|  | //===- Writer.cpp ---------------------------------------------------------===// | 
|  | // | 
|  | //                             The LLVM Linker | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Writer.h" | 
|  | #include "Config.h" | 
|  | #include "Filesystem.h" | 
|  | #include "LinkerScript.h" | 
|  | #include "MapFile.h" | 
|  | #include "Memory.h" | 
|  | #include "OutputSections.h" | 
|  | #include "Relocations.h" | 
|  | #include "Strings.h" | 
|  | #include "SymbolTable.h" | 
|  | #include "SyntheticSections.h" | 
|  | #include "Target.h" | 
|  | #include "Threads.h" | 
|  | #include "llvm/ADT/StringMap.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/Support/FileOutputBuffer.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <climits> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::ELF; | 
|  | using namespace llvm::object; | 
|  | using namespace llvm::support; | 
|  | using namespace llvm::support::endian; | 
|  |  | 
|  | using namespace lld; | 
|  | using namespace lld::elf; | 
|  |  | 
|  | namespace { | 
|  | // The writer writes a SymbolTable result to a file. | 
|  | template <class ELFT> class Writer { | 
|  | public: | 
|  | typedef typename ELFT::Shdr Elf_Shdr; | 
|  | typedef typename ELFT::Ehdr Elf_Ehdr; | 
|  | typedef typename ELFT::Phdr Elf_Phdr; | 
|  |  | 
|  | void run(); | 
|  |  | 
|  | private: | 
|  | void createSyntheticSections(); | 
|  | void copyLocalSymbols(); | 
|  | void addSectionSymbols(); | 
|  | void addReservedSymbols(); | 
|  | void createSections(); | 
|  | void forEachRelSec(std::function<void(InputSectionBase &)> Fn); | 
|  | void sortSections(); | 
|  | void finalizeSections(); | 
|  | void addPredefinedSections(); | 
|  |  | 
|  | std::vector<PhdrEntry *> createPhdrs(); | 
|  | void removeEmptyPTLoad(); | 
|  | void addPtArmExid(std::vector<PhdrEntry *> &Phdrs); | 
|  | void assignFileOffsets(); | 
|  | void assignFileOffsetsBinary(); | 
|  | void setPhdrs(); | 
|  | void fixSectionAlignments(); | 
|  | void fixPredefinedSymbols(); | 
|  | void openFile(); | 
|  | void writeTrapInstr(); | 
|  | void writeHeader(); | 
|  | void writeSections(); | 
|  | void writeSectionsBinary(); | 
|  | void writeBuildId(); | 
|  |  | 
|  | std::unique_ptr<FileOutputBuffer> Buffer; | 
|  |  | 
|  | OutputSectionFactory Factory; | 
|  |  | 
|  | void addRelIpltSymbols(); | 
|  | void addStartEndSymbols(); | 
|  | void addStartStopSymbols(OutputSection *Sec); | 
|  | uint64_t getEntryAddr(); | 
|  | OutputSection *findSection(StringRef Name); | 
|  |  | 
|  | std::vector<PhdrEntry *> Phdrs; | 
|  |  | 
|  | uint64_t FileSize; | 
|  | uint64_t SectionHeaderOff; | 
|  |  | 
|  | bool HasGotBaseSym = false; | 
|  | }; | 
|  | } // anonymous namespace | 
|  |  | 
|  | StringRef elf::getOutputSectionName(StringRef Name) { | 
|  | // ".zdebug_" is a prefix for ZLIB-compressed sections. | 
|  | // Because we decompressed input sections, we want to remove 'z'. | 
|  | if (Name.startswith(".zdebug_")) | 
|  | return Saver.save("." + Name.substr(2)); | 
|  |  | 
|  | if (Config->Relocatable) | 
|  | return Name; | 
|  |  | 
|  | for (StringRef V : | 
|  | {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", | 
|  | ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", | 
|  | ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) { | 
|  | StringRef Prefix = V.drop_back(); | 
|  | if (Name.startswith(V) || Name == Prefix) | 
|  | return Prefix; | 
|  | } | 
|  |  | 
|  | // CommonSection is identified as "COMMON" in linker scripts. | 
|  | // By default, it should go to .bss section. | 
|  | if (Name == "COMMON") | 
|  | return ".bss"; | 
|  |  | 
|  | return Name; | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool needsInterpSection() { | 
|  | return !SharedFile<ELFT>::Instances.empty() && | 
|  | !Config->DynamicLinker.empty() && !Script->ignoreInterpSection(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() { | 
|  | auto I = llvm::remove_if(Phdrs, [&](const PhdrEntry *P) { | 
|  | if (P->p_type != PT_LOAD) | 
|  | return false; | 
|  | if (!P->First) | 
|  | return true; | 
|  | uint64_t Size = P->Last->Addr + P->Last->Size - P->First->Addr; | 
|  | return Size == 0; | 
|  | }); | 
|  | Phdrs.erase(I, Phdrs.end()); | 
|  | } | 
|  |  | 
|  | template <class ELFT> static void combineEhFrameSections() { | 
|  | for (InputSectionBase *&S : InputSections) { | 
|  | EhInputSection *ES = dyn_cast<EhInputSection>(S); | 
|  | if (!ES || !ES->Live) | 
|  | continue; | 
|  |  | 
|  | In<ELFT>::EhFrame->addSection(ES); | 
|  | S = nullptr; | 
|  | } | 
|  |  | 
|  | std::vector<InputSectionBase *> &V = InputSections; | 
|  | V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); | 
|  | } | 
|  |  | 
|  | // The main function of the writer. | 
|  | template <class ELFT> void Writer<ELFT>::run() { | 
|  | // Create linker-synthesized sections such as .got or .plt. | 
|  | // Such sections are of type input section. | 
|  | createSyntheticSections(); | 
|  |  | 
|  | if (!Config->Relocatable) | 
|  | combineEhFrameSections<ELFT>(); | 
|  |  | 
|  | // We need to create some reserved symbols such as _end. Create them. | 
|  | if (!Config->Relocatable) | 
|  | addReservedSymbols(); | 
|  |  | 
|  | // Create output sections. | 
|  | if (Script->Opt.HasSections) { | 
|  | // If linker script contains SECTIONS commands, let it create sections. | 
|  | Script->processCommands(Factory); | 
|  |  | 
|  | // Linker scripts may have left some input sections unassigned. | 
|  | // Assign such sections using the default rule. | 
|  | Script->addOrphanSections(Factory); | 
|  | } else { | 
|  | // If linker script does not contain SECTIONS commands, create | 
|  | // output sections by default rules. We still need to give the | 
|  | // linker script a chance to run, because it might contain | 
|  | // non-SECTIONS commands such as ASSERT. | 
|  | Script->processCommands(Factory); | 
|  | createSections(); | 
|  | } | 
|  |  | 
|  | if (Config->Discard != DiscardPolicy::All) | 
|  | copyLocalSymbols(); | 
|  |  | 
|  | if (Config->CopyRelocs) | 
|  | addSectionSymbols(); | 
|  |  | 
|  | // Now that we have a complete set of output sections. This function | 
|  | // completes section contents. For example, we need to add strings | 
|  | // to the string table, and add entries to .got and .plt. | 
|  | // finalizeSections does that. | 
|  | finalizeSections(); | 
|  | if (ErrorCount) | 
|  | return; | 
|  |  | 
|  | if (!Script->Opt.HasSections && !Config->Relocatable) | 
|  | fixSectionAlignments(); | 
|  |  | 
|  | // If -compressed-debug-sections is specified, we need to compress | 
|  | // .debug_* sections. Do it right now because it changes the size of | 
|  | // output sections. | 
|  | parallelForEach(OutputSections, | 
|  | [](OutputSection *Sec) { Sec->maybeCompress<ELFT>(); }); | 
|  |  | 
|  | Script->assignAddresses(); | 
|  | Script->allocateHeaders(Phdrs); | 
|  |  | 
|  | // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a | 
|  | // 0 sized region. This has to be done late since only after assignAddresses | 
|  | // we know the size of the sections. | 
|  | removeEmptyPTLoad(); | 
|  |  | 
|  | if (!Config->OFormatBinary) | 
|  | assignFileOffsets(); | 
|  | else | 
|  | assignFileOffsetsBinary(); | 
|  |  | 
|  | setPhdrs(); | 
|  |  | 
|  | if (Config->Relocatable) { | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | Sec->Addr = 0; | 
|  | } else { | 
|  | fixPredefinedSymbols(); | 
|  | } | 
|  |  | 
|  | // It does not make sense try to open the file if we have error already. | 
|  | if (ErrorCount) | 
|  | return; | 
|  | // Write the result down to a file. | 
|  | openFile(); | 
|  | if (ErrorCount) | 
|  | return; | 
|  |  | 
|  | if (!Config->OFormatBinary) { | 
|  | writeTrapInstr(); | 
|  | writeHeader(); | 
|  | writeSections(); | 
|  | } else { | 
|  | writeSectionsBinary(); | 
|  | } | 
|  |  | 
|  | // Backfill .note.gnu.build-id section content. This is done at last | 
|  | // because the content is usually a hash value of the entire output file. | 
|  | writeBuildId(); | 
|  | if (ErrorCount) | 
|  | return; | 
|  |  | 
|  | // Handle -Map option. | 
|  | writeMapFile<ELFT>(); | 
|  | if (ErrorCount) | 
|  | return; | 
|  |  | 
|  | if (auto EC = Buffer->commit()) | 
|  | error("failed to write to the output file: " + EC.message()); | 
|  |  | 
|  | // Flush the output streams and exit immediately. A full shutdown | 
|  | // is a good test that we are keeping track of all allocated memory, | 
|  | // but actually freeing it is a waste of time in a regular linker run. | 
|  | if (Config->ExitEarly) | 
|  | exitLld(0); | 
|  | } | 
|  |  | 
|  | // Initialize Out members. | 
|  | template <class ELFT> void Writer<ELFT>::createSyntheticSections() { | 
|  | // Initialize all pointers with NULL. This is needed because | 
|  | // you can call lld::elf::main more than once as a library. | 
|  | memset(&Out::First, 0, sizeof(Out)); | 
|  |  | 
|  | auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); }; | 
|  |  | 
|  | InX::DynStrTab = make<StringTableSection>(".dynstr", true); | 
|  | InX::Dynamic = make<DynamicSection<ELFT>>(); | 
|  | In<ELFT>::RelaDyn = make<RelocationSection<ELFT>>( | 
|  | Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); | 
|  | InX::ShStrTab = make<StringTableSection>(".shstrtab", false); | 
|  |  | 
|  | Out::ElfHeader = make<OutputSection>("", 0, SHF_ALLOC); | 
|  | Out::ElfHeader->Size = sizeof(Elf_Ehdr); | 
