorkList.empty()) { | 
|  | SwitchWorkListItem W = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  | unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; | 
|  |  | 
|  | if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && | 
|  | !DefaultMBB->getParent()->getFunction().hasMinSize()) { | 
|  | // For optimized builds, lower large range as a balanced binary tree. | 
|  | splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); | 
|  | } | 
|  | } |