|  | Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC); | 
|  | Out::ProgramHeaders->updateAlignment(Config->Wordsize); | 
|  |  | 
|  | if (needsInterpSection<ELFT>()) { | 
|  | InX::Interp = createInterpSection(); | 
|  | Add(InX::Interp); | 
|  | } else { | 
|  | InX::Interp = nullptr; | 
|  | } | 
|  |  | 
|  | if (Config->Strip != StripPolicy::All) { | 
|  | InX::StrTab = make<StringTableSection>(".strtab", false); | 
|  | InX::SymTab = make<SymbolTableSection<ELFT>>(*InX::StrTab); | 
|  | } | 
|  |  | 
|  | if (Config->BuildId != BuildIdKind::None) { | 
|  | InX::BuildId = make<BuildIdSection>(); | 
|  | Add(InX::BuildId); | 
|  | } | 
|  |  | 
|  | InX::Common = createCommonSection<ELFT>(); | 
|  | if (InX::Common) | 
|  | Add(InX::Common); | 
|  |  | 
|  | InX::Bss = make<BssSection>(".bss"); | 
|  | Add(InX::Bss); | 
|  | InX::BssRelRo = make<BssSection>(".bss.rel.ro"); | 
|  | Add(InX::BssRelRo); | 
|  |  | 
|  | // Add MIPS-specific sections. | 
|  | bool HasDynSymTab = !SharedFile<ELFT>::Instances.empty() || Config->Pic || | 
|  | Config->ExportDynamic; | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | if (!Config->Shared && HasDynSymTab) { | 
|  | InX::MipsRldMap = make<MipsRldMapSection>(); | 
|  | Add(InX::MipsRldMap); | 
|  | } | 
|  | if (auto *Sec = MipsAbiFlagsSection<ELFT>::create()) | 
|  | Add(Sec); | 
|  | if (auto *Sec = MipsOptionsSection<ELFT>::create()) | 
|  | Add(Sec); | 
|  | if (auto *Sec = MipsReginfoSection<ELFT>::create()) | 
|  | Add(Sec); | 
|  | } | 
|  |  | 
|  | if (HasDynSymTab) { | 
|  | InX::DynSymTab = make<SymbolTableSection<ELFT>>(*InX::DynStrTab); | 
|  | Add(InX::DynSymTab); | 
|  |  | 
|  | In<ELFT>::VerSym = make<VersionTableSection<ELFT>>(); | 
|  | Add(In<ELFT>::VerSym); | 
|  |  | 
|  | if (!Config->VersionDefinitions.empty()) { | 
|  | In<ELFT>::VerDef = make<VersionDefinitionSection<ELFT>>(); | 
|  | Add(In<ELFT>::VerDef); | 
|  | } | 
|  |  | 
|  | In<ELFT>::VerNeed = make<VersionNeedSection<ELFT>>(); | 
|  | Add(In<ELFT>::VerNeed); | 
|  |  | 
|  | if (Config->GnuHash) { | 
|  | InX::GnuHashTab = make<GnuHashTableSection>(); | 
|  | Add(InX::GnuHashTab); | 
|  | } | 
|  |  | 
|  | if (Config->SysvHash) { | 
|  | In<ELFT>::HashTab = make<HashTableSection<ELFT>>(); | 
|  | Add(In<ELFT>::HashTab); | 
|  | } | 
|  |  | 
|  | Add(InX::Dynamic); | 
|  | Add(InX::DynStrTab); | 
|  | Add(In<ELFT>::RelaDyn); | 
|  | } | 
|  |  | 
|  | // Add .got. MIPS' .got is so different from the other archs, | 
|  | // it has its own class. | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | InX::MipsGot = make<MipsGotSection>(); | 
|  | Add(InX::MipsGot); | 
|  | } else { | 
|  | InX::Got = make<GotSection>(); | 
|  | Add(InX::Got); | 
|  | } | 
|  |  | 
|  | InX::GotPlt = make<GotPltSection>(); | 
|  | Add(InX::GotPlt); | 
|  | InX::IgotPlt = make<IgotPltSection>(); | 
|  | Add(InX::IgotPlt); | 
|  |  | 
|  | if (Config->GdbIndex) { | 
|  | InX::GdbIndex = createGdbIndex<ELFT>(); | 
|  | Add(InX::GdbIndex); | 
|  | } | 
|  |  | 
|  | // We always need to add rel[a].plt to output if it has entries. | 
|  | // Even for static linking it can contain R_[*]_IRELATIVE relocations. | 
|  | In<ELFT>::RelaPlt = make<RelocationSection<ELFT>>( | 
|  | Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/); | 
|  | Add(In<ELFT>::RelaPlt); | 
|  |  | 
|  | // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure | 
|  | // that the IRelative relocations are processed last by the dynamic loader | 
|  | In<ELFT>::RelaIplt = make<RelocationSection<ELFT>>( | 
|  | (Config->EMachine == EM_ARM) ? ".rel.dyn" : In<ELFT>::RelaPlt->Name, | 
|  | false /*Sort*/); | 
|  | Add(In<ELFT>::RelaIplt); | 
|  |  | 
|  | InX::Plt = make<PltSection>(Target->PltHeaderSize); | 
|  | Add(InX::Plt); | 
|  | InX::Iplt = make<PltSection>(0); | 
|  | Add(InX::Iplt); | 
|  |  | 
|  | if (!Config->Relocatable) { | 
|  | if (Config->EhFrameHdr) { | 
|  | In<ELFT>::EhFrameHdr = make<EhFrameHeader<ELFT>>(); | 
|  | Add(In<ELFT>::EhFrameHdr); | 
|  | } | 
|  | In<ELFT>::EhFrame = make<EhFrameSection<ELFT>>(); | 
|  | Add(In<ELFT>::EhFrame); | 
|  | } | 
|  |  | 
|  | if (InX::SymTab) | 
|  | Add(InX::SymTab); | 
|  | Add(InX::ShStrTab); | 
|  | if (InX::StrTab) | 
|  | Add(InX::StrTab); | 
|  | } | 
|  |  | 
|  | static bool shouldKeepInSymtab(SectionBase *Sec, StringRef SymName, | 
|  | const SymbolBody &B) { | 
|  | if (B.isFile() || B.isSection()) | 
|  | return false; | 
|  |  | 
|  | // If sym references a section in a discarded group, don't keep it. | 
|  | if (Sec == &InputSection::Discarded) | 
|  | return false; | 
|  |  | 
|  | if (Config->Discard == DiscardPolicy::None) | 
|  | return true; | 
|  |  | 
|  | // In ELF assembly .L symbols are normally discarded by the assembler. | 
|  | // If the assembler fails to do so, the linker discards them if | 
|  | // * --discard-locals is used. | 
|  | // * The symbol is in a SHF_MERGE section, which is normally the reason for | 
|  | //   the assembler keeping the .L symbol. | 
|  | if (!SymName.startswith(".L") && !SymName.empty()) | 
|  | return true; | 
|  |  | 
|  | if (Config->Discard == DiscardPolicy::Locals) | 
|  | return false; | 
|  |  | 
|  | return !Sec || !(Sec->Flags & SHF_MERGE); | 
|  | } | 
|  |  | 
|  | static bool includeInSymtab(const SymbolBody &B) { | 
|  | if (!B.isLocal() && !B.symbol()->IsUsedInRegularObj) | 
|  | return false; | 
|  |  | 
|  | if (auto *D = dyn_cast<DefinedRegular>(&B)) { | 
|  | // Always include absolute symbols. | 
|  | SectionBase *Sec = D->Section; | 
|  | if (!Sec) | 
|  | return true; | 
|  | if (auto *IS = dyn_cast<InputSectionBase>(Sec)) { | 
|  | Sec = IS->Repl; | 
|  | IS = cast<InputSectionBase>(Sec); | 
|  | // Exclude symbols pointing to garbage-collected sections. | 
|  | if (!IS->Live) | 
|  | return false; | 
|  | } | 
|  | if (auto *S = dyn_cast<MergeInputSection>(Sec)) | 
|  | if (!S->getSectionPiece(D->Value)->Live) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Local symbols are not in the linker's symbol table. This function scans | 
|  | // each object file's symbol table to copy local symbols to the output. | 
|  | template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { | 
|  | if (!InX::SymTab) | 
|  | return; | 
|  | for (ObjFile<ELFT> *F : ObjFile<ELFT>::Instances) { | 
|  | for (SymbolBody *B : F->getLocalSymbols()) { | 
|  | if (!B->IsLocal) | 
|  | fatal(toString(F) + | 
|  | ": broken object: getLocalSymbols returns a non-local symbol"); | 
|  | auto *DR = dyn_cast<DefinedRegular>(B); | 
|  |  | 
|  | // No reason to keep local undefined symbol in symtab. | 
|  | if (!DR) | 
|  | continue; | 
|  | if (!includeInSymtab(*B)) | 
|  | continue; | 
|  |  | 
|  | SectionBase *Sec = DR->Section; | 
|  | if (!shouldKeepInSymtab(Sec, B->getName(), *B)) | 
|  | continue; | 
|  | InX::SymTab->addSymbol(B); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::addSectionSymbols() { | 
|  | // Create one STT_SECTION symbol for each output section we might | 
|  | // have a relocation with. | 
|  | for (BaseCommand *Base : Script->Opt.Commands) { | 
|  | auto *Sec = dyn_cast<OutputSection>(Base); | 
|  | if (!Sec) | 
|  | continue; | 
|  | auto I = llvm::find_if(Sec->Commands, [](BaseCommand *Base) { | 
|  | if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) | 
|  | return !ISD->Sections.empty(); | 
|  | return false; | 
|  | }); | 
|  | if (I == Sec->Commands.end()) | 
|  | continue; | 
|  | InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0]; | 
|  | if (isa<SyntheticSection>(IS) || IS->Type == SHT_REL || | 
|  | IS->Type == SHT_RELA) | 
|  | continue; | 
|  |  | 
|  | auto *Sym = | 
|  | make<DefinedRegular>("", /*IsLocal=*/true, /*StOther=*/0, STT_SECTION, | 
|  | /*Value=*/0, /*Size=*/0, IS); | 
|  | InX::SymTab->addSymbol(Sym); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Today's loaders have a feature to make segments read-only after | 
|  | // processing dynamic relocations to enhance security. PT_GNU_RELRO | 
|  | // is defined for that. | 
|  | // | 
|  | // This function returns true if a section needs to be put into a | 
|  | // PT_GNU_RELRO segment. | 
|  | static bool isRelroSection(const OutputSection *Sec) { | 
|  | if (!Config->ZRelro) | 
|  | return false; | 
|  |  | 
|  | uint64_t Flags = Sec->Flags; | 
|  |  | 
|  | // Non-allocatable or non-writable sections don't need RELRO because | 
|  | // they are not writable or not even mapped to memory in the first place. | 
|  | // RELRO is for sections that are essentially read-only but need to | 
|  | // be writable only at process startup to allow dynamic linker to | 
|  | // apply relocations. | 
|  | if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) | 
|  | return false; | 
|  |  | 
|  | // Once initialized, TLS data segments are used as data templates | 
|  | // for a thread-local storage. For each new thread, runtime | 
|  | // allocates memory for a TLS and copy templates there. No thread | 
|  | // are supposed to use templates directly. Thus, it can be in RELRO. | 
|  | if (Flags & SHF_TLS) | 
|  | return true; | 
|  |  | 
|  | // .init_array, .preinit_array and .fini_array contain pointers to | 
|  | // functions that are executed on process startup or exit. These | 
|  | // pointers are set by the static linker, and they are not expected | 
|  | // to change at runtime. But if you are an attacker, you could do | 
|  | // interesting things by manipulating pointers in .fini_array, for | 
|  | // example. So they are put into RELRO. | 
|  | uint32_t Type = Sec->Type; | 
|  | if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || | 
|  | Type == SHT_PREINIT_ARRAY) | 
|  | return true; | 
|  |  | 
|  | // .got contains pointers to external symbols. They are resolved by | 
|  | // the dynamic linker when a module is loaded into memory, and after | 
|  | // that they are not expected to change. So, it can be in RELRO. | 
|  | if (InX::Got && Sec == InX::Got->getParent()) | 
|  | return true; | 
|  |  | 
|  | // .got.plt contains pointers to external function symbols. They are | 
|  | // by default resolved lazily, so we usually cannot put it into RELRO. | 
|  | // However, if "-z now" is given, the lazy symbol resolution is | 
|  | // disabled, which enables us to put it into RELRO. | 
|  | if (Sec == InX::GotPlt->getParent()) | 
|  | return Config->ZNow; | 
|  |  | 
|  | // .dynamic section contains data for the dynamic linker, and | 
|  | // there's no need to write to it at runtime, so it's better to put | 
|  | // it into RELRO. | 
|  | if (Sec == InX::Dynamic->getParent()) | 
|  | return true; | 
|  |  | 
|  | // .bss.rel.ro is used for copy relocations for read-only symbols. | 
|  | // Since the dynamic linker needs to process copy relocations, the | 
|  | // section cannot be read-only, but once initialized, they shouldn't | 
|  | // change. | 
|  | if (Sec == InX::BssRelRo->getParent()) | 
|  | return true; | 
|  |  | 
|  | // Sections with some special names are put into RELRO. This is a | 
|  | // bit unfortunate because section names shouldn't be significant in | 
|  | // ELF in spirit. But in reality many linker features depend on | 
|  | // magic section names. | 
|  | StringRef S = Sec->Name; | 
|  | return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" || | 
|  | S == ".eh_frame" || S == ".openbsd.randomdata"; | 
|  | } | 
|  |  | 
|  | // We compute a rank for each section. The rank indicates where the | 
|  | // section should be placed in the file.  Instead of using simple | 
|  | // numbers (0,1,2...), we use a series of flags. One for each decision | 
|  | // point when placing the section. | 
|  | // Using flags has two key properties: | 
|  | // * It is easy to check if a give branch was taken. | 
|  | // * It is easy two see how similar two ranks are (see getRankProximity). | 
|  | enum RankFlags { | 
|  | RF_NOT_ADDR_SET = 1 << 16, | 
|  | RF_NOT_INTERP = 1 << 15, | 
|  | RF_NOT_ALLOC = 1 << 14, | 
|  | RF_WRITE = 1 << 13, | 
|  | RF_EXEC_WRITE = 1 << 12, | 
|  | RF_EXEC = 1 << 11, | 
|  | RF_NON_TLS_BSS = 1 << 10, | 
|  | RF_NON_TLS_BSS_RO = 1 << 9, | 
|  | RF_NOT_TLS = 1 << 8, | 
|  | RF_BSS = 1 << 7, | 
|  | RF_PPC_NOT_TOCBSS = 1 << 6, | 
|  | RF_PPC_OPD = 1 << 5, | 
|  | RF_PPC_TOCL = 1 << 4, | 
|  | RF_PPC_TOC = 1 << 3, | 
|  | RF_PPC_BRANCH_LT = 1 << 2, | 
|  | RF_MIPS_GPREL = 1 << 1, | 
|  | RF_MIPS_NOT_GOT = 1 << 0 | 
|  | }; | 
|  |  | 
|  | static unsigned getSectionRank(const OutputSection *Sec) { | 
|  | unsigned Rank = 0; | 
|  |  | 
|  | // We want to put section specified by -T option first, so we | 
|  | // can start assigning VA starting from them later. | 
|  | if (Config->SectionStartMap.count(Sec->Name)) | 
|  | return Rank; | 
|  | Rank |= RF_NOT_ADDR_SET; | 
|  |  | 
|  | // Put .interp first because some loaders want to see that section | 
|  | // on the first page of the executable file when loaded into memory. | 
|  | if (Sec->Name == ".interp") | 
|  | return Rank; | 
|  | Rank |= RF_NOT_INTERP; | 
|  |  | 
|  | // Allocatable sections go first to reduce the total PT_LOAD size and | 
|  | // so debug info doesn't change addresses in actual code. | 
|  | if (!(Sec->Flags & SHF_ALLOC)) | 
|  | return Rank | RF_NOT_ALLOC; | 
|  |  | 
|  | // Sort sections based on their access permission in the following | 
|  | // order: R, RX, RWX, RW.  This order is based on the following | 
|  | // considerations: | 
|  | // * Read-only sections come first such that they go in the | 
|  | //   PT_LOAD covering the program headers at the start of the file. | 
|  | // * Read-only, executable sections come next, unless the | 
|  | //   -no-rosegment option is used. | 
|  | // * Writable, executable sections follow such that .plt on | 
|  | //   architectures where it needs to be writable will be placed | 
|  | //   between .text and .data. | 
|  | // * Writable sections come last, such that .bss lands at the very | 
|  | //   end of the last PT_LOAD. | 
|  | bool IsExec = Sec->Flags & SHF_EXECINSTR; | 
|  | bool IsWrite = Sec->Flags & SHF_WRITE; | 
|  |  | 
|  | if (IsExec) { | 
|  | if (IsWrite) | 
|  | Rank |= RF_EXEC_WRITE; | 
|  | else if (!Config->SingleRoRx) | 
|  | Rank |= RF_EXEC; | 
|  | } else { | 
|  | if (IsWrite) | 
|  | Rank |= RF_WRITE; | 
|  | } | 
|  |  | 
|  | // If we got here we know that both A and B are in the same PT_LOAD. | 
|  |  | 
|  | bool IsTls = Sec->Flags & SHF_TLS; | 
|  | bool IsNoBits = Sec->Type == SHT_NOBITS; | 
|  |  | 
|  | // The first requirement we have is to put (non-TLS) nobits sections last. The | 
|  | // reason is that the only thing the dynamic linker will see about them is a | 
|  | // p_memsz that is larger than p_filesz. Seeing that it zeros the end of the | 
|  | // PT_LOAD, so that has to correspond to the nobits sections. | 
|  | bool IsNonTlsNoBits = IsNoBits && !IsTls; | 
|  | if (IsNonTlsNoBits) | 
|  | Rank |= RF_NON_TLS_BSS; | 
|  |  | 
|  | // We place nobits RelRo sections before plain r/w ones, and non-nobits RelRo | 
|  | // sections after r/w ones, so that the RelRo sections are contiguous. | 
|  | bool IsRelRo = isRelroSection(Sec); | 
|  | if (IsNonTlsNoBits && !IsRelRo) | 
|  | Rank |= RF_NON_TLS_BSS_RO; | 
|  | if (!IsNonTlsNoBits && IsRelRo) | 
|  | Rank |= RF_NON_TLS_BSS_RO; | 
|  |  | 
|  | // The TLS initialization block needs to be a single contiguous block in a R/W | 
|  | // PT_LOAD, so stick TLS sections directly before the other RelRo R/W | 
|  | // sections. The TLS NOBITS sections are placed here as they don't take up | 
|  | // virtual address space in the PT_LOAD. | 
|  | if (!IsTls) | 
|  | Rank |= RF_NOT_TLS; | 
|  |  | 
|  | // Within the TLS initialization block, the non-nobits sections need to appear | 
|  | // first. | 
|  | if (IsNoBits) | 
|  | Rank |= RF_BSS; | 
|  |  | 
|  | // // Some architectures have additional ordering restrictions for sections | 
|  | // // within the same PT_LOAD. | 
|  | if (Config->EMachine == EM_PPC64) { | 
|  | // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections | 
|  | // that we would like to make sure appear is a specific order to maximize | 
|  | // their coverage by a single signed 16-bit offset from the TOC base | 
|  | // pointer. Conversely, the special .tocbss section should be first among | 
|  | // all SHT_NOBITS sections. This will put it next to the loaded special | 
|  | // PPC64 sections (and, thus, within reach of the TOC base pointer). | 
|  | StringRef Name = Sec->Name; | 
|  | if (Name != ".tocbss") | 
|  | Rank |= RF_PPC_NOT_TOCBSS; | 
|  |  | 
|  | if (Name == ".opd") | 
|  | Rank |= RF_PPC_OPD; | 
|  |  | 
|  | if (Name == ".toc1") | 
|  | Rank |= RF_PPC_TOCL; | 
|  |  | 
|  | if (Name == ".toc") | 
|  | Rank |= RF_PPC_TOC; | 
|  |  | 
|  | if (Name == ".branch_lt") | 
|  | Rank |= RF_PPC_BRANCH_LT; | 
|  | } | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | // All sections with SHF_MIPS_GPREL flag should be grouped together | 
|  | // because data in these sections is addressable with a gp relative address. | 
|  | if (Sec->Flags & SHF_MIPS_GPREL) | 
|  | Rank |= RF_MIPS_GPREL; | 
|  |  | 
|  | if (Sec->Name != ".got") | 
|  | Rank |= RF_MIPS_NOT_GOT; | 
|  | } | 
|  |  | 
|  | return Rank; | 
|  | } | 
|  |  | 
|  | static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) { | 
|  | const OutputSection *A = cast<OutputSection>(ACmd); | 
|  | const OutputSection *B = cast<OutputSection>(BCmd); | 
|  | if (A->SortRank != B->SortRank) | 
|  | return A->SortRank < B->SortRank; | 
|  | if (!(A->SortRank & RF_NOT_ADDR_SET)) | 
|  | return Config->SectionStartMap.lookup(A->Name) < | 
|  | Config->SectionStartMap.lookup(B->Name); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void PhdrEntry::add(OutputSection *Sec) { | 
|  | Last = Sec; | 
|  | if (!First) | 
|  | First = Sec; | 
|  | p_align = std::max(p_align, Sec->Alignment); | 
|  | if (p_type == PT_LOAD) | 
|  | Sec->FirstInPtLoad = First; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static Symbol *addRegular(StringRef Name, SectionBase *Sec, uint64_t Value, | 
|  | uint8_t StOther = STV_HIDDEN, | 
|  | uint8_t Binding = STB_WEAK) { | 
|  | // The linker generated symbols are added as STB_WEAK to allow user defined | 
|  | // ones to override them. | 
|  | return Symtab->addRegular<ELFT>(Name, StOther, STT_NOTYPE, Value, | 
|  | /*Size=*/0, Binding, Sec, | 
|  | /*File=*/nullptr); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static DefinedRegular * | 
|  | addOptionalRegular(StringRef Name, SectionBase *Sec, uint64_t Val, | 
|  | uint8_t StOther = STV_HIDDEN, uint8_t Binding = STB_GLOBAL) { | 
|  | SymbolBody *S = Symtab->find(Name); | 
|  | if (!S) | 
|  | return nullptr; | 
|  | if (S->isInCurrentDSO()) | 
|  | return nullptr; | 
|  | return cast<DefinedRegular>( | 
|  | addRegular<ELFT>(Name, Sec, Val, StOther, Binding)->body()); | 
|  | } | 
|  |  | 
|  | // The beginning and the ending of .rel[a].plt section are marked | 
|  | // with __rel[a]_iplt_{start,end} symbols if it is a statically linked | 
|  | // executable. The runtime needs these symbols in order to resolve | 
|  | // all IRELATIVE relocs on startup. For dynamic executables, we don't | 
|  | // need these symbols, since IRELATIVE relocs are resolved through GOT | 
|  | // and PLT. For details, see http://www.airs.com/blog/archives/403. | 
|  | template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { | 
|  | if (!Config->Static) | 
|  | return; | 
|  | StringRef S = Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start"; | 
|  | addOptionalRegular<ELFT>(S, In<ELFT>::RelaIplt, 0, STV_HIDDEN, STB_WEAK); | 
|  |  | 
|  | S = Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end"; | 
|  | addOptionalRegular<ELFT>(S, In<ELFT>::RelaIplt, -1, STV_HIDDEN, STB_WEAK); | 
|  | } | 
|  |  | 
|  | // The linker is expected to define some symbols depending on | 
|  | // the linking result. This function defines such symbols. | 
|  | template <class ELFT> void Writer<ELFT>::addReservedSymbols() { | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer | 
|  | // so that it points to an absolute address which by default is relative | 
|  | // to GOT. Default offset is 0x7ff0. | 
|  | // See "Global Data Symbols" in Chapter 6 in the following document: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | ElfSym::MipsGp = Symtab->addAbsolute<ELFT>("_gp", STV_HIDDEN, STB_LOCAL); | 
|  |  | 
|  | // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between | 
|  | // start of function and 'gp' pointer into GOT. | 
|  | if (Symtab->find("_gp_disp")) | 
|  | ElfSym::MipsGpDisp = | 
|  | Symtab->addAbsolute<ELFT>("_gp_disp", STV_HIDDEN, STB_LOCAL); | 
|  |  | 
|  | // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' | 
|  | // pointer. This symbol is used in the code generated by .cpload pseudo-op | 
|  | // in case of using -mno-shared option. | 
|  | // https://sourceware.org/ml/binutils/2004-12/msg00094.html | 
|  | if (Symtab->find("__gnu_local_gp")) | 
|  | ElfSym::MipsLocalGp = | 
|  | Symtab->addAbsolute<ELFT>("__gnu_local_gp", STV_HIDDEN, STB_LOCAL); | 
|  | } | 
|  |  | 
|  | // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to | 
|  | // be at some offset from the base of the .got section, usually 0 or the end | 
|  | // of the .got | 
|  | InputSection *GotSection = InX::MipsGot ? cast<InputSection>(InX::MipsGot) | 
|  | : cast<InputSection>(InX::Got); | 
|  | ElfSym::GlobalOffsetTable = addOptionalRegular<ELFT>( | 
|  | "_GLOBAL_OFFSET_TABLE_", GotSection, Target->GotBaseSymOff); | 
|  |  | 
|  | // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For | 
|  | // static linking the linker is required to optimize away any references to | 
|  | // __tls_get_addr, so it's not defined anywhere. Create a hidden definition | 
|  | // to avoid the undefined symbol error. | 
|  | if (!InX::DynSymTab) | 
|  | Symtab->addIgnored<ELFT>("__tls_get_addr"); | 
|  |  | 
|  | // __ehdr_start is the location of ELF file headers. Note that we define | 
|  | // this symbol unconditionally even when using a linker script, which | 
|  | // differs from the behavior implemented by GNU linker which only define | 
|  | // this symbol if ELF headers are in the memory mapped segment. | 
|  | // __executable_start is not documented, but the expectation of at | 
|  | // least the android libc is that it points to the elf header too. | 
|  | // __dso_handle symbol is passed to cxa_finalize as a marker to identify | 
|  | // each DSO. The address of the symbol doesn't matter as long as they are | 
|  | // different in different DSOs, so we chose the start address of the DSO. | 
|  | for (const char *Name : | 
|  | {"__ehdr_start", "__executable_start", "__dso_handle"}) | 
|  | addOptionalRegular<ELFT>(Name, Out::ElfHeader, 0, STV_HIDDEN); | 
|  |  | 
|  | // If linker script do layout we do not need to create any standart symbols. | 
|  | if (Script->Opt.HasSections) | 
|  | return; | 
|  |  | 
|  | auto Add = [](StringRef S) { | 
|  | return addOptionalRegular<ELFT>(S, Out::ElfHeader, 0, STV_DEFAULT); | 
|  | }; | 
|  |  | 
|  | ElfSym::Bss = Add("__bss_start"); | 
|  | ElfSym::End1 = Add("end"); | 
|  | ElfSym::End2 = Add("_end"); | 
|  | ElfSym::Etext1 = Add("etext"); | 
|  | ElfSym::Etext2 = Add("_etext"); | 
|  | ElfSym::Edata1 = Add("edata"); | 
|  | ElfSym::Edata2 = Add("_edata"); | 
|  | } | 
|  |  | 
|  | // Sort input sections by section name suffixes for | 
|  | // __attribute__((init_priority(N))). | 
|  | static void sortInitFini(OutputSection *Cmd) { | 
|  | if (Cmd) | 
|  | Cmd->sortInitFini(); | 
|  | } | 
|  |  | 
|  | // Sort input sections by the special rule for .ctors and .dtors. | 
|  | static void sortCtorsDtors(OutputSection *Cmd) { | 
|  | if (Cmd) | 
|  | Cmd->sortCtorsDtors(); | 
|  | } | 
|  |  | 
|  | // Sort input sections using the list provided by --symbol-ordering-file. | 
|  | template <class ELFT> static void sortBySymbolsOrder() { | 
|  | if (Config->SymbolOrderingFile.empty()) | 
|  | return; | 
|  |  | 
|  | // Sort sections by priority. | 
|  | DenseMap<SectionBase *, int> SectionOrder = buildSectionOrder<ELFT>(); | 
|  | for (BaseCommand *Base : Script->Opt.Commands) | 
|  | if (auto *Sec = dyn_cast<OutputSection>(Base)) | 
|  | Sec->sort([&](InputSectionBase *S) { return SectionOrder.lookup(S); }); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::forEachRelSec(std::function<void(InputSectionBase &)> Fn) { | 
|  | for (InputSectionBase *IS : InputSections) { | 
|  | if (!IS->Live) | 
|  | continue; | 
|  | // Scan all relocations. Each relocation goes through a series | 
|  | // of tests to determine if it needs special treatment, such as | 
|  | // creating GOT, PLT, copy relocations, etc. | 
|  | // Note that relocations for non-alloc sections are directly | 
|  | // processed by InputSection::relocateNonAlloc. | 
|  | if (!(IS->Flags & SHF_ALLOC)) | 
|  | continue; | 
|  | if (isa<InputSection>(IS) || isa<EhInputSection>(IS)) | 
|  | Fn(*IS); | 
|  | } | 
|  |  | 
|  | if (!Config->Relocatable) { | 
|  | for (EhInputSection *ES : In<ELFT>::EhFrame->Sections) | 
|  | Fn(*ES); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::createSections() { | 
|  | std::vector<BaseCommand *> Old = Script->Opt.Commands; | 
|  | Script->Opt.Commands.clear(); | 
|  | for (InputSectionBase *IS : InputSections) | 
|  | if (IS) | 
|  | Factory.addInputSec(IS, getOutputSectionName(IS->Name)); | 
|  | Script->Opt.Commands.insert(Script->Opt.Commands.end(), Old.begin(), | 
|  | Old.end()); | 
|  |  | 
|  | Script->fabricateDefaultCommands(); | 
|  | sortBySymbolsOrder<ELFT>(); | 
|  | sortInitFini(findSection(".init_array")); | 
|  | sortInitFini(findSection(".fini_array")); | 
|  | sortCtorsDtors(findSection(".ctors")); | 
|  | sortCtorsDtors(findSection(".dtors")); | 
|  | } | 
|  |  | 
|  | // We want to find how similar two ranks are. | 
|  | // The more branches in getSectionRank that match, the more similar they are. | 
|  | // Since each branch corresponds to a bit flag, we can just use | 
|  | // countLeadingZeros. | 
|  | static int getRankProximityAux(OutputSection *A, OutputSection *B) { | 
|  | return countLeadingZeros(A->SortRank ^ B->SortRank); | 
|  | } | 
|  |  | 
|  | static int getRankProximity(OutputSection *A, BaseCommand *B) { | 
|  | if (auto *Sec = dyn_cast<OutputSection>(B)) | 
|  | if (Sec->Live) | 
|  | return getRankProximityAux(A, Sec); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // When placing orphan sections, we want to place them after symbol assignments | 
|  | // so that an orphan after | 
|  | //   begin_foo = .; | 
|  | //   foo : { *(foo) } | 
|  | //   end_foo = .; | 
|  | // doesn't break the intended meaning of the begin/end symbols. | 
|  | // We don't want to go over sections since findOrphanPos is the | 
|  | // one in charge of deciding the order of the sections. | 
|  | // We don't want to go over changes to '.', since doing so in | 
|  | //  rx_sec : { *(rx_sec) } | 
|  | //  . = ALIGN(0x1000); | 
|  | //  /* The RW PT_LOAD starts here*/ | 
|  | //  rw_sec : { *(rw_sec) } | 
|  | // would mean that the RW PT_LOAD would become unaligned. | 
|  | static bool shouldSkip(BaseCommand *Cmd) { | 
|  | if (isa<OutputSection>(Cmd)) | 
|  | return false; | 
|  | if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd)) | 
|  | return Assign->Name != "."; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We want to place orphan sections so that they share as much | 
|  | // characteristics with their neighbors as possible. For example, if | 
|  | // both are rw, or both are tls. | 
|  | template <typename ELFT> | 
|  | static std::vector<BaseCommand *>::iterator | 
|  | findOrphanPos(std::vector<BaseCommand *>::iterator B, | 
|  | std::vector<BaseCommand *>::iterator E) { | 
|  | OutputSection *Sec = cast<OutputSection>(*E); | 
|  |  | 
|  | // Find the first element that has as close a rank as possible. | 
|  | auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) { | 
|  | return getRankProximity(Sec, A) < getRankProximity(Sec, B); | 
|  | }); | 
|  | if (I == E) | 
|  | return E; | 
|  |  | 
|  | // Consider all existing sections with the same proximity. | 
|  | int Proximity = getRankProximity(Sec, *I); | 
|  | for (; I != E; ++I) { | 
|  | auto *CurSec = dyn_cast<OutputSection>(*I); | 
|  | if (!CurSec || !CurSec->Live) | 
|  | continue; | 
|  | if (getRankProximity(Sec, CurSec) != Proximity || | 
|  | Sec->SortRank < CurSec->SortRank) | 
|  | break; | 
|  | } | 
|  | auto J = std::find_if( | 
|  | llvm::make_reverse_iterator(I), llvm::make_reverse_iterator(B), | 
|  | [](BaseCommand *Cmd) { return isa<OutputSection>(Cmd); }); | 
|  | I = J.base(); | 
|  | while (I != E && shouldSkip(*I)) | 
|  | ++I; | 
|  | return I; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::sortSections() { | 
|  | if (Script->Opt.HasSections) | 
|  | Script->adjustSectionsBeforeSorting(); | 
|  |  | 
|  | // Don't sort if using -r. It is not necessary and we want to preserve the | 
|  | // relative order for SHF_LINK_ORDER sections. | 
|  | if (Config->Relocatable) | 
|  | return; | 
|  |  | 
|  | for (BaseCommand *Base : Script->Opt.Commands) | 
|  | if (auto *Sec = dyn_cast<OutputSection>(Base)) | 
|  | Sec->SortRank = getSectionRank(Sec); | 
|  |  | 
|  | if (!Script->Opt.HasSections) { | 
|  | // We know that all the OutputSections are contiguous in | 
|  | // this case. | 
|  | auto E = Script->Opt.Commands.end(); | 
|  | auto I = Script->Opt.Commands.begin(); | 
|  | auto IsSection = [](BaseCommand *Base) { return isa<OutputSection>(Base); }; | 
|  | I = std::find_if(I, E, IsSection); | 
|  | E = std::find_if(llvm::make_reverse_iterator(E), | 
|  | llvm::make_reverse_iterator(I), IsSection) | 
|  | .base(); | 
|  | std::stable_sort(I, E, compareSections); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Orphan sections are sections present in the input files which are | 
|  | // not explicitly placed into the output file by the linker script. | 
|  | // | 
|  | // The sections in the linker script are already in the correct | 
|  | // order. We have to figuere out where to insert the orphan | 
|  | // sections. | 
|  | // | 
|  | // The order of the sections in the script is arbitrary and may not agree with | 
|  | // compareSections. This means that we cannot easily define a strict weak | 
|  | // ordering. To see why, consider a comparison of a section in the script and | 
|  | // one not in the script. We have a two simple options: | 
|  | // * Make them equivalent (a is not less than b, and b is not less than a). | 
|  | //   The problem is then that equivalence has to be transitive and we can | 
|  | //   have sections a, b and c with only b in a script and a less than c | 
|  | //   which breaks this property. | 
|  | // * Use compareSectionsNonScript. Given that the script order doesn't have | 
|  | //   to match, we can end up with sections a, b, c, d where b and c are in the | 
|  | //   script and c is compareSectionsNonScript less than b. In which case d | 
|  | //   can be equivalent to c, a to b and d < a. As a concrete example: | 
|  | //   .a (rx) # not in script | 
|  | //   .b (rx) # in script | 
|  | //   .c (ro) # in script | 
|  | //   .d (ro) # not in script | 
|  | // | 
|  | // The way we define an order then is: | 
|  | // *  Sort only the orphan sections. They are in the end right now. | 
|  | // *  Move each orphan section to its preferred position. We try | 
|  | //    to put each section in the last position where it it can share | 
|  | //    a PT_LOAD. | 
|  | // | 
|  | // There is some ambiguity as to where exactly a new entry should be | 
|  | // inserted, because Opt.Commands contains not only output section | 
|  | // commands but also other types of commands such as symbol assignment | 
|  | // expressions. There's no correct answer here due to the lack of the | 
|  | // formal specification of the linker script. We use heuristics to | 
|  | // determine whether a new output command should be added before or | 
|  | // after another commands. For the details, look at shouldSkip | 
|  | // function. | 
|  |  | 
|  | auto I = Script->Opt.Commands.begin(); | 
|  | auto E = Script->Opt.Commands.end(); | 
|  | auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) { | 
|  | if (auto *Sec = dyn_cast<OutputSection>(Base)) | 
|  | return Sec->Live && Sec->SectionIndex == INT_MAX; | 
|  | return false; | 
|  | }); | 
|  |  | 
|  | // Sort the orphan sections. | 
|  | std::stable_sort(NonScriptI, E, compareSections); | 
|  |  | 
|  | // As a horrible special case, skip the first . assignment if it is before any | 
|  | // section. We do this because it is common to set a load address by starting | 
|  | // the script with ". = 0xabcd" and the expectation is that every section is | 
|  | // after that. | 
|  | auto FirstSectionOrDotAssignment = | 
|  | std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); }); | 
|  | if (FirstSectionOrDotAssignment != E && | 
|  | isa<SymbolAssignment>(**FirstSectionOrDotAssignment)) | 
|  | ++FirstSectionOrDotAssignment; | 
|  | I = FirstSectionOrDotAssignment; | 
|  |  | 
|  | while (NonScriptI != E) { | 
|  | auto Pos = findOrphanPos<ELFT>(I, NonScriptI); | 
|  | OutputSection *Orphan = cast<OutputSection>(*NonScriptI); | 
|  |  | 
|  | // As an optimization, find all sections with the same sort rank | 
|  | // and insert them with one rotate. | 
|  | unsigned Rank = Orphan->SortRank; | 
|  | auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) { | 
|  | return cast<OutputSection>(Cmd)->SortRank != Rank; | 
|  | }); | 
|  | std::rotate(Pos, NonScriptI, End); | 
|  | NonScriptI = End; | 
|  | } | 
|  |  | 
|  | Script->adjustSectionsAfterSorting(); | 
|  | } | 
|  |  | 
|  | static void applySynthetic(const std::vector<SyntheticSection *> &Sections, | 
|  | std::function<void(SyntheticSection *)> Fn) { | 
|  | for (SyntheticSection *SS : Sections) | 
|  | if (SS && SS->getParent() && !SS->empty()) | 
|  | Fn(SS); | 
|  | } | 
|  |  | 
|  | // We need to add input synthetic sections early in createSyntheticSections() | 
|  | // to make them visible from linkescript side. But not all sections are always | 
|  | // required to be in output. For example we don't need dynamic section content | 
|  | // sometimes. This function filters out such unused sections from the output. | 
|  | static void removeUnusedSyntheticSections() { | 
|  | // All input synthetic sections that can be empty are placed after | 
|  | // all regular ones. We iterate over them all and exit at first | 
|  | // non-synthetic. | 
|  | for (InputSectionBase *S : llvm::reverse(InputSections)) { | 
|  | SyntheticSection *SS = dyn_cast<SyntheticSection>(S); | 
|  | if (!SS) | 
|  | return; | 
|  | OutputSection *OS = SS->getParent(); | 
|  | if (!SS->empty() || !OS) | 
|  | continue; | 
|  | if ((SS == InX::Got || SS == InX::MipsGot) && ElfSym::GlobalOffsetTable) | 
|  | continue; | 
|  |  | 
|  | std::vector<BaseCommand *>::iterator Empty = OS->Commands.end(); | 
|  | for (auto I = OS->Commands.begin(), E = OS->Commands.end(); I != E; ++I) { | 
|  | BaseCommand *B = *I; | 
|  | if (auto *ISD = dyn_cast<InputSectionDescription>(B)) { | 
|  | auto P = std::find(ISD->Sections.begin(), ISD->Sections.end(), SS); | 
|  | if (P != ISD->Sections.end()) | 
|  | ISD->Sections.erase(P); | 
|  | if (ISD->Sections.empty()) | 
|  | Empty = I; | 
|  | } | 
|  | } | 
|  | if (Empty != OS->Commands.end()) | 
|  | OS->Commands.erase(Empty); | 
|  |  | 
|  | // If there are no other sections in the output section, remove it from the | 
|  | // output. | 
|  | if (OS->Commands.empty()) { | 
|  | // Also remove script commands matching the output section. | 
|  | auto &Cmds = Script->Opt.Commands; | 
|  | auto I = std::remove_if(Cmds.begin(), Cmds.end(), [&](BaseCommand *Cmd2) { | 
|  | if (auto *Sec = dyn_cast<OutputSection>(Cmd2)) | 
|  | return Sec == OS; | 
|  | return false; | 
|  | }); | 
|  | Cmds.erase(I, Cmds.end()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create output section objects and add them to OutputSections. | 
|  | template <class ELFT> void Writer<ELFT>::finalizeSections() { | 
|  | Out::DebugInfo = findSection(".debug_info"); | 
|  | Out::PreinitArray = findSection(".preinit_array"); | 
|  | Out::InitArray = findSection(".init_array"); | 
|  | Out::FiniArray = findSection(".fini_array"); | 
|  |  | 
|  | // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop | 
|  | // symbols for sections, so that the runtime can get the start and end | 
|  | // addresses of each section by section name. Add such symbols. | 
|  | if (!Config->Relocatable) { | 
|  | addStartEndSymbols(); | 
|  | for (BaseCommand *Base : Script->Opt.Commands) | 
|  | if (auto *Sec = dyn_cast<OutputSection>(Base)) | 
|  | addStartStopSymbols(Sec); | 
|  | } | 
|  |  | 
|  | // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. | 
|  | // It should be okay as no one seems to care about the type. | 
|  | // Even the author of gold doesn't remember why gold behaves that way. | 
|  | // https://sourceware.org/ml/binutils/2002-03/msg00360.html | 
|  | if (InX::DynSymTab) | 
|  | addRegular<ELFT>("_DYNAMIC", InX::Dynamic, 0); | 
|  |  | 
|  | // Define __rel[a]_iplt_{start,end} symbols if needed. | 
|  | addRelIpltSymbols(); | 
|  |  | 
|  | // This responsible for splitting up .eh_frame section into | 
|  | // pieces. The relocation scan uses those pieces, so this has to be | 
|  | // earlier. | 
|  | applySynthetic({In<ELFT>::EhFrame}, | 
|  | [](SyntheticSection *SS) { SS->finalizeContents(); }); | 
|  |  | 
|  | // Scan relocations. This must be done after every symbol is declared so that | 
|  | // we can correctly decide if a dynamic relocation is needed. | 
|  | forEachRelSec(scanRelocations<ELFT>); | 
|  |  | 
|  | if (InX::Plt && !InX::Plt->empty()) | 
|  | InX::Plt->addSymbols(); | 
|  | if (InX::Iplt && !InX::Iplt->empty()) | 
|  | InX::Iplt->addSymbols(); | 
|  |  | 
|  | // Now that we have defined all possible global symbols including linker- | 
|  | // synthesized ones. Visit all symbols to give the finishing touches. | 
|  | for (Symbol *S : Symtab->getSymbols()) { | 
|  | SymbolBody *Body = S->body(); | 
|  |  | 
|  | if (!includeInSymtab(*Body)) | 
|  | continue; | 
|  | if (InX::SymTab) | 
|  | InX::SymTab->addSymbol(Body); | 
|  |  | 
|  | if (InX::DynSymTab && S->includeInDynsym()) { | 
|  | InX::DynSymTab->addSymbol(Body); | 
|  | if (auto *SS = dyn_cast<SharedSymbol>(Body)) | 
|  | if (cast<SharedFile<ELFT>>(S->File)->isNeeded()) | 
|  | In<ELFT>::VerNeed->addSymbol(SS); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Do not proceed if there was an undefined symbol. | 
|  | if (ErrorCount) | 
|  | return; | 
|  |  | 
|  | addPredefinedSections(); | 
|  | removeUnusedSyntheticSections(); | 
|  |  | 
|  | sortSections(); | 
|  |  | 
|  | // Now that we have the final list, create a list of all the | 
|  | // OutputSections for convenience. | 
|  | for (BaseCommand *Base : Script->Opt.Commands) | 
|  | if (auto *Sec = dyn_cast<OutputSection>(Base)) | 
|  | OutputSections.push_back(Sec); | 
|  |  | 
|  | // Prefer command line supplied address over other constraints. | 
|  | for (OutputSection *Sec : OutputSections) { | 
|  | auto I = Config->SectionStartMap.find(Sec->Name); | 
|  | if (I != Config->SectionStartMap.end()) | 
|  | Sec->AddrExpr = [=] { return I->second; }; | 
|  | } | 
|  |  | 
|  | // This is a bit of a hack. A value of 0 means undef, so we set it | 
|  | // to 1 t make __ehdr_start defined. The section number is not | 
|  | // particularly relevant. | 
|  | Out::ElfHeader->SectionIndex = 1; | 
|  |  | 
|  | unsigned I = 1; | 
|  | for (OutputSection *Sec : OutputSections) { | 
|  | Sec->SectionIndex = I++; | 
|  | Sec->ShName = InX::ShStrTab->addString(Sec->Name); | 
|  | } | 
|  |  | 
|  | // Binary and relocatable output does not have PHDRS. | 
|  | // The headers have to be created before finalize as that can influence the | 
|  | // image base and the dynamic section on mips includes the image base. | 
|  | if (!Config->Relocatable && !Config->OFormatBinary) { | 
|  | Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs(); | 
|  | addPtArmExid(Phdrs); | 
|  | Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size(); | 
|  | } | 
|  |  | 
|  | // Dynamic section must be the last one in this list and dynamic | 
|  | // symbol table section (DynSymTab) must be the first one. | 
|  | applySynthetic({InX::DynSymTab,    InX::Bss,           InX::BssRelRo, | 
|  | InX::GnuHashTab,   In<ELFT>::HashTab,  InX::SymTab, | 
|  | InX::ShStrTab,     InX::StrTab,        In<ELFT>::VerDef, | 
|  | InX::DynStrTab,    InX::GdbIndex,      InX::Got, | 
|  | InX::MipsGot,      InX::IgotPlt,       InX::GotPlt, | 
|  | In<ELFT>::RelaDyn, In<ELFT>::RelaIplt, In<ELFT>::RelaPlt, | 
|  | InX::Plt,          InX::Iplt,          In<ELFT>::EhFrameHdr, | 
|  | In<ELFT>::VerSym,  In<ELFT>::VerNeed,  InX::Dynamic}, | 
|  | [](SyntheticSection *SS) { SS->finalizeContents(); }); | 
|  |  | 
|  | // Some architectures use small displacements for jump instructions. | 
|  | // It is linker's responsibility to create thunks containing long | 
|  | // jump instructions if jump targets are too far. Create thunks. | 
|  | if (Target->NeedsThunks) { | 
|  | // FIXME: only ARM Interworking and Mips LA25 Thunks are implemented, | 
|  | // these | 
|  | // do not require address information. To support range extension Thunks | 
|  | // we need to assign addresses so that we can tell if jump instructions | 
|  | // are out of range. This will need to turn into a loop that converges | 
|  | // when no more Thunks are added | 
|  | ThunkCreator TC; | 
|  | Script->assignAddresses(); | 
|  | if (TC.createThunks(OutputSections)) { | 
|  | applySynthetic({InX::MipsGot}, | 
|  | [](SyntheticSection *SS) { SS->updateAllocSize(); }); | 
|  | if (TC.createThunks(OutputSections)) | 
|  | fatal("All non-range thunks should be created in first call"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fill other section headers. The dynamic table is finalized | 
|  | // at the end because some tags like RELSZ depend on result | 
|  | // of finalizing other sections. | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | Sec->finalize<ELFT>(); | 
|  |  | 
|  | // createThunks may have added local symbols to the static symbol table | 
|  | applySynthetic({InX::SymTab, InX::ShStrTab, InX::StrTab}, | 
|  | [](SyntheticSection *SS) { SS->postThunkContents(); }); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::addPredefinedSections() { | 
|  | // ARM ABI requires .ARM.exidx to be terminated by some piece of data. | 
|  | // We have the terminater synthetic section class. Add that at the end. | 
|  | OutputSection *Cmd = findSection(".ARM.exidx"); | 
|  | if (!Cmd || !Cmd->Live || Config->Relocatable) | 
|  | return; | 
|  |  | 
|  | auto *Sentinel = make<ARMExidxSentinelSection>(); | 
|  | Cmd->addSection(Sentinel); | 
|  | } | 
|  |  | 
|  | // The linker is expected to define SECNAME_start and SECNAME_end | 
|  | // symbols for a few sections. This function defines them. | 
|  | template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { | 
|  | auto Define = [&](StringRef Start, StringRef End, OutputSection *OS) { | 
|  | // These symbols resolve to the image base if the section does not exist. | 
|  | // A special value -1 indicates end of the section. | 
|  | if (OS) { | 
|  | addOptionalRegular<ELFT>(Start, OS, 0); | 
|  | addOptionalRegular<ELFT>(End, OS, -1); | 
|  | } else { | 
|  | if (Config->Pic) | 
|  | OS = Out::ElfHeader; | 
|  | addOptionalRegular<ELFT>(Start, OS, 0); | 
|  | addOptionalRegular<ELFT>(End, OS, 0); | 
|  | } | 
|  | }; | 
|  |  | 
|  | Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray); | 
|  | Define("__init_array_start", "__init_array_end", Out::InitArray); | 
|  | Define("__fini_array_start", "__fini_array_end", Out::FiniArray); | 
|  |  | 
|  | if (OutputSection *Sec = findSection(".ARM.exidx")) | 
|  | Define("__exidx_start", "__exidx_end", Sec); | 
|  | } | 
|  |  | 
|  | // If a section name is valid as a C identifier (which is rare because of | 
|  | // the leading '.'), linkers are expected to define __start_<secname> and | 
|  | // __stop_<secname> symbols. They are at beginning and end of the section, | 
|  | // respectively. This is not requested by the ELF standard, but GNU ld and | 
|  | // gold provide the feature, and used by many programs. | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) { | 
|  | StringRef S = Sec->Name; | 
|  | if (!isValidCIdentifier(S)) | 
|  | return; | 
|  | addOptionalRegular<ELFT>(Saver.save("__start_" + S), Sec, 0, STV_DEFAULT); | 
|  | addOptionalRegular<ELFT>(Saver.save("__stop_" + S), Sec, -1, STV_DEFAULT); | 
|  | } | 
|  |  | 
|  | template <class ELFT> OutputSection *Writer<ELFT>::findSection(StringRef Name) { | 
|  | for (BaseCommand *Base : Script->Opt.Commands) | 
|  | if (auto *Sec = dyn_cast<OutputSection>(Base)) | 
|  | if (Sec->Name == Name) | 
|  | return Sec; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static bool needsPtLoad(OutputSection *Sec) { | 
|  | if (!(Sec->Flags & SHF_ALLOC)) | 
|  | return false; | 
|  |  | 
|  | // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is | 
|  | // responsible for allocating space for them, not the PT_LOAD that | 
|  | // contains the TLS initialization image. | 
|  | if (Sec->Flags & SHF_TLS && Sec->Type == SHT_NOBITS) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Linker scripts are responsible for aligning addresses. Unfortunately, most | 
|  | // linker scripts are designed for creating two PT_LOADs only, one RX and one | 
|  | // RW. This means that there is no alignment in the RO to RX transition and we | 
|  | // cannot create a PT_LOAD there. | 
|  | static uint64_t computeFlags(uint64_t Flags) { | 
|  | if (Config->Omagic) | 
|  | return PF_R | PF_W | PF_X; | 
|  | if (Config->SingleRoRx && !(Flags & PF_W)) | 
|  | return Flags | PF_X; | 
|  | return Flags; | 
|  | } | 
|  |  | 
|  | // Decide which program headers to create and which sections to include in each | 
|  | // one. | 
|  | template <class ELFT> std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs() { | 
|  | std::vector<PhdrEntry *> Ret; | 
|  | auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * { | 
|  | Ret.push_back(make<PhdrEntry>(Type, Flags)); | 
|  | return Ret.back(); | 
|  | }; | 
|  |  | 
|  | // The first phdr entry is PT_PHDR which describes the program header itself. | 
|  | AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders); | 
|  |  | 
|  | // PT_INTERP must be the second entry if exists. | 
|  | if (OutputSection *Cmd = findSection(".interp")) | 
|  | AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd); | 
|  |  | 
|  | // Add the first PT_LOAD segment for regular output sections. | 
|  | uint64_t Flags = computeFlags(PF_R); | 
|  | PhdrEntry *Load = AddHdr(PT_LOAD, Flags); | 
|  |  | 
|  | // Add the headers. We will remove them if they don't fit. | 
|  | Load->add(Out::ElfHeader); | 
|  | Load->add(Out::ProgramHeaders); | 
|  |  | 
|  | for (OutputSection *Sec : OutputSections) { | 
|  | if (!(Sec->Flags & SHF_ALLOC)) | 
|  | break; | 
|  | if (!needsPtLoad(Sec)) | 
|  | continue; | 
|  |  | 
|  | // Segments are contiguous memory regions that has the same attributes | 
|  | // (e.g. executable or writable). There is one phdr for each segment. | 
|  | // Therefore, we need to create a new phdr when the next section has | 
|  | // different flags or is loaded at a discontiguous address using AT linker | 
|  | // script command. | 
|  | uint64_t NewFlags = computeFlags(Sec->getPhdrFlags()); | 
|  | if (Sec->LMAExpr || Flags != NewFlags) { | 
|  | Load = AddHdr(PT_LOAD, NewFlags); | 
|  | Flags = NewFlags; | 
|  | } | 
|  |  | 
|  | Load->add(Sec); | 
|  | } | 
|  |  | 
|  | // Add a TLS segment if any. | 
|  | PhdrEntry *TlsHdr = make<PhdrEntry>(PT_TLS, PF_R); | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | if (Sec->Flags & SHF_TLS) | 
|  | TlsHdr->add(Sec); | 
|  | if (TlsHdr->First) | 
|  | Ret.push_back(TlsHdr); | 
|  |  | 
|  | // Add an entry for .dynamic. | 
|  | if (InX::DynSymTab) | 
|  | AddHdr(PT_DYNAMIC, InX::Dynamic->getParent()->getPhdrFlags()) | 
|  | ->add(InX::Dynamic->getParent()); | 
|  |  | 
|  | // PT_GNU_RELRO includes all sections that should be marked as | 
|  | // read-only by dynamic linker after proccessing relocations. | 
|  | PhdrEntry *RelRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | if (needsPtLoad(Sec) && isRelroSection(Sec)) | 
|  | RelRo->add(Sec); | 
|  | if (RelRo->First) | 
|  | Ret.push_back(RelRo); | 
|  |  | 
|  | // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. | 
|  | if (!In<ELFT>::EhFrame->empty() && In<ELFT>::EhFrameHdr && | 
|  | In<ELFT>::EhFrame->getParent() && In<ELFT>::EhFrameHdr->getParent()) | 
|  | AddHdr(PT_GNU_EH_FRAME, In<ELFT>::EhFrameHdr->getParent()->getPhdrFlags()) | 
|  | ->add(In<ELFT>::EhFrameHdr->getParent()); | 
|  |  | 
|  | // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes | 
|  | // the dynamic linker fill the segment with random data. | 
|  | if (OutputSection *Cmd = findSection(".openbsd.randomdata")) | 
|  | AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd); | 
|  |  | 
|  | // PT_GNU_STACK is a special section to tell the loader to make the | 
|  | // pages for the stack non-executable. If you really want an executable | 
|  | // stack, you can pass -z execstack, but that's not recommended for | 
|  | // security reasons. | 
|  | unsigned Perm; | 
|  | if (Config->ZExecstack) | 
|  | Perm = PF_R | PF_W | PF_X; | 
|  | else | 
|  | Perm = PF_R | PF_W; | 
|  | AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize; | 
|  |  | 
|  | // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable | 
|  | // is expected to perform W^X violations, such as calling mprotect(2) or | 
|  | // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on | 
|  | // OpenBSD. | 
|  | if (Config->ZWxneeded) | 
|  | AddHdr(PT_OPENBSD_WXNEEDED, PF_X); | 
|  |  | 
|  | // Create one PT_NOTE per a group of contiguous .note sections. | 
|  | PhdrEntry *Note = nullptr; | 
|  | for (OutputSection *Sec : OutputSections) { | 
|  | if (Sec->Type == SHT_NOTE) { | 
|  | if (!Note || Sec->LMAExpr) | 
|  | Note = AddHdr(PT_NOTE, PF_R); | 
|  | Note->add(Sec); | 
|  | } else { | 
|  | Note = nullptr; | 
|  | } | 
|  | } | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::addPtArmExid(std::vector<PhdrEntry *> &Phdrs) { | 
|  | if (Config->EMachine != EM_ARM) | 
|  | return; | 
|  | auto I = llvm::find_if(OutputSections, [](OutputSection *Cmd) { | 
|  | return Cmd->Type == SHT_ARM_EXIDX; | 
|  | }); | 
|  | if (I == OutputSections.end()) | 
|  | return; | 
|  |  | 
|  | // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME | 
|  | PhdrEntry *ARMExidx = make<PhdrEntry>(PT_ARM_EXIDX, PF_R); | 
|  | ARMExidx->add(*I); | 
|  | Phdrs.push_back(ARMExidx); | 
|  | } | 
|  |  | 
|  | // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the | 
|  | // first section after PT_GNU_RELRO have to be page aligned so that the dynamic | 
|  | // linker can set the permissions. | 
|  | template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { | 
|  | auto PageAlign = [](OutputSection *Cmd) { | 
|  | if (Cmd && !Cmd->AddrExpr) | 
|  | Cmd->AddrExpr = [=] { | 
|  | return alignTo(Script->getDot(), Config->MaxPageSize); | 
|  | }; | 
|  | }; | 
|  |  | 
|  | for (const PhdrEntry *P : Phdrs) | 
|  | if (P->p_type == PT_LOAD && P->First) | 
|  | PageAlign(P->First); | 
|  |  | 
|  | for (const PhdrEntry *P : Phdrs) { | 
|  | if (P->p_type != PT_GNU_RELRO) | 
|  | continue; | 
|  | if (P->First) | 
|  | PageAlign(P->First); | 
|  | // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we | 
|  | // have to align it to a page. | 
|  | auto End = OutputSections.end(); | 
|  | auto I = std::find(OutputSections.begin(), End, P->Last); | 
|  | if (I == End || (I + 1) == End) | 
|  | continue; | 
|  | OutputSection *Cmd = (*(I + 1)); | 
|  | if (needsPtLoad(Cmd)) | 
|  | PageAlign(Cmd); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Adjusts the file alignment for a given output section and returns | 
|  | // its new file offset. The file offset must be the same with its | 
|  | // virtual address (modulo the page size) so that the loader can load | 
|  | // executables without any address adjustment. | 
|  | static uint64_t getFileAlignment(uint64_t Off, OutputSection *Cmd) { | 
|  | OutputSection *First = Cmd->FirstInPtLoad; | 
|  | // If the section is not in a PT_LOAD, we just have to align it. | 
|  | if (!First) | 
|  | return alignTo(Off, Cmd->Alignment); | 
|  |  | 
|  | // The first section in a PT_LOAD has to have congruent offset and address | 
|  | // module the page size. | 
|  | if (Cmd == First) | 
|  | return alignTo(Off, std::max<uint64_t>(Cmd->Alignment, Config->MaxPageSize), | 
|  | Cmd->Addr); | 
|  |  | 
|  | // If two sections share the same PT_LOAD the file offset is calculated | 
|  | // using this formula: Off2 = Off1 + (VA2 - VA1). | 
|  | return First->Offset + Cmd->Addr - First->Addr; | 
|  | } | 
|  |  | 
|  | static uint64_t setOffset(OutputSection *Cmd, uint64_t Off) { | 
|  | if (Cmd->Type == SHT_NOBITS) { | 
|  | Cmd->Offset = Off; | 
|  | return Off; | 
|  | } | 
|  |  | 
|  | Off = getFileAlignment(Off, Cmd); | 
|  | Cmd->Offset = Off; | 
|  | return Off + Cmd->Size; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { | 
|  | uint64_t Off = 0; | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | if (Sec->Flags & SHF_ALLOC) | 
|  | Off = setOffset(Sec, Off); | 
|  | FileSize = alignTo(Off, Config->Wordsize); | 
|  | } | 
|  |  | 
|  | // Assign file offsets to output sections. | 
|  | template <class ELFT> void Writer<ELFT>::assignFileOffsets() { | 
|  | uint64_t Off = 0; | 
|  | Off = setOffset(Out::ElfHeader, Off); | 
|  | Off = setOffset(Out::ProgramHeaders, Off); | 
|  |  | 
|  | PhdrEntry *LastRX = nullptr; | 
|  | for (PhdrEntry *P : Phdrs) | 
|  | if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) | 
|  | LastRX = P; | 
|  |  | 
|  | for (OutputSection *Sec : OutputSections) { | 
|  | Off = setOffset(Sec, Off); | 
|  | if (Script->Opt.HasSections) | 
|  | continue; | 
|  | // If this is a last section of the last executable segment and that | 
|  | // segment is the last loadable segment, align the offset of the | 
|  | // following section to avoid loading non-segments parts of the file. | 
|  | if (LastRX && LastRX->Last == Sec) | 
|  | Off = alignTo(Off, Target->PageSize); | 
|  | } | 
|  |  | 
|  | SectionHeaderOff = alignTo(Off, Config->Wordsize); | 
|  | FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); | 
|  | } | 
|  |  | 
|  | // Finalize the program headers. We call this function after we assign | 
|  | // file offsets and VAs to all sections. | 
|  | template <class ELFT> void Writer<ELFT>::setPhdrs() { | 
|  | for (PhdrEntry *P : Phdrs) { | 
|  | OutputSection *First = P->First; | 
|  | OutputSection *Last = P->Last; | 
|  | if (First) { | 
|  | P->p_filesz = Last->Offset - First->Offset; | 
|  | if (Last->Type != SHT_NOBITS) | 
|  | P->p_filesz += Last->Size; | 
|  | P->p_memsz = Last->Addr + Last->Size - First->Addr; | 
|  | P->p_offset = First->Offset; | 
|  | P->p_vaddr = First->Addr; | 
|  | if (!P->HasLMA) | 
|  | P->p_paddr = First->getLMA(); | 
|  | } | 
|  | if (P->p_type == PT_LOAD) | 
|  | P->p_align = std::max<uint64_t>(P->p_align, Config->MaxPageSize); | 
|  | else if (P->p_type == PT_GNU_RELRO) { | 
|  | P->p_align = 1; | 
|  | // The glibc dynamic loader rounds the size down, so we need to round up | 
|  | // to protect the last page. This is a no-op on FreeBSD which always | 
|  | // rounds up. | 
|  | P->p_memsz = alignTo(P->p_memsz, Target->PageSize); | 
|  | } | 
|  |  | 
|  | // The TLS pointer goes after PT_TLS. At least glibc will align it, | 
|  | // so round up the size to make sure the offsets are correct. | 
|  | if (P->p_type == PT_TLS) { | 
|  | Out::TlsPhdr = P; | 
|  | if (P->p_memsz) | 
|  | P->p_memsz = alignTo(P->p_memsz, P->p_align); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The entry point address is chosen in the following ways. | 
|  | // | 
|  | // 1. the '-e' entry command-line option; | 
|  | // 2. the ENTRY(symbol) command in a linker control script; | 
|  | // 3. the value of the symbol start, if present; | 
|  | // 4. the address of the first byte of the .text section, if present; | 
|  | // 5. the address 0. | 
|  | template <class ELFT> uint64_t Writer<ELFT>::getEntryAddr() { | 
|  | // Case 1, 2 or 3. As a special case, if the symbol is actually | 
|  | // a number, we'll use that number as an address. | 
|  | if (SymbolBody *B = Symtab->find(Config->Entry)) | 
|  | return B->getVA(); | 
|  | uint64_t Addr; | 
|  | if (to_integer(Config->Entry, Addr)) | 
|  | return Addr; | 
|  |  | 
|  | // Case 4 | 
|  | if (OutputSection *Sec = findSection(".text")) { | 
|  | if (Config->WarnMissingEntry) | 
|  | warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" + | 
|  | utohexstr(Sec->Addr)); | 
|  | return Sec->Addr; | 
|  | } | 
|  |  | 
|  | // Case 5 | 
|  | if (Config->WarnMissingEntry) | 
|  | warn("cannot find entry symbol " + Config->Entry + | 
|  | "; not setting start address"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static uint16_t getELFType() { | 
|  | if (Config->Pic) | 
|  | return ET_DYN; | 
|  | if (Config->Relocatable) | 
|  | return ET_REL; | 
|  | return ET_EXEC; | 
|  | } | 
|  |  | 
|  | // This function is called after we have assigned address and size | 
|  | // to each section. This function fixes some predefined | 
|  | // symbol values that depend on section address and size. | 
|  | template <class ELFT> void Writer<ELFT>::fixPredefinedSymbols() { | 
|  | // _etext is the first location after the last read-only loadable segment. | 
|  | // _edata is the first location after the last read-write loadable segment. | 
|  | // _end is the first location after the uninitialized data region. | 
|  | PhdrEntry *Last = nullptr; | 
|  | PhdrEntry *LastRO = nullptr; | 
|  | PhdrEntry *LastRW = nullptr; | 
|  | for (PhdrEntry *P : Phdrs) { | 
|  | if (P->p_type != PT_LOAD) | 
|  | continue; | 
|  | Last = P; | 
|  | if (P->p_flags & PF_W) | 
|  | LastRW = P; | 
|  | else | 
|  | LastRO = P; | 
|  | } | 
|  |  | 
|  | auto Set = [](DefinedRegular *S, OutputSection *Cmd, uint64_t Value) { | 
|  | if (S) { | 
|  | S->Section = Cmd; | 
|  | S->Value = Value; | 
|  | } | 
|  | }; | 
|  |  | 
|  | if (Last) { | 
|  | Set(ElfSym::End1, Last->First, Last->p_memsz); | 
|  | Set(ElfSym::End2, Last->First, Last->p_memsz); | 
|  | } | 
|  | if (LastRO) { | 
|  | Set(ElfSym::Etext1, LastRO->First, LastRO->p_filesz); | 
|  | Set(ElfSym::Etext2, LastRO->First, LastRO->p_filesz); | 
|  | } | 
|  | if (LastRW) { | 
|  | Set(ElfSym::Edata1, LastRW->First, LastRW->p_filesz); | 
|  | Set(ElfSym::Edata2, LastRW->First, LastRW->p_filesz); | 
|  | } | 
|  |  | 
|  | if (ElfSym::Bss) | 
|  | ElfSym::Bss->Section = findSection(".bss"); | 
|  |  | 
|  | // Setup MIPS _gp_disp/__gnu_local_gp symbols which should | 
|  | // be equal to the _gp symbol's value. | 
|  | if (Config->EMachine == EM_MIPS && !ElfSym::MipsGp->Value) { | 
|  | // Find GP-relative section with the lowest address | 
|  | // and use this address to calculate default _gp value. | 
|  | for (const OutputSection *Cmd : OutputSections) { | 
|  | const OutputSection *OS = Cmd; | 
|  | if (OS->Flags & SHF_MIPS_GPREL) { | 
|  | ElfSym::MipsGp->Value = OS->Addr + 0x7ff0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::writeHeader() { | 
|  | uint8_t *Buf = Buffer->getBufferStart(); | 
|  | memcpy(Buf, "\177ELF", 4); | 
|  |  | 
|  | // Write the ELF header. | 
|  | auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); | 
|  | EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32; | 
|  | EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB; | 
|  | EHdr->e_ident[EI_VERSION] = EV_CURRENT; | 
|  | EHdr->e_ident[EI_OSABI] = Config->OSABI; | 
|  | EHdr->e_type = getELFType(); | 
|  | EHdr->e_machine = Config->EMachine; | 
|  | EHdr->e_version = EV_CURRENT; | 
|  | EHdr->e_entry = getEntryAddr(); | 
|  | EHdr->e_shoff = SectionHeaderOff; | 
|  | EHdr->e_ehsize = sizeof(Elf_Ehdr); | 
|  | EHdr->e_phnum = Phdrs.size(); | 
|  | EHdr->e_shentsize = sizeof(Elf_Shdr); | 
|  | EHdr->e_shnum = OutputSections.size() + 1; | 
|  | EHdr->e_shstrndx = InX::ShStrTab->getParent()->SectionIndex; | 
|  |  | 
|  | if (Config->EMachine == EM_ARM) | 
|  | // We don't currently use any features incompatible with EF_ARM_EABI_VER5, | 
|  | // but we don't have any firm guarantees of conformance. Linux AArch64 | 
|  | // kernels (as of 2016) require an EABI version to be set. | 
|  | EHdr->e_flags = EF_ARM_EABI_VER5; | 
|  | else if (Config->EMachine == EM_MIPS) | 
|  | EHdr->e_flags = getMipsEFlags<ELFT>(); | 
|  |  | 
|  | if (!Config->Relocatable) { | 
|  | EHdr->e_phoff = sizeof(Elf_Ehdr); | 
|  | EHdr->e_phentsize = sizeof(Elf_Phdr); | 
|  | } | 
|  |  | 
|  | // Write the program header table. | 
|  | auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff); | 
|  | for (PhdrEntry *P : Phdrs) { | 
|  | HBuf->p_type = P->p_type; | 
|  | HBuf->p_flags = P->p_flags; | 
|  | HBuf->p_offset = P->p_offset; | 
|  | HBuf->p_vaddr = P->p_vaddr; | 
|  | HBuf->p_paddr = P->p_paddr; | 
|  | HBuf->p_filesz = P->p_filesz; | 
|  | HBuf->p_memsz = P->p_memsz; | 
|  | HBuf->p_align = P->p_align; | 
|  | ++HBuf; | 
|  | } | 
|  |  | 
|  | // Write the section header table. Note that the first table entry is null. | 
|  | auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | Sec->writeHeaderTo<ELFT>(++SHdrs); | 
|  | } | 
|  |  | 
|  | // Open a result file. | 
|  | template <class ELFT> void Writer<ELFT>::openFile() { | 
|  | if (!Config->Is64 && FileSize > UINT32_MAX) { | 
|  | error("output file too large: " + Twine(FileSize) + " bytes"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unlinkAsync(Config->OutputFile); | 
|  | ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr = | 
|  | FileOutputBuffer::create(Config->OutputFile, FileSize, | 
|  | FileOutputBuffer::F_executable); | 
|  |  | 
|  | if (auto EC = BufferOrErr.getError()) | 
|  | error("failed to open " + Config->OutputFile + ": " + EC.message()); | 
|  | else | 
|  | Buffer = std::move(*BufferOrErr); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { | 
|  | uint8_t *Buf = Buffer->getBufferStart(); | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | if (Sec->Flags & SHF_ALLOC) | 
|  | Sec->writeTo<ELFT>(Buf + Sec->Offset); | 
|  | } | 
|  |  | 
|  | static void fillTrapInstr(uint8_t *I, uint8_t *End) { | 
|  | for (; I + 4 < End; I += 4) | 
|  | memcpy(I, &Target->TrapInstr, 4); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Fill the first and the last page of executable segments with trap | 
|  | // instructions instead of leaving them as zero. Even though it is not required | 
|  | // by any standard , it is in general a good thing to do for security reasons. | 
|  | template <class ELFT> void Writer<ELFT>::writeTrapInstr() { | 
|  | if (Script->Opt.HasSections) | 
|  | return; | 
|  |  | 
|  | uint8_t *Buf = Buffer->getBufferStart(); | 
|  |  | 
|  | for (PhdrEntry *P : Phdrs) { | 
|  | if (P->p_type != PT_LOAD || !(P->p_flags & PF_X)) | 
|  | continue; | 
|  |  | 
|  | // We only fill the first and the last page of the segment because the | 
|  | // middle part will be overwritten by output sections. | 
|  | fillTrapInstr(Buf + alignDown(P->p_offset, Target->PageSize), | 
|  | Buf + alignTo(P->p_offset, Target->PageSize)); | 
|  | fillTrapInstr(Buf + alignDown(P->p_offset + P->p_filesz, Target->PageSize), | 
|  | Buf + alignTo(P->p_offset + P->p_filesz, Target->PageSize)); | 
|  | } | 
|  |  | 
|  | PhdrEntry *LastRX = nullptr; | 
|  | for (PhdrEntry *P : Phdrs) { | 
|  | if (P->p_type != PT_LOAD) | 
|  | continue; | 
|  | if (P->p_flags & PF_X) | 
|  | LastRX = P; | 
|  | else | 
|  | LastRX = nullptr; | 
|  | } | 
|  |  | 
|  | // Round up the file size of the last segment to the page boundary iff it is | 
|  | // an executable segment to ensure that other other tools don't accidentally | 
|  | // trim the instruction padding (e.g. when stripping the file). | 
|  | if (LastRX) | 
|  | LastRX->p_filesz = alignTo(LastRX->p_filesz, Target->PageSize); | 
|  | } | 
|  |  | 
|  | // Write section contents to a mmap'ed file. | 
|  | template <class ELFT> void Writer<ELFT>::writeSections() { | 
|  | uint8_t *Buf = Buffer->getBufferStart(); | 
|  |  | 
|  | // PPC64 needs to process relocations in the .opd section | 
|  | // before processing relocations in code-containing sections. | 
|  | if (auto *OpdCmd = findSection(".opd")) { | 
|  | Out::Opd = OpdCmd; | 
|  | Out::OpdBuf = Buf + Out::Opd->Offset; | 
|  | OpdCmd->template writeTo<ELFT>(Buf + Out::Opd->Offset); | 
|  | } | 
|  |  | 
|  | OutputSection *EhFrameHdr = | 
|  | (In<ELFT>::EhFrameHdr && !In<ELFT>::EhFrameHdr->empty()) | 
|  | ? In<ELFT>::EhFrameHdr->getParent() | 
|  | : nullptr; | 
|  |  | 
|  | // In -r or -emit-relocs mode, write the relocation sections first as in | 
|  | // ELf_Rel targets we might find out that we need to modify the relocated | 
|  | // section while doing it. | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) | 
|  | Sec->writeTo<ELFT>(Buf + Sec->Offset); | 
|  |  | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | if (Sec != Out::Opd && Sec != EhFrameHdr && Sec->Type != SHT_REL && | 
|  | Sec->Type != SHT_RELA) | 
|  | Sec->writeTo<ELFT>(Buf + Sec->Offset); | 
|  |  | 
|  | // The .eh_frame_hdr depends on .eh_frame section contents, therefore | 
|  | // it should be written after .eh_frame is written. | 
|  | if (EhFrameHdr) | 
|  | EhFrameHdr->writeTo<ELFT>(Buf + EhFrameHdr->Offset); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::writeBuildId() { | 
|  | if (!InX::BuildId || !InX::BuildId->getParent()) | 
|  | return; | 
|  |  | 
|  | // Compute a hash of all sections of the output file. | 
|  | uint8_t *Start = Buffer->getBufferStart(); | 
|  | uint8_t *End = Start + FileSize; | 
|  | InX::BuildId->writeBuildId({Start, End}); | 
|  | } | 
|  |  | 
|  | template void elf::writeResult<ELF32LE>(); | 
|  | template void elf::writeResult<ELF32BE>(); | 
|  | template void elf::writeResult<ELF64LE>(); | 
|  | template void elf::writeResult<ELF64BE>(); |